Science.gov

Sample records for spheromak physics experiment

  1. Simulation of multi-pulse coaxial helicity injection in the Sustained Spheromak Physics Experiment

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Romero-Talamás, C. A.; Woodruff, S.

    2018-03-01

    Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization during multi-pulse coaxial helicity injection in the Sustained Spheromak Physics eXperiment. We describe multiple distinct phases of spheromak evolution, starting from vacuum magnetic fields and the formation of the initial magnetic flux bubble through multiple refluxing pulses and the eventual onset of the column mode instability. Experimental and computational magnetic diagnostics agree on the onset of the column mode instability, which first occurs during the second refluxing pulse of the simulated discharge. Our computations also reproduce the injector voltage traces, despite only specifying the injector current and not explicitly modeling the external capacitor bank circuit. The computations demonstrate that global magnetic evolution is fairly robust to different transport models and, therefore, that a single fluid-temperature model is sufficient for a broader, qualitative assessment of spheromak performance. Although discharges with similar traces of normalized injector current produce similar global spheromak evolution, details of the current distribution during the column mode instability impact the relative degree of poloidal flux amplification and magnetic helicity content.

  2. Spheromak Merging Experiments on SSX

    NASA Astrophysics Data System (ADS)

    Brown, M. R.; Kornack, T. W.; Sollins, P. K.; Luh, W. J.

    1997-11-01

    Spheromak merging experiments are underway at the Swarthmore Spheromak Experiment (SSX) at Swarthmore College. The spheromaks are formed by identical magnetized plasma guns and equilibrium is established in close fitting 0.5 m diameter copper flux conservers. Partial merging is achieved through openings in the back wall. We observe the formation of a reconnection boundary layer at the interface of the two spheromaks using a linear probe array. The characteristic scale of the flux reversal is about 1 cm (consistent with the diffusion scale δ_diff, the ion Larmor radius ρi and the ion inertial length c/ω_pi). Movies of the formation and evolution of the layer will be presented. Correlations between reconnection events and pulses of soft x-rays and energetic particles will be presented if available. Plans for 2D and 3D imaging of the layer will also be discussed.

  3. NIMROD resistive magnetohydrodynamic simulations of spheromak physics

    SciTech Connect

    Hooper, E. B.; Cohen, B. I.; McLean, H. S.

    The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magnetohydrodynamic simulations with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the sustained spheromak physics experiment [R. D. Wood et al., Nucl. Fusion 45, 1582 (2005)]. The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena andmore » the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results addresses variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.« less

  4. NIMROD Resistive Magnetohydrodynamic Simulations of Spheromak Physics

    SciTech Connect

    Hooper, E B; Cohen, B I; McLean, H S

    The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magneto-hydrodynamic simulations with the NIMROD code. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the Sustained Spheromak Physics Experiment (SSPX) (R. D. Wood, et al., Nucl. Fusion 45, 1582 (2005)). The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth ofmore » symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results address variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.« less

  5. Outline for a Spheromak Proof of Principle Experiment

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Macnab, Angus

    2007-11-01

    A possible means for reducing reactor core complexity and size (and hence cost) could lie with research into the Spheromak concept: a plasma ring with no coils linking the plasma. Much progress has been made in the last 20 years, and now tokamak-like confinement is being reported, with work focusing on understanding beta-limits, transport and novel means of generating magnetic fields both in sustained and pulsed scenarios. Spheromak research is maturing, with many experiments integrated into a national program to resolve well defined critical physics issues. This poster summarizes the work from the last 20 years both as a historical overview and an outline of the present status. A natural consequence is to suggest the possibility of a Next-Step Spheromak, or advanced Proof of Principle device that will build on recent success and address many of the remaining critical issues in preparation for a Spheromak BPX.

  6. Reflux physics and an operational scenario for the spheromak

    SciTech Connect

    Hooper, E. B.

    2010-07-20

    The spheromak [1] is a toroidal magnetic confinement geometry for plasma with most of the magnetic field generated by internal currents. It has been demonstrated to have excellent energy confinement properties: A peak electron temperature of 0.4 keV was achieved in the Compact Torus Experiment (CTX) experiment [2] and of 0.5 keV in the Sustained Spheromak Physics Experiment (SSPX) [3]. In both cases the plasmas were decaying slowly following formation and (in SSPX) sustainment by coaxial helicity injection (CHI) [4]. In SSPX, power balance analysis during this operational phase yielded electron thermal conductivities in the core plasma in the rangemore » of 1-10 m 2/s [5, 6], comparable to the tokamak L-mode. These results motivate the consideration of possible operating scenarios for future fusion experiments or even reactors.« less

  7. Magnetic Reconnection Results on the Swarthmore Spheromak Experiment

    NASA Astrophysics Data System (ADS)

    Kornack, T. W.; Sollins, P. K.; Brown, M. R.

    1997-11-01

    Linear and 2D arrays of magnetic probes are used to study magnetic reconnection in the Swarthmore Spheromak Experiment (SSX). Opposing coaxial plasma guns form two identical spheromaks into adjacent 0.5 m diameter copper flux conservers. The flux conservers have symmetrical openings that allow the spheromaks to merge in a controlled manner. The stable equilibrium of the spheromaks provides a reservoir of magnetic flux for reconnection experiments. Currently, the magnetic configuration of the spheromaks allows the study of counter-helicity reconnection. Preliminary analysis will be presented and may include 2D B field movies of the reconnection region, measurement of the reconnection rate and comparison to the Sweet-Parker and standard Petschek models.

  8. Overview of the HIT-SI3 spheromak experiment

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Everson, C. J.; Penna, J. M.; Nelson, B. A.

    2017-10-01

    The HIT-SI and HIT-SI3 spheromak experiments (a = 23 cm) study efficient, steady-state current drive for magnetic confinement plasmas using a novel method which is ideal for low aspect ratio, toroidal geometries. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Analysis of surface magnetic fields in HIT-SI indicates large n = 0 and 1 mode amplitudes and little energy in higher modes. Within measurement uncertainties all the n = 1 energy is imposed by the injectors, rather than being plasma-generated. The fluctuating field imposed by the injectors is sufficient to sustain the toroidal current through dynamo action whereas the plasma-generated field is not (Hossack et al., Phys. Plasmas, 2017). Ion Doppler spectroscopy shows coherent, imposed plasma motion inside r 10 cm in HIT-SI and a smaller volume of coherent motion in HIT-SI3. Coherent motion indicates the spheromak is stable and a lack of plasma-generated n = 1 energy indicates the maximum q is maintained below 1 for stability during sustainment. In HIT-SI3, the imposed mode structure is varied to test the plasma response (Hossack et al., Nucl. Fusion, 2017). Imposing n = 2, n = 3, or large, rotating n = 1 perturbations is correlated with transient plasma-generated activity. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-96ER54361.

  9. A proof of principle spheromak experiment: The next step on a recently opened path to economical fusion power

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas; Marklin, George; Nelson, Brian; Sutherland, Derek; HIT Team Team

    2013-10-01

    A proof of principle experiment to study closed-flux energy confinement of a spheromak sustained by imposed dynamo current drive is described. A two-fluid validated NIMROD code has simulated closed-flux sustainment on a stable spheromak using imposed dynamo current drive (IDCD), demonstrating that dynamo current drive is compatible with closed flux. (submitted for publication and see adjacent poster.(spsap)) HIT-SI, a = 0.25 m, has achieved 90 kA of toroidal current, current gains of nearly 4, and operation from 5.5 kHz to 68 kHz, demonstrating the robustness of the method.(spsap) Finally, a reactor design study using fusion technology developed for ITER and modern nuclear technology shows a design that is economically superior to coal.(spsap) The spheromak reactor and development path are about a factor of 10 less expensive than that of the tokamak/stellarator. These exciting results justify a proof of principle (PoP) confinement experiment of a spheromak sustained by IDCD. Such an experiment (R = 1.5 m, a = 1 m, Itor = 3 . 2 MA, n = 4e19/m3, T = 3 keV) is described in detail.

  10. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak.

    PubMed

    Woodruff, S; Hill, D N; Stallard, B W; Bulmer, R; Cohen, B; Holcomb, C T; Hooper, E B; McLean, H S; Moller, J; Wood, R D

    2003-03-07

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (approximately 1 kV) are produced, giving the highest sustained voltage approximately 500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B/B>/=2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments.

  11. Turbulence scaling study in an MHD wind tunnel on the Swarthmore Spheromak Experiment

    NASA Astrophysics Data System (ADS)

    Schaffner, D. A.; Wan, A.; Owusu-Boateng, J.; Brown, M. R.; Lukin, V. S.

    2013-10-01

    The turbulence of colliding spheromaks are explored in the MHD wind tunnel on the SSX. Fully ionized hydrogen plasma is produced by two plasma guns on opposite sides of a 1 m by 15 cm copper cylinder. Modification of B-field, Ti and β are made through stuffing flux variation of the plasma guns. Presented here are turbulent f-/ k-spectra and correlation times/lengths of B-field fluctuations as measured by a 16 channel B-dot radial probe array at the chamber midplane. Power-law fits to spectra show scaling that is robust to changes in stuffing flux; fits are on the order of f-3 and k - 2 . 1 for all flux variations. Dissipation range modification of the spectra is observed; changes to the f-spectra slopes occur around f =fci while changes in k-spectra slopes appear around ~ 5ρi . Dissipation range fits are made with an exponentially modified power-law model [Terry et al., PoP 2012]. Fluctuations in axial velocity are made using a Mach probe. Both B-field and velocity fluctuations persist on the same timescale in these experiments. Mach velocity f-spectra show power-laws similar to that for B-field. Comparison of spectra from MHD and Hall MHD simulations of SSX performed within the HiFi modeling framework are made to the experimental results.

  12. Validation and Continued Development of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2017-10-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. An extended MHD model has shown good agreement with experimental data at 14 kHz injector operation. Efforts to extend the existing validation to a range of higher frequencies (36, 53, 68 kHz) using the PSI-Tet 3D extended MHD code will be presented, along with simulations of potential combinations of flux conserver features and helicity injector configurations and their impact on current drive performance, density control, and temperature for future SIHI experiments. Work supported by USDoE.

  13. Two-fluid (plasma-neutral) Extended-MHD simulations of spheromak configurations in the HIT-SI experiment with PSI-Tet

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Hansen, C. J.; Jarboe, T. R.

    2017-10-01

    A self-consistent, two-fluid (plasma-neutral) dynamic neutral model has been implemented into the 3-D, Extended-MHD code PSI-Tet. A monatomic, hydrogenic neutral fluid reacts with a plasma fluid through elastic scattering collisions and three inelastic collision reactions: electron-impact ionization, radiative recombination, and resonant charge-exchange. Density, momentum, and energy are evolved for both the plasma and neutral species. The implemented plasma-neutral model in PSI-Tet is being used to simulate decaying spheromak configurations in the HIT-SI experimental geometry, which is being compare to two-photon absorption laser induced fluorescence measurements (TALIF) made on the HIT-SI3 experiment. TALIF is used to measure the absolute density and temperature of monatomic deuterium atoms. Neutral densities on the order of 1015 m-3 and neutral temperatures between 0.6-1.7 eV were measured towards the end of decay of spheromak configurations with initial toroidal currents between 10-12 kA. Validation results between TALIF measurements and PSI-Tet simulations with the implemented dynamic neutral model will be presented. Additionally, preliminary dynamic neutral simulations of the HIT-SI/HIT-SI3 spheromak plasmas sustained with inductive helicity injection will be presented. Lastly, potential benefits of an expansion of the two-fluid model into a multi-fluid model that includes multiple neutral species and tracking of charge states will be discussed.

  14. Suppression of MHD fluctuations leading to improved confinement in a gun-driven spheromak.

    PubMed

    McLean, H S; Woodruff, S; Hooper, E B; Bulmer, R H; Hill, D N; Holcomb, C; Moller, J; Stallard, B W; Wood, R D; Wang, Z

    2002-03-25

    Magnetic fluctuations have been reduced to approximately 1% during discharges on the Sustained Spheromak Physics Experiment by shaping the spatial distribution of the bias magnetic flux in the device. In the resulting quiescent regime, the safety factor profile is nearly flat in the plasma and the dominant ideal and resistive MHD modes are greatly reduced. During this period, the temperature profile is peaked at the magnetic axis and maps onto magnetic flux contours. Energy confinement time is improved over previous reports in a driven spheromak.

  15. The STPX Spheromak System: Recent Measurements and Observations

    NASA Astrophysics Data System (ADS)

    Williams, R. L.; Clark, J.; Richardson, M.; Williams, R. E.

    2016-10-01

    We present results of recent measurements made to characterize the plasma formed in the STPX* Spheromak plasma device installed at the Florida A. and M University. The toroidal plasma is formed using a pulsed cylindrical gun discharge and, when fully operational, is designed to approach a density of 1021 /m3 and electron temperatures in the range of 100-350 eV. The diagnostic devices used for these recent measurements include Langmuir probes, electrostatic triple probes, optical spectrometers, CCD detectors, laser probes and magnetic field coils. These probes have been tested using both a static and the pulsed discharges created in the device, and we report the latest measurements. The voltage and current profiles of the pulsed discharge as well as the pulsed magnetic field coils are discussed. Progress in modeling this spheromak using NIMROD and other simulation codes will be discussed. Our recent results of an ongoing study of the topology of magnetic helicity are presented in a separate poster. Spheromak Turbulent Physics Experiment.

  16. Turbulence scaling study in an MHD wind tunnel on the Swarthmore Spheromak Experiment

    NASA Astrophysics Data System (ADS)

    Schaffner, D. A.; Brown, M. R.; Wan, A.

    2013-12-01

    The turbulence of colliding plasmas is explored in an MHD wind tunnel on the SSX in an effort to understand solar wind physics in a laboratory setting. Fully ionized hydrogen plasma is produced by two plasma guns on opposite sides of a 1m by 15cm copper cylinder creating plasma with L/ρi ~ 75-150, β ~ 0.1-0.2 and Lundquist number ~ 1000. Modification of B-field, Ti and β are made through stuffing flux variation of the plasma guns. Presented here are turbulent f-/k-spectra and correlation times and lengths of B-field fluctuations as measured by a 16 channel B-dot radial probe array at the chamber midplane using both FFT and wavelet analysis techniques. Power-law behavior is observed spanning about two decades of frequencies [100kHz-10MHz] and about one decade of wavelength [10cm-1cm]. Power-law fits to spectra show scaling in these regions to be robust to changes in stuffing flux; fits are on the order of f-4 and k-2 for all flux variations. Low frequency fluctuations [<100kHz] can vary significantly suggesting a range of energy injection at large scales. Evidence for dissipation range modification of the spectra is also observed; divergence from power-law behavior is seen in f-spectra for frequencies around f=fci while changes in k-spectra slopes appear around 1/k ~ 5ρi. Dissipation range fits are made with an exponentially modified power-law model [Terry et al, PoP 2012]. Fluctuation measurements in axial velocity are made using a Mach probe with edge flows reaching M ~ 0.4. Both B-field and velocity fluctuations persist on the same timescale in these experiments, though Mach velocity f-spectra show power-laws slightly shallower than those for B-field. Comparison of spectra from MHD and Hall MHD simulations of SSX performed within the HiFi modeling framework are made to the experimental results.

  17. Continued Development and Validation of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2015-11-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks; determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and provide an intermediate step between theory and future experiments. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (~ 36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. Results from verification of the PSI-TET extended MHD model using the GEM magnetic reconnection challenge will also be presented along with investigation of injector configurations for future SIHI experiments using Taylor state equilibrium calculations. Work supported by DoE.

  18. Validation and Continued Development of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2016-10-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. An implementation of anisotropic viscosity, a feature observed to improve agreement between NIMROD simulations and experiment, will also be presented, along with investigations of flux conserver features and their impact on density control for future SIHI experiments. Work supported by DoE.

  19. Spheromak Formation and Current Sustainment Using a Repetitively Pulsed Source

    NASA Astrophysics Data System (ADS)

    Woodruff, S.; Macnab, A. I. D.; Ziemba, T. M.; Miller, K. E.

    2009-06-01

    By repeated injection of magnetic helicity ( K = 2φψ) on time-scales short compared with the dissipation time (τinj << τ K ), it is possible to produce toroidal currents relevant to POP-level experiments. Here we discuss an effective injection rate, due to the expansion of a series of current sheets and their subsequent reconnection to form spheromaks and compression into a copper flux-conserving chamber. The benefits of repeated injection are that the usual limits to current amplification can be exceeded, and an efficient quasi-steady sustainment scenario is possible (within minimum impact on confinement). A new experiment designed to address the physics of pulsed formation and sustainment is described.

  20. Spheromak reactor-design study

    SciTech Connect

    Les, J.M.

    1981-06-30

    A general overview of spheromak reactor characteristics, such as MHD stability, start up, and plasma geometry is presented. In addition, comparisons are made between spheromaks, tokamaks and field reversed mirrors. The computer code Sphero is also discussed. Sphero is a zero dimensional time independent transport code that uses particle confinement times and profile parameters as input since they are not known with certainty at the present time. More specifically, Sphero numerically solves a given set of transport equations whose solutions include such variables as fuel ion (deuterium and tritium) density, electron density, alpha particle density and ion, electron temperatures.

  1. Stable Spheromaks with Profile Control

    SciTech Connect

    Fowler, T K; Jayakumar, R

    A spheromak equilibrium with zero edge current is shown to be stable to both ideal MHD and tearing modes that normally produce Taylor relaxation in gun-injected spheromaks. This stable equilibrium differs from the stable Taylor state in that the current density j falls to zero at the wall. Estimates indicate that this current profile could be sustained by non-inductive current drive at acceptable power levels. Stability is determined using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive could point the way to improved fusion reactors.

  2. The inductive, steady-state sustainment of stable spheromaks

    NASA Astrophysics Data System (ADS)

    Hossack, A. C.; Jarboe, T. R.; Morgan, K. D.; Sutherland, D. A.; Hansen, C. J.; Everson, C. J.; Penna, J. M.; Nelson, B. A.

    2016-10-01

    Inductive helicity injection current drive with imposed perturbations has led to the breakthrough of spheromak sustainment while maintaining stability. Sustained spheromaks show coherent, imposed plasma motion and low plasma-generated mode activity, indicating stability. Additionally, record current gain of 3.9 has been achieved with evidence of pressure confinement. The Helicity Injected Torus - Steady Inductive (HIT-SI) experiment studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method which is ideal for low aspect ratio, toroidal geometries and is compatible with closed flux surfaces. Analysis of surface magnetic probes indicates large n = 0 and 1 toroidal Fourier mode amplitudes and little energy in higher modes. Biorthogonal decomposition shows that almost all of the n = 1 energy is imposed by the injectors, rather than plasma-generated. Ion Doppler spectroscopy (IDS) measurements show coherent, imposed plasma motion of +/-2.5 cm in the region inside r 10 cm (a = 23 cm) and the size of the separate spheromak is consistent with that predicted by Imposed-dynamo Current Drive (IDCD). Coherent motion indicates that the spheromak is stable and a lack of plasma-generated n = 1 energy indicates that the maximum q is maintained below 1 for stability during sustainment.

  3. Spheromaks, solar prominences, and Alfvén instability of current sheets

    NASA Astrophysics Data System (ADS)

    Bellan, P. M.; Yee, J.; Hansen, J. F.

    2001-06-01

    Three related efforts underway at Caltech are discussed: experimental studies of spheromak formation, experimental simulation of solar prominences, and Alfvén wave instability of current sheets. Spheromak formation has been studied by using a coaxial magnetized plasma gun to inject helicity-bearing plasma into a very large vacuum chamber. The spheromak is formed without a flux conserver and internal λ profiles have been measured. Spheromak-based technology has been used to make laboratory plasmas having the topology and dynamics of solar prominences. The physics of these structures is closely related to spheromaks (low β, force-free, relaxed state equilibrium) but the boundary conditions and symmetry are different. Like spheromaks, the equilibrium involves a balance between hoop forces, pinch forces, and magnetic tension. It is shown theoretically that if a current sheet becomes sufficiently thin (of the order of the ion skin depth or smaller), it becomes kinetically unstable with respect to the emission of Alfvén waves and it is proposed that this wave emission is an important aspect of the dynamics of collisionless reconnection.

  4. Steady-state inductive spheromak operation

    DOEpatents

    Janos, A.C.; Jardin, S.C.; Yamada, M.

    1985-02-20

    The inductively formed spheromak configuration (S-1) can be maintained in a highly stable and controlled fashion. The method described eliminates the restriction to pulsed spheromak plasmas or the use of electrodes for steady-state operation, and, therefore, is a reactor-relevant formation and sustainment method.

  5. Development of the STPX Spheromak System

    NASA Astrophysics Data System (ADS)

    Williams, R. L.; Clark, J.; Weatherford, C. A.

    2015-11-01

    The progress made in starting up the STPX Spheromak system, which is now installed at the Florida A&M University, is reviewed. Experimental, computational and theoretical activities are underway. The control system for firing the magnetized coaxial plasma gun and for collecting data from the diagnostic probes, based on LabView, is being tested and adapted. Preliminary results of testing the installed magnetic field probes, Langmuir triple probes, cylindrical ion probes, and optical diagnostics will be discussed. Progress in modeling this spheromak using simulation codes, such as NIMROD, will be discussed. Progress in investigating the use of algebraic topology to describe this spheromak will be reported.

  6. Multi-pulse power injection and spheromak sustainment in SSPX

    NASA Astrophysics Data System (ADS)

    Stallard, B. W.; Hill, D. N.; Hooper, E. B.; Bulmer, R. H.; McLean, H. S.; Wood, R. D.; Woodruff, S.; Sspx Team

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. Spheromak formation (gun injection phase) and sustainment experiments are now routine in SSPX using a multi-bank power system. Gun voltage, impedance, and power coupling show a clear current threshold dependence on gun flux (I_th~=λ_0φ_gun/μ_0), increasing with current above the threshold, and are compared with CTX results. The characteristic gun inductance, L_gun~=0.6 μH, derived from the gun voltage dependence on di/dt, is larger than expected from Corsica modeling of the spheromak equilibrium. It’s value is consistent with the n=1 ‘doughook’ mode structure reported in SPHEX and believed important for helicity injection and toroidal current drive. Results of helicity and power balance calculations of spheromak poloidal field buildup are compared with experiment and used to project sustainment with a future longer pulse power supply. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  7. First Plasma Results from the HIT-SI Spheromak

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Hamp, W. T.; Izzo, V. A.; Jarboe, T. R.; Nelson, B. A.; O'Neill, R. G.; Redd, A. J.; Smith, R. J.

    2003-10-01

    HIT-SI is the newest device in the Helicity Injected Torus (HIT) program. HIT-SI is a ``bow tie'' spheromak formed and sustained by Steady Inductive Helicity Injection (SIHI) current drive. SIHI injects helicity at a nearly constant rate with no open field lines intersecting the boundary. (T. R. Jarboe, Fusion Technology 36) (1), p. 85, 1999 HIT-SI has been designed with a bow tie geometry to achieve stable high-β (>10%) spheromak equilibria. (U. Shumlak and T. R. Jarboe, Phys. Plasmas 7) (7), p. 2959, 2000 Diagnostics currently include surface magnetic probes and flux loops, visible light imaging, H-alpha line radiation monitors, voltage measurements across insulating breaks, injector current Rogowski coils, and injector flux loops. HIT-SI is currently operating in parallel with experiments on HIT-II. At the conclusion of HIT-II operations, HIT-SI will inherit a multi-point Thomson Scattering system, a scanning two-chord FIR interferometer, and other advanced diagnostics, as well as more power supplies to extend the discharge duration. Results are presented which characterize injector operation and possible evidence for spheromak formation.

