Science.gov

Sample records for spherical wedge geometry

  1. CYCLIC MAGNETIC ACTIVITY DUE TO TURBULENT CONVECTION IN SPHERICAL WEDGE GEOMETRY

    SciTech Connect

    Kaepylae, Petri J.; Mantere, Maarit J.; Brandenburg, Axel

    2012-08-10

    We report on simulations of turbulent, rotating, stratified, magnetohydrodynamic convection in spherical wedge geometry. An initially small-scale, random, weak-amplitude magnetic field is amplified by several orders of magnitude in the course of the simulation to form oscillatory large-scale fields in the saturated state of the dynamo. The differential rotation is solar-like (fast equator), but neither coherent meridional poleward circulation nor near-surface shear layer develop in these runs. In addition to a poleward branch of magnetic activity beyond 50 Degree-Sign latitude, we find for the first time a pronounced equatorward branch at around 20 Degree-Sign latitude, reminiscent of the solar cycle.

  2. Robustness of oscillatory α2 dynamos in spherical wedges

    NASA Astrophysics Data System (ADS)

    Cole, E.; Brandenburg, A.; Käpylä, P. J.; Käpylä, M. J.

    2016-10-01

    Context. Large-scale dynamo simulations are sometimes confined to spherical wedge geometries by imposing artificial boundary conditions at high latitudes. This may lead to spatio-temporal behaviours that are not representative of those in full spherical shells. Aims: We study the connection between spherical wedge and full spherical shell geometries using simple mean-field dynamos. Methods: We solve the equations for one-dimensional time-dependent α2 and α2Ω mean-field dynamos with only latitudinal extent to examine the effects of varying the polar angle θ0 between the latitudinal boundaries and the poles in spherical coordinates. Results: In the case of constant α and ηt profiles, we find oscillatory solutions only with the commonly used perfect conductor boundary condition in a wedge geometry, while for full spheres all boundary conditions produce stationary solutions, indicating that perfect conductor conditions lead to unphysical solutions in such a wedge setup. To search for configurations in which this problem can be alleviated we choose a profile of the turbulent magnetic diffusivity that decreases toward the poles, corresponding to high conductivity there. Oscillatory solutions are now achieved with models extending to the poles, but the magnetic field is strongly concentrated near the poles and the oscillation period is very long. By changing both the turbulent magnetic diffusivity and α profiles so that both effects are more concentrated toward the equator, we see oscillatory dynamos with equatorward drift, shorter cycles, and magnetic fields distributed over a wider range of latitudes. Those profiles thus remove the sensitive and unphysical dependence on θ0. When introducing radial shear, we again see oscillatory dynamos, and the direction of drift follows the Parker-Yoshimura rule. Conclusions: A reduced α effect near the poles with a turbulent diffusivity concentrated toward the equator yields oscillatory dynamos with equatorward migration and

  3. Acoustic field of a wedge-shaped section of a spherical cap transducer

    NASA Astrophysics Data System (ADS)

    Ketterling, Jeffrey A.

    2003-12-01

    The acoustic pressure field at an arbitrary point in space is derived for a wedge-shaped section of a spherical cap transducer using the spatial impulse response (SIR) method. For a spherical surface centered at the origin, a wedge shape is created by taking cuts in the X-Y and X-Z planes and removing the smallest surface component. Analytic expressions are derived for the SIR based on spatial location. The expressions utilize the SIR solutions for a spherical cap transducer [Arditi et al., Ultrason. Imaging 3, 37-61 (1981)] with additional terms added to account for the reduced surface area of the wedge. Results from the numerical model are compared to experimental measurements from a wedge transducer with an 8-cm outer diameter and 9-cm geometric focus. The experimental and theoretical -3-dB beamwidths agreed to within 10%+/-5%. The SIR model for a wedge-shaped transducer is easily extended to other spherically curved transducer geometries that consist of combinations of wedge sections and spherical caps.

  4. Geometry and kinematics of extensional structural wedges

    NASA Astrophysics Data System (ADS)

    Gui, Baoling; He, Dengfa; Zhang, Yongsheng; Sun, Yanpeng; Huang, Jingyi; Zhang, Wenjun

    2017-03-01

    Structural wedges in the compressive environment have been recognized and studied in different locations. However, extension structural wedges are less well-understood. Based on the normal fault-bend folding theory and inclined shear model, this paper quantitatively analyses deformations related to extensional structural wedges and builds a series of geometric models for them. An extensional structural wedge is a fault-block held by two or more normal faults, the action of which would fold its overlying strata. Extensional structural wedges of different shapes will lead to different deformation results for the overlying strata, and this paper illustrates both the triangular and quadrangular wedges and their related deformations. This paper also discusses differences between the extensional structural wedges and the normal fault-bend-folding. By analysing two seismic sections from Langfang-Gu'an Sag, East China, this paper provides two natural examples of the triangular and quadrangular extensional structural wedges, where the models can reasonably explain the overlying distinct highs and lows without obvious faults. The establishment of a geometric model of extensional structural wedges can provide reference and theoretical bases for future quantitative analysis of deformations in the extensional environment.

  5. Characterizing Student Mathematics Teachers' Levels of Understanding in Spherical Geometry

    ERIC Educational Resources Information Center

    Guven, Bulent; Baki, Adnan

    2010-01-01

    This article presents an exploratory study aimed at the identification of students' levels of understanding in spherical geometry as van Hiele did for Euclidean geometry. To do this, we developed and implemented a spherical geometry course for student mathematics teachers. Six structured, "task-based interviews" were held with eight student…

  6. Students Discovering Spherical Geometry Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Guven, Bulent; Karatas, Ilhan

    2009-01-01

    Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…

  7. Disruption and Disclosure: Learning To Model Spherical Geometry.

    ERIC Educational Resources Information Center

    Stevenson, Ian

    2001-01-01

    Discusses some aspects of learning to read the process of the variation in congruence and relate it to the original geometry of the sphere since it touches on more general questions about how models are appropriated and used. Presents a learning episode that implemented projective models for both spherical and hyperbolic geometry in Object Logo.…

  8. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2011-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  9. Space Radiation Detector with Spherical Geometry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2012-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  10. Explosive fragmentation of liquids in spherical geometry

    NASA Astrophysics Data System (ADS)

    Milne, A.; Longbottom, A.; Frost, D. L.; Loiseau, J.; Goroshin, S.; Petel, O.

    2016-07-01

    Rapid acceleration of a spherical shell of liquid following central detonation of a high explosive causes the liquid to form fine jets that are similar in appearance to the particle jets that are formed during explosive dispersal of a packed layer of solid particles. Of particular interest is determining the dependence of the scale of the jet-like structures on the physical parameters of the system, including the fluid properties (e.g., density, viscosity, and surface tension) and the ratio of the mass of the liquid to that of the explosive. The present paper presents computational results from a multi-material hydrocode describing the dynamics of the explosive dispersal process. The computations are used to track the overall features of the early stages of dispersal of the liquid layer, including the wave dynamics, and motion of the spall and accretion layers. The results are compared with new experimental results of spherical charges surrounded by a variety of different fluids, including water, glycerol, ethanol, and vegetable oil, which together encompass a significant range of fluid properties. The results show that the number of jet structures is not sensitive to the fluid properties, but primarily dependent on the mass ratio. Above a certain mass ratio of liquid fill-to-explosive burster (F / B), the number of jets is approximately constant and consistent with an empirical model based on the maximum thickness of the accretion layer. For small values of F / B, the number of liquid jets is reduced, in contrast with explosive powder dispersal, where small F / B yields a larger number of particle jets. A hypothetical explanation of these features based on the nucleation of cavitation is explored numerically.

  11. The effect of décollement dip on geometry and kinematics of model accretionary wedges

    NASA Astrophysics Data System (ADS)

    Koyi, Hemin A.; Vendeville, Bruno C.

    2003-09-01

    We conducted a series of sand-box models shortened asymmetrically above a frictional-plastic décollement to study the influence of amount and sense of the décollement dip on the geometry and kinematics of accretionary wedges. Model results illustrate that the amount and direction of décollement dip strongly influence the geometry and mode of deformation of the resulting wedge. In general, for models having similar décollement frictional parameters, the resulting wedge is steeper, grows higher and is shorter when shortened above a décollement that dips toward the hinterland. At 42% bulk shortening, the length/height ratio of wedges formed above a 5°-dipping décollement was equal to 2.4 whereas this ratio was equal to 3 for wedges shortened above a horizontal décollement. Moreover, models with a hinterland dipping décollement undergo larger amounts of layer parallel compaction (LPC) and area loss than models shortened above a non-dipping décollement. The effect of décollement dip on wedge deformation is most pronounced when basal friction is relatively high (μ b=0.55), whereas its effect is less significant in models where the basal décollement has a lower friction (μ b=0.37). Model results also show that increasing basal slope has a similar effect to that of increasing basal friction; the wedge grows taller and its critical taper steepens.

  12. Geometry of the transition criterion of shock wave reflection over a wedge

    NASA Astrophysics Data System (ADS)

    Cui, T.; Jiao, X.; Yu, D.

    2015-01-01

    The hysteresis phenomena of shock wave reflection observed during recent numerical and experimental investigations are analyzed in this paper using dynamical system theory. It is found through the analysis that the geometry of the transition criterion of shock wave reflection over a wedge has the shape of a butterfly. Knowledge of the geometry can provide important information on the hysteresis behavior of shock wave reflection. The geometry of the transition criterion can be used not only for the explanation of already known hysteresis behavior of shock wave reflection, but also for the prediction of novel hysteresis phenomena.

  13. Viscous Rayleigh-Taylor instability in spherical geometry

    DOE PAGES

    Mikaelian, Karnig O.

    2016-02-08

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.

  14. Shock Wave Boundary Layer Interaction Mechanism on a Double Wedge Geometry

    NASA Astrophysics Data System (ADS)

    Celik, Bayram; Barada, Mohammad Adel El Hajj Ali; Durna, Ahmet Selim

    2015-11-01

    A hypersonic test series by Swantek & Austin report complex shock wave boundary layer interaction mechanisms and unsteady surface heat flux from a double wedge geometry in a low enthalpy Mach 7 flow. In order to understand the physics of the flow and the heat transfer, we study the flow computationally and compare the results for the double wedge geometries, whose second angle is higher and lower than the maximum deflection angle at Mach 7. Apart from the numbers of comprehensive computational studies on the subject available in open literature, our study aims to describe the flow physics by taking the influence of both boundary layers that are formed on the two walls of the wedge into account. In addition to describing the flow and heat transfer mechanisms, we investigate the time for the flows to reach steady state. We evaluate the interaction mechanisms in term of instant and time average surface heat flux distributions. We perform all computations using a finite volume based compressible Navier-Stokes solver, rhoCentralFoam, which is one of the several compressible flow solvers of an open source software, openFOAM.

  15. Viscous Rayleigh-Taylor instability in spherical geometry

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2016-02-01

    We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955), 10.1093/qjmam/8.1.1] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer a somewhat improved one. A third DR, based on transforming a planar DR into a spherical one, suffers no unphysical predictions and compares reasonably well with the exact work of Chandrasekhar and a more recent numerical analysis of the problem [Terrones and Carrara, Phys. Fluids 27, 054105 (2015), 10.1063/1.4921648].

  16. The AGCE related studies of baroclinic flows in spherical geometry

    NASA Technical Reports Server (NTRS)

    Hyun, J. M.

    1983-01-01

    Steady state, axisymmetric motions of a Boussineaq fluid continued in rotating spherical anmulus are considered. The motions are driven by latitudinally varying temperature gradient at the shells. Linearized formulations for a narrow gap are derived and the flow field is divided into the Ekman layers and the geostrophic interior. The Ekman layer flows are consistent with the known results for cylindrical geometries. Within the framework of rather restrictive assumptions, the interior flows are solved by a series of associated Legendre polynomials. The solutions show qualitative features valid at midlatitudes.

  17. The effects of spherical geometry on baroclinic instability

    NASA Technical Reports Server (NTRS)

    Moura, A. D.; Stone, P. H.

    1976-01-01

    A baroclinic stability analysis is performed for a simple family of zonal shear profiles over a sphere, using a two-layer, quasi-geostrophic model. The stability properties and the structure of the most unstable waves are qualitatively similar to those on a beta-plane. However, the spherical geometry plays a major role in locating some of the important features of the most unstable waves. In particular, the locations of the maximum wave amplitude, maximum eddy heat fluxes, and maximum convergence of the eddy angular momentum flux are all well correlated with the location of the maximum excess of the vertical shear over the minimum value necessary for local instability on a sphere. Consequently the eddy momentum flux tends to generate a mid-latitude jet even if there is no preexisting mid-latitude jet in the basic state zonal flow. These findings suggest some of the elements needed for parameterizing the meridional variations of baroclinic eddy fluxes accurately.

  18. Technology in Spherical Geometry Investigations: Reflections on Spontaneous Use and Motivation

    ERIC Educational Resources Information Center

    Sinclair, Margaret

    2010-01-01

    Students in a graduate geometry class used items such as paper, ribbon, plastic spheres, cardboard tubes, and markers to carry out investigations in spherical geometry. The hands-on activities helped students develop a new appreciation of geometry as a study of shape and space; however, the difficulty of subduing wayward elastics and drawing lines…

  19. Reconsideration of inviscid shock interactions and transition phenomena on double-wedge geometries in a M ∞ = 9 hypersonic flow

    NASA Astrophysics Data System (ADS)

    Hu, Z. M.; Myong, R. S.; Yang, Y. R.; Cho, T. H.

    2010-12-01

    Shock polar analysis as well as 2-D numerical computation technique are used to illustrate a diverse flow topology induced by shock/shock interaction in a M ∞ = 9 hypersonic flow. New flow features associated with inviscid shock wave interaction on double-wedge-like geometries are reported in this study. Transition of shock interaction, unsteady oscillation, and hysteresis phenomena in the RR ↔ MR transition, and the physical mechanisms behind these phenomena are numerically studied and analyzed.

  20. The solid angle (geometry factor) for a spherical surface source and an arbitrary detector aperture

    DOE PAGES

    Favorite, Jeffrey A.

    2016-01-13

    It is proven that the solid angle (or geometry factor, also called the geometrical efficiency) for a spherically symmetric outward-directed surface source with an arbitrary radius and polar angle distribution and an arbitrary detector aperture is equal to the solid angle for an isotropic point source located at the center of the spherical surface source and the same detector aperture.

  1. Stationary premixed flames in spherical and cylindrical geometries

    NASA Technical Reports Server (NTRS)

    Ronney, P. D.; Whaling, K. N.; Abbud-Madrid, A.; Gatto, J. L.; Pisowiscz, V. L.

    1994-01-01

    Stationary source-free spherical flames ('flame balls') in premixed combustible gases were studied by employing low-gravity (micro-g) environments in a drop tower and an aircraft flying parabolic trajectories to diminish the impact of buoyancy-induced convective flow. Flame balls were found in all mixture families tested when: (1) the Lewis number Le of the deficient reactant was sufficiently low; and (2) the compositions were sufficiently close to the flammability limits. Probably as a consequence of the reduction in buoyant convection, the flammability limits at micro-g were significantly more dilute than those at Earth gravity; for example, 3.35% H2 vs 4.0% H2 in lean H2-air mixtures. By comparison with analytical and computational models, it is inferred that the phenomenon is probably related to diffusive-thermal effects in low-Le mixtures in conjunction with flame-front curvature and radiative heat losses from the combustion products. The chemical reaction mechanism appears to play no qualitative role. In the aircraft experiments, the gravity levels (approximately equal 10(exp -2)g(sub 0)) were found to cause noticeable motion of flame balls due to buoyancy, which in turn influenced the behavior of flame balls. At these g levels, a new type of transient, nearly cylindrical flame structure, termed 'flame strings,' was observed.

  2. Spherical Nanoparticle Supported Lipid Bilayers for the Structural Study of Membrane Geometry-Sensitive Molecules

    PubMed Central

    Kim, Edward Y.; Briley, Nicole E.; Tyndall, Erin R.; Xu, Jie; Li, Conggang; Ramamurthi, Kumaran S.; Flanagan, John M.; Tian, Fang

    2015-01-01

    Many essential cellular processes including endocytosis and vesicle trafficking require alteration of membrane geometry. These changes are usually mediated by proteins that can sense and/or induce membrane curvature. Using spherical nanoparticle supported lipid bilayers (SSLBs), we characterize how SpoVM, a bacterial development factor, interacts with differently curved membranes by magic angle spinning solid-state NMR. Our results demonstrate that SSLBs are an effective system for structural and topological studies of membrane geometry-sensitive molecules. PMID:26488086

  3. Ablation Front Rayleigh-Taylor Growth Experiments in Spherically Convergent Geometry

    SciTech Connect

    Glendinning, S.G.; Cherfils, C.; Colvin, J.; Divol, L.; Galmiche, D.; Haan, S.; Marinak, M.M.; Remington, B.A.; Richard, A.L.; Wallace, R.

    1999-11-03

    Experiments were performed on the Nova laser, using indirectly driven capsules mounted in cylindrical gold hohlraums, to measure the Rayleigh-Taylor growth at the ablation front by time-resolved radiography. Modulations were preformed on the surface of Ge-doped plastic capsules. With initial modulations of 4 {micro}m, growth factors of about 6 in optical depth were seen, in agreement with simulations using the radiation hydrocode FCI2. With initial modulations of 1 {micro}m, growth factors of about 100-150 in optical depth were seen. The Rayleigh-Taylor (RT) instability at the ablation front in an inertial confinement fusion capsule has been the subject of considerable investigation. Much of this research has been concentrated on planar experiments, in which RT growth is inferred from radiography. The evolution is somewhat different in a converging geometry; the spatial wavelength decreases (affecting the onset of nonlinear saturation), and the shell thickens and compresses rather than decompressing as in a planar geometry. In a cylindrically convergent geometry, the latter effect is proportional to the radius, while in spherically convergent geometry, the latter effect is proportional to the radius squared. Experiments were performed on the Nova and Omega lasers in cylindrical geometry (using both direct and indirect drive) and have been performed in spherical geometry using direct drive.

  4. TOA Lightning Location Retrieval on Spherical and Oblate Spheroidal Earth Geometries

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solakiewicz, R. J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    A simple linear algebraic solution is introduced for retrieving the location and time-of-occurrence of lightning ground strikes on a spherical Earth from a network of four or more time-of-arrival (TOA) sensors. Since the solution accounts for Earth curvature, it represents an extension to earlier planar model results described by Koshak et al. A test of the retrieval method is provided using computer-simulated data sets. The method is easy to comprehend and completely avoids reference to the mathematics of spherical hyperbolas such as discussed by Lewis. A quasi-analytic extension to the spherical Earth solution is provided for an oblate spheroidal Earth geometry, and the importance/relevance of oblate effects are discussed. Future application of these methods in support of the North American National Lightning Detection Network (NALDN) described by Cummins et al. is desirable, but additional theoretical investigations are required to incorporate magnetic bearing information into the present solution process.

  5. A spectral solution of the magneto-convection equations in spherical geometry

    NASA Astrophysics Data System (ADS)

    Hollerbach, Rainer

    2000-04-01

    A fully three-dimensional solution of the magneto-convection equations - the nonlinearly coupled momentum, induction and temperature equations - is presented in spherical geometry. Two very different methods for solving the momentum equation are presented, corresponding to the limits of slow and rapid rotation, and their relative advantages and disadvantages are discussed. The possibility of including a freely rotating, finitely conducting inner core in the solution of the momentum and induction equations is also discussed. Copyright

  6. Sum frequency generation image reconstruction: Aliphatic membrane under spherical cap geometry

    SciTech Connect

    Volkov, Victor

    2014-10-07

    The article explores an opportunity to approach structural properties of phospholipid membranes using Sum Frequency Generation microscopy. To establish the principles of sum frequency generation image reconstruction in such systems, at first approach, we may adopt an idealistic spherical cap uniform assembly of hydrocarbon molecules. Quantum mechanical studies for decanoic acid (used here as a representative molecular system) provide necessary information on transition dipole moments and Raman tensors of the normal modes specific to methyl terminal – a typical moiety in aliphatic (and phospholipid) membranes. Relative degree of localization and frequencies of the normal modes of methyl terminals make nonlinearities of this moiety to be promising in structural analysis using Sum Frequency Generation imaging. Accordingly, the article describes derivations of relevant macroscopic nonlinearities and suggests a mapping procedure to translate amplitudes of the nonlinearities onto microscopy image plane according to geometry of spherical assembly, local molecular orientation, and optical geometry. Reconstructed images indicate a possibility to extract local curvature of bilayer envelopes of spherical character. This may have practical implications for structural extractions in membrane systems of practical relevance.

  7. Directional decomposition of the acoustic wave equation for fluids and metafluids in spherical geometries, with application to transformational acoustics

    NASA Astrophysics Data System (ADS)

    Olsson, Peter

    2016-03-01

    A new directional decomposition of the acoustic 3D wave equation is derived for spherically symmetric geometries, where the wave fields do not need to possess such a symmetry. This provides an alternative basis for various applications of techniques like invariant embedding and time domain Green functions in spherically symmetric geometries. Contrary to previous results on spherical wave splittings, the new decomposition is given in a very explicit form. The wave equation considered incorporates effects from radially varying compressibility and density, but also from anisotropic density, a property of certain so called metafluids. By applying the new spherical wave splitting, we show that all spherically symmetric acoustic metafluid cloaks are diffeomorphic images of a homogeneous and isotropic spherical ball of perfect fluid.

  8. Sensitivity Kernels for Flows in Time-Distance Helioseismology: Extension to Spherical Geometry

    NASA Astrophysics Data System (ADS)

    Böning, Vincent G. A.; Roth, Markus; Zima, Wolfgang; Birch, Aaron C.; Gizon, Laurent

    2016-06-01

    We extend an existing Born approximation method for calculating the linear sensitivity of helioseismic travel times to flows from Cartesian to spherical geometry. This development is necessary for using the Born approximation for inferring large-scale flows in the deep solar interior. As first sanity check, we compare two f-mode kernels from our spherical method and from an existing Cartesian method. The horizontal and total integrals agree to within 0.3%. As a second consistency test, we consider a uniformly rotating Sun and a travel distance of 42°. The analytical travel-time difference agrees with the forward-modeled travel-time difference to within 2%. In addition, we evaluate the impact of different choices of filter functions on the kernels for a meridional travel distance of 42°. For all filters, the sensitivity is found to be distributed over a large fraction of the convection zone. We show that the kernels depend on the filter function employed in the data analysis process. If modes of higher harmonic degree (90 ≲ l ≲ 170) are permitted, a noisy pattern of a spatial scale corresponding to l ≈ 260 appears near the surface. When mainly low-degree modes are used (l ≲ 70), the sensitivity is concentrated in the deepest regions and it visually resembles a ray-path-like structure. Among the different low-degree filters used, we find the kernel for phase-speed-filtered measurements to be best localized in depth.

  9. A standard test set for numerical approximations to the shallow water equations in spherical geometry

    SciTech Connect

    Williamson, D.L.; Hack, J.J.; Jakob, R.; Swarztrauber, P.N. ); Drake, J.B. )

    1991-08-01

    A suite of seven test cases is proposed for the evaluation of numerical methods intended for the solution of the shallow water equations in spherical geometry. The shallow water equations exhibit the major difficulties associated with the horizontal dynamical aspects of atmospheric modeling on the spherical earth. These cases are designed for use in the evaluation of numerical methods proposed for climate modeling and to identify the potential trade-offs which must always be made in numerical modeling. Before a proposed scheme is applied to a full baroclinic atmospheric model it must perform well on these problems in comparison with other currently accepted numerical methods. The cases are presented in order of complexity. They consist of advection across the poles, steady state geostrophically balanced flow of both global and local scales, forced nonlinear advection of an isolated low, zonal flow impinging on an isolated mountain, Rossby-Haurwitz waves and observed atmospheric states. One of the cases is also identified as a computer performance/algorithm efficiency benchmark for assessing the performance of algorithms adapted to massively parallel computers. 31 refs.

  10. Efficient projection and backprojection scheme for spherically symmetric basis functions in divergent beam geometry.

    PubMed

    Ziegler, Andy; Köhler, Thomas; Nielsen, Tim; Proksa, Roland

    2006-12-01

    In cone-beam transmission tomography the measurements are performed with a divergent beam of x-rays. The reconstruction with iterative methods is an approach that offers the possibility to reconstruct the corresponding images directly from these measurements. Another approach based on spherically symmetric basis functions (blobs) has been reported with results demonstrating a better image quality for iterative reconstruction algorithms. When combining the two approaches (i.e., using blobs in iterative cone-beam reconstruction of divergent rays) the problem of blob sampling without introducing aliasing must be addressed. One solution to this problem is to select a blob size large enough to ensure a sufficient sampling, but this prevents a high resolution reconstruction, which is not desired. Another solution is a heuristic low-pass filtering, which removes this aliasing, but neglects the different contributions of blobs to the absorption depending on the spatial position in the volume and, therefore, cannot achieve the best image quality. This article presents a model of sampling the blobs which is motivated by the beam geometry. It can be used for high resolution reconstruction and can be implementedefficiently.

  11. Critical experiments on single-unit spherical plutonium geometries reflected and moderated by oil

    SciTech Connect

    Rothe, R.E.

    1997-05-01

    Experimental critical configurations are reported for several dozen spherical and hemispherical single-unit assemblies of plutonium metal. Most were solid but many were hollow-centered, thick, shell-like geometries. All were constructed of nested plutonium (mostly {sup 2139}Pu) metal hemispherical shells. Three kinds of critical configurations are reported. Two required interpolation and/or extrapolation of data to obtain the critical mass because reflector conditions were essentially infinite. The first finds the plutonium essentially fully reflected by a hydrogen-rich oil; the second is essentially unreflected. The third kind reports the critical oil reflector height above a large plutonium metal assembly of accurately known mass (no interpolation required) when that mass was too great to permit full oil reflection. Some configurations had thicknesses of mild steel just outside the plutonium metal, separating it from the oil. These experiments were performed at the Rocky Flats Critical Mass Laboratory in the late 1960s. They have not been published in a form suitable for benchmark-quality comparisons against state-of-the-art computational techniques until this paper. The age of the data and other factors lead to some difficulty in reconstructing aspects of the program and may, in turn, decrease confidence in certain details. Whenever this is true, the point is acknowledged. The plutonium metal was alpha-phase {sup 239}Pu containing 5.9 wt-% {sup 240}Pu. All assemblies were formed by nesting 1.667-mm-thick (nominal) bare plutonium metal hemispherical shells, also called hemishells, until the desired configuration was achieved. Very small tolerance gaps machined into radial dimensions reduced the effective density a small amount in all cases. Steel components were also nested hemispherical shells; but these were nominally 3.333-mm thick. Oil was used as the reflector because of its chemical compatibility with plutonium metal.

  12. RAPID OPTIMAL SPH PARTICLE DISTRIBUTIONS IN SPHERICAL GEOMETRIES FOR CREATING ASTROPHYSICAL INITIAL CONDITIONS

    SciTech Connect

    Raskin, Cody; Owen, J. Michael

    2016-04-01

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such as planets with core–mantle boundaries.

  13. Analogue modeling of the role of multi-level decollement layers on the geometry of orogenic wedge: an application to the Zagros Fold-Thrust Belt, SW Iran

    NASA Astrophysics Data System (ADS)

    Ghanadian, Mostafa; Faghih, Ali; Grasemann, Bernhard; Fard, Iraj Abdollahie; Maleki, Mehrdad

    2017-03-01

    The presence of evaporate and incompetent formations (i.e., decollement horizons) within the sedimentary sequence of fold-thrust belts can control their structural style and deformation evolution. In the present study, the influence of the decollement layers (e.g., basal and internal decollement layers) on the deformation style of several segments of the Zagros Fold-Thrust Belt (ZFTB), SW Iran (e.g., Fars Arc, Dezful Embayment, and Izeh Zone) was investigated using a series of analogue models of accretionary wedges. The study of seismic profiles to understand the structural evolution of these segments of the belt, where several decollement intervals acted as basal and internal decollements, is complemented by the analogue model results. The experimental results reveal that the thickness of the internal decollement layers influences the creation of fold-dominated or thrust-dominated deformations, respectively. Experimental models and seismic data highlight that incompetent layers act as barrier units against fault propagation (in-sequence and/or out-of-sequence faults) into overlying strata towards southwest by fore-deformation and control the rate of deformation propagation in the ZFTB. The presence of both the basal and internal decollement layers located at different stratigraphic levels is required to form disharmonic decollement folds in the foreland of the ZFTB. In addition, the geometry, spacing, activity, and propagation of faults as well as the topographic height of the critical wedges are directly controlled by low-frictional decollements (Geophys J Int, 165(1):336-356 2006; Geochem Geophys Geosyst, 14:1131-1155 2013). The seismic profiles of the ZFTB showed that in addition to lithological contrasts, the existence and activity of deep-seated and basement faults had a big impact on the structural styles of the region.

  14. Capillary Rise in a Wedge

    ERIC Educational Resources Information Center

    Piva, M.

    2009-01-01

    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  15. CSDUST3 - A radiation transport code for a dusty medium with 1-D planar, spherical or cylindrical geometry

    NASA Technical Reports Server (NTRS)

    Egan, Michael P.; Leung, Chun Ming; Spagna, George F., Jr.

    1988-01-01

    The program solves the radiation transport problem in a dusty medium with one-dimensional planar, spherical or cylindrical geometry. It determines self-consistently the effects of multiple scattering, absorption, and re-emission of photons on the temperature of dust grains and the characteristics of the internal radiation field. The program can treat radiation field anisotropy, linear anisotropic scattering, and multi-grain components. The program output consists of the dust-temperature distribution, flux spectrum, surface brightness at each frequency and the observed intensities (involving a convolution with a telescope beam pattern).

  16. Hydrodynamics of Spherical Flows and Geometry of Premixed Flames near the Stagnation Point of Axisymmetric Viscous Counterflows

    NASA Technical Reports Server (NTRS)

    Sohrab, Siavash H.

    1999-01-01

    Counterflow premixed flames play a significant role in the modeling of laminar flames. This is in part motivated by the fact that stretched premixed flames simulate local flamelet dynamics within turbulent premixed flames. In the present study, the modified form of the Navier-Stokes equation for reactive fields introduced earlier is employed to investigate the hydrodynamics of spherical flows embedded within counterflows. The geometry of premixed flames near the stagnation point is also determined. The predictions are in favorable agreement with the experimental observations and prior numerical studies.

  17. Landau level quantization for massless Dirac fermions in the spherical geometry: Graphene fractional quantum Hall effect on the Haldane sphere

    NASA Astrophysics Data System (ADS)

    Arciniaga, Michael; Peterson, Michael R.

    2016-07-01

    We derive the single-particle eigenenergies and eigenfunctions for massless Dirac fermions confined to the surface of a sphere in the presence of a magnetic monopole, i.e., we solve the Landau level problem for electrons in graphene on the Haldane sphere. With the single-particle eigenfunctions and eigenenergies we calculate the Haldane pseudopotentials for the Coulomb interaction in the second Landau level and calculate the effective pseudopotentials characterizing an effective Landau level mixing Hamiltonian entirely in the spherical geometry to be used in theoretical studies of the fractional quantum Hall effect in graphene. Our treatment is analogous to the formalism in the planar geometry and reduces to the planar results in the thermodynamic limit.

  18. Wedged multilayer Laue Lens.

    SciTech Connect

    Conley, R.; Liu, C.; Qian, J.; Kewish, C. M.; Macrander, A. T.; Yan, H.; Kang, H. C.; Maser, J.; Stephenson, G. B.

    2008-05-01

    A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures.

  19. A parallel implementation of an MHD code for the simulation of mechanically driven, turbulent dynamos in spherical geometry

    NASA Astrophysics Data System (ADS)

    Reuter, K.; Jenko, F.; Forest, C. B.; Bayliss, R. A.

    2008-08-01

    A parallel implementation of a nonlinear pseudo-spectral MHD code for the simulation of turbulent dynamos in spherical geometry is reported. It employs a dual domain decomposition technique in both real and spectral space. It is shown that this method shows nearly ideal scaling going up to 128 CPUs on Beowulf-type clusters with fast interconnect. Furthermore, the potential of exploiting single precision arithmetic on standard x86 processors is examined. It is pointed out that the MHD code thereby achieves a maximum speedup of 1.7, whereas the validity of the computations is still granted. The combination of both measures will allow for the direct numerical simulation of highly turbulent cases ( 1500

  20. Determination of projection geometry from quantitative assessment of the distortion of spherical references in single-view projection radiography

    SciTech Connect

    Schulze, Ralf; Bruellmann, Dan Dominik; Roeder, Felix; D'Hoedt, Bernd

    2004-10-01

    A method is introduced, inferring the three-dimensional (3-D) location from the 2-D radiographic shadow of an opaque spherical reference body of known radius by considering its elliptical distortion, the 2-D shadow location and a known source-to-receptor distance. Three noncollinear spheres fixed to a rigid object constitute all possible degrees of freedom, i.e., the entire 3-D imaging geometry. The method may be used (a) to determine the 3-D imaging geometry from a single 2-D view and (b) to correct for foreshortening of object distances coplanar with the plane defined by the sphere triplet. Apart from the mathematical background the article describes a small feasibility experiment, performed with four different sphere diameters and a commercial dental ccd-receptor system (pixel length: 0.0195 mm). The mouse-cursor based image evaluation revealed an average underestimation of the critical depth- (x-) coordinate decreasing with increasing radius (-30.3% for r=0.5 mm to 2.8% for r=2.5 mm). Intraobserver reliability (the standard deviation between three single cursor-based assessments) ranged between 0% and 8% of the actual true depth. The main source of the input error is associated with the assessment of the amount of elliptical distortion, where subpixel accuracy is demanded. Consequently, software-based automated image evaluation is required using available methods for pattern recognition and point-spread correction. Provided sufficient accuracy, the method provides an important tool for foreshortening correction, depth assessment, motion analysis, and 3-D reconstruction from two or more 2-D views.

  1. Shell thickness and dynamic magnetic field effects on the critical phenomena of magnetic core-shell nanoparticles with spherical geometry

    NASA Astrophysics Data System (ADS)

    Yüksel, Yusuf

    2017-03-01

    By using Monte Carlo simulations for classical Heisenberg spins, we study the critical phenomena and ferrimagnetic properties of spherical nanoparticles with core-shell geometry. The particle core is composed of ferromagnetic spins, and it is coated by a ferromagnetic shell. Total size of the particle is fixed but the thickness of the shell is varied in such a way that the shell layer is grown at the expense of the core. Effects of the shell thickness, as well as dynamic magnetic field parameters such as oscillation period and field amplitude on the magnetization profiles, dynamic hysteresis loops and phase diagrams have been investigated for the present system. It has been found that as the shell thickness varies then the easy axis magnetization of the overall system may exhibit Q-, P-, L- and N- type behaviors based on the Neél terminology. We also found that three distinct anomalies originate in the thermal variation of specific heat with increasing field period. Dynamic hysteresis loops corresponding to off-axial magnetization components exhibit unconventional behavior such as double rings with symmetric shapes around the vertical axis over the h (t) = 0 line which may originate due to the stochastic resonance behavior of these components.

  2. Rethinking wedges

    NASA Astrophysics Data System (ADS)

    Davis, Steven J.; Cao, Long; Caldeira, Ken; Hoffert, Martin I.

    2013-03-01

    Abstract Stabilizing CO2 emissions at current levels for fifty years is not consistent with either an atmospheric CO2 concentration below 500 ppm or global temperature increases below 2 °C. Accepting these targets, solving the climate problem requires that emissions peak and decline in the next few decades, and ultimately fall to near zero. Phasing out emissions over 50 years could be achieved by deploying on the order of 19 'wedges', each of which ramps up linearly over a period of 50 years to ultimately avoid 1 GtC y-1 of CO2 emissions. But this level of mitigation will require affordable carbon-free energy systems to be deployed at the scale of tens of terawatts. Any hope for such fundamental and disruptive transformation of the global energy system depends upon coordinated efforts to innovate, plan, and deploy new transportation and energy systems that can provide affordable energy at this scale without emitting CO2 to the atmosphere. 1. Introduction In 2004, Pacala and Socolow published a study in Science arguing that '[h]umanity can solve the carbon and climate problem in the first half of this century simply by scaling up what we already know how to do' [1]. Specifically, they presented 15 options for 'stabilization wedges' that would grow linearly from zero to 1 Gt of carbon emissions avoided per year (GtC y-1 1 Gt = 1012 kg) over 50 years. The solution to the carbon and climate problem, they asserted, was 'to deploy the technologies and/or lifestyle changes necessary to fill all seven wedges of the stabilization triangle'. They claimed this would offset the growth of emissions and put us on a trajectory to stabilize atmospheric CO2 concentration at 500 ppm if emissions decreased sharply in the second half of the 21st century. The wedge concept has proven popular as an analytical tool for considering the potential of different technologies to reduce CO2 emissions. In the years since the paper was published, it has been cited more than 400 times, and

  3. Radial wedge flange clamp

    DOEpatents

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  4. Effect of zone size on the convergence of exact solutions for diffusion in single phase systems with planar, cylindrical or spherical geometry

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Tenney, D. R.

    1981-01-01

    Exact solutions for diffusion in single phase binary alloy systems with constant diffusion coefficient and zero-flux boundary condition have been evaluated to establish the optimum zone size of applicability. Planar, cylindrical and spherical interface geometry, and finite, singly infinite, and doubly infinite systems are treated. Two solutions are presented for each geometry, one well suited to short diffusion times, and one to long times. The effect of zone-size on the convergence of these solutions is discussed. A generalized form of the diffusion solution for doubly infinite systems is proposed.

  5. Penetrable Wedge Analysis

    DTIC Science & Technology

    1993-08-03

    F -A276 232 GE F Formpproved P-W-=nQb,3;t- OBM No. 0704 -0188 foI rll it 1 Ilthisl buridllenli 1i to :iudrrg th ftirnu reviwing Wwtru"t.Of S.aching...geometries. (2) Numerical " solutions" are still proliferating, but are too messy and remoxed from the physics to offer any important insight into the wave...mathematical solution of the impedance boundary wedge. III. PHYSICAL IMPEDANCE BOUNDARY CONDITION The coupled difference equations (14), (17), and (18) on page

  6. Two critical tapers in a single wedge

    NASA Astrophysics Data System (ADS)

    Smit, J.; Burg, J.-P.; Brun, J.-P.

    2009-04-01

    Thrust involving a ductile décollement (e.g. salt, over-pressured shales) like Zagros, Jura, Pakistan Salt Ranges, Cascades and Makran have in common a small cross-sectional taper, attributed to large thrust spacing and fast frontward propagation above the ductile décollement. Such a low cross-sectional taper has been analytically explained by approximating the ductile layer as a horizon with negligible shear strength. We tested the development of thrust wedges involving a ductile basal décollement of uniform shear strength by means of laboratory experiments. The model consists of a sand layer with initial wedge geometry and a basal ductile décollement of constant thickness and shear strength made of silicone putty. 30% of bulk shortening is applied to the wedge at constant velocity. Thrusting starts in the middle of the wedge, followed by in-sequence frontward propagation. The back part of the wedge, between backstop and the closest thrust, remains undeformed; it passively advances over the base without internal deformation. It appears that both domains have different critical tapers. The inner domain is in a critical state from the onset of shortening (i.e. the initial wedge is already critical), while the frontal domain steadily acquires a state of critical taper by thrusting. This result is at variance with the classical assumption that shortening of a wedge made of homogeneous layers creates a single critical taper. The experimental thrust wedges do show other features characteristic for weak décollement wedges like narrow cross-sectional taper, large thrust spacing and variety in thrust geometries. Application of the results to natural thrust wedges like the Jura Mountains could shed new light on their development and geometry at depth.

  7. Diffuse light propagation in a turbid medium with varying refractive index: Monte Carlo modeling in a spherically symmetrical geometry.

    PubMed

    Shendeleva, Margarita L; Molloy, John A

    2006-09-20

    We report on the development of Monte Carlo software that can model media with spatially varying scattering coefficient, absorption, and refractive index. The varying refractive index is implemented by calculating curved photon paths in the medium. The results of the numerical simulations are compared with analytical solutions obtained using the diffusion approximation. The model under investigation is a scattering medium that contains a spherically symmetrical inclusion (inhomogeneity) created by variation in optical properties and having no sharp boundaries. The following steady-state cases are considered: (a) a nonabsorbing medium with a spherically symmetrical varying refractive index, (b) an inclusion with varying absorption and scattering coefficients and constant refractive index, and (c) an inclusion with varying absorption, scattering, and refractive index. In the latter case it is shown that the interplay between the absorption coefficient and the refractive index may create the effect of a hidden inclusion.

  8. Calculation of absorption and secondary scattering of X-rays by spherical amorphous materials in an asymmetric transmission geometry.

    PubMed

    Bendert, J C; Blodgett, M E; Kelton, K F

    2013-03-01

    Expressions for absorption and the secondary scattering intensity ratio are presented for a small beam impinging off-center of a spherical amorphous sample. Large gradients in the absorption correction are observed from small offsets from the central axis. Additionally, the secondary scattering intensity ratio causes an intensity asymmetry in the detector image. The secondary scattering intensity ratio is presented in integral form and must be computed numerically. An analytic, small-angle, asymptotic series solution for the integral form of the absorption correction is also presented.

  9. Thermally actuated wedge block

    DOEpatents

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  10. Electro-magneto-encephalography for the three-shell model: numerical implementation via splines for distributed current in spherical geometry

    NASA Astrophysics Data System (ADS)

    Fokas, A. S.; Hauk, O.; Michel, V.

    2012-03-01

    The basic inverse problems for the functional imaging techniques of electroencephalography (EEG) and magnetoencephalography (MEG) consist in estimating the neuronal current in the brain from the measurement of the electric potential on the scalp and of the magnetic field outside the head. Here we present a rigorous derivation of the relevant formulae for a three-shell spherical model in the case of independent as well as simultaneous MEG and EEG measurements. Furthermore, we introduce an explicit and stable technique for the numerical implementation of these formulae via splines. Numerical examples are presented using the locations and the normal unit vectors of the real 102 magnetometers and 70 electrodes of the Elekta Neuromag (R) system. These results may have useful implications for the interpretation of the reconstructions obtained via the existing approaches.

  11. Poisson-Riemannian geometry

    NASA Astrophysics Data System (ADS)

    Beggs, Edwin J.; Majid, Shahn

    2017-04-01

    We study noncommutative bundles and Riemannian geometry at the semiclassical level of first order in a deformation parameter λ, using a functorial approach. This leads us to field equations of 'Poisson-Riemannian geometry' between the classical metric, the Poisson bracket and a certain Poisson-compatible connection needed as initial data for the quantisation of the differential structure. We use such data to define a functor Q to O(λ2) from the monoidal category of all classical vector bundles equipped with connections to the monoidal category of bimodules equipped with bimodule connections over the quantised algebra. This is used to 'semiquantise' the wedge product of the exterior algebra and in the Riemannian case, the metric and the Levi-Civita connection in the sense of constructing a noncommutative geometry to O(λ2) . We solve our field equations for the Schwarzschild black-hole metric under the assumption of spherical symmetry and classical dimension, finding a unique solution and the necessity of nonassociativity at order λ2, which is similar to previous results for quantum groups. The paper also includes a nonassociative hyperboloid, nonassociative fuzzy sphere and our previously algebraic bicrossproduct model.

  12. Micromachine Wedge Stepping Motor

    SciTech Connect

    Allen, J.J.; Schriner, H.K.

    1998-11-04

    A wedge stepping motor, which will index a mechanism, has been designed and fabricated in the surface rnicromachine SUMMiT process. This device has demonstrated the ability to index one gear tooth at a time with speeds up to 205 teeth/see. The wedge stepper motor has the following features, whi:h will be useful in a number of applications. o The ability to precisely position mechanical components. . Simple pulse signals can be used for operation. o Only 2 drive signals are requixed for operation. o Torque and precision capabilities increase with device size . The device to be indexed is restrained at all times by the wedge shaped tooth that is used for actuation. This paper will discuss the theory of operation and desi=m of the wedge stepping motor. The fabrication and testing of I he device will also be presented.

  13. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  14. The Cosmonaut Sea Wedge

    USGS Publications Warehouse

    Solli, K.; Kuvaas, B.; Kristoffersen, Y.; Leitchenkov, G.; Guseva, J.; Gandyukhin, V.

    2007-01-01

    A set of multi-channel seismic profiles (~15000 km) acquired by Russia, Norway and Australia has been used to investigate the depositional evolution of the Cosmonaut Sea margin of East Antarctica. We recognize a regional sediment wedge below the upper part of the continental rise. The wedge, herein termed the Cosmonaut Sea Wedge, is positioned stratigraphically underneath the inferred glaciomarine section and extends for at least 1200 km along the continental margin and from 80 to about 250 km seaward or to the north. Lateral variations in the growth pattern of the wedge indicate several overlapping depocentres, which at their distal northern end are flanked by elongated mounded drifts and contourite sheets. The internal stratification of the mounded drift deposits suggests that westward flowing bottom currents reworked the marginal deposits. The action of these currents together with sea-level changes is considered to have controlled the growth of the wedge. We interpret the Cosmonaut Sea Wedge as a composite feature comprising several bottom current reworked fan systems.

  15. Mechanics of injection wedges in collision orogens

    NASA Astrophysics Data System (ADS)

    Thompson, A. B.; Schulmann, K.

    2003-04-01

    Instantaneously juxtaposed lithospheric sections, marked by different geothermal gradient and lithological make-up, are examined to identify zones of highly contrasting strength in adjacent transposed crust and lithospheric mantle. Three types of geotherms and four reference lithospheric segments: thin crust/hot geotherm (rift), thin crust/mean geotherm (relaxed rift), standard crust/hot geotherm (arc), standard crust/mean geotherm (normal crust), are compared with variable permutations of cratonic, standard and rifted lithosphere thicknesses. This permits identification of strong brittle-elastic or plastic mantle, lower and upper crust juxtaposed against plastic rocks of a weak adjacent lithosphere. Vertical positions of shallow dipping detachment zones thus delineate possible areas of hot or cold injection wedges which include: (i) Single shallow wedge (or Flake), (ii) Double shallow and deep wedge, (iii) Deep lithospheric crocodile, (iv) Crustal thickening due to shallow strength differences, (v) Mantle Lithosphere thickening, or wedging, due to deep mantle strength differences and (vii) Exchange tectonics as an extreme wedging process, in which horizontal mass exchange is approximately equal. Rheological calculations are compared to a database of seismic profiles in which the geometry of detachment zones and proposed thermal conditions and lithological make-ups have been presented.

  16. Substorm Current Wedge Revisited

    NASA Astrophysics Data System (ADS)

    Kepko, L.; McPherron, R. L.; Amm, O.; Apatenkov, S.; Baumjohann, W.; Birn, J.; Lester, M.; Nakamura, R.; Pulkkinen, T. I.; Sergeev, V.

    2015-07-01

    Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. While the large-scale picture remains valid, the new details call for revision and an update of the original view. In this paper we briefly review the historical development of the substorm current wedge, review recent in situ and ground-based observations and theoretical work, and discuss the current active research areas. We conclude with a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery.

  17. Europa Wedge Region

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image shows an area of crustal separation on Jupiter's moon, Europa. Lower resolution pictures taken earlier in the tour of NASA's Galileo spacecraft revealed that dark wedge-shaped bands in this region are areas where the icy crust has completely pulled apart. Dark material has filled up from below and filled the void created by this separation.

    In the lower left corner of this image, taken by Galileo's onboard camera on December 16, 1997, a portion of one dark wedge area is visible, revealing a linear texture along the trend of the wedge. The lines of the texture change orientation slightly and reflect the fact that we are looking at a bend in the wedge. The older, bright background, visible on the right half of the image, is criss-crossed with ridges. A large, bright ridge runs east-west through the upper part of the image, cutting across both the older background plains and the wedge. This ridge is rough in texture, with numerous small terraces and troughs containing dark material.

    North is to the top of the picture and the sun illuminates the surface from the northwest. This image, centered at approximately 16.5 degrees south latitude and 196.5 degrees west longitude, covers an area approximately 10 kilometers square (about 6.5 miles square). The resolution of this image is about 26 meters per picture element. This image was taken by the solid state imaging system from a distance of 1250 kilometers (750 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  18. Wedge Waveguides and Resonators for Quantum Plasmonics.

    PubMed

    Kress, Stephan J P; Antolinez, Felipe V; Richner, Patrizia; Jayanti, Sriharsha V; Kim, David K; Prins, Ferry; Riedinger, Andreas; Fischer, Maximilian P C; Meyer, Stefan; McPeak, Kevin M; Poulikakos, Dimos; Norris, David J

    2015-09-09

    Plasmonic structures can provide deep-subwavelength electromagnetic fields that are useful for enhancing light-matter interactions. However, because these localized modes are also dissipative, structures that offer the best compromise between field confinement and loss have been sought. Metallic wedge waveguides were initially identified as an ideal candidate but have been largely abandoned because to date their experimental performance has been limited. We combine state-of-the-art metallic wedges with integrated reflectors and precisely placed colloidal quantum dots (down to the single-emitter level) and demonstrate quantum-plasmonic waveguides and resonators with performance approaching theoretical limits. By exploiting a nearly 10-fold improvement in wedge-plasmon propagation (19 μm at a vacuum wavelength, λvac, of 630 nm), efficient reflectors (93%), and effective coupling (estimated to be >70%) to highly emissive (~90%) quantum dots, we obtain Ag plasmonic resonators at visible wavelengths with quality factors approaching 200 (3.3 nm line widths). As our structures offer modal volumes down to ~0.004λvac(3) in an exposed single-mode waveguide-resonator geometry, they provide advantages over both traditional photonic microcavities and localized-plasmonic resonators for enhancing light-matter interactions. Our results confirm the promise of wedges for creating plasmonic devices and for studying coherent quantum-plasmonic effects such as long-distance plasmon-mediated entanglement and strong plasmon-matter coupling.

  19. Shock detachment from curved wedges

    NASA Astrophysics Data System (ADS)

    Mölder, S.

    2017-03-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  20. Reynolds stress and heat flux in spherical shell convection

    NASA Astrophysics Data System (ADS)

    Käpylä, P. J.; Mantere, M. J.; Guerrero, G.; Brandenburg, A.; Chatterjee, P.