  8. Demonstration Experiments in Physics

    ERIC Educational Resources Information Center

    Sutton, Richard M.

    2003-01-01

    This book represents a "cookbook" for teachers of physics, a book of recipes for the preparation of demonstration experiments to illustrate the principles that make the subject of physics so fascinating. Illustrations and explanations of each demonstration are done in an easy-to-understand format. Each can be adapted to be used as a demonstration…

  9. Future flavour physics experiments

    PubMed Central

    2015-01-01

    The current status of flavour physics and the prospects for present and future experiments will be reviewed. Measurements in B‐physics, in which sensitive probes of new physics are the CKM angle γ, the Bs mixing phase ϕs, and the branching ratios of the rare decays B(s)0→μ+μ− , will be highlighted. Topics in charm and kaon physics, in which the measurements of ACP and the branching ratios of the rare decays K→πνν¯ are key measurements, will be discussed. Finally the complementarity of the future heavy flavour experiments, the LHCb upgrade and Belle‐II, will be summarised. PMID:26877543

  10. Experiments in Ice Physics.

    ERIC Educational Resources Information Center

    Martin, P. F.; And Others

    1978-01-01

    Describes experiments in ice physics that demonstrate the behavior and properties of ice. Show that ice behaves as an ionic conductor in which charge is transferred by the movement of protons, its electrical conductivity is highly temperature-dependent, and its dielectric properties show dramatic variation in the kilohertz range. (Author/GA)

  11. Steady-state inductive spheromak operation

    DOEpatents

    Janos, Alan C.; Jardin, Stephen C.; Yamada, Masaaki

    1987-01-01

    The inductively formed spheromak plasma can be maintained in a highly stable and controlled fashion. Steady-state operation is obtained by forming the plasma in the linked mode, then oscillating the poloidal and toroidal fields such that they have different phases. Preferably, the poloidal and magnetic fields are 90.degree. out of phase.

  12. Numerical investigation of design and operation parameters on CHI spheromak performance

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Romero-Talamás, C. R.; Woodruff, S.

    2017-10-01

    Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization in spheromaks formed with coaxial helicity injection, particularly with regard to how externally controllable parameters affect the resulting spheromak performance. The overall goal of our study is to inform the design and operational parameters of a future proof-of-principle spheromak experiment. Our calculations start from vacuum magnetic fields and model multiple distinct phases of evolution. Results indicate that modest changes to the design and operation of past experiments, e.g. SSPX [E.B. Hooper et al. PPCF 2012], could have significantly improved the plasma-current injector coupling efficiency and performance, particularly with respect to peak temperature and lifetime. While we frequently characterize performance relative to SSPX, our conclusions extrapolate to fundamentally different experimental designs. We also explore adiabatic magnetic compression of spheromaks, which may allow for a small-scale, high-performance and high-yield pulsed neutron source. This work is supported by DAPRA under Grant No. N66001-14-1-4044.

  13. Stable Spheromaks Sustained by Neutral Beam Injection

    SciTech Connect

    Fowler, T K; Jayakumar, R; McLean, H S

    It is shown that spheromak equilibria, stable at zero-beta but departing from the Taylor state, could be sustained by non-inductive current drive at acceptable power levels. Stability to both ideal MHD and tearing modes is verified using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive and pressure effects could point the way to improved fusion reactors.

  14. Lambda Probe Measurements of Laboratory Spheromaks

    NASA Astrophysics Data System (ADS)

    Jorne, E.; Bellan, P. M.; Hsu, S. C.; Moynihan, C.

    2003-10-01

    A combined current and magnetic probe (lambda probe) has been constructed and is being tested for the purpose of investigating the behavior of spheromaks formed by the Caltech planar spheromak gun. The probe consists of a 1.5cm diameter, 52 turn Rogowski coil and a single loop magnetic coil, housed in a ceramic shell attached to a 95cm long hollow, steel shaft. A high voltage power supply was used to test the probe's ability to measure pulsed currents with submicrosecond rise times. A calibrated current pulse was provided by a 1μF capacitor discharged by a krytron switch to a low inductance circuit. Magnetic calibration was obtained by using the capacitor bank to power a 16cm diameter Helmholtz coil. Both magnetic and current calibration were in good agreement with estimates based on geometry. An existing steel shaft will be replaced by a ceramic shaft in order to minimize undesired effects on the plasma by a conductor. Once sealed with epoxy, the probe will be ready for insertion into the vacuum chamber and used to measure the magnetic field and parallel current during spheromak formation.

  15. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Kim, Charlson C.; Victor, Brian S.; Jarboe, Thomas R.

    2013-08-01

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth di to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification Itor/Iinj and formation time τf demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates Itor/Iinj and exhibits much a longer τf. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.

  16. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    SciTech Connect

    Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d{sub i} to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeledmore » as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I{sub tor}/I{sub inj}) and formation time τ{sub f} demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I{sub tor}/I{sub inj}) and exhibits much a longer τ{sub f}. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.« less

  17. Numerical investigation of design and operational parameters on CHI spheromak performance

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Romero-Talamas, C. A.; Woodruff, S.

    2016-10-01

    Nonlinear, extended-MHD computation with the NIMROD code is used to explore magnetic self-organization and performance with respect to externally controllable parameters in spheromaks formed with coaxial helicity injection. The goal of this study is to inform the design and operational parameters of proposed proof-of-principle spheromak experiment. The calculations explore multiple distinct phases of evolution (including adiabatic magnetic compression), which must be explored and optimized separately. Results indicate that modest changes to the design and operation of past experiments, e.g. SSPX [E.B. Hooper et al. PPCF 2012], could have significantly improved the plasma-current injector coupling efficiency and performance, particularly with respect to peak temperature and lifetime. Though we frequently characterize performance relative to SSPX, we are also exploring fundamentally different designs and modes of operation, e.g. flux compression. This work is supported by DAPRA under Grant No. N66001-14-1-4044.

  18. Physical experience enhances science learning.

    PubMed

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  19. Current drive by spheromak injection into a tokamak

    SciTech Connect

    Brown, M.R.; Bellan, P.M.

    1990-04-30

    We report the first observation of current drive by injection of a spheromak plasma into a tokamak (Caltech ENCORE small reasearch tokamak) due to the process of helicity injection. After an abrupt 30% increase, the tokamak current decays by a factor of 3 due to plasma cooling caused by the merging of the relatively cold spheromak with the tokamak. The tokamak density profile peaks sharply due to the injected spheromak plasma ({ital {bar n}}{sub 3} increases by a factor of 6) then becomes hollow, suggestive of an interchange instability.

  20. CAI Physics Experiments

    ERIC Educational Resources Information Center

    Lindsay, Robert E.

    1970-01-01

    Describes a novel instructional method for physics involving the use of a computer assisted instruction system equipped with cathode-ray-tube terminals, light pen, and keyboard input. Discusses exercises with regard to content, mediation, scoring and control. Several examples of exercises are given along with results from student evaluation. (LC)

  1. Planning a School Physics Experiment.

    ERIC Educational Resources Information Center

    Blasiak, Wladyslaw

    1986-01-01

    Presents a model for planning the measurement of physical quantities. Provides two examples of optimizing the conditions of indirect measurement for laboratory experiments which involve measurements of acceleration due to gravity and of viscosity by means of Stokes' formula. (ML)

  2. Planning a school physics experiment

    NASA Astrophysics Data System (ADS)

    Blasiak, Wladyslaw

    1986-09-01

    One is continually faced with the need to make decisions; physics, might form the vehicle for teaching the difficult art of decision making. Teachers should direct the abilities and skills of their students toward optimising the choices with which they are faced. Examples of such choices occur in the design of physics experiments and this therefore offers a good opportunity for such instruction.

  3. More Homespun Experiments in Physics.

    ERIC Educational Resources Information Center

    Siddons, J. C.

    1979-01-01

    Describes how some experiments in physics can be presented in class using cheap materials. How to produce an electrostatic charge using a polythene bottle and how to make a tissue paper electroscope using a tin can are among the experiments described. (HM)

  4. Skylab 2 Solar Physics Experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Skylab 2 Solar Physics Experiment. This black and white view of a solar flare was taken from the skylab remote solar experiment module mounted on top of the vehicle and worked automatically without any interaction from the crew. Solar flares or sunspots are eruptions on the sun's surface and appear to occur in cycles. When these cycles occur, there is worldwide electromagnetic interference affecting radio and television transmission.

  5. Power balance and characterization of impurities in the Maryland Spheromak

    SciTech Connect

    Cote, Claude

    1993-01-01

    The Maryland Spheromak is a medium size magnetically confined plasma of toroidal shape. Low T e and higher n e than expected contribute to produce a radiation dominated short-lived spheromak configuration. A pyroelectric radiation detector and a VUV spectrometer have been used for space and time-resolved measurements of radiated power and impurity line emission. Results from the bolometry and VUV spectroscopy diagnostics have been combined to give the absolute concentrations of the major impurity species together with the electron temperature. The large amount of oxygen and nitrogen ions in the plasma very early in the discharge is seen to bemore » directly responsible for the abnormally high electron density. The dominant power loss mechanisms are found to be radiation (from impurity line emission) and electron convection to the end walls during the formation phase of the spheromak configuration, and radiation only during the decay phase.« less

  6. Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery

    SciTech Connect

    Fowler, T. Kenneth; Li, Hui

    In recent papers, we show how accretion disks around massive black holes could act as dynamos producing magnetic jets similar to the jets that create spheromaks in the laboratory. In this paper, we discuss how these magnetic astrophysical jets might naturally produce runaway ion beams accelerated tomore » $$10^{20}$$ eV or more, finally ejected as ultra high energy cosmic rays (UHECRs) long regarded as one of the mysteries of astrophysics. The acceleration is mainly due to the drift cyclotron loss cone kinetic instability known from plasma research. Finally, experiments and simulations are suggested to verify the acceleration process.« less

  7. Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery

    DOE PAGES

    Fowler, T. Kenneth; Li, Hui

    2016-10-10

    In recent papers, we show how accretion disks around massive black holes could act as dynamos producing magnetic jets similar to the jets that create spheromaks in the laboratory. In this paper, we discuss how these magnetic astrophysical jets might naturally produce runaway ion beams accelerated tomore » $$10^{20}$$ eV or more, finally ejected as ultra high energy cosmic rays (UHECRs) long regarded as one of the mysteries of astrophysics. The acceleration is mainly due to the drift cyclotron loss cone kinetic instability known from plasma research. Finally, experiments and simulations are suggested to verify the acceleration process.« less

  8. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    SciTech Connect

    Brown, Michael R.

    2006-11-16

    Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

  9. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation.

    PubMed

    Hsu, S C; Bellan, P M

    2003-05-30

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration.

  10. 3-D MHD modeling and stability analysis of jet and spheromak plasmas launched into a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Fisher, Dustin; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward; Arge, C. Nick

    2016-10-01

    The Plasma Bubble Expansion Experiment (PBEX) at the University of New Mexico uses a coaxial plasma gun to launch jet and spheromak magnetic plasma configurations into the Helicon-Cathode (HelCat) plasma device. Plasma structures launched from the gun drag frozen-in magnetic flux into the background magnetic field of the chamber providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, and shocks. Preliminary modeling is presented using the highly-developed 3-D, MHD, BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid that enables the capture and resolution of shock structures and current sheets, and is particularly suited to model the parameter regime under investigation. CCD images and magnetic field data from the experiment suggest the stabilization of an m =1 kink mode trailing a plasma jet launched into a background magnetic field. Results from a linear stability code investigating the effect of shear-flow as a cause of this stabilization from magnetic tension forces on the jet will be presented. Initial analyses of a possible magnetic Rayleigh Taylor instability seen at the interface between launched spheromaks and their entraining background magnetic field will also be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  11. Spheromak reactor with poloidal flux-amplifying transformer

    DOEpatents

    Furth, Harold P.; Janos, Alan C.; Uyama, Tadao; Yamada, Masaaki

    1987-01-01

    An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.

  12. Spheromak plasma flow injection into a torus chamber and the HIST plasmas

    NASA Astrophysics Data System (ADS)

    Hatuzaki, Akinori

    2005-10-01

    The importance of plasma flow or two-fluid effect is recognized in understanding the relaxed states of high-beta torus plasmas, start-up and current drive by non-coaxial helicity injection, magnetic reconnection and plasma dynamo in fusion, laboratory and space plasmas. As a new approach to create a flowing two-fluid plasma equilibrium, we have tried to inject tangentially the plasma flow with spheromak-type magnetic configurations into a torus vacuum chamber with an external toroidal magnetic field (TF) coil. In the initial experiments, the RFP-like configuration with helical magnetic structures was realized in the torus vessel. The ion flow measurement with Mach probes showed that the ion flow keeps the same direction despite the reversal of the toroidal current and the axial electric field. The ion fluid comes to flow in the opposite direction to the electron fluid by the reversal of TF. This result suggests that not only electron but also ion flow contributes significantly on the reversed toroidal current. In this case, the ratio of ui to the electron flow velocity ue is estimated as ui/ue ˜ 1/2. We also will inject the spheromak flow into the HIST spherical torus plasmas to examine the possibilities to embedding the two-fluid effect in the ST plasmas.

  13. Experiment Design and Analysis Guide - Neutronics & Physics

    SciTech Connect

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  14. Method and apparatus for the formation of a spheromak plasma

    DOEpatents

    Yamada, Masaaki; Furth, Harold P.; Stix, Thomas H.; Todd, Alan M. M.

    1982-01-01

    A method and apparatus for forming a detached, compact toroidally shaped spheromak plasma by an inductive mechanism. A generally spheroidal vacuum vessel (1) houses a toroidally shaped flux ring or core (2) which contains poloidal and toroidal field generating coils. A plasma discharge occurs with the pulsing of the toroidal field coil, and the plasma is caused to expand away from the core (2) and toward the center of the vacuum vessel (1). When the plasma is in an expanded state, a portion of it is pinched off in order to form a separate, detached spheromak plasma configuration. The detached plasma is supported by a magnetic field generated by externally arranged equilibrium field coils (5).

  15. MRI Experiments for Introductory Physics

    ERIC Educational Resources Information Center

    Taghizadeh, Sanaz; Lincoln, James

    2018-01-01

    The introductory physics classroom has long educated students about the properties of the atom and the nucleus. But absent from these lessons has been an informed discussion of magnetic resonance imaging (MRI) and its parent science nuclear magnetic resonance (NMR). Physics teachers should not miss the opportunity to instruct upon this highly…

  16. MRI experiments for introductory physics

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Sanaz; Lincoln, James

    2018-04-01

    The introductory physics classroom has long educated students about the properties of the atom and the nucleus. But absent from these lessons has been an informed discussion of magnetic resonance imaging (MRI) and its parent science nuclear magnetic resonance (NMR). Physics teachers should not miss the opportunity to instruct upon this highly relevant application of modern physics, especially with so many of our students planning to pursue a career in medicine. This article provides an overview of the physics of MRI and gives advice on how physics teachers can introduce this topic. Also included are some demonstration activities and a discussion of a desktop MRI apparatus that may be used by students in the lab or as a demo.

  17. Crucial Experiments in Quantum Physics.

    ERIC Educational Resources Information Center

    Trigg, George L.

    The six experiments included in this monography are titled Blackbody Radiation, Collision of Electrons with Atoms, The Photoelectric Effect, Magnetic Properties of Atoms, The Scattering of X-Rays, and Diffraction of Electrons by a Crystal Lattice. The discussion provides historical background by giving description of the original experiments and…

  18. Physical Science Experiments for Scientific Glassblowing Technicians.

    ERIC Educational Resources Information Center

    Tillis, Samuel E.; Donaghay, Herbert C.

    The twenty experiments in this text have been designed to give the scientific glassblowing technician the opportunity to use scientific glass apparatus in the study of physical science. Primary emphasis of these experiments is on the practical application of the physical science program as a working tool for the scientific glassblowing technician.…

  19. Current experiments in elementary particle physics

    SciTech Connect

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  20. Experiments in intermediate energy physics

    SciTech Connect

    Dehnhard, D.

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana Universitymore » Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.« less

  1. Method and apparatus for the formation of a spheromak plasma

    DOEpatents

    Jardin, Stephen C.; Yamada, Masaaki; Furth, Harold P.; Okabayashi, Mitcheo

    1984-01-01

    An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring, with external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.

  2. Current experiments in elementary particle physics. Revision

    SciTech Connect

    Galic, H.; Armstrong, F.E.; von Przewoski, B.

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  3. Current experiments in elementary particle physics

    SciTech Connect

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  4. Current experiments in elementary particle physics. Revised

    SciTech Connect

    Galic, H.; Wohl, C.G.; Armstrong, B.

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  5. Experiences and Perceptions of Physical Education

    ERIC Educational Resources Information Center

    Medcalf, Richard; Marshall, Joe; Hardman, Ken; Visser, John

    2011-01-01

    This research has studied how children and young people, who are deemed by their school to have social, emotional and behavioural difficulties (SEBD), experience the National Curriculum of Physical Education (PE) in England. Research has previously highlighted the physical, social, affective and cognitive benefits of participation in PE.…

  6. Photoelectroconversion by Semiconductors: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Fan, Qinbai; And Others

    1995-01-01

    Presents an experiment designed to give students some experience with photochemistry, electrochemistry, and basic theories about semiconductors. Uses a liquid-junction solar cell and illustrates some fundamental physical and chemical principles related to light and electricity interconversion as well as the properties of semiconductors. (JRH)

  7. Low-Cost Accelerometers for Physics Experiments

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Straulino, Samuele

    2007-01-01

    The implementation of a modern game-console controller as a data acquisition interface for physics experiments is discussed. The investigated controller is equipped with three perpendicular accelerometers and a built-in infrared camera to evaluate its own relative position. A pendulum experiment is realized as a demonstration of the proposed…

  8. Current Experiments in Particle Physics. 1996 Edition.

    SciTech Connect

    Galic, Hrvoje

    2003-06-27

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  9. Advancing Successful Physics Majors - The Physics First Year Seminar Experience

    NASA Astrophysics Data System (ADS)

    Deibel, Jason; Petkie, Douglas

    In 2012, the Wright State University physics curriculum introduced a new year-long seminar course required for all new physics majors. The goal of this course is to improve student retention and success via building a community of physics majors and provide them with the skills, mindset, and advising necessary to successfully complete a degree and transition to the next part of their careers. This new course sequence assembles a new cohort of majors annually. To prepare each cohort, students engage in a variety of activities that span from student success skills to more specific physics content while building an entrepreneurial mindset. Students participate in activities including study skills, career night, course planning, campus services, and a department social function. More importantly, students gain exposure to programming, literature searches, data analysis, technical writing, elevator pitches, and experimental design via hands-on projects. This includes the students proposing, designing, and conducting their own experiments. Preliminary evidence indicates increased retention, student success, and an enhanced sense of community among physics undergraduate students, The overall number of majors and students eventually completing their physics degrees has nearly tripled. Associate Professor, Department of Physics.

  10. DIRAC in Large Particle Physics Experiments

    NASA Astrophysics Data System (ADS)

    Stagni, F.; Tsaregorodtsev, A.; Arrabito, L.; Sailer, A.; Hara, T.; Zhang, X.; Consortium, DIRAC

    2017-10-01

    The DIRAC project is developing interware to build and operate distributed computing systems. It provides a development framework and a rich set of services for both Workload and Data Management tasks of large scientific communities. A number of High Energy Physics and Astrophysics collaborations have adopted DIRAC as the base for their computing models. DIRAC was initially developed for the LHCb experiment at LHC, CERN. Later, the Belle II, BES III and CTA experiments as well as the linear collider detector collaborations started using DIRAC for their computing systems. Some of the experiments built their DIRAC-based systems from scratch, others migrated from previous solutions, ad-hoc or based on different middlewares. Adaptation of DIRAC for a particular experiment was enabled through the creation of extensions to meet their specific requirements. Each experiment has a heterogeneous set of computing and storage resources at their disposal that were aggregated through DIRAC into a coherent pool. Users from different experiments can interact with the system in different ways depending on their specific tasks, expertise level and previous experience using command line tools, python APIs or Web Portals. In this contribution we will summarize the experience of using DIRAC in particle physics collaborations. The problems of migration to DIRAC from previous systems and their solutions will be presented. An overview of specific DIRAC extensions will be given. We hope that this review will be useful for experiments considering an update, or for those designing their computing models.

  11. Cometary nucleus release experiments and ice physics

    NASA Technical Reports Server (NTRS)

    Huebner, W. F.

    1976-01-01

    Some physical and chemical processes involved in the evaporation and sublimation of mixtures of frozen gases are discussed. Effects of zero gravity, vacuum, and solar radiation are emphasized. Relevant experiments that can be carried out with the aid of the space shuttle are proposed.

  12. Thermal Sensitive Foils in Physics Experiments

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek; Konecný, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…

  13. The Physics of the Imploding Can Experiment

    ERIC Educational Resources Information Center

    Mohazzabi, Pirooz

    2010-01-01

    One of the popular demonstrations of atmospheric pressure in introductory physics courses is the "crushing can" or "imploding can" experiment. In this demonstration, which has also been extensively discussed on the Internet, a small amount of water is placed in a soda can and heated until it boils and water vapor almost entirely fills the can. The…

  14. Nuclear physics experiments with low cost instrumentation

    NASA Astrophysics Data System (ADS)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  15. Digital Electronics for Nuclear Physics Experiments

    NASA Astrophysics Data System (ADS)

    Skulski, Wojtek; Hunter, David; Druszkiewicz, Eryk; Khaitan, Dev Ashish; Yin, Jun; Wolfs, Frank; SkuTek Instrumentation Team; Department of Physics; Astronomy, University of Rochester Team

    2015-10-01

    Future detectors in nuclear physics will use signal sampling as one of primary techniques of data acquisition. Using the digitized waveforms, the electronics can select events based on pulse shape, total energy, multiplicity, and the hit pattern. The DAQ for the LZ Dark Matter detector, now under development in Rochester, is a good example of the power of digital signal processing. This system, designed around 32-channel, FPGA-based, digital signal processors collects data from more than one thousand channels. The solutions developed for this DAQ can be applied to nuclear physics experiments. Supported by the Department of Energy Office of Science under Grant DE-SC0009543.

  16. Connecting High School Physics Experiences, Outcome Expectations, Physics Identity, and Physics Career Choice: A Gender Study

    ERIC Educational Resources Information Center

    Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.; Shanahan, Marie-Claire

    2010-01-01

    This study explores how students' physics identities are shaped by their experiences in high school physics classes and by their career outcome expectations. The theoretical framework focuses on physics identity and includes the dimensions of student performance, competence, recognition by others, and interest. Drawing data from the Persistence…

  17. Using the Wiimote in Introductory Physics Experiments

    NASA Astrophysics Data System (ADS)

    Ochoa, Romulo; Rooney, Frank G.; Somers, William J.

    2011-01-01

    The Wii is a very popular gaming console. An important component of its appeal is the ease of use of its remote controller, popularly known as a Wiimote. This simple-looking but powerful device has a three-axis accelerometer and communicates with the console via Bluetooth protocol. We present two experiments that demonstrate the feasibility of using the Wiimote in introductory physics experiments. The linear dependence of centripetal acceleration on the radial distance at constant angular velocity is verified and compared with data obtained using photogate timers. A second application to simple harmonic oscillators tests the capabilities of the Wiimote to measure variable accelerations.

  18. Introductory Physics Experiments Using the Wiimote

    NASA Astrophysics Data System (ADS)

    Somers, William; Rooney, Frank; Ochoa, Romulo

    2009-03-01

    The Wii, a video game console, is a very popular device with millions of units sold worldwide over the past two years. Although computationally it is not a powerful machine, to a physics educator its most important components can be its controllers. The Wiimote (or remote) controller contains three accelerometers, an infrared detector, and Bluetooth connectivity at a relatively low price. Thanks to available open source code, any PC with Bluetooth capability can detect the information sent out by the Wiimote. We have designed several experiments for introductory physics courses that make use of the accelerometers and Bluetooth connectivity. We have adapted the Wiimote to measure the: variable acceleration in simple harmonic motion, centripetal and tangential accelerations in circular motion, and the accelerations generated when students lift weights. We present the results of our experiments and compare them with those obtained when using motion and/or force sensors.

  19. NIMROD Simulations of Spheromak Formation, Magnetic Reconnection and Energy Confinement in SSPX

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.; Sovinec, C. R.

    2005-10-01

    The SSPX spheromak is formed and driven by a coaxial electrostatic gun that injects current and magnetic flux. Magnetic fluctuations are associated with the conversion of toroidal to poloidal magnetic flux during formation. After formation, fluctuations that break axisymmetry degrade magnetic surfaces, and are anti-correlated with the core temperature and energy confinement time. We report NIMROD simulations extending earlier work^1 supporting the SSPX experiment through predictions of performance and providing insight. The simulations are in fairly good agreement with features observed in SSPX and underscore the importance of current profile control in mitigating magnetic fluctuation amplitudes and improving confinement. The simulations yield insight into magnetic reconnection and the relationship of fluctuations to field line stochasticity. We have added external circuit equations for the new 32 module capacitor bank in SSPX that will add flexibility in shaping the injector current pulses and substantially increase the injected currents and the magnetic energy. New NIMROD simulations of SSPX lead to higher temperature plasmas than in previous simulations. *Work supported by U.S. DOE, under Contr. No. W-7405-ENG-48 at U. Cal. LLNL and under grant FG02-01ER54661 at U. Wisc Madison. ^1C. R. Sovinec, B. I. Cohen, et al., Phys. Rev. Lett. 94, 035003 (2005); B. I. Cohen, E. B. Hooper, et al., Phys. Plasmas 12, 056106 (2005).

  20. Statistical Physics Experiments Using Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Goree, John

    2016-10-01

    Compared to other areas of physics research, Statistical Physics is heavily dominated by theory, with comparatively little experiment. One reason for the lack of experiments is the impracticality of tracking of individual atoms and molecules within a substance. Thus, there is a need for a different kind of experimental system, one where individual particles not only move stochastically as they collide with one another, but also are large enough to allow tracking. A dusty plasma can meet this need. A dusty plasma is a partially ionized gas containing small particles of solid matter. These micron-size particles gain thousands of electronic charges by collecting more electrons than ions. Their motions are dominated by Coulomb collisions with neighboring particles. In this so-called strongly coupled plasma, the dust particles self-organize in much the same way as atoms in a liquid or solid. Unlike atoms, however, these particles are large and slow, so that they can be tracked easily by video microscopy. Advantages of dusty plasma for experimental statistical physics research include particle tracking, lack of frictional contact with solid surfaces, and avoidance of overdamped motion. Moreover, the motion of a collection of dust particles can mimic an equilibrium system with a Maxwellian velocity distribution, even though the dust particles themselves are not truly in thermal equilibrium. Nonequilibrium statistical physics can be studied by applying gradients, for example by imposing a shear flow. In this talk I will review some of our recent experiments with shear flow. First, we performed the first experimental test to verify the Fluctuation Theorem for a shear flow, showing that brief violations of the Second Law of Thermodynamics occur with the predicted probabilities, for a small system. Second, we discovered a skewness of a shear-stress distribution in a shear flow. This skewness is a phenomenon that likely has wide applicability in nonequilibrium steady states

  1. Containerless experiments in fluid physics in microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1990-01-01

    The physical phenomena associated with the behavior of liquid samples freely suspended in low gravity must be thoroughly understood prior to undertaking detailed scientific studies of the materials under scrutiny. The characteristics of molten specimens under the action of containerless positioning stresses must be identified and separated from the specific phenomena relating to the absence of an overwhelming gravitational field. The strategy designed to optimize the scientific return of reliable experimental data from infrequent microgravity investigations should include the gradual and logical phasing of more sophisticated studies building on the accumulated results from previous flight experiments. Lower temperature fluid physics experiments using model materials can provide a great deal of information that can be useful in analyzing the behavior of high temperature melts. The phasing of the experimental capabilities should, therefore, also include a gradual build-up of more intricate and specialized diagnostic instrumentation and environmental control and monitoring capabilities. Basic physical investigations should also be distinguished from specific materials technology issues. The latter investigations require very specific high temperature (and high vacuum) devices that must be thoroughly mastered on the ground prior to implementing them in space.

  2. Physics prospects of the Jinping neutrino experiment

    NASA Astrophysics Data System (ADS)

    Beacom, John F.; Chen, Shaomin; Cheng, Jianping; Doustimotlagh, Sayed N.; Gao, Yuanning; Gong, Guanghua; Gong, Hui; Guo, Lei; Han, Ran; He, Hong-Jian; Huang, Xingtao; Li, Jianmin; Li, Jin; Li, Mohan; Li, Xueqian; Liao, Wei; Lin, Guey-Lin; Liu, Zuowei; McDonough, William; Šrámek, Ondřej; Tang, Jian; Wan, Linyan; Wang, Yuanqing; Wang, Zhe; Wang, Zongyi; Wei, Hanyu; Xi, Yufei; Xu, Ye; Xu, Xun-Jie; Yang, Zhenwei; Yao, Chunfa; Yeh, Minfang; Yue, Qian; Zhang, Liming; Zhang, Yang; Zhao, Zhihong; Zheng, Yangheng; Zhou, Xiang; Zhu, Xianglei; Zuber, Kai

    2017-02-01

    The China Jinping Underground Laboratory (CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detectors and a total fiducial mass of 2000 tons for solar neutrino physics (equivalently, 3000 tons for geo-neutrino and supernova neutrino physics), the Jinping neutrino experiment will have the potential to identify the neutrinos from the CNO fusion cycles of the Sun, to cover the transition phase for the solar neutrino oscillation from vacuum to matter mixing, and to measure the geo-neutrino flux, including the Th/U ratio. These goals can be fulfilled with mature existing techniques. Efforts on increasing the target mass with multi-modular neutrino detectors and on developing the slow liquid scintillator will increase the Jinping discovery potential in the study of solar neutrinos, geo-neutrinos, supernova neutrinos, and dark matter. Supported by the National Natural Science Foundation of China (11235006, 11475093, 11135009, 11375065, 11505301, and 11620101004), the Tsinghua University Initiative Scientific Research Program (20121088035, 20131089288, and 20151080432), the Key Laboratory of Particle & Radiation Imaging (Tsinghua University), the CAS Center for Excellence in Particle Physics (CCEPP), U.S. National Science Foundation Grant PHY-1404311 (Beacom), and U.S. Department of Energy under contract DE-AC02-98CH10886 (Yeh).

  3. Physical requirements and milestones for the HIT-PoP Experiment

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas

    2011-10-01

    Recent success with HIT-SI demonstrates the viability of steady inductive helicity injection (SIHI) as a spheromak formation and sustainment method. Results include the sustainment of toroidal current of over 50 kA, up to 40 kA of plasma current that is separate from the injectors, toroidal flux up to 6 times the peak injected flux, and j/n > 1014Am. All were achieved with 10MW or less applied power. This paper explores the requirements for a confinement test of the concept using a larger proof of principle experiment. The confinement experiment must not exceed the beta limit, the drift parameter limit, or the wall loading limit, where the drift parameter is (drift of electrons relative to ions to produce current)/(ion thermal speed). It must also exceed a minimum j/n, a minimum n a, and a minimum electron temperature, where a is the minor radius. The drift parameter limit and beta limit appear to play defining roles in spheromak performance leading to a very favorable scaling of wall loading with size. The milestones sequence suggested is the following: 1. Startup at drift parameter and beta limit minimum density. 2. Raise current until j/n exceeds 10-14Am. 3. Raise the current and temperature until T ~ 50 eV for good ionization. 4. Raise the current and density until n a > 2x1019 m-2 for neutral screening. 5. Raise current and temperature until T > 200eV so magnetic confinement can be studied.

  4. The Low Temperature Microgravity Physics Experiments Project

    NASA Technical Reports Server (NTRS)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  5. Physics capabilities of the SNO+ experiment

    NASA Astrophysics Data System (ADS)

    Arushanova, E.; Back, A. R.; SNO+ Collaboration

    2017-09-01

    SNO+ will soon enter its first phase of physics data-taking. The Canadian-based detector forms part of the SNOLAB underground facility, in a Sudbury nickel mine; its location providing more than two kilometres of rock overburden. We present an overview of the SNO+ experiment and its physics capabilities. Our primary goal is the search for neutrinoless double-beta decay, where our expected sensitivity would place an upper limit of 1.9 × 1026 y, at 90% CL, on the half-life of neutrinoless double-beta decay in 130Te. We also intend to build on the success of SNO by studying the solar neutrino spectrum. In the unloaded scintillator phase SNO+ has the ability to make precision measurements of the fluxes of low-energy pep neutrinos and neutrinos from the CNO cycle. Other physics goals include: determining the spectrum of reactor antineutrinos, to further constrain Δ {m}122; detecting neutrinos produced by a galactic supernova and investigating certain modes of nucleon decay.

  6. Investigation of Spheromak Plasma Cooling through Metallic Liner Spallation during Compression

    NASA Astrophysics Data System (ADS)

    Ross, Keeton; Mossman, Alex; Young, William; Ivanov, Russ; O'Shea, Peter; Howard, Stephen

    2016-10-01

    Various magnetic-target fusion (MTF) reactor concepts involve a preliminary magnetic confinement stage, followed by a metallic liner implosion that compresses the plasma to fusion conditions. The process is repeated to produce a pulsed, net-gain energy system. General Fusion, Inc. is pursuing one scheme that involves the compression of spheromak plasmas inside a liner formed by a collapsing vortex of liquid Pb-Li. The compression is driven by focused acoustic waves launched by gas-driven piston impacts. Here we describe a project to exploring the effects of possible liner spallation during compression on the spheromaks temperature, lifetime, and stability. We employ a 1 J, 10 ns pulsed YAG laser at 532nm focused onto a thin film of Li or Al to inject a known quantity of metallic impurities into a spheromak plasma and then measure the response. Diagnostics including visible and ultraviolet spectrometers, ion Doppler, B-probes, and Thomson scattering are used for plasma characterization. We then plan to apply the trends measured under these controlled conditions to evaluate the role of wall impurities during `field shots', where spheromaks are compressed through a chemically driven implosion of an aluminum flux conserver. The hope is that with further study we could more accurately include the effect of wall impurities on the fusion yield of a reactor-scale MTF system. Experimental procedures and results are presented, along with their relation to other liner-driven, MTF schemes. -/a

  7. A capstone research experience for physics majors

    NASA Astrophysics Data System (ADS)

    Jackson, David

    2013-03-01

    Dickinson College is a small liberal arts college with a thriving physics program. For years, one of the key features of our program has been a year-long senior research project that was required for each student. Unfortunately, as our number of majors increased, it became more and more difficult to supervise such a large number of senior research projects. To deal with this growing challenge, we developed a capstone research experience that involves a larger number of students working together on an independent group project. In this talk I will give a broad overview of our new senior research model and provide a few examples of projects that have been carried out over the past few years. I will also briefly describe the positive and negative aspects of this model from the perspective of faculty and students.

  8. Physics evaluation of compact tokamak ignition experiments

    SciTech Connect

    Uckan, N.A.; Houlberg, W.A.; Sheffield, J.

    1985-01-01

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/S/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Consideringmore » both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs.« less

  9. Chain Experiment competition inspires learning of physics

    NASA Astrophysics Data System (ADS)

    Dziob, Daniel; Górska, Urszula; Kołodziej, Tomasz

    2017-05-01

    The Chain Experiment is an annual competition which originated in Slovenia in 2005 and later expanded to Poland in 2013. For the purpose of the event, each participating team designs and builds a contraption that transports a small steel ball from one end to the other. At the same time the constructed machine needs to use a number of interesting phenomena and physics laws. In the competition’s finale, all contraptions are connected to each other to form a long chain transporting steel balls. In brief, they are all evaluated for qualities such as: creativity and advance in theoretical background, as well as the reliability of the constructed machine to work without human help. In this article, we present the contraptions developed by students taking part in the competition in order to demonstrate the advance in theoretical basis together with creativity in design and outstanding engineering skills of its participants. Furthermore, we situate the Chain Experiment in the context of other group competitions, at the same time demonstrating that—besides activating numerous group work skills—it also improves the ability to think critically and present one’s knowledge to a broader audience. We discussed it in the context of problem based learning, gamification and collaborative testing.

  10. Lab experiments investigating astrophysical jet physics

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2014-10-01

    Dynamics relevant to astrophysical plasmas is being investigated in lab experiments having similar physics and topology, but much smaller time and space scales. High speed movies and numerical simulations both show that highly collimated MHD-driven plasma flows are a critical feature; these collimated flows can be considered to be a lab version of an astrophysical jet. Having both axial and azimuthal magnetic fields, the jet is effectively an axially lengthening plasma-confining flux tube with embedded helical magnetic field (flux rope). The jet velocity is in good agreement with an MHD acceleration model. Axial stagnation of the jet compresses embedded azimuthal magnetic flux and so results in jet self-collimation. Jets kink when they breach the Kruskal-Shafranov stability limit. The lateral acceleration of a sufficiently strong kink can provide an effective gravity which provides the environment for a spontaneously-developing, fine-scale, extremely fast Rayleigh-Taylor instability that erodes the current channel to be smaller than the ion skin depth. This cascade from the ideal MHD scale of the kink to the non-MHD ion skin depth scale can result in a fast magnetic reconnection whereby the jet breaks off from its source electrode. Supported by USDOE and NSF.

  11. Pulsed power accelerator for material physics experiments

    DOE PAGES

    Reisman, D.  B.; Stoltzfus, B.  S.; Stygar, W.  A.; ...

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered tomore » the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.« less

  12. Physics Experiments with Nintendo Wii Controllers

    ERIC Educational Resources Information Center

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from…

  13. The Influence of Hands On Physics Experiments on Scientific Process Skills According to Prospective Teachers' Experiences

    ERIC Educational Resources Information Center

    Hirça, Necati

    2013-01-01

    In this study, relationship between prospective science and technology teachers' experiences in conducting Hands on physics experiments and their physics lab I achievement was investigated. Survey model was utilized and the study was carried out in the 2012 spring semester. Seven Hands on physics experiments were conducted with 28 prospective…

  14. The Physics of Bird Flight: An Experiment

    ERIC Educational Resources Information Center

    Mihail, Michael D.; George, Thomas F.; Feldman, Bernard J.

    2008-01-01

    This article describes an experiment that measures the forces acting on a flying bird during takeoff. The experiment uses a minimum of equipment and only an elementary knowledge of kinematics and Newton's second law. The experiment involves first digitally videotaping a bird during takeoff, analyzing the video to determine the bird's position as a…

  15. Case-study experiments in the introductory physics curriculum

    NASA Astrophysics Data System (ADS)

    Arion, D. N.; Crosby, K. M.; Murphy, E. A.

    2000-09-01

    Carthage College added inquiry-based case study activities to the traditional introductory physics laboratory. Student teams designed, constructed, and executed their own experiments to study real-world phenomena, through which they gained understanding both of physic principles and methods of physics research. Assessment results and student feedback through teacher evaluations indicate that these activities improved student attitudes about physics as well as their ability to solve physics problems relative to previous course offerings that did not include case study.

  16. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  17. Physics experiments with Nintendo Wii controllers

    NASA Astrophysics Data System (ADS)

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from a spring undergoing simple harmonic motion, a pair of controllers mounted on colliding gliders on a linear air track, and a person jumping from a balance board.

  18. An Experiment on a Physical Pendulum and Steiner's Theorem

    ERIC Educational Resources Information Center

    Russeva, G. B.; Tsutsumanova, G. G.; Russev, S. C.

    2010-01-01

    Introductory physics laboratory curricula usually include experiments on the moment of inertia, the centre of gravity, the harmonic motion of a physical pendulum, and Steiner's theorem. We present a simple experiment using very low cost equipment for investigating these subjects in the general case of an asymmetrical test body. (Contains 3 figures…

  19. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  20. Kuipers works to remove the Marangoni Suface Fluid Physics Experiment

    NASA Image and Video Library

    2012-03-15

    ISS030-E-142784 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  1. Kuipers works to remove the Marangoni Suface Fluid Physics Experiment

    NASA Image and Video Library

    2012-03-15

    ISS030-E-142785 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.

  2. Youth with Visual Impairments: Experiences in General Physical Education

    ERIC Educational Resources Information Center

    Lieberman, Lauren J.; Robinson, Barbara L.; Rollheiser, Heidi

    2006-01-01

    The rapid increase in the number of students with visual impairments currently being educated in inclusive general physical education makes it important that physical education instructors know how best to serve them. Assessment of the experiences of students with visual impairments during general physical education classes, knowledge of students'…

  3. First order error corrections in common introductory physics experiments

    NASA Astrophysics Data System (ADS)

    Beckey, Jacob; Baker, Andrew; Aravind, Vasudeva; Clarion Team

    As a part of introductory physics courses, students perform different standard lab experiments. Almost all of these experiments are prone to errors owing to factors like friction, misalignment of equipment, air drag, etc. Usually these types of errors are ignored by students and not much thought is paid to the source of these errors. However, paying attention to these factors that give rise to errors help students make better physics models and understand physical phenomena behind experiments in more detail. In this work, we explore common causes of errors in introductory physics experiment and suggest changes that will mitigate the errors, or suggest models that take the sources of these errors into consideration. This work helps students build better and refined physical models and understand physics concepts in greater detail. We thank Clarion University undergraduate student grant for financial support involving this project.

  4. Friendship, Physicality, and Physical Education: An Exploration of the Social and Embodied Dynamics of Girls' Physical Education Experiences

    ERIC Educational Resources Information Center

    Hills, Laura

    2007-01-01

    Physical education represents a dynamic social space where students experience and interpret physicality in a context that accentuates peer relationships and privileges particular forms of embodiment. This article focuses on girls' understandings of physicality with respect to the organisation of physical education and more informal social…

  5. NASA physics and chemistry experiments in-space program

    NASA Technical Reports Server (NTRS)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  6. An Apollo compatible cloud physics experiment.

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Hollinden, A. B.; Satterblom, P. R.

    1973-01-01

    Consideration of the utilization of a low-gravity environment to obtain experimental information, in the area of cloud microphysics, which cannot be obtained in ground laboratories. The experiment discussed is designed to obtain quantitative answers about evaporation and breakup of salt particles from ocean spray and other sources. In addition to salt nuclei distribution mechanisms, this breakup has ecological importance in relation to the spreading of salt mists from salted highways and spreading of brine cooling tower spray from electrical power generation plants. This experiment is being submitted for consideration on the Apollo-Soyuz Test Program in 1975.

  7. Using the Wiimote in Introductory Physics Experiments

    ERIC Educational Resources Information Center

    Ochoa, Romulo; Rooney, Frank G.; Somers, William J.

    2011-01-01

    The Wii is a very popular gaming console. An important component of its appeal is the ease of use of its remote controller, popularly known as a Wiimote. This simple-looking but powerful device has a three-axis accelerometer and communicates with the console via Bluetooth protocol. We present two experiments that demonstrate the feasibility of…

  8. Solution Calorimetry Experiments for Physical Chemistry.

    ERIC Educational Resources Information Center

    Raizen, Deborah A.; And Others

    1988-01-01

    Presents two experiments: the first one measures the heat of an exothermic reaction by the reduction of permanganate by the ferris ion; the second one measures the heat of an endothermic process, the mixing of ethanol and cyclohexane. Lists tables to aid in the use of the solution calorimeter. (MVL)

  9. Characterizing Student Experiences in Physics Competitions: The Power of Emotions

    NASA Astrophysics Data System (ADS)

    Moll, Rachel F.; Nashon, S.; Anderson, D.

    2006-12-01

    Low enrolment and motivation are key issues in physics education and recently the affective dimension of learning is being studied for evidence of its influence on student attitudes towards physics. Physics Olympics competitions are a novel context for stimulating intense emotional experiences. In this study, one team of students and their teacher were interviewed and observed prior to and during the event to characterize their emotions and determine the connections between their experiences and learning and attitudes/motivation towards physics. Results showed that certain types of events stimulated strong emotions of frustration and ownership, and that students’ attitudes were that physics is fun, diverse and relevant. Analysis of these themes indicated that the nature of emotions generated was connected to their attitudes towards physics. This finding points to the potential and value of informal and novel contexts in creating strong positive emotions, which have a strong influence on student attitudes towards physics.

  10. Learning Physics by Experiment: I. Falling Objects

    NASA Astrophysics Data System (ADS)

    Shaibani, Saami J.

    2014-03-01

    As a rule, students enjoy conducting experiments in which the practical aspects are straightforward and well-defined. This also applies even when there is no anticipated result for students to ``prove.'' A laboratory exercise with such properties was created for students to undertake in a completely blind manner, and they happily proceeded without any knowledge at all of what they might expect to find. The philosophy developed for the research in this paper expands the pioneering approach formulated some half century ago and successfully employed more recently. In the present era of differentiated instruction (DI) being implemented in a diversity of educational settings, the design of the subject experiment is especially significant for its inclusive nature and for the positive outcomes it produces for less academically capable students. All students benefit from such an environment because it preempts the wasted effort of undue manipulation and it removes the need to contrive agreement with a textbook via irregular attempts at reverse engineering.

  11. The SOX experiment in the neutrino physics

    NASA Astrophysics Data System (ADS)

    Di Noto, L.; Agostini, M.; Althenmüller, K.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo-Berguño, D.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cribier, M.; DAngelo, D.; Davini, S.; Derbin, A.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Al.; Ianni, An.; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lasserre, T.; Laubenstein, M.; Lehnert, T.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Meindl, Q.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Musenich, R.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2015-01-01

    SOX (Short distance neutrino Oscillations with BoreXino) is a new experiment that takes place at the Laboratori Nazionali del Gran Sasso (LNGS) and it exploits the Borexino detector to study the neutrino oscillations at short distance. In different phases, by using two artificial sources 51Cr and 144Ce-144Pr, neutrino and antineutrino fluxes of measured intensity will be detected by Borexino in order to observe possible neutrino oscillations in the sterile state. In this paper an overview of the experiment is given and one of the two calorimeters that will be used to measure the source activity is described. At the end the expected sensitivity to determine the neutrino sterile mass is shown.

  12. Cuban Techno-physical Experiments in Space

    NASA Astrophysics Data System (ADS)

    Altshuler, José; Calzadilla Amaya, Ocatvio; Falcon, Federico; Fuentes, Juan E.; Lodos, Jorge; Vigil Santos, Elena

    When Cuba joined the Intercosmos Program of the socialist countries in the mid-1960s, the great educational and scientific reform taking place at that time in the country had hardly begun to bear fruit. But when, a decade later, the Soviet Union offered all the participant countries the chance to make use of its space vehicles and related installations so that their cosmonauts could carry out original scientific experiments in space, the situation had changed radically in Cuba. In a short time around 200 people already involved in scientific and technological activities succeeded in designing and setting up—in close collaboration with various Soviet, East German and Bulgarian institutions—some 20 scientific experiments that were to be carried out in orbit around the earth during the joint Soviet-Cuban space flight of September 18-26, 1980. Those experiments, and a further one that was also set up for the same space flight—but carried out during a later flight, as mentioned below—are historically important since they were the first in their class to be carried out by humans in space under microgravity conditions.