    2011-07-01

    Context. Turbulent fluxes of angular momentum and enthalpy or heat due to rotationally affected convection play a key role in determining differential rotation of stars. Their dependence on latitude and depth has been determined in the past from convection simulations in Cartesian or spherical simulations. Here we perform a systematic comparison between the two geometries as a function of the rotation rate. Aims: Here we want to extend the earlier studies by using spherical wedges to obtain turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. In particular, we want to clarify whether the sharp equatorial profile of the horizontal Reynolds stress found in earlier Cartesian models is also reproduced in spherical geometry. Methods: We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs, and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results: For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong "banana cells". Their effect in the

  1. Euclidean, Spherical, and Hyperbolic Shadows

    ERIC Educational Resources Information Center

    Hoban, Ryan

    2013-01-01

    Many classical problems in elementary calculus use Euclidean geometry. This article takes such a problem and solves it in hyperbolic and in spherical geometry instead. The solution requires only the ability to compute distances and intersections of points in these geometries. The dramatically different results we obtain illustrate the effect…

  2. Benchmarking numerical models of brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne J. H.; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-11-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the stable wedge test, showing negligible internal deformation and maintaining the initial surface slope upon horizontal translation over a frictional interface. Eight codes participated in the unstable wedge test that examines the evolution of a wedge by thrust formation from a subcritical state to the critical taper geometry. The critical taper is recovered, but the models show two deformation modes characterised by either mainly forward dipping thrusts or a series of thrust pop-ups. We speculate that the two modes are caused by differences in effective basal boundary friction related to different algorithms for modelling boundary friction. The third experiment examines stacking of forward thrusts that are translated upward along a backward thrust. The results of the seven codes that run this experiment show variability in deformation style, number of thrusts, thrust dip angles and surface slope. Overall, our experiments show that numerical models run with different numerical techniques can successfully simulate laboratory brittle thrust wedge models at the cm-scale. In more detail, however, we find that it is challenging to reproduce sandbox-type setups numerically, because of frictional boundary conditions and velocity discontinuities. We recommend that future numerical-analogue comparisons use simple boundary conditions and that the numerical Earth Science community defines a plasticity test to resolve the variability in model shear zones.

  3. An Improvement on SSA Congruence for Geometry and Trigonometry.

    ERIC Educational Resources Information Center

    Yeshurun, Shraga; Kay, David C.

    1983-01-01

    Three ideas are explored: (1) an improvement of the SSA congruence theorem for trigonometry; (2) a discussion of the failure of SSA in spherical geometry; and (3) an extension of SSA to spherical geometry and hyperbolic geometry. (MNS)

  4. Bouncing and bursting in a wedge

    NASA Astrophysics Data System (ADS)

    Reyssat, Etienne; Cohen, Caroline; Quere, David

    2015-11-01

    Placed into an inhomogeneous confined medium, non-wetting drops tend to be expelled from the tightest regions, where their contact with the walls would be maximized. They preferentially explore more open areas which are favorable from the point of view of capillary energy. Following this principle, one may thus use the geometry of confined environments to control fluid droplets in various ways : displacing, filtering, fragmenting... In this communication, we present experimental results on the dynamics of Leidenfrost drops launched into a wedge formed by two quasi-horizontal glass plates. Influenced by the gradient of confinement, these non-wetting liquid pucks approach the apex of the wedge to a minimal distance where they bounce back. At higher impact velocity, we observe that drops tend to penetrate deeper into the wedge but often burst into a large number of small fragments. We also discuss ways to control the deviation of droplets from their initial trajectory. We propose scaling law analyses to explain the characteristics of the observed bouncing and bursting phenomena.

  5. Contact and crack problems for an elastic wedge. [stress concentration in elastic half spaces

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Gupta, G. D.

    1974-01-01

    The contact and the crack problems for an elastic wedge of arbitrary angle are considered. The problem is reduced to a singular integral equation which, in the general case, may have a generalized Cauchy kernel. The singularities under the stamp as well as at the wedge apex were studied, and the relevant stress intensity factors are defined. The problem was solved for various wedge geometries and loading conditions. The results may be applicable to certain foundation problems and to crack problems in symmetrically loaded wedges in which cracks initiate from the apex.

  6. A Potential Field Model for Spherical Sub-domains

    NASA Astrophysics Data System (ADS)

    Fisher, George H.; Bercik, David; Welsch, Brian; Kazachenko, Maria D.; CGEM Team

    2016-05-01

    Potential field models are used widely in Solar Physics to estimate coronal magnetic field geometry and connectivity, to provide lower limits on magnetic energies, and to provide initial configurations for time-dependent models of magnetic fields in the solar atmosphere. Potential field models in a spherical geometry can be global, covering the entire Sun, or confined to localized sub-volumes of the sphere. Here, we focus on the latter case.We describe an efficient potential field model for localized spherical sub-volumes (wedges consisting of upper and lower limits of radius, co-latitude, and longitude), employing a finite-difference approach for the solution. The solution is derived in terms of a "poloidal" potential, which can then be used to find either the scalar potential or the vector potential for the magnetic field (if desired), as well as all three magnetic field components. The magnetic field components are computed on the faces of spherical voxels, and the finite difference grid is consistent with the well-known "Yee" grid. The inner spherical boundary is defined by radial magnetic field measurements, and at the outer radius a source-surface boundary condition is imposed.Potential field solutions on active region scales, at full HMI resolution, and with the source surface located a solar radius above the photosphere, can be obtained on a laptop computer in just a few minutes. The three-dimensional finite difference equations are solved using NCAR's FISHPACK elliptic equation solver.The potential field model was developed by the Coronal Global Evolutionary Model (CGEM) project, funded by the NASA and NSF Strategic Capabilities program. The potential field model described here was motivated by CGEM's need for such a model. The model will be released as open-source code when the model details are published.

  7. Method for characterization of a spherically bent crystal for K.alpha. X-ray imaging of laser plasmas using a focusing monochromator geometry

    DOEpatents

    Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul

    2015-04-07

    A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.

  8. Quantitative testing critical-taper wedge theory with distinct-element modeling and the role of dynamics in controlling wedge tapers

    NASA Astrophysics Data System (ADS)

    Strayer, Luther; Suppe, John

    2014-05-01

    Critical-taper wedge mechanics (e.g. Davis, et al. 1983, Dahlen 1990) provides fundamental relationships between the observed tapered geometries of fold-and-thrust belts and accretionary wedges and their detachment and wedge strengths. This theory has given diverse insight into kinematics, roles of erosion and sedimentation, and the morphology of compressive mountain belts, much of which has been aided by extensive analog and numerical modeling. The field has grown large, with several thousand papers addressing real-world, analog, and numerical wedges (cf. Buiter 2012). The majority of the insight has been qualitative, but nevertheless quite influential in our current understanding of mountain belts and submarine wedges. In contrast, quantitative applications of wedge theory, either to nature or models, has been rather limited because of the complexity of most wedge equations. It it is easy to become "lost in parameter space" with many strength parameters that are difficult to constrain or have ambiguous meaning, given real-world data and observations. Recently wedge theory has been recast into a very simple form (Suppe 2007; Yeh and Suppe 2014) that provides an unambiguous relationship between the observed covariation of surface slope α with detachment dip β and the wedge W and fault F strengths with few assumptions. In the real world we have limited knowledge of strengths, forces, fluid pressures and earthquake history, or the relationship between strength heterogeneity and structural style, or to what extent the strength of a wedge is an evolving macroscopic property (e.g. folding, imbrications and strain localization) or a material property. The well-defined relationship between wedge taper and global strength makes numerical wedges an ideal tool for the study of compressive mountain belts. In this work: [1] We successfully test this simpler quantitative wedge theory over a very wide range of wedge strengths and structural styles using distinct

  9. Assessment of computerized treatment planning system accuracy in calculating wedge factors of physical wedged fields for 6 MV photon beams.

    PubMed

    Muhammad, Wazir; Maqbool, Muhammad; Shahid, Muhammad; Hussain, Amjad; Tahir, Sajjad; Matiullah; Rooh, Gul; Ahmad, Tanveer; Lee, Sang Hoon

    2011-07-01

    Wedge filters are commonly used in external beam radiotherapy to achieve a uniform dose distribution within the target volume. The main objective of this study was to investigate the accuracy of the beam modifier algorithm of Theraplan plus (TPP version 3.8) treatment planning system and to confirm that either the beam hardening, beam softening and attenuation coefficients along with wedge geometry and measured wedge factor at single depth and multiple fields sizes can be the replacement of wedged profile and wedged cross-sectional data or not. In this regard the effect of beam hardening and beam softening was studied with physical wedges for 6 MV photons. The Normalized Wedge Factors (NWFs) were measured experimentally as well as calculated with the Theraplan plus, as a function of depth and field size in a water phantom for 15°, 30°, 45°, and 60° wedge filters. The beam hardening and softening was determined experimentally by deriving the required coefficients for all wedge angles. The TPP version 3.8 requires wedge transmission factor at single depth and multiple field sizes. Without incorporating the hardening and softening coefficients the percent difference between measured and calculated NFWs was as high as 7%. After the introduction of these parameters into the algorithm, the agreement between measured and TPP (V 3.8) calculated NWFs were improved to within 2 percent for various depths. Similar improvement was observed in TPP version 3.8 while calculating NWFs for various field sizes when the required coefficients were adjusted. In conclusion, the dose calculation algorithm of TPP version 3.8 showed good accuracy for a 6 MV photon beam provided beam hardening and softening parameters are taken into account. From the results, it is also concluded that, the beam hardening, beam softening and attenuation coefficients along with wedge geometry and measured wedge factor at single depth and multiple fields sizes can be the replacement of wedged profile and

  10. Experimental and numerical investigations on melamine wedges.

    PubMed

    Schneider, S

    2008-09-01

    Melamine wedges are often used as acoustic lining material for anechoic chambers. It was proposed here to study the effects of the mounting conditions on the acoustic properties of the melamine wedges used in the large anechoic chamber at the LMA. The results of the impedance tube measurements carried out show that the mounting conditions must be taken into account when assessing the quality of an acoustic lining. As it can be difficult to simulate these mounting conditions in impedance tube experiments, a numerical method was developed, which can be used to complete the experiments or for parametric studies. By combining the finite and the boundary element method, it is possible to investigate acoustic linings with almost no restrictions as to the geometry, material behavior, or mounting conditions. The numerical method presented here was used to study the acoustic properties of the acoustic lining installed in the anechoic chamber at the LMA. Further experiments showed that the behavior of the melamine foam is anisotropic. Numerical simulations showed that this anisotropy can be used to advantage when designing an acoustic lining.

  11. Optimized dynamic rotation with wedges.

    PubMed

    Rosen, I I; Morrill, S M; Lane, R G

    1992-01-01

    Dynamic rotation is a computer-controlled therapy technique utilizing an automated multileaf collimator in which the radiation beam shape changes dynamically as the treatment machine rotates about the patient so that at each instant the beam shape matches the projected shape of the target volume. In simple dynamic rotation, the dose rate remains constant during rotation. For optimized dynamic rotation, the dose rate is varied as a function of gantry angle. Optimum dose rate at each gantry angle is computed by linear programming. Wedges can be included in the optimized dynamic rotation therapy by using additional rotations. Simple and optimized dynamic rotation treatment plans, with and without wedges, for a pancreatic tumor have been compared using optimization cost function values, normal tissue complication probabilities, and positive difference statistic values. For planning purposes, a continuous rotation is approximated by static beams at a number of gantry angles equally spaced about the patient. In theory, the quality of optimized treatment planning solutions should improve as the number of static beams increases. The addition of wedges should further improve dose distributions. For the case studied, no significant improvements were seen for more than 36 beam angles. Open and wedged optimized dynamic rotations were better than simple dynamic rotation, but wedged optimized dynamic rotation showed no definitive improvement over open beam optimized dynamic rotation.

  12. Mechanics of fold-and-thrust belts and accretionary wedges Cohesive Coulomb theory

    NASA Technical Reports Server (NTRS)

    Dahlen, F. A.; Suppe, J.; Davis, D.

    1984-01-01

    A self-consistent theory for the mechanics of thin-skinned accretionary Coulomb wedges is developed and applied to the active fold-and-thrust belt of western Taiwan. The state of stress everywhere within a critical wedge is determined by solving the static equilibrium equations subject to the appropriate boundary conditions. The influence of wedge cohesion, which gives rise to a concave curvature of the critical topographic surface and affects the orientation of the principal stresses and Coulomb fracture within the wedge, is considered. The shape of the topographic surface and the angles at which thrust faults step up from the basal decollement in the Taiwanese belt is analyzed taking into account the extensive structural and fluid-pressure data available there. It is concluded that the gross geometry and structure of the Taiwan wedge are consistent with normal laboratory frictional and fracture strengths of sedimentary rocks.

  13. Ultrasonic fluid densitometer having liquid/wedge and gas/wedge interfaces

    DOEpatents

    Greenwood, Margaret S.

    2000-01-01

    The present invention is an ultrasonic liquid densitometer that uses a material wedge having two sections, one with a liquid/wedge interface and another with a gas/wedge interface. It is preferred that the wedge have an acoustic impedance that is near the acoustic impedance of the liquid, specifically less than a factor of 11 greater than the acoustic impedance of the liquid. Ultrasonic signals are internally reflected within the material wedge. Density of a liquid is determined by immersing the wedge into the liquid and measuring reflections of ultrasound at the liquid/wedge interface and at the gas/wedge interface.

  14. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  15. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, Richard P.; Feldman, Mark

    1992-01-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

  16. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, Thomas P.

    1991-01-01

    A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.

  17. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, T.P.

    1991-11-26

    A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.

  18. Wedge immersed thermistor bolometer measures infrared radiation

    NASA Technical Reports Server (NTRS)

    Dreyfus, M. G.

    1965-01-01

    Wedge immersed-thermistor bolometer measures infrared radiation in the atmosphere. The thermistor flakes are immersed by optical contact on a wedge-shaped germanium lens whose narrow dimension is clamped between two complementary wedge-shaped germanium blocks bonded with a suitable adhesive.

  19. Critical taper wedge strength varies with structural style: results from distinct-element models

    NASA Astrophysics Data System (ADS)

    Strayer, L. M.; Suppe, J.

    2015-12-01

    Critical-taper theory has given diverse insight into kinematics, roles of erosion and sedimentation, and the morphology of compressive mountain belts. We have made progress by recasting the parameter-rich mathematics into a simpler form that describes a linear, co-varying relationship between surface slope and detachment dip (α, β), and internal- and basal-sliding strengths (W, F). Using distinct-element models, we tested this simpler theory over a range of wedge strengths and structural styles. We also obtained W & F from observations of surface slope α and detachment dip β in active natural systems, all of which including the numerical models, show wedges are strong but detachments are weak, with F/W=0.1 or less. Model-derived W & F vary about a mean that matches geometry-derived values. Time- and spatially-averaged dynamical F & W are observed to be equal to wedge-derived results. Critical taper reflects the dynamical strengths during wedge growth and is controlled dynamically as base friction varies between an assigned quasi-static value and lower values during slip events. In the wedge, W varies more than F, which may also be true for natural systems. Detachments have frictional stick/slip behavior on a basal wall, but the wedge has more going on within it. Tandem faulting & folding serve to simultaneously weaken and strengthen the wedge, and may occur anywhere: structural style appears to be important to wedge strength evolution. The dynamics of deformation within the wedge and slip upon the base control the finite wedge geometry: static strengths drop to dynamic levels during seismicity, resulting in materials and faults that are weaker than prescribed in models or determined by testing. Relationships between α and W & F are complex. All sudden, stepwise changes in α, W & F with time coincide with seismicity spikes in the models. Large events trigger or are triggered by large changes in F and W. We examine the complex details of dynamically driven

  20. Dispersion in Spherical Water Drops.

    ERIC Educational Resources Information Center

    Eliason, John C., Jr.

    1989-01-01

    Discusses a laboratory exercise simulating the paths of light rays through spherical water drops by applying principles of ray optics and geometry. Describes four parts: determining the output angles, computer simulation, explorations, model testing, and solutions. Provides a computer program and some diagrams. (YP)

  1. A Module in Spherical Trigonometry.

    ERIC Educational Resources Information Center

    Congleton, C. A.; Broome, L. E.

    1980-01-01

    This module, designed for use at the high school level as a four- to eight-hour topic, includes: the geometry of a sphere, the coordinate system used to describe points on the earth's surface, parallel and meridian sailing, and the solution of right spherical triangles. (Author/MK)

  2. Dual Double-Wedge Pseudo-Depolarizer with Anamorphic PSF

    NASA Technical Reports Server (NTRS)

    Hill, Peter; Thompson, Patrick

    2012-01-01

    A polarized scene, which may occur at oblique illumination angles, creates a radiometric signal that varies as a function of viewing angle. One common optical component that is used to minimize such an effect is a polarization scrambler or depolarizer. As part of the CLARREO mission, the SOLARIS instrument project at Goddard Space Flight Center has developed a new class of polarization scramblers using a dual double-wedge pseudo-depolarizer that produces an anamorphic point spread function (PSF). The SOLARIS instrument uses two Wollaston type scramblers in series, each with a distinct wedge angle, to image a pseudo-depolarized scene that is free of eigenstates. Since each wedge is distinct, the scrambler is able to produce an anamorphic PSF that maintains high spatial resolution in one dimension by sacrificing the spatial resolution in the other dimension. This scrambler geometry is ideal for 1-D imagers, such as pushbroom slit spectrometers, which require high spectral resolution, high spatial resolution, and low sensitivity to polarized light. Moreover, the geometry is applicable to a wide range of scientific instruments that require both high SNR (signal-to-noise ratio) and low sensitivity to polarized scenes

  3. The Substorm Current Wedge Revisited

    NASA Astrophysics Data System (ADS)

    Kepko, Larry; McPherron, Robert; Apatenkov, Sergey; Baumjohann, Wolfgang; Birn, Joachim; Lester, Mark; Nakamura, Rumi; Pulkkinen, Tuija; Sergeev, Victor

    2015-04-01

    Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. In this paper, we briefly review recent in situ and ground-based observations and theoretical work that have demonstrated a need for an update of the original picture. We present a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery, and conclude by identifying open questions.

  4. Transport of barrel and spherical shaped colloids in unsaturated porous media.

    PubMed

    Knappenberger, Thorsten; Aramrak, Surachet; Flury, Markus

    2015-09-01

    Model colloids are usually spherical, but natural colloids have irregular geometries. Transport experiments of spherical colloids may not reflect the transport characteristics of natural colloids in porous media. We investigated saturated and unsaturated transport of colloids with spherical and angular shapes under steady-state, flow conditions. A pulse of negatively-charged colloids was introduced into a silica sand column at three different effective water saturations (Se = 0.31, 0.45, and 1.0). Colloids were introduced under high ionic strength of [106]mM to cause attachment to the secondary energy minimum and later released by changing the pore water to low ionic strength. After the experiment, sand was sampled from different depths (0, -4, and -11 cm) for scanning electron microscopy (SEM) analysis and colloid extraction. Water saturation affected colloid transport with more retention under low than under high saturation. Colloids were retained and released from a secondary energy minimum with more angular-shaped colloids being retained and released. Colloids extracted from the sand revealed highest colloid deposition in the top layer and decreasing deposition with depth. Pore straining and grain-grain wedging dominated colloid retention.

  5. Transport of barrel and spherical shaped colloids in unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Knappenberger, Thorsten; Aramrak, Surachet; Flury, Markus

    2015-09-01

    Model colloids are usually spherical, but natural colloids have irregular geometries. Transport experiments of spherical colloids may not reflect the transport characteristics of natural colloids in porous media. We investigated saturated and unsaturated transport of colloids with spherical and angular shapes under steady-state, flow conditions. A pulse of negatively-charged colloids was introduced into a silica sand column at three different effective water saturations (Se = 0.31, 0.45, and 1.0). Colloids were introduced under high ionic strength of [106]mM to cause attachment to the secondary energy minimum and later released by changing the pore water to low ionic strength. After the experiment, sand was sampled from different depths (0, -4, and -11 cm) for scanning electron microscopy (SEM) analysis and colloid extraction. Water saturation affected colloid transport with more retention under low than under high saturation. Colloids were retained and released from a secondary energy minimum with more angular-shaped colloids being retained and released. Colloids extracted from the sand revealed highest colloid deposition in the top layer and decreasing deposition with depth. Pore straining and grain-grain wedging dominated colloid retention.

  6. High-energy rate forgings of wedges. Characterization of processing conditions

    SciTech Connect

    Reynolds, Thomas Bither; Everhart, Wesley; Switzner, Nathan T; Balch, Dorian K.; San Marchi, Christopher W.

    2014-05-01

    The wedge geometry is a simple geometry for establishing a relatively constant gradient of strain in a forged part. The geometry is used to establish gradients in microstructure and strength as a function of strain, forging temperature, and quenching time after forging. This geometry has previously been used to benchmark predictions of strength and recrystallization using Sandias materials model for type 304L austenitic stainless steel. In this report, the processing conditions, in particular the times to forge and quench the forged parts, are summarized based on information recorded during forging on June 18, 2013 of the so-called wedge geometry from type 316L and 21Cr-6Ni-9Mn austenitic stainless steels.

  7. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    DOE PAGES

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon; ...

    2017-01-24

    Here, in order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the fullmore » torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ|, and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.« less

  8. A Study in Wedge Waves with Applications in Acoustic Delay- line

    NASA Astrophysics Data System (ADS)

    Tung, Po-Hsien; Wang, Wen-Chi; Yang, Che-Hua

    The acoustic delay line is usually used to supply protection from dangerous environment, to enhance signal intensity by fit geometry of analyte, or to achieve specific angle/focusing by Snell's law, but rarely to avoid noise from coupling agent and to raise spatial resolution by reducing contact area. This study is focused on wedge waves with applications in delay-line to solve the knot of traditionally transducer measurement. Wedge waves are guided acoustic waves propagating along the tip of a wedge. The advantages of wedge being used in acoustic delay line are wedge waves has large motion amplitude of anti-symmetric flexural (ASF) mode, low energy attenuation and the velocity of ASF more is regular weather frequency varied or not. According the characteristic of wedge wave and vibration direction of particle, the acoustical wedge delay line with high signal- noise-ratio, approximate point-like contact area, without coupling agent and in/out vibration measurement by specific experimental setup is developed.

  9. What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?

    NASA Astrophysics Data System (ADS)

    Kim, Kyuho; Chang, C. S.; Seo, Janghoon; Ku, S.; Choe, W.

    2017-01-01

    In order to save the computing time or to fit the simulation size into a limited computing hardware in a gyrokinetic turbulence simulation of a tokamak plasma, a toroidal wedge simulation may be utilized in which only a partial toroidal section is modeled with a periodic boundary condition in the toroidal direction. The most severe restriction in the wedge simulation is expected to be in the longest wavelength turbulence, i.e., ion temperature gradient (ITG) driven turbulence. The global full-f gyrokinetic code XGC1 is used to compare the transport and turbulence properties from a toroidal wedge simulation against the full torus simulation in an ITG unstable plasma in a model toroidal geometry. It is found that (1) the convergence study in the wedge number needs to be conducted all the way down to the full torus in order to avoid a false convergence, (2) a reasonably accurate simulation can be performed if the correct wedge number N can be identified, (3) the validity of a wedge simulation may be checked by performing a wave-number spectral analysis of the turbulence amplitude |δΦ| and assuring that the variation of δΦ between the discrete kθ values is less than 25% compared to the peak |δΦ| , and (4) a frequency spectrum may not be used for the validity check of a wedge simulation.

  10. Spherical colloidal photonic crystals.

    PubMed

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    generated by evaporation-induced nanoparticle crystallization or polymerization of ordered nanoparticle crystallization arrays. In particular, because microfluidics was used for the generation of the droplet templates, the development of spherical colloidal PhCs has progressed significantly. These new strategies not only ensure monodispersity, but also increase the structural and functional diversity of the PhC beads, paving the way for the development of advanced optoelectronic devices. In this Account, we present the research progress on spherical colloidal PhCs, including their design, preparation, and potential applications. We outline various types of spherical colloidal PhCs, such as close-packed, non-close-packed, inverse opal, biphasic or multiphasic Janus structured, and core-shell structured geometries. Based on their unique optical properties, applications of the spherical colloidal PhCs for displays, sensors, barcodes, and cell culture microcarriers are presented. Future developments of the spherical colloidal PhC materials are also envisioned.

  11. Wedge locality and asymptotic commutativity

    NASA Astrophysics Data System (ADS)

    Soloviev, M. A.

    2014-05-01

    In this paper, we study twist deformed quantum field theories obtained by combining the Wightman axiomatic approach with the idea of spacetime noncommutativity. We prove that the deformed fields with deformation parameters of opposite sign satisfy the condition of mutual asymptotic commutativity, which was used earlier in nonlocal quantum field theory as a substitute for relative locality. We also present an improved proof of the wedge localization property discovered for the deformed fields by Grosse and Lechner, and we show that the deformation leaves the asymptotic behavior of the vacuum expectation values in spacelike directions substantially unchanged.

  12. Spherical Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Developed largely through a Small Business Innovation Research contract through Langley Research Center, Interactive Picture Corporation's IPIX technology provides spherical photography, a panoramic 360-degrees. NASA found the technology appropriate for use in guiding space robots, in the space shuttle and space station programs, as well as research in cryogenic wind tunnels and for remote docking of spacecraft. Images of any location are captured in their entirety in a 360-degree immersive digital representation. The viewer can navigate to any desired direction within the image. Several car manufacturers already use IPIX to give viewers a look at their latest line-up of automobiles. Another application is for non-invasive surgeries. By using OmniScope, surgeons can look more closely at various parts of an organ with medical viewing instruments now in use. Potential applications of IPIX technology include viewing of homes for sale, hotel accommodations, museum sites, news events, and sports stadiums.

  13. BIPOLAR MAGNETIC SPOTS FROM DYNAMOS IN STRATIFIED SPHERICAL SHELL TURBULENCE

    SciTech Connect

    Jabbari, Sarah; Brandenburg, Axel; Kleeorin, Nathan; Mitra, Dhrubaditya; Rogachevskii, Igor

    2015-06-01

    Recent work by Mitra et al. (2014) has shown that in strongly stratified forced two-layer turbulence with helicity and corresponding large-scale dynamo action in the lower layer, and nonhelical turbulence in the upper, a magnetic field occurs in the upper layer in the form of sharply bounded bipolar magnetic spots. Here we extend this model to spherical wedge geometry covering the northern hemisphere up to 75° latitude and an azimuthal extent of 180°. The kinetic helicity and therefore also the large-scale magnetic field are strongest at low latitudes. For moderately strong stratification, several bipolar spots form that eventually fill the full longitudinal extent. At early times, the polarity of spots reflects the orientation of the underlying azimuthal field, as expected from Parker’s Ω-shaped flux loops. At late times their tilt changes such that there is a radial field of opposite orientation at different latitudes separated by about 10°. Our model demonstrates the spontaneous formation of spots of sizes much larger than the pressure scale height. Their tendency to produce filling factors close to unity is argued to be reminiscent of highly active stars. We confirm that strong stratification and strong scale separation are essential ingredients behind magnetic spot formation, which appears to be associated with downflows at larger depths.

  14. Spherical solitons in Earth’S mesosphere plasma

    SciTech Connect

    Annou, K.; Annou, R.

    2016-01-15

    Soliton formation in Earth’s mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev–Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry.

  15. Application of the critical Coulomb wedge theory to hyper-extended, magma-poor rifted margins

    NASA Astrophysics Data System (ADS)

    Nirrengarten, M.; Manatschal, G.; Yuan, X. P.; Kusznir, N. J.; Maillot, B.

    2016-05-01

    The Critical Coulomb Wedge Theory (CCWT) has been extensively used in compressional tectonics to resolve the shape of orogenic or accretionary prisms, while it is less applied to extensional and gravitational wedges despite the fact that it can be described by the same equation. In particular, the hyper-extended domain at magma-poor rifted margins, forming the oceanward termination of extended continental crust, satisfies the three main requirements of the CCWT: 1) it presents a wedge shape, 2) the rocks forming the wedge are completely brittle (frictional), and 3) the base of the wedge corresponds to a low friction décollement. However hyper-extended margins present a fully frictional behaviour only for a very thin crust; therefore this study is limited to the termination of hyper-extended continental crust which deforms in the latest stage of continental rifting. In this paper we define a method to measure the surface slope and the basal deep of this wedge that we apply to 17 hyper-extended, magma-poor rifted margins in order to compare the results to the values predicted by the CCWT. Because conjugate pairs of hyper-extended, magma-poor rifted margins are commonly asymmetric, due to detachment faulting, the wedges in the upper and lower plate margins corresponding respectively to the hanging wall and footwall of the detachment system are different. While the stress field in the upper plate wedge corresponds to a tectonic extensional wedge, the one in the lower plate matches that of a gravity extensional wedge. Using typical frictional properties of phyllosilicates (e.g. clays and serpentine), the shape of the hyper-extended wedges can be resolved by the CCWT using consistent fluid overpressures. Our results show that all lower plate margins are gravitationally stable and therefore have a close to critical shape whereas the tectonic extensional wedges at upper plate margins are critical, sub or sup critical due to the detachment initial angle and the duration of

  16. Ice Particle Impacts on a Moving Wedge

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Iyer, Kaushik A.; Gold, Robert E.

    2014-01-01

    This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0 deg, 30 deg, 45 deg, and 60 deg. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.

  17. Ice Particle Impacts on a Moving Wedge

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Lyer, Kaushik A.; Gold, Robert E.

    2014-01-01

    This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0, 30, 45, and 60. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.

  18. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing.

    PubMed

    Chen, Xiaoshu; Lindquist, Nathan C; Klemme, Daniel J; Nagpal, Prashant; Norris, David J; Oh, Sang-Hyun

    2016-12-14

    We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip-gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip-gap geometry. The resulting nanometric hotspot volume is on the order of λ(3)/10(6). Experimentally, Raman enhancement factors exceeding 10(7) are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.

  19. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing

    PubMed Central

    2016-01-01

    We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ3/106. Experimentally, Raman enhancement factors exceeding 107 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications. PMID:27960527

  20. Tumor Targeting, Trifunctional Dendritic Wedge

    PubMed Central

    2015-01-01

    We report in vitro and in vivo evaluation of a newly designed trifunctional theranostic agent for targeting solid tumors. This agent combines a dendritic wedge with high boron content for boron neutron capture therapy or boron MRI, a monomethine cyanine dye for visible-light fluorescent imaging, and an integrin ligand for efficient tumor targeting. We report photophysical properties of the new agent, its cellular uptake and in vitro targeting properties. Using live animal imaging and intravital microscopy (IVM) techniques, we observed a rapid accumulation of the agent and its retention for a prolonged period of time (up to 7 days) in fully established animal models of human melanoma and murine mammary adenocarcinoma. This macromolecular theranostic agent can be used for targeted delivery of high boron load into solid tumors for future applications in boron neutron capture therapy. PMID:25350602

  1. The effect of a dynamic wedge in the medial tangential field upon the contralateral breast dose

    SciTech Connect

    McParland, B.J. )

    1990-12-01

    The elevated incidence of breast cancer following irradiation of breast tissue has led to concern over the magnitude of the scattered radiation received by the uninvolved contralateral breast during radiation therapy for a primary breast lesion and the risk of an induced contralateral breast cancer. Some linear accelerators use a single dynamic (or universal) wedge that is mounted within the treatment head at an extended distance from the patient. Because of the combined effects of distance and shielding, the contralateral breast dose due to a medial tangent containing a dynamic wedge is expected to be less than that containing a conventional wedge. This paper presents contralateral breast dose (CBD) measurements performed on an anthropomorphic phantom with breast prostheses irradiated with 6 MV X rays from a linear accelerator equipped with a dynamic wedge. Doses were measured at 15 points within the contralateral breast prosthesis with thermoluminescent dosimeters. It was found that the contralateral breast dose per unit target breast dose decreases with the perpendicular distance from the posterior edge of the medial tangent to the dose measurement point and increases with effective wedge angle by factors ranging up to 2.8, in agreement with data presented earlier for a water phantom geometry. This dose elevation showed no statistically significant dependence (p less than 0.05) upon the perpendicular distance from the beam edge. Comparisons with data in the literature show that the contralateral breast dose increase by a dynamic wedge is typically only about half of that reported for a conventional wedge for the same wedge angle and distance from the beam.

  2. Capillarity driven motion of solid film wedges

    SciTech Connect

    Wong, H.; Miksis, M.J.; Voorhees, P.W.; Davis, S.H.

    1997-06-01

    A solid film freshly deposited on a substrate may form a non-equilibrium contact angle with the substrate, and will evolve. This morphological evolution near the contact line is investigated by studying the motion of a solid wedge on a substrate. The contact angle of the wedge changes at time t = 0 from the wedge angle {alpha} to the equilibrium contact angle {beta}, and its effects spread into the wedge via capillarity-driven surface diffusion. The film profiles at different times are found to be self-similar, with the length scale increasing as t{sup 1 4}. The self-similar film profile is determined numerically by a shooting method for {alpha} and {beta} between 0 and 180. In general, the authors find that the film remains a wedge when {alpha} = {beta}. For {alpha} < {beta}, the film retracts, whereas for {alpha} > {beta}, the film extends. For {alpha} = 90{degree}, the results describe the growth of grain-boundary grooves for arbitrary dihedral angles. For {beta} = 90{degree}, the solution also applies to a free-standing wedge, and the thin-wedge profiles agree qualitatively with those observed in transmission electron microscope specimens.

  3. Penetrating eye injury from a metal wedge.

    PubMed

    Kozielec, G F; To, K

    1999-01-01

    The authors describe a patient with a penetrating ocular injury from a metal wedge, a common hand tool used by road service technicians for the purpose of opening a locked car door. The patient had a penetrating eye injury from a metal wedge when its sharp end released from a car door lock and retracted upward, striking the right eye. No report exists of ocular injury using a metal wedge for its intended purpose of opening a car door lock. The use of polycarbonate lenses might afford some protection.

  4. Ultrasonic transducer with laminated coupling wedge

    DOEpatents

    Karplus, Henry H. B.

    1976-08-03

    An ultrasonic transducer capable of use in a high-temperature environment incorporates a laminated metal coupling wedge including a reflecting edge shaped as a double sloping roof and a transducer crystal backed by a laminated metal sound absorber disposed so as to direct sound waves through the coupling wedge and into a work piece, reflections from the interface between the coupling wedge and the work piece passing to the reflecting edge. Preferably the angle of inclination of the two halves of the reflecting edge are different.

  5. Seismic rupture propagation beneath potential landslide wedge

    NASA Astrophysics Data System (ADS)

    Sakaguchi, A.; Kawamura, K.

    2011-12-01

    During 2011 Tohoku earthquake (Mw 9.0), much larger slip and tsunami occurred than expectation at outer-wedge (toe of the trench landward slope) of Japan trench (eg. Ide et al., 2011). Similarly, outer-wedge deformation was pointed out in northern segment of 1986 Meiji-Sanriku earthquake (Ms 7.2), and it was discussed that earthquake-related landslide induced large tsunami (eg. Kanamori, 1972; Tanioka and Satake, 1996). Many landslides and normal faults, potential tsunami genesis, are developed at outer-wedge of Japan trench (Henry et al., 1989). Some steep normal-faults turn to horizon at deep portion, and land sliding may be prevented by basal friction. If seismic rupture propagates to basal fault of the outer-wedge, triggered gravity collapse will enlarge deformation of the outer-wedge to cause large tsunamis. It was considered that seismogenic fault locks at deep portion under inner-wedge of the plate subduction zone, and outer-wedge was classified into aseismic zone classically. Seismic rupture propagation to outer-wedge is still uncertain. Seismic slip at the outer-wedge was found from the drilled core during IODP Nankai trough seismogenic zone drilling project (NanTroSEIZE) in Nankai trough, southwest Japan. Samples were obtained from the frontal thrust (438 mbsf), which connects the deep plate boundary to the seafloor at the toe of the accretionary wedge, and from a megasplay fault (271 mbsf) that branches from the plate boundary décollement. Higher vitrinite reflectance of 0.57 % and 0.37 % than the host rock of 0.24 % were found at splay and plate boundary faults zones respectively. These correspond with 300-400 °C and > 20°C of host rock. Local high temperature zone less than several cm thick may be caused by frictional shear heat at fault zone (Sakaguchi, et al., 2011). Shear velocity and durations can be estimated from thermal property of the sediment and distribution of the vitrinite anomaly (Hamada et al., 2011). This result shows that seismic

  6. Pressure Distributions About Finite Wedges in Bounded and Unbounded Subsonic Streams

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Prasse, Ernst I

    1953-01-01

    An analytical investigation of incompressible flow about wedges was made to determine effects of tunnel-wedge ratio and wedge angle on the wedge pressure distributions. The region of applicability of infinite wedge-type velocity distribution was examined for finite wedges. Theoretical and experimental pressure coefficients for various tunnel-wedge ratios, wedge angles, and subsonic Mach numbers were compared.

  7. Monolithic integration of high-Q wedge resonators with vertically coupled waveguides

    NASA Astrophysics Data System (ADS)

    Ramiro-Manzano, Fernando; Prtljaga, Nikola; Pavesi, Lorenzo; Pucker, Georg; Ghulinyan, Mher

    2013-05-01

    Typical UHQ resonators, microspheres and microtoroids, lack the possibility of integration into lightwave circuits due to their planarity constrains. In this context, CMOS-compatible alternatives in the form of wedge resonators have been proposed. However, the mode retraction from the wedge cavity inhibits the possibility to side couple with integrated waveguides and therefore, halts the full integration within a planar lightwave circuit. In this work, we propose and demonstrate experimentally the complete integration of wedge resonators with vertically coupled dielectric bus waveguides. This coupling scheme permits to use arbitrary gaps, geometries and materials, enables simplified and precise control of the light injection into the cavity and opens the door to an industrial mass-fabrication of UHQ resonators.

  8. Numerical simulation of vortex-wedge interaction

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ho; Lee, Duck-Joo

    1994-06-01

    Interactions between vortical flows and a solid surface cause one of the primary sources of noise and unsteady loading. The mechanism of the interaction is studied numerically for a single Rankine vortex impinging upon a wedge. An Euler-Lagrangian method is employed to calculate the unsteady, viscous, incompressible flows in two dimensions. A random vortex method is used to describe the vorticity dominant field. A fast vortex method is used to reduce the computational time in the calculation of the convection velocity of each vortex particle. A Schwarz-Christoffel transformation is used to map the numerical domain onto the physical domain. Vortex partical plots, velocity vectors, and streamlines are presented at selected times for both inviscid and viscous interactions. It is observed that the incident rankine vortex distorts and is split by the wedge as it nears and passes the wedge, and the vortices generated from the leading edge toward the underside of the wedge form into a single vortex. The vorticity orientation of the shed vortex is opposite to that of the incident vortex. It is found that the convection velocity of the shed vortex is changed wheen it comes off the leading edge of the wedge, and the strength of the shed vortex varies with the time during the vortex-wedge interaction. This strength variation is presumed to influence the shed vortex convection velocity. The overall features for the interaction agree well with the experimental results of Ziada and Rockwell.

  9. Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area

    PubMed Central

    Gui, Chengcheng; Wang, Jian

    2015-01-01

    We present a novel design of wedge hybrid plasmonic terahertz (THz) waveguide consisting of a silicon (Si) nanowire cylinder above a triangular gold wedge with surrounded high-density polyethylene as cladding. It features long propagation length and ultra-small deep-subwavelength mode confinement. The mode properties of wedge hybrid plasmonic THz waveguide are comprehensively characterized in terms of propagation length (L), normalized mode area (Aeff /A0), figure of merit (FoM), and chromatic dispersion (D). The designed wedge hybrid plasmonic THz waveguide enables an ultra-small deep-subwavelength mode area which is more than one-order of magnitude smaller compared to previous rectangular one. When choosing the diameter of Si nanowire cylinder, a smaller diameter (e.g. 10 μm) is preferred to achieve longer L and higher FoM, while a larger diameter (e.g. 60 μm) is favorable to obtain smaller Aeff /A0 and higher FoM. We further study the impacts of possible practical fabrication errors on the mode properties. The simulated results of propagation length and normalized mode area show that the proposed wedge hybrid plasmonic THz waveguide is tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, variation of wedge tip angle, and variation of wedge tip curvature radius. PMID:26155782

  10. Phase transitions and interface fluctuations in double wedges and bi-pyramids with competing surface fields

    NASA Astrophysics Data System (ADS)

    Müller, M.; Milchev, A.; Binder, K.; Landau, D. P.

    2008-08-01

    The interplay between surface and interface effects on binary AB mixtures that are confined in unconventional geometries is investigated by Monte Carlo simulations and phenomenological considerations. Both double-wedge and bi-pyramid confinements are considered and competing surface fields are applied at the two opposing halves of the system. Below the bulk critical temperature, domains of opposite order parameter are stabilized at the corresponding corners and an interface runs across the middle of the bi-partite geometry. Upon decreasing the temperature further one encounters a phase transition at which the AB symmetry is broken. The interface is localized in one of the two wedges or pyramids, respectively, and the order parameter is finite. In both cases, the transition becomes discontinuous in the thermodynamic limit but it is not a first-order phase transition. In an antisymmetric double wedge geometry the transition is closely related to the wedge-filling transition. Choosing the ratio of the cross-section L × L of the wedge and its length L y according to L y / L 3 = const., simulations and phenomenological consideration show that the new type of phase transition is characterized by critical exponents α = 3/4, β = 0, and γ = 5/4 for the specific heat, order parameter, and susceptibility, respectively. In an antisymmetric bi-pyramid the transition occurs at the cone-filling transition of a single pyramid. The important critical fluctuations are associated with the uniform translation of the interface and they can be described by a Landau-type free energy. Monte Carlo results provide evidence that the coefficients of this Landau-type free energy exhibit a system-size dependence, which gives rise to critical amplitudes that diverge with system size and result in a transition that becomes discontinuous in the thermodynamic limit.

  11. Evaluating the dose to the contralateral breast when using a dynamic wedge versus a regular wedge.

    PubMed

    Weides, C D; Mok, E C; Chang, W C; Findley, D O; Shostak, C A

    1995-01-01

    The incidence of secondary cancers in the contralateral breast after primary breast irradiation is several times higher than the incidence of first time breast cancer. Studies have shown that the scatter radiation to the contralateral breast may play a large part in the induction of secondary breast cancers. Factors that may contribute to the contralateral breast dose may include the use of blocks, the orientation of the field, and wedges. Reports have shown that the use of regular wedges, particularly for the medial tangential field, gives a significantly higher dose to the contralateral breast compared to an open field. This paper compares the peripheral dose outside the field using a regular wedge, a dynamic wedge, and an open field technique. The data collected consisted of measurements taken with patients, solid water and a Rando phantom using a Varian 2300CD linear accelerator. Ion chambers, thermoluminescent dosimeters (TLD), diodes, and films were the primary means for collecting the data. The measurements show that the peripheral dose outside the field using a dynamic wedge is close to that of open fields, and significantly lower than that of regular wedges. This information indicates that when using a medial wedge, a dynamic wedge should be used.

  12. The formation of grounding zone wedges

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna; Worster, Grae

    2016-11-01

    Ice sheets are generally lubricated by a layer of sub-glacial sediment, or till, which plays a central role in determining their large-scale dynamics. Sub-glacial till has been found to accumulate into distinctive sedimentary wedges at ice-sheet grounding zones, separating floating ice shelves from grounded ice sheets. These grounding-zone wedges have important implications for stabilizing ice sheets against grounding-zone retreat in response to rising sea levels. We develop a theoretical model of wedge formation in which we treat both ice and till as viscous fluids spreading under gravity into an inviscid ocean and present a fluid-mechanical explanation of the formation of these wedges in terms of the jump in hydrostatic loading and unloading of till across the grounding zone. We also conduct a series of fluid-mechanical experiments in a confined setting in which we find that the underlying layer of less viscous fluid accumulates spontaneously in a similar wedge-shaped region at the experimental grounding line. We also extend our theory to more natural, unconfined settings in two dynamical regimes in which the overlying ice is resisted dominantly either by vertical shear or by extensional stresses and compare our findings with available geophysical data. Currently at Northwestern University.

  13. Radiative transfer in spherical atmospheres

    NASA Astrophysics Data System (ADS)

    Kalkofen, W.; Wehrse, R.

    A method for defining spherical model atmospheres in radiative/convective and hydrostatic equilibrium is presented. A finite difference form is found for the transfer equation and a matrix operator is developed as the discrete space analog (in curvilinear coordinates) of a formal integral in plane geometry. Pressure is treated as a function of temperature. Flux conservation is maintained within the energy equation, although the correct luminosity transport must be assigned for any given level of the atmosphere. A perturbed integral operator is used in a complete linearization of the transfer and constraint equations. Finally, techniques for generating stable solutions in economical computer time are discussed.

  14. Two-dimensional electronic spectroscopy with birefringent wedges

    SciTech Connect

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  15. A review of dynamics modelling of friction wedge suspensions

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Cole, Colin; Spiryagin, Maksym; Sun, Yan Quan

    2014-11-01

    Three-piece bogies with friction wedge suspensions are the most widely used bogies in heavy haul trains. Fiction wedge suspensions play a key role in these wagon systems. This article reviews current techniques in dynamic modelling of friction wedge suspension with various motivations: to improve dynamic models of friction wedge suspensions so as to improve general wagon dynamics simulations; to seek better friction wedge suspension models for wagon stability assessments in complex train systems; to improve the modelling of other friction devices, such as friction draft gear. Relevant theories and friction wedge suspension models developed by using commercial simulation packages and in-house simulation packages are reviewed.

  16. Two-dimensional meniscus in a wedge

    SciTech Connect

    Kagan, M.; Pinczewski, W.V.; Oren, P.E.

    1995-03-15

    This paper presents a closed-form analytical solution of the augmented Young-Laplace equation for the meniscus profile in a two-dimensional wedge-shaped capillary. The solution is valid for monotonic forms of disjoining pressure which are repulsive in nature. In the limit of negligible disjoining pressure, it is shown to reduce to the classical solution of constant curvature. The character of the solution is examined and examples of practical interest which demonstrate the application of the solution to the computation of the meniscus profile in a wedge-shaped capillary are discussed.

  17. The role of heterogeneous fluid pressures in the shape of critical-taper submarine wedges, with application to Barbados

    NASA Astrophysics Data System (ADS)

    Yeh, En-Chao; Suppe, John

    2014-05-01

    Some classic accretionary wedges such as Nankai trough and Barbados are mechanically heterogeneous based on their spatial variation in taper, showing inward decrease in surface slope α without covariation in detachment dip β. Possible sources of regional heterogeniety include variation in fluid pressure, density, cohesion and fault strength, which can be constrained by the seismic or borehole observable parameter, fluid-retention depth Z_FRD, below which compaction is strongly diminished. In particular the Hubbert-Rubey fluid-pressure weakening can be addressed as (1-lambda)~0.6Z_FRD/Z. We recast the heterogeneous critical-taper wedge theory of Dahlen (1990) in terms of the observable Z_FRD/H, where H is the detachment depth, which allows for real world applications. For example, seismic velocity and borehole data from the Barbados shows that the fluid-retention depth Z_FRD is approximately constant and Z_FRD/H decreases inward. This leads to a factor of four inward decreases in wedge strength, dominated by fluid pressure, with only a second-order role for density and cohesion. An inward decrease in wedge strength should by itself produce an increase in taper, therefore the observed decreasing taper must be dominated by decreasing fault strength mu_b* from 0.03 to 0.01. Static fluid-pressures along the detachment in equilibrium with the overlying wedge predict the observed wedge geometry well, given a constant intrinsic friction coefficient mu_b=0.15.

  18. The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection

    NASA Astrophysics Data System (ADS)

    Ellahi, R.; Hassan, M.; Zeeshan, A.; Khan, Ambreen A.

    2016-06-01

    The flow of mixed convection nanofluid over wedge under the effects of porous medium is investigated. The HFE-7100 Engineered Fluid having Nimonic 80a metal nanoparticles of spherical and non-spherical shapes with different sizes is used. The particle shape effects on Bejan number and entropy generation are taken into account. The system of partial differential equations is first written in terms of ordinary differential equations using adequate similarity transformations and then solved analytically. Analytical solutions of the resulting equations are obtained for the velocity and temperature profiles. Simultaneous effects of porous medium, particle volume friction, mixed convection parameter, and angle of wedge in the presence of different shapes nanoparticles are demonstrated graphically. Effects of particle concentrations, sizes on wall stress, heat transfer coefficient of Skin friction, and Nusselt are discussed in the form of tables.

  19. Sharp Thermal Transition in the Forearc Mantle Wedge as a Consequence of Nonlinear Mantle Wedge Flow

    NASA Astrophysics Data System (ADS)

    Wada, I.; Wang, K.; Jiangheng, H.

    2009-12-01

    A sharp landward increase in seismic attenuation over a few tens of kilometres distance in the forearc mantle wedge has been reported for a number of subduction zones, including Alaska, Costa Rica, central Andes, Hikurangi, and NE Japan. The low attenuation in the wedge nose is commonly interpreted as to indicate a cold state, and the high attenuation further landward to indicate high temperature and/or partial melting. Beneath the arc, the high temperature at shallow depths may be caused by transient melt migration, but at larger depths the mantle wedge must be hot enough to generate melt. Thus, the landward change in the thermal state of the forearc mantle wedge is large and sharp. We use a two-dimensional steady-state thermal model and the subduction-interface weakening approach of Wada et al. (2008) to investigate how slab-driven mantle wedge flow controls the thermal transition. We observe that the sharpness of the transition increases with the increasing nonlinearity of the flow system. In an isoviscous mantle wedge with a uniform interface strength, there is no spontaneous transition in the flow and thermal fields. In a diffusion-creep mantle wedge, even with a uniform interface strength, the strong temperature dependence of the mantle rheology always results in full slab-mantle decoupling along the weakened part of the interface and hence complete stagnation of the overlying mantle, giving rise to a cold wedge nose that does not participate in the wedge flow. On the other hand, the interface immediately downdip of the zone of decoupling is fully coupled, and the overlying mantle is driven to flow at a rate compatible with the subduction rate. The flow system thus shows a bimodal behaviour. In a dislocation-creep mantle wedge, its stress-dependence results in an additional feedback effect, making the bimodal behaviour more pronounced than in the diffusion-creep mantle wedge, with an abrupt change from decoupling to coupling along the subduction interface

  20. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  1. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  2. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  3. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  4. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  5. 21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention pressure wedge provides mechanical support to the perianal region during the labor and delivery...

  6. 21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention pressure wedge provides mechanical support to the perianal region during the labor and delivery...

  7. Colluvial wedge imaging using traveltime and waveform tomography along the Wasatch Fault near Mapleton, Utah

    NASA Astrophysics Data System (ADS)

    Buddensiek, M.-L.; Sheng, J.; Crosby, T.; Schuster, G. T.; Bruhn, R. L.; He, R.