  13. Centralising Space: The Physical Education and Physical Activity Experiences of South Asian, Muslim Girls

    ERIC Educational Resources Information Center

    Stride, Annette

    2016-01-01

    This paper explores the physical education (PE) and physical activity experiences of a group of South Asian, Muslim girls, a group typically marginalised in PE and physical activity research. The study responds to ongoing calls for research to explore across different spaces in young people's lives. Specifically, I draw on a…

  14. Polymer physics experiments with single DNA molecules

    NASA Astrophysics Data System (ADS)

    Smith, Douglas E.

    1999-11-01

    Bacteriophage DNA molecules were taken as a model flexible polymer chain for the experimental study of polymer dynamics at the single molecule level. Video fluorescence microscopy was used to directly observe the conformational dynamics of fluorescently labeled molecules, optical tweezers were used to manipulate individual molecules, and micro-fabricated flow cells were used to apply controlled hydrodynamic strain to molecules. These techniques constitute a powerful new experimental approach in the study of basic polymer physics questions. I have used these techniques to study the diffusion and relaxation of isolated and entangled polymer molecules and the hydrodynamic deformation of polymers in elongational and shear flows. These studies revealed a rich, and previously unobserved, ``molecular individualism'' in the dynamical behavior of single molecules. Individual measurements on ensembles of identical molecules allowed the average conformation to be determined as well as the underlying probability distributions for molecular conformation. Scaling laws, that predict the dependence of properties on chain length and concentration, were also tested. The basic assumptions of the reptation model were directly confirmed by visualizing the dynamics of entangled chains.

  15. Spin Physics Experiments at NICA-SPD

    NASA Astrophysics Data System (ADS)

    Kouznetsov, O.; Savin, I.

    2017-01-01

    Nuclotron based Ion Collider fAcility (NICA) is a flagship project of the Joint Institute for Nuclear Research which is expected to be operational by 2021. Main tasks of ;NICA Facility; are study of hot and dense baryonic matter, investigation the polarisation phenomena and the nucleon spin structure. The material presented here based on the Letter of Intent (LoI) dedicated to nucleon spin structure studies at NICA. Measurements of asymmetries in the lepton pair (Drell-Yan) production in collisions of non-polarised, longitudinally and transversely polarised proton and deuteron beams to be performed using the specialized Spin Physics Detector (SPD). These measurements can provide an access to all leading twist collinear and Transverse Momentum Dependent Parton Distribution Functions (TMD PDFs) in nucleons. The measurements of asymmetries in production of J/ψ and direct photons, which supply complimentary information on the nucleon structure, will be performed simultaneously. The set of these measurements permits to tests the quark-parton model of nucleons at the QCD twist-2 level with minimal systematic errors.

  16. Creative Turbulence: Experiments in Art and Physics

    NASA Astrophysics Data System (ADS)

    Fonda, Enrico; Dubois, R. Luke; Camnasio, Sara; Porfiri, Maurizio; Sreenivasan, Katepalli R.; Lathrop, Daniel P.; Serrano, Daniel; Ranjan, Devesh

    2016-11-01

    Effective communication of basic research to non-experts is necessary to inspire the public and to justify support for science by the taxpayers. The creative power of art is particularly important to engage an adult audience, who otherwise might not be receptive to standard didactic material. Interdisciplinarity defines new trends in research, and works at the intersection of art and science are growing in popularity, even though they are often isolated experiments. We present a public-facing collaboration between physicists/engineers performing research in fluid dynamics, and audiovisual artists working in cutting-edge media installation and performance. The result of this collaboration is a curated exhibition, with supporting public programming. We present the artworks, the lesson learned from the interactions between artists and scientists, the potential outreach impact and future developments. This project is supported by the APS Public Outreach Mini Grant.

  17. Theory and experiment in gravitational physics

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1981-01-01

    New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

  18. Diamond detectors for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Bäni, L.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; Berdermann, E.; Bergonzo, P.; Bes, A.; Brom, J.-M.; Bruzzi, M.; Cerv, M.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Cumalat, J.; Dabrowski, A.; D'Alessandro, R.; Dauvergne, D.; de Boer, W.; Dorfer, C.; Dünser, M.; Eremin, V.; Eusebi, R.; Forcolin, G.; Forneris, J.; Frais-Kölbl, H.; Gallin-Martel, L.; Gallin-Martel, M. L.; Gan, K. K.; Gastal, M.; Giroletti, C.; Goffe, M.; Goldstein, J.; Golubev, A.; Gorišek, A.; Grigoriev, E.; Grosse-Knetter, J.; Grummer, A.; Gui, B.; Guthoff, M.; Haughton, I.; Hiti, B.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J.-Y.; Hügging, F.; Hutton, C.; Jansen, H.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Konovalov, V.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Lukosi, E.; Maazouzi, C.; Mandic, I.; Mathieu, C.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Muškinja, M.; Oh, A.; Oliviero, P.; Passeri, D.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Reichmann, M.; Riley, G.; Roe, S.; Sanz, D.; Scaringella, M.; Schaefer, D.; Schmidt, C. J.; Schnetzer, S.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Smith, S.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Tannenwald, B.; Taylor, A.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Uplegger, L.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.

    2018-01-01

    Beam test results of the radiation tolerance study of chemical vapour deposition (CVD) diamond against different particle species and energies is presented. We also present beam test results on the independence of signal size on incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition functionality of poly-crystalline CVD diamond 3D devices was demonstrated in beam tests and 3D diamond detectors are shown to be a promising technology for applications in future high luminosity experiments.

  19. Theory and experiment in gravitational physics

    NASA Astrophysics Data System (ADS)

    Will, C. M.

    New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

  20. FPEF (Fluid Physics Experiment Facility) for the planned MS (Marangoni Surface) experiment

    NASA Image and Video Library

    2009-07-01

    ISS020-E-016214 (1 July 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, prepares the Fluid Physics Experiment Facility (FPEF) for the planned Marangoni Surface experiment in the Kibo laboratory of the International Space Station.

  1. Status and Prospects of Hirfl Experiments on Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Xu, H. S.; Zheng, C.; Xiao, G. Q.; Zhan, W. L.; Zhou, X. H.; Zhang, Y. H.; Sun, Z. Y.; Wang, J. S.; Gan, Z. G.; Huang, W. X.; Ma, X. W.

    HIRFL is an accelerator complex consisting of 3 accelerators, 2 radioactive beams lines, 1 storage rings and a number of experimental setups. The research activities at HIRFL cover the fields of radio-biology, material science, atomic physics, and nuclear physics. This report mainly concentrates on the experiments of nuclear physics with the existing and planned experimental setups such as SHANS, RIBLL1, ETF, CSRe, PISA and HPLUS at HIRFL.

  2. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  3. Peer Provocation in Physical Education: Experiences of Botswana Adolescents

    ERIC Educational Resources Information Center

    Shehu, Jimoh

    2009-01-01

    Critical incidents of peer provocation in physical education were investigated among 675 junior secondary school students in Botswana. Data were generated through a brief, open-ended questionnaire requesting the students to narrate their experiences of bad, hurtful and offensive peer behaviours during physical education classes. Six overlapping…

  4. Analysis of pre-service physics teacher skills designing simple physics experiments based technology

    NASA Astrophysics Data System (ADS)

    Susilawati; Huda, C.; Kurniawan, W.; Masturi; Khoiri, N.

    2018-03-01

    Pre-service physics teacher skill in designing simple experiment set is very important in adding understanding of student concept and practicing scientific skill in laboratory. This study describes the skills of physics students in designing simple experiments based technologicall. The experimental design stages include simple tool design and sensor modification. The research method used is descriptive method with the number of research samples 25 students and 5 variations of simple physics experimental design. Based on the results of interviews and observations obtained the results of pre-service physics teacher skill analysis in designing simple experimental physics charged technology is good. Based on observation result, pre-service physics teacher skill in designing simple experiment is good while modification and sensor application are still not good. This suggests that pre-service physics teacher still need a lot of practice and do experiments in designing physics experiments using sensor modifications. Based on the interview result, it is found that students have high enough motivation to perform laboratory activities actively and students have high curiosity to be skilled at making simple practicum tool for physics experiment.

  5. Effect of a strong-current ion ring on spheromak stability

    SciTech Connect

    Litwin, C.; Sudan, R.N.

    The stability of a spheromak with an energetic ion ring, carrying a current comparable to the plasma current, to the tilt mode is considered. For small departures from sphericity a perturbative approach is applied to an appropriate energy principle in order to calculate the lowest nontrivial kinetic contribution of the ion ring. An analytic stability criterion is obtained. It is seen that the prolate configuration becomes more stable while the oblate one is less stable than in the absence of the ring. The prolomak becomes stable when the ring kinetic energy exceeds the magnetic energy within the separatrix.

  6. Probing new top physics at the LHCb experiment.

    PubMed

    Kagan, Alexander L; Kamenik, Jernej F; Perez, Gilad; Stone, Sheldon

    2011-08-19

    We suggest that top quark physics can be studied at the LHCb experiment and that top quark production could be observed. Since LHCb covers a large pseudorapidity region in the forward direction, it has unique abilities to probe new physics in the top quark sector. Furthermore, we demonstrate that LHCb may be able to measure a t ̄t production rate asymmetry and, thus, indirectly probe an anomalous forward-backward t ̄t asymmetry in the forward region, a possibility suggested by the enhanced forward-backward asymmetry reported by the CDF experiment. © 2011 American Physical Society

  7. Thought Experiments in Physics Education: A Simple and Practical Example.

    ERIC Educational Resources Information Center

    Lattery, Mark J.

    2001-01-01

    Uses a Galilean thought experiment to enhance learning in a college-level physical science course. Presents both modern and historical perspectives of Galileo's work. As a final project, students explored Galileo's thought experiment in the laboratory using modern detectors with satisfying results. (Contains 25 references.) (Author/ASK)

  8. Physics Lab Experiments and Correlated Computer Aids. Teacher Edition.

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H.

    Forty-nine physics experiments are included in the teacher's edition of this laboratory manual. Suggestions are given in margins for preparing apparatus, organizing students, and anticipating difficulties likely to be encountered. Sample data, graphs, calculations, and sample answers to leading questions are also given for each experiment. It is…

  9. Bicycle Freewheeling with Air Drag as a Physics Experiment

    ERIC Educational Resources Information Center

    Janssen, Paul; Janssens, Ewald

    2015-01-01

    To familiarize first-year students with the important ingredients of a physics experiment, we offer them a project close to their daily life: measuring the effect of air resistance on a bicycle. Experiments are done with a bicycle freewheeling on a downhill slope. The data are compared with equations of motions corresponding to different models…

  10. Low Cost Alternatives to Commercial Lab Kits for Physics Experiments

    ERIC Educational Resources Information Center

    Kodejška, C.; De Nunzio, G.; Kubinek, R.; Ríha, J.

    2015-01-01

    Conducting experiments in physics using modern measuring techniques, and particularly those utilizing computers, is often much more attractive to students than conducting experiments conventionally. However, the cost of professional kits in the Czech Republic is still very expensive for many schools. The basic equipment for one student workplace…

  11. Autonomy and the Student Experience in Introductory Physics

    ERIC Educational Resources Information Center

    Hall, Nicholas Ron

    2013-01-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students…

  12. Perceptions of Overweight Students Concerning Their Experiences in Physical Education

    ERIC Educational Resources Information Center

    Trout, Josh; Graber, Kim C.

    2009-01-01

    The purpose of this investigation was to examine overweight students' perceptions of and experiences in physical education. Specifically, the applicability of learned helplessness as a framework to understand their experiences was explored. Participants were seven female and five male high school students whose body mass index was at or higher…

  13. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    NASA Technical Reports Server (NTRS)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  14. Gender, experience, and self-efficacy in introductory physics

    NASA Astrophysics Data System (ADS)

    Nissen, Jayson M.; Shemwell, Jonathan T.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] There is growing evidence of persistent gender achievement gaps in university physics instruction, not only for learning physics content, but also for developing productive attitudes and beliefs about learning physics. These gaps occur in both traditional and interactive-engagement (IE) styles of physics instruction. We investigated one gender gap in the area of attitudes and beliefs. This was men's and women's physics self-efficacy, which comprises students' thoughts and feelings about their capabilities to succeed as learners in physics. According to extant research using pre- and post-course surveys, the self-efficacy of both men and women tends to be reduced after taking traditional and IE physics courses. Moreover, self-efficacy is reduced further for women than for men. However, it remains unclear from these studies whether this gender difference is caused by physics instruction. It may be, for instance, that the greater reduction of women's self-efficacy in physics merely reflects a broader trend in university education that has little to do with physics per se. We investigated this and other alternative causes, using an in-the-moment measurement technique called the Experience Sampling Method (ESM). We used ESM to collect multiple samples of university students' feelings of self-efficacy during four types of activity for two one-week periods: (i) an introductory IE physics course, (ii) students' other introductory STEM courses, (iii) their non-STEM courses, and (iv) their activities outside of school. We found that women experienced the IE physics course with lower self-efficacy than men, but for the other three activity types, women's self-efficacy was not reliably different from men's. We therefore concluded that the experience of physics instruction in the IE physics course depressed women's self-efficacy. Using complementary measures showing the IE physics course to be similar to

  15. Becoming physics people: Development of integrated physics identity through the Learning Assistant experience

    NASA Astrophysics Data System (ADS)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-06-01

    [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of community of practice and physics identity, and explore the implications suggested by these theories for LA program adoption and adaptation. Regression models from physics identity studies show that the physics identity construct strongly predicts intended choice of a career in physics. The goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger "physics student" identity and stronger "physics instructor" identity, and that these identities are reconciled into a coherent integrated physics identity. Increased comfort in interactions with peers, near peers, and faculty seems to be an important component of this identity development and reconciliation, suggesting that a focus on supporting community membership is useful for effective program design.

  16. Preservice Physical Education Teachers' Service Learning Experiences Related to Comprehensive School Physical Activity Programming

    ERIC Educational Resources Information Center

    Webster, Collin A.; Nesbitt, Danielle; Lee, Heesu; Egan, Cate

    2017-01-01

    Purpose: The purpose of this study was to examine preservice physical education teachers' (PPET) service learning experiences planning and implementing course assignments aligned with comprehensive school physical activity program (CSPAP) recommendations. Methods: Based on service learning principles, PPETs (N = 18) enrolled in a physical…

  17. Attitude towards Physics Lessons and Physical Experiments of the High School Students

    ERIC Educational Resources Information Center

    Kaya, Hasan; Boyuk, Ugur

    2011-01-01

    In order that students can develop researching, questioning, critical thinking, problem solving and decision making skills, so that they become lifelong learning individuals, they should be improved regarding their knowledge, understanding and attitude towards natural sciences. Attitudes towards physics lessons and physical experiments of high…

  18. Becoming Physics People: Development of Integrated Physics Identity through the Learning Assistant Experience

    ERIC Educational Resources Information Center

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-01-01

    In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of "community of practice" and "physics identity," and explore the implications suggested by these theories for LA program adoption and adaptation.…

  19. Resiliency in Physics: The Lived Experiences of African-American Women Who Completed Doctoral Physics Programs

    ERIC Educational Resources Information Center

    Burnette, Samara Fleming

    2013-01-01

    Currently, little is known about African-American women with doctoral degrees in physics. This study examined the lived experiences of African-American women who completed doctoral programs in physics. Due to factors of race and gender, African-American women automatically enter a double-bind in science, technology, engineering, and mathematics…

  20. The physics of musical scales: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  1. Experiences of a high-school physics textbook author

    NASA Astrophysics Data System (ADS)

    Zitzewitz, Paul W.

    2004-05-01

    For the past twenty years I have been involved writing a widely used high school physics textbook. I will discuss my experiences with the many forces that shape such a book, including state requirements, the publisher, editors, free-lance writers, reviewers, high school teachers, and students. Attempts to incorporate the results of physics education research and the changing role of technology in the production process will also be discussed.

  2. Experiences in sport, physical activity, and physical education among Christian, Buddhist, and Hindu Asian adolescent girls.

    PubMed

    Araki, Kaori; Kodani, Iku; Gupta, Nidhi; Gill, Diane L

    2013-01-01

    Multicultural scholarship in sport and exercise psychology should help us understand and apply cultural competencies for all to be physically active. In the present study, two Asian countries, Japan and Singapore, were chosen. The participation rate for physical activities among adolescent girls tends to be lower than that of boys in both countries. Thus, the purpose of the project was to gain knowledge and understanding about sociocultural factors that may explain adolescent girls' perceptions and behaviors toward sport, physical activity, and physical education (PE). A qualitative approach using semi-structured interviews with focus groups was used to understand meanings of physical activity among Buddhist Japanese, and Hindu Indians and Christian Chinese from Singapore. Each focus group consisted of four or five girls and female researchers. Based on the analysis, we created four themes which were "cultural identities," "Asian girls and sport/physical activities," "PE experiences," "motivation for future involvement." The Buddhist Japanese, Hindu Indian, and Christian Chinese participants each reported unique physical activity experiences, and all the participants were aware of how Asian culture may affect being physically active. Experiences of PE classes were similar but perceptions of their PE attire were different for Christian Chinese and Hindu Indian adolescent girls. Based on the results, the importance of nurturing cultural competencies and ways to encourage girls to be physically active throughout life were discussed.

  3. Experiences in Sport, Physical Activity, and Physical Education Among Christian, Buddhist, and Hindu Asian Adolescent Girls

    PubMed Central

    Kodani, Iku; Gupta, Nidhi; Gill, Diane L.

    2013-01-01

    Multicultural scholarship in sport and exercise psychology should help us understand and apply cultural competencies for all to be physically active. In the present study, two Asian countries, Japan and Singapore, were chosen. The participation rate for physical activities among adolescent girls tends to be lower than that of boys in both countries. Thus, the purpose of the project was to gain knowledge and understanding about sociocultural factors that may explain adolescent girls' perceptions and behaviors toward sport, physical activity, and physical education (PE). A qualitative approach using semi-structured interviews with focus groups was used to understand meanings of physical activity among Buddhist Japanese, and Hindu Indians and Christian Chinese from Singapore. Each focus group consisted of four or five girls and female researchers. Based on the analysis, we created four themes which were "cultural identities," "Asian girls and sport/physical activities," "PE experiences," "motivation for future involvement." The Buddhist Japanese, Hindu Indian, and Christian Chinese participants each reported unique physical activity experiences, and all the participants were aware of how Asian culture may affect being physically active. Experiences of PE classes were similar but perceptions of their PE attire were different for Christian Chinese and Hindu Indian adolescent girls. Based on the results, the importance of nurturing cultural competencies and ways to encourage girls to be physically active throughout life were discussed. PMID:23412952

  4. Lifetime Traumatic Experiences and Leisure Physical Inactivity among Adolescent Boys.

    PubMed

    Malinauskas, Romualdas; Malinauskiene, Vilija; Malinauskas, Mindaugas

    2018-03-01

    The aim of this study was to examine the associations between lifetime traumatic experiences and leisure physical inactivity among adolescent boys and to determine to what extent those associations are mediated by posttraumatic stress symptoms, unhealthy behaviors (smoking, alcohol use), the daily consumption of fresh fruit, and sense of coherence. A self-administered questionnaire combining 3 instruments measured leisure physical activity level (Godin and Shephard), symptoms of posttraumatic stress (IES-revised), lifetime traumatic experiences, sense of coherence (SOC-13, from Antonovsky), and behavioral and dietary patterns in a representative sample of eighth grade boys from a number of Kaunas, Lithuania, secondary schools (N = 885; response rate 88.6%). Fifty-six point eight percent of boys had experienced at least 1 lifetime traumatic event, with a 20.5% prevalence of PTS symptoms, and 5.4% were inactive during leisure time. In the logistic regression models, leisure physical inactivity was associated with lifetime traumatic experiences (adjusted OR = 2.33; 95% CI: 1.09-4.98). Sense of coherence and posttraumatic stress symptoms did not mediate those associations. Less-than-daily consumption of fresh fruit showed an independent effect, while smoking and weekly consumption of alcohol did not. Consistent associations between lifetime traumatic experiences and leisure physical inactivity among adolescent boys indicate that the presence of lifetime traumatic events should be taken into account when employing intervention and prevention programs on unhealthy lifestyles (physical inactivity, smoking, and alcohol).

  5. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  6. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Flight experiment physical phenomena experiment chest

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dean, W. C., II

    1975-01-01

    The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.

  7. When Physical Activity Participation Promotes Inactivity: Negative Experiences of Spanish Adolescents in Physical Education and Sport

    ERIC Educational Resources Information Center

    Beltran-Carrillo, Vicente J.; Devis-Devis, Jose; Peiro-Velert, Carmen; Brown, David H. K.

    2012-01-01

    This article analyses negative experiences in physical education and sport reported during qualitative interviews of a group of inactive adolescent Spanish boys and girls. The purpose of this analysis is twofold. First and most important, it seeks to give voice to these young people reporting negative experiences and connect them to contexts of…

  8. Impact of detector simulation in particle physics collider experiments

    SciTech Connect

    Elvira, V. Daniel

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  9. Impact of detector simulation in particle physics collider experiments

    DOE PAGES

    Elvira, V. Daniel

    2017-06-01

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  10. Impact of detector simulation in particle physics collider experiments

    NASA Astrophysics Data System (ADS)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  11. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in

  12. The Hispanic Experience in Physical Education Programs and Departments

    ERIC Educational Resources Information Center

    Hodge, Samuel R.; Cervantes, Carlos M.; Vigo-Valentin, Alexander N.; Canabal-Torres, Maria Y.; Ortiz-Castillo, Esther M.

    2012-01-01

    The purpose of this article is to discuss challenges and identify strategies to increase the representation of Hispanic faculty in the academy, particularly Physical Education (PE) programs and departments at doctorate-granting universities. Recommendations to increase the presence and improve the experiences of Hispanic faculty are provided.…

  13. Selecting, Teaching and Assessing Physical Education Dance Experiences

    ERIC Educational Resources Information Center

    Little, Stephanie; Hall, Tina

    2017-01-01

    Dance is a form of physical activity that can be enjoyed for a lifetime. Students at the elementary level benefit greatly from successful experiences in dance that lead to competency in various dance forms as well as an appreciation of personal expression through dance. Teaching dance, however, may not be comfortable or easy for beginning…

  14. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    ERIC Educational Resources Information Center

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…

  15. Multidisciplinary Field Training in Undergraduate Physical Geography: Russian Experience

    ERIC Educational Resources Information Center

    Kasimov, Nikolay S.; Chalov, Sergey R.; Panin, Andrey V.

    2013-01-01

    Field training is seen as a central component of the discipline of Physical Geography and an essential part of the undergraduate curriculum. This paper explores the structure and relationships between fieldwork and theoretical courses and the abundant experiences of field training in the undergraduate curriculum of 37 Russian universities. It…

  16. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  17. Skylab Experiments, Volume I, Physical Science, Solar Astronomy.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Up-to-date knowledge about Skylab experiments is presented for the purpose of informing high school teachers about scientific research performed in orbit and enabling them to broaden their scope of material selection. The first volume is concerned with the solar astronomy program. The related fields are physics, electronics, biology, chemistry,…

  18. Chladni Patterns on Drumheads: A "Physics of Music" Experiment

    ERIC Educational Resources Information Center

    Worland, Randy

    2011-01-01

    In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional…

  19. Radical Recombination Kinetics: An Experiment in Physical Organic Chemistry.

    ERIC Educational Resources Information Center

    Pickering, Miles

    1980-01-01

    Describes a student kinetic experiment involving second order kinetics as well as displaying photochromism using a wide variety of techniques from both physical and organic chemistry. Describes measurement of (1) the rate of the recombination reaction; (2) the extinction coefficient; and (3) the ESR spectrometer signal. (Author/JN)

  20. The engineering design of the Tokamak Physics Experiment

    SciTech Connect

    Schmidt, J.A.