    2008-02-01

    Four high-resolution seismic surveys were conducted across the Wasatch Fault Zone near Mapleton, Utah. The objective was twofold: (1) To use velocity tomograms and reflection images to delineate fault structures and colluvial wedges to more than twice the depth of the Mapleton Megatrench excavated by URS personnel, (2) to assess the strengths and limitations of traveltime and waveform tomography by synthetic studies and comparison of the tomogram to the ground truth seen in the Megatrench log. Four out of the five faults within the trench area are accurately identified in the migrated image and in the tomograms, and the main fault's dip angle is estimated to be between 71 and 80°. Two additional faults are interpreted outside the trench. The faults can be delineated down to 30 m below the surface, which is 20 m deeper than the excavated trench. Five out of six colluvial wedges found in the trench log were seen as low-velocity zones (LVZs) in the tomogram, however the biggest colluvial wedge could not be identified by either tomography method. Waveform tomography prevailed over ray-based traveltime tomography by more clearly recovering the faults and LVZs. A newly discovered LVZ at a depth of 18-21 m below the surface possibly represents a colluvial wedge and is estimated to be less than 21000 years old. If this LVZ is a colluvial wedge, the earthquake history obtained by trenching can be extended from 13500 to 21000 yr with seismic tomography. Our results further demonstrate the capability of tomography in identifying faults, and show that waveform tomography more accurately resolves colluvial wedges compared to traveltime tomography. However, despite the successful recovery of most faults and some, but not all, colluvial wedges, both tomography methods show many more LVZs besides the wedges, so that an unambiguous interpretation cannot be made. A major part of the ambiguity in the tomograms is due to the many major faults, which result in an uneven raypath

  8. Spatial symmetry breaking in rapidly rotating convective spherical shells

    NASA Technical Reports Server (NTRS)

    Zhang, Keke; Schubert, Gerald

    1995-01-01

    Many problems in geophysical and astrophysical convection systems are characterized by fast rotation and spherical shell geometry. The combined effects of Coriolis forces and spherical shell geometry produce a unique spatial symmetry for the convection pattern in a rapidly rotating spherical shell. In this paper, we first discuss the general spatial symmetries for rotating spherical shell convection. A special model, a spherical shell heated from below, is then used to illustrate how and when the spatial symmetries are broken. Symmetry breaking occurs via a sequence of spatial transitions from the primary conducting state to the complex multiple-layered columnar structure. It is argued that, because of the dominant effects of rotation, the sequence of spatial transitions identified from this particular model is likely to be generally valid. Applications of the spatial symmetry breaking to planetary convection problems are also discussed.

  9. Spherical quartz crystals investigated with synchrotron radiation

    SciTech Connect

    Pereira, N. R.; Macrander, A. T.; Hill, K. W.; Baronova, E. O.; George, K. M.; Kotick, J.

    2015-10-15

    The quality of x-ray spectra and images obtained from plasmas with spherically bent crystals depends in part on the crystal’s x-ray diffraction across the entire crystal surface. We employ the energy selectivity and high intensity of synchrotron radiation to examine typical spherical crystals from alpha-quartz for their diffraction quality, in a perpendicular geometry that is particularly convenient to examine sagittal focusing. The crystal’s local diffraction is not ideal: the most noticeable problems come from isolated regions that so far have failed to correlate with visible imperfections. Excluding diffraction from such problem spots has little effect on the focus beyond a decrease in background.

  10. The spherical birdcage resonator

    NASA Astrophysics Data System (ADS)

    Harpen, Michael D.

    A description of the operation of a spherical resonator capable of producing a uniform magnetic induction throughout a spherical volume is presented. Simple closed-form expressions for the spectrum of resonant frequencies are derived for both the low-pass and the high-pass configuration of the resonator and are shown to compare favorably with observation in an experimental coil system. It is shown that the spherical resonator produces a uniform spherical field of view when used as a magnetic resonance imaging radiofrequency coil.

  11. High efficient coupling between wedged-shaped fiber and planar lightwave circuit chip using gradient refractive-index media

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Qu, Shuting; Xiao, Jinbiao; Sun, Xiaohan

    2006-10-01

    Planar lightwave circuit (PLC) chips based on III-V semiconductor MQW rib waveguide promise to be not only a solution to information access, but also direct the issues of bandwidth, pin count, reliability and complexity. Nanopositioning and precision alignment addresses vital importance in high-efficient connectivity between PLC chips and fiber arrays. Refractive-index mismatching between fused silica and III-V compound is one of the most serious problem which remains unsolved on one hand as well as mode field mismatching which can be mitigated in other hand through gradient geometry structure such as tapered spot size converter (SSC) and specialty fibers such as wedge-shaped fiber (WSF). Spherical gradient refractive-index (SGRIN) media intervened between WSF and MQW rib waveguide is put forward. The GRIN media virtually eliminates the reflection losses associated with the fused silica-air interface and III-V semiconductor-air interface. The beam spot emitted from WSF are observed by digital camera and the fundamental mode of MQW rib waveguide was calculated out. Lightwave propagation and mode field evolution in the WSF-SGRIN-PLC system is simulated by FDTD method with the coupling loss of 8.54dB at a wavelength of 1.55μm. An LED signal is injected into WSF, transmitted along GRIN media and PLC waveguide and output through single mode fiber (SMF). Optical power meter-based measurement verifies the whole system coupling loss to be consistent with the numeric estimation. The approach provides an experimental prototype for coupling and packaging technique of integrated photonic devices, hence supplying foundation for photonic network.

  12. Life at the wedge: the activity and diversity of arctic ice wedge microbial communities.

    PubMed

    Wilhelm, Roland C; Radtke, Kristin J; Mykytczuk, Nadia C S; Greer, Charles W; Whyte, Lyle G

    2012-04-01

    The discovery of polygonal terrain on Mars underlain by ice heightens interest in the possibility that this water-bearing habitat may be, or may have been, a suitable habitat for extant life. The possibility is supported by the recurring detection of terrestrial microorganisms in subsurface ice environments, such as ice wedges found beneath tundra polygon features. A characterization of the microbial community of ice wedges from the high Arctic was performed to determine whether this ice environment can sustain actively respiring microorganisms and to assess the ecology of this extreme niche. We found that ice wedge samples contained a relatively abundant number of culturable cells compared to other ice habitats (∼10(5) CFU·mL(-1)). Respiration assays in which radio-labeled acetate and in situ measurement of CO(2) flux were used suggested low levels of microbial activity, though more sensitive techniques are required to confirm these findings. Based on 16S rRNA gene pyrosequencing, bacterial and archaeal ice wedge communities appeared to reflect surrounding soil communities. Two Pseudomonas sp. were the most abundant taxa in the ice wedge bacterial library (∼50%), while taxa related to ammonia-oxidizing Thaumarchaeota occupied 90% of the archaeal library. The tolerance of a variety of isolates to salinity and temperature revealed characteristics of a psychrotolerant, halotolerant community. Our findings support the hypothesis that ice wedges are capable of sustaining a diverse, plausibly active microbial community. As such, ice wedges, compared to other forms of less habitable ground ice, could serve as a reservoir for life on permanently cold, water-scarce, ice-rich extraterrestrial bodies and are therefore of interest to astrobiologists and ecologists alike. .

  13. Electromagnetic scattering by pyramidal and wedge absorber

    NASA Technical Reports Server (NTRS)

    Dewitt, Brian T.; Burnside, Walter D.

    1988-01-01

    Electromagnetic scattering from pyramidal and wedge absorbers used to line the walls of modern anechoic chambers is measured and compared with theoretically predicted values. The theoretical performance for various angles of incidence is studied. It is shown that a pyramidal absorber scatters electromagnetic energy more as a random rough surface does. The apparent reflection coefficient from an absorber wall illuminated by a plane wave can be much less than the normal absorber specifications quoted by the manufacturer. For angles near grazing incidence, pyramidal absorbers give a large backscattered field from the pyramid side-faces or edges. The wedge absorber was found to give small backscattered fields for near-grazing incidence. Based on this study, some new guidelines for the design of anechoic chambers are advocated because the specular scattering models used at present do not appear valid for pyramids that are large compared to the wavelength.

  14. Spherical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  15. Wedge assembly for electrical transformer component spacing

    DOEpatents

    Baggett, Franklin E.; Cage, W. Franklin

    1991-01-01

    A wedge assembly that is easily inserted between two surfaces to be supported thereby, and thereafter expanded to produce a selected spacing between those surfaces. This wedge assembly has two outer members that are substantially identical except that they are mirror images of each other. Oppositely directed faces of these of these outer members are substantially parallel for the purpose of contacting the surfaces to be separated. The outer faces of these outer members that are directed toward each other are tapered so as to contact a center member having complementary tapers on both faces. A washer member is provided to contact a common end of the outer members, and a bolt member penetrates this washer and is threadably received in a receptor of the center member. As the bolt member is threaded into the center member, the center member is drawn further into the gap between the outer members and thereby separates these outer members to contact the surfaces to be separated. In the preferred embodiment, the contacting surfaces of the outer member and the center member are provided with guide elements. The wedge assembly is described for use in separating the secondary windings from the laminations of an electrical power transformer.

  16. Interior impedance wedge diffraction with surface waves

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1988-01-01

    The exact impedance wedge solution is evaluated asymptotically using the method of steepest descents for plane wave illumination at normal incidence. Uniform but different impedances on each face are considered for both soft and hard polarizations. The asymptotic solution isolates the incident, singly reflected, multiply reflected, diffracted, and surface wave fields. Multiply reflected fields of any order are permitted. The multiply reflected fields from the exact solution are written as ratios of auxiliary Maliuzhinets functions, whereas a geometrical analysis gives the reflected fields as products of reflection coefficients. These two representations are shown to be identical in magnitude, phase and the angular range over which they exist. The diffracted field includes four Fresnel transition functions as in the perfect conductor case, and the expressions for the appropriate discontinuities at the shadow boundaries are presented. The surface wave exists over a finite angular range and only for certain surface impedances. A surface wave transition field is included to retain continuity. Computations are presented for interior wedge diffractions although the formulation is valid for both exterior and interior wedges.

  17. Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.

    2015-12-01

    Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based

  18. Faraday instability of a spherical drop

    NASA Astrophysics Data System (ADS)

    Ebo Adou, A.; Tuckerman, Laurette; Shin, Seungwon; Chergui, Jalel; Juric, Damir

    2014-11-01

    A liquid drop subjected to an oscillatory radial force comprises a spherical version of the Faraday instability, with a subharmonic response which is half of the forcing frequency. The time-dependent shape of the drop and the velocity field in and around it are calculated using BLUE, a code based on a hybrid Front Tracking/Level-set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. We compare this shape with the spherical harmonic selected at onset, calculated by adapting the Floquet stability analysis of Kumar and Tuckerman to a spherical geometry. We interpret the shape in light of theoretical results by Busse, Matthews and others concerning pattern formation in the presence of O(3) symmetry.

  19. On the shape of a droplet in a wedge: new insight from electrowetting.

    PubMed

    Baratian, D; Cavalli, A; van den Ende, D; Mugele, F

    2015-10-21

    The equilibrium morphology of liquid drops exposed to geometric constraints can be rather complex. Even for simple geometries, analytical solutions are scarce. Here, we investigate the equilibrium shape and position of liquid drops confined in the wedge between two solid surfaces at an angle α. Using electrowetting, we control the contact angle and thereby manipulate the shape and the equilibrium position of aqueous drops in ambient oil. In the absence of contact angle hysteresis and buoyancy, we find that the equilibrium shape is given by a truncated sphere, at a position that is determined by the drop volume and the contact angle. At this position, the net normal force between drop and the surfaces vanishes. The effect of buoyancy gives rise to substantial deviations from this equilibrium configuration which we discuss here as well. We eventually show how the geometric constraint and electrowetting can be used to position droplets inside a wedge in a controlled way, without mechanical actuation.

  20. Wightman function and scalar Casimir densities for a wedge with two cylindrical boundaries

    SciTech Connect

    Saharian, A.A. Tarloyan, A.S.

    2008-07-15

    Wightman function, the vacuum expectation values of the field square and the energy-momentum tensor are investigated for a massive scalar field with general curvature coupling parameter inside a wedge with two coaxial cylindrical boundaries. It is assumed that the field obeys Dirichlet boundary condition on bounding surfaces. The application of a variant of the generalized Abel-Plana formula enables to extract from the expectation values the contribution corresponding to the geometry of a wedge with a single shell and to present the interference part in terms of exponentially convergent integrals. The local properties of the vacuum are investigated in various asymptotic regions of the parameters. The vacuum forces acting on the boundaries are presented as the sum of self-action and interaction terms. It is shown that the interaction forces between the separate parts of the boundary are always attractive. The generalization to the case of a scalar field with Neumann boundary condition is discussed.

  1. Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets

    NASA Astrophysics Data System (ADS)

    Gu, Lin; Sigle, Wilfried; Koch, Christoph T.; Ögüt, Burcu; van Aken, Peter A.; Talebi, Nahid; Vogelgesang, Ralf; Mu, Jianlin; Wen, Xiaogang; Mao, Jian

    2011-05-01

    Using energy-filtered transmission electron microscopy we measured surface-plasmon resonances of gold nanoplatelets with different shapes and edge lengths at high spatial resolution. We find equidistant maxima of the energy-loss probability along the platelet edges. The plasmon dispersion of the different geometries is very similar, i.e., hardly dependent on specimen shape. The experimental results are verified by means of finite-difference time-domain calculations which reveal the presence of wedge-plasmon polaritons propagating along the platelet edges. At platelet corners, apart from radiative losses, wedge-plasmon polaritons are partially reflected or transmitted to neighboring edges. The interference of all these contributions leads to the observed plasmon resonance modes. This is an essential step towards a thorough understanding of plasmon eigenmodes in prismatic nanoplatelets.

  2. Simulation on the aggregation process of spherical particle confined in a spherical shell

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xu, J. J.; Zhang, L.

    2016-04-01

    The aggregation process of spherical particles confined in a spherical shell was studied by using a diffusion-limited cluster-cluster aggregation (DLCA) model. The influence of geometrical confinement and wetting-like properties of the spherical shell walls on the particle concentration profile, aggregate structure and aggregation kinetics had been explored. The results show that there will be either depletion or absorption particles near the shell walls depending on the wall properties. It is observed that there are four different types of density distribution which can be realized by modifying the property of the inner or outer spherical shell wall. In addition, the aggregate structure will become more compact in the confined spherical shell comparing to bulk system with the same particle volume fraction. The analysis on the aggregation kinetics indicates that geometrical confinement will promote the aggregation process by reducing the invalid movement of the small aggregates and by constraining the movement of those large aggregates. Due to the concave geometrical characteristic of the outer wall of the spherical shell, its effects on the aggregating kinetics and the structure of the formed aggregates are more evident than those of the inner wall. This study will provide some instructive information of controlling the density distribution of low-density porous polymer hollow spherical shells and helps to predict gel structures developed in confined geometries.

  3. Wide scanning spherical antenna

    NASA Technical Reports Server (NTRS)

    Shen, Bing (Inventor); Stutzman, Warren L. (Inventor)

    1995-01-01

    A novel method for calculating the surface shapes for subreflectors in a suboptic assembly of a tri-reflector spherical antenna system is introduced, modeled from a generalization of Galindo-Israel's method of solving partial differential equations to correct for spherical aberration and provide uniform feed to aperture mapping. In a first embodiment, the suboptic assembly moves as a single unit to achieve scan while the main reflector remains stationary. A feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan thereby eliminating the need to oversize the main spherical reflector. In an alternate embodiment, both the main spherical reflector and the suboptic assembly are fixed. A flat mirror is used to create a virtual image of the suboptic assembly. Scan is achieved by rotating the mirror about the spherical center of the main reflector. The feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan.

  4. Distant effects in bivergent orogenic belts - How retro-wedge erosion triggers resource formation in pro-foreland basins

    NASA Astrophysics Data System (ADS)

    Hoth, Silvan; Kukowski, Nina; Oncken, Onno

    2008-08-01

    Timeseries derived from two-dimensional sandbox simulations involving surface erosion are taken for the first time to be implemented into flexure calculations of foreland basins. Based on our results we highlight that orogenic systems are a four component system, consisting of a pro-foreland basin, a pro-wedge, a retro-wedge, and a retro-foreland basin. These four components are mechanically coupled via the load dependence of tectonic faulting [Mandl, G., 1988. Mechanics of tectonic faulting, 1st Edition. Elsevier, Amsterdam.] and the finite flexural rigidity of lithospheric plates [Beaumont, C., 1981. Foreland basins. Geophys. J. R. Astron. Soc. 5 (2), 291-329.]. We further demonstrate that the impact of pro-wedge erosion is most pronounced within the pro-wedge but also modifies the shape and size of the retro-wedge, which in turn changes the geometry and propagation velocity of the retro-foreland basin and vice versa. This suggests that one out of the four components of an orogenic system cannot be fully understood without recognition of the other three components. Thus, spatial separation between processes or observations does not necessarily imply their physical independence. This conceptual model is applied in a case study to the Pyrenean orogenic wedge and its Ebro and Aquitaine foreland basins. Our analysis suggests that the Pyrenean pro- and retro-wedge are mechanically coupled and that this coupling manifests itself in the migration of depocentres in both foreland basins. We finally explore implications for the formation of Mississippi Valley Type deposits.

  5. Transition induced by fixed and freely convecting spherical particles in laminar boundary layers

    NASA Astrophysics Data System (ADS)

    Petrie, H. L.; Morris, P. J.; Bajwa, A. R.; Vincent, D. C.

    1993-08-01

    An experimental and analytical study of aspects of transition induced by disturbances from spherical particles in laminar boundary layers is discussed. The generation of turbulent wedges by fixed spherical particles in a laminar boundary layer on or near the surface of a flat plate is considered experimentally using flow visualization with fluorescent dye and laser Doppler velocimetry. Turbulent spots generated by freely convecting spherical particles that are released in the freestream to fall into a flat plate laminar boundary layer and impact the plate are also discussed. A combination of dye flow visualization and a video based particle tracking technique was used to study the convecting particle problem. Although the Reynolds number at the critical condition for turbulent wedge generation by fixed particles and turbulent spot generation by convecting particles are similar, transition in these two situations appears to be fundamentally different. The development of a turbulent wedge near the critical condition is a relatively gradual process. In contrast, turbulent spots form relatively quickly after the convecting particles enter the boundary layer and impact the plate. Turbulent wedge formation downstream of a fixed particle results from the destabilization of the near wall flow by the vortical structures shed into particle wake. This shedding process is dominated by periodically shed loop shaped hairpin vortices. Observation of subharmonic oscillations at 1/2 and 1/4 of this shedding frequency suggest that a chaotic route to turbulence by a series of period doubling bifurcations is possible.

  6. Molecular Geometry.

    ERIC Educational Resources Information Center

    Desseyn, H. O.; And Others

    1985-01-01

    Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…

  7. The Precessing Spherical Pendulum.

    ERIC Educational Resources Information Center

    Olsson, M. G.

    1978-01-01

    Explains how the spherical pendulum could be used to observe nonreentrant orbits, and shows, using theoretical analysis, that for small displacements the elliptical orbit will precess at a rate proportional to its area. (GA)

  8. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  9. Recent Progress on Spherical Torus Research

    SciTech Connect

    Ono, Masayuki; Kaita, Robert

    2014-01-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  10. Optimal clinical implementation of the Siemens virtual wedge.

    PubMed

    Walker, C P; Richmond, N D; Lambert, G D

    2003-01-01

    Installation of a modern high-energy Siemens Primus linear accelerator at the Northern Centre for Cancer Treatment (NCCT) provided the opportunity to investigate the optimal clinical implementation of the Siemens virtual wedge filter. Previously published work has concentrated on the production of virtual wedge angles at 15 degrees, 30 degrees, 45 degrees, and 60 degrees as replacements for the Siemens hard wedges of the same nominal angles. However, treatment plan optimization of the dose distribution can be achieved with the Primus, as its control software permits the selection of any virtual wedge angle from 15 degrees to 60 degrees in increments of 1 degrees. The same result can also be produced from a combination of open and 60 degrees wedged fields. Helax-TMS models both of these modes of virtual wedge delivery by the wedge angle and the wedge fraction methods respectively. This paper describes results of timing studies in the planning of optimized patient dose distributions by both methods and in the subsequent treatment delivery procedures. Employment of the wedge fraction method results in the delivery of small numbers of monitor units to the beam's central axis; therefore, wedge profile stability and delivered dose with low numbers of monitor units were also investigated. The wedge fraction was proven to be the most efficient method when the time taken for both planning and treatment delivery were taken into consideration, and is now used exclusively for virtual wedge treatment delivery in Newcastle. It has also been shown that there are no unfavorable dosimetric consequences from its practical implementation.

  11. Plastic deformation of a wedge by a sliding punch

    NASA Astrophysics Data System (ADS)

    Nepershin, R. I.

    2016-11-01

    We present a self-similar solution of the problem of deformation of an ideally plastic wedge by a sliding punch with regard to contact friction; such a solution generalizes the well-known solutions of the problem of wedge penetration into a plastic half-space and of compression of an ideally plastic wedge by a plane punch. The problem is of interest for modeling the processes of plastic deformation of rough surfaces of metal pieces by a rigid tool.

  12. Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Serafini, John S

    1954-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  13. Principle and analysis of the moving-optical-wedge interferometer.

    PubMed

    Yang, Qinghua; Zhou, Renkui; Zhao, Baochang

    2008-05-01

    A new type of interferometer, the moving-optical-wedge interferometer, is presented, and its principle and properties are studied. The novel interferometer consists of one beam splitter, two flat fixed mirrors, two fixed compensating plates, one fixed optical wedge, and one moving optical wedge. The optical path difference (OPD) as a function of the displacement of the moving optical wedge from the zero path difference position is accomplished by the straight reciprocating motion of the moving optical wedge. A large physical shift of the moving optical wedge corresponds to a very short OPD value of the new interferometer if the values of the wedge angle and the refractive index of the two optical wedges are given properly. The new interferometer is not so sensitive to the velocity variation of the moving optical wedge and the mechanical disturbances compared with the Michelson interferometer, and it is very applicable to low-spectral-resolution application for any wavenumber region from the far infrared down to the ultraviolet.

  14. Spot size effects in miniaturized moving-optical-wedge interferometer.

    PubMed

    Al-Saeed, Tarek A; Khalil, Diaa A

    2011-06-10

    In this paper we study the effect of diffraction on the performance of a miniaturized moving-optical-wedge interferometer. By using the Gaussian model, we calculate the degradation of the interferometer visibility due to diffraction effects. We use this model to optimize the detector size required to obtain maximum visibility and study its effect on resolution of Fourier transform spectrometers based on a moving-optical-wedge interferometer. A comparison between these effects in Michelson and wedge interferometers is also presented showing the advantage of the moving-optical-wedge interferometer in suppressing the diffraction effects with respect to the Michelson interferometer.

  15. Effect of Wedge Insertion Angle on Posterior Tibial Slope in Medial Opening Wedge High Tibial Osteotomy

    PubMed Central

    Ogawa, Hiroyasu; Matsumoto, Kazu; Ogawa, Takahiro; Takeuchi, Kentaro; Akiyama, Haruhiko

    2016-01-01

    Background: Medial opening wedge high tibial osteotomy (HTO) is a well-established surgery for medial compartment knee osteoarthritis (OA) wherein the lower extremity is realigned to shift the load distribution from the medial compartment of the knee to the lateral compartment. However, this surgery is known to affect the posterior tibial slope angle (PTSA), which could lead to abnormal knee kinematics and instability, and eventually to knee OA. Although PTSA control is as important as coronal realignment, few appropriate measurements for this parameter have been reported. The placement of a wedge spacer might have an effect on PTSA. Purpose: To elucidate the relationship between the PTSA and the direction of insertion of a wedge spacer. Study Design: Case series; Level of evidence, 4. Methods: This study assessed 43 knees from 34 patients who underwent medial opening wedge HTO for knee OA. Pre- and postoperative lateral radiographs of the knee as well as postoperative computed tomography scans were performed to evaluate the relationship among PTSA, wedge insertion angle (WIA), and opening gap ratio (distance of the anterior opening gap/distance of the posterior opening gap at the osteotomy site). Results: The PTSA significantly increased from 9.0° ± 2.8° preoperatively to 13.2° ± 4.1° postoperatively (P < .001), resulting in a mean ΔPTSA of 4.7° ± 4.5°. The mean opening gap ratio was 0.86 ± 0.11, and the mean WIA was 25.9° ± 8.4°. The WIA and opening gap ratio were both highly correlated with ΔPTSA (r = 0.71 and 0.72, respectively), implying that a smaller WIA or smaller gap ratio leads to less increase in posterior slope. Conclusion: The direction of wedge insertion is highly correlated with PTSA increase, which suggests that the PTSA can be controlled for by adjusting the direction of wedge insertion during surgery. Clinical Relevance: Study results suggest that it is possible to adjust the PTSA by controlling the WIA during surgery. Proper

  16. The self-interaction of a fluid interface, the wavevector dependent surface tension and wedge filling.

    PubMed

    Parry, Andrew O; Rascón, Carlos

    2011-01-12

    We argue that whenever an interface, separating bulk fluid phases, adopts a non-planar configuration (induced by a confining geometry or thermal fluctuations, say), the energy cost of it will contain a non-local self-interaction term. For systems with short-ranged forces and Ising symmetry, we determine the self-interaction by integrating out bulk-like degrees of freedom from a more microscopic Landau-Ginzburg-Wilson model. The self-interaction can be written in a simple diagrammatic form involving integrals over effective two-body forces acting at the interface and consistently accounts for a number of known features of the microscopic model, including the wavevector dependence of the surface tension describing the fluctuations of a near planar interface. When applied to wedge filling transitions, the self-interaction describes the attraction between the wetting films on either side of the wedge. We show that, for sufficiently acute wedges, this can alter the order of the filling phase transition.

  17. Viscid-inviscid interaction associated with incompressible flow past wedges at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Warpinski, N. R.; Chow, W. L.

    1977-01-01

    An analytical method is suggested for the study of the viscid inviscid interaction associated with incompressible flow past wedges with arbitrary angles. It is shown that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem, and the pressure can only be established from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as the boundary layer buildup, turbulent jet mixing, and recompression are individually analyzed and attached to the inviscid flow in the sense of the boundary layer concept. The interaction between the viscous and inviscid streams is properly displayed by the fact that the aforementioned discrete parameters needed for the inviscid flow are determined by the viscous flow condition at the point of reattachment. It is found that the reattachment point behaves as a saddle point singularity for the system of equations describing the recompressive viscous flow processes, and this behavior is exploited for the establishment of the overall flow field. Detailed results such as the base pressure, pressure distributions on the wedge, and the geometry of the wake are determined as functions of the wedge angle.

  18. Base pressure associated with incompressible flow past wedges at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Warpinski, N. R.; Chow, W. L.

    1979-01-01

    A model is suggested to study the viscid-inviscid interaction associated with steady incompressible flow past wedges of arbitrary angles. It is shown from this analysis that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem and this pressure can only be determined from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which should adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as boundary-layer buildup along the wedge surface, jet mixing, recompression, and reattachment which occurs along the region attached to the inviscid flow in the sense of the boundary-layer concept, serve to determine the aforementioned parameters needed for the establishment of the inviscid flow. It is found that the point of reattachment behaves as a saddle point singularity for the system of equations describing the viscous recompression process. Detailed results such as the base pressure, pressure distributions on the wedge surface, and the wake geometry as well as the influence of the characteristic Reynolds number are obtained. Discussion of these results and their comparison with the experimental data are reported.

  19. Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge.

    PubMed

    Katayama, Ikuo; Hirauchi, Ken-ichi; Michibayashi, Katsuyoshi; Ando, Jun-ichi

    2009-10-22

    Seismic anisotropy is a powerful tool for detecting the geometry and style of deformation in the Earth's interior, as it primarily reflects the deformation-induced preferred orientation of anisotropic crystals. Although seismic anisotropy in the upper mantle is generally attributed to the crystal-preferred orientation of olivine, the strong trench-parallel anisotropy (delay time of one to two seconds) observed in several subduction systems is difficult to explain in terms of olivine anisotropy, even if the entire mantle wedge were to act as an anisotropic source. Here we show that the crystal-preferred orientation of serpentine, the main hydrous mineral in the upper mantle, can produce the strong trench-parallel seismic anisotropy observed in subduction systems. High-pressure deformation experiments reveal that the serpentine c-axis tends to rotate to an orientation normal to the shear plane during deformation; consequently, seismic velocity propagating normal to the shear plane (plate interface) is much slower than that in other directions. The seismic anisotropy estimated for deformed serpentine aggregates is an order of magnitude greater than that for olivine, and therefore the alignment of serpentine in the hydrated mantle wedge results in a strong trench-parallel seismic anisotropy in the case of a steeply subducting slab. This hypothesis is also consistent with the presence of a hydrous phase in the mantle wedge, as inferred from anomalously low seismic-wave velocities.

  20. Spherical geodesic mesh generation

    SciTech Connect

    Fung, Jimmy; Kenamond, Mark Andrew; Burton, Donald E.; Shashkov, Mikhail Jurievich

    2015-02-27

    In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.

  1. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  2. 28. REPRESENTATIVE CENTER WEDGE. BALANCE WHEELS ON TRACK, WITH RACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. REPRESENTATIVE CENTER WEDGE. BALANCE WHEELS ON TRACK, WITH RACK TO OUTSIDE, SHOWN TO RIGHT OF THE WEDGE. PHOTO TAKEN AT SOUTH SWING SPAN. - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA

  3. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  4. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  5. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  6. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  7. Substorm Current Wedge at Earth and Mercury

    NASA Astrophysics Data System (ADS)

    Kepko, L.; Glassmeier, K.-H.; Slavin, J. A.; Sundberg, T.

    2015-01-01

    This chapter reviews magnetospheric substorms and dipolarizations observed at both Earth and Mercury. It briefly discusses new insights into the physics of the substorm current wedge (SCW) that have been revealed the past few years. The formation and evolution of the SCW are closely tied to the braking of flows convecting flux away from the reconnection site and the resultant near-planet flux pileup that creates the dipolarization. At Earth, the SCW plays a critical role in substorms, coupling magnetospheric to ionospheric motions, deflecting incoming plasma flows, and regulating the dissipation of pressure built up in the near-Earth magnetosphere during dipolarization. The lack of a conducting boundary at Mercury provides a natural experiment to examine the role of an ionosphere on regulating magnetospheric convection. Energetic particles may play a much greater role within substorms at Mercury than at Earth, providing another opportunity for comparative studies.

  8. Characterization of CNRS Fizeau wedge laser tuner

    NASA Astrophysics Data System (ADS)

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.

  9. Characterization of CNRS Fizeau wedge laser tuner

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.

  10. Configuration and Generation of Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Chu, Xiangning

    The substorm current wedge (SCW), a core element of substorm dynamics coupling the magnetotail to the ionosphere, is crucial in understanding substorms. It has been suggested that the field-aligned currents (FACs) in the SCW are caused by either pressure gradients or flow vortices, or both. Our understanding of FAC generations is based predominately on numerical simulations, because it has not been possible to organize spacecraft observations in a coordinate system determined by the SCW. This dissertation develops an empirical inversion model of the current wedge and inverts midlatitude magnetometer data to obtain the parameters of the current wedge for three solar cycles. This database enables statistical data analysis of spacecraft plasma and magnetic field observations relative to the SCW coordinate. In chapter 2, a new midlatitude positive bay (MPB) index is developed and calculated for three solar cycles of data. The MPB index is processed to determine the substorm onset time, which is shown to correspond to the auroral breakup onset with at most 1-2 minutes difference. Substorm occurrence rate is found to depend on solar wind speed while substorm duration is rather constant, suggesting that substorm process has an intrinsic pattern independent of external driving. In chapter 3, an SCW inversion technique is developed to determine the strength and locations of the FACs in an SCW. The inversion parameters for FAC strength and location, and ring current strength are validated by comparison with other measurements. In chapter 4, the connection between earthward flows and auroral poleward expansion is examined using improved mapping, obtained from a newly-developed dynamic magnetospheric model by superimposing a standard magnetospheric field model with substorm current wedge obtained from the inversion technique. It is shown that the ionospheric projection of flows observed at a fixed point in the equatorial plane map to the bright aurora as it expands poleward

  11. Fabrication of wedged multilayer Laue lenses

    SciTech Connect

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack. This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.

  12. Fabrication of wedged multilayer Laue lenses

    DOE PAGES

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; ...

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  13. Applications of Differential Geometry to Cartography

    ERIC Educational Resources Information Center

    Benitez, Julio; Thome, Nestor

    2004-01-01

    This work introduces an application of differential geometry to cartography. The mathematical aspects of some geographical projections of Earth surface are revealed together with some of its more important properties. An important problem since the discovery of the 'spherical' form of the Earth is how to compose a reliable map of the surface of…

  14. Spherical mirror mount

    NASA Technical Reports Server (NTRS)

    Meyer, Jay L. (Inventor); Messick, Glenn C. (Inventor); Nardell, Carl A. (Inventor); Hendlin, Martin J. (Inventor)

    2011-01-01

    A spherical mounting assembly for mounting an optical element allows for rotational motion of an optical surface of the optical element only. In that regard, an optical surface of the optical element does not translate in any of the three perpendicular translational axes. More importantly, the assembly provides adjustment that may be independently controlled for each of the three mutually perpendicular rotational axes.

  15. Close packing of rods on spherical surfaces

    NASA Astrophysics Data System (ADS)

    Smallenburg, Frank; Löwen, Hartmut

    2016-04-01

    We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets.

  16. Crack problems in cylindrical and spherical shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1976-01-01

    Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.

  17. Colloidal cholesteric liquid crystal in spherical confinement

    PubMed Central

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  18. Colloidal cholesteric liquid crystal in spherical confinement

    NASA Astrophysics Data System (ADS)

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-08-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.

  19. The effect of a compliant accretionary wedge on earthquake rupture and tsunamigenesis

    NASA Astrophysics Data System (ADS)

    Lotto, Gabriel; Jeppson, Tamara; Dunham, Eric; Tobin, Harold

    2016-04-01

    The 11 March 2011 Tohoku megathrust earthquake ruptured through the shallowest part of the subduction zone boundary, resulting in tens of meters of displacement at the seafloor. This extreme shallow slip generated a devastating tsunami. The elastic properties of off-fault materials have an important role in determining slip along a fault. Laboratory ultrasonic velocity measurements performed on samples of rock obtained from the area surrounding the Tohoku earthquake principal fault zone during the Japan Trench Fast Drilling Project (JFAST) have shown that shallow off-fault materials are extremely compliant - P-wave velocities of 2.0-2.4 km/s, S-wave velocities of 0.7-1.0 km/s, and shear moduli ranging from 1.0-2.2 GPa. Seismic imaging around the JFAST drill site corroborates the presence of a compliant, low-velocity frontal prism at the toe of the hanging wall. This compliant wedge is likely a fairly robust feature across the horizontal extent of the Japan Trench and may have contributed to the large amount of displacement recorded. In order to investigate the impact of compliant off fault materials on earthquake rupture and tsunamigenesis, we employ a 2-D finite difference method that models the full seismic and tsunami wavefield associated with dynamic rupture on a dipping fault in a heterogeneous medium. Our numerical method rigorously couples the elastodynamic response of the solid Earth to that of a compressible ocean in the presence of gravity. Idealized models of subduction zone earthquakes show that the presence of a compliant wedge leads to increased slip, greater seafloor displacement, and a larger tsunami. However, preliminary results for a representative Tohoku geometry were not so simple; the compliant wedge enhanced slip and seafloor deformation but only in a localized zone, and tsunami height was not significantly affected. This surprising result indicates that the details of geometry and material structure we observe in real subduction zones are

  20. Footprint Geometry and Sessile Drop Resonance

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Ti; Daniel, Susan; Steen, Paul H.

    2016-11-01

    How does a sessile drop resonate if its footprint is square (square drop)? In this talk, we discuss the two distinct families of observed modes in our experiments. One family (spherical modes) is identified with the natural modes of capillary spherical caps, and the other (grid modes) with Faraday waves on a square bath (square Faraday waves). A square drop exhibits grid or spherical modes depending on its volume, and the two families of modes arise depending on how wavenumber selection of footprint geometry and capillarity compete. For square drops, a dominant effect of footprint constraint leads to grid modes which are constrained response; otherwise the drops exhibit spherical modes, the characteristic of sessile drops on flat plates. Chun-Ti Chang takes his new position at National Taiwan University on Aug. 15th, 2016. Until then, Chun-Ti Chang is affiliated with Technical University Dortmund, Germany.

  1. An experimental investigation of supersonic flow past a wedge-cylinder configuration

    NASA Technical Reports Server (NTRS)

    Barnette, D. W.

    1976-01-01

    An experimental investigation of supersonic flow past double-wedge configurations was conducted. Over the range of geometries tested, it was found that, while theoretical solutions both for a Type V pattern and for a Type VI pattern could be generated for a particular flow condition (as defined by the geometry and the free-stream conditions), the weaker, Type VI pattern was observed experimentally. More rigorous flow-field solutions were developed for the flow along the wing leading-edge. Solutions were developed for the three-dimensional flow in the plane of symmetry of a swept cylinder (which represented the wing leading-edge) which was mounted on a wedge (which generated the "bow" shock wave). A numerical code was developed using integral techniques to calculate the flow in the shock layer upstream of the interaction region (i.e., near the wing root). Heat transfer rates were calculated for various free stream conditions. The present investigation was undertaken to examine the effects of crossflow on the resultant flow-field and to verify the flow model used in theoretical calculations.

  2. Effects of cohesion on the structural and mechanical evolution of fold and thrust belts and contractional wedges: Discrete element simulations

    NASA Astrophysics Data System (ADS)

    Morgan, Julia K.

    2015-05-01

    Particle-based numerical simulations of cohesive contractional wedges can yield important perspectives on the formation and evolution of fold and thrust belts, offering particular insights into the mechanical evolution of the systems. Results of several discrete element method simulations are presented here, demonstrating the stress and strain evolution of systems with different initial cohesive strengths. Particle assemblages consolidated under gravity, and bonded to impart cohesion, are pushed from the left at a constant velocity above a weak, unbonded décollement surface. Internal thrusting causes horizontal shortening and vertical thickening, forming wedge geometries. The mean wedge taper is similar for all simulations, consistent with their similar residual and basal sliding friction values. In all examples presented here, both forethrusts and back thrusts occur, but forethrusts accommodate most of the shortening. Fault spacing and offset increase with increasing cohesion. Significant tectonic volume strain also occurs, with the greatest incremental volume strain occurring just outboard of the deformation front. This diffuse shortening serves to strengthen the unfaulted domain in front of the deformed wedge, preconditioning these materials for brittle (dilative) failure. The reach of this volumetric strain and extent of décollement slip increase with cohesive strength, defining the extent of stress transmission. Stress paths for elements tracked through the simulations demonstrate systematic variations in shear stress in response to episodes of both décollement slip and thrust fault activity, providing a direct explanation for stress fluctuations during convergence.

  3. Wedge Dynamics, Forearc Basins, and Seismogenic Zone of Cascadia Megathrust

    NASA Astrophysics Data System (ADS)

    Wang, K.; Hu, Y.

    2005-12-01

    A dynamic critical wedge theory has been developed to describe stress changes in submarine wedges in great earthquake cycles. For most subduction zones, the theory postulates that the actively deforming outer wedge overlies the updip velocity-strengthening part of the subduction fault, and the less deformed inner wedge overlies the megathrust seismogenic zone. Coseismic shear-stress increase in the velocity-strengthening zone drives the outer wedge into the critical state, causing episodic fold-and-thrust deformation, but the inner wedge stays in the stable regime throughout earthquake cycles, maintaining a stable environment for the development of forearc sedimentary basins. This is consistent with the globally observed correlation of the location of forearc basins with rupture zones of subduction earthquakes [Wells et al., JGR, 2003]. However, northern/central Cascadia is complicated by recent, exceedingly rapid growth of the accretionary prism. Until mid-Pleistocene, the megathrust seismogenic zone was probably mostly beneath the forearc basins, in agreement with the modern global observations. Rapid wedge growth and consequent megathrust warming over the past Ma have caused the seismogenic zone to move seaward by tens of km, to a position consistent with inferences based on contemporary geodetic observations. With much of the seismogenic zone located seaward of the forearc basins and beneath the upper continental slope, the dynamic taper theory predicts that coseismic deformation should cause extensional structures on the upper slope but accretion and thrusting on the lower slope, consistent with structural observations [McNeill et al., JGR, 1998].

  4. Geometric Monte Carlo and black Janus geometries

    NASA Astrophysics Data System (ADS)

    Bak, Dongsu; Kim, Chanju; Kim, Kyung Kiu; Min, Hyunsoo; Song, Jeong-Pil

    2017-04-01

    We describe an application of the Monte Carlo method to the Janus deformation of the black brane background. We present numerical results for three and five dimensional black Janus geometries with planar and spherical interfaces. In particular, we argue that the 5D geometry with a spherical interface has an application in understanding the finite temperature bag-like QCD model via the AdS/CFT correspondence. The accuracy and convergence of the algorithm are evaluated with respect to the grid spacing. The systematic errors of the method are determined using an exact solution of 3D black Janus. This numerical approach for solving linear problems is unaffected initial guess of a trial solution and can handle an arbitrary geometry under various boundary conditions in the presence of source fields.

  5. Stable and Critical Noncohesive Coulomb Wedges: Exact Elastic Solutions

    NASA Astrophysics Data System (ADS)

    Wang, K.; Hu, Y.

    2004-12-01

    The theory of critically tapered Coulomb wedge has been successfully applied to model active fold-and-thrust belts or submarine accretionary prisms. Brittle mountain building is episodic in nature, controlled by changes in basal friction, erosion and sedimentation, and hydrogeology. Sediment accretion may be modulated by great subduction earthquakes. Between deformation episodes and/or during transition between compressional and extensional tectonics, the Coulomb wedges are stable (i.e., supercritical), to which the critical taper theory does not apply. In this work, we provide an exact elastic solution for stable wedges based on Airy stress functions. The stress equilibrium equation and definition of basal friction and basal and internal pore fluid pressure ratios are exactly the same as those used for Dahlen's [1984] exact solution for critical noncohesive Coulomb wedges, but internal friction μ becomes irrelevant. Given elastic - perfectly Coulomb-plastic rheology, for stresses in a wedge on the verge of Coulomb failure there must co-exist a critical taper solution involving μ and a unique equivalent elastic solution not involving μ . Our elastic solution precisely reduces to Dahlen's critical taper solution for critical conditions. For stable conditions, normal stress perpendicular to the surface slope σ z and shear stress τ xz are identical with those in a critical taper, but the slope-parallel normal stress is different. The elastic solution is also generally applicable to purely elastic wedges and useful for modeling geodetic observations. A stable noncohesive Coulomb wedge differs from a general elastic wedge in that its upper and lower surfaces stay at zero curvature during loading. Dahlen, F.A. (1984), Noncohesive critical Coulomb wedges: An exact solution, JGR, 89, 10,125-10,133.

  6. Enrichment Activities for Geometry.

    ERIC Educational Resources Information Center

    Usiskin, Zalman

    1983-01-01

    Enrichment activities that teach about geometry as they instruct in geometry are given for some significant topics. The facets of geometry included are tessellations, round robin tournaments, geometric theorems on triangles, and connections between geometry and complex numbers. (MNS)

  7. Noncommuting spherical coordinates

    SciTech Connect

    Bander, Myron

    2004-10-15

    Restricting the states of a charged particle to the lowest Landau level introduces a noncommutativity between Cartesian coordinate operators. This idea is extended to the motion of a charged particle on a sphere in the presence of a magnetic monopole. Restricting the dynamics to the lowest energy level results in noncommutativity for angular variables and to a definition of a noncommuting spherical product. The values of the commutators of various angular variables are not arbitrary but are restricted by the discrete magnitude of the magnetic monopole charge. An algebra, isomorphic to angular momentum, appears. This algebra is used to define a spherical star product. Solutions are obtained for dynamics in the presence of additional angular dependent potentials.

  8. Sensational spherical shells

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kendall, J. M., Jr.; Bahrami, P. A.; Wang, T. G.

    1986-01-01

    Fluid-dynamic and capillary forces can be used to form nearly perfect, very small spherical shells when a liquid that can solidify is passed through an annular die to form an annular jet. Gravity and certain properties of even the most ideal materials, however, can cause slight asymmetries. The primary objective of the present work is the control of this shell formation process in earth laboratories rather than space microgravity, through the development of facilities and methods that minimize the deleterious effects of gravity, aerodynamic drag, and uncontrolled cooling. The spherical shells thus produced can be used in insulation, recyclable filter materials, fire retardants, explosives, heat transport slurries, shock-absorbing armor, and solid rocket motors.

  9. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  10. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  11. Spherical nitroguanidine process

    DOEpatents

    Sanchez, John A.; Roemer, Edward L.; Stretz, Lawrence A.

    1990-01-01

    A process of preparing spherical high bulk density nitroguanidine by dissing low bulk density nitroguanidine in N-methyl pyrrolidone at elevated temperatures and then cooling the solution to lower temperatures as a liquid characterized as a nonsolvent for the nitroguanidine is provided. The process is enhanced by inclusion in the solution of from about 1 ppm up to about 250 ppm of a metal salt such as nickel nitrate, zinc nitrate or chromium nitrate, preferably from about 20 to about 50 ppm.

  12. Recirculating wedges for metal-vapor plasma tubes

    DOEpatents

    Hall, J.P.; Sawvel, R.M.; Draggoo, V.G.

    1994-06-28

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior. 8 figures.

  13. Recirculating wedges for metal-vapor plasma tubes

    DOEpatents

    Hall, Jerome P.; Sawvel, Robert M.; Draggoo, Vaughn G.

    1994-01-01

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.

  14. Refined numerical solution of the transonic flow past a wedge

    NASA Technical Reports Server (NTRS)

    Liang, S.-M.; Fung, K.-Y.

    1985-01-01

    A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.

  15. Octave spanning wedge dispersive mirrors with low dispersion oscillations.

    PubMed

    Habel, Florian; Shirvanyan, Vage; Trubetskov, Michael; Burger, Christian; Sommer, Annkatrin; Kling, Matthias F; Schultze, Martin; Pervak, Vladimir

    2016-05-02

    A novel concept for octave spanning dispersive mirrors with low spectral dispersion oscillations is presented. The key element of the so-called wedge dispersive mirror is a slightly wedged layer which is coated on a specially optimized dispersive multilayer stack by a common sputter coating process. The group delay dispersion (GDD) of a pulse reflected on a wedge dispersive mirror is nearly free of oscillations. Fabricated mirrors with negative GDD demonstrate the compression of a pulse down to 3.8 fs as good as double angled mirrors optimized for the same bandwidth.

  16. Fracture and contact problems for an elastic wedge

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1976-01-01

    The paper deals with the plane elastostatic contact problem for an infinite elastic wedge of arbitrary angle. The medium is loaded through a frictionless rigid wedge of a given symmetric profile. Using the Mellin transform formulation the mixed boundary value problem is reduced to a singular integral equation with the contact stress as the unknown function. With the application of the results to the fracture of the medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state around the apex of the wedge and on the determination of the contact pressure.

  17. Fracture and contact problems for an elastic wedge

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1974-01-01

    The plane elastostatic contact problem for an infinite elastic wedge of arbitrary angle is discussed. The medium is loaded through a frictionless rigid wedge of a given symmetric profile. Using the Mellin transform formulation the mixed boundary value problem is reduced to a singular integral equation with the contact stress as the unknown function. With the application of the results to the fracture of the medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state around the apex of the wedge and on the determination of the contact pressure.

  18. Recent progress on spherical torus research

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki; Kaita, Robert

    2015-04-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ˜ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ˜ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment in the United States and Mega Ampere Spherical Tokamak in UK, active ST research has been conducted worldwide. More than 16 ST research facilities operating during this period have achieved remarkable advances in all fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  19. Recent progress on spherical torus research

    SciTech Connect

    Ono, Masayuki; Kaita, Robert

    2015-04-15

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R{sub 0}/a) reduced to A ∼ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ∼ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment in the United States and Mega Ampere Spherical Tokamak in UK, active ST research has been conducted worldwide. More than 16 ST research facilities operating during this period have achieved remarkable advances in all fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  20. Wedge Heat-Flux Indicators for Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2003-01-01

    Wedge indicators have been proposed for measuring thermal radiation that impinges on specimens illuminated by flash lamps for thermographic inspection. Heat fluxes measured by use of these indicators would be used, along with known thermal, radiative, and geometric properties of the specimens, to estimate peak flash temperatures on the specimen surfaces. These indicators would be inexpensive alternatives to high-speed infrared pyrometers, which would otherwise be needed for measuring peak flash surface temperatures. The wedge is made from any suitable homogenous material such as plastic. The choice of material is governed by the equation given. One side of the wedge is covered by a temperature sensitive compound that decomposes irreversibly when its temperature exceeds a rated temperature (T-rated). The uncoated side would be positioned alongside or in place of the specimen and exposed to the flash, then the wedge thickness at the boundary between the white and blackened portions measured.

  1. DETAIL VIEW OF THREEPART METAL WEDGE EMBEDDED IN EDGE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THREE-PART METAL WEDGE EMBEDDED IN EDGE OF QUARRY WALL, FACING EAST - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  2. DETAIL VIEW OF THREEPART METAL WEDGE EMBEDDED IN EDGE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THREE-PART METAL WEDGE EMBEDDED IN EDGE OF QUARRY WALL, FACING NORTHWEST - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  3. VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN NORTHERN QUARRY AREA, FACING SOUTHEAST - Granite Hill Plantation, Quarry No. 2, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  4. VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN NORTHERN QUARRY AREA, FACING NORTH - Granite Hill Plantation, Quarry No. 2, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  5. Geophysical Surveys for Detecting Distribution and Shape of Ice Wedges

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Matsuoka, N.; Ikeda, A.