    A mission and supporting physics objectives have been developed, which establishes an important role for the Tokamak Physics Experiment (TPX) in developing the physic basis for a future fusion reactor. The design of TPX include advanced physics features, such as shaping and profile control, along with the capability of operating for very long pulses. The development of the superconducting magnets, actively cooled internal hardware, and remote maintenance will be an important technology contribution to future fusion projects, such as ITER. The Conceptual Design and Management Systems for TPX have been developed and reviewed, and the project is beginning Preliminary Design.more » If adequately funded the construction project should be completed in the year 2000.« less

  1. Industrial metrology as applied to large physics experiments

    SciTech Connect

    Veal, D.

    1993-05-01

    A physics experiment is a large complex 3-D object (typ. 1200 m{sup 3}, 35000 tonnes), with sub-millimetric alignment requirements. Two generic survey alignment tasks can be identified; first, an iterative positioning of the apparatus subsystems in space and, second, a quantification of as-built parameters. The most convenient measurement technique is industrial triangulation but the complexity of the measured object and measurement environment constraints frequently requires a more sophisticated approach. To enlarge the ``survey alignment toolbox`` measurement techniques commonly associated with other disciplines such as geodesy, applied geodesy for accelerator alignment, and mechanical engineering are also used. Disparate observables require amore » heavy reliance on least squares programs for campaign pre-analysis and calculation. This paper will offer an introduction to the alignment of physics experiments and will identify trends for the next generation of SSC experiments.« less

  2. Radioisotope experiments in physics, chemistry, and biology. Second revised edition

    SciTech Connect

    Dance, J.B.

    It is stated that the main object of the book is to show that a large number of experiments in chemistry, physics and biology can be safely carried out with a minimal amount of equipment. No sophisticated counting equipment is required, in most cases simple geiger counters or photographic emulsions are used, but a few experiments are included for use with other forms of detectors, such as pulse electroscopes, which are often found in schools. Using naturally occurring compounds, sealed sources and some unsealed sources of low specific activity, experiments are given of typical applications in statistics, electronics, photography, healthmore » physics, botany and so on. The necessary theoretical background is presented in the introductory chapters and typical problems are given at the end of the book. The book is intended for GCE and Advanced level students. (UK)« less

  3. Fluid physics, thermodynamics, and heat transfer experiments in space

    NASA Technical Reports Server (NTRS)

    Dodge, F. T.; Abramson, H. N.; Angrist, S. W.; Catton, I.; Churchill, S. W.; Mannheimer, R. J.; Otrach, S.; Schwartz, S. H.; Sengers, J. V.

    1975-01-01

    An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation.

  4. Advanced Experiments in Nuclear Science, Volume I: Advanced Nuclear Physics and Chemistry Experiments.

    ERIC Educational Resources Information Center

    Duggan, Jerome L.; And Others

    The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…

  5. Perceptions of the Physical Education Doctoral Experience: Does Previous Teaching Experience Matter?

    ERIC Educational Resources Information Center

    Richards, K. Andrew R.; McLoughlin, Gabriella M.; Gaudreault, Karen Lux; Shiver, Victoria Nicole

    2018-01-01

    In the United States, physical education doctoral programs place great stock in recruiting students who have prior in-service teaching experience. However, little is known about how this experience influences perceptions of doctoral education. We conducted this cross-sectional, exploratory study to develop an initial understanding of how prior…

  6. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    NASA Astrophysics Data System (ADS)

    García-Martínez, Pablo Luis; Lampugnani, Leandro Gabriel; Farengo, Ricardo

    2014-12-01

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  7. Magnetic flux rope versus the spheromak as models for interplanetary magnetic clouds

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Osherovich, V. A.; Burlaga, L. F.

    1995-01-01

    Magnetic clouds form a subset of interplanetary ejecta with well-defined magnetic and thermodynamic properties. Observationally, it is well established that magnetic clouds expand as they propagate antisunward. The aim of this paper is to compare and contrast two models which have been proposed for the global magnetic field line topology of magnetic clouds: a magnetic flux tube geometry, on the one hand, and a spheromak geometry (including possible higher multiples), on the other. Traditionally, the magnetic structure of magnetic clouds has been modeled by force-free configurations. In a first step, we therefore analyze the ability of static force-free models to account for the asymmetries observed in the magnetic field profiles of magnetic clouds. For a cylindrical flux tube the magnetic field remains symmetric about closest approach to the magnetic axis on all spacecraft orbits intersecting it, whereas in a spheromak geometry one can have asymmetries in the magnetic field signatures along some spacecraft trajectories. The duration of typical magnetic cloud encounters at 1 AU (1 to 2 days) is comparable to their travel time from the Sun to 1 AU and thus magnetic clouds should be treated as strongly nonstationary objects. In a second step, therefore, we abandon the static approach and model magnetic clouds as self-similarly evolving MHD configurations. In our theory, the interaction of the expanding magnetic cloud with the ambient plasma is taken into account by a drag force proportional to the density and the velocity of expansion. Solving rigorously the full set of MHD equations, we demonstrate that the asymmetry in the magnetic signature may arise solely as a result of expansion. Using asymptotic solutions of the MHD equations, we least squares fit both theoretical models to interplanetary data. We find that while the central part of the magnetic cloud is adequately described by both models, the 'edges' of the cloud data are modeled better by the magnetic flux

  8. Statistical physics of human beings in games: Controlled experiments

    NASA Astrophysics Data System (ADS)

    Liang, Yuan; Huang, Ji-Ping

    2014-07-01

    It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems.

  9. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very early days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for combustion, complex fluids, and fluid physics; GRC has led the successful implementation of the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion; fire detection; fire extinguishment; soot phenomena; flame liftoff and stability; and material flammability. The fluids experiments have studied capillary flow; magneto-rheological fluids; colloidal systems; extensional rheology; pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years.

  10. Interactive Lecture Experiments in Large Introductory Physics Classes

    NASA Astrophysics Data System (ADS)

    Milner-Bolotin, Marina M.; Kotlicki, A.; Rieger, G.; Bates, F.; Moll, R.; McPhee, K.; Nashon, S.

    2006-12-01

    We describe Interactive Lecture Experiments (ILE), which build on Interactive Lecture Demonstrations proposed by Sokoloff and Thornton (2004) and extends it by providing students with the opportunity to analyze experiments demonstrated in the lecture outside of the classroom. Real time experimental data is collected, using Logger Pro combined with the digital video technology. This data is uploaded to the Internet and made available to the students for further analysis. Student learning is assessed in the following lecture using conceptual questions (clickers). The goal of this project is to use ILE to make large lectures more interactive and promote student interest in science, critical thinking and data analysis skills. We report on the systematic study conducted using the Colorado Learning Attitudes about Science Survey, Force Concept Inventory, open-ended physics problems and focus group interviews to determine the impact of ILE on student academic achievement, motivation and attitudes towards physics. Three sections of students (750 students) experienced four ILE experiments. The surveys were administered twice and academic results for students who experienced the ILE for a particular topic were compared to the students, from a different section, who did not complete the ILE for that topic. Additional qualitative data on students’ attitudes was collected using open ended survey questions and interviews. We will present preliminary conclusions about the role of ILEs as an effective pedagogy in large introductory physics courses. Sokoloff, D.R. and R.K. Thornton (2004). Interactive Lecture Demonstrations: Active Learning in Introductory Physics, J.Wiley & Sons, INC. Interactive Lecture Experiments: http://www.physics.ubc.ca/ year1lab/p100/LectureLabs/lectureLabs.html

  11. Elementary Particle Physics Experiment at the University of Massachusetts, Amherst

    SciTech Connect

    Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane

    2013-07-30

    In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.

  12. Symmetry and aesthetics in introductory physics: An experiment in interdisciplinary physics and fine arts education

    NASA Astrophysics Data System (ADS)

    van der Veen, Janet Krause

    In a recent editorial in Physics Today (July, 2006, p. 10) the ability of physicists to "imagine new realities" was correlated with what have been traditionally considered non-scientific qualities of imagination and creativity, which are usually associated with fine arts. In view of the current developments in physics of the 21st Century, including the searches for cosmic dark energy and evidence from the Large Hadron Collider which, it is hoped, will verify or refute the proposals of String Theory, the importance of developing creativity and imagination through education is gaining recognition. Two questions are addressed by this study: First, How can we bring the sense of aesthetics and creativity, which are important in the practice of physics, into the teaching and learning of physics at the introductory college level, without sacrificing the mathematical rigor which is necessary for proper understanding of physics? Second, How can we provide access to physics for a diverse population of students which includes physics majors, arts majors, and future teachers? An interdisciplinary curriculum which begins with teaching math as a language of nature, and utilizes arts to help visualize the connections between mathematics and the physical universe, may provide answers to these questions. In this dissertation I describe in detail the case study of the eleven students - seven physics majors and four arts majors - who participated in an experimental course, Symmetry and Aesthetics in Introductory Physics, in Winter Quarter, 2007, at UCSB's College of Creative Studies. The very positive results of this experiment suggest that this model deserves further testing, and could provide an entry into the study of physics for physics majors, liberal arts majors, future teachers, and as a foundation for media arts and technology programs.

  13. Long Term Physical Health Consequences of Adverse Childhood Experiences

    PubMed Central

    Monnat, Shannon M.; Chandler, Raeven Faye

    2015-01-01

    This study examined associations between adverse childhood family experiences and adult physical health using data from 52,250 US adults aged 18–64 from the 2009–2012 Behavioral Risk Factor Surveillance System (BRFSS). We found that experiencing childhood physical, verbal, or sexual abuse, witnessing parental domestic violence, experiencing parental divorce, and living with someone who was depressed, abused drugs or alcohol, or who had been incarcerated were associated with one or more of the following health outcomes: self-rated health, functional limitations, diabetes, and heart attack. Adult socioeconomic status and poor mental health and health behaviors significantly mediated several of these associations. The results of this study highlight the importance of family-based adverse childhood experiences on adult health outcomes and suggest that adult SES and stress-related coping behaviors may be crucial links between trauma in the childhood home and adult health. PMID:26500379

  14. B Physics at the D0 experiment A Mexican review

    SciTech Connect

    De La Cruz-Burelo, E.

    2010-07-29

    On April of 1992 a Mexican group from Cinvestav officially joined the D0 experiment, one of the two experiments in the Tevatron collider at Fermilab. The seed for this experimental group on high energy physics from Cinvestav was planted in Mexico in some measure by Augusto Garcia, to whom this workshop is in memorial. Augusto's efforts and support to groups dedicated to this area was clear and important. Some of these seeds have given origin to today's established Mexican groups on experimental high energy physics, one example of this is the Mexican group at D0. I present here a shortmore » review of some of the D0 results on which the Mexican group has contributed, emphasizing the last decade, which I have witnessed.« less

  15. Compilation of current high energy physics experiments - Sept. 1978

    SciTech Connect

    Addis, L.; Odian, A.; Row, G. M.

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary ofmore » the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche. (RWR)« less

  16. Experience, gender, and performance: Connecting high school physics experience and gender differences to introductory college physics performance

    NASA Astrophysics Data System (ADS)

    Tai, Robert H.

    Current science educational practice is coming under heavy criticism based on the dismaying results of the Third International Mathematics and Science Study of 1998, the latest in a series of large scale surveys; and from research showing the appallingly low representation of females in science-related fields. These critical evaluations serve to draw attention to science literacy in general and lack of persistence among females in particular, two issues that relate closely to the "preparation for future study" goal held by many high school science teachers. In other words, these teachers often seek to promote future success and to prevent future failure in their students' academic careers. This thesis studies the connection between the teaching practices recommended by reformers and researchers for high school teachers, and their students' subsequent college physics performance. The teaching practices studied were: laboratory experiences, class discussion experiences, content coverage, and reliance on textbooks. This study analyzed a survey of 1500 students from 16 different lecture-format college physics courses at 14 different universities. Using hierarchical linear modeling, this study accounted for course-level variables (Calculus-based/Non-calculus course type, professor's gender, and university selectivity). This study controlled for the student's parents education, high school science/mathematics achievement, high school calculus background, and racial background. In addition, the interactions between gender and both pedagogical/curricular and course-level variables were analyzed. The results indicated that teaching fewer topics in greater depth in high school physics appeared to be helpful to college physics students. An interaction between college course type and content coverage showed that students in Calculus-based physics reaped even greater benefits from a depth-oriented curriculum. Also students with fewer labs per month in high school physics

  17. Solar sphere viewed through the Skylab solar physics experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The solar sphere viewed through the Skylab solar physics experiment (S082) Extreme Ultraviolet Spectroheliographis seen in this photographic reproduction taken from a color television transmission made by a TV camera aboard the Skylab space station in Earth orbit. The solar chromosphere and lower corona are much hotter than the surface of the Sun characterized by the white light emissions. This image was recorded during the huge solar prominence which occurred on August 21, 1973.

  18. On the Limitations of Thought Experiments in Physics and the Consequences for Physics Education.

    ERIC Educational Resources Information Center

    Reiner, Miriam; Burko, Lior M.

    2003-01-01

    Focuses on the role of Thought Experiments (TEs) in ongoing processes of conceptual refinement for physicists and physics learners. Analyze TEs related to stellar evolution and general relativity. Identifies the stages at which crucial errors are made in these TEs and the cognitive processes which lead to these errors. Discusses implications for…

  19. Generative Role of Experiments in Physics and in Teaching Physics: A Suggestion for Epistemological Reconstruction

    ERIC Educational Resources Information Center

    Koponen, Ismo T.; Mantyla, Terhi

    2006-01-01

    In physics teaching experimentality is an integral component in giving the starting point of knowledge formation and conceptualization. However, epistemology of experiments is not often addressed directly in the educational and pedagogical literature. This warrants an attempt to produce an acceptable reconstruction of the epistemological role of…

  20. [Physical therapy in pediatric primary care: a review of experiences].

    PubMed

    de Sá, Miriam Ribeiro Calheiros; Thomazinho, Paula de Almeida; Santos, Fabiano Luiz; Cavalcanti, Nicolette Celani; Ribeiro, Carla Trevisan Martins; Negreiros, Maria Fernanda Vieira; Vinhaes, Marcia Regina

    2014-11-01

    To review pediatric physical therapy experiences described in the literature and to analyze the production of knowledge on physical therapy in the context of pediatric primary health care (PPHC). A systematic review was conducted according to the PRISMA criteria. The following databases were searched: MEDLINE, LILACS, SciELO, PubMed, Scopus and Cochrane; Brazilian Ministry of Health's CAPES doctoral dissertations database; and System for Information on Grey Literature in Europe (SIGLE). The following search terms were used: ["primary health care" and ("physical therapy" or "physiotherapy") and ("child" or "infant")] and equivalent terms in Portuguese and Spanish, with no restriction on publication year. Thirteen articles from six countries were analyzed and grouped into three main themes: professional dilemmas (three articles), specific competencies and skills required in a PPHC setting (seven articles), and practice reports (four articles). Professional dilemmas involved expanding the role of physical therapists to encompass community environments and sharing the decision-making process with the family, as well as collaborative work with other health services to identify the needs of children. The competencies and skills mentioned in the literature related to the identification of clinical and sociocultural symptoms that go beyond musculoskeletal conditions, the establishment of early physical therapy diagnoses, prevention of overmedication, and the ability to work as team players. Practice reports addressed stimulation in children with neurological diseases, respiratory treatment, and establishing groups with mothers of children with these conditions. The small number of studies identified in this review suggests that there is little knowledge regarding the roles of physical therapists in PPHC and possibly regarding the professional abilities required in this setting. Therefore, further studies are required to provide data on the field, along with a continuing

  1. Autonomy and the Student Experience in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Hall, Nicholas Ron

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students perceived their instructors to be. An autonomy supportive instructor acknowledges students' perspectives, feelings, and perceptions and provides students with information and opportunities for choice, while minimizing external pressures. It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (beta=0.31***) and negatively correlated with student anxiety about taking physics (beta=-0.23**). It was also positively correlated with how autonomous (vs. controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to vs. had to; beta=0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (beta=0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (beta=0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable experience in the course. If greater autonomy support was in fact the cause of a more favorable student experience, as suggested by Self-determination Theory and experimental studies in other contexts, these results would have implications for instruction and instructor professional development in similar contexts. I discuss these implications. Study II, an experimental study, investigated the effect

  2. Experiences of Psychological and Physical Aggression in Adolescent Romantic Relationships: Links to Psychological Distress

    ERIC Educational Resources Information Center

    Jouriles, Ernest N.; Garrido, Edward; Rosenfield, David; McDonald, Renee

    2009-01-01

    Objective: This research examined links between adolescents' experiences of psychological and physical relationship aggression and their psychological distress. Experiences of psychological and physical aggression were expected to correlate positively with symptoms of psychological distress, but experiences of psychological aggression were…

  3. Neutrino Physics in the NOvA Experiment

    SciTech Connect

    Sanchez, Mayly

    2016-09-19

    The objective of the experimental neutrino physics program at ISU is to contribute to the NOvA experiment in order to enable the measurement of the unknown neutrino parameters: the CP violation phase and the mass hierarchy. In the Summer of 2015, the NOvA Collaboration released results from the first year of data collected by the experiment. The ISU group played an important role in various aspects of these results including authoring one of the two resulting publications. During this project period and with the support of this grant the PI and her group made leading contributions both in data analysismore » and operations to the NOvA experiment.« less

  4. Introductory Physics Experiments Using the Wii Balance Board

    NASA Astrophysics Data System (ADS)

    Starr, Julian; Sobczak, Robert; Iqbal, Zohaib; Ochoa, Romulo

    2010-02-01

    The Wii, a video game console by Nintendo, utilizes several different controllers, such as the Wii remote (Wiimote) and the balance board, for game-playing. The balance board was introduced in early 2008. It contains four strain gauges and has Bluetooth connectivity at a relatively low price. Thanks to available open source code, such as GlovePie, any PC with Bluetooth capability can detect the information sent out by the balance board. Based on the ease with which the forces measured by each strain gauge can be obtained, we have designed several experiments for introductory physics courses that make use of this device. We present experiments to measure the forces generated when students lift their arms with and without added weights, distribution of forces on an extended object when weights are repositioned, and other normal forces cases. The results of our experiments are compared with those predicted by Newtonian mechanics. )

  5. In-Service Physical Educators' Experiences of Online Adapted Physical Education Endorsement Courses.

    PubMed

    Sato, Takahiro; Haegele, Justin A; Foot, Rachel

    2017-04-01

    The purpose of this study was to investigate in-service physical education (PE) teachers' experiences during online adapted physical education (APE) graduate courses. Based on andragogy theory (adult learning theory) we employed a descriptive qualitative methodology using an explanatory case study design. The participants (6 female and 3 male) were in-service PE teachers enrolled in an online graduate APE endorsement program. Data collection included journal reflection reports and face-to-face interviews. A constant comparative method was used to interpret the data. Three interrelated themes emerged from the participants' narratives. The first theme, instructor communication, exposes the advantages and disadvantages the participants perceived regarding communication while enrolled in the online APE graduate courses. The second theme, bulletin board discussion experiences, described participants' perceptions of the use of the bulletin board discussion forum. Lastly, the final theme, assessment experiences, described how the participants learned knowledge and skills through online courses related to assessment and evaluation.

  6. Flavour physics and the Large Hadron Collider beauty experiment.

    PubMed

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future.

  7. Unpacking Gender Differences in Students' Perceived Experiences in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.

    2009-11-01

    Prior research has shown, at our institution: 1) males outperform females on conceptual assessments (a gender gap), 2) the gender gap persists despite the use of research-based reforms, and 3) the gender gap is correlated with students' physics and mathematics background and prior attitudes and beliefs [Kost, et al. PRST-PER, 5, 010101]. Our follow-up work begins to explore how males and females experience the introductory course differently and how these differences relate to the gender gap. We gave a survey to students in the introductory course in which we investigated students' physics identity and self-efficacy. We find there are significant gender differences in each of these three areas, and further find that these measures are weakly correlated with student conceptual performance, and moderately correlated with course grade.

  8. A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments

    NASA Astrophysics Data System (ADS)

    Sang, Ziru; Li, Feng; Jiang, Xiao; Jin, Ge

    2014-04-01

    We developed a reconfigurable nuclear instrument system (RNIS) that could satisfy the requirements of diverse nuclear and particle physics experiments, and the inertial confinement fusion diagnostic. Benefiting from the reconfigurable hardware structure and digital pulse processing technology, RNIS shakes off the restrictions of cumbersome crates and miscellaneous modules. It retains all the advantages of conventional nuclear instruments and is more flexible and portable. RNIS is primarily composed of a field programmable hardware board and relevant PC software. Separate analog channels are designed to provide different functions, such as amplifiers, ADC, fast discriminators and Schmitt discriminators for diverse experimental purposes. The high-performance field programmable gate array could complete high-precision time interval measurement, histogram accumulation, counting, and coincidence anticoincidence measurement. To illustrate the prospects of RNIS, a series of applications to the experiments are described in this paper. The first, for which RNIS was originally developed, involves nuclear energy spectrum measurement with a scintillation detector and photomultiplier. The second experiment applies RNIS to a G-M tube counting experiment, and in the third, it is applied to a quantum communication experiment through reconfiguration.

  9. A Physics Exploratory Experiment on Plasma Liner Formation

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  10. Interactive Plasma Physics Education Using Data from Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Calderon, Brisa; Davis, Bill; Zwicker, Andrew

    2010-11-01

    The Internet Plasma Physics Education Experience (IPPEX) website was created in 1996 to give users access to data from plasma and fusion experiments. Interactive material on electricity, magnetism, matter, and energy was presented to generate interest and prepare users to understand data from a fusion experiment. Initially, users were allowed to analyze real-time and archival data from the Tokamak Fusion Test Reactor (TFTR) experiment. IPPEX won numerous awards for its novel approach of allowing users to participate in ongoing research. However, the latest revisions of IPPEX were in 2001 and the interactive material is no longer functional on modern browsers. Also, access to real-time data was lost when TFTR was shut down. The interactive material on IPPEX is being rewritten in ActionScript3.0, and real-time and archival data from the National Spherical Tokamak Experiment (NSTX) will be made available to users. New tools like EFIT animations, fast cameras, and plots of important plasma parameters will be included along with an existing Java-based ``virtual tokamak.'' Screenshots from the upgraded website and future directions will be presented.

  11. Negative Experiences in Physical Education and Sport: How Much Do They Affect Physical Activity Participation Later in Life?

    ERIC Educational Resources Information Center

    Cardinal, Bradley J.; Yan, Zi; Cardinal, Marita K.

    2013-01-01

    People's feelings toward physical activity are often influenced by memories of their childhood experiences in physical education and sport. Unfortunately, many adults remember negative experiences, which may affect their desire to maintain a physically active lifestyle. A survey that asked 293 students about recollections from their childhood…

  12. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    SciTech Connect

    Aad, G.; Abat, E.; Abbott, B.

    2011-11-28

    The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. Inmore » this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the

  13. Using touchscreens as position detectors in physics experiments

    NASA Astrophysics Data System (ADS)

    Dilek, Ufuk; Kaya Şengören, Serap

    2017-05-01

    The position of a ball was measured by using the touchscreen of a mobile phone during its rolling motion. The translational speed of the ball was determined using the recorded position and time data. The speed was also calculated by a conventional method. The speed values determined by the two methods were consistent, thus it was proven that a touchscreen could be used to detect position in physics experiments. Touchscreens of other smart mobile devices and touch tables can also be used for the same purpose.