    2006-12-01

    Recent development of applied geophysical methods has shown detailed structure in various periglacial features. However, these methods have been rarely applied to studies in ice wedges. Thus, we attempted to display distribution and shape of ice wedges using a ground penetrating radar (GPR) and a direct current (DC) resistivity meter. The surveys were performed at a comprehensive monitoring site of ice-wedging in Adventdalen, Svalbard, where troughs and small cracks form polygonal patterns on the ground. Unknown structure below such new cracks is also focused in this study. We obtained 37 GPR profiles using 250 MHz signal. 2-D resistivity surveys were also performed along 14 GPR profiles. The electrodes were placed at 1 m intervals and their combination followed the Wenner array. In addition, shallow boreholes were dug across 5 troughs/cracks to estimate the width of ice wedge. The analyzed results show parabolic patterns formed by the multiple radar waveforms and largely increasing gradients of DC resistivity below the troughs and small cracks. The strong reflections of the radar signals and the starting zones of the increasing resistivity lay about 1 m deep, which corresponded to the top of ice wedges (0.7-0.9 m deep) revealed by the drilling. In the GPR profiles, a relatively flat pattern of the reflection was sandwiched by a pair of parabolic patterns below each well-developed trough, whereas a sharp parabolic pattern was detected below each small crack. These results mean that the presence of narrow ice wedges is detectable by the GPR method and the top of a parabolic pattern roughly corresponds to one edge of an ice wedge table. In the DC resistivity profiles, a high resistivity core exists below each trough and crack. The high resistivity probably resulted from ice having lower unfrozen water content than the surrounding silt materials. The heights of the cores indicate that the ice wedges were formed at least between 1 m and 3 m deep. The cores are, however

  6. Seismicity of the forearc marginal wedge (accrertionary prism)

    SciTech Connect

    Chen, A.T.; Frohlich, C.; Latham, G.V.

    1982-05-10

    Three different types of seismic data have been examined for seismic events occurring within the zone called the accreted wedge or forearc marginal wedge that underlies the inner trench wall of some arcs. These types of data are (1) teleseismically recorded earthquakes that have been reported in the literature as occurring in major arc-trench regions; these events fail to demonstrate that earthquakes occur within the accreted wedge because the uncertainty of focal depth usually exceeds the depth dimension of the accreted wedge; these data include many tsunamigenic earthquakes, (2) local earthquakes located by combined ocean bottom seismograph and land networks in the arc-trench region in the New Hebrides and the central and eastern Aleutian Trench; none of the more reliable of these hypocenters lies within the accreted wedge; (3) S-P intervals measured at stations on islands located on the outer ridge or at ocean bottom seismograph stations on the forearc marginal wedge; these data do not show the existence of events occurring within the accreted wedge; e.g., from 18 ocean bottom seismograph stations with a cumulative operation time of about 1 year, the smallest S-P time is about 2.5 s for events in the New Hebrides and about 4 s for events in the Adak and Kodiak regions. We found no S-P time smaller than 2 s from 6 years of seismograms recorded at Middleton Island, Alaska, and no S-P time smaller than 4 s from 25 years of seismograms recorded on Barbados. All of the events could have occured outside the forearc marginal wedge.

  7. Stereoscopic Display on Computer Monitor Using a Single Wedge Prism

    NASA Astrophysics Data System (ADS)

    Park, Tae-Soo; Park, Chan-Young; Lee, Han-Bae; Park, Seung-Han

    2002-02-01

    We propose a novel stereoscopic display technique which uses only a single wedge prism. It can provide good depth perception from a stereoscopic pair image displayed on a computer monitor. One element of the stereoscopic pair image is inversely distorted to correct the deformation induced by the wedge prism. The computer simulation and experimental demonstration show that this technique can be successfully applied to the Internet environment.

  8. Orientation of optic axis in wedged photorefractive crystals

    NASA Astrophysics Data System (ADS)

    Kos, Konstantine; Siahmakoun, Azad Z.

    1996-02-01

    A holographic method for finding the orientation of the optic axis of uniaxial photorefractive crystals is proposed. A theoretical procedure for determining the wedge angle of such crystals has also been developed. Two BaTiO 3 crystals grown by the same vender are examined and the resulting measurements lead to the values of wedge angle with an accuracy of about ±0.1°.

  9. Modeling Structural and Mechanical Responses to Localized Erosional Processes on a Bivergent Orogenic Wedge

    NASA Astrophysics Data System (ADS)

    Marzen, R.; Morgan, J. K.

    2014-12-01

    Critical Coulomb wedge theory established that orogenic and accretionary wedges should develop self-similarly and maintain a critical taper that reflects the balance of strength of the wedge material and a basal décollement. However, a variety of geological processes can perturb that balance, forcing readjustment of the wedge. For example, glacial erosion and landsliding can concentrate erosion on a localized portion of the wedge slope, leaving that portion of the wedge with an out-of-equilibrium slope that would need to re-develop for the wedge to resume self-similar growth. We use the discrete element method to analyze how growing bivergent wedges with different cohesive strengths respond structurally and mechanically to erosional events localized along upper, middle, and lower segments of the pro-wedge. Mechanically, pro-wedge erosion results in a sudden decrease followed by a quick recovery of the mean stress and maximum shear stress throughout the pro-wedge. However, when erosion is localized in the mid- to lower portions of the pro-wedge, a zone of increased mean stress develops where the wedge is concentrating deformation to recover its taper. In contrast, when erosion is localized in the upper axial zone, there is almost no recovery of the wedge taper, reflecting the fact that the material at the top of the wedge is being carried passively in a transition zone between the pro-wedge and retro-wedge. Structurally, wedges composed of lower cohesion material recover their critical taper almost immediately through distributed deformation, while wedges of higher-cohesion material recover more slowly, and incompletely, by concentrating deformation along existing fault surfaces. As a result, localized erosional episodes can have a lasting effect on the wedge morphology when the wedge is composed of higher cohesion material.

  10. Optical refractometry based on Fresnel diffraction from a phase wedge.

    PubMed

    Tavassoly, M Taghi; Saber, Ahad

    2010-11-01

    A method that utilizes the Fresnel diffraction of light from the phase step formed by a transparent wedge is introduced for measuring the refractive indices of transparent solids, liquids, and solutions. It is shown that, as a transparent wedge of small apex angle is illuminated perpendicular to its surface by a monochromatic parallel beam of light, the Fresnel fringes, caused by abrupt change in refractive index at the wedge lateral boundary, are formed on a screen held perpendicular to the beam propagation direction. The visibility of the fringes varies periodically between zero and 1 in the direction normal to the wedge apex. For a known or measured apex angle, the wedge refractive index is obtained by measuring the period length by a CCD. To measure the refractive index of a transparent liquid or solution, the wedge is installed in a transparent rectangle cell containing the sample. Then, the cell is illuminated perpendicularly and the visibility period is measured. By using modest optics, one can measure the refractive index at a relative uncertainty level of 10(-5). There is no limitation on the refractive index range. The method can be applied easily with no mechanical manipulation. The measuring apparatus can be very compact with low mechanical and optical noises.

  11. Growing an actin gel on spherical surfaces.

    PubMed Central

    Noireaux, V; Golsteyn, R M; Friederich, E; Prost, J; Antony, C; Louvard, D; Sykes, C

    2000-01-01

    Inspired by the motility of the bacteria Listeria monocytogenes, we have experimentally studied the growth of an actin gel around spherical beads grafted with ActA, a protein known to be the promoter of bacteria movement. On ActA-grafted beads F-actin is formed in a spherical manner, whereas on the bacteria a "comet-like" tail of F-actin is produced. We show experimentally that the stationary thickness of the gel depends on the radius of the beads. Moreover, the actin gel is not formed if the ActA surface density is too low. To interpret our results, we propose a theoretical model to explain how the mechanical stress (due to spherical geometry) limits the growth of the actin gel. Our model also takes into account treadmilling of actin. We deduce from our work that the force exerted by the actin gel on the bacteria is of the order of 10 pN. Finally, we estimate from our theoretical model possible conditions for developing actin comet tails. PMID:10692348

  12. Benchmarking analogue models of brittle thrust wedges

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido; Buiter, Susanne J. H.; Boutelier, Jennifer; Burberry, Caroline; Callot, Jean-Paul; Cavozzi, Cristian; Cerca, Mariano; Chen, Jian-Hong; Cristallini, Ernesto; Cruden, Alexander R.; Cruz, Leonardo; Daniel, Jean-Marc; Da Poian, Gabriela; Garcia, Victor H.; Gomes, Caroline J. S.; Grall, Céline; Guillot, Yannick; Guzmán, Cecilia; Hidayah, Triyani Nur; Hilley, George; Klinkmüller, Matthias; Koyi, Hemin A.; Lu, Chia-Yu; Maillot, Bertrand; Meriaux, Catherine; Nilfouroushan, Faramarz; Pan, Chang-Chih; Pillot, Daniel; Portillo, Rodrigo; Rosenau, Matthias; Schellart, Wouter P.; Schlische, Roy W.; Take, Andy; Vendeville, Bruno; Vergnaud, Marine; Vettori, Matteo; Wang, Shih-Hsien; Withjack, Martha O.; Yagupsky, Daniel; Yamada, Yasuhiro

    2016-11-01

    We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing

  13. Changes in dip and frictional properties of the basal detachment controlling orogenic wedge propagation and frontal collapse: The external central Betics case

    NASA Astrophysics Data System (ADS)

    Jimenez-Bonilla, A.; Torvela, T.; Balanyá, J. C.; Expósito, I.; Díaz-Azpiroz, M.

    2016-12-01

    Thin-skinned fold-and-thrust belts (FTBs) have been extensively studied through both field examples and modeling. The overall dynamics of FTBs are, therefore, well understood. One less understood aspect is the combined influence of across-strike changes in the detachment properties and the basement topography on the behavior of an orogenic wedge. In this paper, we use field data together with reflection seismic interpretation from the external zones of the central Betics FTB, southern Spain, to identify a significant increase in the wedge basal dip (a basement "threshold") coinciding with the pinch-out of a weak substrate. This induced both changes to the wedge geometry and to the basal friction, which in turn influenced the wedge dynamics. The changing dynamics led to a transient "stagnation" of the FTB propagation, topographic buildup, and subsequent collapse of the FTB front. This in turn fed an important Langhian depocenter made up of mass transport deposits. Coevally with the FTB propagation, extension took place both parallel and perpendicular to the orogenic trend. This case study illustrates how across-strike changes in wedge basal properties can control the detailed behavior of a developing FTB front, but questions remain regarding the time-space interaction and relative importance of the basal parameters.

  14. Automated semi-spherical irradiance meter

    NASA Astrophysics Data System (ADS)

    Tecpoyotl-Torres, M.; Vera-Dimas, J. G.; Escobedo-Alatorre, J.; Cabello-Ruiz, R.; Varona, J.

    2011-09-01

    In this semi-spherical meter, a single detector is used to realize all measurements, which is located on the extreme of a rectangular ring (assumed as joined two mobile branches in order to compensate the weights), describing half-meridians from 0° up to 170°. The illumination source under test is located at the center of the mobile support, which can rotate 360° horizontally. The two combined movements allow us to obtain a semi-spherical geometry. The number of measurement points is determined by the two step-motors located under the mobile support of the luminary and on one of the two fixed arms, which support the mobile rectangular ring, respectively. The mechanical arrangement has the enough rigidity to support the precision required for the acquisition stage, based on a dsPIC. The main advantages of this arrange are: Its low costs (using recyclable materials only such as "electronic waste"), a reliable detection based on a single photo-detector, with an integrated amplification stage, and the mechanical design. The received power by the detector is useful to obtain the irradiance profile of the lighting sources under test. The semi-spherical geometry of the meter makes it useful for the analysis of directive and non directive sources, in accordance with the angle described by the mobile ring. In this work, special attention is given to LED lamps due to its impact in several sceneries of the daily life. A comparison between the irradiance patterns of two LED lamps is also given.

  15. Comparison of the Gauss-Seidel spherical polarized radiative transfer code with other radiative transfer codes.

    PubMed

    Herman, B M; Caudill, T R; Flittner, D E; Thome, K J; Ben-David, A

    1995-07-20

    Calculations that use the Gauss-Seidel method are presented of the diffusely scattered light in a spherical atmosphere with polarization fully included. Comparisons are made between this method and the Monte Carlo calculations of other researchers for spherical geometry in a pure Rayleigh atmosphere. Comparisons with plane-parallel atmospheres are also presented. Single-scatter intensity comparisons with spherical geometry show excellent agreement. When all orders of scattering are included, comparisons of polarization parameters I, Q and U as well as the plane of polarization show good agreement when allowances are made for the statistical variability inherent in the Monte Carlo method.

  16. Ice wedges as climate archives - opportunities and limitations

    NASA Astrophysics Data System (ADS)

    Opel, Thomas; Meyer, Hanno; Dereviagin, Alexander; Wetterich, Sebastian; Schirrmeister, Lutz

    2014-05-01

    Permafrost regions are assumed to play a major role for Global Climate Change as they are susceptible to recent warming in particular with regard to the potential release of stored fossil carbon. Permafrost serves as archive of past environmental and climate conditions (such as sedimentation processes, temperature and precipitation regimes as well as landscape and ecosystem development) over tens of thousands of years that can be traced by the study of the frozen deposits, paleontological content and ground ice. Ground ice comprises all types of ice contained in frozen ground, including pore ice, segregation ice and ice wedges. Here, we focus on ice wedges as the most promising climate archive that can be studied by stable water isotope methods analogously to glacier ice. They may be identified by their vertically oriented foliations. Ice wedges form by the repeated filling of wintertime thermal contraction cracks by snow melt water in spring. As the melt water quickly refreezes at negative ground temperature no isotopic fractionation takes place. Hence, the isotopic composition (δ18O, δD, d excess) of wedge ice is assumed to be representative of annual cold period climate conditions, i.e. winter and spring. Ice wedges are widely distributed in non-glaciated high northern latitudes, are diagnostic of permafrost and, in general, indicative of cold and stable climate conditions. They are found in continuous and discontinuous permafrost zones and may also have formed during and survived interglacials. They may provide unique paleo information that is not captured by other climate archives. Usually, ice wedges are dated by radiocarbon dating of organic material incorporated in the ice, but also 36Cl/Cl ratios have been successfully used to date ice wedges. Nevertheless reliable age determination is challenging when studying ice wedges. Here we tackle the potential of ice wedges from the Siberian and American Arctic to trace past climate changes from stable isotope

  17. Using cyclic steps on drift wedges to amend established models of carbonate platform slopes

    NASA Astrophysics Data System (ADS)

    Betzler, Christian; Lindhorst, Sebastian; Eberli, Gregor; Reijmer, John; Lüdmann, Thomas

    2015-04-01

    Hydroacoustic and sedimentological data of the western flank of Great Bahama Bank and Cay Sal Bank document how the interplay of offbank sediment export, along-slope transport, and erosion together shape facies and thickness distribution of slope deposits. The integrated data set depicts the combined product of these processes and allows formulating a comprehensive model of a periplatform drift that significantly amends established models of carbonate platform slope facies distribution and geometry. The basinward thinning wedge of the periplatform drift at the foot of the escarpment of Great Bahama Bank displays along- and down-slope variations in sedimentary architecture. Sediments consist of periplatform ooze, i.e. carbonate mud and muddy carbonate sand, coarsening basinward. In zones of lower contour current speed, depth related facies belts develop. In the upper part of the periplatform drift wedge in a water depth of 180 to 300 m and slope angles of 6° - 9° the seafloor displays a smooth surface. Parasound data indicate that this facies is characterized by a parallel layering. Basinward, the slope shows a distinct break at which the seafloor inclination diminishes to 1° to 2°. Downslope of this break, the drift wedge has a 3 - 4 km wide pervasive cover of bedforms down to a water depth of around 500 m. The steep flanks and internal stratification of the wavy bedforms face upslope, indicating upstream migration; the bedforms therefore share all the characteristics of cyclic step sedimentation. This is the first description of cyclic step sedimentation patterns in carbonate slope depositional systems. This new slope sedimentation model aids in understanding the complexity of carbonate slope sedimentation models with facies belts perpendicular and parallel to the platform margin. The new model sharply contrasts with existing slope facies models in which facies belts are solely positioned parallel to the platform margin.

  18. Hinterland-vergent tectonic wedge below the Riwat thrust, Himalayan foreland, Pakistan: Implications for hydrocarbon exploration

    SciTech Connect

    Jadoon, I.A.K.; Frisch, W.

    1997-03-01

    The Riwat thrust, with a surface trace of over 50 km, is one of the major faults in the footwall of the main boundary thrust in the Himalayan foreland of Pakistan. Surface geology shows that the Riwat thrust is a foreland-vergent thrust along which lower to middle Siwalik molasse strata are thrust southward over upper Siwalik strata. Seismic reflection interpretation shows that the Riwat thrust developed as a roof thrust of a hinterland-vergent tectonic wedge (triangle zone) underlain by evaporites. The Riwat thrust propagates upsection from depth of about 4 km at the base of the Siwalik Group. At this depth, it merges into a hinterland-vergent blind thrust that propagates upsection as a ramp from Eocambrian evaporites covering the basement at a depth of about 6 km. Bounded between this set of conjugate faults, a tectonic wedge of Eocambrian (evaporites) to Neogene strata is thrust toward the hinterland to form a triangle zone. The roof thrusts of triangles zones have been widely mapped as backthrusts in deformed mountain fronts. Hinterland motion of tectonic wedges as in the Riwat thrust triangle zone may be a feature of the fold-and-thrust belts underlain by evaporites acting as an extremely weak decollement layer. Their recognition, with a trap-forming geometry below a thrust, is important for interpreting particular fold belts and for hydrocarbon exploration. These structures could be predicted by the surface geology data where hinterland vergence of a fold below a thrust is apparent; however, seismic reflection data appear to be critical in recognizing these structures.

  19. Predicting orogenic wedge styles as a function of analogue erosion law and material softening

    NASA Astrophysics Data System (ADS)

    Mary, Baptiste C. L.; Maillot, Bertrand; Leroy, Yves M.

    2013-10-01

    The evolution of a compressive frictional wedge on a weak, frictional and planar décollement, subjected to frontal accretion, is predicted with a two step method called sequential limit analysis. The first step consists in finding, with the kinematic approach of limit analysis, the length of the active décollement and the dips of the emerging ramp and of the conjugate shear plane composing the emerging thrust fold. The second step leads to a modification of the geometry, first, because of the thrust fold development due to compression and, second, because of erosion. Erosion consists in removing periodically any material above a fictitious line at a selected slope, as done in analogue experiments. This application of sequential limit analysis generalizes the critical Coulomb wedge theory since it follows the internal deformation development. With constant frictional properties, the deformation is mostly diffuse, a succession of thrust folds being activated so that the topographic slope reaches exactly the theoretical, critical value. Frictional weakening on the ramps results in a deformation style composed of thrust sheets and horses. Applying an erosion slope at the critical topographic value leads to exhumation in the frontal, central, or rear region of the wedge depending on the erosion period and the weakening. Erosion at slopes slightly above or below the critical value results in exhumation toward the foreland or the hinterland, respectively, regardless of the erosion period. Exhumation is associated with duplexes, imbricate fans, antiformal stacks, and major backthrusting. Comparisons with sandbox experiments confirm that the thickness, dips, vergence, and exhumation of thrust sheets can be reproduced with friction and erosion parameters within realistic ranges of values.

  20. Long-term outcomes of wedge resection at the limbus for high irregular corneal astigmatism after repaired corneal laceration

    PubMed Central

    Du, Jun; Zheng, Guang-Ying; Wen, Cheng-Lin; Zhang, Xiao-Fang; Zhu, Yu

    2016-01-01

    AIM To evaluate the clinical value of wedge resection at corneal limbus in patients with traumatic corneal scarring and high irregular astigmatism. METHODS Patients with traumatic corneal astigmatism received wedge resection at least 6mo after suture removal from corneal wound. The uncorrected distance visual acuities (UCVA) and best corrected distance visual acuities (BCVA), pre- and post-operation astigmatism, spherical equivalent (SE), safety and complications were evaluated. RESULTS Ten eyes (10 patients) were enrolled in this study. Mean follow-up time after wedge resection was 37.8±15.4mo (range, 20-61mo). The mean UCVA improved from +1.07±0.55 logMAR to +0.43±0.22 logMAR (P=0.000) and the mean BCVA from +0.50±0.30 logMAR to +0.15±0.17 logMAR (P=0.000). The mean astigmatism power measured by retinoscopy was -2.03±2.27 D postoperatively and -2.83±4.52 D preoperatively (P=0.310). The mean SE was -0.74±1.61 D postoperatively and -0.64±1.89 D preoperatively (P=0.601). Two cases developed mild pannus near the sutures. No corneal perforation, infectious keratitis or wound gape occurred. CONCLUSION Corneal-scleral limbal wedge resection with compression suture is a safe, effective treatment for poor patients with high irregular corneal astigmatism after corneal-scleral penetrating injury. Retinoscopy can prove particularly useful for high irregular corneal astigmatism when other measurements are not amenable. PMID:27366685

  1. Aligning Optical Fibers by Means of Actuated MEMS Wedges

    NASA Technical Reports Server (NTRS)

    Morgan, Brian; Ghodssi, Reza

    2007-01-01

    Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields. In a typical system according to the proposal (see Figure 1), one or more pair(s) of alignment wedges would be positioned to create a V groove in which an optical fiber would rest. The fiber would be clamped at a suitable distance from the wedges to create a cantilever with a slight bend to push the free end of the fiber gently to the bottom of the V groove. The wedges would be translated in the substrate plane by amounts Dx1 and Dx2, respectively, which would be chosen to move the fiber parallel to the plane by a desired amount Dx and perpendicular to the plane by a desired amount Dy. The actuators used to translate the wedges could be variants of electrostatic or thermal actuators that are common in MEMS.

  2. Seismic reflection images of the accretionary wedge of Costa Rica

    SciTech Connect

    Shipley, T.H.; Stoffa, P.L. ); McIntosh, K.; Silver, E.A. )

    1990-05-01

    The large-scale structure of modern accretionary wedges is known almost entirely from seismic reflection investigations using single or grids of two-dimensional profiles. The authors will report on the first three-dimensional seismic reflection data volume collected of a wedge. This data set covers a 9-km-wide {times} 22-km-long {times} 6-km-thick volume of the accretionary wedge just arcward of the Middle America Trench off Costa Rica. The three-dimensional processing has improved the imaging ability of the multichannel data, and the data volume allows mapping of structures from a few hundred meters to kilometers in size. These data illustrate the relationships between the basement, the wedge shape, and overlying slope sedimentary deposits. Reflections from within the wedge define the gross structural features and tectonic processes active along this particular convergent margin. So far, the analysis shows that the subdued basement relief (horst and graben structures seldom have relief of more than a few hundred meters off Costa Rica) does affect the larger scale through going structural features within the wedge. The distribution of mud volcanoes and amplitude anomalies associated with the large-scale wedge structures suggests that efficient fluid migration paths may extend from the top of the downgoing slab at the shelf edge out into the lower and middle slope region at a distance of 50-100 km. Offscraping of the uppermost (about 45 m) sediment occurs within 4 km of the trench, creating a small pile of sediments near the trench lower slope. Underplating of parts of the 400-m-thick subducted sedimentary section begins at a very shallow structural level, 4-10 km arcward of the trench. Volumetrically, the most important accretionary process is underplating.

  3. Spherical harmonic expansion of the Levitus Sea surface topography

    NASA Technical Reports Server (NTRS)

    Engelis, Theodossios

    1987-01-01

    Prior information for the stationary sea surface topography (SST) may be needed in altimetric solutions that intend to simultaneously improve the gravity field and determine the SST. For this purpose the oceanographically derived SST estimates are represented by a spherical harmonic expansion. The spherical harmonic coefficients are computed from a least squares adjustment of the data covering the majority of the oceanic regions of the world. Several tests are made to determine the optimum maximum degree of solution and the best configuration of the geometry of the data in order to obtain a solution that fits the data and also provides a good spectral representation of the SST.

  4. Strongly Localized Image States of Spherical Graphitic Particles

    PubMed Central

    Gumbs, Godfrey

    2014-01-01

    We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube. PMID:24587747

  5. A Spherical Earth Solution for TOA Lightning Location Retrieval

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solakiewicz, R. J.

    1999-01-01

    The problem of retrieving ligntning, ground-strike location on a spherical Earth surface using a network of 4 or more time-of-arrival (TOA) sensors is considered, It is shown that this problem has an analytic solution and therefore does not require the use of nonlinear estimation theory (e.g., minimization). The mathematical robustness of the analytic solution is tested using computer-generated lightning sources and simulated TOA measurement errors. A summary of a quasi-analytic extension of the spherical Earth solution to an oblate spheroid Earth geometry is also provided.

  6. Spherical artifacts on ferrograms

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1976-01-01

    In the past, hollow spheres detected on ferrograms have been interpreted as being due to fretting, abrasion, cavitation erosion, and fatigue-related processes. Here it is reported that such spheres were found to result from the fact that a routine grinding operation on a steel plate was carried out about 20 feet away from the ferrograph. A similar grinding operation was performed on a piece of low carbon steel a few feet from the ferrograph, and after a few minutes of grinding, the resulting ferrogram contained thousands of particles of which more than 90% were spherical. Because of the widespread occurrence of ordinary grinding operations, it seems prudent that those utilizing the ferrograph be cognizant of this type of artifact.

  7. Kinematic evolution of thrusts wedge and erratic line length balancing: insights from deformed sandbox models

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohammad Irfan; Dubey, A. K.; Toscani, Giovanni; Bonini, Lorenzo; Seno, Silvio

    2014-01-01

    Kinematic evolution of fold-thrust structures has been investigated by analogue models that include syntectonic sedimentation. Different decollement dips and basement thicknesses produced different wedge geometries and propagating characteristics. A model with one decollement level was characterized by a closely spaced thrust system during early stages of shortening as compared to the late stages. The frequency of fault nucleation was rapid during the early stages of deformation. Conversely, the frequency of fault nucleation was low and thrust spacing was significantly wider in a model with two decollement levels. Individual faults became locked at steep dips and deformation stepped forward as a new fault nucleated in-sequence in front of the older locked structure. Once the thrust system was established up to 27 % overall shortening, an overlying bed was introduced to simulate syntectonic deformation. Model sand wedge did not grow self similarly but rather its length and height increased episodically with deformation. Restoration of deformed models show that layer parallel shortening accommodated for approximately half of the total model shortening across the multilayers. Calculated error in apparent layer shortening from the restored layers revealed a direct relation with depth of the layers in the models. The experimental results are comparable to a natural example from the Northern Apennines fold-and-thrust belts.

  8. Simulation of arrested salt wedges with a multi-layer Shallow Water Lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Prestininzi, P.; Montessori, A.; La Rocca, M.; Sciortino, G.

    2016-10-01

    The ability to accurately and efficiently model the intrusion of salt wedges into river beds is crucial to assay its interaction with human activities and the natural environment. We present a 2D multi-layer Shallow Water Lattice Boltzmann (SWLB) model able to predict the salt wedge intrusion in river estuaries. The formulation usually employed for the simulation of gravity currents is here equipped with proper boundary conditions to handle both the downstream seaside outlet and the upstream river inlet. Firstly, the model is validated against highly accurate semi-analytical solutions of the steady state 1D two-layer Shallow Water model. Secondly, the model is applied to a more complex, fully 3D geometry, to assess its capability to handle realistic cases. The simple formulation proposed for the shear interlayer stress is proven to be consistent with the general 3D viscous solution. In addition to the accuracy, the model inherits the efficiency of the Lattice Boltzmann approach to fluid dynamics problems.

  9. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  10. Empirical evidence for two nightside current wedges during substorms

    NASA Astrophysics Data System (ADS)

    Hoffman, R. A.; Gjerloev, J. W.

    2013-12-01

    We present results from a comprehensive statistical study of the ionospheric current system and its coupling to the magnetosphere during classical bulge type substorms. We identified 116 substorms and determined the global ionospheric current system before and during the substorm using the SuperMAG initiative and global auroral images obtained by the Polar VIS Earth camera. The westward electrojet (WEJ) display a distinct latitudinal shift between the pre- and post-midnight region and we find evidence that the two WEJ regions are disconnected. This, and other observational facts, led us to propose a new 3D current system configuration that consists of 2 wedge type systems: a current wedge in the pre-midnight region (substorm current wedge), and another current wedge system in the post-midnight region (oval current wedge). There is some local time overlap between the two systems. The former maps to the region inside the near Earth neutral line and is associated with structured BPS type electron precipitation. The latter maps to the inner magnetosphere and is associated with diffuse electron precipitation. We present results of the statistical study, show typical events, results from Biot-Savart simulations, and discuss the implications for our understanding of the 3D current system associated with substorms.

  11. Diffusion induced flow on a wedge-shaped obstacle

    NASA Astrophysics Data System (ADS)

    Zagumennyi, Ia V.; Dimitrieva, N. F.

    2016-08-01

    In this paper the problem of evolution of diffusion induced flow on a wedge-shaped obstacle is analyzed numerically. The governing set of fundamental equations is solved using original solvers from the open source OpenFOAM package on supercomputer facilities. Due to breaking of naturally existing diffusion flux of a stratifying agent by the impermeable surface of the wedge a complex multi-level vortex system of compensatory fluid motions is formed around the obstacle. Sharp edges of the obstacle generate extended high-gradient horizontal interfaces which are clearly observed in laboratory experiments by high-resolution Schlieren visualization. Formation of an intensive pressure depression zone in front of the leading vertex of the wedge is responsible for generation of propulsive force resulting in a self-displacement of the obstacle along the neutral buoyancy horizon in a stably stratified environment. The size of the pressure deficiency area near the sharp vertex of a concave wedge is about twice that for a convex one. This demonstrates a more intensive propulsion mechanism in case of the concave wedge and, accordingly, a higher velocity of its self-movement in a continuously stratified medium.

  12. Effective geometries in self-gravitating polytropes

    SciTech Connect

    Bini, D.; Cherubini, C.; Filippi, S.

    2008-09-15

    Perturbations of a perfect barotropic and irrotational Newtonian self-gravitating fluid are studied using a generalization of the so-called 'effective geometry' formalism. The case of polytropic spherical stars, as described by the Lane-Emden equation, is studied in detail in the known cases of existing explicit solutions. The present formulation gives a natural scenario in which the acoustic analogy has relevance for both stellar and galactic dynamics.

  13. Geometry of Discrete-Time Spin Systems

    NASA Astrophysics Data System (ADS)

    McLachlan, Robert I.; Modin, Klas; Verdier, Olivier

    2016-10-01

    Classical Hamiltonian spin systems are continuous dynamical systems on the symplectic phase space (S^2)^n. In this paper, we investigate the underlying geometry of a time discretization scheme for classical Hamiltonian spin systems called the spherical midpoint method. As it turns out, this method displays a range of interesting geometrical features that yield insights and sets out general strategies for geometric time discretizations of Hamiltonian systems on non-canonical symplectic manifolds. In particular, our study provides two new, completely geometric proofs that the discrete-time spin systems obtained by the spherical midpoint method preserve symplecticity. The study follows two paths. First, we introduce an extended version of the Hopf fibration to show that the spherical midpoint method can be seen as originating from the classical midpoint method on T^*{R}^{2n} for a collective Hamiltonian. Symplecticity is then a direct, geometric consequence. Second, we propose a new discretization scheme on Riemannian manifolds called the Riemannian midpoint method. We determine its properties with respect to isometries and Riemannian submersions, and, as a special case, we show that the spherical midpoint method is of this type for a non-Euclidean metric. In combination with Kähler geometry, this provides another geometric proof of symplecticity.

  14. LOVEL: a low-velocity aerodynamic heating code for flat-plates, wedges, and cones

    SciTech Connect

    Thornton, A.L.

    1981-12-01

    The LOVEL computer program calculates the boundary-layer edge conditions for subsonic and supersonic flow over flat-plate, wedge, and cone geometries for freestream Mach conditions (M/sub infinity/ < 3. Cold-wall heat-transfer calculations use reference temperature correlations based on boundary-layer edge Mach number to compute fluid properties. The first part of this report describes the theory used in the computation of the cold-wall heat-transfer rates; the second part describes in detail the input/output format for the LOVEL computer program. Outputs include freestream conditions, boundary-layer edge conditions, cold-wall heat-transfer rates, plots of heating rates, and punched-card output for use in ablation and in-depth transient heat-conduction computer codes.

  15. SPHERICAL SHOCK WAVES IN SOLIDS

    DTIC Science & Technology

    Contents: Introduction-Reasons for Studying Spherical Shock Waves, Physics of Cavity Expansion due to Explosive Impact, General Nature of Shock Waves...Governing Differential Equation of Self-Similar Motion; Application of the Theory of Self-Similar Motion to the Problem of Expansion of a Spherical

  16. Double slotted socket spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2001-05-22

    A new class of spherical joints is disclosed. These spherical joints are capable of extremely large angular displacements (full cone angles in excess of 270.degree.), while exhibiting no singularities or dead spots in their range of motion. These joints can improve or simplify a wide range of mechanical devices.

  17. Features of spherical torus plasmas

    SciTech Connect

    Peng, Y.K.M.; Strickler, D.J.

    1985-12-01

    The spherical torus is a very small aspect ratio (A < 2) confinement concept obtained by retaining only the indispensable components inboard to the plasma torus. MHD equilibrium calculations show that spherical torus plasmas with safety factor q > 2 are characterized by high toroidal beta (..beta../sub t/ > 0.2), low poloidal beta (..beta../sub p/ < 0.3), naturally large elongation (kappa greater than or equal to 2), large plasma current with I/sub p//(aB/sub t0/) up to about 7 MA/mT, strong paramagnetism (B/sub t//B/sub t0/ > 1.5), and strong plasma helicity (F comparable to THETA). A large near-omnigeneous region is seen at the large-major-radius, bad-curvature region of the plasma in comparison with the conventional tokamaks. These features combine to engender the spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost. Because of its strong paramagnetism and helicity, the spherical torus plasma shares some of the desirable features of spheromak and reversed-field pinch (RFP) plasmas, but with tokamak-like confinement and safety factor q. The general class of spherical tori, which includes the spherical tokamak (q > 1), the spherical pinch (1 > q > O), and the spherical RFP (q < O), have magnetic field configurations unique in comparison with conventional tokamaks and RFPs. 22 refs., 12 figs.

  18. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  19. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  20. Optimal mollifiers for spherical deconvolution

    NASA Astrophysics Data System (ADS)

    Hielscher, Ralf; Quellmalz, Michael

    2015-08-01

    This paper deals with the inversion of the spherical Funk-Radon transform, and, more generally, with the inversion of spherical convolution operators from the point of view of statistical inverse problems. This means we consider discrete data perturbed by white noise and aim at estimators with optimal mean square error for functions out of a Sobolev ball. To this end we analyze a specific class of estimators built upon the spherical hyperinterpolation operator, spherical designs and the mollifier approach. Eventually, we determine optimal mollifier functions with respect to the noise level, the number of data points and the smoothness of the original function. We complete this paper by providing a fast algorithm for the numerical computation of the estimator, which is based on the fast spherical Fourier transform, and by illustrating our theoretical results with numerical experiments.

  1. Geometry in Medias Res

    ERIC Educational Resources Information Center

    Cukier, Mimi; Asdourian, Tony; Thakker, Anand

    2012-01-01

    Geometry provides a natural window into what it is like to do mathematics. In the world of geometry, playful experimentation is often more fruitful than following a procedure, and logic plus a few axioms can open new worlds. Nonetheless, teaching a geometry course in a way that combines both rigor and play can be difficult. Many geometry courses…

  2. Capillary surfaces in a wedge: Differing contact angles

    NASA Technical Reports Server (NTRS)

    Concus, Paul; Finn, Robert

    1994-01-01

    The possible zero-gravity equilibrium configurations of capillary surfaces u(x, y) in cylindrical containers whose sections are (wedge) domains with corners are investigated mathematically, for the case in which the contact angles on the two sides of the wedge may differ. In such a situation the behavior can depart in significant qualitative ways from that for which the contact angles on the two sides are the same. Conditions are described under which such qualitative changes must occur. Numerically computed surfaces are depicted to indicate the behavior.

  3. Immunomodulatory spherical nucleic acids.

    PubMed

    Radovic-Moreno, Aleksandar F; Chernyak, Natalia; Mader, Christopher C; Nallagatla, Subbarao; Kang, Richard S; Hao, Liangliang; Walker, David A; Halo, Tiffany L; Merkel, Timothy J; Rische, Clayton H; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A; Gryaznov, Sergei M

    2015-03-31

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies.

  4. Consider a spherical cow

    SciTech Connect

    Harte, J.

    1985-01-01

    Consider a Spherical Cow describes relatively simple mathematical methods for developing quantitative answers to often complex environmental problems. Early chapters provide systematic insights into problem solving and identifying mathematical tools and models that lead to back of the envelope answers. Subsequent chapters treat increasingly complex problems. Solutions are sought at different levels, e.g., informed guesses, quantitative solutions based on detailed analytical models, and ultimately, critical evaluation of the consequences of removing simplifying assumptions from the models. The vehicle employed is a collection of 44 challenging problems, with clearly worked out solutions, plus ample exercises. The book, though directed at environmentalists, should appeal to chemists. Many of the problems are rooted in chemistry, including acid rain, the CO/sub 2/ greenhouse effect, chemical contamination, and the disturbing of cyclical chemical balances. Readers feeling a civic responsibility to think and speak more clearly on environmental issues will find the essential modeling and quantitative approaches valuable assets beyond the help provided by the usual courses in science and mathematics. In fact, the techniques of problem solving have broad applicability beyond the specific environmental examples covered in this text.

  5. Immunomodulatory spherical nucleic acids

    PubMed Central

    Radovic-Moreno, Aleksandar F.; Chernyak, Natalia; Mader, Christopher C.; Nallagatla, Subbarao; Kang, Richard S.; Hao, Liangliang; Walker, David A.; Halo, Tiffany L.; Merkel, Timothy J.; Rische, Clayton H.; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A.; Gryaznov, Sergei M.

    2015-01-01

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies. PMID:25775582

  6. Thrust fault growth within accretionary wedges: New Insights from 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Orme, H.; Bell, R. E.; Jackson, C. A. L.

    2015-12-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. Previous studies have reported en-echelon thrust fault geometries from the NW part of the dataset, and have related this complex structure to seamount subduction. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. We also demonstrate that the majority of faults grew upward from the décollement, although there is some evidence for downward fault propagation. Our observations

  7. Upper crustal mechanical stratigraphy and the evolution of thrust wedges: insights from sandbox analogue experiments

    NASA Astrophysics Data System (ADS)

    Milazzo, Flavio; Storti, Fabrizio; Nestola, Yago; Cavozzi, Cristian; Magistroni, Corrado; Meda, Marco; Salvi, Francesca

    2016-04-01

    Crustal mechanical stratigraphy i.e. alternating mechanically weaker and stronger layers within the crust, plays a key role in determining how contractional deformations are accommodated at convergent plate boundaries. In the upper crust, evaporites typically provide preferential décollement layers for fault localization and foreland ward propagation, thus significantly influencing evolution of thrust-fold belts in terms of mechanical balance, geometries, and chronological sequences of faulting. Evaporites occur at the base of many passive margin successions that underwent positive inversion within orogenic systems. They typically produce salient geometries in deformation fronts, as in the Jura in the Northern Alps, the Salakh Arch in the Oman Mountains, or the Ainsa oblique thrust-fold belt in the Spanish Pyrenees. Evaporites frequently occur also in foredeep deposits, as in the Apennines, the Pyrenees, the Zagros etc. causing development of additional structural complexity. Low-friction décollement layers also occur within sedimentary successions involved in thrust-fold belts and they contribute to the development of staircase fault trajectories. The role of décollement layers in thrust wedge evolution has been investigated in many experimental works, particularly by sandbox analogue experiments that have demonstrated the impact of basal weak layers on many first order features of thrust wedges, including the dominant fold vergence, the timing of fault activity, and the critical taper. Some experiments also investigated on the effects of weak layers within accreting sedimentary successions, showing how this triggers kinematic decoupling of the stratigraphy above and below the décollements, thus enhancing disharmonic deformation. However, at present a systematic experimental study of the deformation modes of an upper crustal mechanical stratigraphy consisting of both low-friction and viscous décollement layers is still missing in the specific literature. In

  8. Gravity inversion in spherical coordinates using tesseroids

    NASA Astrophysics Data System (ADS)

    Uieda, Leonardo; Barbosa, Valeria C. F.

    2014-05-01

    Satellite observations of the gravity field have provided geophysicists with exceptionally dense and uniform coverage of data over vast areas. This enables regional or global scale high resolution geophysical investigations. Techniques like forward modeling and inversion of gravity anomalies are routinely used to investigate large geologic structures, such as large igneous provinces, suture zones, intracratonic basins, and the Moho. Accurately modeling such large structures requires taking the sphericity of the Earth into account. A reasonable approximation is to assume a spherical Earth and use spherical coordinates. In recent years, efforts have been made to advance forward modeling in spherical coordinates using tesseroids, particularly with respect to speed and accuracy. Conversely, traditional space domain inverse modeling methods have not yet been adapted to use spherical coordinates and tesseroids. In the literature there are a range of inversion methods that have been developed for Cartesian coordinates and right rectangular prisms. These include methods for estimating the relief of an interface, like the Moho or the basement of a sedimentary basin. Another category includes methods to estimate the density distribution in a medium. The latter apply many algorithms to solve the inverse problem, ranging from analytic solutions to random search methods as well as systematic search methods. We present an adaptation for tesseroids of the systematic search method of "planting anomalous densities". This method can be used to estimate the geometry of geologic structures. As prior information, it requires knowledge of the approximate densities and positions of the structures. The main advantage of this method is its computational efficiency, requiring little computer memory and processing time. We demonstrate the shortcomings and capabilities of this approach using applications to synthetic and field data. Performing the inversion of gravity and gravity gradient

  9. Unsteady Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Berhan, S.; Chernovsky, M.; Sacksteder, Kurt R.

    2001-01-01

    The absence of buoyancy-induced flows in microgravity (mu-g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and (mu-g) flames have been reported in experiments on candle flames, flame spread over solids, droplet combustion, and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the "weak" (low burning rate per unit flame area) mu-g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in mu-g will burn indefinitely. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the mu-g experiments and modeling because: (i) It reduces the complexity by making the problem one

  10. Effect of a trade between boattail angle and wedge size on the performance of a nonaxisymmetric wedge nozzle

    NASA Technical Reports Server (NTRS)

    Carson, George T., Jr.; Bare, E. Ann; Burley, James R., II

    1987-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effect of a boattail angle and wedge-size trade on the performance of nonaxisymmetric wedge nozzles installed on a generic twin-engine fighter aircraft model. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.25. Angle of attack was held constant at 0 deg. High-pressure air was used to simulate jet exhaust, and the nozzle pressure ratio was varied from 1.0 (jet off) to slightly over 15.0. For the configurations studied, the results indicate that wedge size can be reduced without affecting aeropropulsive performance.

  11. Rivers, re-entrants, and 3D variations in orogenic wedge development: a case study of the NW Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; Yu, H.; Hendershott, Z.

    2010-12-01

    Orogenic wedges are standard elements of collisional plate tectonics, from accretionary prisms to retro-arc basins. Recent study of orogenic wedge development has focused on links between mechanisms of internal deformation and surface processes. Models of orogenic wedges are commonly presented in the cross-section plane, which is generally effective as wedges largely develop via plane strain. The 3rd dimension can be utilized to explore effects of differences in controlling parameters on wedge evolution. We are investigating a stretch of the western Himalayan orogenic wedge that has two prominent changes in along-strike morphology: (1) a tectonic window (the Kullu Window) that appears to be strongly influenced by erosion along the 3rd largest river in the Himalayan system, the Sutlej River and (2) the Kangra Re-entrant, the largest re-entrant along the Himalayan arc. In addition to the along-strike heterogeneity, a key advantage of the proposed study area is its rich stratigraphy, with the most known diversity in the Himalayan arc. The stratigraphic wealth, combined with the along-strike heterogeneity in exposure level, offers a high resolution view of regional structural geometry. Our preliminary reconstructions suggest that the Sutlej River erosion increases the exposure depth and shortening budget across a narrow segment of the orogen, strongly warping the Kullu Window. Previous models have suggested that the out-of-sequence Munsiari thrust is the main structure associated with Kullu window formation, while our work suggests that most of this uplift and warping is accomplished by antiformal stacking of basement thrust horses. Late Miocene ages (U-Pb ages of zircons and Th-Pb ages of monazites) from a leucogranite in the core of the Kullu Window along the Sutlej River further suggests that this segment of the orogen represents a middle ground between plane strain orogenic wedge development and a tectonic aneurysm model. We have constructed a palinspastic

  12. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  13. BSSN equations in spherical coordinates without regularization: Vacuum and nonvacuum spherically symmetric spacetimes

    NASA Astrophysics Data System (ADS)

    Montero, Pedro J.; Cordero-Carrión, Isabel

    2012-06-01

    Brown [Phys. Rev. DPRVDAQ1550-7998 79, 104029 (2009)] has recently introduced a covariant formulation of the BSSN equations which is well suited for curvilinear coordinate systems. This is particularly desirable as many astrophysical phenomena are symmetric with respect to the rotation axis or are such that curvilinear coordinates adapt better to their geometry. However, the singularities associated with such coordinate systems are known to lead to numerical instabilities unless special care is taken (e.g., regularization at the origin). Cordero-Carrión will present a rigorous derivation of partially implicit Runge-Kutta methods in forthcoming papers, with the aim of treating numerically the stiff source terms in wavelike equations that may appear as a result of the choice of the coordinate system. We have developed a numerical code solving the BSSN equations in spherical symmetry and the general relativistic hydrodynamic equations written in flux-conservative form. A key feature of the code is that it uses a second-order partially implicit Runge-Kutta method to integrate the evolution equations. We perform and discuss a number of tests to assess the accuracy and expected convergence of the code—namely a pure gauge wave, the evolution of a single black hole, the evolution of a spherical relativistic star in equilibrium, and the gravitational collapse of a spherical relativistic star leading to the formation of a black hole. We obtain stable evolutions of regular spacetimes without the need for any regularization algorithm at the origin.

  14. Learning Geometry through Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Forsythe, Sue

    2007-01-01

    In this article, the author investigates effective teaching and learning of geometrical concepts using dynamic geometry software (DGS). Based from her students' reactions to her project, the author found that her students' understanding of the concepts was better than if they had learned geometry through paper-based tasks. However, mixing computer…

  15. Geometry of the Hikurangi subduction thrust and upper plate, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Henrys, S.; Barker, D.; Sutherland, R.; Bannister, S.

    2009-04-01

    We use 2800 line km of seismic-reflection data to map the offshore character and three-dimensional geometry of the Hikurangi subduction thrust and outer forearc wedge to depths of c. 15 km. Several first order subduction characteristics vary systematically north to south over relatively short along-strike distances on the Hikurangi margin, for example, convergence rate (60 mm/a in the north to <30 mm/a in the south), apparent plate locking, margin seafloor morphology. For 200 km along-strike south of Hawke Bay, the offshore subduction thrust is relatively smooth, shallow-dipping, and the wedge is characterised by accretion of young sediment and topographic slopes of < 3°. The resultant low wedge taper (approximately 4°) in this region is typical of high pore pressure, low permeability thrust wedges with fluids channelled along a weak basal décollement. The inner wedge region of the central Hikurangi margin is characterised by splay faults and out-of-sequence thrusting, which thicken the wedge behind the deformation front and maintain its mechanical stability. Also in Hawke Bay and north for 200 km, a kink in the subduction thrust is apparent, with a down-dip increase in dip to angles greater than 8° at depths of 10-15 km; there is a corresponding steepening of the outer wedge topographic slope to > 3° outboard of the kink and the wedge is characterised by lithified sedimentary rock and slope failure. The kink in the subduction thrust is a locus of inherent weakness in the subducting slab; we suggest its occurrence relates to a northward increase in subduction rate that controls initial slab dehydration and fluid release rates and hence intra-slab deformation patterns. The subduction thrust geometry, in combination with a northward increase in subducting plate roughness and decrease in the amount of sediment accreted, causes the observed spatial change in character of the subduction thrust and forearc wedge. We speculate that the mechanical behaviour and

  16. Magnetic and structural instabilities of ultrathin Fe(100) wedges

    SciTech Connect

    Bader, S.D.; Li, Dongqi; Qiu, Z.Q.

    1994-05-01

    An overview is provided of recent efforts to explore magnetic and related structural issues for ultrathin Fe films grown epitaxially as wedge structures onto Ag(100) and Cu(100). Experiments were carried out utilizing the surface magneto-optic Kerr effect (SMOKE). Ordinary bcc Fe is lattice-matched to the primitive unit cell of the Ag(100) surface. Fe wedges on Ag(100) can be fabricated whose thick end has in-plane magnetic easy axes due to the shape anisotropy, and whose thin end has perpendicular easy axes due to the surface magnetic anisotrophy. A spin-reorientation transition can thus be studied in the center of the wedge where the competing anisotropies cancel. The goal is to test the Mermin-Wagner theorem which states that long-range order is lost at finite temperatures in an isotropic two-dimensional Heisenberg system. Fe wedges on Cu(100) can be studied in like manner, but the lattice matching permits fcc and tetragonally-distorted fcc phases to provide structural complexity in addition to the interplay of competing magnetic anisotropies. The results of these studies are new phase identifications that help both to put previous work into perspective and to define issues to pursue in the future.

  17. Experimental investigation of hypersonic flow induced separation over double wedges

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tokitada

    2009-09-01

    Flow separation occurs over the compression corners generated by deflected control surfaces on hypersonic re-entry vehicles and in the inlet of scram jet engines. Configurations like a double wedge and double cone model are useful for studying the separated flow features. Flow fields around concave corners are relatively complicated and produce several classical viscous flow features depending on the combination of the first and second wedge or cone half apex angles. Particularly characteristic phenomena are mainly shock/boundary layer, shock/shock interaction, unsteady shear layers and non-linear shock oscillations. Although most of these basic gas dynamics characteristics are well known, it is not clear what happens at high enthalpy conditions. This paper reports a result of flow fields over a double wedge at a stagnation enthalpy of 4.8 MJ/kg. The experiment was carried out in a free piston shock tunnel at a nominal Mach number of 6.99. Schlieren and double exposure holographic interferometry were applied to visualize the flow field over the double wedge.

  18. Acoustic or Electromagnetic Scattering from the Penetrable Wedge

    DTIC Science & Technology

    1993-02-28

    difference equation to be solved in the transform variable. A special inhomogeneous surface impedance yields purely algebraic equations for the... lineal density is located at the source coordinates (r’, 0’) of Fig. 1. The permittivity of the wedge of angle 2a is f 2 , which is surrounded by a

  19. Low torque hydrodynamic lip geometry for rotary seals

    SciTech Connect

    Dietle, Lannie L.; Schroeder, John E.

    2015-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  20. Three-dimensional geometry and kinematics of experimental piggyback thrusting

    NASA Astrophysics Data System (ADS)

    Mulugeta, Genene; Koyi, Hemin

    1987-11-01

    The three-dimensional geometry and kinematics of piggyback stacks of imbricate thrust sheets are illustrated and discussed using a single model shortened in a squeeze box. Strike-parallel geometric elements simulated include lateral ramps, eyed sheath folds, splays, and thrust/thrust interference. Fine details of these structures were exposed by eroding a shortened wedge of sand using a newly developed vacuum-eroding technique. A kinematic analysis of the model shows a stepwise increase in imbricate thrust spacing and/or a decrease in rate of nucleation of imbricate thrusts in the direction of thrust transport. Despite the steady forward advance of a rear wall, the piggyback wedge accreted episodically, recording different strain domains in longitudinal cross sections. Strain partitioning in single layers by bed-length balancing showed an increase in layer shortening with volume loss and a corresponding decrease in imbricate thrusting and ramp folding with depth.

  1. Wedges, cones, cosmic strings and their vacuum energy

    NASA Astrophysics Data System (ADS)

    Fulling, S. A.; Trendafilova, C. S.; Truong, P. N.; Wagner, J.

    2012-09-01

    One of J Stuart Dowker’s most significant achievements has been to observe that the theory of diffraction by wedges developed a century ago by Sommerfeld and others provided the key to solving two problems of great interest in general-relativistic quantum field theory during the last quarter of the 20th century: the vacuum energy associated with an infinitely thin, straight cosmic string, and (after an interchange of time with a space coordinate) the apparent vacuum energy of empty space as viewed by an accelerating observer. In a sense the string problem is more elementary than the wedge, since Sommerfeld’s technique was to relate the wedge problem to that of a conical manifold by the method of images. Indeed, Minkowski space, as well as all cone and wedge problems, are related by images to an infinitely sheeted master manifold, which we call Dowker space. We review the research in this area and exhibit in detail the vacuum expectation values of the energy density and pressure of a scalar field in Dowker space and the cone and wedge spaces that result from it. We point out that the (vanishing) vacuum energy of Minkowski space results, from the point of view of Dowker space, from the quantization of angular modes, in precisely the way that the Casimir energy of a toroidal closed universe results from the quantization of Fourier modes; we hope that this understanding dispels any lingering doubts about the reality of cosmological vacuum energy. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  2. Biomechanical Analysis of a Novel Wedge Locking Plate in a Porcine Tibial Model

    PubMed Central

    Ha, Jeong-Ku; Yeom, Chul Hyun; Jang, Ho Su; Song, Han Eui; Lee, Sung Jae; Kim, Kang Hee; Chung, Kyu Sung; Bhat, Mahendar Gururaj

    2016-01-01

    Background The purpose of this study was to analyze biomechanical properties of a novel wedge locking plate in medial open wedge high tibial osteotomy (OWHTO) in a porcine tibial model. Methods A uniform 8-mm OWHTO was performed in 12 porcine tibiae. Six of them were subsequently fixed with the plate without a wedge, whereas the other 6 were additionally reinforced with a metal wedge of 8 mm. Biomechanical properties (stiffness, displacement of the osteotomy gap, and failure load) were evaluated under axial load. The different modes of failure were also investigated. Results The plate showed an axial stiffness of 2,457 ± 450 N/mm with a wedge and 1,969 ± 874 N/mm without a wedge. The maximum failure load was 5,380 ± 952 N with a wedge and 4,354 ± 607 N without a wedge. The plate with a wedge had a significantly greater failure load and significantly less displacement of medial gap at failure than that without a wedge (p = 0.041 and p = 0.002, respectively). The axial stiffness was not different between the two types of fixation. Most failures were caused by lateral cortex breakage and there was no implant failure. Conclusions The novel wedge locking plate showed excellent biomechanical properties and an additional wedge provided significant improvement. This plate can be a good fixation method for OWHTO. PMID:27904718

  3. Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years.

    PubMed

    Katayama, Taiki; Tanaka, Michiko; Moriizumi, Jun; Nakamura, Toshio; Brouchkov, Anatoli; Douglas, Thomas A; Fukuda, Masami; Tomita, Fusao; Asano, Kozo

    2007-04-01

    Phylogenetic analysis of bacteria preserved within an ice wedge from the Fox permafrost tunnel was undertaken by cultivation and molecular techniques. The radiocarbon age of the ice wedge was determined. Our results suggest that the bacteria in the ice wedge adapted to the frozen conditions have survived for 25,000 years.

  4. P-Wave to Rayleigh-wave conversion coefficients for wedge corners; model experiments

    USGS Publications Warehouse

    Gangi, A.F.; Wesson, R.L.

    1978-01-01

    An analytic solution is not available for the diffraction of elastic waves by wedges; however, numerical solutions of finite-difference type are available for selected wedge angles. The P- to Rayleigh-wave conversion coefficients at wedge tips have been measured on two-dimensional seismic models for stress-free wedges with wedge angles, ??0, of 10, 30, 60, 90 and 120??. The conversion coefficients show two broad peaks and a minimum as a function of the angle between the wedge face and the direction of the incident P-wave. The minimum occurs for the P wave incident parallel to the wedge face and one maximum is near an incidence angle of 90?? to the wedge face. The amplitude of this maximum, relative to the other, decreases as the wedge angle increases. The asymmetry of the conversion coefficients, CPR(??; ??0), relative to parallel incidence (?? = 0) increases as the wedge angle increases. The locations of the maxima and the minimum as well as the asymmetry can be explained qualitatively. The conversion coefficients are measured with an accuracy of ??5% in those regions where there are no interfering waves. A comparison of the data for the 10?? wedge with the theoretical results for a half plane (0?? wedge) shows good correlation. ?? 1978.

  5. Optofluidic encapsulation of crystalline colloidal arrays into spherical membrane.

    PubMed

    Kim, Shin-Hyun; Jeon, Seog-Jin; Yang, Seung-Man

    2008-05-07

    Double emulsion droplets encapsulating crystalline colloidal arrays (CCAs) with a narrow size distribution were produced using an optofluidic device. The shell phase of the double emulsion was a photocurable resin that was photopolymerized downstream of the fluidic channel within 1 s after drop generation. The present optofluidic synthesis scheme was very effective for fabricating highly monodisperse spherical CCAs that were made structurally stable by in situ photopolymerization of the encapsulating shells. The shell thickness and the number of core emulsion drops could be controlled by varying the flow rates of the three coflowing streams in the dripping regime. The spherical CCAs confined in the shell exhibited distinct diffraction patterns in the visible range, in contrast to conventional film-type CCAs. As a result of their structure, the spherical CCAs exhibited photonic band gaps for normal incident light independent of the position on the spherical surface. This property was induced by heterogeneous nucleation at the smooth wall of the spherical emulsion drop during crystallization into a face-centered cubic (fcc) structure. On the other hand, the solidified shells did not permit the penetration of ionic species, enabling the CCAs to maintain their structure in a continuous aqueous phase of high ionic strength for at least 1 month. In addition, the evaporation of water molecules inside the shell was slowed considerably when the core-shell microparticles were exposed to air: It took approximately 6 h for a suspension encapsulated in a thick shell to evaporate completely, which is approximately 1000 times longer than the evaporation time for water droplets with the same volume. Finally, the spherical CCAs additionally exhibited enhanced stability against external electric fields. The spherical geometry and high dielectric constant of the suspension contributed to reducing the electric field inside the shell, thereby inhibiting the electrophoretic movement of

  6. Mechanics of brittle transpressional wedges: constraints from complementary analogue and numerical modelling

    NASA Astrophysics Data System (ADS)

    Leever, K.; Thieulot, C.; Oncken, O.

    2012-12-01

    Analogue tectonic modeling combined with digital image analysis (PIV) gives high resolution constraints on the kinematics of (crustal) deformation. Observations are, however, limited to the model surface. While 3D numerical codes suffer much lower resolution than their analogue counterparts, they do allow unrestrained access to the internal dynamics. We apply both methods to constrain the mechanics of brittle transpressional wedges as fully as possible, allowing for a validation of existing analytical models. In this contribution, we highlight the strong control of erosional unloading on strain partitioning in highly oblique convergence. Results from analogue modelling Analogue tectonic transpression models with a brittle rheology and driven by constant basal kinematic boundary conditions were run at convergence angles of 10°, 20° and 30°. In one end member series, no erosion was applied. In the other series, the wedge topography was fully removed at 3 cm displacement increments. The models were observed with digital cameras. Using PIV, displacement fields were calculated and the slip on individual fault segments was derived. The analogue models reveal a strong dependence of fault kinematics on erosional unloading. The model series without erosion show a two-stage evolution. An initial, transient "oblique wedge" stage with oblique slip on pro- and retro-shear is followed by a steady state stage of "strain partitioning", in which slip is partitioned between strike-slip on a sub-vertical fault above the velocity discontinuity and oblique slip (20-30° obliquity, depending on the convergence angle) on the pro-shears. In this stage, the retro-shear accommodates near-orthogonal slip (5-10° obliquity). In the model series with erosion, a strike-slip fault develops as well. However, probably due to its inclined geometry, a larger component of the boundary-parallel displacement remains to be accommodated on the pro-shears. Slip on the retro-shear remains highly oblique

  7. Comparison of clinical and radiological outcomes between opening-wedge and closing-wedge high tibial osteotomy: A comprehensive meta-analysis

    PubMed Central

    Wu, Lingfeng; Lin, Jun; Jin, Zhicheng; Cai, Xiaobin; Gao, Weiyang

    2017-01-01

    High tibial osteotomy (HTO) has been widely used for clinical treatment of osteoarthritis of the medial compartment of the knee, and both opening-wedge and closing-wedge HTO are the most commonly used methods. However, it remains unclear which technique has better clinical and radiological outcomes in practice. To systematically evaluate this issue, we conducted a comprehensive meta-analysis by pooling all available data for the opening-wedge HTO and closing-wedge HTO techniques from the electronic databases including PubMed, Embase, Wed of Science and Cochrane Library. A total of 22 studies encompassing 2582 cases were finally enrolled in the meta-analysis. There was no significant difference regarding surgery time, duration of hospitalization, knee pain VAS, Lysholm score and HSS knee score (clinical outcomes) between the opening-wedge and closing-wedge HTO groups (P > 0.05). However, the opening-wedge HTO group showed wider range of motion than the closing-wedge HTO group (P = 0.003). Moreover, as for Hip-Knee-Ankle angle and mean angle of correction, no significant difference was observed between the opening-wedge and closing-wedge HTO groups (P > 0.05), while the opening-wedge HTO group showed greater posterior tibial slope angle (P < 0.001) and lesser patellar height than the closing-wedge HTO group (P < 0.001). On light of the above analysis, we believe that individualized surgical approach should be introduced based on the clinical characteristics of each patient. PMID:28182736

  8. Geometry and Erdkinder.

    ERIC Educational Resources Information Center

    McDonald, Nathaniel J.

    2001-01-01

    Chronicles a teacher's first year teaching geometry at the Hershey Montessori Farm School in Huntsburg, Ohio. Instructional methods relied on Euclid primary readings and combined pure abstract logic with practical applications of geometry on the land. The course included geometry background imparted by Montessori elementary materials as well as…

  9. Milking the spherical cow - on aspherical dynamics in spherical coordinates

    NASA Astrophysics Data System (ADS)

    Pontzen, Andrew; Read, Justin I.; Teyssier, Romain; Governato, Fabio; Gualandris, Alessia; Roth, Nina; Devriendt, Julien

    2015-08-01

    Galaxies and the dark matter haloes that host them are not spherically symmetric, yet spherical symmetry is a helpful simplifying approximation for idealized calculations and analysis of observational data. The assumption leads to an exact conservation of angular momentum for every particle, making the dynamics unrealistic. But how much does that inaccuracy matter in practice for analyses of stellar distribution functions, collisionless relaxation, or dark matter core-creation? We provide a general answer to this question for a wide class of aspherical systems; specifically, we consider distribution functions that are `maximally stable', i.e. that do not evolve at first order when external potentials (which arise from baryons, large-scale tidal fields or infalling substructure) are applied. We show that a spherically symmetric analysis of such systems gives rise to the false conclusion that the density of particles in phase space is ergodic (a function of energy alone). Using this idea we are able to demonstrate that: (a) observational analyses that falsely assume spherical symmetry are made more accurate by imposing a strong prior preference for near-isotropic velocity dispersions in the centre of spheroids; (b) numerical simulations that use an idealized spherically symmetric setup can yield misleading results and should be avoided where possible; and (c) triaxial dark matter haloes (formed in collisionless cosmological simulations) nearly attain our maximally stable limit, but their evolution freezes out before reaching it.

  10. Numerical Studies on the Performance of Scramjet Combustor with Alternating Wedge-Shaped Strut Injector

    NASA Astrophysics Data System (ADS)

    Choubey, Gautam; Pandey, K. M.

    2017-04-01

    Numerical analysis of the supersonic combustion and flow structure through a scramjet engine at Mach 7 with alternating wedge fuel injection and with three angle of attack (α=-3°, α=0°, α=3°) have been studied in the present research article. The configuration used here is slight modification of the Rabadan et al. scramjet model. Steady two dimensional (2D) Reynolds-averaged Navier-Stokes (RANS) simulation and Shear stress transport (SST) based on k-ω turbulent model is used to predict the shock structure and combustion phenomenon inside the scramjet combustor. All the simulations are done by using Ansys 14-Fluent code. The combustion model used here is the combination of eddy dissipation and finite rate chemistry models since this model avoids Arrhenius calculations in which reaction rates are controlled by turbulence. Present results show that the geometry with negative angle of attack (α=-3°) have lowest ignition delay and it improves the performance of scramjet combustor as compared to geometry with α=0°, α=3°. The combustion phenomena and efficiency is also found to be stronger and highest in case of α=-3°.

  11. Active shortening within the Himalayan orogenic wedge implied by the 2015 Gorkha earthquake

    NASA Astrophysics Data System (ADS)

    Whipple, Kelin X.; Shirzaei, Manoochehr; Hodges, Kip V.; Ramon Arrowsmith, J.

    2016-09-01

    Models of Himalayan neotectonics generally attribute active mountain building to slip on the Himalayan Sole Thrust, also termed the Main Himalayan Thrust, which accommodates underthrusting of the Indian Plate beneath Tibet. However, the geometry of the Himalayan Sole Thrust and thus how slip along it causes uplift of the High Himalaya are unclear. We show that the geodetic record of the 2015 Gorkha earthquake sequence significantly clarifies the architecture of the Himalayan Sole Thrust and suggests the need for revision of the canonical view of how the Himalaya grow. Inversion of Gorkha surface deformation reveals that the Himalayan Sole Thrust extends as a planar gently dipping fault surface at least 20-30 km north of the topographic front of the High Himalaya. This geometry implies that building of the high range cannot be attributed solely to slip along the Himalayan Sole Thrust over a steep ramp; instead, shortening within the Himalayan wedge is required to support the topography and maintain rapid rock uplift. Indeed, the earthquake sequence may have included a moderate rupture (Mw 6.9) on an out-of-sequence thrust fault at the foot of the High Himalaya. Such internal deformation is an expected response to sustained, focused rapid erosion, and may be common to most compressional orogens.

  12. Newtonian wormholes with spherical symmetry and tidal forces on test particles

    NASA Astrophysics Data System (ADS)

    Luz, Paulo; Lemos, José P. S.

    2015-06-01

    A spherically symmetric wormhole in Newtonian gravitation in curved space, enhanced with a connection between the mass density and the Ricci scalar, is presented. The wormhole, consisting of two connected asymptotically flat regions, inhabits a spherically symmetric curved space. The gravitational potential, gravitational field and the pressure that supports the fluid that permeates the Newtonian wormhole are computed. Particle dynamics and tidal effects in this geometry are studied. The possibility of having Newtonian black holes in this theory is sketched.

  13. Personalized implant for high tibial opening wedge: combination of solid freeform fabrication with combustion synthesis process.

    PubMed

    Zhim, Fouad; Ayers, Reed A; Moore, John J; Moufarrège, Richard; Yahia, L'Hocine

    2012-09-01

    In this work a new generation of bioceramic personalized implants were developed. This technique combines the processes of solid freeform fabrication (SFF) and combustion synthesis (CS) to create personalized bioceramic implants with tricalcium phosphate (TCP) and hydroxyapatite (HA). These porous bioceramics will be used to fill the tibial bone gap created by the opening wedge high tibial osteotomy (OWHTO). A freeform fabrication with three-dimensional printing (3DP) technique was used to fabricate a metallic mold with the same shape required to fill the gap in the opening wedge osteotomy. The mold was subsequently used in a CS process to fabricate the personalized ceramic implants with TCP and HA compositions. The mold geometry was designed on commercial 3D CAD software. The final personalized bioceramic implant was produced using a CS process. This technique was chosen because it exploits the exothermic reaction between P₂O₅ and CaO. Also, chemical composition and distribution of pores in the implant could be controlled. To determine the chemical composition, the microstructure, and the mechanical properties of the implant, cylindrical shapes were also fabricated using different fabrication parameters. Chemical composition was performed by X-ray diffraction. Pore size and pore interconnectivity was measured and analyzed using an electronic microscope system. Mechanical properties were determined by a mechanical testing system. The porous TCP and HA obtained have an open porous structure with an average 400 µm channel size. The mechanical behavior shows great stiffness and higher load to failure for both ceramics. Finally, this personalized ceramic implant facilitated the regeneration of new bone in the gap created by OWHTO and provides additional strength to allow accelerated rehabilitation.

  14. Footprint geometry and sessile drop resonance

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Ti; Daniel, Susan; Steen, Paul H.

    2017-03-01

    In this work, we examine experimentally the resonance of a sessile drop with a square footprint (square drop) on a flat plate. Two families of modal behaviors are reported. One family is identified with the modes of sessile drops with circular footprints (circular drop), denoted as "spherical modes." The other family is associated with Faraday waves on a square liquid bath (square Faraday waves), denoted as "grid modes." The two families are distinguished based on their dispersion behaviors. By comparing the occurrence of the modes, we recognize spherical modes as the characteristic of sessile drops, and grid modes as the constrained response. Within a broader context, we further discuss the resonance modes of circular sessile drops and free spherical drops, and we recognize various modal behaviors as surface waves under different extents of constraint. From these, we conclude that sessile drops resonate according to how wave-number selection by footprint geometry and capillarity compete. For square drops, a dominant effect of footprint constraint leads to grid modes; otherwise, the drops exhibit spherical modes, the characteristic of sessile drops on flat plates.

  15. Spherical harmonics in texture analysis

    NASA Astrophysics Data System (ADS)

    Schaeben, Helmut; van den Boogaart, K. Gerald

    2003-07-01

    The objective of this contribution is to emphasize the fundamental role of spherical harmonics in constructive approximation on the sphere in general and in texture analysis in particular. The specific purpose is to present some methods of texture analysis and pole-to-orientation probability density inversion in a unifying approach, i.e. to show that the classic harmonic method, the pole density component fit method initially introduced as a distinct alternative, and the spherical wavelet method for high-resolution texture analysis share a common mathematical basis provided by spherical harmonics. Since pole probability density functions and orientation probability density functions are probability density functions defined on the sphere Ω3⊂ R3 or hypersphere Ω4⊂ R4, respectively, they belong at least to the space of measurable and integrable functions L1( Ωd), d=3, 4, respectively. Therefore, first a basic and simplified method to derive real symmetrized spherical harmonics with the mathematical property of providing a representation of rotations or orientations, respectively, is presented. Then, standard orientation or pole probability density functions, respectively, are introduced by summation processes of harmonic series expansions of L1( Ωd) functions, thus avoiding resorting to intuition and heuristics. Eventually, it is shown how a rearrangement of the harmonics leads quite canonically to spherical wavelets, which provide a method for high-resolution texture analysis. This unified point of view clarifies how these methods, e.g. standard functions, apply to texture analysis of EBSD orientation measurements.

  16. New machining and testing method of large angle infrared wedge mirror parts

    NASA Astrophysics Data System (ADS)

    Su, Ying; Guo, Rui; Zhang, Fumei; Zhang, Zheng; Liu, Xuanmin; Zengqi, Xu; Li, Wenting; Zhang, Feng

    2016-10-01

    Large angle wedge parts were widely used in the optical system that was used for achieving a wide range of scanning. Due to the parts having the characteristic of large difference in the thickness of both ends and high density, the accuracy of the wedge angle was hard to ensure to reach second level in optical processing. Generally, wedge mirror angle was measured by contact comparison method which was easy to damage the surface. In view of the existence of two practical problems, in this paper, based on theoretical analysis, by taking three key measures that were the accurate positioning for the central position of the large angle wedge part, the accuracy control of angle precision machined of wedge mirror and fast and non destructive laser assisted absolute measurement of large angle wedge, the qualified rate of parts were increased to 100%, a feasible, controllable and efficient process route for large angle infrared wedge parts was found out.

  17. Self-assembling supramolecular systems of different symmetry formed by wedged macromolecular dendrons

    NASA Astrophysics Data System (ADS)

    Shcherbina, M. A.; Bakirov, A. V.; Yakunin, A. N.; Percec, V.; Beginn, U.; Möller, M.; Chvalun, S. N.

    2012-03-01

    The main stages of the self-assembling of supramolecular ensembles have been revealed by studying different functional wedged macromolecules: polymethacrylates with tapered side chains based on gallic acid, their macromonomers, and salts of 2,3,4- and 3,4,5-tris(dodecyloxy)benzenesulphonic acid. The first stage is the formation of individual supramolecular aggregates (long cylinders or spherical micelles) due to the weak noncovalent interactions of mesogenic groups and the subsequent ordering in these aggregates, which is accompanied by a decrease in the free energy of the system. Supramolecular aggregates, in turn, form 2D or 3D lattices. The shape of supramolecular aggregates and its change with temperature are delicate functions of the mesogen chemical structure; this circumstance makes it possible to rationally design complex self-assembling systems with the ability to respond smartly to external stimuli. X-ray diffraction analysis allows one to study the structure of supramolecular systems with different degrees of order, determine the type of mesophases formed by these systems, and reveal the phase behavior of the material. Particular attention has been paid to the method for reconstruction of electron density distribution from the relative reflection intensity. The application of a suite of experimental methods, including wide- and small-angle X-ray diffraction, molecular modeling, differential scanning calorimetry, and polarization optical microscopy, allows one to establish the relationship between the shape of the structural unit (molecule or molecular aggregate), the nature of the interaction, and the phase behavior of the material.

  18. Shock wave reflection over convex and concave wedge

    NASA Astrophysics Data System (ADS)

    Kitade, M.; Kosugi, T.; Yada, K.; Takayama, Kazuyoshi

    2001-04-01

    It is well known that the transition criterion nearly agrees with the detachment criterion in the case of strong shocks, two-dimensional, and pseudosteady flow. However, when the shock wave diffracts over a wedge whose angle is below the detachment criterion, that is, in the domain of Mach reflection, precursory regular reflection (PRR) appears near the leading edge and as the shock wave propagates, the PRR is swept away by the overtaking corner signal (cs) that forces the transition to Mach reflection. It is clear that viscosity and thermal conductivity influences transition and the triple point trajectory. On the other hand, the reflection over concave and convex wedges is truly unsteady flow, and the effect of viscosity and thermal conductivity on transition and triple point trajectory has not been reported. This paper describes that influence of viscosity over convex and concave corners investigated both experiments and numerical simulations.

  19. MHD Casson nanofluid flow past a wedge with Newtonian heating

    NASA Astrophysics Data System (ADS)

    Ahmad, Kartini; Hanouf, Zahir; Ishak, Anuar

    2017-02-01

    The problem of steady Casson nanofluid flow past a wedge is studied in this paper. The presence of magnetic field along with Newtonian heating at the surface is considered. The governing partial differential equations are first transformed into a set of nonlinear ordinary differential equations by similarity transformations, before being solved numerically using the Keller-box method. The effects of the wedge angle Ω from 0° (horizontal plate) to 180° (vertical plate) as well as of as the magnetic parameter M on the non-Newtonian fluid flow and heat transfer characteristics are investigated. It is found that the surface temperature is slightly higher for the flow over a horizontal plate compared to that over a vertical plate. It is also found that the magnetic field decreases the surface temperature but increases the skin friction. The flow of a Newtonian fluid is found to give higher skin friction as compared to that of Casson fluid.

  20. Cylindrical and spherical electron acoustic solitary waves in the presence of superthermal hot electrons

    NASA Astrophysics Data System (ADS)

    Javidan, Kurosh; Pakzad, Hamid Reza

    2012-02-01

    Propagation of cylindrical and spherical electron-acoustic solitary waves in unmagnetized plasmas consisting of cold electron fluid, hot electrons obeying a superthermal distribution and stationary ions are investigated. The standard reductive perturbation method is employed to derive the cylindrical/spherical Korteweg-de-Vries equation which governs the dynamics of electron-acoustic solitons. The effects of nonplanar geometry and superthermal hot electrons on the behavior of cylindrical and spherical electron acoustic soliton and its structure are also studied using numerical simulations.

  1. Large scale test of wedge shaped micro strip gas counters

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Atz, S.; Aulchenko, V.; Bachmann, S.; Baiboussinov, B.; Barthe, S.; Beaumont, W.; Beckers, T.; Beißel, F.; Benhammou, Y.; Bergdolt, A. M.; Bernier, K.; Blüm, P.; Bondar, A.; Bouhali, O.; Boulogne, I.; Bozzo, M.; Brom, J. M.; Camps, C.; Chorowicz, V.; Coffin, J.; Commichau, V.; Contardo, D.; Croix, J.; De Troy, J.; Drouhin, F.; Eberlé, H.; Flügge, G.; Fontaine, J.-C.; Geist, W.; Goerlach, U.; Gundlfinger, K.; Hangarter, K.; Haroutunian, R.; Helleboid, J. M.; Henkes, Th.; Hoffer, M.; Hoffman, C.; Huss, D.; Ischebeck, R.; Jeanneau, F.; Juillot, P.; Junghans, S.; Kapp, M. R.; Kärcher, K.; Knoblauch, D.; Kräber, M.; Krauth, M.; Kremp, J.; Lounis, A.; Lübelsmeyer, K.; Maazouzi, C.; Macke, D.; Metri, R.; Mirabito, L.; Müller, Th.; Nagaslaev, V.; Neuberger, D.; Nowack, A.; Pallares, A.; Pandoulas, D.; Petertill, M.; Pooth, O.; Racca, C.; Ripp, I.; Ruoff, E.; Sauer, A.; Schmitz, P.; Schulte, R.; von Dratzig, A. Schultz; Schunk, J. P.; Schuster, G.; Schwaller, B.; Shektman, L.; Siedling, R.; Sigward, M. H.; Simonis, H. J.; Smadja, G.; Stefanescu, J.; Szczesny, H.; Tatarinov, A.; Thümmel, W. H.; Tissot, S.; Titov, V.; Todorov, T.; Tonutti, M.; Udo, F.; Vander Velde, C.; Van Doninck, W.; Van Dyck, Ch.; Vanlaer, P.; Van Lancker, L.; Verdini, P. G.; Weseler, S.; Wittmer, B.; Wortmann, R.; Zghiche, A.; Zhukov, V.

    1999-11-01

    In order to check the system aspects of the forward-backward MSGC tracker designed for the future CMS experiment at LHC, 38 trapezoidal MSGC counters assembled in six multi-substrates detector modules were built and exposed to a muon beam at the CERN SPS. Results on the gain uniformity along the wedge-shaped strip pattern and across the detector modules are shown together with measurements of the detection efficiency and the spatial resolution.

  2. Quantitative comparisons of numerical models of brittle wedge dynamics

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne

    2010-05-01

    Numerical and laboratory models are often used to investigate the evolution of deformation processes at various scales in crust and lithosphere. In both approaches, the freedom in choice of simulation method, materials and their properties, and deformation laws could affect model outcomes. To assess the role of modelling method and to quantify the variability among models, we have performed a comparison of laboratory and numerical experiments. Here, we present results of 11 numerical codes, which use finite element, finite difference and distinct element techniques. We present three experiments that describe shortening of a sand-like, brittle wedge. The material properties of the numerical ‘sand', the model set-up and the boundary conditions are strictly prescribed and follow the analogue setup as closely as possible. Our first experiment translates a non-accreting wedge with a stable surface slope of 20 degrees. In agreement with critical wedge theory, all models maintain the same surface slope and do not deform. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge in a sandbox-like setup, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. We show that we successfully simulate sandbox-style brittle behaviour using different numerical modelling techniques and that we obtain the same styles of deformation behaviour in numerical and laboratory experiments at similar levels of variability. The GeoMod2008 Numerical Team: Markus Albertz, Michelle Cooke, Tony Crook, David Egholm, Susan Ellis, Taras Gerya, Luke Hodkinson, Boris Kaus, Walter Landry, Bertrand Maillot, Yury Mishin

  3. Wedge-local quantum fields on a nonconstant noncommutative spacetime

    SciTech Connect

    Much, A.

    2012-08-15

    Within the framework of warped convolutions we deform the massless free scalar field. The deformation is performed by using the generators of the special conformal transformations. The investigation shows that the deformed field turns out to be wedge-local. Furthermore, it is shown that the spacetime induced by the deformation with the special conformal operators is nonconstant noncommutative. The noncommutativity is obtained by calculating the deformed commutator of the coordinates.

  4. Wedge Prism for Direction Resolved Speckle Correlation Interferometry

    SciTech Connect

    Pechersky, M.J.

    1999-01-20

    The role of a wedge prism for strain sign determination and enhancing the sensitivity for sub-fringe changes is emphasized. The design and incorporation aspects for in-plane sensitive interferometers have been described in detail. Some experimental results dealing with stress determination by laser annealing and speckle corelation interferometry are presented. The prism can also be applied to produce standardized carrier fringes in spatial phase shifting interferometry.

  5. Silurian Extrusion Wedge Tectonics in the Central Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Grimmer, J. C.; Glodny, J.; Drüppel, K.; Greiling, R. O.

    2015-12-01

    The Scandian fold-thrust belt of the central Scandinavian Caledonides host the high-grade metamorphic Seve Nappe Complex bounded on top by a normal sense shear zone and at the base by a reverse sense shear zone. Rb-Sr multimineral geochronology in synkinematic assemblages indicates simultaneous movements at the normal-sense roof shear zone and at the reverse-sense floor shear zone between 434 Ma and 429 Ma. Pressure temperature pseudosection calculations provide evidence for eclogite facies metamorphic conditions and nearly isothermal decompression at ~670 ± 50 °C from 17.5 to 14.5 kbar in garnet-kyanite mica schists during reverse-sense shearing, and from 15 to 11 kbar in garnet mica schists during normal-sense shearing. These and other published data and the presence of decompression-related pegmatites dated at 434 Ma and 429 Ma indicate that the Seve nappes form a 1-2 km thin extrusion wedge that extends along strike for at least 150 km. Devonian ductile extensional to transtensional deformation of the more internal parts of the orogen did not affect the early to mid-Silurian extrusion wedge that was preserved in the more external parts of the orogen due to foreland-directed nappe displacements in the order of >400 km. This wedge marks an early stage of exhumation of (ultra-)high-pressure metamorphic rocks and orogenic wedge formation in this part of the Scandinavian Caledonides predating the ≥10 km thick, post-415 Ma exhumation processes of ultrahigh-pressure rocks in southwestern Norway.

  6. Wedge-Filtering of Geomorphologic Terrestrial Laser Scan Data

    PubMed Central

    Panholzer, Helmut; Prokop, Alexander

    2013-01-01

    Terrestrial laser scanning is of increasing importance for surveying and hazard assessments. Digital terrain models are generated using the resultant data to analyze surface processes. In order to determine the terrain surface as precisely as possible, it is often necessary to filter out points that do not represent the terrain surface. Examples are vegetation, vehicles, and animals. Filtering in mountainous terrain is more difficult than in other topography types. Here, existing automatic filtering solutions are not acceptable, because they are usually designed for airborne scan data. The present article describes a method specifically suitable for filtering terrestrial laser scanning data. This method is based on the direct line of sight between the scanner and the measured point and the assumption that no other surface point can be located in the area above this connection line. This assumption is only true for terrestrial laser data, but not for airborne data. We present a comparison of the wedge filtering to a modified inverse distance filtering method (IDWMO) filtered point cloud data. Both methods use manually filtered surfaces as reference. The comparison shows that the mean error and root–mean-square-error (RSME) between the results and the manually filtered surface of the two methods are similar. A significantly higher number of points of the terrain surface could be preserved, however, using the wedge-filtering approach. Therefore, we suggest that wedge-filtering should be integrated as a further parameter into already existing filtering processes, but is not suited as a standalone solution so far. PMID:23429548

  7. RADIOGRAPHIC ASSESSMENT OF THE OPENING WEDGE PROXIMAL TIBIAL OSTEOTOMY

    PubMed Central

    Silva, Carlos Francisco Bittencourt; Camara, Eduardo Kastrup Bittencourt; Vieira, Luiz Antonio; Adolphsson, Fernando; Rodarte, Rodrigo Ribeiro Pinho

    2015-01-01

    Objective: To radiographically evaluate individuals who underwent opening wedge proximal tibial osteotomy, with the aim of analyzing the proximal tibial slope in the frontal and sagittal planes, and the patellar height. Method: The study included 22 individuals who were operated at the National Traumatology and Orthopedics Institute (INTO) for correction of varus angular tibial deviation using the opening wedge osteotomy (OWO) technique with the Orthofix monolateral external fixator. Patients with OWO whose treatment was completed between January 2000 and December 2006 were analyzed. The measurement technique consisted of using anteroposterior radiographs with loading and lateral views with the operated knees flexed at 30°. Results: There were no statistically significant differences between the pre and postoperative tibial slope and patellar height values in the patients evaluated. Conclusion: Opening wedge proximal tibial osteotomy is a technique that avoids the problems presented by high proximal tibial osteotomy, since it is done without causing changes to the extensor mechanism, ligament imbalance or distortions in the proximal tibia. PMID:27022577

  8. Geomorphological-thermo-mechanical modeling: Application to orogenic wedge dynamics

    NASA Astrophysics Data System (ADS)

    Ueda, K.; Willett, S. D.; Gerya, T.; Ruh, J.

    2015-09-01

    Coupled geomorphological-thermo-mechanical modeling is presented in a new implementation that combines two established thermo-mechanical and landscape evolution models. A finite-difference marker-in-cell technique is used to solve for the thermo-mechanical problem including complex visco-plastic rheologies in high resolution. Each timestep is synchronously solved with a fluvial landscape evolution model that includes numerical solution of fluvial incision and analytical hillslope processes for both diffusive and slope-limited processes on an adaptive grid. The implementation is successful in modeling large deformation at different scales. We demonstrate high degrees of coupling through processes such as exhumation of rocks with different erodibilities. Sensitivity of the coupled system evolution to surface parameters, and mechanical parameters, is explored for the established case of development of compressive wedges. The evolution of wedge models proves to be primarily sensitive to erodibility and the degree of river network integration. Relief follows deformation in propagating forward with wedge growth. We apply the method to a large-scale model of continental collision, in which a close relationship between deep tectonics, fluvial network evolution, and uplift and erosion can be demonstrated.

  9. Stability of Supersonic Boundary Layers Over Blunt Wedges

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam

    2006-01-01

    Receptivity and stability of supersonic boundary layers over blunt flat plates and wedges are numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 10(exp 6)/inch. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. Computations are performed for a flat plate with leading edge thicknesses of 0.0001, 0.001, 0.005 and 0.01 inches that give Reynolds numbers based on the leading edge thickness ranging from 1000 to 10000. Calculations are also performed for a wedge of 10 degrees half angle with different leading edge radii 0.001 and 0.01 inches. The linear stability results showed that the bluntness has a strong stabilizing effect on the stability of two-dimensional boundary layers. The transition Reynolds number for a flat plate with a leading edge thickness of 0.01 inches is about 3.5 times larger than it is for the Blasius boundary layer. It was also revealed that boundary layers on blunt wedges are far more stable than on blunt flat plates.

  10. Hypersingularity, electromagnetic edge condition, and an analytic hyperbolic wedge model.

    PubMed

    Li, Lifeng

    2014-04-01

    It is insufficient to consider that hypersingularity is unphysical solely based on energy considerations. With a proper combination of the two degenerate hypersingular modes, the energy-flux edge condition is satisfied. A hyperbolic wedge model is presented that is much simpler than the previous model for the purpose of studying singular characteristics of the edge fields. This model not only reproduces the sharp edge model as the wedge becomes infinitely sharp but also naturally shows how the two degenerate hypersingular modes of the sharp edge model should be combined. In an incidental study of the effect of rounding edges on numerical computation, I show that the converged results for rounded edges do not converge to a fixed value when the radius of curvature tends to zero, if the corresponding sharp edge supports hypersingularity. I also prove that introducing a small amount of absorption loss for the purpose of improving numerical convergence is effective only when the ratio of the real parts of the permittivities of the two media forming the wedge is close to -1. Finally I remark on the possible illposedness of the hypersingularity problem without imposition of the edge condition.

  11. The wedge hot-film anemometer in supersonic flow

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.

    1983-01-01

    A commercial wedge hot-film probe is studied to determine its heat transfer response in transonic to low supersonic flows of high unit Reynolds number. The results of this study show that its response in this flow regime differs from the response of cylindrical type sensors. Whereas the cylindrical sensor has the same sensitivity to velocity as to density for free-stream Mach numbers exceeding 1.3, the wedge probe sensitivity to velocity is always greater than its sensitivity to density over the entire flow regime. This property requires determination of three fluctuation components due to density, velocity, and temperature, in a transonic or supersonic turbulent flow. Sensitivity equations are derived based on the observed behavior of the wedge probe. Both the durability and the frequency response of the probe are excellent, the square wave insertion test indicating frequency response near 130 kHz. The directional response of the probe at sonic speed is poor and requires further examination before Reynolds stress measurements are attempted with dual sensor probes.

  12. On the acoustic wedge design and simulation of anechoic chamber

    NASA Astrophysics Data System (ADS)

    Jiang, Changyong; Zhang, Shangyu; Huang, Lixi

    2016-10-01

    This study proposes an alternative to the classic wedge design for anechoic chambers, which is the uniform-then-gradient, flat-wall (UGFW) structure. The working mechanisms of the proposed structure and the traditional wedge are analyzed. It is found that their absorption patterns are different. The parameters of both structures are optimized for achieving minimum absorber depth, under the condition of absorbing 99% of normal incident sound energy. It is found that, the UGFW structure achieves a smaller total depth for the cut-off frequencies ranging from 100 Hz to 250 Hz. This paper also proposes a modification for the complex source image (CSI) model for the empirical simulation of anechoic chambers, originally proposed by Bonfiglio et al. [J. Acoust. Soc. Am. 134 (1), 285-291 (2013)]. The modified CSI model considers the non-locally reactive effect of absorbers at oblique incidence, and the improvement is verified by a full, finite-element simulation of a small chamber. With the modified CSI model, the performance of both decorations with the optimized parameters in a large chamber is simulated. The simulation results are analyzed and checked against the tolerance of 1.5 dB deviation from the inverse square law, stipulated in the ISO standard 3745(2003). In terms of the total decoration depth and anechoic chamber performance, the UGFW structure is better than the classic wedge design.

  13. Shock interaction mechanisms on a double wedge at Mach 7

    NASA Astrophysics Data System (ADS)

    Durna, Ahmet Selim; El Hajj Ali Barada, Mohamad; Celik, Bayram

    2016-09-01

    Present computational study investigates formation and interaction mechanisms of shocks and boundary layer for low enthalpy Mach 7 flows of nitrogen over double wedges, which have fixed fore and various aft angles of 30° and 45°-60°, respectively. We use a density based finite-volume Navier-Stokes solver to simulate low enthalpy Mach 7 flows of nitrogen over double wedges. The solver is first and second order accurate in time and space, respectively. The meshes used in simulations of two-dimensional laminar flows consist of multiple blocks of structured mesh. Depending on the intensity, impingement angle, and impingement location of transmitted shock wave, the resulting adverse pressure gradient related disturbances on the wedge surface can trigger complex flow physics both in subsonic and supersonic regions. We observe a strong interaction between the deformation of the boundary layer and the bow shock as well as the transmitted shock for high aft angles. Comparison of the obtained results in terms of general flow physics shows that there exists an aft angle threshold value for such interaction which is in the range of 45°-50°.

  14. Radiance calibration of spherical integrators

    NASA Technical Reports Server (NTRS)

    Mclean, James T.; Guenther, Bruce W.

    1989-01-01

    Techniques for improving the knowledge of the radiance of large area spherical and hemispherical integrating energy sources have been investigated. Such sources are used to calibrate numerous aircraft and spacecraft remote sensing instruments. Comparisons are made between using a standard source based calibration method and a quantum efficient detector (QED) based calibration method. The uncertainty involved in transferring the calibrated values of the point source standard lamp to the extended source is estimated to be 5 to 10 percent. The use of the QED allows an improvement in the uncertainty to 1 to 2 percent for the measurement of absolute radiance from a spherical integrator source.

  15. Basketballs as spherical acoustic cavities

    NASA Astrophysics Data System (ADS)

    Russell, Daniel A.

    2010-06-01

    The sound field resulting from striking a basketball is found to be rich in frequency content, with over 50 partials in the frequency range of 0-12 kHz. The frequencies are found to closely match theoretical expectations for standing wave patterns inside a spherical cavity. Because of the degenerate nature of the mode shapes, explicit identification of the modes is not possible without internal investigation with a microphone probe. A basketball proves to be an interesting application of a boundary value problem involving spherical coordinates.

  16. Evaluation of the HULL and SHARC hydrocodes in simulating the reflection of Mach 2.12 non-decaying shock on wedges of various angles

    NASA Astrophysics Data System (ADS)

    Lottero, Richard E.; Wortman, John D.

    1990-09-01

    Hydrodynamic computer code simulations of the interaction of a non-decaying Mach 2.12 shock wave with wedges of various angles are presented. Techniques for simulating this interaction with the HULL and SHARC hydrocodes are evaluated by running the codes in various geometric configurations commonly used to simulate Mach reflection. Fluid dynamics aspects of each geometry are evaluated and discussed. The codes are also run with systematic variations in differencing method and artificial viscosity options. Most of these variations done in the SHARC also includes the option of using half hydrodynamic and half rigid flow field cells to simulate a smooth wedge surface in a rectangular finite difference grid. These computations are based on experimental and computational work performed at the Ernst Mach Institute, Freiburg, Federal Republic of Germany.

  17. Liquid bridges in complex geometries: Equilibrium shape metamorphosis using electrowetting

    NASA Astrophysics Data System (ADS)

    Baratian, Davood; Cavalli, Andrea; van den Ende, Dirk; Mugele, Frieder

    2015-11-01

    The equilibrium morphology of liquid drops exposed to geometric constraints can be rather complex. Even for simple geometries, analytical solutions are scarce. We investigate the equilibrium shape and position of liquid drops confined in the wedge between two solid surfaces. Using electrowetting, we control the contact angle and thereby manipulate the shape and the equilibrium position of aqueous drops in ambient oil. In the absence of contact angle hysteresis and buoyancy, we find that the equilibrium shape is given by a truncated sphere, prior to filling the wedge corner, at a position that is determined by the drop volume and the contact angle. At this position, the net force between drop and the surfaces vanishes. The effect of buoyancy gives rise to substantial deviations from this equilibrium configuration which we discuss it as well. We elegantly show how the geometric constraint and electrowetting can be used to position droplets inside a wedge in a controlled way, without mechanical actuation. The Netherlands Organization for Scientific Research (NWO).

  18. Developments in special geometry

    NASA Astrophysics Data System (ADS)

    Mohaupt, Thomas; Vaughan, Owen

    2012-02-01

    We review the special geometry of Script N = 2 supersymmetric vector and hypermultiplets with emphasis on recent developments and applications. A new formulation of the local c-map based on the Hesse potential and special real coordinates is presented. Other recent developments include the Euclidean version of special geometry, and generalizations of special geometry to non-supersymmetric theories. As applications we disucss the proof that the local r-map and c-map preserve geodesic completeness, and the construction of four- and five-dimensional static solutions through dimensional reduction over time. The shared features of the real, complex and quaternionic version of special geometry are stressed throughout.

  19. Photoelectric sheath formation around small spherical objects in space

    SciTech Connect

    Misra, Shikha Sodha, M. S.; Mishra, S. K.

    2015-04-15

    The formation of a photoelectron sheath around positively charged small (∼cm) spherical objects roaming in near earth space due to the solar radiation (with continuous spectrum) and the solar wind plasma has been investigated. The sheath structure has been derived, taking into account anisotropic photoelectron flux with the Poisson equation, spherical geometry of the object, and half Fermi Dirac distribution of photoelectron velocities. Two cases, viz., when the object is illuminated by (i) isotropic or (ii) unidirectional (parallel beam) radiation, have been analyzed. The analysis predicts a spherically symmetric sheath in case of isotropic illumination, while a symmetry in sheath about a θ=π/4 is seen in case of parallel beam illumination; θ is the angle of incidence which is the angle made by the normal to a surface element with the direction of incidence of solar radiation. The radial and angular profiles of the electric potential and electron density in the photoelectron sheath have been evaluated and illustrated graphically; the dependence of the sheath structure on the solar wind plasma parameters, material properties of the spherical object, and its size have been discussed.

  20. The method of planes pressure tensor for a spherical subvolume

    SciTech Connect

    Heyes, D. M. Smith, E. R. Dini, D. Zaki, T. A.

    2014-02-07

    Various formulas for the local pressure tensor based on a spherical subvolume of radius, R, are considered. An extension of the Method of Planes (MOP) formula of Todd et al. [Phys. Rev. E 52, 1627 (1995)] for a spherical geometry is derived using the recently proposed Control Volume formulation [E. R. Smith, D. M. Heyes, D. Dini, and T. A. Zaki, Phys. Rev. E 85, 056705 (2012)]. The MOP formula for the purely radial component of the pressure tensor is shown to be mathematically identical to the Radial Irving-Kirkwood formula. Novel offdiagonal elements which are important for momentum conservation emerge naturally from this treatment. The local pressure tensor formulas for a plane are shown to be the large radius limits of those for spherical surfaces. The radial-dependence of the pressure tensor computed by Molecular Dynamics simulation is reported for virtual spheres in a model bulk liquid where the sphere is positioned randomly or whose center is also that of a molecule in the liquid. The probability distributions of angles relating to pairs of atoms which cross the surface of the sphere, and the center of the sphere, are presented as a function of R. The variance in the shear stress calculated from the spherical Volume Averaging method is shown to converge slowly to the limiting values with increasing radius, and to be a strong function of the number of molecules in the simulation cell.

  1. Spherical-Bearing Analysis Program

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.

    1984-01-01

    Computer program SPHERBEAN, developed to predict thermomechanical performance characteristics of double-row spherical roller bearings over wide range of operating conditions. Analysis allows six degrees of freedom for each roller and three for each half of an optionally split cage. Program capabilities provide sufficient generality to allow detailed simulation of both high-speed and conventional bearing operation.

  2. Impact of sedimentation on evolution of accretionary wedges: Insights from high-resolution thermomechanical modeling

    NASA Astrophysics Data System (ADS)

    Mannu, Utsav; Ueda, Kosuke; Willett, Sean D.; Gerya, Taras V.; Strasser, Michael

    2016-12-01

    Syntectonic sedimentation history is a potential cause of differentiated accretionary wedge structures along the subduction margin. Recent efforts to model the role of sedimentation on wedge evolution have highlighted the importance of spatiotemporal history of sedimentation on the evolution of the wedge. Moreover, reconstruction of deformation history of the accretionary wedges using reflection seismic and borehole data has further substantiated the impact of sedimentation on wedge evolution. We conduct several numerical experiments using a high-resolution dynamic 2-D thermomechanical plate subduction model to systematically investigate and quantify different effects of sedimentation on accretionary wedge evolution. Models with sedimentation suggest migration of deformation to parts of the wedge lying outside the sedimentation zone leading to emergence/reactivation of out-of-sequence thrusts (OOSTs). Frequency and length of new thrust sheets are correlated with sedimentation in the trench. Models undergo a transition period of 1.5 Myr following the onset of sedimentation, after which they continue to grow under a new steady state. Stabilization of the wedge and increased load on the oceanic plate due to sedimentation create conditions in which smaller wedge-top basins combine to form a large and flat forearc basin. Last but not the least, emergence of OOST in models of accretionary wedges undergoing sedimentation provides important insights in to evolution of potentially tsunamigenic OOSTs like the Megasplay Fault seaward of the Kumano forearc basin.

  3. Geometry-induced protein pattern formation.

    PubMed

    Thalmeier, Dominik; Halatek, Jacob; Frey, Erwin

    2016-01-19

    Protein patterns are known to adapt to cell shape and serve as spatial templates that choreograph downstream processes like cell polarity or cell division. However, how can pattern-forming proteins sense and respond to the geometry of a cell, and what mechanistic principles underlie pattern formation? Current models invoke mechanisms based on dynamic instabilities arising from nonlinear interactions between proteins but neglect the influence of the spatial geometry itself. Here, we show that patterns can emerge as a direct result of adaptation to cell geometry, in the absence of dynamical instability. We present a generic reaction module that allows protein densities robustly to adapt to the symmetry of the spatial geometry. The key component is an NTPase protein that cycles between nucleotide-dependent membrane-bound and cytosolic states. For elongated cells, we find that the protein dynamics generically leads to a bipolar pattern, which vanishes as the geometry becomes spherically symmetrical. We show that such a reaction module facilitates universal adaptation to cell geometry by sensing the local ratio of membrane area to cytosolic volume. This sensing mechanism is controlled by the membrane affinities of the different states. We apply the theory to explain AtMinD bipolar patterns in [Formula: see text] EcMinDE Escherichia coli. Due to its generic nature, the mechanism could also serve as a hitherto-unrecognized spatial template in many other bacterial systems. Moreover, the robustness of the mechanism enables self-organized optimization of protein patterns by evolutionary processes. Finally, the proposed module can be used to establish geometry-sensitive protein gradients in synthetic biological systems.

  4. Analytical solution of the simplified spherical harmonics equations in spherical turbid media

    NASA Astrophysics Data System (ADS)

    Edjlali, Ehsan; Bérubé-Lauzière, Yves

    2016-10-01

    We present for the first time an analytical solution for the simplified spherical harmonics equations (so-called SPN equations) in the case of a steady-state isotropic point source inside a spherical homogeneous absorbing and scattering medium. The SPN equations provide a reliable approximation to the radiative transfer equation for describing light transport inside turbid media. The SPN equations consist of a set of coupled partial differential equations and the eigen method is used to obtain a set of decoupled equations, each resembling the heat equation in the Laplace domain. The equations are solved for the realistic partial reflection boundary conditions accounting for the difference in refractive indices between the turbid medium and its environment (air) as occurs in practical cases of interest in biomedical optics. Specifically, we provide the complete solution methodology for the SP3, which is readily applicable to higher orders as well, and also give results for the SP5. This computationally easy to obtain solution is investigated for different optical properties of the turbid medium. For validation, the solution is also compared to the analytical solution of the diffusion equation and to gold standard Monte Carlo simulation results. The SP3 and SP5 analytical solutions prove to be in good agreement with the Monte Carlo results. This work provides an additional tool for validating numerical solutions of the SPN equations for curved geometries.