  14. Chladni Patterns on Drumheads: A ``Physics of Music'' Experiment

    NASA Astrophysics Data System (ADS)

    Worland, Randy

    2011-01-01

    In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional systems, such as string and wind instruments, to the two-dimensional membranes and plates of the percussion family. Although the sand patterns attributed to Ernst Florens Friedrich Chladni (1756-1827) are often demonstrated for this purpose using metal plates,2-4 the use of drumheads offers several pedagogical and practical advantages in the lab.

  15. A Summer Research Experience in Particle Physics Using Skype

    NASA Astrophysics Data System (ADS)

    Johnston, Curran; Alexander, Steven; Mahmood, A. K.

    2012-10-01

    This last summer I did research in particle physics as part of a ``remote REU.'' This poster will describe that experience and the results of my project which was to experimentally verify the mass ranges of the Z' boson. Data from the LHC's Atlas detector was filtered by computers to select for likely Z boson decays; my work was in noting all instances of Z or Z' boson decays in one thousand events and their masses, separating the Z from Z' bosons, and generating histograms of the masses.

  16. Report on Physics of Channelization: Theory, Experiment, and Observation

    SciTech Connect

    Kudrolli, Arshad

    2014-05-19

    The project involved a study of physical processes that create eroded channel and drainage networks. A particular focus was on how the shape of the channels and the network depended on the nature of the fluid flow. Our approach was to combine theoretical, experimental, and observational studies in close collaboration with Professor Daniel Rothman of the Massachusetts Institute of Technology. Laboratory -scaled experiments were developed and quantitative data on the shape of the pattern and erosion dynamics are obtained with a laser-aided topography technique and fluorescent optical imaging techniques.

  17. Solar sphere viewed through the Skylab solar physics experiment

    NASA Image and Video Library

    1973-08-21

    S73-32867 (21 Aug. 1973) --- The solar sphere viewed through the Skylab solar physics experiment (S082) Extreme Ultraviolet Spectroheliographis seen in this photographic reproduction taken from a color television transmission made by a TV camera aboard the Skylab space station in Earth orbit. The solar chromosphere and lower corona are much hotter than the surface of the sun characterized by the white light emissions. This image was recorded during the huge solar prominence which occurred on Aug. 21, 1973. Photo credit: NASA

  18. Physics Criteria for a Subscale Plasma Liner Experiment

    DOE PAGES

    Hsu, Scott C.; Thio, Yong C. Francis

    2018-02-02

    Spherically imploding plasma liners, formed by merging hypersonic plasma jets, are a proposed standoff driver to compress magnetized target plasmas to fusion conditions (Hsu et al. in IEEE Trans Plasma Sci 40:1287, 2012). Here, in this paper, the parameter space and physics criteria are identified for a subscale, plasma-liner-formation experiment to provide data, e.g., on liner ram-pressure scaling and uniformity, that are relevant for addressing scientific issues of full-scale plasma liners required to achieve fusion conditions. Lastly, based on these criteria, we quantitatively estimate the minimum liner kinetic energy and mass needed, which informed the design of a subscale plasmamore » liner experiment now under development.« less

  19. Physics Criteria for a Subscale Plasma Liner Experiment

    SciTech Connect

    Hsu, Scott C.; Thio, Yong C. Francis

    Spherically imploding plasma liners, formed by merging hypersonic plasma jets, are a proposed standoff driver to compress magnetized target plasmas to fusion conditions (Hsu et al. in IEEE Trans Plasma Sci 40:1287, 2012). Here, in this paper, the parameter space and physics criteria are identified for a subscale, plasma-liner-formation experiment to provide data, e.g., on liner ram-pressure scaling and uniformity, that are relevant for addressing scientific issues of full-scale plasma liners required to achieve fusion conditions. Lastly, based on these criteria, we quantitatively estimate the minimum liner kinetic energy and mass needed, which informed the design of a subscale plasmamore » liner experiment now under development.« less

  20. Overview of Experiments for Physics of Fast Reactors from the International Handbooks of Evaluated Criticality Safety Benchmark Experiments and Evaluated Reactor Physics Benchmark Experiments

    SciTech Connect

    Bess, J. D.; Briggs, J. B.; Gulliford, J.

    Overview of Experiments to Study the Physics of Fast Reactors Represented in the International Directories of Critical and Reactor Experiments John D. Bess Idaho National Laboratory Jim Gulliford, Tatiana Ivanova Nuclear Energy Agency of the Organisation for Economic Cooperation and Development E.V.Rozhikhin, M.Yu.Sem?nov, A.M.Tsibulya Institute of Physics and Power Engineering The study the physics of fast reactors traditionally used the experiments presented in the manual labor of the Working Group on Evaluation of sections CSEWG (ENDF-202) issued by the Brookhaven National Laboratory in 1974. This handbook presents simplified homogeneous model experiments with relevant experimental data, as amended. The Nuclear Energymore » Agency of the Organization for Economic Cooperation and Development coordinates the activities of two international projects on the collection, evaluation and documentation of experimental data - the International Project on the assessment of critical experiments (1994) and the International Project on the assessment of reactor experiments (since 2005). The result of the activities of these projects are replenished every year, an international directory of critical (ICSBEP Handbook) and reactor (IRPhEP Handbook) experiments. The handbooks present detailed models of experiments with minimal amendments. Such models are of particular interest in terms of the settlements modern programs. The directories contain a large number of experiments which are suitable for the study of physics of fast reactors. Many of these experiments were performed at specialized critical stands, such as BFS (Russia), ZPR and ZPPR (USA), the ZEBRA (UK) and the experimental reactor JOYO (Japan), FFTF (USA). Other experiments, such as compact metal assembly, is also of interest in terms of the physics of fast reactors, they have been carried out on the universal critical stands in Russian institutes (VNIITF and VNIIEF) and the US (LANL, LLNL, and others.). Also worth

  1. High school student physics research experience yields positive results

    NASA Astrophysics Data System (ADS)

    Podolak, K. R.; Walters, M. J.

    2016-03-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a small scale research project while in high school gives them the hands on experience and ultimately prepares them more for the college experience. SUNY Plattsburgh’s Physics department started a five-week summer program for high school students in 2012. This program has proved not only beneficial for students while in the program, but also as they continue on in their development as scientists/engineers. Independent research, such as that offered by SUNY Plattsburgh’s five-week summer program, offers students a feel and taste of the culture of doing research, and life as a scientist. It is a short-term, risk free way to investigate whether a career in research or a particular scientific field is a good fit.

  2. Physics of leptoquarks in precision experiments and at particle colliders

    NASA Astrophysics Data System (ADS)

    Doršner, I.; Fajfer, S.; Greljo, A.; Kamenik, J. F.; Košnik, N.

    2016-06-01

    We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low-energy observables such as electric dipole moments, (g - 2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on the strength of LQ interactions with the quarks and leptons to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision measurements, top, and Higgs physics. The Higgs physics analysis we present covers not only the most recent but also expected results from the Large Hadron Collider (LHC). We finally discuss direct LQ searches. Current experimental situation is summarized and self-consistency of assumptions that go into existing accelerator-based searches is discussed. A progress in making next-to-leading order predictions for both pair and single LQ productions at colliders is also outlined.

  3. Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.

    2015-11-01

    In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.

  4. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  5. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    DOE PAGES

    Yamada, Masaaki

    2016-01-01

    This study briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactormore » program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.« less

  6. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    SciTech Connect

    Yamada, Masaaki

    2016-03-25

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactormore » program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.« less

  7. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    NASA Astrophysics Data System (ADS)

    Yamada, Masaaki

    2016-03-01

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  8. The LHCf experiment at the LHC: Physics Goals and Status

    NASA Astrophysics Data System (ADS)

    Tricomi, A.; Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Faus, A.; Fukui, K.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Macina, D.; Mase, T.; Masuda, K.; Matsubara, Y.; Menjo, H.; Mizuishi, M.; Muraki, Y.; Papini, P.; Perrot, A. L.; Ricciarini, S.; Sako, T.; Shimizu, Y.; Taki, K.; Tamura, T.; Torii, S.; Turner, W. C.; Velasco, J.; Viciani, A.; Yoshida, K.

    2009-12-01

    The LHCf experiment is the smallest of the six experiments installed at the Large Hadron Collider (LHC). While the general purpose detectors have been mainly designed to answer the open questions of Elementary Particle Physics, LHCf has been designed as a fully devoted Astroparticle experiment at the LHC. Indeed, thanks to the excellent performances of its double arm calorimeters, LHCf will be able to measure the flux of neutral particles produced in p-p collisions at LHC in the very forward region, thus providing an invaluable help in the calibration of air-shower Monte Carlo codes currently used for modeling cosmic rays interactions in the Earth atmosphere. Depending on the LHC machine schedule, LHCf will take data in an energy range from 900 GeV up to 14 TeV in the centre of mass system (equivalent to 10 eV in the laboratory frame), thus covering one of the most interesting and debated region of the Cosmic Ray spectrum, the region around and beyond the "knee".

  9. Results From the Physics of Colloids Experiment on ISS

    NASA Technical Reports Server (NTRS)

    Weitz, David; Bailey, Arthur; Manley, Suliana; Prasad, Vikram; Christianson, Rebecca; Sankaran, Subramanian; Doherty, Michael; Jankovsky, Amy; Lorik, Tibor; Shiley, William

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment was accommodated within International Space Station (ISS) EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Rack 2 and was remotely operated from early June 2001 until February 2002 from NASA Glenn Research Center's Telescience Support Center (TSC) in Cleveland, Ohio, and from the remote site at Harvard University in Cambridge, Massachusetts. PCS was launched on 4/19/2001 on Space Shuttle STS-100. The experiment was activated on 5/31/2001. The entire experimental setup performed remarkably well, and accomplished 2400 hours of science operations on-orbit. The sophisticated instrumentation in PCS is capable of dynamic and static light scattering from 11 to 169 degrees, Bragg scattering over the range from 10 to 60 degrees, dynamic and static light scattering at low angles from 0.3 to 6.0 degrees, and color imaging. The long duration microgravity environment on the ISS facilitated extended studies on the growth and coarsening characteristics of binary crystals. The de-mixing of the colloid-polymer critical-point sample was also studied as it phase-separated into two phases. Further, aging studies on a col-pol gel, gelation rate studies in extremely low concentration fractal gels over several days, and studies on a glass sample, all provided valuable information. Several exciting and unique aspects of these results are discussed here.

  10. Virtual experiments, physical validation: dental morphology at the intersection of experiment and theory

    PubMed Central

    Anderson, P. S. L.; Rayfield, E. J.

    2012-01-01

    Computational models such as finite-element analysis offer biologists a means of exploring the structural mechanics of biological systems that cannot be directly observed. Validated against experimental data, a model can be manipulated to perform virtual experiments, testing variables that are hard to control in physical experiments. The relationship between tooth form and the ability to break down prey is key to understanding the evolution of dentition. Recent experimental work has quantified how tooth shape promotes fracture in biological materials. We present a validated finite-element model derived from physical compression experiments. The model shows close agreement with strain patterns observed in photoelastic test materials and reaction forces measured during these experiments. We use the model to measure strain energy within the test material when different tooth shapes are used. Results show that notched blades deform materials for less strain energy cost than straight blades, giving insights into the energetic relationship between tooth form and prey materials. We identify a hypothetical ‘optimal’ blade angle that minimizes strain energy costs and test alternative prey materials via virtual experiments. Using experimental data and computational models offers an integrative approach to understand the mechanics of tooth morphology. PMID:22399789

  11. Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments

    SciTech Connect

    May, M.J.; Finkenthal, M.; Soukhanovskii, V.

    In present magnetically confined fusion devices, high and intermediate {ital Z} impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high {ital Z} plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introducedmore » through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3{endash}1600 {Angstrom}), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.) {copyright} {ital 1999 American Institute of Physics.}« less

  12. Princeton Plasma Physics Laboratory: Annual report, October 1, 1986--September 30, 1987

    SciTech Connect

    Not Available

    1987-01-01

    This report contains papers on the following topics: Principle Parameters Achieved in Experimental Devices (FY87); Tokamak Fusion Test Reactor; Princeton Beta Experiment-Modification; S-1 Spheromak; Current-Drive Experiment; X-Ray Laser Studies; Theoretical Division; Tokamak Modeling; Compact Ignition Tokamak; Engineering Department; Project Planning and Safety Office; Quality Assurance and Reliability; Administrative Operations; and PPPL Patent Invention Disclosures (FY87).

  13. Skylab experiments. Volume 1: Physical science, solar astronomy

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The basic subject of this volume is the solar astronomy program conducted on Skylab. In addition to descriptions of the individual experiments and the principles involved in their performance, a brief description is included of the sun and the energy characteristics associated with each zone. Wherever possible, related classroom activities have been identified and discussed in some detail. It will be apparent that the relationships rest not only in the field of solar astronomy, but also in the following subjects: (1) physics - optics, electromagnetic spectrum, atomic structure, etc.; (2) chemistry - emission spectra, kinetic theory, X-ray absorption, etc.; (3) biology - radiation and dependence on the sun; (4) electronics - cathode ray tubes, detectors, photomultipliers, etc.; (5) photography; (6) astronomy; and (7) industrial arts.

  14. The Entangled Cosmos: an experiment in physical theopoetics

    NASA Astrophysics Data System (ADS)

    Keller, Catherine

    2012-09-01

    As an experiment in constructive transdisciplinary relationality, a theology of nonseparable difference here engages a physics of quantum entanglement. The metaphoric potential of "spooky action at a distance" to intensify a cosmology resistant to the dominant individualism and conducive to ethical ecologies of interdependence has only begun to develop across multiple discourses. This essay contemplates the specific unfolding of a theory of nonlocal superpositions by physicists such as Stapp, Bohm and Barad. It does not literalize any God-trope, but rather entangles theology in the mysterious uncertainty of our widest interdependencies. This essay, first presented as a lecture at the American Academy of Religion "Science, Technology and Religion" Group, San Francisco, November 2011, forms the core of a chapter in a book I am currently completing, The Cloud of the Impossible: Theological Entanglements.

  15. Magnetospheric and solar physics observations with the PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Casolino, M.; Adriani, O.; Ambriola, M.; Barbarino, G. C.; Basili, A.; Bazilevskaja, G. A.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Castellini, G.; de Marzo, C.; de Pascale, M. P.; de Rosa, G.; de Simone, N.; di Felice, V.; Fedele, D.; Galper, A. M.; Hofverberg, P.; Koldashov, S. V.; Krutkov, S. Yu.; Kvashnin, A. N.; Lundquist, J.; Maksumov, O.; Malvezzi, V.; Marcelli, L.; Menn, W.; Mikhailov, V. V.; Minori, M.; Misin, S.; Mocchiutti, E.; Morselli, A.; Nikonov, N. N.; Orsi, S.; Osteria, G.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Runtso, M. F.; Russo, S.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu. I.; Taddei, E.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Zverev, V. G.

    2008-04-01

    PAMELA is a satellite-borne experiment designed to make long duration measurements of the cosmic radiation in Low Earth Orbit. It is devoted to the detection of the cosmic-ray spectra in the 100 MeV 300 GeV range with primary scientific goal the measurement of antiproton and positron spectra over the largest energy range ever achieved. Other tasks include the search for antinuclei with unprecedented sensitivity and the measurement of the light nuclear component of cosmic rays. In addition, PAMELA can investigate phenomena connected with solar and Earth physics. The apparatus consists of: a Time of Flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work we present some measurements of galactic, secondary and trapped particles performed in the first months of operation.

  16. First experience of vectorizing electromagnetic physics models for detector simulation

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; de Fine Licht, J.; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  17. Hands-On Experiments in the Interactive Physics Laboratory: Students' Intrinsic Motivation and Understanding

    ERIC Educational Resources Information Center

    Snetinová, Marie; Kácovský, Petr; Machalická, Jana

    2018-01-01

    Experiments in different forms can certainly be suitable tools for increasing student interest in physics. However, educators continuously discuss which forms of experimenting (if any) are the most beneficial for these purposes. At the Faculty of Mathematics and Physics, Charles University, Prague, two different forms of physics experiments are…

  18. Inertial confinement fusion ablator physics experiments on Saturn and Nova

    SciTech Connect

    Olson, R.E.; Porter, J.L.; Chandler, G.A.

    1997-05-01

    The Saturn pulsed power accelerator [R. B. Spielman {ital et al.}, in {ital Proceedings of the 2nd International Conference on Dense} Z-{ital pinches}, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] at Sandia National Laboratories (SNL) and the Nova laser [J. T. Hunt and D. R. Speck, Opt. Eng. {bold 28}, 461 (1989)] at Lawrence Livermore National Laboratory (LLNL) have been used to explore techniques for studying the behavior of ablator material in x-ray radiation environments comparable in magnitude, spectrum, and duration to those thatmore » would be experienced in National Ignition Facility (NIF) hohlraums [J. D. Lindl, Phys. Plasmas {bold 2}, 3933 (1995)]. The large x-ray outputs available from the Saturn pulsed-power-driven z pinch have enabled us to drive hohlraums of full NIF ignition scale size at radiation temperatures and time scales comparable to those required for the low-power foot pulse of an ignition capsule. The high-intensity drives available in the Nova laser have allowed us to study capsule ablator physics in smaller-scale hohlraums at radiation temperatures and time scales relevant to the peak power pulse for an ignition capsule. Taken together, these experiments have pointed the way to possible techniques for testing radiation-hydrodynamics code predictions of radiation flow, opacity, equation of state, and ablator shock velocity over the range of radiation environments that will be encountered in a NIF hohlraum. {copyright} {ital 1997 American Institute of Physics.}« less

  19. High Energy Physics Research with the CMS Experiment at CERN

    SciTech Connect

    Hanson, Gail G.

    2013-05-31

    The highlight of our last budget period, June 1, 2010, to May 31, 2013, was the discovery of the Higgs boson by the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC), announced on July 4, 2012, and for which François Englert and Peter Higgs were awarded the 2013 Nobel Prize in Physics on October 8, 2013. The Higgs boson was postulated in 1964 to explain how elementary particles obtain mass and was the missing piece of the Standard Model. However, the Standard Model does not describe everything that we know. There are many unanswered questions, such asmore » how can the Higgs boson have the mass that we have observed, are there more Higgs bosons, why is there more matter than antimatter, and what is the invisible dark matter, which constitutes about 85% of the matter in the universe. Our group played a significant role in the discovery of the Higgs boson and in subsequent analyses. We also carried out searches for new physics, in ways that could help elucidate some of the remaining questions. Our role in the CMS detector focused on the Tracker, a silicon strip outer tracker and pixel inner tracker.« less

  20. Effect of Physical Therapy Students' Clinical Experiences on Clinician Productivity.

    PubMed

    Pivko, Susan E; Abbruzzese, Laurel D; Duttaroy, Pragati; Hansen, Ruth L; Ryans, Kathryn

    2016-01-01

    Physical therapy clinical education experiences (CEEs) are difficult to secure, particularly first-level CEEs. Our purpose was to determine 1) what impact student full-time CEEs have on PT clinician productivity and 2) whether there is a productivity difference between first vs final CEEs. Productivity logs, including possible factors impacting productivity, were distributed to clinician-student pairings on first and final CEEs. Two-week baseline data (without a student) were compared to weeks 1 and 6 (with a student) for 31 logs using a 2x4 repeated-measures ANOVA. In a subset of 17 logs for CEEs 8 weeks or longer, a 2x5 repeated-measures ANOVA was performed. There was a significant increase in the number of patients seen and CPT units billed by both levels of CEEs comparing weeks 1 and 6. In the subset of CEEs, 8 weeks or longer, there was a significant increase in the number of patients treated per hour at week 6 and a trend toward a change at week 8 when compared to baseline week A. The factors selected as impacting productivity were census (59%) and staffing (32%). Physical therapy clinician-student pairings showed an overall increase in productivity during both full-time first and final level CEEs.

  1. Cyber-physical experiments on the efficiency of swimming protocols

    NASA Astrophysics Data System (ADS)

    Wei, Nathaniel; Floryan, Daniel; van Buren, Tyler; Smits, Alexander

    2016-11-01

    We present results from experiments on a biologically inspired cyber-physical system, composed of a two-dimensional heaving and pitching rigid airfoil attached to a six component load cell, mounted to a traverse that can move along a water channel. A feedback controller, influenced by the apparatus of Mackowski and Williamson, introduces the effects of a fictional drag force specified by a virtual body profile and drives the traverse accordingly. Free-swimming protocols using the force-feedback system are compared with similar motions on a motionless traverse. The propulsive efficiency of burst-and-coast kinematics is also considered. Of particular interest are (1) the implementation of the cyber-physical control system with respect to the accessible experimental parameter space, (2) the impact of force-based streamwise actuation on experimental data, and (3) the effects of burst-and-coast motions on propulsive efficiency. The work was supported by the Office of Naval Research (ONR) under MURI Grant N00014-14-1-0533.

  2. Self-directed learning: A heretical experiment in teaching physics

    NASA Astrophysics Data System (ADS)

    Silverman, M. P.

    1995-06-01

    An account is given of the instruction of university-level introductory physics courses according to an educational framework in which (1) curiosity-driven inquiry is recognized as an essential activity of both science and science teaching; (2) the principal role of the instructor is to provide students the incentive to learn science through their pursuit of personally meaningful questions; (3) the commission of errors is regarded as a natural concomitant to learning and is not penalized; (4) emphasis is placed on laboratory investigations that foster minimally restrictive free exploration rather than prescriptive adherence to formal procedure; (5) research skills are developed through out-of-class projects that involve literature search, experiment, and the modeling of real-world physical phenomena: (6) the precise and articulate use of language is regarded as seminal to communication in science (as it is in the humanities) and is promoted through activities that help develop written and oral language skills; (7) the evaluation of student performance is based on a portfolio of accomplished work rather than on the outcome of formal testing.

  3. Physics prospects of future neutrino oscillation experiments in Asia

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kaoru

    2004-12-01

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 neutrino parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of the larger mass squared difference (the neutrino mass hierarchy pattern), the magnitude of the third mixing angle and the CP violating phase, and a two-fold ambiguity in the mixing angle that dictates the atmospheric neutrino oscillation should be determined by future oscillation experiments. In this talk, I introduce a few ideas of future long baseline neutrino oscillation experiments which make use of the super neutrino beams from J-PARC (Japan Proton Accelerator Research Complex) in Tokai village. We examine the potential of HyperKamiokande (HK), the proposed 1 Mega-ton water Čerenkov detector, and then study the fate and possible detection of the off-axis beam from J-PARC in Korea, which is available free throughout the period of the T2K (Tokai-to-SuperKamiokande) and the possible T-to-HK projects. Although the CP violating phase can be measured accurately by studying ν→ν and ν→ν oscillations at HK, there appear multiple solution ambiguities which can be solved only by determining the neutrino mass hierarchy and the twofold ambiguity in the mixing angle. We show that very long baseline experiments with higher energy beams from J-PARC and a possible huge Water Čerenkov Calorimeter detector proposed in Beijing can resolve the neutrino mass hierarchy. If such a detector can be built in China, future experiments with a muon storage ring neutrino factory at J-PARC will be able to lift all the degeneracies in the three neutrino model parameters.

  4. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE PAGES

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; ...