  5. Thrust fault segmentation and downward fault propagation in accretionary wedges: New Insights from 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Orme, Haydn; Bell, Rebecca; Jackson, Christopher

    2016-04-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. Although we often assume imbricate faults are likely to have propagated upwards from the décollement we show strong evidence for fault nucleation at shallow depths and downward propagation to intersect the décollement. The complex fault interactions documented here have implications for hydraulic compartmentalisation and pore

  6. Collective neutrino oscillations in nonspherical geometry

    SciTech Connect

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg

    2008-08-01

    The rich phenomenology of collective neutrino oscillations has been studied only in one-dimensional or spherically symmetric systems. Motivated by the nonspherical example of coalescing neutron stars, presumably the central engines of short gamma-ray bursts, we use the Liouville equation to formulate the problem for general source geometries. Assuming the neutrino ensemble displays self-maintained coherence, the problem once more becomes effectively one-dimensional along the streamlines of the overall neutrino flux. This approach for the first time provides a formal definition of the 'single-angle approximation' frequently used for supernova neutrinos and allows for a natural generalization to nonspherical geometries. We study the explicit example of a disk-shaped source as a proxy for coalescing neutron stars.

  7. Geometry of multihadron production

    SciTech Connect

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.

  8. Geometry + Technology = Proof

    ERIC Educational Resources Information Center

    Lyublinskaya, Irina; Funsch, Dan

    2012-01-01

    Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…

  9. Euclidean Geometry via Programming.

    ERIC Educational Resources Information Center

    Filimonov, Rossen; Kreith, Kurt

    1992-01-01

    Describes the Plane Geometry System computer software developed at the Educational Computer Systems laboratory in Sofia, Bulgaria. The system enables students to use the concept of "algorithm" to correspond to the process of "deductive proof" in the development of plane geometry. Provides an example of the software's capability…

  10. The Beauty of Geometry

    ERIC Educational Resources Information Center

    Morris, Barbara H.

    2004-01-01

    This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…

  11. A Experimental Investigation and Optimization of a Variable Reluctance Spherical Motor.

    NASA Astrophysics Data System (ADS)

    Roth, Ronald B.

    1992-01-01

    In robotic wrist applications, a three degree -of-freedom variable reluctance (VR) spherical motor offers advantages over conventional mechanisms which includes its compact size, the potential of no singularities in its workspace except at its boundaries, and continuous three dimensional motion with uniform resolution. Although the principle of a VR spherical motor has been demonstrated, the modeling techniques remained to be verified. Therefore, this research investigated and further developed the magnetic modeling techniques essential to the design and control law development of a VR spherical motor. A nonlinear magnetic circuit model is presented which is composed of linear (airgap) permeance elements and nonlinear (iron) permeance elements. The model reduces the complex field distribution of the spherical motor magnetic system governed by Maxwell's equations to a tractable magnetic model. A torque prediction model is presented which determines the torque generated by the spherical motor for a given set of input currents to the coils. An experimental airgap permeance function was determined from a VR spherical motor experimental testbed utilizing the linear magnetic circuit model. The permeance function showed good agreement with the theoretical overlapping area permeance model for small pole separation angles. Flux density levels were estimated in iron "choke" points and saturation was successfully predicted. Inclusion of the iron permeance in noncritical motor iron regions improved torque predictions under saturated conditions. Finally, a methodology for optimizing the VR spherical motor's magnetics is presented. The formulation focused on the derivation of inequalities governing geometry, thermal, amplifier, saturation, and leakage flux. An example problem is presented where the motor's geometry is determined by maximizing the output torque at one rotor orientation subject to constraints. The resulting analysis provides experimental verification of modeling

  12. Geometry of membrane fission.

    PubMed

    Frolov, Vadim A; Escalada, Artur; Akimov, Sergey A; Shnyrova, Anna V

    2015-01-01

    Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes.

  13. Generation of high-order optical vortices by optical wedges system

    NASA Astrophysics Data System (ADS)

    Izdebskaya, Ya. V.; Shvedov, V. G.; Volyar, A. V.

    2005-11-01

    The aim of the given report is experimental and theoretical research of the diffraction of a Gaussian beam by the optical wedges system. It is shown that this system is able to form high-order optical vortices. The effectiveness of system is about 90%. It was shown, that each wedge changes a charge of phase singularity as a result of edge diffraction. The value topological charge of the optical vortex formed after system is defined by the number of wedges in the system. Changing mutual orientation corners of wedges we can select required conditions of the vortex core. It was revealed that the optical vortex appears structurally steady if the comer of mutual orientation of wedges equals α = πn (where n-number of wedges).

  14. Dosimetric Characteristics of 6 MV Modified Beams by Physical Wedges of a Siemens Linear Accelerator.

    PubMed

    Zabihzadeh, Mansour; Birgani, Mohammad Javad Tahmasebi; Hoseini-Ghahfarokhi, Mojtaba; Arvandi, Sholeh; Hoseini, Seyed Mohammad; Fadaei, Mahbube

    2016-01-01

    Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended.

  15. Thermodynamic and kinetic supercooling of liquid in a wedge pore.

    PubMed

    Nowak, Dominika; Heuberger, Manfred; Zäch, Michael; Christenson, Hugo K

    2008-10-21

    Cyclohexane allowed to capillary condense from vapor in an annular wedge pore of mica in a surface force apparatus (SFA) remains liquid down to at least 14 K below the bulk melting-point T(m). This is an example of supercooling of a liquid due to confinement, like melting-point depression in porous media. In the wedge pore, however, the supercooled liquid is in equilibrium with vapor, and the amount of liquid (and thereby the radius of curvature r of the liquid-vapor interface) depends on the surface tension gamma(LV) of the liquid, not the interfacial tension between the solid and liquid. At coexistence r is inversely proportional to the temperature depression DeltaT below T(m), in accordance with a recently proposed model [P. Barber, T. Asakawa, and H. K. Christenson, J. Phys. Chem. C 111, 2141 (2007)]. We have now extended this model to include effects due to the temperature dependence of both the surface tension and the enthalpy of melting. The predictions of the improved model have been quantitatively verified in experiments using both a Mark IV SFA and an extended surface force apparatus (eSFA). The three-layer interferometer formed by the two opposing, backsilvered mica surfaces in a SFA was analyzed by conventional means (Mark IV) and by fast spectral correlation of up to 40 fringes (eSFA). We discuss the absence of freezing in the outermost region of the wedge pore down to 14 K below T(m) and attribute it to nonequilibrium (kinetic) supercooling, whereas the inner region of the condensate is thermodynamically supercooled.

  16. Fluids confined in wedges and by edges: From cluster integrals to thermodynamic properties referred to different regions

    SciTech Connect

    Urrutia, Ignacio

    2015-06-28

    Recently, new insights into the relation between the geometry of the vessel that confines a fluid and its thermodynamic properties were traced through the study of cluster integrals for inhomogeneous fluids. In this work, I analyze the thermodynamic properties of fluids confined in wedges or by edges, emphasizing on the question of the region to which these properties refer. In this context, the relations between the line-thermodynamic properties referred to different regions are derived as analytic functions of the dihedral angle α, for 0 < α < 2π, which enables a unified approach to both edges and wedges. As a simple application of these results, I analyze the properties of the confined gas in the low-density regime. Finally, using recent analytic results for the second cluster integral of the confined hard sphere fluid, the low density behavior of the line thermodynamic properties is analytically studied up to order two in the density for 0 < α < 2π and by adopting different reference regions.

  17. Fluids confined in wedges and by edges: From cluster integrals to thermodynamic properties referred to different regions.

    PubMed

    Urrutia, Ignacio

    2015-06-28

    Recently, new insights into the relation between the geometry of the vessel that confines a fluid and its thermodynamic properties were traced through the study of cluster integrals for inhomogeneous fluids. In this work, I analyze the thermodynamic properties of fluids confined in wedges or by edges, emphasizing on the question of the region to which these properties refer. In this context, the relations between the line-thermodynamic properties referred to different regions are derived as analytic functions of the dihedral angle α, for 0 < α < 2π, which enables a unified approach to both edges and wedges. As a simple application of these results, I analyze the properties of the confined gas in the low-density regime. Finally, using recent analytic results for the second cluster integral of the confined hard sphere fluid, the low density behavior of the line thermodynamic properties is analytically studied up to order two in the density for 0 < α < 2π and by adopting different reference regions.

  18. On sound scattering by rigid edges and wedges in a flow, with applications to high-lift device aeroacoustics

    NASA Astrophysics Data System (ADS)

    Roger, Michel; Moreau, Stéphane; Kucukcoskun, Korcan

    2016-02-01

    Exact analytical solutions for the scattering of sound by the edge of a rigid half-plane and by a rigid corner in the presence of a uniform flow are considered in this work, for arbitrary source and observer locations. Exact Green's functions for the Helmholtz equation are first reviewed and implemented in a quiescent propagation space from reference expressions of the literature. The effect of uniform fluid motion is introduced in a second step and the properties of the field are discussed for point dipoles and quadrupoles. The asymptotic regime of a source close to the scattering edge/wedge and of an observer far from it in terms of acoustic wavelengths is derived in both cases. Its validity limits are assessed by comparing with the exact solutions. Typically the asymptotic directivity is imposed by Green's function but not by the source itself. This behaviour is associated with a strong enhancement of the radiation with respect to what the source would produce in free field. The amplification depends on the geometry, on the source type and on the source distance to the edge/wedge. Various applications in aeroacoustics of wall-bounded flows are addressed, more specifically dealing with high-lift device noise mechanisms, such as trailing-edge or flap side-edge noise. The asymptotic developments are used to highlight trends that are believed to play a role in airframe noise.

  19. Comparison between realistic and spherical approaches in EEG forward modelling.

    PubMed

    Meneghini, Fabio; Vatta, Federica; Esposito, Fabrizio; Mininel, Stefano; Di Salle, Francesco

    2010-06-01

    In electroencephalography (EEG) a valid conductor model of the head (forward model) is necessary for predicting measurable scalp voltages from intra-cranial current distributions. All inverse models, capable of inferring the spatial distribution of the neural sources generating measurable electrical and magnetic signals outside the brain are normally formulated in terms of a pre-estimated forward model, which implies considering one (or more) current dipole(s) inside the head and computing the electrical potentials generated at the electrode sites on the scalp surface. Therefore, the accuracy of the forward model strongly affects the reliability of the source reconstruction process independently of the specific inverse model. So far, it is as yet unclear which brain regions are more sensitive to the choice of different model geometry, from both quantitative and qualitative points of view. In this paper, we compare the finite difference method-based realistic model with the four-layers sensor-fitted spherical model using simulated cortical sources in the MNI152 standard space. We focused on the investigation of the spatial variation of the lead fields produced by simulated cortical sources which were placed on the reconstructed mesh of the neocortex along the surface electrodes of a 62-channel configuration. This comparison is carried out by evaluating a point spread function all over the brain cortex, with the aim of finding the lead fields mismatch between realistic and spherical geometry. Realistic geometry turns out to be a relevant factor of improvement which is particularly important when considering sources placed in the temporal or in the occipital cortex. In these situations, using a realistic head model will allow a better spatial discrimination of neural sources when compared to the spherical model.

  20. A comparison of the conductor requirements for energy storage devices made with ideal coil geometries

    SciTech Connect

    Hassenzahl, W.

    1988-08-01

    Superconducting Magnetic Energy Storage (SMES) plants have been proposed in both solenoidal and toroidal geometries. The former is efficient in terms of the quantity of superconductor required per unit of stored energy. For applications where a fringe field could be a problem, the toroidal geometry, which requires at least a factor of two more material, has been proposed. In addition to the solenoid and toroid, other geometries are possible, such as linear multipoles and spherical coils. These geometries have been considered for use in applications other than energy storage. In this report, the effectiveness (quantity of superconductor/stored energy) is calculated for various coil geometries. 7 refs., 4 tabs.

  1. Nonlinear Instability of Hypersonic Flow past a Wedge

    NASA Technical Reports Server (NTRS)

    Seddougui, Sharon O.; Bassom, Andrew P.

    1991-01-01

    The nonlinear stability of a compressible flow past a wedge is investigated in the hypersonic limit. The analysis follows the ideas of a weakly nonlinear approach. Interest is focussed on Tollmien-Schlichting waves governed by a triple deck structure and it is found that the attached shock can profoundly affect the stability characteristics of the flow. In particular, it is shown that nonlinearity tends to have a stabilizing influence. The nonlinear evolution of the Tollmien-Schlichting mode is described in a number of asymptotic limits.

  2. Detection of unsuspected ovarian pregnancy by wedge resection

    PubMed Central

    Helde, M. D.; Campbell, J. S.; Himaya, A.; Nuyens, J. J.; Cowley, F. C.; Hurteau, G. D.

    1972-01-01

    Five follicular ovarian implantations occurred among 200 ectopic pregnancies encountered during a 14-year period. Abortions from impregnated follicles may cause hemoperitoneum more often than is generally suspected. Wedge resection or cystectomy to ensure hemostasis provides tissue for histological examination, without which ruptured ovarian pregnancy may masquerade as rupture of a corpus luteum with hemorrhage (“ovarian apoplexy”). Including patients reported here, IUCD users have within the past five years accounted for about 10% of all ovarian pregnancies recorded in English. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:5057958

  3. Resilient seal ring assembly with spring means applying force to wedge member. [cryogenic applications

    NASA Technical Reports Server (NTRS)

    Myers, W. N.; Hein, L. A. (Inventor)

    1983-01-01

    A ring seal adapted for installation in an annular recess between a housing and a rotating or reciprocating shaft is described. The seal consists of a resilient ring cup member having a ring wedge member inserted in the center recess of the cup member to wedge the opposing lips of the cup member outwardly into a sealing relationship. A spring maintains the force against the wedge member.

  4. Orthogonality of spherical harmonic coefficients

    NASA Technical Reports Server (NTRS)

    Mcleod, M. G.

    1980-01-01

    Orthogonality relations are obtained for the spherical harmonic coefficients of functions defined on the surface of a sphere. Following a brief discussion of the orthogonality of Fourier series coefficients, consideration is given to the values averaged over all orientations of the coordinate system of the spherical harmonic coefficients of a function defined on the surface of a sphere that can be expressed in terms of Legendre polynomials for the special case where the function is the sum of two delta functions located at two different points on the sphere, and for the case of an essentially arbitrary function. It is noted that the orthogonality relations derived have found applications in statistical studies of the geomagnetic field.

  5. Buckling of spherical shells revisited

    NASA Astrophysics Data System (ADS)

    Hutchinson, John W.

    2016-11-01

    A study is presented of the post-buckling behaviour and imperfection sensitivity of complete spherical shells subject to uniform external pressure. The study builds on and extends the major contribution to spherical shell buckling by Koiter in the 1960s. Numerical results are presented for the axisymmetric large deflection behaviour of perfect spheres followed by an extensive analysis of the role axisymmetric imperfections play in reducing the buckling pressure. Several types of middle surface imperfections are considered including dimple-shaped undulations and sinusoidal-shaped equatorial undulations. Buckling occurs either as the attainment of a maximum pressure in the axisymmetric state or as a non-axisymmetric bifurcation from the axisymmetric state. Several new findings emerge: the abrupt mode localization that occurs immediately after the onset of buckling, the existence of an apparent lower limit to the buckling pressure for realistically large imperfections, and comparable reductions of the buckling pressure for dimple and sinusoidal equatorial imperfections.

  6. Spherically Symmetric Solutions of Light Galileon

    NASA Astrophysics Data System (ADS)

    Momeni, D.; Houndjo, M. J. S.; Güdekli, E.; Rodrigues, M. E.; Alvarenga, F. G.; Myrzakulov, R.

    2016-02-01

    We have been studied the model of light Galileon with translational shift symmetry ϕ → ϕ + c. The matter Lagrangian is presented in the form {L}_{φ }= -η (partial φ )2+β G^{μ ν }partial _{μ }φ partial _{ν }φ . We have been addressed two issues: the first is that, we have been proven that, this type of Galileons belong to the modified matter-curvature models of gravity in type of f(R,R^{μ ν }T_{μ ν }m). Secondly, we have been investigated exact solution for spherically symmetric geometries in this model. We have been found an exact solution with singularity at r = 0 in null coordinates. We have been proven that the solution has also a non-divergence current vector norm. This solution can be considered as an special solution which has been investigated in literature before, in which the Galileon's field is non-static (time dependence). Our scalar-shift symmetrized Galileon has the simple form of ϕ = t, which it is remembered by us dilaton field.

  7. Large Amplitude Nonlinear Richtmyer-Meshkov Instability in Convergent Geometries

    NASA Astrophysics Data System (ADS)

    Nelson, A.; Ramaprabhu, P.

    The Richtmyer Meshkov Instability (RMI) is a common hydrodynamic instability that occurs when an interface seperating two fluids of different densities is impulsively accelerated. Any perturbation along the seperating interface will likely evolve to induce mixing. This occurs in many natural events and engineering applications, such as supernovae and Inertial Confinement Fusion (ICF), both of which are inherently spherical. Therefore, to further understand these complicated events in their entirety, it is of interest to identify the specific effects of convergence in RMI induced mixing. To this end, we report results from detailed simulations of singlemode RMI in spherically convergent geometry, and focus on the nonlinear growth of imposed perturbations.

  8. Contractions of affine spherical varieties

    SciTech Connect

    Arzhantsev, I V

    1999-08-31

    The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL{sub 2}-varieties are considered.

  9. Fresnel diffraction by spherical obstacles

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1989-01-01

    Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.

  10. Late Holocene ice wedges near Fairbanks, Alaska, USA: environmental setting and history of growth.

    USGS Publications Warehouse

    Hamilton, T.D.; Ager, T.A.; Robinson, S.W.

    1983-01-01

    Test trenches excavated into muskeg near Fairbanks in 1969 exposed a polygonal network of active ice wedges. The history of ice-wedge growth shows that wedges can form and grow to more than 1m apparent width under mean annual temperatures that probably are close to those of the Fairbanks area today (-3.5oC) and under vegetation cover similar to that of the interior Alaskan boreal forest. The commonly held belief that ice wedges develop only below mean annual air temperatures of -6 to -8oC in the zone of continuous permafrost is invalid.-from Authors

  11. Spherical gearing with intermediate ball elements: parameter ranges with a high contact ratio

    NASA Astrophysics Data System (ADS)

    Gorbenko, M. V.; Gorbenko, T. I.

    2017-02-01

    The paper presents analytical research of the geometry and kinematical parameters of spherical gearing with ball intermediate elements. The main attention is paid to the influence of the offset coefficient on the tooth geometry generation, the contact ratio and the motion transmission angle. Intermediate ball element racetracks on the gear are trochoidal curves on a spherical surface. Two areas for the offset coefficient values providing a high value of the contact ratio – basic trochoid (without offset) and prolate trochoid with abutting racetracks of adjacent ball elements ― were revealed. Analysis of the investigated parameters showed that for power transmission, it is preferable to use spherical gearing without an offset, and for kinematic transmission, it is possible to use profiles with a large offset. The present study allows making a rational choice of geometrical parameters depending on the transmission predestination.

  12. Capillary migration of large confined super-hydrophobic drops in wedges

    NASA Astrophysics Data System (ADS)

    Torres, Logan; Weislogel, Mark; Arnold, Sam

    2016-11-01

    When confined within an interior corner, drops and bubbles migrate to regions of minimum energy by the combined effects of surface tension, surface wetting, and corner geometry. Such capillary phenomena are exploited for passive phase separation operations in micro-fluidic devices on earth and macro-fluidic devices aboard spacecraft. Our study focuses on the migration of large inertial-capillary drops confined between two planar super-hydrophobic surfaces. In our experiments, the near weightless environment of a drop tower produces Bo <<1 for drop volumes O(10mL) with migration velocities up to 10 cm/s. We observe transient power law behavior as a function of drop volume, wedge angle, initial confinement, and fluid properties including contact angle. We then further demonstrate how the experiment method may be employed as a large horizontal quiescent droplet generator for studies ranging from inertial non-wetting moving contact line investigations to large geyser-free horizontal drop impacts. NASA Cooperative Agreement NNX12AO47A, URMP.

  13. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone

    PubMed Central

    Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J. -Michael

    2016-01-01

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed. PMID:27436676

  14. Nano Conductive Ceramic Wedged Graphene Composites as Highly Efficient Metal Supports for Oxygen Reduction

    PubMed Central

    Wu, Peng; Lv, Haifeng; Peng, Tao; He, Daping; Mu, Shichun

    2014-01-01

    A novel conductive ceramic/graphene nanocomposite is prepared to prohibit the re-stacking of reduced graphene oxide (RGO) by wedging zirconium diboride (ZrB2) nanoparticles (NPs) into multiple layer nanosheets using a simple solvothermal method. Surprisingly, the RGO/ZrB2 nanocomposite supported Pt NPs shows very excellent catalytic activity. Its electrochemical surface area (ECSA) is up to 148 m2g−1 (very approaches the geometry surface area of 155 m2g−1), much greater than that of the previous report (usually less than 100 m2g−1). The mass activity is as high as 16.8 A/g−1, which is almost 2 times and 5 times that of Pt/RGO (8.6 A/g−1) and Pt/C (3.2 A/g−1), respectively, as benchmarks. Moreover, after 4000 cycles the catalyst shows only 61% of ECSA loss, meaning a predominantly electrochemical stability. The remarkably improved electrochemical properties with much high Pt utilization of the new catalyst show a promising application in low temperature fuel cells and broader fields. PMID:24495943

  15. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone.

    PubMed

    Nagaya, Takayoshi; Walker, Andrew M; Wookey, James; Wallis, Simon R; Ishii, Kazuhiko; Kendall, J-Michael

    2016-07-20

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.

  16. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone

    NASA Astrophysics Data System (ADS)

    Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J.-Michael

    2016-07-01

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.

  17. Sphericity Tests and Repeated Measures Data.

    ERIC Educational Resources Information Center

    Robey, Randall R.; Barcikowski, Robert S.

    The mixed model analysis of variance assumes a mathematical property known as sphericity. Several preliminary tests have been proposed to detect departures from the sphericity assumption. The logic of the preliminary testing procedure is to conduct the mixed model analysis of variance if the preliminary test suggests that the sphericity assumption…

  18. Theoretical Study of a Spherical Plasma Focus

    NASA Astrophysics Data System (ADS)

    Ay, Yasar

    A theoretical model is developed for two concentric electrodes spherical plasma focus device in order to investigate the plasma sheath dynamics, radiative emission, and the ion properties. The work focuses on the model development of the plasma sheath dynamics and its validation, followed by studying of the radiation effects and the beam-ion properties in such unique geometry as a pulsed source for neutrons, soft and hard x-rays, and electron and ion beams. Chapter 1 is an introduction on fusion systems including plasma focus. Chapter 2 is an extensive literature survey on plasma focus modeling and experiments including the various radiations and their mechanism. Chapter 3 details modeling and validation of the plasma sheath dynamics model with comparison between hydrogen, deuterium, tritium and deuterium-tritium mixture for the production of pulsed neutrons. Chapter 4 is a study of the radiative phase, in which neutron yield is investigated, as well as the predicted beam-ion properties. Chapter 5 summarizes and discusses the results. Chapter 6 provides concluding remarks and proposed future works. The phases of the developed model are the rundown phase I, rundown phase II, the reflected phase and a radiative phase. The rundown phase I starts immediately after the completion of the gas breakdown and ends when the current sheath reaches the equator point of the spherical shape. Then immediately followed by rundown phase II to start and it ends when the shock front hits the axis, which is the beginning of the reflected shock phase. Reflected shock front moves towards the incoming current sheath and meets it which is both the end of the reflected shock phase and the beginning of the radiative phase. After the reflected shock front and the current sheath meet, the current sheath continues to move radially inward by compressing the produced plasma column until it reaches the axis. Since the discharge current contains important information about the plasma dynamic

  19. Mass stranding of wedge-tailed shearwater chicks in Hawaii

    USGS Publications Warehouse

    Work, T.M.; Rameyer, R.A.

    1999-01-01

    Unusual numbers of wedge-tailed shearwater (Puffinus pacificus) chicks stranded on Oahu (Hawaii, USA) in 1994. Compared to healthy wedge-tailed shearwater (WTSW) chicks, stranded chicks were underweight, dehydrated, leukopenic, lymphopenic, eosinopenic, and heterophilic; some birds were toxemic and septic. Stranded chicks also were hypoglycemic and had elevated aspartate amino transferase levels. Most chicks apparently died from emaciation, dehydration, or bacteremia. Because many birds with bacteremia also had severe necrosis of the gastrointestinal (GI) mucosa associated with bacteria, we suspect the GI tract to be the source of disseminated bacterial infection. The identity of the bacteria was not confirmed. The daily number of chicks stranded was significantly related to average wind speeds, and the mortality coincided with the fledging period for WTSW. Strong southeasterly winds were a distinguishing meteorologic factor in 1994 and contributed to the distribution of stranded chicks on Oahu. More objective data on WTSW demographics would enhance future efforts to determine predisposing causes of WTSW wrecks and their effects on seabird colonies.

  20. Mass stranding of wedge-tailed shearwater chicks in Hawaii.

    PubMed

    Work, T M; Rameyer, R A

    1999-07-01

    Unusual numbers of wedge-tailed shearwater (Puffinus pacificus) chicks stranded on Oahu (Hawaii, USA) in 1994. Compared to healthy wedge-tailed shearwater (WTSW) chicks, stranded chicks were underweight, dehydrated, leukopenic, lymphopenic, eosinopenic, and heterophilic; some birds were toxemic and septic. Stranded chicks also were hypoglycemic and had elevated aspartate amino transferase levels. Most chicks apparently died from emaciation, dehydration, or bacteremia. Because many birds with bacteremia also had severe necrosis of the gastrointestinal (GI) mucosa associated with bacteria, we suspect the GI tract to be the source of disseminated bacterial infection. The identity of the bacteria was not confirmed. The daily number of chicks stranded was significantly related to average wind speeds, and the mortality coincided with the fledging period for WTSW. Strong southeasterly winds were a distinguishing meteorologic factor in 1994 and contributed to the distribution of stranded chicks on Oahu. More objective data on WTSW demographics would enhance future efforts to determine predisposing causes of WTSW wrecks and their effects on seabird colonies.

  1. An automated optical wedge calibrator for Dobson ozone spectrophotometers

    NASA Technical Reports Server (NTRS)

    Evans, R. D.; Komhyr, W. D.; Grass, R. D.

    1994-01-01

    The Dobson ozone spectrophotometer measures the difference of intensity between selected wavelengths in the ultraviolet. The method uses an optical attenuator (the 'Wedge') in this measurement. The knowledge of the relationship of the wedge position to the attenuation is critical to the correct calculation of ozone from the measurement. The procedure to determine this relationship is time-consuming, and requires a highly skilled person to perform it correctly. The relationship has been found to change with time. For reliable ozone values, the procedure should be done on a Dobson instrument at regular intervals. Due to the skill and time necessary to perform this procedure, many instruments have gone as long as 15 years between procedures. This article describes an apparatus that performs the procedure under computer control, and is adaptable to the majority of existing Dobson instruments. Part of the apparatus is usable for normal operation of the Dobson instrument, and would allow computer collection of the data and real-time ozone measurements.

  2. Growth and mixing dynamics of mantle wedge plumes

    NASA Astrophysics Data System (ADS)

    Gorczyk, Weronika; Gerya, Taras V.; Connolly, James A. D.; Yuen, David A.

    2007-07-01

    Recent work suggests that hydrated partially molten thermal-chemical plumes that originate from subducted slab as a consequence of Rayleigh-Taylor instability are responsible for the heterogeneous composition of the mantle wedge. We use a two-dimensional ultrahigh-resolution numerical simulation involving 10 × 109 active markers to anticipate the detailed evolution of the internal structure of natural plumes beneath volcanic arcs in intraoceanic subduction settings. The plumes consist of partially molten hydrated peridotite, dry solid mantle, and subducted oceanic crust, which may compose as much as 12% of the plume. As plumes grow and mature these materials mix chaotically, resulting in attenuation and duplication of the original layering on scales of 1-1000 m. Comparison of numerical results with geological observations from the Horoman ultramafic complex in Japan suggests that mixing and differentiation processes related to development of partially molten plumes above slabs may be responsible for the strongly layered lithologically mixed (marble cake) structure of asthenospheric mantle wedges.

  3. Dying Flow Bursts as Generators of the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2016-07-01

    Many theories or conjectures exist on the driver of the substorm current wedge, e.g. rerouting of the tail current, current disruption, flow braking, vortex formation, and current sheet collapse. Magnitude, spatial scale, and temporal development of the related magnetic perturbations suggest that the generator is related to the interaction of the flow bursts with the dipolar magnetosphere after onset of reconnection in the near-Earth tail. The question remains whether it is the flow energy that feeds the wedge current or the internal energy of the arriving plasma. In this presentation I argue for the latter. The current generation is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the preceding layer of high-beta plasma after flow braking. The generator current is the grad-B current at the outer boundary of the compressed high-beta plasma layers. It needs the sequential arrival of several flow bursts to account for duration and magnitude of the ionospheric closure current.

  4. Dying Flow Bursts as Generators of the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, G.

    2015-12-01

    Many theories or conjectures exist on the driver of the substorm current wedge, e.g. rerouting of the tail current, current disruption, flow braking, vortex formation, and current sheet collapse. Magnitude, spatial scale, and temporal development of the related magnetic perturbations suggest that the generator is related to the interaction of the flow bursts with the dipolar magnetosphere after onset of reconnection in the near-Earth tail. The question remains whether it is the flow energy that feeds the wedge current or the internal energy of the arriving plasma. In this presentation I argue for the latter. The current generation is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the preceding layer of high-beta plasma after flow braking. The generator current is the grad-B current at the outer boundary of the compressed high-beta plasma layers. It needs the sequential arrival of several flow bursts to account for duration and magnitude of the ionospheric closure current.

  5. Magmatic implications of mantle wedge plumes: Experimental study

    NASA Astrophysics Data System (ADS)

    Castro, A.; Gerya, T. V.

    2008-06-01

    Numerical and laboratory experiments beside natural observations suggest that hydration and partial melting along the subducting slab can trigger Rayleigh-Taylor instabilities that evolve into partially molten diapiric structures ("cold plumes") that rise through the hot asthenospheric wedge. Mixed cold plumes composed of tectonic melanges derived from subduction channels can transport the fertile subducted crustal materials towards hotter zones of the suprasubduction mantle wedge leading to the formation of silicic melts. We investigate magmatic consequences of this plausible geodynamic scenario by using an experimental approach. Melt compositions, fertility and reaction between silicic melts and the peridotite mantle (both hydrous and dry) were tested by means of piston-cylinder experiments at conditions of 1000°C and pressures of 2.0 and 2.5GPa. The results indicate that silicic melts of trondhjemite and granodiorite compositions may be produced in the ascending mixed plume megastructures. Our experiments show that the formation of an Opx-rich reaction band, developed at the contact between the silicic melts and the peridotite, protect silicic melts from further reaction in contrast to the classical view that silicic melts are completely consumed in the mantle. The mixed, mantle-crust isotopic signatures which are characteristic of many calc-alkaline batholiths are also expected from this petrogenetic scenario.

  6. Relation of the auroral substorm to the substorm current wedge

    NASA Astrophysics Data System (ADS)

    McPherron, Robert L.; Chu, Xiangning

    2016-12-01

    The auroral substorm is an organized sequence of events seen in the aurora near midnight. It is a manifestation of the magnetospheric substorm which is a disturbance of the magnetosphere brought about by the solar wind transfer of magnetic flux from the dayside to the tail lobes and its return through the plasma sheet to the dayside. The most dramatic feature of the auroral substorm is the sudden brightening and poleward expansion of the aurora. Intimately associated with this expansion is a westward electrical current flowing across the bulge of expanding aurora. This current is fed by a downward field-aligned current (FAC) at its eastern edge and an upward current at its western edge. This current system is called the substorm current wedge (SCW). The SCW forms within a minute of auroral expansion. FAC are created by pressure gradients and field line bending from shears in plasma flow. Both of these are the result of pileup and diversion of plasma flows in the near-earth plasma sheet. The origins of these flows are reconnection sites further back in the tail. The auroral expansion can be explained by a combination of a change in field line mapping caused by the substorm current wedge and a tailward growth of the outer edge of the pileup region. We illustrate this scenario with a complex substorm and discuss some of the problems associated with this interpretation.

  7. Hydrodynamic interactions of cilia on a spherical body

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Elfring, Gwynn J.

    2015-11-01

    The emergence of metachronal waves in ciliated microorganisms can arise solely from the hydrodynamic interactions between the cilia. For a chain of cilia attached to a flat ciliate, it was observed that fluid forces can lead the system to form a metachronal wave. However, several microorganisms such as paramecium and volvox possess a curved shaped ciliate body. To understand the effect of this geometry on the formation of metachronal waves, we evaluate the hydrodynamic interactions of cilia near a large spherical body. Using a minimal model, we show that for a chain of cilia around the sphere, the embedded periodicity in the geometry leads the system to synchronize. We also report an emergent wave-like behavior when an asymmetry is introduced to the system.

  8. Flyby Geometry Optimization Tool

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.

    2007-01-01

    The Flyby Geometry Optimization Tool is a computer program for computing trajectories and trajectory-altering impulsive maneuvers for spacecraft used in radio relay of scientific data to Earth from an exploratory airplane flying in the atmosphere of Mars.

  9. What Is Geometry?

    ERIC Educational Resources Information Center

    Chern, Shiing-Shen

    1990-01-01

    Discussed are the major historical developments of geometry. Euclid, Descartes, Klein's Erlanger Program, Gaus and Riemann, globalization, topology, Elie Cartan, and an application to molecular biology are included as topics. (KR)

  10. Gingerbread-House Geometry.

    ERIC Educational Resources Information Center

    Emenaker, Charles E.

    1999-01-01

    Describes a sixth-grade interdisciplinary geometry unit based on Charles Dickens's "A Christmas Carol". Focuses on finding area, volume, and perimeter, and working with estimation, decimals, and fractions in the context of making gingerbread houses. (ASK)

  11. Facilitating Understandings of Geometry.

    ERIC Educational Resources Information Center

    Pappas, Christine C.; Bush, Sara

    1989-01-01

    Illustrates some learning encounters for facilitating first graders' understanding of geometry. Describes some of children's approaches using Cuisenaire rods and teacher's intervening. Presents six problems involving various combinations of Cuisenaire rods and cubes. (YP)

  12. Proof in Transformation Geometry

    ERIC Educational Resources Information Center

    Bell, A. W.

    1971-01-01

    The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)

  13. Van der waals-like isotherms in a confined electrolyte by spherical and cylindrical nanopores.

    PubMed

    Aguilar-Pineda, Gabriel E; Jiménez-Angeles, Felipe; Yu, Jiang; Lozada-Cassou, Marcelo

    2007-03-01

    Electrolytes confined by spherical, cylindrical, and slit-like charged nanopores are studied. Results for ionic distribution profiles, pressures of the confined fluid, and absorption isotherms are obtained through the hypernetted chain/mean spherical approximation (HNC/MSA) integral equations theory. In spherical and cylindrical geometries, an inward, non-monotonic behavior of the pressure is found as confinement increases, implying a negative compressibility. The pressure vs volume isotherms resemble liquid-vapor van der Waals-like phase transition diagrams. This effect is correlated with a charge separation inside a spherical pore previously reported (Phys. Rev. Lett., 79, 3656, 1997). Here, the mechanism of charge separation and negative compressibility are explored in detail. When compared with the slit-like pore pressure, important qualitative differences are found.

  14. Sphere quadtrees - A new data structure to support the visualization of spherically distributed data

    NASA Technical Reports Server (NTRS)

    Fekete, Gyorgy; Treinish, Lloyd

    1990-01-01

    The concept of the sphere quadtree (SQT) is introduced to enable the structuring of spherically distributed data to be consistent with its geometry and facilitate mapping of the data onto a flat file system. The SQT is based on the recursive subdivision of the spherical triangles that result from the projection of the faces of an icosahedron onto a sphere. The SQT concept is insensitive to the distortions that occur far from the equator in spherically distributed data sets. Geographic data can be shown at several levels and at any resolution, allowing a system of referencing between data sets of different resolutions as well as data that are not geographically registered. SQTs are found to facilitate the search for particular spherically distributed data sets and improve the efficiency of surface rendering algorithms.

  15. Common Geometry Module

    SciTech Connect

    Tautges, Timothy J.

    2005-01-01

    The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and on top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also indudes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.

  16. Software Geometry in Simulations

    NASA Astrophysics Data System (ADS)

    Alion, Tyler; Viren, Brett; Junk, Tom

    2015-04-01

    The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).

  17. Comparison of weak-shock reflection factors for wedges, cylinders and blast waves

    SciTech Connect

    Reichenbach, H. , Freiburg im Breisgau ); Kuhl, A.L. )

    1992-07-01

    Ernst Mach (1838--1916) was the first to discover an irregular reflection phenomenon of shock waves, as is well known in our community. In fact, this occurred in 1875 -- three years earlier than usually assumed in the literature. A facsimile of the paper in which he mentioned a special shock wave behavior is shown in a figure. However, it is correct that Mach gave the physical interpretation of this phenomenon in 1878. Since Mach's discovery of an irregular shock reflection pattern 117 years ago, new shock configurations have been discovered -- one of the most recent examples is the so-called [open quotes]von Neumann reflection[close quotes] for weak shocks as reported by Colella and Henderson in 1990. Due to active research efforts related to shock reflection, especially in the last two decades, we now have a relatively detailed understanding of reflection phenomena and of transition conditions from one reflection configuration to another. The purpose of this paper is to compare reflection factors for weak shocks from various surfaces, and to focus attention on some unsolved questions. Three different cases are considered: (1) square-wave planar shock reflection from wedges, (2) square-wave planar shock reflection from cylinders and (3) spherical blast wave reflection from a planar surface. The authors restrict themselves to weak shocks. Following Henderson's definition, shocks with a Mach number of M[sub 0] < 1.56 in air or with an overpressure of [Delta]p[sub I] < 25 psi (1.66 bar) under normal ambient conditions are called weak.

  18. Comparison of weak-shock reflection factors for wedges, cylinders and blast waves

    SciTech Connect

    Reichenbach, H.; Kuhl, A.L.

    1992-07-01

    Ernst Mach (1838--1916) was the first to discover an irregular reflection phenomenon of shock waves, as is well known in our community. In fact, this occurred in 1875 -- three years earlier than usually assumed in the literature. A facsimile of the paper in which he mentioned a special shock wave behavior is shown in a figure. However, it is correct that Mach gave the physical interpretation of this phenomenon in 1878. Since Mach`s discovery of an irregular shock reflection pattern 117 years ago, new shock configurations have been discovered -- one of the most recent examples is the so-called {open_quotes}von Neumann reflection{close_quotes} for weak shocks as reported by Colella and Henderson in 1990. Due to active research efforts related to shock reflection, especially in the last two decades, we now have a relatively detailed understanding of reflection phenomena and of transition conditions from one reflection configuration to another. The purpose of this paper is to compare reflection factors for weak shocks from various surfaces, and to focus attention on some unsolved questions. Three different cases are considered: (1) square-wave planar shock reflection from wedges, (2) square-wave planar shock reflection from cylinders and (3) spherical blast wave reflection from a planar surface. The authors restrict themselves to weak shocks. Following Henderson`s definition, shocks with a Mach number of M{sub 0} < 1.56 in air or with an overpressure of {Delta}p{sub I} < 25 psi (1.66 bar) under normal ambient conditions are called weak.

  19. Ultrasonic analysis of Kevlar-epoxy filament wound spherical test specimens

    SciTech Connect

    Brosey, W.D.

    1984-12-06

    Increased use of composite materials in enclosed geometries such as cylindrical, spherical, or conical shapes has led to the desire to transfer and further develop the most promising nondestructive evaluation (NDE) techniques used on nonenclosed geometries to enclosed geometries. Known defects were placed within spherical Kevlar-epoxy filament wound test specimens to determine the extent to which they could be detected. These defects included Teflon shim-simulated delaminations, macrosphere-simulated voids, dry-band sets, variable tension, Kevlar 29 fiber, and an alternate high void content winding pattern. Ultrasonic C-scan analysis of Kevlar-epoxy filament wound spheres was performed to determine detectability of normal winding patterns and implanted flaw conditions in the composite using this technique. Ultrasonic waveform analysis was performed in both the time and frequency domains to determine the detectability and locatability of structural flaws within the composite.

  20. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  1. Investigation of a Wedge Adhesion Test for Edge Seals

    SciTech Connect

    Kempe, Michael; Wohlgemuth, John; Miller, David; Postak, Lori; Booth, Dennis; Phillips, Nancy

    2016-09-26

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adapting the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be

  2. Investigation of a wedge adhesion test for edge seals

    NASA Astrophysics Data System (ADS)

    Kempe, Michael; Wohlgemuth, John; Miller, David; Postak, Lori; Booth, Dennis; Phillips, Nancy

    2016-09-01

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adapting the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be

  3. APPARATUS FOR GRINDING SPHERICAL BODIES

    DOEpatents

    Burch, R.F. Jr.

    1963-09-24

    A relatively inexpensive device is described for grinding rough ceramic bodies into accurate spherical shapes using a conventional drill press and a belt sander. A horizontal disk with an abrasive-surfaced recess in its lower face is mounted eccentrically on a vertical shaft which is forced downward against a stop by a spring. Bodies to be ground are placed in the recess and are subjected to the abrasive action of the belt sander as the disk is rotated by the drill press. (AEC)

  4. Electronic switching spherical array antenna

    NASA Technical Reports Server (NTRS)

    Stockton, R.

    1978-01-01

    This work was conducted to demonstrate the performance levels attainable with an ESSA (Electronic Switching Spherical Array) antenna by designing and testing an engineering model. The antenna was designed to satisfy general spacecraft environmental requirements and built to provide electronically commandable beam pointing capability throughout a hemisphere. Constant gain and beam shape throughout large volumetric coverage regions are the principle characteristics. The model is intended to be a prototype of a standard communications and data handling antenna for user scientific spacecraft with the Tracking and Data Relay Satellite System (TDRSS). Some additional testing was conducted to determine the feasibility of an integrated TDRSS and GPS (Global Positioning System) antenna system.

  5. Physics of Spherical Torus Plasmas

    SciTech Connect

    Peng, Yueng Kay Martin

    2000-01-01

    Broad and important progress in plasma tests, theory, new experiments, and future visions of the spherical torus (ST, or very low aspect ratio tokamaks) have recently emerged. These have substantially improved our understanding of the potential properties of the ST plasmas, since the preliminary calculation of the ST magnetohydrodynamic equilibria more than a decade ago. Exciting data have been obtained from concept exploration level ST experiments of modest capabilities (with major radii up to 35 cm), making important scientific contributions to toroidal confinement in general. The results have helped approval and construction of new and/or more powerful ST experiments, and stimulated an increasing number of theoretical calculations of interest to magnetic fusion energy. Utilizing the broad knowledge base from the successful tokamak and advanced tokamak research, a wide range of new ST physics features has been suggested. These properties of the ST plasma will be tested at the 1 MA level with major radius up to similar to 80 cm in the new proof of principle devices National Spherical Torus Experiment (NSTX, U.S.) [M. Peng , European Conf. Abst. 22C, 451 (1998); S. M. Kaye , Fusion Technol. 36, 16 (1999); M. Ono , "Exploration of Spherical Torus Physics in the NSTX Device," 17th IAEA Fusion Energy Conf., paper IAEA-CN-69/ICP/01 (R), Yokohama, Japan (1998)], Mega Ampere Spherical Tokamak (MAST, U.K.) [A. C. Darke , Fusion Technol. 1, 799 (1995); Q. W. Morris , Proc. Int. Workshop on ST (Ioffe Inst., St. Petersburg, 1997), Vol. 1, p. 290], and Globus-M (R.F.) [V. K. Gusev , European Conf. Abst. 22C, 576 (1998)], which have just started full experimental operation. New concept exploration experiments, such as Pegasus (University of Wisconsin) [R. Fonck and the PEGASUS Team, Bull. Am. Phys. Soc. 44, 267 (1999)], Helicity Injected Tokamak-II (HIT-II, University of Washington) [T. R. Jarboe , Phys. Plasmas 5, 1807 (1998)], and Current Drive Experiment-Upgrade (CDX

  6. Medical devices; obstetrical and gynecological devices; classification of the hemorrhoid prevention pressure wedge. Final rule.

    PubMed

    2011-04-15

    The Food and Drug Administration (FDA) is classifying the hemorrhoid prevention pressure wedge into class II (special controls). The special controls will apply to the device in order to provide a reasonable assurance of safety and effectiveness of the device. A hemorrhoid prevention pressure wedge provides support to the perianal region during the labor and delivery process.

  7. A quantum hybrid with a thin antenna at the vertex of a wedge

    NASA Astrophysics Data System (ADS)

    Carlone, Raffaele; Posilicano, Andrea

    2017-03-01

    We study the spectrum, resonances and scattering matrix of a quantum Hamiltonian on a "hybrid surface" consisting of a half-line attached by its endpoint to the vertex of a concave planar wedge. At the boundary of the wedge, outside the vertex, homogeneous Dirichlet conditions are imposed. The system is tunable by varying the measure of the angle at the vertex.

  8. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology

    NASA Astrophysics Data System (ADS)

    Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.; Fedorov, Alexander N.; Frost, Gerald V.; Grosse, Guido; Hinzman, Larry D.; Iijma, Yoshihiro; Jorgenson, Janet C.; Matveyeva, Nadya; Necsoiu, Marius; Raynolds, Martha K.; Romanovsky, Vladimir E.; Schulla, Jörg; Tape, Ken D.; Walker, Donald A.; Wilson, Cathy J.; Yabuki, Hironori; Zona, Donatella

    2016-04-01

    Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.

  9. Comparison of dosimetric characteristics of Siemens virtual and physical wedges for ONCOR linear accelerator.

    PubMed

    Attalla, Ehab M; Abo-Elenein, H S; Ammar, H; El-Desoky, Ismail

    2010-07-01

    Dosimetric properties of virtual wedge (VW) and physical wedge (PW) in 6- and 10-MV photon beams from a Siemens ONCOR linear accelerator, including wedge factors, depth doses, dose profiles, peripheral doses, are compared. While there is a great difference in absolute values of wedge factors, VW factors (VWFs) and PW factors (PWFs) have a similar trend as a function of field size. PWFs have stronger depth dependence than VWF due to beam hardening in PW fields. VW dose profiles in the wedge direction, in general, match very well with those of PW, except in the toe area of large wedge angles with large field sizes. Dose profiles in the nonwedge direction show a significant reduction in PW fields due to off-axis beam softening and oblique filtration. PW fields have significantly higher peripheral doses than open and VW fields. VW fields have similar surface doses as the open fields, while PW fields have lower surface doses. Surface doses for both VW and PW increase with field size and slightly with wedge angle. For VW fields with wedge angles 45° and less, the initial gap up to 3 cm is dosimetrically acceptable when compared to dose profiles of PW. VW fields in general use less monitor units than PW fields.

  10. [Electron microscopic study of wedge-shaped defects of teeth on initial stage].

    PubMed

    Makeeva, I M; Biakova, S F; Chuev, V P; Sheveliuk, Iu V

    2009-01-01

    The aim of thes; study was to observe initial stage of wedge-shaped defects under scanning electron microscopy without prior samples preparation. There were revealed special features of structure of enamel and cement at initial stage of wedge-shaped defects in comparison to normal tissues.

  11. Reflection of a converging cylindrical shock wave segment by a straight wedge

    NASA Astrophysics Data System (ADS)

    Gray, B.; Skews, B.

    2017-01-01

    As a converging cylindrical shock wave propagates over a wedge, the shock wave accelerates and the angle between the shock wave and the wedge decreases. This causes the conditions at the reflection point to move from what would be the irregular reflection domain for a straight shock wave into the regular reflection domain. This paper covers a largely qualitative study of the reflection of converging shock wave segments with Mach numbers between 1.2 and 2.1 by wedges inclined at angles between 15° and 60° from experimental and numerical results. The sonic condition conventionally used for predicting the type of reflection of straight shock waves was found to also be suitable for predicting the initial reflection of a curved shock wave. Initially regular reflections persisted until the shock was completely reflected by the wedge, whereas the triple point of initially irregular reflections was observed to return to the wedge surface, forming transitioned regular reflection. After the incident shock wave was completely reflected by the wedge, a shock wave focusing mechanism was observed to amplify the pressure on the surface of the wedge by a factor of up to 100 for low wedge angles.

  12. The Appearance of Non-Spherical Systems. Application to LMXB

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Bełdycki, B.; Madej, J.; Adhikari, T. P.; You, B.

    2017-03-01

    We study the appearance of the neutron star-accretion disk system as seen by a distant observer in the UV/X-ray domain. The observed intensity spectra are computed assuming non-spherical geometry of the whole system, in which outgoing spectrum is not represented by the flux spectrum, the latter being valid for spherically symmetric objects. Intensity spectra of our model display double bumps in UV/X-ray energy domains. Such structure is caused by the fact that the the source is not spherically symmetric, and the proper integration of intensity over emitted area is needed to reproduce observed spectral shape. Relative normalization of double bump is self consistently computed by our model. X-ray spectra of such a type were often observed in LMXB with accretion disk, ultra luminous X-ray sources, and accreting black hole systems with hot inner compact corona. Our model naturally explains high energy broadening of the disk spectrum observed in some binaries. We attempted to fit our model to X-ray data of XTE J1709-267 from XMM-Newton. Unfortunately, the double intensity bump predicted by our model for LMXB is located in soft X-ray domain, uncovered by existing data for this source.

  13. Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes

    NASA Astrophysics Data System (ADS)

    Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.

    2015-11-01

    We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.