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: n e ≈ n i ~ 10¹⁶ cm⁻³, T e ≈ T i ≈ 1.4 eV, V jet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number M s ≡ V jet/C s > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  5. Laboratory plasma physics experiments using merging supersonic plasma jets

    SciTech Connect

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: n e ≈ n i ~ 10¹⁶ cm⁻³, T e ≈ T i ≈ 1.4 eV, V jet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number M s ≡ V jet/C s > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  6. Physics Results from the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.

    2000-10-01

    The National Spherical Torus Experiment (NSTX) will produce plasmas with R/a=0.85/0.68 m 1.25, I_p= 1 MA, BT <=0.6 T, κ<=2.2, δ<=0.5, with 6 MW of High Harmonic Fast Wave (HHFW) heating and current drive, 5 MW of Neutral Beam Injection (NBI) and Co-axial Helicity Injection (CHI) for non-inductive startup to establish the physics principles of low aspect ratio. Outboard passive conducting plates aid vertical stability and suppression of low-n modes. During the initial set of physics experiments, studies of poloidal flux consumption indicated an optimal current ramp rate of 5 MA/sec, with higher ramp rates limited by m=2 oscillations and Internal Reconnection Events possibly related to impurity accumulation and double tearing modes. Flux consumption optimization and real-time plasma control led to the achievement of ohmic discharges with 1 MA plasma current and stored energies up to 48 kJ and βT 9%. Inboard limited and single and double-null diverted plasmas over a wide range of κ and δ were produced. The density limit, so far, is consistent with the Hugill limit, which is about 60% of the Greenwald limit, and it was characterized by growing and locking m=1 oscillations, followed by a series of Reconnection Events. The q-limit was manifest as growing and locking 2/1 perturbations leading to severe kinking of the plasma surface and subsequent discharge termination as q_cyl decreased below 2. Initial observations of edge turbulence indicated filamentary structures with λ_perp 10 cm. Up to 2 MW of HHFW power was coupled to the plasma, with increases in stored energy observed for waves with k_parallel=14 m-1, but not at higher phase velocity. CHI experiments on NSTX produced up to 130 kA of toroidal current for up to 100 msec. NBI heating is planned for late September 2000. This work has been supported at PPPL by U.S. DOE Contract # DE-AC02-76CH03073.

  7. Neutrino oscillation physics potential of the T2K experiment

    NASA Astrophysics Data System (ADS)

    T2K Collaboration; Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; de Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2015-04-01

    The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle θ _{13} have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal sin ^22θ _{23}, the octant of θ _{23}, and the mass hierarchy, in addition to the measurements of δ _{CP}, sin ^2θ _{23}, and Δ m^2_{32}, for various combinations of ν-mode and bar {ν }-mode data-taking. With an exposure of 7.8× 10^{21} protons-on-target, T2K can achieve 1σ resolution of 0.050 (0.054) on sin ^2θ _{23} and 0.040 (0.045)× 10^{-3} {eV}^2 on Δ m^2_{32} for 100% (50%) neutrino beam mode running assuming sin ^2θ _{23}=0.5 and Δ m^2_{32} = 2.4× 10^{-3} eV^2. T2K will have sensitivity to the CP-violating phase δ _{CP} at 90% C.L. or better over a significant range. For example, if sin ^22θ _{23} is maximal (i.e. θ _{23}=45°) the range is -115° < δ _{CP}< -60° for normal hierarchy and +50° < δ _{CP}< +130° for inverted hierarchy. When T2K data is combined with data from the NOνA experiment, the region of oscillation parameter space where there is sensitivity to observe a non-zero δ _{CP} is substantially increased compared to if each experiment is analyzed alone.

  8. Girls' Experiences in Physical Education: Competition, Evaluation, & Degradation

    ERIC Educational Resources Information Center

    van Daalen, Cheryl

    2005-01-01

    School nurses are often asked to participate in the health component of many physical education (PE) programs in schools. With this opportunity comes an ability to invite a model of physical education that enables physical, mental, and relational health. A pilot study was initiated to explore why girls' enrollment in physical education was…

  9. Gender, Experience, and Self-Efficacy in Introductory Physics

    ERIC Educational Resources Information Center

    Nissen, Jayson M.; Shemwell, Jonathan T.

    2016-01-01

    There is growing evidence of persistent gender achievement gaps in university physics instruction, not only for learning physics content, but also for developing productive attitudes and beliefs about learning physics. These gaps occur in both traditional and interactive-engagement (IE) styles of physics instruction. We investigated one gender gap…

  10. A data transmission method for particle physics experiments based on Ethernet physical layer

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Ru; Cao, Ping; Zheng, Jia-Jun

    2015-11-01

    Due to its advantages of universality, flexibility and high performance, fast Ethernet is widely used in readout system design for modern particle physics experiments. However, Ethernet is usually used together with the TCP/IP protocol stack, which makes it difficult to implement readout systems because designers have to use the operating system to process this protocol. Furthermore, TCP/IP degrades the transmission efficiency and real-time performance. To maximize the performance of Ethernet in physics experiment applications, a data readout method based on the physical layer (PHY) is proposed. In this method, TCP/IP is replaced with a customized and simple protocol, which makes it easier to implement. On each readout module, data from the front-end electronics is first fed into an FPGA for protocol processing and then sent out to a PHY chip controlled by this FPGA for transmission. This kind of data path is fully implemented by hardware. From the side of the data acquisition system (DAQ), however, the absence of a standard protocol causes problems for the network related applications. To solve this problem, in the operating system kernel space, data received by the network interface card is redirected from the traditional flow to a specified memory space by a customized program. This memory space can easily be accessed by applications in user space. For the purpose of verification, a prototype system has been designed and implemented. Preliminary test results show that this method can meet the requirements of data transmission from the readout module to the DAQ with an efficient and simple manner. Supported by National Natural Science Foundation of China (11005107) and Independent Projects of State Key Laboratory of Particle Detection and Electronics (201301)

  11. On high explosive launching of projectiles for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Forest, Charles A.; Clark, David A.; Buttler, William T.; Marr-Lyon, Mark; Rightley, Paul

    2007-06-01

    The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure

  12. Experimenting in a constructivist high school physics laboratory

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    Although laboratory activities have long been recognized for their potential to facilitate the learning of science concepts and skills, this potential has yet to be realized. To remediate this problem, researchers have called for constructivist learning environments in which students can pursue open inquiry and frame their own research problems. The present study was designed to describe and understand students' experimenting and problem solving in such an environment. An interpretive research methodology was adopted for the construction of meaning from the data. The data sources included videotapes, their transcripts, student laboratory reports and reflections, interviews with the students, and the teacher's course outline and reflective notes. Forty-six students from three sections of an introductory physics course taught at a private school for boys participated in the study. This article shows the students' remarkable ability and willingness to generate research questions and to design and develop apparatus for data collection. In their effort to frame research questions, students often used narrative explanations to explore and think about the phenomena to be studied. In some cases, blind alleys, students framed research questions and planned experiments that did not lead to the expected results. We observed a remarkable flexibility to deal with problems that arose during the implementation of their plans in the context of the inquiry. These problems, as well as their solutions and the necessary decision-making processes, were characterized by their situated nature. Finally, students pursued meaningful learning during the interpretation of data and graphs to arrive at reasonable answers of their research questions. We concluded that students should be provided with problem-rich learning environments in which they learn to investigate phenomena of their own interest and in which they can develop complex problem-solving skills.

  13. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    NASA Astrophysics Data System (ADS)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  14. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    NASA Astrophysics Data System (ADS)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Hahn, Michael; Vincena, Steve

    2017-06-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfven speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfven speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  15. Beam-plasma coupling physics in support of active experiments

    NASA Astrophysics Data System (ADS)

    Yakymenko, K.; Delzanno, G. L.; Roytershteyn, V.

    2017-12-01

    The recent development of compact relativistic accelerators might open up a new era of active experiments in space, driven by important scientific and national security applications. Examples include using electron beams to trace magnetic field lines and establish causality between physical processes occurring in the magnetosphere and those in the ionosphere. Another example is the use of electron beams to trigger waves in the near-Earth environment. Waves could induce pitch-angle scattering and precipitation of energetic electrons, acting as an effective radiation belt remediation scheme. In this work, we revisit the coupling between an electron beam and a magnetized plasma in the framework of linear cold-plasma theory. We show that coupling can occur through two different regimes. In the first, a non-relativistic beam radiates through whistler waves. This is well known, and was in fact the focus of many rockets and space-shuttle campaigns aimed at demonstrating whistler emissions in the eighties. In the second regime, the beam radiates through extraordinary (R-X) modes. Nonlinear simulations with a highly-accurate Vlasov code support the theoretical results qualitatively and demonstrate that the radiated power through R-X modes can be much larger than in the whistler regime. Test-particle simulations in the wave electromagnetic field will also be presented to assess the efficiency of these waves in inducing pitch-angle scattering via wave-particle interactions. Finally, the implications of these results for a rocket active experiment in the ionosphere and for a radiation belt remediation scheme will be discussed.

  16. Review study and evaluation of possible flight experiments relating to cloud physics experiments in space

    NASA Technical Reports Server (NTRS)

    Hunt, R. J.; Wu, S. T.

    1976-01-01

    The general objectives of the Zero-Gravity Atmospheric Cloud Physics Laboratory Program are to improve the level of knowledge in atmospheric cloud research by placing at the disposal of the terrestrial-bound atmospheric cloud physicist a laboratory that can be operated in the environment of zero-gravity or near zero-gravity. This laboratory will allow studies to be performed without mechanical, aerodynamic, electrical, or other techniques to support the object under study. The inhouse analysis of the Skylab 3 and 4 experiments in dynamics of oscillations, rotations, collisions and coalescence of water droplets under low gravity-environment is presented.

  17. Concepts in Physical Education with Laboratories and Experiments. Second Edition.

    ERIC Educational Resources Information Center

    Corbin, Charles B.; And Others

    This text is designed for student use in introductory course of physical education at the college level and deals with the specific areas of physical activity, exercise, health, physical fitness, skill learning, and body mechanics. Twenty concepts and thirty accompanying laboratory exercises suitable for both men and women are presented. Two…

  18. The Dynomak: An advanced spheromak reactor system with imposed-dynamo current drive and next-generation nuclear power technologies

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Jarboe, T. R.; Marklin, G.; Morgan, K. D.; Nelson, B. A.

    2013-10-01

    A high-beta spheromak reactor system has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor system utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design on the basis of technological feasibility. A tritium breeding ratio of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High-temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%. A paper concerning the Dynomak reactor design is currently being reviewed for publication.

  19. Experiences that influence a student's choice on majoring in physics

    NASA Astrophysics Data System (ADS)

    Dobbin, Donya Rae

    Currently the production of college graduates with science and engineering degrees is insufficient to fill the increasing number of jobs requiring these skills. This study focuses on physics majors with an in-depth examination of student transitions from high school to college. Many different areas of influence could affect a student's decision to major in physics. The first phase of this study addresses all of the potential areas of influence identified from the literature. The goal was to identify common influences that might be used to increase students' interest in majoring in physics. Subjects (N=35) from the first phase were recruited from physics majors at diverse Michigan colleges and universities. The second phase of this study explored, in more depth, important areas of influence identified in the first phase of the study. Subjects (N=94) from the second phase were recruited from diverse colleges and universities in Indiana, Illinois, and Ohio. The interviews were also conducted via email. Approximately half of the students in the study decided to major in physics while still in high school. Their reasons relate to many of the areas of influence. For example, high school physics teachers were cited as a strong influence in many students' decisions to major in physics. Influential physics teachers were described as being helpful, encouraging and interesting. The teachers also need to be their students' number one cheerleader and not their number one critic. Some areas of influence were found to be different for males vs. females. A high percentage of all physics majors had influential adults with careers in physical or biological science fields. This percentage was even larger for female physics majors. Female students also showed a greater initial interest in astronomy than the male students. Thus, high school and college physics teachers should seek to expose students to science-related careers and adults with these careers. Astronomy is also an

  20. A preliminary discussion of gravitational physics experiments for the Spacelab era

    NASA Technical Reports Server (NTRS)

    Decher, R.; Winkler, C. G.

    1976-01-01

    An overview of past, present, and proposed future experiments in gravitational physics is given. These experiments are concerned with the measurement of relativistic gravity effects to test theories of gravitation. Certain experiments which could be performed on shuttle and Spacelab missions and the potential of Spacelab for gravitation physics research are discussed.

  1. The Use of Cylindrical Lenses in Easy Experiments for Physics Education and the Magic Arts

    ERIC Educational Resources Information Center

    Bednarek, Stanislaw; Krysiak, Jerzy

    2011-01-01

    The purpose of this article is to present the properties of cylindrical lenses and provide some examples of their use in easy school physics experiments. Such experiments could be successfully conducted in the context of science education, in fun experiments that teach physics and in science fair projects, or used to entertain an audience by…

  2. Single-molecule experiments in biological physics: methods and applications.

    PubMed

    Ritort, F

    2006-08-16

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  3. Space, body, time and relationship experiences of recess physical activity: a qualitative case study among the least physical active schoolchildren.

    PubMed

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine; Troelsen, Jens; Schipperijn, Jasper

    2016-01-06

    Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already physically active. This study was conducted to explore the least physically active children's "lived experiences" within four existential lifeworlds linked to physical activity during recess: space, body, time, and relations. The study builds on ethnographic fieldwork in a public school in Denmark using a combination of participatory photo interviews and participant observation. Thirty-seven grade five children (11-12 years old) were grouped in quartiles based on their objectively measured daily physical activity levels. Eight children in the lowest activity quartile (six girls) were selected to participate in the study. To avoid stigmatising and to make generalisations more reliable we further recruited eight children from the two highest activity quartiles (four girls) to participate. An analysis of the least physically active children's "lived experiences" of space, body, time and relations revealed several key factors influencing their recess physical activity: perceived classroom safety, indoor cosiness, lack of attractive outdoor facilities, bodily dissatisfaction, bodily complaints, tiredness, feeling bored, and peer influence. We found that the four existential lifeworlds provided an in-depth understanding of the least physically active children's "lived experiences" of recess physical activity. Our findings imply that specific intervention strategies might be needed to increase the least physically active children's physical activity level. For example, rethinking the classroom as a space for physical activity, designing schoolyards with smaller secluded spaces and varied facilities, improving children's self-esteem and body image, e.g., during physical education, and

  4. "Got Disc?" The "Ultimate" Experience in Physical Education

    ERIC Educational Resources Information Center

    Johnson, Tyler G.; Darst, Paul W.; Brusseau, Timothy A.

    2006-01-01

    A quality physical education program is one in which students are exposed to and can participate in a variety of sports and activities. One activity that is increasing in popularity in and outside of physical education is the game of "Ultimate." Opportunities to play Ultimate are increasing rapidly in intramural programs and community and…

  5. Computer Simulations for Lab Experiences in Secondary Physics

    ERIC Educational Resources Information Center

    Murphy, David Shannon

    2012-01-01

    Physical science instruction often involves modeling natural systems, such as electricity that possess particles which are invisible to the unaided eye. The effect of these particles' motion is observable, but the particles are not directly observable to humans. Simulations have been developed in physics, chemistry and biology that, under certain…

  6. Progress and Plans for the HIT--SI Experiment

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Gu, P.; Hamp, W. T.; Izzo, V. A.; Jarboe, T. R.; Nelson, B. A.; O'Neill, R. G.; Redd, A. J.; Rogers, J. A.; Smith, R. J.

    2002-11-01

    The next step in the Helicity Injected Torus (HIT) program is HIT--SI, a ``bow tie'' spheromak to be formed and sustained by Steady Inductive Helicity Injection (SIHI). SIHI injects helicity at a nearly constant rate with no open field lines intersecting the boundary.(T. R. Jarboe, Fusion Technology 36) (1), p. 85, 1999 HIT--SI has been designed with a bow tie geometry to achieve stable high-β (>10%) spheromak equilibria.(U. Shumlak and T. R. Jarboe, Phys. Plasmas 7) (7), p. 2959, 2000 Injector dynamics depend greatly on reconnection rates in two locations: deep in the injector, and at the edge of the spheromak equilibrium. The first stage of HIT--SI operation concentrates on formation of a spheromak and sustainment for 1 ms, where the injector dynamics can be studied and the formation parameter space can be explored. Once these goals are met, the experiment will move into the second stage of operation, where the discharge duration will be extended and the device will inherit a suite of diagnostics from the existing HIT--II device.

  7. The BIG Bell Test: quantum physics experiments with direct public participation

    NASA Astrophysics Data System (ADS)

    Mitchell, Morgan; Abellan, Carlos; Tura, Jordi; Garcia Matos, Marta; Hirschmann, Alina; Beduini, Federica; Pruneri, Valerio; Acin, Antonio; Marti, Maria; BIG Bell Test Collaboration

    The BIG Bell Test is a suite of physics experiments - tests of quantum nonlocality, quantum communications, and related experiments - that use crowd-sourced human randomness as an experimental resource. By connecting participants - anyone with an internet connection - to state-of-the-art experiments on five continents, the project aims at two complementary goals: 1) to provide bits generated directly from human choices, a unique information resource, to physics experiments, and 2) to give the world public the opportunity to contribute in a meaningful way to quantum physics research. We also describe related outreach and educational efforts to spread awareness of quantum physics and its applications.

  8. Probing Pre- and In-service Physics Teachers' Knowledge Using the Double-Slit Thought Experiment

    NASA Astrophysics Data System (ADS)

    Asikainen, Mervi A.; Hirvonen, Pekka E.

    2014-09-01

    This study describes the use of the double-slit thought experiment as a diagnostic tool for probing physics teachers' understanding. A total of 9 pre-service teachers and 18 in-service teachers with a variety of different experience in modern physics teaching at the upper secondary level responded in a paper-and-pencil test and three of these teachers were interviewed. The results showed that the physics teachers' thought experiments with classical particles, light, and electrons were often partial. Many teachers also suffered a lack of the basic ideas and principles of physics, which probably hindered thought experimenting. In particular, understanding the ontological nature of classical particles, light and electrons seemed to be essential in performing the double-slit experiment in an appropriate way. However, the in-service physics teachers who had teaching experience in modern physics were more prepared for the double-slit thought experiment than the pre-service teachers. The results suggest that both thought experiments and the double-slit experiment should be given more weight in physics teacher education, even if experience in modern physics teaching at upper secondary school seems to some extent to develop teachers' abilities.

  9. The Kinetics and Thermodynamics of the Phenol from Cumene Process: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Chen, Edward C. M.; Sjoberg, Stephen L.

    1980-01-01

    Presents a physical chemistry experiment demonstrating the differences between thermodynamics and kinetics. The experiment used the formation of phenol and acetone from cumene hydroperoxide, also providing an example of an industrially significant process. (CS)

  10. Reduction of plasma density in the Helicity Injected Torus with Steady Inductance experiment by using a helicon pre-ionization source

    SciTech Connect

    Hossack, Aaron C.; Jarboe, Thomas R.; Victor, Brian S.

    2013-10-15

    A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2–3) × 10{sup 19} m{sup −3} to 1 × 10{sup 19} m{sup −3}. Deuterium spheromak formation is possible with density as low as 2 × 10{sup 18} m{sup −3}. The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reductionmore » of breakdown density is presented.« less

  11. Reduction of plasma density in the Helicity Injected Torus with Steady Inductance experiment by using a helicon pre-ionization source.

    PubMed

    Hossack, Aaron C; Firman, Taylor; Jarboe, Thomas R; Prager, James R; Victor, Brian S; Wrobel, Jonathan S; Ziemba, Timothy

    2013-10-01

    A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2-3) × 10(19) m(-3) to 1 × 10(19) m(-3). Deuterium spheromak formation is possible with density as low as 2 × 10(18) m(-3). The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented.

  12. Physics of Hard Spheres Experiment: Significant and Quantitative Findings Made

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2000-01-01

    Direct examination of atomic interactions is difficult. One powerful approach to visualizing atomic interactions is to study near-index-matched colloidal dispersions of microscopic plastic spheres, which can be probed by visible light. Such spheres interact through hydrodynamic and Brownian forces, but they feel no direct force before an infinite repulsion at contact. Through the microgravity flight of the Physics of Hard Spheres Experiment (PHaSE), researchers have sought a more complete understanding of the entropically driven disorder-order transition in hard-sphere colloidal dispersions. The experiment was conceived by Professors Paul M. Chaikin and William B. Russel of Princeton University. Microgravity was required because, on Earth, index-matched colloidal dispersions often cannot be density matched, resulting in significant settling over the crystallization period. This settling makes them a poor model of the equilibrium atomic system, where the effect of gravity is truly negligible. For this purpose, a customized light-scattering instrument was designed, built, and flown by the NASA Glenn Research Center at Lewis Field on the space shuttle (shuttle missions STS 83 and STS 94). This instrument performed both static and dynamic light scattering, with sample oscillation for determining rheological properties. Scattered light from a 532- nm laser was recorded either by a 10-bit charge-coupled discharge (CCD) camera from a concentric screen covering angles of 0 to 60 or by sensitive avalanche photodiode detectors, which convert the photons into binary data from which two correlators compute autocorrelation functions. The sample cell was driven by a direct-current servomotor to allow sinusoidal oscillation for the measurement of rheological properties. Significant microgravity research findings include the observation of beautiful dendritic crystals, the crystallization of a "glassy phase" sample in microgravity that did not crystallize for over 1 year in 1g

  13. Accident experience of civilian pilots with static physical defects.

    DOT National Transportation Integrated Search

    1976-06-01

    The U.S. Federal Aviation Administration (FAA) is committed to establishment of airman physical standards and certification policies that are as liberal as possible without compromising aviation safety. Through the years, medical flight test results,...

  14. Pre-Service Physics Teachers' Argumentation in a Model Rocketry Physics Experience

    ERIC Educational Resources Information Center

    Gürel, Cem; Süzük, Erol

    2017-01-01

    This study investigates the quality of argumentation developed by a group of pre-service physics teachers' (PSPT) as an indicator of subject matter knowledge on model rocketry physics. The structure of arguments and scientific credibility model was used as a design framework in the study. The inquiry of model rocketry physics was employed in…

  15. Inequality in Experiences of Physics Education: Secondary School Girls' and Boys' Perceptions of their Physics Education and Intentions to Continue with Physics After the Age of 16

    NASA Astrophysics Data System (ADS)

    Mujtaba, Tamjid; Reiss, Michael J.

    2013-07-01

    This paper explores the factors that are associated in England with 15-year-old students' intentions to study physics after the age of 16, when it is no longer compulsory. Survey responses were collated from 5,034 year 10 students as learners of physics during the academic year 2008-2009 from 137 England secondary schools. Our analysis uses individual items from the survey rather than constructs (aggregates of items) to explore what it is about physics teachers, physics lessons and physics itself that is most correlated with intended participation in physics after the age of 16. Our findings indicate that extrinsic material gain motivation in physics was the most important factor associated with intended participation. In addition, an item-level analysis helped to uncover issues around gender inequality in physics educational experiences which were masked by the use of construct-based analyses. Girls' perceptions of their physics teachers were similar to those of boys on many fronts. However, despite the encouragement individual students receive from their teachers being a key factor associated with aspirations to continue with physics, girls were statistically significantly less likely to receive such encouragement. We also found that girls had less positive experiences of their physics lessons and physics education than did boys.

  16. Preliminary design of two Space Shuttle fluid physics experiments

    NASA Technical Reports Server (NTRS)

    Gat, N.; Kropp, J. L.