  14. Performance of Spherically Focused Air-Coupled Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    Chimenti, D. E.; Song, Junho

    2007-03-01

    This paper reports the development, testing, and performance evaluation of spherically focused capacitive air-coupled ultrasonic transducers 1 and 5 cm in diameter. A flexible micro-machined copper/polyimide backplate permits a conformal fit to a spherically shaped fixture, forming the rear capacitor plate. A spherically deformed 6-μm aluminized Mylar foil forms the front capacitor plate, completing the transducer. The device's frequency spectrum is centered near 800 kHz with -6dB points at about 400 and 1200 kHz. The device's focal-plane behavior is successfully modeled theoretically as a focused piston radiator. The imaging and defect detection capabilities of the new transducer are demonstrated in a series of critical tests: a 250-μm wire is easily imaged in a confocal geometry with a second device. Composite, honeycomb, and wood samples are imaged in through-transmission C-scans, showing internal defects. A printed circuit board is imaged, showing features as small as 200-μm.

  15. Polymeric carriers: role of geometry in drug delivery

    PubMed Central

    Simone, Eric A; Dziubla, Thomas D; Muzykantov, Vladimir R

    2009-01-01

    The unique properties of synthetic nanostructures promise a diverse set of applications as carriers for drug delivery, which are advantageous in terms of biocompatibility, pharmacokinetics, targeting and controlled drug release. Historically, more traditional drug delivery systems have focused on spherical carriers. However, there is a growing interest in pursuing non-spherical carriers, such as elongated or filamentous morphologies, now available due to novel formulation strategies. Unique physiochemical properties of these supramolecular structures offer distinct advantages as drug delivery systems. In particular, results of recent studies in cell cultures and lab animals indicate that rational design of carriers of a given geometry (size and shape) offers an unprecedented control of their longevity in circulation and targeting to selected cellular and subcellular locations. This article reviews drug delivery aspects of non-spherical drug delivery systems, including material selection and formulation, drug loading and release, biocompatibility, circulation behavior, targeting and subcellular addressing. PMID:19040392

  16. On the Explosion Geometry of Red Supergiant Stars

    NASA Astrophysics Data System (ADS)

    Leonard, Douglas Christopher; Dessart, Luc; Pignata, Giuliano; Hillier, D. John; Williams, George Grant; Smith, Paul S.; Khandrika, Harish; Bilinski, Christopher; Duong, Nhieu; Flatland, Kelsi; Gonzalez, Luis; Hoffman, Jennifer L.; Horst, Chuck; Huk, Leah; Milne, Peter; Rachubo, Alisa A.; Smith, Nathan

    2015-08-01

    From progenitor studies, type II-Plateau supernovae (SNe II-P) have been decisively and uniquely determined to arise from isolated red supergiant (RSG) stars with initial masses ranging from 8 to 16 solar masses (Smartt 2009), establishing the most homogeneous -- and well understood -- progenitor class of any type of core-collapse supernova. However, we must admit a fundamental truth: We do not know how these stars explode. A basic discriminant among proposed explosion models is explosion geometry, since some models predict severe distortions from spherical symmetry. A primary method to gain such geometric information is through spectropolarimetry of the expanding (but, unresolved) atmosphere, with higher degrees of linear polarization generally demanding larger departures from spherical symmetry. Initially, as a class, SNe II-P were found to be only weakly polarized at the early epochs observed, suggesting a nearly spherical explosion for RSG stars. However, late-time observations of SN 2004dj captured a dramatic spike in polarization at just the moment the "inner core" of the ejecta was first revealed in this SN II-P (i.e., at the "drop" off of the photometric plateau; Leonard et al. 2006). This raised the possibility that the explosion of RSGs might be driven by a strongly non-spherical mechanism, with the evidence for the asphericity cloaked at early times by the massive, opaque, quasi-spherical hydrogen envelope. In this presentation we shall describe the continuing work on the explosion geometry of RSGs being carried out by the SuperNova SpectroPOLarimetry project (SNSPOL), with a particular focus on SN 2013ej -- an SN II-P that exhibited remarkably high polarization just days after the explosion (Leonard et al. 2013), and for which twelve epochs of spectropolarimetry trace an intriguing tale about its geometry deep into the nebular phase. We acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research was carried out.

  17. Integrable Background Geometries

    NASA Astrophysics Data System (ADS)

    Calderbank, David M. J.

    2014-03-01

    This work has its origins in an attempt to describe systematically the integrable geometries and gauge theories in dimensions one to four related to twistor theory. In each such dimension, there is a nondegenerate integrable geometric structure, governed by a nonlinear integrable differential equation, and each solution of this equation determines a background geometry on which, for any Lie group G, an integrable gauge theory is defined. In four dimensions, the geometry is selfdual conformal geometry and the gauge theory is selfdual Yang-Mills theory, while the lower-dimensional structures are nondegenerate (i.e., non-null) reductions of this. Any solution of the gauge theory on a k-dimensional geometry, such that the gauge group H acts transitively on an ℓ-manifold, determines a (k+ℓ)-dimensional geometry (k+ℓ≤4) fibering over the k-dimensional geometry with H as a structure group. In the case of an ℓ-dimensional group H acting on itself by the regular representation, all (k+ℓ)-dimensional geometries with symmetry group H are locally obtained in this way. This framework unifies and extends known results about dimensional reductions of selfdual conformal geometry and the selfdual Yang-Mills equation, and provides a rich supply of constructive methods. In one dimension, generalized Nahm equations provide a uniform description of four pole isomonodromic deformation problems, and may be related to the {SU}(∞) Toda and dKP equations via a hodograph transformation. In two dimensions, the {Diff}(S^1) Hitchin equation is shown to be equivalent to the hyperCR Einstein-Weyl equation, while the {SDiff}(Σ^2) Hitchin equation leads to a Euclidean analogue of Plebanski's heavenly equations. In three and four dimensions, the constructions of this paper help to organize the huge range of examples of Einstein-Weyl and selfdual spaces in the literature, as well as providing some new ! ones. The nondegenerate reductions have a long ancestry. More ! recently

  18. Comparison of the hamstring/quadriceps ratio in females during squat exercise using various foot wedges

    PubMed Central

    Yoo, Won-gyu

    2016-01-01

    [Purpose] This study compared the hamstring/quadriceps ratio in females during squat exercise using various foot wedges. [Subjects and Methods] Nine females participated in this study. Surface electrodes measurements were taken over the hamstring and quadriceps under 3 squat exercise conditions, and the hamstring/quadriceps ratio was calculated. [Results] The hamstring/quadriceps ratio was significantly increased during squat exercise in inclined wedge condition (7.4 ± 1.8), compared to the declined wedge condition (5.3 ± 2.2) and no wedge condition (6.4 ± 3.2). [Conclusion] This study suggests that squat exercise in the inclined wedge condition may be effective for increasing the hamstring/quadriceps ratio in females. PMID:27630437

  19. Distortion of optical wedges with a large angle of incidence in a collimated beam

    NASA Astrophysics Data System (ADS)

    Mao, Wenwei; Xu, Yuxian

    1999-04-01

    The optical wedge engenders a distortion aberration in a collimated beam in general. Presented is a set of distortion formulas and of third-order distortion formulas in the component form of TAx and TAy for optical wedges. The main dependence of the distortion as a function of the apex angle, of the incident angle of the optical axis, and of the view field of the optical wedge is established. The slope formula of a curved line, which is the image of a straight line of an optical wedge, is developed. They are suited for the large incident angle of the optical axis and the small apex angle. The analysis and calculation indicate that the image of a square for an optical wedge is in the shape of a church bell with a slightly convex or flat side rather than with a concave side.

  20. The accuracy of transoesophageal echocardiography in estimating pulmonary capillary wedge pressure in anaesthetised patients.

    PubMed

    Ali, M M; Royse, A G; Connelly, K; Royse, C F

    2012-02-01

    The objective of this study was to identify whether pulmonary capillary wedge pressure can be estimated in anaesthetised patients receiving mechanical ventilation, using transoesophageal echocardiography. A retrospective validation study investigated a 10-patient cohort with variable haemodynamic conditions, and a 102-patient series in which a single measurement was made during stable haemodynamic conditions. Concurrent echocardiographic Doppler and pulmonary artery catheter wedge pressure measurements were performed. In the 10-patient cohort, the systolic fraction of Doppler measurements in the pulmonary vein (r = -0.32, p = 0.035) and the E/A ratio (r = 0.56, p = 0.0009) were correlated with the wedge pressure. In all cases, the limits of agreement exceeded 10 mmHg, and sensitivity or specificity for detecting wedge pressure ≥ 15 mmHg was poor. This study demonstrates proof of concept that using transoesophageal echocardiography for estimating the pulmonary artery wedge pressure may not be sufficiently accurate for clinical use.

  1. Simple phase-shifting method in a wedge-plate lateral-shearing interferometer.

    PubMed

    Song, Jae Bong; Lee, Yun Woo; Lee, In Won; Lee, Yong-Hee

    2004-07-10

    A simple phase-shifting method in a wedge-plate lateral shearing interferometer is described. Simply moving the wedge plate in an in-plane parallel direction gives the amount of phase shift required for phase-shifting interferometry because the thickness of a wedge plate is not constant and varies along the wedge direction. This method requires only one additional linear translator to move the wedge plate. The required moving distance for a phase shift of the wave front with this method is of the order of a millimeter, whereas the typical moving distance for another method that uses a piezoelectric transducer is of the order of a wavelength. This method yields better precision in controlling the moving distance than do the other methods.

  2. Comparison of the hamstring/quadriceps ratio in females during squat exercise using various foot wedges.

    PubMed

    Yoo, Won-Gyu

    2016-08-01

    [Purpose] This study compared the hamstring/quadriceps ratio in females during squat exercise using various foot wedges. [Subjects and Methods] Nine females participated in this study. Surface electrodes measurements were taken over the hamstring and quadriceps under 3 squat exercise conditions, and the hamstring/quadriceps ratio was calculated. [Results] The hamstring/quadriceps ratio was significantly increased during squat exercise in inclined wedge condition (7.4 ± 1.8), compared to the declined wedge condition (5.3 ± 2.2) and no wedge condition (6.4 ± 3.2). [Conclusion] This study suggests that squat exercise in the inclined wedge condition may be effective for increasing the hamstring/quadriceps ratio in females.

  3. Periodic nanostructures from self assembled wedge-type block-copolymers

    SciTech Connect

    Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot

    2015-06-02

    The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.

  4. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, Melvin; Cottingham, James G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped.

  5. Compact optical isolator for fibers using birefringent wedges.

    PubMed

    Shirasaki, M; Asama, K

    1982-12-01

    A new type of optical isolator for fibers is proposed in this paper. A birefringent wedge used to separate and combine the polarized light is developed, giving the isolator low forward loss and high isolation. The antire-flection process at the fiber endface reduces the forward loss and reflected return. A forward loss of 0.8 dB, a backward loss of 35 dB, and a reflected return of -32 dB were obtained. These characteristics were measured from fiber to fiber using multimode fibers with 50-/microm core diam at a wavelength of 1.3 microm. Details of the design, fabrication, and characteristics of this isolator are presented.

  6. Computer dosimetry for flattened and wedged fast-neutron beams.

    PubMed

    Hogstrom, K R; Smith, A R; Almond, P R; Otte, V A; Smathers, J B

    1976-01-01

    Beam flattening by the use of polyethylene filters has been developed for the 50-MeV d in equilibrium Be fast-neutron therapy beam at the Texas A&M Variable-Energy Cyclotron (TAMVEC) as a result of the need for a more uniform dose distribution at depth within the patient. A computer algorithm has been developed that allows the use of a modified decrement line method to calculate dose distributions; standards decrement line methods do not apply because of off-axis peaking. The dose distributions for measured flattened beams are transformed into distributions that are physically equivalent to an unflattened distribution. In the transformed space, standard decrement line theory yields a distribution for any field size which, by applying the inverse transformation, generates the flattened dose distribution, including the off-axis peaking. A semiempirical model has been constructed that allows the calculation of dose distributions for wedged beams from open-beam data.

  7. Numerical investigation of shedding partial cavities over a sharp wedge

    NASA Astrophysics Data System (ADS)

    Budich, B.; Neuner, S.; Schmidt, S. J.; Adams, N. A.

    2015-12-01

    In this contribution, we examine transient dynamics and cavitation patterns of periodically shedding partial cavities by numerical simulations. The investigation reproduces reference experiments of the cavitating flow over a sharp wedge. Utilizing a homogeneous mixture model, full compressibility of the two-phase flow of water and water vapor is taken into account by the numerical method. We focus on inertia-dominated mechanisms, thus modeling the flow as inviscid. Based on the assumptions of thermodynamic equilibrium and barotropic flow, the thermodynamic properties are computed from closed-form analytical relations. Emphasis is put on a validation of the employed numerical approach. We demonstrate that computed shedding dynamics are in agreement with the references. Complex flow features observed in the experiments, including cavitating hairpin and horse-shoe vortices, are also predicted by the simulations. Furthermore, a condensation discontinuity occurring during the collapse phase at the trailing portion of the partial cavity is equally obtained.

  8. Structural and morphological evolution of thrust wedges above a ductile layer with different viscous behavior

    NASA Astrophysics Data System (ADS)

    Cerca, M.; Barrientos, B.; Garcia-Marquez, J.; Portillo-Pineda, R.; Hernandez-Bernal, C.

    2007-05-01

    A series of scaled physical experiments illustrate the importance of differences in density and viscous behavior of décollement in the structural evolution of thrust wedges during shortening. In particular, we have analyzed the effect of changes in viscosity in the morphological evolution and strain of the brittle overburden surface. Ten models properly scaled in geometry and mechanical behavior of natural geological materials were deformed at the Modeling Laboratory (LAMMG) of UNAM. Mechanical stratification of the models included basal and upper brittle layers of 1 and 2 cm, respectively; separated by an intermediate viscous layer of 0.5 cm. Brittle layers were constructed with grains of quartz sand following a Mohr-Coulomb criterion of faulting and bulk density of ca. 1300 kg m-3. The viscous layer was composed of silicon-sand mixtures having differences in dynamic viscosity (Pa s) and density (kg m-3) as the following cases: (A) 2.0 e 4 and 978, (B) 3.3 e 4 and 1195, (C) 4.7 e 4 and 1270. The experiments were carried out in a Plexiglas box of 40x15x10 cm and deformed by moving a vertical wall at a constant velocity of 1.5 cm hr-1. Cross sections of the experiments were obtained for values of bulk shortening of ca. 20 and 40 percent. The modeling results suggest a close relation of structural style of the thrust wedge with the initial conditions of décollement viscosity. Low viscosity models have a structural development characterized by low angle napes and detachment folds with limb rotation indicating a predominant vergence towards foreland. High viscosity models have a greater mechanical coupling between décollement and overburden and develop preferentially detachment folds with higher elevation and undefined vergence. The evolution of the surface in two models with different initial dynamic viscosity, cases A and B, was analyzed at the optical interferometry laboratory of CIO with two full-field optical techniques: fringe projection and laser speckle

  9. The Substorm Current Wedge: Further Insights from MHD Simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.

    2015-01-01

    Using a recent magnetohydrodynamic simulation of magnetotail dynamics, we further investigate the buildup and evolution of the substorm current wedge (SCW), resulting from flow bursts generated by near-tail reconnection. Each flow burst generates an individual current wedge, which includes the reduction of cross-tail current and the diversion to region 1 (R1)-type field-aligned currents (earthward on the dawn and tailward on the duskside), connecting the tail with the ionosphere. Multiple flow bursts generate initially multiple SCW patterns, which at later times combine to a wider single SCW pattern. The standard SCWmodel is modified by the addition of several current loops, related to particular magnetic field changes: the increase of Bz in a local equatorial region (dipolarization), the decrease of |Bx| away from the equator (current disruption), and increases in |By| resulting from azimuthally deflected flows. The associated loop currents are found to be of similar magnitude, 0.1-0.3 MA. The combined effect requires the addition of region 2 (R2)-type currents closing in the near tail through dawnward currents but also connecting radially with the R1 currents. The current closure at the inner boundary, taken as a crude proxy of an idealized ionosphere, demonstrates westward currents as postulated in the original SCW picture as well as North-South currents connecting R1- and R2-type currents, which were larger than the westward currents by a factor of almost 2. However, this result should be applied with caution to the ionosphere because of our neglect of finite resistance and Hall effects.

  10. Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles

    NASA Astrophysics Data System (ADS)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2014-04-01

    The reverse absorption technique is often used to detect volcanic ash clouds from thermal infrared satellite measurements. From these measurements effective particle radius and mass loading may be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculated thermal infrared optical properties of highly irregular and porous ash particles and compared these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry were calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres were found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates was found to underestimate mass loading compared to morphologically complex inhomogeneous ash particles. The underestimate increases with the mass loading. For an ash cloud recorded during the Eyjafjallajökull 2010 eruption, the mass-equivalent spheres underestimate the total mass of the ash cloud by approximately 30% compared to the morphologically complex inhomogeneous particles.

  11. Origins of cellular geometry

    PubMed Central

    2011-01-01

    Cells are highly complex and orderly machines, with defined shapes and a startling variety of internal organizations. Complex geometry is a feature of both free-living unicellular organisms and cells inside multicellular animals. Where does the geometry of a cell come from? Many of the same questions that arise in developmental biology can also be asked of cells, but in most cases we do not know the answers. How much of cellular organization is dictated by global cell polarity cues as opposed to local interactions between cellular components? Does cellular structure persist across cell generations? What is the relationship between cell geometry and tissue organization? What ensures that intracellular structures are scaled to the overall size of the cell? Cell biology is only now beginning to come to grips with these questions. PMID:21880160

  12. Geometry and Cloaking Devices

    NASA Astrophysics Data System (ADS)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  13. Three-dimensional ray tracing in spherical and elliptical generalized Luneburg lenses for application in the human eye lens.

    PubMed

    Gómez-Correa, J E; Coello, V; Garza-Rivera, A; Puente, N P; Chávez-Cerda, S

    2016-03-10

    Ray tracing in spherical Luneburg lenses has always been represented in 2D. All propagation planes in a 3D spherical Luneburg lens generate the same ray tracing, due to its radial symmetry. A geometry without radial symmetry generates a different ray tracing. For this reason, a new ray tracing method in 3D through spherical and elliptical Luneburg lenses using 2D methods is proposed. The physics of the propagation is shown here, which allows us to make a ray tracing associated with a vortex beam. A 3D ray tracing in a composite modified Luneburg lens that represents the human eye lens is also presented.

  14. Plasma instability in fast spherical discharge induced by a preionization

    SciTech Connect

    Antsiferov, P. S.; Dorokhin, L. A.

    2015-04-07

    As it was shown earlier, fast discharge (dI/dt ∼ 10{sup 12 }A/s and I{sub max} ≈ 40 kA) in a spherical cavity (Al{sub 2}O{sub 3}, inner diameter 11 mm, 4 mm apertures for the current supply) filled with working gas (Ar and Xe, pressure 80 Pa), results in the formation of a plasma with the form close to spherical. The physical mechanism can be the cumulation of a convergent shock wave, which was originated near the inner surface of the discharge cavity. It was also shown for the cylindrical fast discharge that the preionization influences the dynamics of the cylindrical convergent shock wave, its evolutions becomes faster. The present work is devoted to the study of the influence of the preionization on the plasma formation in the fast discharge with spherical geometry (Ar, 80 Pa). The inductive storage with plasma erosion opening switch was used as a current driver. The spatial structure of the discharge plasma was studied by means of a pin-hole camera with the microchannel plate (MCP) detector with time gate of 5 ns. The extreme ultra violet spectra were studied by means of the grazing incidence spectrometer with the same MCP detector with time gate of 20 ns. Beside the expected effects (reduction of the spherical plasma formation time and some increase of the electron temperature), the preionization of the discharge by the current 500 A results also in the development of the plasma instabilities and destruction of the compact plasma ball in several tens of nanoseconds. Possible mechanism of the instability is discussed.

  15. Plasma instability in fast spherical discharge induced by a preionization

    NASA Astrophysics Data System (ADS)

    Antsiferov, P. S.; Dorokhin, L. A.

    2015-04-01

    As it was shown earlier, fast discharge (dI/dt ˜ 1012 A/s and Imax ≈ 40 kA) in a spherical cavity (Al2O3, inner diameter 11 mm, 4 mm apertures for the current supply) filled with working gas (Ar and Xe, pressure 80 Pa), results in the formation of a plasma with the form close to spherical. The physical mechanism can be the cumulation of a convergent shock wave, which was originated near the inner surface of the discharge cavity. It was also shown for the cylindrical fast discharge that the preionization influences the dynamics of the cylindrical convergent shock wave, its evolutions becomes faster. The present work is devoted to the study of the influence of the preionization on the plasma formation in the fast discharge with spherical geometry (Ar, 80 Pa). The inductive storage with plasma erosion opening switch was used as a current driver. The spatial structure of the discharge plasma was studied by means of a pin-hole camera with the microchannel plate (MCP) detector with time gate of 5 ns. The extreme ultra violet spectra were studied by means of the grazing incidence spectrometer with the same MCP detector with time gate of 20 ns. Beside the expected effects (reduction of the spherical plasma formation time and some increase of the electron temperature), the preionization of the discharge by the current 500 A results also in the development of the plasma instabilities and destruction of the compact plasma ball in several tens of nanoseconds. Possible mechanism of the instability is discussed.

  16. THE USE OF SINGULAR INTEGRALS IN WAVE DIFFRACTION PROBLEMS WITH THE SOLUTION OF THE PROBLEM OF SCATTERING BY A DIELECTRIC WEDGE,

    DTIC Science & Technology

    ELECTROMAGNETIC RADIATION, DIFFRACTION, WEDGES, WEDGES, PRISMATIC BODIES, COMPLEX VARIABLES , PRISMS(OPTICS), REFRACTION, FUNCTIONS(MATHEMATICS), REFLECTION, PARTIAL DIFFERENTIAL EQUATIONS, SCATTERING.

  17. Ice-wedge based permafrost chronologies and stable-water isotope records from Arctic Siberia

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Opel, Thomas; Meyer, Hanno; Schwamborn, Georg; Schirrmeister, Lutz; Dereviagin, Alexander Yu.

    2016-04-01

    Late Quaternary permafrost of northern latitudes contains large proportions of ground ice, including pore ice, segregation ice, massive ice, buried glacier ice and in particular ice wedges. Fossil ice-wedges are remnants of polygonal patterned ground in former tundra areas, which evolved over several tens of thousands of years in non-glaciated Beringia. Ice wedges originate from repeated frost cracking of the ground in winter and subsequent crack filling by snowmelt and re-freezing in the ground in spring. Hence, the stable water isotope composition (δ18O, δD, d excess) of wedge ice derives from winter precipitation and is commonly interpreted as wintertime climate proxy. Paleoclimate studies based on ice-wedge isotope data cover different timescales and periods of the late Quaternary. (MIS 6 to MIS 1). In the long-term scale the temporal resolution is rather low and corresponds to mid- and late Pleistocene and Holocene stratigraphic units. Recent progress has been made in developing centennial Late Glacial and Holocene time series of ice-wedge stable isotopes by applying radiocarbon dating of organic remains in ice samples. Ice wedges exposed at both coasts of the Dmitry Laptev Strait (East Siberian Sea) were studied to deduce winter climate conditions since about 200 kyr. Ice wedges aligned to distinct late Quaternary permafrost strata were studied for their isotopic composition and dated by radiocarbon ages of organic matter within the wedge ice or by cosmogenic nuclide ratios (36Cl/Cl-) of the ice. The paleoclimate interpretation is furthermore based on geocryological and paleoecological proxy data and geochronological information (radiocarbon, luminescence, radioisotope disequilibria 230Th/U) from ice-wedge embedding frozen deposits. Coldest winter conditions are mirrored by most negative δ18O mean values of -37 ‰ and δD mean values of -290 ‰ from ice wedges of the Last Glacial Maximum (26 to 22 kyr BP) while late Holocene (since about 4 kyr BP) and in

  18. Hyper-extended continental crust deformation in the light of Coulomb critical wedge theory

    NASA Astrophysics Data System (ADS)

    Nirrengarten, Michael; Manatschal, Gianreto; Yuan, Xiaoping; Kusznir, Nick; Maillot, Bertrand

    2016-04-01

    The rocks forming the wedge shape termination of hyper-extended continental crust are deformed in the frictional field during the last stage of continental rifting due to cooling and hydration. Seismic interpretation and field evidence show that the basal boundary of the wedge is a low frictional décollement level. The wedge shape, the frictional deformation and the basal décollement correspond to the requirements of the critical Coulomb wedge (CCW) theory which describes the stability limit of a frictional wedge over a décollement. In a simple shear separation model the upper-plate margin (in the hangingwall of the detachment fault) corresponds to a tectonic extensional wedge whereas the lower plate (in the footwall of the detachment fault) is a gravitational wedge. This major difference causes the asymmetry of conjugate hyper-extended rifted margins. We measure a dataset of upper and lower hyper-extended wedge and compare it to the stability envelope of the CCW theory for serpentine and clay friction. We find a good fit by adjusting fluid pressure. The main results of our analysis are that the crustal wedges of lower plate margins are close to the critical shape, which explains their low variability whereas upper plate wedges can be critical, sub- or sup- critical due to the detachment evolution during rifting. On the upper plate side, according to the Coulomb tectonic extensional wedge, faults should be oriented toward the continent. Observations showed some continentward faults in the termination of the continental crust but there are also oceanward faults. This can be explained by two processes, first continentward faults are created only over the detachment, therefore if part of the hyper-extended upper plate crust is not directly over the detachment it will not be part of the wedge. Secondly the tip block of the wedge can be detached creating an extensional allochthon induced by the flattening of the detachment near the surface, therefore continentward

  19. MUSCLE: MUltiscale Spherical-ColLapse Evolution

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.

    2016-05-01

    MUSCLE (MUltiscale Spherical ColLapse Evolution) produces low-redshift approximate N-body realizations accurate to few-Megaparsec scales. It applies a spherical-collapse prescription on multiple Gaussian-smoothed scales. It achieves higher accuracy than perturbative schemes (Zel'dovich and second-order Lagrangian perturbation theory - 2LPT), and by including the void-in-cloud process (voids in large-scale collapsing regions), solves problems with a single-scale spherical-collapse scheme.

  20. Archimedes' floating bodies on a spherical Earth

    NASA Astrophysics Data System (ADS)

    Rorres, Chris

    2016-01-01

    Archimedes was the first to systematically find the centers of gravity of various solid bodies and to apply this concept in determining stable configurations of floating bodies. In this paper, we discuss an error in a proof developed by Archimedes that involves determining whether a uniform, spherical cap will float stably with its base horizontal in a liquid on a spherical Earth. We present a simpler, corrected proof and discuss aspects of his proof regarding a spherical cap that is not uniform.

  1. Measuring Spherical Harmonic Coefficients on a Sphere

    SciTech Connect

    Pollaine, S; Haan, S W

    2003-05-16

    The eigenfunctions of Rayleigh-Taylor modes on a spherical capsule are the spherical harmonics Y{sub l,m} These can be measured by measuring the surface perturbations along great circles and fitting them to the first few modes by a procedure described in this article. For higher mode numbers, it is more convenient to average the Fourier power spectra along the great circles, and then transform them to spherical harmonic modes by an algorithm derived here.

  2. Origami, Geometry and Art

    ERIC Educational Resources Information Center

    Wares, Arsalan; Elstak, Iwan

    2017-01-01

    The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…

  3. Emergent Hyperbolic Network Geometry.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph

    2017-02-07

    A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a discretization of spacetime. Here, by extending our knowledge of growing complex networks to growing simplicial complexes we investigate the nature of the emergent geometry of complex networks and explore whether this geometry is hyperbolic. Specifically we show that an hyperbolic network geometry emerges spontaneously from models of growing simplicial complexes that are purely combinatorial. The statistical and geometrical properties of the growing simplicial complexes strongly depend on their dimensionality and display the major universal properties of real complex networks (scale-free degree distribution, small-world and communities) at the same time. Interestingly, when the network dynamics includes an heterogeneous fitness of the faces, the growing simplicial complex can undergo phase transitions that are reflected by relevant changes in the network geometry.

  4. Sliding vane geometry turbines

    DOEpatents

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  5. Fractal geometry of music.

    PubMed Central

    Hsü, K J; Hsü, A J

    1990-01-01

    Music critics have compared Bach's music to the precision of mathematics. What "mathematics" and what "precision" are the questions for a curious scientist. The purpose of this short note is to suggest that the mathematics is, at least in part, Mandelbrot's fractal geometry and the precision is the deviation from a log-log linear plot. PMID:11607061

  6. The Helen of Geometry

    ERIC Educational Resources Information Center

    Martin, John

    2010-01-01

    The cycloid has been called the Helen of Geometry, not only because of its beautiful properties but also because of the quarrels it provoked between famous mathematicians of the 17th century. This article surveys the history of the cycloid and its importance in the development of the calculus.

  7. Emergent Hyperbolic Network Geometry

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph

    2017-02-01

    A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a discretization of spacetime. Here, by extending our knowledge of growing complex networks to growing simplicial complexes we investigate the nature of the emergent geometry of complex networks and explore whether this geometry is hyperbolic. Specifically we show that an hyperbolic network geometry emerges spontaneously from models of growing simplicial complexes that are purely combinatorial. The statistical and geometrical properties of the growing simplicial complexes strongly depend on their dimensionality and display the major universal properties of real complex networks (scale-free degree distribution, small-world and communities) at the same time. Interestingly, when the network dynamics includes an heterogeneous fitness of the faces, the growing simplicial complex can undergo phase transitions that are reflected by relevant changes in the network geometry.

  8. Emergent Hyperbolic Network Geometry

    PubMed Central

    Bianconi, Ginestra; Rahmede, Christoph

    2017-01-01

    A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a discretization of spacetime. Here, by extending our knowledge of growing complex networks to growing simplicial complexes we investigate the nature of the emergent geometry of complex networks and explore whether this geometry is hyperbolic. Specifically we show that an hyperbolic network geometry emerges spontaneously from models of growing simplicial complexes that are purely combinatorial. The statistical and geometrical properties of the growing simplicial complexes strongly depend on their dimensionality and display the major universal properties of real complex networks (scale-free degree distribution, small-world and communities) at the same time. Interestingly, when the network dynamics includes an heterogeneous fitness of the faces, the growing simplicial complex can undergo phase transitions that are reflected by relevant changes in the network geometry. PMID:28167818

  9. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  10. Geoff Giles and Geometry

    ERIC Educational Resources Information Center

    Fielker, David

    2007-01-01

    Geoff Giles died suddenly in 2005. He was a highly original thinker in the field of geometry teaching. As early as 1964, when teaching at Strathallen School in Perth, he was writing in "MT27" about constructing tessellations by modifying the sides of triangles and (irregular) quadrilaterals to produce what he called "trisides" and "quadrisides".…

  11. Geometry of spinor regularization

    NASA Technical Reports Server (NTRS)

    Hestenes, D.; Lounesto, P.

    1983-01-01

    The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geometric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS subsidiary condition is discussed. Derivations are carried out without using coordinates.

  12. Making Solid Geometry Solid.

    ERIC Educational Resources Information Center

    Hartz, Viggo

    1981-01-01

    Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)

  13. Listening to Geometry

    ERIC Educational Resources Information Center

    Cooper, Brett D.; Barger, Rita

    2009-01-01

    The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…

  14. GEOMETRY, TENTATIVE GUIDES.

    ERIC Educational Resources Information Center

    KLIER, KATHERINE M.

    PRESENTED IS A FUSED COURSE IN PLANE, SOLID, AND COORDINATE GEOMETRY. ELEMENTARY SET THEORY, LOGIC, AND THE PRINCIPLE OF SEPARATION PROVIDE UNIFYING THREADS THROUGHOUT THE TEXT. THE TWO CURRICULUM GUIDES HAVE BEEN PREPARED FOR USE WITH TWO DIFFERENT TEXTS. EITHER CURRICULUM GUIDE MAY BE USED DEPENDING UPON THE CHOICE OF THE TEACHER AND THE NEEDS…

  15. Core Geometry Manual.

    ERIC Educational Resources Information Center

    Hirata, Li Ann

    Core Geometry is a course offered in the Option Y sequence of the high school mathematics program described by the Hawaii State Department of Education's guidelines. The emphasis of this course is on the general awareness and use of the relationships among points, lines, and figures in planes and space. This sample course is based on the…

  16. The Geometry of Viruses.

    ERIC Educational Resources Information Center

    Case, Christine L.

    1991-01-01

    Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)

  17. Geometry and physics

    PubMed Central

    Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel

    2010-01-01

    We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740

  18. Advanced geometries and regimes

    SciTech Connect

    Bulanov, S. S.; Bulanov, S. V.; Turchetti, G.; Limpouch, J.; Klimo, O.; Psikal, J.; Margarone, D.; Korn, G.

    2013-07-26

    We review and discuss different schemes of laser ion acceleration as well as advanced target geometries in connection with the development of the laser-driven proton source for hadron therapy of oncological diseases, which is a part of the ELIMED project.

  19. Mode-coupling approach for the slow dynamics of a liquid on a spherical substrate.

    PubMed

    Vest, Julien-Piera; Tarjus, Gilles; Viot, Pascal

    2015-08-28

    We study the dynamics of a one-component liquid constrained on a spherical substrate, a 2-sphere, and investigate how the mode-coupling theory (MCT) can describe the new features brought by the presence of curvature. To this end we have derived the MCT equations in a spherical geometry. We find that, as seen from the MCT, the slow dynamics of liquids in curved space at low temperature does not qualitatively differ from that of glass-forming liquids in Euclidean space. The MCT predicts the right trend for the evolution of the relaxation slowdown with curvature but is dramatically off at a quantitative level.

  20. Wormhole dynamics in spherical symmetry

    SciTech Connect

    Hayward, Sean A.

    2009-06-15

    A dynamical theory of traversable wormholes is detailed in spherical symmetry. Generically a wormhole consists of a tunnel of trapped surfaces between two mouths, defined as temporal outer trapping horizons with opposite senses, in mutual causal contact. In static cases, the mouths coincide as the throat of a Morris-Thorne wormhole, with surface gravity providing an invariant measure of the radial curvature or ''flaring-out''. The null energy condition must be violated at a wormhole mouth. Zeroth, first, and second laws are derived for the mouths, as for black holes. Dynamic processes involving wormholes are reviewed, including enlargement or reduction, and interconversion with black holes. A new area of wormhole thermodynamics is suggested.

  1. Libsharp - spherical harmonic transforms revisited

    NASA Astrophysics Data System (ADS)

    Reinecke, M.; Seljebotn, D. S.

    2013-06-01

    We present libsharp, a code library for spherical harmonic transforms (SHTs), which evolved from the libpsht library and addresses several of its shortcomings, such as adding MPI support for distributed memory systems and SHTs of fields with arbitrary spin, but also supporting new developments in CPU instruction sets like the Advanced Vector Extensions (AVX) or fused multiply-accumulate (FMA) instructions. The library is implemented in portable C99 and provides an interface that can be easily accessed from other programming languages such as C++, Fortran, Python, etc. Generally, libsharp's performance is at least on par with that of its predecessor; however, significant improvements were made to the algorithms for scalar SHTs, which are roughly twice as fast when using the same CPU capabilities. The library is available at http://sourceforge.net/projects/libsharp/ under the terms of the GNU General Public License.

  2. Nonadiabatic charged spherical gravitational collapse

    SciTech Connect

    Di Prisco, A.; Herrera, L.; Le Denmat, G.; MacCallum, M. A. H.; Santos, N. O.

    2007-09-15

    We present a complete set of the equations and matching conditions required for the description of physically meaningful charged, dissipative, spherically symmetric gravitational collapse with shear. Dissipation is described with both free-streaming and diffusion approximations. The effects of viscosity are also taken into account. The roles of different terms in the dynamical equation are analyzed in detail. The dynamical equation is coupled to a causal transport equation in the context of Israel-Stewart theory. The decrease of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamic state, is reobtained, with the viscosity terms included. In accordance with the equivalence principle, the same decrease factor is obtained for the gravitational force term. The effect of the electric charge on the relation between the Weyl tensor and the inhomogeneity of the energy density is discussed.

  3. Spherical collapse in chameleon models

    SciTech Connect

    Brax, Ph.; Steer, D.A. E-mail: rosenfel@ift.unesp.br

    2010-08-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.

  4. Maximum entropy spherical deconvolution for diffusion MRI.

    PubMed

    Alexander, Daniel C

    2005-01-01

    This paper proposes a maximum entropy method for spherical deconvolution. Spherical deconvolution arises in various inverse problems. This paper uses the method to reconstruct the distribution of microstructural fibre orientations from diffusion MRI measurements. Analysis shows that the PASMRI algorithm, one of the most accurate diffusion MRI reconstruction algorithms in the literature, is a special case of the maximum entropy spherical deconvolution. Experiments compare the new method to linear spherical deconvolution, used previously in diffusion MRI, and to the PASMRI algorithm. The new method compares favourably both in simulation and on standard brain-scan data.

  5. Geometry of PDE's. IV

    NASA Astrophysics Data System (ADS)

    Prástaro, Agostino

    2008-02-01

    Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.

  6. Biomechanical effects of lateral and medial wedge insoles on unilateral weight bearing

    PubMed Central

    Sawada, Tomonori; Kito, Nobuhiro; Yukimune, Masaki; Tokuda, Kazuki; Tanimoto, Kenji; Anan, Masaya; Takahashi, Makoto; Shinkoda, Koichi

    2016-01-01

    [Purpose] Lateral wedge insoles reduce the peak external knee adduction moment and are advocated for patients with knee osteoarthritis. However, some patients demonstrate adverse biomechanical effects with treatment. In this study, we examined the immediate effects of lateral and medial wedge insoles under unilateral weight bearing. [Subjects and Methods] Thirty healthy young adults participated in this study. The subjects were assessed by using the foot posture index, and were divided into three groups: normal foot, pronated foot, and supinated foot groups. The knee adduction moment and knee-ground reaction force lever arm under the studied conditions were measured by using a three-dimensional motion capture system and force plates. [Results] In the normal and pronated groups, the change in knee adduction moment significantly decreased under the lateral wedge insole condition compared with the medial wedge insole condition. In the normal group, the change in the knee-ground reaction force lever arm also significantly decreased under the lateral wedge insole condition than under the medial wedge insole condition. [Conclusion] Lateral wedge insoles significantly reduced the knee adduction moment and knee-ground reaction force lever arm during unilateral weight bearing in subjects with normal feet, and the biomechanical effects varied according to individual foot alignment. PMID:26957775

  7. Semi-analytical solutions of groundwater flow in multi-zone (patchy) wedge-shaped aquifers

    NASA Astrophysics Data System (ADS)

    Samani, Nozar; Sedghi, Mohammad M.

    2015-03-01

    Alluvial fans are potential sites of potable groundwater in many parts of the world. Characteristics of alluvial fans sediments are changed radially from high energy coarse-grained deposition near the apex to low energy fine-grained deposition downstream so that patchy wedge-shaped aquifers with radial heterogeneity are formed. The hydraulic parameters of the aquifers (e.g. hydraulic conductivity and specific storage) change in the same fashion. Analytical or semi-analytical solutions of the flow in wedge-shaped aquifers are available for homogeneous cases. In this paper we derive semi-analytical solutions of groundwater flow to a well in multi-zone wedge-shaped aquifers. Solutions are provided for three wedge boundary configurations namely: constant head-constant head wedge, constant head-barrier wedge and barrier-barrier wedge. Derivation involves the use of integral transforms methods. The effect of heterogeneity ratios of zones on the response of the aquifer is examined. The results are presented in form of drawdown and drawdown derivative type curves. Heterogeneity has a significant effect on over all response of the pumped aquifer. Solutions help understanding the behavior of heterogeneous multi-zone aquifers for sustainable development of the groundwater resources in alluvial fans.

  8. Inferring the spatial variation of the wedge strength based on a modified critical taper model

    NASA Astrophysics Data System (ADS)

    Yang, C.; Liu, H.; Hsieh, Y.; Dong, J.

    2013-12-01

    Critical taper wedge theory has been widely applied to evaluate the strength of the detachment fault and the wedge by measuring taper angle. Traditional taper model, which incorporated constant cohesion and friction angle, fails to explain the lateral variation of the taper angle. A modified critical taper model adopting nonlinear Hoek-Brown failure criterion is proposed accordingly. The fold-and-thrust belt of central Taiwan was studied. Based on the field works and laboratory tests, the geological strength index (GSI) and the uniaxial compressive strength were obtained and the wedge strength can be estimated accordingly. The GSI values from investigation are decreased from the west to the east along the cross section due to the wedge strength heterogeneity. The uniaxial compressive strength of intact rock varies from the age of formation and lithology. The estimated wedge strength exhibits a strong spatial variation. The strength of the detachment fault was derived from rotary shear tests using fault gouge materials under different velocities and normal stresses. General speaking, the steady-state friction coefficient are about 0.29-0.46 when the shear velocity less than 0.1 m/s. The friction coefficient is not sensitive to the normal stress. Consequently, the lateral variation of the taper angle, which calculated by modified critical taper model, is mainly dominated by the wedge strength heterogeneity and the thickening of the wedge from the west to the east.

  9. Deformation of brittle-ductile thrust wedges in experiments and nature

    NASA Astrophysics Data System (ADS)

    Smit, J. H. W.; Brun, J. P.; Sokoutis, D.

    2003-10-01

    Even though the rheology of thrust wedges is mostly frictional, a basal ductile decollement is often involved. By comparison with purely frictional wedges, such brittle-ductile wedges generally display anomalous structures such as backward vergence, widely spaced thrust units, and nonfrontward sequences of thrust development. Laboratory experiments are used here to study the deformation of brittle-ductile thrust wedges. Results are compared with natural systems in the Jura Mountains and the northern Pakistan Salt Range and Potwar Plateau. Two series of three models are used to illustrate the effects of varying the basal wedge angle (β) and shortening rate (V). These two parameters directly control variations in relative strength between brittle and ductile layers (BD coupling). Wedges with strong BD coupling (low β and high V) give almost regular frontward sequences with closely spaced thrust units and, as such, are not significantly different from purely frictional wedges. Weak BD coupling (high β and low V) gives dominantly backward thrusting sequences. Intermediate BD coupling produces frontward-backward oscillating sequences. The spacing of thrust units increases as coupling decreases. Back thrusts develop in parts of a wedge where BD coupling is weak, regardless of the thrust sequence. Wedges with weak BD coupling need large amounts of bulk shortening (more than 30%) to attain a state of equilibrium, at which stable sliding along the base occurs. On this basis, we argue that a state of equilibrium has not yet been attained in at least some parts of the Jura Mountains and eastern Salt Range and Potwar Plateau thrust systems.

  10. Distribution and activity of ice wedges across the forest-tundra transition, western Arctic Canada

    NASA Astrophysics Data System (ADS)

    Kokelj, S. V.; Lantz, T. C.; Wolfe, S. A.; Kanigan, J. C.; Morse, P. D.; Coutts, R.; Molina-Giraldo, N.; Burn, C. R.

    2014-09-01

    Remote sensing, regional ground temperature and ground ice observations, and numerical simulation were used to investigate the size, distribution, and activity of ice wedges in fine-grained mineral and organic soils across the forest-tundra transition in uplands east of the Mackenzie Delta. In the northernmost dwarf-shrub tundra, ice wedge polygons cover up to 40% of the ground surface, with the wedges commonly exceeding 3 m in width. The largest ice wedges are in peatlands where thermal contraction cracking occurs more frequently than in nearby hummocky terrain with fine-grained soils. There are fewer ice wedges, rarely exceeding 2 m in width, in uplands to the south and none have been found in mineral soils of the tall-shrub tundra, although active ice wedges are found there throughout peatlands. In the spruce forest zone, small, relict ice wedges are restricted to peatlands. At tundra sites, winter temperatures at the top of permafrost are lower in organic than mineral soils because of the shallow permafrost table, occurrence of phase change at 0°C, and the relatively high thermal conductivity of icy peat. Due to these factors and the high coefficient of thermal contraction of frozen saturated peat, ice wedge cracking and growth is more common in peatlands than in mineral soil. However, the high latent heat content of saturated organic active layer soils may inhibit freezeback, particularly where thick snow accumulates, making the permafrost and the ice wedges in spruce forest polygonal peatlands susceptible to degradation following alteration of drainage or climate warming.

  11. Two brittle ductile transitions in subduction wedges, as revealed by topography

    NASA Astrophysics Data System (ADS)

    Thissen, C.; Brandon, M. T.

    2013-12-01

    Subduction wedges contain two brittle ductile transitions. One transition occurs within the wedge interior, and a second transition occurs along the decollement. The decollement typically has faster strain rates, which suggests that the brittle ductile transition along the decollement will be more rearward (deeper) than the transition within the interior. However, the presence of distinct rheologies or other factors such as pore fluid pressure along the decollement may reverse the order of the brittle-ductile transitions. We adopt a solution by Williams et al., (1994) to invert for these brittle ductile transitions using the wedge surface topography. At present, this model does not include an s point or sediment loading atop the wedge. The Hellenic wedge, however, as exposed in Crete presents an ideal setting to test these ideas. We find that the broad high of the Mediterranean ridge represents the coulomb frictional part of the Hellenic wedge. The rollover in topography north of the ridge results from curvature of the down going plate, creating a negative alpha depression in the vicinity of the Strabo, Pliny, and Ionian 'troughs' south of Crete. A steep topographic rise out of these troughs and subsequent flattening reflects the brittle ductile transition at depth in both the decollement and the wedge interior. Crete exposes the high-pressure viscous core of the wedge, and pressure solution textures provide additional evidence for viscous deformation in the rearward part of the wedge. The location of the decollement brittle ductile transition has been previously poorly constrained, and Crete has never experienced a subduction zone earthquake in recorded history. Williams, C. A., et al., (1994). Effect of the brittle ductile transition on the topography of compressive mountain belts on Earth and Venus. Journal of Geophysical Research Solid Earth

  12. Transonic Aerodynamic Characteristics of Two Wedge Airfoil Sections Including Unsteady Flow Studies

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick J.

    1959-01-01

    A two-dimensional wind-tunnel investigation has been conducted on a 20-percent-thick single-wedge airfoil section. Steady-state forces and moments were determined from pressure measurements at Mach numbers from 0.70 to about 1.25. Additional information on the flows about the single wedge is provided by means of instantaneous pressure measurements at Mach numbers up to unity. Pressure distributions were also obtained on a symmetrical double-wedge or diamond-shaped profile which had the same leading-edge included angle as the single-wedge airfoil. A comparison of the data on the two profiles to provide information on the effects of the afterbody showed that with the exception of drag, the single-wedge profile proved to be aerodynamically superior to the diamond profile in all respects. The lift effectiveness of the single-wedge airfoil section far exceeded that of conventional thin airfoil sections over the speed range of the investigation. Pitching-moment irregularities, caused by negative loadings near the trailing edge, generally associated with conventional airfoils of equivalent thicknesses were not exhibited by the single-wedge profile. Moderately high pulsating pressures existing over the base of the single-wedge airfoil section were significantly reduced as the Mach number was increased beyond 0.92 and the boundaries of the dead airspace at the base of the model converged to eliminate the vortex street in the wake. Increasing the leading-edge radius from 0 to 1 percent of the chord had a minor effect on the steady-state forces and generally raised the level of pressure pulsations over the forward part of the single-wedge profile.

  13. Measured Two-Dimensional Ice-Wedge Polygon Thermal Dynamics

    NASA Astrophysics Data System (ADS)

    Cable, William; Romanovsky, Vladimir; Busey, Robert

    2016-04-01

    Ice-wedge polygons are perhaps the most dominant permafrost related features in the arctic landscape. The microtopography of these features, that includes rims, troughs, and high and low polygon centers, alters the local hydrology, as water tends to collect in the low areas. During winter, wind redistribution of snow leads to an increased snowpack depth in the low areas, while the slightly higher areas often have very thin snow cover, leading to differences across the landscape in vegetation communities and soil moisture between higher and lower areas. These differences in local surface conditions lead to spatial variability of the ground thermal regime in the different microtopographic areas and between different types of ice-wedge polygons. To study these features in depth, we established temperature transects across four different types of ice-wedge polygons near Barrow, Alaska. The transects were composed of five vertical array thermistor probes (VATP) beginning in the center of each polygon and extending through the trough to the rim of the adjacent polygon. Each VATP had 16 thermistors from the surface to a depth of 1.5 m. In addition to these 80 subsurface temperature measurement points per polygon, soil moisture, thermal conductivity, heat flux, and snow depth were all measured in multiple locations for each polygon. Above ground, a full suite of micrometeorological instrumentation was present at each polygon. Data from these sites has been collected continuously for the last three years. We found snow cover, timing and depth, and active layer soil moisture to be major controlling factors in the observed thermal regimes. In troughs and in the centers of low-center polygons, the combined effect of typically saturated soils and increased snow accumulation resulted in the highest mean annual ground temperatures (MAGT). Additionally, these areas were the last part of the polygon to refreeze during the winter. However, increased active layer thickness was not

  14. Role of Hydrogen in stagnant slabs and big mantle wedge

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Zhao, D.

    2008-12-01

    Recent seismic tomography data imply that subducting slabs are stagnant at some regions such as beneath Japan and Northeast China [1, 2]. The stagnant slab can have an important effect on the overlying transition zone and upper mantle. A big mantle wedge (BMW) model has been proposed by Zhao [2], in which the stagnant slab in the transition zone could play an essential role in the intra-plate volcanic activities overlying the slab. Water released by the stagnant slab could be important for such igneous activities, such as Mt. Changbai in Northeast China. In cold subducting slabs, several hydrous minerals together with nominally anhydrous minerals accommodate OH and transport water into the transition zone [3]. The effect of dehydration of the stagnant slab has been analyzed by Richard et al. [4]. They argued that warming of the stagnant slab due to heat conduction could play an important role for the slab dehydration, and local oversaturation could be achieved due to decrease of the water solubility in minerals with temperature, and fluid can be formed in the overlying transition zone. We determined the hydrogen diffusion in wadsleyite and ringwoodite under the transition zone conditions in order to clarify the deep processes of the stagnant slabs, and found that diffusion rates of hydrogen are comparable with that of olivine [5]. We also determined the dihedral angle of aqueous fluid between wadsleyite grains and majorite grains under the transition zone conditions. The dihedral angles are very small, around 20-40 degrees, indicating that the oversaturated fluids can move rapidly by the percolation mechanism in the transition zone. The fluids moved to the top of the 410 km discontinuity can generate heavy hydrous melts due to a larger depression of the wet solidus at the base of the upper mantle [6]. Gravitationally stable hydrous melts can be formed at the base of the upper mantle, which is consistent with seismological observations of the low velocity beneath

  15. Experimental Investigation of Shock-Shock Interactions Over a 2-D Wedge at M=6

    NASA Technical Reports Server (NTRS)

    Jones, Michelle L.

    2013-01-01

    The effects of fin-leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-inch Mach 6 Air Tunnel. The fin model leading edges, which represent cylindrical leading edges or struts on hypersonic vehicles, were varied from 0.25 inches to 0.75 inches in radius. A 9deg wedge generated a planar oblique shock at 16.7deg to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin angle of attack was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. Global temperature data was obtained from the surface of the fused silica fins through phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using one-dimensional semi-infinite as well as one- and two-dimensional finite-volume methods to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for the three shock-shock interactions, respectively, between the test articles with varying leading-edge radius. The dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite one-dimensional method.

  16. Predicting translational deformity following opening-wedge osteotomy for lower limb realignment.

    PubMed

    Barksfield, Richard C; Monsell, Fergal P

    2015-11-01

    An opening-wedge osteotomy is well recognised for the management of limb deformity and requires an understanding of the principles of geometry. Translation at the osteotomy is needed when the osteotomy is performed away from the centre of rotation of angulation (CORA), but the amount of translation varies with the distance from the CORA. This translation enables proximal and distal axes on either side of the proposed osteotomy to realign. We have developed two experimental models to establish whether the amount of translation required (based on the translation deformity created) can be predicted based upon simple trigonometry. A predictive algorithm was derived where translational deformity was predicted as 2(tan α × d), where α represents 50 % of the desired angular correction, and d is the distance of the desired osteotomy site from the CORA. A simulated model was developed using TraumaCad online digital software suite (Brainlab AG, Germany). Osteotomies were simulated in the distal femur, proximal tibia and distal tibia for nine sets of lower limb scanograms at incremental distances from the CORA and the resulting translational deformity recorded. There was strong correlation between the distance of the osteotomy from the CORA and simulated translation deformity for distal femoral deformities (correlation coefficient 0.99, p < 0.0001), proximal tibial deformities (correlation coefficient 0.93-0.99, p < 0.0001) and distal tibial deformities (correlation coefficient 0.99, p < 0.0001). There was excellent agreement between the predictive algorithm and simulated translational deformity for all nine simulations (correlation coefficient 0.93-0.99, p < 0.0001). Translational deformity following corrective osteotomy for lower limb deformity can be anticipated and predicted based upon the angular correction and the distance between the planned osteotomy site and the CORA.

  17. Geometry and Mechanics of Thin Growing Bilayers

    NASA Astrophysics Data System (ADS)

    Pezzulla, Matteo; Smith, Gabriel; Nardinocchi, Paola; Holmes, Douglas

    We investigate how thin sheets of arbitrary shapes morph under the isotropic in-plane expansion of their top surface, which may represent several stimuli such as nonuniform heating, local swelling and differential growth. Inspired by geometry, an analytical model is presented that rationalizes how the shape of the disk influences morphing, from the initial spherical bending to the final isometric limit. We introduce a new measure of slenderness that describes a sheet in terms of both thickness and plate shape. We find that the mean curvature of the isometric state is three fourth's the natural curvature, which we verify by numerics and experiments. We finally investigate the emergence of a preferred direction of bending in the isometric state, guided by numerical analyses. The scalability of our model suggests that it is suitable to describe the morphing of sheets spanning several orders of magnitude. NSF Grant CMMI-1300860.

  18. Line-shape flattening resulting from hypersonic nozzle wedge flow in low-pressure chemical lasers.

    PubMed

    Livingston, P M; Bullock, D L

    1980-07-01

    The new hypersonic wedge nozzle (HYWN) supersonic wedge nozzle design produces a significant component of directed gas flow along the optical axis of a laser cavity comparable to thermal speeds. The gain-line-shape function is broadened and the refractive-index line shape is also spread as a function of wedge-flow half-angle. An analytical treatment as well as a numerical study is presented that evaluates the Doppler-directed-flow impact on the number of longitudinal modes and their frequencies as well as on gain and refractive-index saturation of those that lase in a Fabry-Perot cavity.

  19. Cylindrical geometry hall thruster

    DOEpatents

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  20. Geometry of thermodynamic control.

    PubMed

    Zulkowski, Patrick R; Sivak, David A; Crooks, Gavin E; DeWeese, Michael R

    2012-10-01

    A deeper understanding of nonequilibrium phenomena is needed to reveal the principles governing natural and synthetic molecular machines. Recent work has shown that when a thermodynamic system is driven from equilibrium then, in the linear response regime, the space of controllable parameters has a Riemannian geometry induced by a generalized friction tensor. We exploit this geometric insight to construct closed-form expressions for minimal-dissipation protocols for a particle diffusing in a one-dimensional harmonic potential, where the spring constant, inverse temperature, and trap location are adjusted simultaneously. These optimal protocols are geodesics on the Riemannian manifold and reveal that this simple model has a surprisingly rich geometry. We test these optimal protocols via a numerical implementation of the Fokker-Planck equation and demonstrate that the friction tensor arises naturally from a first-order expansion in temporal derivatives of the control parameters, without appealing directly to linear response theory.

  1. Onthe static and spherically symmetric gravitational field

    NASA Astrophysics Data System (ADS)

    Gottlieb, Ioan; Maftei, Gheorghe; Mociutchi, Cleopatra

    Starting from a generalization of Einstein 's theory of gravitation, proposed by one of the authors (Cleopatra Mociutchi), the authors study a particular spherical symmetric case. Among other one obtain the compatibility conditions for the existence of the static and spherically symmetruic gravitational filed in the case of extended Einstein equation.

  2. Three-point spherical mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  3. Three-point spherical mirror mount

    DOEpatents

    Cutburth, R.W.

    1984-01-23

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  4. How Spherical Is a Cube (Gravitationally)?

    ERIC Educational Resources Information Center

    Sanny, Jeff; Smith, David

    2015-01-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…

  5. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  6. E 8 geometry

    NASA Astrophysics Data System (ADS)

    Cederwall, Martin; Rosabal, J. A.

    2015-07-01

    We investigate exceptional generalised diffeomorphisms based on E 8(8) in a geometric setting. The transformations include gauge transformations for the dual gravity field. The surprising key result, which allows for a development of a tensor formalism, is that it is possible to define field-dependent transformations containing connection, which are covariant. We solve for the spin connection and construct a curvature tensor. A geometry for the Ehlers symmetry SL( n + 1) is sketched. Some related issues are discussed.

  7. Spherical combustion clouds in explosions

    NASA Astrophysics Data System (ADS)

    Kuhl, A. L.; Bell, J. B.; Beckner, V. E.; Balakrishnan, K.; Aspden, A. J.

    2013-05-01

    This study explores the properties of spherical combustion clouds in explosions. Two cases are investigated: (1) detonation of a TNT charge and combustion of its detonation products with air, and (2) shock dispersion of aluminum powder and its combustion with air. The evolution of the blast wave and ensuing combustion cloud dynamics are studied via numerical simulations with our adaptive mesh refinement combustion code. The code solves the multi-phase conservation laws for a dilute heterogeneous continuum as formulated by Nigmatulin. Single-phase combustion (e.g., TNT with air) is modeled in the fast-chemistry limit. Two-phase combustion (e.g., Al powder with air) uses an induction time model based on Arrhenius fits to Boiko's shock tube data, along with an ignition temperature criterion based on fits to Gurevich's data, and an ignition probability model that accounts for multi-particle effects on cloud ignition. Equations of state are based on polynomial fits to thermodynamic calculations with the Cheetah code, assuming frozen reactants and equilibrium products. Adaptive mesh refinement is used to resolve thin reaction zones and capture the energy-bearing scales of turbulence on the computational mesh (ILES approach). Taking advantage of the symmetry of the problem, azimuthal averaging was used to extract the mean and rms fluctuations from the numerical solution, including: thermodynamic profiles, kinematic profiles, and reaction-zone profiles across the combustion cloud. Fuel consumption was limited to ˜ 60-70 %, due to the limited amount of air a spherical combustion cloud can entrain before the turbulent velocity field decays away. Turbulent kinetic energy spectra of the solution were found to have both rotational and dilatational components, due to compressibility effects. The dilatational component was typically about 1 % of the rotational component; both seemed to preserve their spectra as they decayed. Kinetic energy of the blast wave decayed due to the

  8. Integral geometry and holography

    DOE PAGES

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...

    2015-10-27

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulkmore » curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.« less

  9. Emergent Complex Network Geometry

    PubMed Central

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-01-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems. PMID:25985280

  10. Integral geometry and holography

    SciTech Connect

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James

    2015-10-27

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.

  11. Noncommutative geometry and arithmetics

    NASA Astrophysics Data System (ADS)

    Almeida, P.

    2009-09-01

    We intend to illustrate how the methods of noncommutative geometry are currently used to tackle problems in class field theory. Noncommutative geometry enables one to think geometrically in situations in which the classical notion of space formed of points is no longer adequate, and thus a “noncommutative space” is needed; a full account of this approach is given in [3] by its main contributor, Alain Connes. The class field theory, i.e., number theory within the realm of Galois theory, is undoubtedly one of the main achievements in arithmetics, leading to an important algebraic machinery; for a modern overview, see [23]. The relationship between noncommutative geometry and number theory is one of the many themes treated in [22, 7-9, 11], a small part of which we will try to put in a more down-to-earth perspective, illustrating through an example what should be called an “application of physics to mathematics,” and our only purpose is to introduce nonspecialists to this beautiful area.

  12. Dose distribution analysis of physical and dynamic wedges by using an intensity-modulated radiotherapy MatriXX

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Kag; Cho, Jae-Hwan; Cho, Dae-chul

    2013-05-01

    This study investigated differences between the physical wedge and the dynamic wedge distributions of radiation by using an intensity-modulated radiotherapy (ImRT) MatriXX. The linear accelerator used X-rays with energy levels of 6 MV and 10 MV to adjust the collimator by motoring the independent jaws (X1, X2, Y1, Y2) for setting wedge angles of 15, 30, 45, and 60 degrees. The collimator field size was set as 10 × 10 cm2 or 20 × 20 cm2 at the maximum dose point. The dose distribution for each wedge had ±5% and ±11% errors for field sizes of 10 × 10 cm2 and 20 × 20 cm2, respectively. The error was greatest at a wedge angle of 45 degrees and was pronounced at the end of the dynamic wedge where Y1 and Y2 met. Consequently, concluded that the dose distributions were similar for both wedges for the field size of a small beam profile. The beam dose was greatly increased at the end of the dynamic wedge. A more precise estimate of the therapeutic dose of radiation for a dynamic wedge that nearly matches that of the physical wedge can be achieved by correcting of the increasing part of the beam dose. The findings imply that a heavy wedge filter should not be used when calculating the isodose distribution and the therapeutic dose.

  13. Low torque hydrodynamic lip geometry for bi-directional rotation seals

    DOEpatents

    Dietle, Lannie L [Houston, TX; Schroeder, John E [Richmond, TX

    2011-11-15

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  14. Low torque hydrodynamic lip geometry for bi-directional rotation seals

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.

    2009-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  15. Influence of intermolecular forces at critical-point wedge filling

    NASA Astrophysics Data System (ADS)

    Malijevský, Alexandr; Parry, Andrew O.

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  16. Transonic flow past a wedge profile with detached bow wave

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Wagoner, Cleo B

    1952-01-01

    A theoretical study has been made of the aerodynamic characteristics at zero angle of attack of a thin, doubly symmetrical double-wedge profile in the range of supersonic flight speed in which the bow wave is detached. The analysis utilizes the equations of the transonic small-disturbance theory and involves no assumptions beyond those implicit in this theory. The mixed flow about the front half of the profile is calculated by relaxation solution of boundary conditions along the shock polar and sonic line. The purely subsonic flow about the rear of the profile is found by means of the method of characteristics specialized to the transonic small-disturbance theory. Complete calculations were made for four values of the transonic similarity parameter. These were found sufficient to bridge the gap between the previous results of Guderley and Yoshihara at a Mach number of 1 and the results which are readily obtained when the bow wave is attached and the flow is completely supersonic.

  17. Sinking, wedging, spreading - viscous spreading on a layer of fluid

    NASA Astrophysics Data System (ADS)

    Bergemann, Nico; Juel, Anne; Heil, Matthias

    2016-11-01

    We study the axisymmetric spreading of a sessile drop on a pre-existing layer of the same fluid in a regime where the drop is sufficiently large so that the spreading is driven by gravity while capillary and inertial effects are negligible. Experiments performed with 5 ml drops and layer thicknesses in the range 0.1 mm <= h <= 1 mm show that at long times the radius of the drop evolves as R tn , where the spreading exponent n increases with the layer thickness h. Numerical simulations, based on the axisymmetric free-surface Navier-Stokes equations, reveal three distinct spreading regimes depending on the layer thickness. For thick layers the drop sinks into the layer, accompanied by significant flow in the layer. By contrast, for thin layers the layer ahead of the propagating front is at rest and the spreading behaviour resembles that of a gravity-driven drop spreading on a dry substrate. In the intermediate regime the spreading is characterised by an advancing wedge, which is sustained by fluid flow from the drop into the layer.

  18. Lateral closed wedge osteotomy for cubitus varus deformity

    PubMed Central

    Srivastava, Amit K; Srivastava, DC; Gaur, SC

    2008-01-01

    Background: Lateral closed wedge (LCW) osteotomy is a commonly accepted method for the correction of the cubitus varus deformity. The fixation of osteotomy is required to prevent loss of correction achieved. The fixation of the osteotomy by the two screw and figure of eight wire is not stable enough to maintain the correction achieved during surgery. In this prospective study we supplemented the fixation by Kirschner's (K-) wires for stable fixation and evaluated the results. Materials and Methods: Twenty-one cases of the cubitus varus deformity following supracondylar fractures of the humerus were operated by LCW osteotomy during February 2001 to June 2006. The mean age of the patients at the time of corrective surgery was 8.5 years (range 6.6-14 years). The osteotomy was fixed by two screws with figure of eight tension band wire between them and the fixation was supplemented by passing two to three K-wires from the lateral condyle engaging the proximal medial cortex through the osteotomy site. Result: The mean follow-up period was 2.5 years (range seven months to 3.4 years). The results were assessed as per Morrey criteria. Eighteen cases showed excellent results and three cases showed good results. Two cases had superficial pin tract infection. Conclusion: The additional fixation by K wires controls rotational forces effectively besides angulation and translation forces and maintains the correction achieved peroperatively. PMID:19753237

  19. Influence of intermolecular forces at critical-point wedge filling.

    PubMed

    Malijevský, Alexandr; Parry, Andrew O

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  20. Ribozyme-Spherical Nucleic Acids

    PubMed Central

    Hao, Liangliang; Kouri, Fotini M.; Briley, William E.; Stegh, Alexander H.; Mirkin, Chad A.

    2015-01-01

    Ribozymes are highly structured RNA sequences that can be tailored to recognize and cleave specific stretches of mRNA. Their current therapeutic efficacy remains low due to their large size and structural instability compared to shorter therapeutically relevant RNA such as small interfering RNA (siRNA) and microRNA (miRNA). Herein, a synthetic strategy that makes use of the spherical nucleic acid (SNA) architecture to stabilize ribozymes and transfect them into live cells is reported. The properties of this novel ribozyme SNA are characterized in the context of the targeted knockdown of O6-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein involved in chemotherapeutic resistance of solid tumors, foremost glioblastoma multiforme (GBM). Data showing the direct cleavage of full-length MGMT mRNA, knockdown of MGMT protein, and increased sensitization of GBM cells to therapy-mediated apoptosis, independent of transfection agents, provide compelling evidence for the promising properties of this new chemical architecture. PMID:26271335

  1. Osmotic buckling of spherical capsules.

    PubMed

    Knoche, Sebastian; Kierfeld, Jan

    2014-11-07

    We study the buckling of elastic spherical shells under osmotic pressure with the osmolyte concentration of the exterior solution as a control parameter. We compare our results for the bifurcation behavior with results for buckling under mechanical pressure control, that is, with an empty capsule interior. We find striking differences for the buckling states between osmotic and mechanical buckling. Mechanical pressure control always leads to fully collapsed states with opposite sides in contact, whereas uncollapsed states with a single finite dimple are generic for osmotic pressure control. For sufficiently large interior osmolyte concentrations, osmotic pressure control is qualitatively similar to buckling under volume control with the volume prescribed by the osmolyte concentrations inside and outside the shell. We present a quantitative theory which also captures the influence of shell elasticity on the relationship between osmotic pressure and volume. These findings are relevant for the control of buckled shapes in applications. We show how the osmolyte concentration can be used to control the volume of buckled shells. An accurate analytical formula is derived for the relationship between the osmotic pressure, the elastic moduli and the volume of buckled capsules. This also allows use of elastic capsules as osmotic pressure sensors or deduction of elastic properties and the internal osmolyte concentration from shape changes in response to osmotic pressure changes. We apply our findings to published experimental data on polyelectrolyte capsules.

  2. Nanophotonics of isolated spherical particles

    NASA Astrophysics Data System (ADS)

    Geints, Yu. É.; Zemlyanov, A. A.; Panina, E. K.

    2010-09-01

    The problem of extreme focusing of an optical beam into the spatial region with wavelength dimensions is considered with the use of the special features of radiation interaction with isolated spherical particles. Results of numerical computations of the optical field intensity at the surface of silver particles of different radii upon exposure to laser radiation with different wavelengths are presented. It is demonstrated that the relative intensity of the plasmon optical field on the nanoparticle surface increases and the field focusing region decreases with increasing particle radius. Results of numerical computations illustrating the influence of the shell of composite nanoparticles comprising a dielectric core and a metal shell on the optical field intensity in the vicinity of the particle are presented. The problem of local optical foci of a transparent microparticle (photonic nanojets) is investigated. It is established that variation of the micron particle size, its optical properties, and laser radiation parameters allows the amplitude and spatial characteristics of the photonic nanojet region to be controlled efficiently.

  3. QED with a spherical mirror

    SciTech Connect

    Hetet, G.; Blatt, R.; Slodicka, L.; Hennrich, M.; Glaetzle, A.

    2010-12-15

    We investigate the quantum electrodynamic (QED) properties of an atomic electron close to the focus of a spherical mirror. We first show that the spontaneous emission and excited-state level shift of the atom can be fully suppressed with mirror-atom distances of many wavelengths. A three-dimensional theory predicts that the spectral density of vacuum fluctuations can indeed vanish within a volume {lambda}{sup 3} around the atom, with the use of a far-distant mirror covering only half of the atomic emission solid angle. The modification of these QED atomic properties is also computed as a function of the mirror size, and large effects are found for only moderate numerical apertures. We also evaluate the long-distance ground-state energy shift (Casimir-Polder shift) and find that it scales as ({lambda}/R){sup 2} at the focus of a hemispherical mirror of radius R, as opposed to the well-known ({lambda}/R){sup 4} scaling law for an atom at a distance R from an infinite plane mirror. Our results are relevant for investigations of QED effects as well as free-space coupling to single atoms using high-numerical-aperture lenses.

  4. Testing the critical Coulomb wedge theory on hyper-extended rifted margins

    NASA Astrophysics Data System (ADS)

    Nirrengarten, Michael; Manatschal, Gianreto; Kusznir, Nick

    2015-04-01

    Deformation of hyper-extended continental crust and its relationship with the underlying mantle is a key process in the evolution of rifted margins. Recent studies have focused on hyper-extension in rifted margins using different approaches such as numerical modelling, seismic interpretation, potential field methods and field observations. However many fundamental questions about the observed structures and their evolution during the formation of hyper-extended margins are still debated. In this study an observation driven approach has been used to characterise geometrical and physical attributes of the continental crust termination, considered as a hyper-extended wedge, in order to test the applicability of critical Coulomb wedge theory to hyper-extended margins. The Coulomb wedge theory was first developed on accretionary prisms and on fold and thrust belts, but it has also been applied in extensional settings. Coulomb wedge theory explains the evolution of the critical aperture angle of the wedge as a function of basal sliding without deformation in the overlying wedge. This critical angle depends on the frictional parameters of the material, the basal friction, the surface slope, the basal dip and the fluid pressure. If the evolution of hyper-extended wedges could be described by the critical Coulomb wedge theory, it would have a major impact in the understanding of the structural and physical evolution of rifted domains during the hyper-extension processes. On seismic reflection lines imaging magma-poor hyper-extended margins, the continental crust termination is often shown to form a hyper-extended wedge. ODP Sites 1067, 900 and 1068 on the Iberian margin as well as field observations in the Alps give direct access to the rocks forming the hyper-extended wedge, which are typically composed of highly deformed and hydrated continental rocks underlain by serpentinised mantle. The boundary between the hydrated continental and mantle rocks corresponds to a

  5. Development of Cone Wedge Ring Expansion Test to Evaluate Mechanical Properties of Clad Tubing Structure

    SciTech Connect

    Wang, Jy-An John

    2016-10-01

    To determine the hoop tensile properties of irradiated fuel cladding in a hot cell, a cone wedge ring expansion test method was developed. A four-piece wedge insert was designed with tapered angles matched to the cone shape of a loading piston. The ring specimen was expanded in the radial direction by the lateral expansion of the wedges under the downward movement of the piston. The advantages of the proposed method are that implementation of the test setup in a hot cell is simple and easy, and that it enables a direct strain measurement of the test specimen from the piston’s vertical displacement soon after the wedge-clad contact resistance is initiated.

  6. Volcanic ash infrared signature: realistic ash particle shapes compared to spherical ash particles

    NASA Astrophysics Data System (ADS)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2013-10-01

    The reverse absorption technique is often used to detect volcanic clouds from thermal infrared satellite measurements. From these measurements particle size and mass loading may also be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculate thermal infrared optical properties of highly irregular and porous ash particles and compare these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry are calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres are found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates will underestimate the mass loading by several tens of percent compared to morphologically complex inhomogeneous ash particles.

  7. Spherical relativistic vacuum core models in a Λ-dominated era

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.

    2017-02-01

    This paper is devoted to analyzing the effects of the cosmological constant in the evolution of exact analytical collapsing vacuum core celestial models. For this purpose, relativistic spherical geometry coupled with null expansion locally anisotropic matter distributions is considered. We have first developed a relation between tidal forces and structural variables. We then explored some viable spherical cosmological models by taking the expansion-free condition. Our first class of spherical models is obtained after constraining system matter content, while the second class is obtained by considering barotropic equation of state. We propose that our calculated solutions could be regarded as a relativistic toy model for those astronomical compact populations where vacuum core is expected to appear, like cosmological voids.

  8. Analytical solutions to the simplified spherical harmonics equations using eigen decompositions.

    PubMed

    Zhang, Limin; Li, Jiao; Yi, Xi; Zhao, Huijuan; Gao, Feng

    2013-12-15

    We develop a modified method to simplify the analytical solutions to the simplified spherical harmonics equations (SP(N)). The scheme decouples the SP(N) partial differential equations into independent equations using eigen decompositions and calculates the Green's function of the photon migrations based on the eigenvectors and eigenvalues. In contrast to the established solutions that are based on the original coupled equations, the proposed derivation is theoretically concise and universally extendable to other regular geometries. We validate the proposed method in comparison with Monte-Carlo simulations for an infinite scattering medium and a circular geometry as an example of the boundary value problems.

  9. Unusual presentation of a complication after pulmonary wedge resection for coccidioma.

    PubMed

    Leduc, François; Thipphavong, Seng; Matzinger, Fred; Dennie, Carole; Sundaresan, Sudhir

    2009-12-01

    We report an unusual presentation of a complication after pulmonary wedge resection. A patient with a history of pulmonary wedge resection for coccidioma presented postoperatively with dyspnea and severe hypoxemia. Cerebral infarctions were diagnosed less than 1 year later. Cardiac magnetic resonance imaging and pulmonary angiogram revealed a pulmonary arteriovenous fistula. Surgical resection of the pulmonary arteriovenous fistula led to improved oxygen saturation and discontinuation of home oxygen.

  10. WEDGE ABSORBERS FOR MUON COOLING WITH A TEST BEAM AT MICE

    SciTech Connect

    Neuffer, David; Acosta, J.; Summers, D.; Mohayai, T.; Snopok, P.

    2016-10-18

    Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.

  11. Effects on sitting pressure distribution during the application of different cushions and anterior height wedges.

    PubMed

    Go, Eun-Ji; Lee, Sang-Heon

    2017-03-01

    [Purpose] The purpose of this study was to investigate interface pressure redistribution in healthy volunteers when applying different cushions and anterior wedge heights. [Subjects and Methods] This study included 36 healthy individuals in their 20s. The peak and mean pressures were measured by applying different cushions and anterior wedge heights. The results were analyzed by using a one-way analysis of variance and post-hoc analysis. [Results] The peak and mean pressures were statistically significant based on the cushion types and anterior wedge height. The peak pressure was at its highest and lowest when sitting on a 6-cm anterior wedge and a foam cushion, respectively. The mean pressure was greatest when sitting on a 6-cm anterior wedge of a firm surface and smallest when sitting on a 5 cm foam cushion. [Conclusion] This study shows that the most effective method for pressure redistribution was sitting on a 5 cm foam cushion without an anterior wedge.

  12. The Effects of a Lateral Wedge Insole on Knee and Ankle Joints During Slope Walking.

    PubMed

    Uto, Yuki; Maeda, Tetsuo; Kiyama, Ryoji; Kawada, Masayuki; Tokunaga, Ken; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Yoshimoto, Yoichi; Yone, Kazunori

    2015-12-01

    The purpose of this study was to determine whether a lateral wedge insole reduces the external knee adduction moment during slope walking. Twenty young, healthy subjects participated in this study. Subjects walked up and down a slope using 2 different insoles: a control flat insole and a 7° lateral wedge insole. A three-dimensional motion analysis system and force plate were used to examine the knee adduction moment, the ankle valgus moment, and the moment arm of the ground reaction force to the knee joint center in the frontal plane. The lateral wedge insole significantly decreased the moment arm of the ground reaction force, resulting in a reduction of the knee adduction moment during slope walking, similar to level walking. The reduction ratio of knee adduction moment by the lateral wedge insole during the early stance of up-slope walking was larger than that of level walking. Conversely, the lateral wedge insole increased the ankle valgus moment during slope walking, especially during the early stance phase of up-slope walking. Clinicians should examine the utilization of a lateral wedge insole for knee osteoarthritis patients who perform inclined walking during daily activity, in consideration of the load on the ankle joint.

  13. Evaluation method of lead measurement accuracy of gears using a wedge artefact

    NASA Astrophysics Data System (ADS)

    Komori, Masaharu; Takeoka, Fumi; Kubo, Aizoh; Okamoto, Kazuhiko; Osawa, Sonko; Sato, Osamu; Takatsuji, Toshiyuki

    2009-02-01

    The reduction of the vibration and noise of gears is an important issue in mechanical devices such as vehicles and wind turbines. The characteristics of the vibration and noise of gears are markedly affected by deviations of the tooth flank form of micrometre order; therefore, a strict quality control of the tooth flank form is required. The accuracy of the lead measurement for a gear-measuring instrument is usually evaluated using a master gear or a lead master. However, it is difficult to manufacture masters with high accuracy because the helix is a complicated geometrical form. In this paper, we propose a method of evaluating a gear-measuring instrument using a wedge artefact, which includes a highly precise plane surface. The concept of the wedge artefact is described and a mathematical model of the measuring condition of the wedge artefact is constructed. Theoretical measurement results for the wedge artefact are calculated. The wedge artefact is designed and produced on the basis of the theoretical measurement results. A measurement experiment using the wedge artefact is carried out and its effectiveness is verified.

  14. Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar.

    PubMed

    McKay, Jack A

    2002-03-20

    The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 10(6) or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal.

  15. Effects on sitting pressure distribution during the application of different cushions and anterior height wedges

    PubMed Central

    Go, Eun-ji; Lee, Sang-Heon

    2017-01-01

    [Purpose] The purpose of this study was to investigate interface pressure redistribution in healthy volunteers when applying different cushions and anterior wedge heights. [Subjects and Methods] This study included 36 healthy individuals in their 20s. The peak and mean pressures were measured by applying different cushions and anterior wedge heights. The results were analyzed by using a one-way analysis of variance and post-hoc analysis. [Results] The peak and mean pressures were statistically significant based on the cushion types and anterior wedge height. The peak pressure was at its highest and lowest when sitting on a 6-cm anterior wedge and a foam cushion, respectively. The mean pressure was greatest when sitting on a 6-cm anterior wedge of a firm surface and smallest when sitting on a 5 cm foam cushion. [Conclusion] This study shows that the most effective method for pressure redistribution was sitting on a 5 cm foam cushion without an anterior wedge. PMID:28356617

  16. Worldwide complete spherical Bouguer and isostatic anomaly maps

    NASA Astrophysics Data System (ADS)

    Bonvalot, S.; Balmino, G.; Briais, A.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2011-12-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface "free air", Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW). The free air and Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, submitted). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis

  17. Spherically Symmetric Space Time with Regular de Sitter Center

    NASA Astrophysics Data System (ADS)

    Dymnikova, Irina

    We formulate the requirements which lead to the existence of a class of globally regular solutions of the minimally coupled GR equations asymptotically de Sitter at the center. The source term for this class, invariant under boosts in the radial direction, is classified as spherically symmetric vacuum with variable density and pressure Tμ ν vac associated with an r-dependent cosmological term Λ μ ν = 8π GTμ ν vac, whose asymptotic at the origin, dictated by the weak energy condition, is the Einstein cosmological term Λgμν, while asymptotic at infinity is de Sitter vacuum with λ < Λ or Minkowski vacuum. For this class of metrics the mass m defined by the standard ADM formula is related to both the de Sitter vacuum trapped at the origin and the breaking of space time symmetry. In the case of the flat asymptotic, space time symmetry changes smoothly from the de Sitter group at the center to the Lorentz group at infinity through radial boosts in between. Geometry is asymptotically de Sitter as r → 0 and asymptotically Schwarzschild at large r. In the range of masses m ≥ mcrit, the de Sitter Schwarzschild geometry describes a vacuum nonsingular black hole (ΛBH), and for m < mcrit it describes G-lump — a vacuum selfgravitating particle-like structure without horizons. In the case of de Sitter asymptotic at infinity, geometry is asymptotically de Sitter as r → 0 and asymptotically Schwarzschild de Sitter at large r. Λμν geometry describes, dependently on parameters m and q = √ {Λ /λ } and choice of coordinates, a vacuum nonsingular cosmological black hole, self-gravitating particle-like structure at the de Sitter background λgμν, and regular cosmological models with cosmological constant evolving smoothly from Λ to λ.

  18. Static spherically symmetric wormholes in f( R, T) gravity

    NASA Astrophysics Data System (ADS)

    Zubair, M.; Waheed, Saira; Ahmad, Yasir

    2016-08-01

    In this work, we explore wormhole solutions in f( R, T) theory of gravity, where R is the scalar curvature and T is the trace of stress-energy tensor of matter. To investigate this, we consider a static spherically symmetric geometry with matter contents as anisotropic, isotropic, and barotropic fluids in three separate cases. By taking into account the Starobinsky f( R) model, we analyze the behavior of energy conditions for these different kinds of fluids. It is shown that the wormhole solutions can be constructed without exotic matter in few regions of space-time. We also give the graphical illustration of the results obtained and discuss the equilibrium picture for the anisotropic case only. It is concluded that the wormhole solutions with anisotropic matter are realistic and stable in this theory of gravity.

  19. Apparent sizes and spectral line profiles for spherical ('three-dimensional') astrophysical masers

    NASA Technical Reports Server (NTRS)

    Emmering, Robert T.; Watson, William D.

    1994-01-01

    Calculations are performed for the frequency-dependent transport of radiation in a uniform spherical maser. Coupling between the intensities at different frequencies is treated. Spherical masers are commonly utilized as idealized geometries in which to assess possible deviations (sometimes, 'three-dimensional effects') from the approximation of a linear geometry. We find that the spectral line profile rebroadens in approximately the same manner as that for a linear maser so that the relationship between the line breadth and the luminosity, beaming angle, and degree of saturation is essentially unchanged. The variation of the apparent size of a spherical maser with frequency is not found to be significant at frequencies within the line profile at which the intensity is appreciable. The 'standard approximation' is adequate for obtaining most of the basic properties of spherical masers that have been examined including the relationship between the pumping (or molecular populations) and the intensity of maser radiation. The improved methods employed here are, however, necessary to obtain variation of the apparent size with frequency in the saturated regime. These conclusions differ from those of previous investigators. The calculations here are more reliable than those of previous investigators because these are self-consistent and avoid certain inaccurate simplifications.

  20. The CLAS12-RICH hybrid geometry

    NASA Astrophysics Data System (ADS)

    Angelini, Giovanni; CLAS12-RICH Collaboration

    2017-01-01

    A Ring-imaging Cherenkov detector (RICH) has been designed for the CLAS12 spectrometer (JLAB, Hall B) in order to increase the particle identification. Among the approved physics program focused upon 3D imaging of the nucleon, some Semi Inclusive Deep Inelastic Scattering experiments (E12-09-007, E12-09-008, E12-09-009) demand an efficient kaon identification across the momentum range from 3 to 8 GeV/c. The detector exploits a novel elaborated hybrid geometry based on a complex focusing mirror system that will reduce the area instrumented with photon detectors. For forward scattered particles (θ <12°) with momenta p = 3-8 GeV/c, a proximity imaging method with direct Cherenkov light detection will be used. For larger angles of 12° < θ <35° and momenta of p = 3-6 GeV/c, the Cherenkov light will be focused by a spherical mirror, undergo two further passes through the aerogel radiator and will be reflected from planar mirrors before detection. A carefully study on reflections has been performed considering microscopic and macroscopic effects. In addition, a new feature has been introduced in the CLAS12 simulation software in order to generate the geometry of the detector by using a computer-aided design (CAD) file for an accurate geometrical description. U.S. Department of Energy, GWU Columbian College Art and Science Facilitating Fund Award (CCAS CCFF).

  1. Diffusion in quantum geometry

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca

    2012-08-01

    The change of the effective dimension of spacetime with the probed scale is a universal phenomenon shared by independent models of quantum gravity. Using tools of probability theory and multifractal geometry, we show how dimensional flow is controlled by a multiscale fractional diffusion equation, and physically interpreted as a composite stochastic process. The simplest example is a fractional telegraph process, describing quantum spacetimes with a spectral dimension equal to 2 in the ultraviolet and monotonically rising to 4 towards the infrared. The general profile of the spectral dimension of the recently introduced multifractional spaces is constructed for the first time.

  2. Geometrie verstehen: statisch - kinematisch

    NASA Astrophysics Data System (ADS)

    Kroll, Ekkehard

    Dem Allgemeinen steht begrifflich das Besondere gegenüber. In diesem Sinne sind allgemeine Überlegungen zum Verstehen von Mathematik zu ergänzen durch Untersuchungen hinsichtlich des Verstehens der einzelnen mathematischen Disziplinen, insbesondere der Geometrie. Hier haben viele Schülerinnen und Schüler Probleme. Diese rühren hauptsächlich daher, dass eine fertige geometrische Konstruktion in ihrer statischen Präsentation auf Papier nicht mehr die einzelnen Konstruktionsschritte erkennen lässt; zum Nachvollzug müssen sie daher ergänzend in einer Konstruktionsbeschreibung festgehalten werden.

  3. Wrinkling crystallography on spherical surfaces

    PubMed Central

    Brojan, Miha; Terwagne, Denis; Lagrange, Romain; Reis, Pedro M.

    2015-01-01

    We present the results of an experimental investigation on the crystallography of the dimpled patterns obtained through wrinkling of a curved elastic system. Our macroscopic samples comprise a thin hemispherical shell bound to an equally curved compliant substrate. Under compression, a crystalline pattern of dimples self-organizes on the surface of the shell. Stresses are relaxed by both out-of-surface buckling and the emergence of defects in the quasi-hexagonal pattern. Three-dimensional scanning is used to digitize the topography. Regarding the dimples as point-like packing units produces spherical Voronoi tessellations with cells that are polydisperse and distorted, away from their regular shapes. We analyze the structure of crystalline defects, as a function of system size. Disclinations are observed and, above a threshold value, dislocations proliferate rapidly with system size. Our samples exhibit striking similarities with other curved crystals of charged particles and colloids. Differences are also found and attributed to the far-from-equilibrium nature of our patterns due to the random and initially frozen material imperfections which act as nucleation points, the presence of a physical boundary which represents an additional source of stress, and the inability of dimples to rearrange during crystallization. Even if we do not have access to the exact form of the interdimple interaction, our experiments suggest a broader generality of previous results of curved crystallography and their robustness on the details of the interaction potential. Furthermore, our findings open the door to future studies on curved crystals far from equilibrium. PMID:25535355

  4. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments.

    PubMed

    Harding, E C; Ao, T; Bailey, J E; Loisel, G; Sinars, D B; Geissel, M; Rochau, G A; Smith, I C

    2015-04-01

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

  5. Graded geometry and Poisson reduction

    SciTech Connect

    Cattaneo, A. S.; Zambon, M.

    2009-02-02

    The main result extends the Marsden-Ratiu reduction theorem in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof. Further, we provide an alternative algebraic proof for the main result.

  6. Computer-Aided Geometry Modeling

    NASA Technical Reports Server (NTRS)

    Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)

    1984-01-01

    Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.

  7. Teaching of Geometry in Bulgaria

    ERIC Educational Resources Information Center

    Bankov, Kiril

    2013-01-01

    Geometry plays an important role in the school mathematics curriculum all around the world. Teaching of geometry varies a lot (Hoyls, Foxman, & Kuchemann, 2001). Many countries revise the objectives, the content, and the approaches to the geometry in school. Studies of the processes show that there are not common trends of these changes…

  8. Magnetic and acoustic investigations of turbulent spherical Couette flow

    NASA Astrophysics Data System (ADS)

    Adams, Matthew Michael

    This dissertation describes experiments in spherical Couette devices, using both gas and liquid sodium. The experimental geometry is motivated by the Earth's outer core, the seat of the geodynamo, and consists of an outer spherical shell and an inner sphere, both of which can be rotated independently to drive a shear flow in the fluid lying between them. In the case of experiments with liquid sodium, we apply DC axial magnetic fields, with a dominant dipole or quadrupole component, to the system. We measure the magnetic field induced by the flow of liquid sodium using an external array of Hall effect magnetic field probes, as well as two probes inserted into the fluid volume. This gives information about possible velocity patterns present, and we extend previous work categorizing flow states, noting further information that can be extracted from the induced field measurements. The limitations due to a lack of direct velocity measurements prompted us to work on developing the technique of using acoustic modes to measure zonal flows. Using gas as the working fluid in our 60 cm diameter spherical Couette experiment, we identified acoustic modes of the container, and obtained excellent agreement with theoretical predictions. For the case of uniform rotation of the system, we compared the acoustic mode frequency splittings with theoretical predictions for solid body flow, and obtained excellent agreement. This gave us confidence in extending this work to the case of differential rotation, with a turbulent flow state. Using the measured splittings for this case, our colleagues performed an inversion to infer the pattern of zonal velocities within the flow, the first such inversion in a rotating laboratory experiment. This technique holds promise for use in liquid sodium experiments, for which zonal flow measurements have historically been challenging.

  9. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2006-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  10. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2004-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  11. Saline Fluids in Subduction Channels and Mantle Wedge

    NASA Astrophysics Data System (ADS)

    Kawamoto, T.; Hertwig, A.; Schertl, H. P.; Maresch, W. V.; Shigeno, M.; Mori, Y.; Nishiyama, T.

    2015-12-01

    Saline fluids can transport large-ion-lithophile elements and carbonate. Subduction-zone fluids contain salts with various amounts of NaCl equivalent similar to that of the present and/or Phanerozoic seawater (about 3.5 wt% NaCl). The salinity of aqueous fluids in the mantle wedge decreases from trench side to back-arc side, although available data have been limited. Such saline fluids from mantle peridotite underneath Pinatubo, a frontal volcano of the Luzon arc, contain 5.1 wt% NaCl equivalent and CO2 [Kawamoto et al., 2013 Proc Natl Acad Sci USA] and in Ichinomegeta, a rear-arc volcano of the Northeast Japan arc, contain 3.7 wt% NaCl equivalent and CO2 [Kumagai et al., Contrib Mineral Petrol 2014]. Abundances of chlorine and H2O in olivine-hosted melt inclusions also suggest that aqueous fluids to produce frontal basalts have higher salinity than rear-arc basalts in Guatemala arc [Walker et al., Contrib Mineral Petrol 2003]. In addition to these data, quartz-free jadeitites contain fluid inclusions composed of aqueous fluids with 7 wt% NaCl equivalent and quartz-bearing jadeitite with 4.6 wt% NaCl equivalent in supra-subduction zones in Southwest Japan [Mori et al., 2015, International Eclogite Conference] and quartz-bearing jadeitite and jadeite-rich rocks contain fluid inclusions composed of aqueous fluids with 4.2 wt% NaCl equivalent in Rio San Juan Complex, Dominica Republic [Kawamoto et al., 2015, Goldschmidt Conference]. Aqueous fluids generated at pressures lower than conditions for albite=jadeite+quartz occurring at 1.5 GPa, 500 °C may contain aqueous fluids with higher salinity than at higher pressures.

  12. Flow Pattern relative to the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Chu, X.; McPherron, R. L.; Hsu, T.

    2013-12-01

    Magnetospheric substorms play a key role in the coupling of the solar wind and the magnetosphere. The Substorm Current Wedge (SCW) is a key element in the present physical model of substorms. It is widely accepted that the SCW is created by earthward busty flows, but the generation mechanism is still unknown. Previous studies suggest pressure gradients and magnetic vortices are possible candidates. Due to the sparse coverage of satellites in space, these studies were strongly dependent on the assumption that the satellites were in the generation region of the field-aligned currents (FAC) forming the SCW. In this work, we take advantage of an inversion technique that determines the parameters describing the SCW and perform a statistical study on the plasma and magnetic field parameters of the flow pattern relative to the SCW. The inversion technique finds the location and the intensity of the SCW from midlatitude magnetic data. The technique has been validated using auroral observations, Equivalent Ionospheric Currents (EIC), SYM-H index from SuperMAG, and magnetic perturbations at geosynchronous orbit by the GOES satellite. A database of substorm events has been created using midlatitude positive bays, which are the ground signature of the SCW at lower latitudes. The inversion technique is applied to each event in the database to determine the location of the origin of the SCW. The inversion results are also used to find conjunction events with space observations from VAP (RBSP), THEMIS and GOES. The plasma and magnetic field parameters such as the pressure gradient and magnetic vorticity are then categorized as a function of their location relative to the origin of the SCW. How the distribution/pattern of the pressure gradient and vorticity are related to the properties of the SCW (locations and intensity of the FAC), and flows (entropy, velocity and density) will be determined.

  13. Discrete dislocation plasticity analysis of the wedge indentation of films

    NASA Astrophysics Data System (ADS)

    Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van der Giessen, E.

    2006-11-01

    The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at ±35.3∘ and 90∘ with respect to the indentation direction. The analyses are carried out for three values of the film thickness, 2, 10 and 50 μm, and with the dislocations all of edge character modeled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated through a set of constitutive rules. Over the range of indentation depths considered, the indentation pressure for the 10 and 50 μm thick films decreases with increasing contact size and attains a contact size-independent value for contact lengths A>4 μm. On the other hand, for the 2 μm films, the indentation pressure first decreases with increasing contact size and subsequently increases as the plastic zone reaches the rigid substrate. For the 10 and 50 μm thick films sink-in occurs around the indenter, while pile-up occurs in the 2 μm film when the plastic zone reaches the substrate. Comparisons are made with predictions obtained from other formulations: (i) the contact size-independent indentation pressure is compared with that given by continuum crystal plasticity; (ii) the scaling of the indentation pressure with indentation depth is compared with the relation proposed by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 43, 411-423]; and (iii) the computed contact area is compared with that obtained from the estimation procedure of Oliver and Pharr [1992. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564-1583].

  14. Flow bursts, breakup arc, and substorm current wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2015-04-01

    Energy liberated by the reconnection process in the near-Earth tail is transported via flow bursts toward the dipolar magnetosphere during substorms. The breakup arc is a manifestation of the arrival of the bursts under flow braking and energy deposition. Its structure and behavior is analyzed on the basis of five striking spatial, temporal, and energetic properties, qualitatively and in part also quantitatively. A key element is the formation of stop layers. They are thin layers, of the width of an ion gyro radius, in which the magnetic field makes a transition from tail to near-dipolar magnetosphere configurations and in which the kinetic energy of fast flows is converted into electromagnetic energy of kinetic Alfvén waves. The flows arise from the relaxation of the strong magnetic shear stresses in the leading part of the flow bursts. The bright narrow arcs of less than 10 km width inside the broad poleward expanding breakup arc, Alfvénic in nature and visually characterized by erratic short-lived rays, are seen as traces of the stop layers. The gaps between two narrow and highly structured arcs are filled with more diffuse emissions. They are attributed to the relaxation of the less strained magnetic field of the flow bursts. Eastward flows along the arcs are linked to the shrinking gaps between two successive arcs and the entry of auroral streamers into the dipolar magnetosphere in the midnight sector. Flow braking in the stop layers forms multiple pairs of narrow balanced currents and cannot be behind the formation of the substorm current wedge. Instead, its origin is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the high-beta plasma, after the high magnetic shears have relaxed and the fast flows and stop layer process have subsided, in other words, to the "dying flow bursts."

  15. A Spherical Earth Solution for TOA Lightning Location Retrieval

    NASA Technical Reports Server (NTRS)

    Koshak, William J,

    1999-01-01

    With the advent of high-speed digital computers, the method of chi square minimization is a highly practical means for analyzing a wide variety of (otherwise intractable) nonlinear inversion problems in applied mathematical physics. Little thought or effort is required to apply the chi square method to obtain quick and reasonable estimates of a solution, and the method offers a means to assess retrieval errors. Because the method is simple and practical it is sometimes hastily applied to problems that can be solved by formal analytic or quasi-analytic means. Presently, Global Atmospherics Inc. (GAI) finds the minimum of a chi square function to analyze time-of-arrival (TOA) and magnetic bearing data derived from the National Lightning Detection Network (NLDN); ellipsoidal Earth geometry is assumed. An analytic solution to this problem has not yet been attained, but the consideration and solving of less general problem statements might eventually lead to a final solution. In the present study, the problem of retrieving lightning ground-strike location on a spherical Earth surface using a network of 4 or more time-of-arrival (TOA) sensors is considered. It is shown that this problem has an analytic solution and therefore does not require the use of nonlinear estimation theory (such as the chi square method mentioned above). The mathematical robustness of the analytic solution is tested using computer-generated lightning sources and simulated TOA measurement errors. A quasi-analytic extension of the spherical Earth solution for an oblate spheroidal Earth geometry is considered in a related study. The incorporation of magnetic bearing information into these analytic solutions would lead to a general and elegant analytic retrieval scheme that would most likely replace the chi square estimation theory currently employed by Global Atmospherics Inc. (GAI).

  16. Numerical studies of diffusive shock acceleration at spherical shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Jones, T. W.

    2006-05-01

    We have developed a cosmic ray (CR) shock code in one-dimensional spherical geometry with which the particle distribution, the gas flow and their nonlinear interaction can be followed numerically in a frame comoving with an expanding shock. In order to accommodate a very wide dynamic range of diffusion length scales in the CR shock problem, we have incorporated subzone shock tracking and adaptive mesh refinement techniques. We find the spatial grid resolution required for numerical convergence is less stringent in this code compared to typical, fixed-grid Eulerian codes. The improved convergence behavior derives from maintaining the shock discontinuity inside the same grid zone in the comoving code. That feature improves numerical estimates of the compression rate experienced by CRs crossing the subshock compared to codes that allow the subshock to drift on the grid. Using this code with a Bohm-like diffusion model we have calculated the CR acceleration and the nonlinear feedback at supernova remnant shocks during the Sedov-Taylor stage. Similarly to plane-parallel shocks, with an adopted thermal leakage injection model, about 10 -3 of the particles that pass through the shock and up to 60% of the explosion energy are transferred to the CR component. These results are in good agreement with previous nonlinear spherical CR shock calculations of Berezhko and collaborators.

  17. Core geometry in perspective

    PubMed Central

    Dillon, Moira R.; Spelke, Elizabeth S.

    2015-01-01

    Research on animals, infants, children, and adults provides evidence that distinct cognitive systems underlie navigation and object recognition. Here we examine whether and how these systems interact when children interpret 2D edge-based perspectival line drawings of scenes and objects. Such drawings serve as symbols early in development, and they preserve scene and object geometry from canonical points of view. Young children show limits when using geometry both in non-symbolic tasks and in symbolic map tasks that present 3D contexts from unusual, unfamiliar points of view. When presented with the familiar viewpoints in perspectival line drawings, however, do children engage more integrated geometric representations? In three experiments, children successfully interpreted line drawings with respect to their depicted scene or object. Nevertheless, children recruited distinct processes when navigating based on the information in these drawings, and these processes depended on the context in which the drawings were presented. These results suggest that children are flexible but limited in using geometric information to form integrated representations of scenes and objects, even when interpreting spatial symbols that are highly familiar and faithful renditions of the visual world. PMID:25441089

  18. Three-Dimensional Vertebral Wedging in Mild and Moderate Adolescent Idiopathic Scoliosis

    PubMed Central

    Scherrer, Sophie-Anne; Begon, Mickaël; Leardini, Alberto; Coillard, Christine; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    Background Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity. Methodology Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50°) participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20°) from the moderate (20° and over) spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body. Results Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it) (F = 1.78, p = 0.101). Main effects of vertebral Positions (apex and above or below it) (F = 4.20, p = 0.015) and wedging Planes (F = 34.36, p<0.001) were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6°) than the superior group (2.9°, p = 0.019) and a significantly greater wedging (p≤0.03) along the sagittal plane (4.3°). Conclusions Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support the claim

  19. How Spherical Is a Cube (Gravitationally)?

    NASA Astrophysics Data System (ADS)

    Sanny, Jeff; Smith, David

    2015-02-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center.1,2 By integrating over ring elements of a spherical shell, we show that the gravitational force on a point mass outside the shell is the same as that of a particle with the same mass as the shell at its center. This derivation works for objects with spherical symmetry while depending on the fact that the gravitational force between two point masses varies inversely as the square of their separation.3 If these conditions are not met, then the problem becomes more difficult. In this paper, we remove the condition of spherical symmetry and examine the gravitational force between two uniform cubes.

  20. Observation of spherical ion-acoustic solitons

    SciTech Connect

    Nakamura, Y.; Ooyama, M.; Ogino, T.

    1980-11-10

    Spherically converging positive and negative ion-acoustic pulses are investigated experimentally. Their behavior agrees with computer simulations based on the fluid model of plasma. Large positive pulses are identified as solitons.