    1984-01-01

    The mid-deck lockers of the STS and the requirements for operating an experiment in this region are described. The design of the surface tension induced convection and the free surface phenomenon experiments use a two locker volume with an experiment unique structure as a housing. A manual mode is developed for the Surface Tension Induced Convection experiment. The fluid is maintained in an accumulator pre-flight. To begin the experiment, a pressurized gas drives the fluid into the experiment container. The fluid is an inert silicone oil and the container material is selected to be comparable. A wound wire heater, located axisymmetrically above the fluid can deliver three wattages to a spot on the fluid surface. These wattages vary from 1-15 watts. Fluid flow is observed through the motion of particles in the fluid. A 5 mw He/Ne laser illuminates the container. Scattered light is recorded by a 35mm camera. The free surface phenomena experiment consists of a trapezoidal cell which is filled from the bottom. The fluid is photographed at high speed using a 35mm camera which incorporated the entire cell length in the field of view. The assembly can incorporate four cells in one flight. For each experiment, an electronics block diagram is provided. A control panel concept is given for the surface induced convection. Both experiments are within the mid-deck locker weight and c-g limits.

  17. Lab-in-a-box @ school: Exiting hands-on experiments in soft matter physics

    NASA Astrophysics Data System (ADS)

    Jacobs, Karin; Brinkmann, Martin; Müller, Frank

    2015-03-01

    Soft materials like liquids and polymers are part of everyday life, yet at school, this topic is rarely touched. Within the priority program SPP 1064 'Nano- and Microfluidics' of the German Science Foundation, we designed an outreach project that allows pupils (age 14 to 18) to perform hands-on experiments (www.labinabox.de). The experiments allow them e.g. to feel viscosity and viscoelasticity, experience surface tension or see structure formation. We call the modus operandi 'subjective experiments' to contrast them with the scientifically objective experiments, which pupils often describe as being boring. Over a dozen different experiments under the topic 'physics of fluids' are collected in a big box that travels to the school. Three other topics of boxes are available, 'physics of light, 'physics of liquid crystals', and 'physics of adhesion and friction'. Each experiment can be performed by 1-3 pupils within 10 - 20 min. That way, each scholar can perform 6 to 8 different small experiments within one topic. 'Subjective experiments' especially catch the attention of girls without disadvantaging boys. Both are fascinated by the hands-on physics experience and are therefore eager to perform also 'boring' objective experiments. Morover, before/after polls reveal that their interest in physics has greatly advanced. The project can easily be taken over and/or adapted to other topics in the natural sciences. Financial support of the German Science Foundation DFG is acknowledged.

  18. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  19. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    ERIC Educational Resources Information Center

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  20. Meaningful Experiences in Physical Education and Youth Sport: A Review of the Literature

    ERIC Educational Resources Information Center

    Beni, Stephanie; Fletcher, Tim; Ní Chróinín, Déirdre

    2017-01-01

    The purpose of this research is to review the literature about young people's meaningful experiences in physical education and youth sport. We reviewed 50 empirical peer-reviewed articles published in English since 1987. Five themes were identified as central influences to young people's meaningful experiences in physical education and sport:…

  1. Factors Affecting the Social Experiences of Students in Elementary Physical Education Classes.

    ERIC Educational Resources Information Center

    Suomi, Joanne; Collier, Douglas; Brown, Lou

    2003-01-01

    Examined factors that had a positive and negative effect on the social experiences of elementary students with and without disabilities in inclusive physical education classrooms. Data from observations and interviews indicated that the physical education teacher had a positive influence on students' social experiences, while cultures, student…

  2. 20 CFR 220.127 - When the only work experience is arduous unskilled physical labor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... unskilled physical labor. 220.127 Section 220.127 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... only work experience is arduous unskilled physical labor. (a) Arduous work. Arduous work is primarily physical work requiring a high level of strength or endurance. The Board will consider the claimant unable...

  3. 20 CFR 220.127 - When the only work experience is arduous unskilled physical labor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... unskilled physical labor. 220.127 Section 220.127 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... only work experience is arduous unskilled physical labor. (a) Arduous work. Arduous work is primarily physical work requiring a high level of strength or endurance. The Board will consider the claimant unable...

  4. 20 CFR 220.127 - When the only work experience is arduous unskilled physical labor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... unskilled physical labor. 220.127 Section 220.127 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... only work experience is arduous unskilled physical labor. (a) Arduous work. Arduous work is primarily physical work requiring a high level of strength or endurance. The Board will consider the claimant unable...

  5. 20 CFR 220.127 - When the only work experience is arduous unskilled physical labor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... unskilled physical labor. 220.127 Section 220.127 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... only work experience is arduous unskilled physical labor. (a) Arduous work. Arduous work is primarily physical work requiring a high level of strength or endurance. The Board will consider the claimant unable...

  6. Chapter 4: A Comparison of Personal Attributes and Experiences among Physically Active and Inactive Children

    ERIC Educational Resources Information Center

    Castelli, Darla M.; Erwin, Heather E.

    2007-01-01

    In this study, the researchers aim to compare the personal attributes and experiences of children who met or exceeded physical activity guidelines with those who did not. By creating profiles, the researchers could compare motor performance, physical fitness, self-efficacy, time spent outdoors during physical activity, social support from friends…

  7. 20 CFR 220.127 - When the only work experience is arduous unskilled physical labor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... education who has a life-long history of arduous physical labor. B says that he is disabled because of... unskilled physical labor. 220.127 Section 220.127 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... only work experience is arduous unskilled physical labor. (a) Arduous work. Arduous work is primarily...

  8. Fostering Inclusion and Positive Physical Education Experiences for Overweight and Obese Students

    ERIC Educational Resources Information Center

    Rukavina, Paul B.; Doolittle, Sarah A.

    2016-01-01

    Overweight and obese students are often socially and instructionally excluded from physical education and school physical activity opportunities. This article describes teaching strategies from a study of middle school physical education teachers who are committed to providing effective teaching and positive experiences for overweight and obese…

  9. Should I Take Further Mathematics? Physics Undergraduates' Experiences of Post-Compulsory Mathematics

    ERIC Educational Resources Information Center

    Bowyer, Jessica; Darlington, Ellie

    2017-01-01

    It is essential that physics undergraduates are appropriately prepared for the mathematical demands of their course. This study investigated physics students' perceptions of post-compulsory mathematics as preparation for their degree course. 494 physics undergraduates responded to an online questionnaire about their experiences of A-level…

  10. Environmental Learning Experiences: Bio-Physical, Senior High School.

    ERIC Educational Resources Information Center

    Junglas, Mary R.; And Others

    This environmental education curriculum guide was developed for teacher use at the senior high school level. Although the guide deals with the bio-physical aspects of the environment, it is designed to encourage an integration of the disciplines into an inter-disciplinary approach. The volume consists of a set of ideas, activities, and opinions…

  11. Engineering Students' Experiences from Physics Group Work in Learning Labs

    ERIC Educational Resources Information Center

    Mellingsaeter, Magnus Strøm

    2014-01-01

    Background: This paper presents a case study from a physics course at a Norwegian university college, investigating key aspects of a group-work project, so-called learning labs, from the participating students' perspective. Purpose: In order to develop these learning labs further, the students' perspective is important. Which aspects are essential…

  12. The Context of Thought Experiments in Physics Learning

    ERIC Educational Resources Information Center

    Reiner, Miriam

    2006-01-01

    This paper takes a cognitive perspective in an attempt to analyze mental mechanisms involved in contextual learning. In the following, it is suggested that contextualized environments evoke mental mechanisms that support reasoning about "what if", imaginary situations--utilizing a powerful mental mechanism known from the history of physics as…

  13. Elementary Physical Education Teachers' Experiences in Teaching English Language Learners

    ERIC Educational Resources Information Center

    Sato, Takahiro; Hodge, Samuel R.

    2016-01-01

    The purpose of the current study was to describe and explain the views on teaching English Language Learners (ELLs) held by six elementary physical education (PE) teachers in the Midwest region of the United States. Situated in positioning theory, the research approach was descriptive-qualitative. The primary sources of data were face-to-face…

  14. High School Student Physics Research Experience Yields Positive Results

    ERIC Educational Resources Information Center

    Podolak, K. R.; Walters, M. J.

    2016-01-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a…

  15. Experiences with physical conditioning programs in middle-aged men

    NASA Technical Reports Server (NTRS)

    Schuster, B.; Stanley, E.

    1969-01-01

    Long term effects of physical exercise and conditioning in the prevention and treatment of coronary heart disease are studied. Some aspects of the problem are outlined and difficulties encountered in a group of middle aged business executives using a carefully prescribed, but non-regimented and loosely supervised conditioning program employing commonly used forms of exercise (bicycling and jogging), are described.

  16. Professional Socialization Experiences of Early Career Urban Physical Educators

    ERIC Educational Resources Information Center

    Flory, Sara Barnard

    2016-01-01

    The purpose of this research was to examine how three physical education (PE) teachers' professional socialization programmes influenced their early careers in urban schools in the US. Using cultural relevance theory and occupational socialization theory, three early career PE teachers were observed and interviewed for a period of six weeks each.…

  17. Analytical study of the Atmospheric Cloud Physics Laboratory (ACPL) experiments

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1977-01-01

    The design specifications of the research laboratory as a Spacelab facility are discussed along with the types of planned experiments. These include cloud formation, freezing and scavenging, and electrical phenomena. A summary of the program conferences is included.

  18. TEACHING PHYSICS: Atwood's machine: experiments in an accelerating frame

    NASA Astrophysics Data System (ADS)

    Teck Chee, Chia; Hong, Chia Yee

    1999-03-01

    Experiments in an accelerating frame are often difficult to perform, but simple computer software allows sufficiently rapid and accurate measurements to be made on an arrangement of weights and pulleys known as Atwood's machine.

  19. Physics Accomplishments and Future Prospects of the BES Experiments at the Beijing Electron-Positron Collider

    NASA Astrophysics Data System (ADS)

    Briere, Roy A.; Harris, Frederick A.; Mitchell, Ryan E.

    2016-10-01

    The cornerstone of the Chinese experimental particle physics program is a series of experiments performed in the τ-charm energy region. China began building e+e- colliders at the Institute for High Energy Physics in Beijing more than three decades ago. Beijing Electron Spectrometer (BES) is the common root name for the particle physics detectors operated at these machines. We summarize the development of the BES program and highlight the physics results across several topical areas.

  20. High Energy Physics Research with the CMS Experiment at CERN - Energy Frontier Experiment

    SciTech Connect

    Hanson, Gail G.

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) near Geneva, Switzerland, is now the highest energy accelerator in the world, colliding protons with protons. On July 4, 2012, the two general-purpose experiments, ATLAS and the Compact Muon Solenoid (CMS) experiment, announced the observation of a particle consistent with the world’s most sought-after particle, the Higgs boson, at a mass of about 125 GeV (approximately 125 times the mass of the proton). The Higgs boson is the final missing ingredient of the standard model, in which it is needed to allow most other particles to acquiremore » mass through the mechanism of electroweak symmetry breaking. We are members of the team in the CMS experiment that found evidence for the Higgs boson through its decay to two photons, the most sensitive channel at the LHC. We are proposing to carry out studies to determine whether the new particle has the properties expected for the standard model Higgs boson or whether it is something else. The new particle can still carry out its role in electroweak symmetry breaking but have other properties as well. Most theorists think that a single standard model Higgs boson cannot be the complete solution – there are other particles needed to answer some of the remaining questions, such as the hierarchy problem. The particle that has been observed could be one of several Higgs bosons, for example, or it could be composite. One model of physics beyond the standard model is supersymmetry, in which every ordinary particle has a superpartner with opposite spin properties. In supersymmetric models, there must be at least five Higgs bosons. In the most popular versions of supersymmetry, the lightest supersymmetric particle does not decay and is a candidate for dark matter. This proposal covers the period from June 1, 2013, to March 31, 2016. During this period the LHC will finally reach its design energy, almost twice the energy at which it now runs

  1. Source Physics Experiments at the Nevada Test Site

    DTIC Science & Technology

    2010-09-01

    not display a currently valid OMB control number. 1. REPORT DATE SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND...seismograms through three-dimensional models of the earth will move monitoring science into a physics- based era. This capability should enable...the advanced ability to model synthetic seismograms in three-dimensional earth models should also lead to advances in the ability to locate and

  2. The use of cylindrical lenses in easy experiments for physics education and the magic arts

    NASA Astrophysics Data System (ADS)

    Bednarek, Stanisław; Krysiak, Jerzy

    2011-09-01

    The purpose of this article is to present the properties of cylindrical lenses and provide some examples of their use in easy school physics experiments. Such experiments could be successfully conducted in the context of science education, in fun experiments that teach physics and in science fair projects, or used to entertain an audience by staging tricks, effects or illusions of seemingly impossible or supernatural feats.

  3. Empirical retrocausality: Testing physics hypotheses with parapsychological experiments

    NASA Astrophysics Data System (ADS)

    Dobyns, York

    2017-05-01

    In 2011, Daryl Bem published a report of nine parapsychological experiments showing evidence of retrocausal information transfer. Earlier in 2016, the team of Bem, Tressoldi, Rabeyron, and Duggan published the results of a meta-analysis containing 81 independent replications of the original Bem experiments (total of 90 with the originals).[1] This much larger database continues to show positive results of generally comparable effect size, thus demonstrating that the effects claimed by Bem can be replicated by independent researchers and greatly strengthening the case for empirically observed retrocausation. Earlier (2011) work by this author showed how a modification of one of Bem's original experiments could be used to test the mechanism implicitly proposed by Echeverria, Klinkhammer, and Thorne to explain how retrocausal phenomena can exist without any risk of self-contradictory event sequences (time paradoxes). In light of the new publication and new evidence, the current work generalizes the previous analysis which was restricted to only one of Bem's experimental genres (precognitive approach and avoidance). The current analysis shows how minor modifications can be made in Bem's other experimental genres of retroactive priming, retroactive habituation, and retroactive facilitation of recall to test the EKT anti-paradox mechanism. If the EKT hypothesis is correct, the modified experiments, while continuing to show replicable retrocausal phenomena, will also show a characteristic pattern of distortion in the statistics of the random selections used to drive the experiments.

  4. A Phenomenological Study: A Phenomenological Exploration of the Lived Experience of Practicing Physical Education Teachers on the Integration of Technology in Physical Education

    ERIC Educational Resources Information Center

    Armijo, Erica Anne

    2016-01-01

    The purpose of this study is to explore the lived experiences of practicing physical education teachers on the integration of technology in a physical education. This study arose from my current experiences as a physical educator and the current inculcation of technology in education and more specifically physical education. As a current physical…

  5. The Design of Learning Experiences: A Connection to Physical Environments.

    ERIC Educational Resources Information Center

    Stueck, Lawrence E.; Tanner, C. Kenneth

    The school environment must create a rich, beautiful, dynamic, meaningful experience for students to learn; however, architects, school boards, and the state focus almost exclusively only on the building when making design decisions. This document lists specific aspects to developing a visionary campus: one that provides a three-dimensional…

  6. Laser-Induced Molecular Fluorescence: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    1981-01-01

    Describes a companion experiment to the experimental study of the di-iodide visible absorption spectrum. Experimental details, interpretation, and data analysis are provided for an analysis of the di-iodide fluorescence excited by a visible laser, using a Raman instrument. (CS)

  7. Virtually Exploring A Pillar Of Experimental Physics: The Hertz Experiment

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Sapia, P.; Camarca, M.; Oliva, A.

    2008-05-01

    In the present work we report on the implementation and early assessment of a multimedia learning object, developed using the Java programming language, which also integrates in a creative way some internet freely available educational resources, intended to support the teaching/learning process of the historical Hertz experiment.

  8. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  9. Skylab Experiments, Volume 5, Astronomy and Space Physics.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This fifth volume is concerned with studies of our own and other galaxies and effects of solar…

  10. Becoming physics people: Development of physics identity in self-concept and practice through the Learning Assistant experience

    NASA Astrophysics Data System (ADS)

    Close, Eleanor

    2016-03-01

    The physics department at Texas State University has implemented a Learning Assistant (LA) program with reform-based instructional changes in our introductory course sequences. We are interested in how participation in the LA program influences LAs' identity both as physics students and as physics teachers; in particular, how being part of the LA community changes participants' self-concepts and their day-to-day practice. We analyze video of weekly LA preparation sessions and interviews with LAs as well as written artifacts from program applications, pedagogy course reflections, and evaluations. Our analysis of self-concepts is informed by the identity framework developed by Hazari et al., and our analysis of practice is informed by Lave and Wenger's theory of Communities of Practice. Regression models from quantitative studies show that the physics identity construct strongly predicts intended choice of a career in physics; the goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger ``physics student'' identity and stronger ``physics instructor'' identity, and that these identities are reconciled into a coherent integrated physics identity. In addition to becoming more confident and competent in physics, LAs perceive themselves to have increased competence in communication and a stronger sense of belonging to a supportive and collaborative community; participation in the LA program also changes their ways of learning and of being students, both within and beyond physics. This research and the TXST LA program are supported by NSF DUE-1240036, NSF DUE-1431578, and the Halliburton Foundation.

  11. Experimenting with Impacts in a Conceptual Physics or Descriptive Astronomy Laboratory

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2016-01-01

    What follows is a description of the procedure for and results of a simple experiment on the formation of impact craters designed for the laboratory portions of lower mathematical-level general education science courses such as conceptual physics or descriptive astronomy. The experiment provides necessary experience with data collection and…

  12. Phase Equilibrium, Chemical Equilibrium, and a Test of the Third Law: Experiments for Physical Chemistry.

    ERIC Educational Resources Information Center

    Dannhauser, Walter

    1980-01-01

    Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)

  13. A Take-Home Physics Experiment Kit for On-Campus and Off-Campus Students

    ERIC Educational Resources Information Center

    Turner, Joanna; Parisi, Alfio

    2008-01-01

    A take-home experiment kit has been developed to reinforce the concepts in a first year physics course that both on and off campus students from a variety of educational backgrounds can successfully use. The kit is inexpensive and is composed of easy to obtain items. The experiments conducted with the kit are directed experiments that require…

  14. Experimenting with the virtual environment Moodle in Physics Education

    NASA Astrophysics Data System (ADS)

    Martins, Maria Ines; Dickman, Adriana

    2008-03-01

    The master's program in Physics Education of the Catholic University in the state of Minas Gerais, Brazil, includes the discipline ``Digital technologies in Physics education.'' The main goal of this discipline is to discuss the role of Information and Communication Technology (ICT) in the process of learning-teaching science. We introduce our students to several virtual platforms, both free and commercial, discussing their functionality and features. We encourage our students to get in touch with computer tools and resources by planning their own computer based course using the Moodle platform. We discuss different patterns of virtual environment courses, whose proposals are centered mainly in the students, or teacher-centered or even system-centered. The student is free to choose between only one topic and a year course to work with, since their interests vary from learning something more about a specific subject to a complete e-learning course covering the entire school year. (The courses are available online in the address sitesinf01.pucmg.br/moodle. Participation only requires filling out an application form.) After three editions of this discipline, we have several courses available. We realize that students tend to focus on traditional methods, always preserving their role as knowledge-givers. In conclusion, we can say that, in spite of exhaustive discussion about autonomy involved with ICTs abilities, most of the students used the new virtual medium to organize traditional teacher-centered courses.

  15. Physical gills in diving insects and spiders: theory and experiment.

    PubMed

    Seymour, Roger S; Matthews, Philip G D

    2013-01-15

    Insects and spiders rely on gas-filled airways for respiration in air. However, some diving species take a tiny air-store bubble from the surface that acts as a primary O(2) source and also as a physical gill to obtain dissolved O(2) from the water. After a long history of modelling, recent work with O(2)-sensitive optodes has tested the models and extended our understanding of physical gill function. Models predict that compressible gas gills can extend dives up to more than eightfold, but this is never reached, because the animals surface long before the bubble is exhausted. Incompressible gas gills are theoretically permanent. However, neither compressible nor incompressible gas gills can support even resting metabolic rate unless the animal is very small, has a low metabolic rate or ventilates the bubble's surface, because the volume of gas required to produce an adequate surface area is too large to permit diving. Diving-bell spiders appear to be the only large aquatic arthropods that can have gas gill surface areas large enough to supply resting metabolic demands in stagnant, oxygenated water, because they suspend a large bubble in a submerged web.

  16. Computer simulations for lab experiences in secondary physics

    NASA Astrophysics Data System (ADS)

    Murphy, David Shannon

    Physical science instruction often involves modeling natural systems, such as electricity that possess particles which are invisible to the unaided eye. The effect of these particles' motion is observable, but the particles are not directly observable to humans. Simulations have been developed in physics, chemistry and biology that, under certain circumstances, have been found to allow students to gain insight into the operation of the systems they model. This study compared the use of a DC circuit simulation, a modified simulation, static graphics, and traditional bulbs and wires to compare gains in DC circuit knowledge as measured by the DIRECT instrument, a multiple choice instrument previously developed to assess DC circuit knowledge. Gender, prior DC circuit knowledge and subsets of DC circuit knowledge of students were also compared. The population (n=166) was comprised of high school freshmen students from an eastern Kentucky public school with a population of 1100 students and followed a quantitative quasi experimental research design. Differences between treatment groups were not statistically significant. Keywords: Simulations, Static Images, Science Education, DC Circuit Instruction, Phet.

  17. Ensembles and Experiments in Classical and Quantum Physics

    NASA Astrophysics Data System (ADS)

    Neumaier, Arnold

    A philosophically consistent axiomatic approach to classical and quantum mechanics is given. The approach realizes a strong formal implementation of Bohr's correspondence principle. In all instances, classical and quantum concepts are fully parallel: the same general theory has a classical realization and a quantum realization. Extending the ''probability via expectation'' approach of Whittle to noncommuting quantities, this paper defines quantities, ensembles, and experiments as mathematical concepts and shows how to model complementarity, uncertainty, probability, nonlocality and dynamics in these terms. The approach carries no connotation of unlimited repeatability; hence it can be applied to unique systems such as the universe. Consistent experiments provide an elegant solution to the reality problem, confirming the insistence of the orthodox Copenhagen interpretation on that there is nothing but ensembles, while avoiding its elusive reality picture. The weak law of large numbers explains the emergence of classical properties for macroscopic systems.

  18. Hypernuclear physics studies of the PANDA experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Sanchez Lorente, Alicia

    2014-09-01

    Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Antiproton and Ion Research FAIR at Darmstadt (Germany). http://www. gsi.de, http://www.gsi.de/fair/. Thanks to the use of stored overline {p} beams, copious production of double Λ hypernuclei is expected at the PANDA experiment, which will enable high precision γ spectroscopy of such nuclei for the first time, and consequently a unique chance to explore the hyperon-hyperon interaction. In particular, ambiguities of past experiments in determining the strength of the ΛΛ interaction will be avoided thanks to the excellent energy precision of a few keV (FWHM) achieved by germanium detectors. Such a resolution capability is particularly needed to resolve the small energy spacing of the order of (10-100) keV, which is characteristic from the spin doublet in hypernuclei the so -called "hypernuclear fine structure". In comparison to previous experiments, PANDA will benefit from a novel technique to assign the various observable γ-transitions in a unique way to specific double hypernuclei by exploring various light targets. Nevertheless, the ability to carry out unique assignments requires a devoted hypernuclear detector setup. This consists of a primary nuclear target for the production of {Ξ }-+overline {Ξ } pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform γ spectroscopy. Moreover, one of the most challenging issues of this project is the fact that all detector systems need to operate in the presence of a high magnetic field and a large hadronic background. Accordingly, the need of an innovative detector concept will require dramatic improvements to fulfil these conditions and that will likely lead to a new generation of detectors. In the present talk details concerning the current status of the activities related to the detector developments

  19. N* Experiments and Their Impact on Strong QCD Physics

    SciTech Connect

    Burkert, Volker D.

    Here, I give a brief overview of experimental studies of the spectrum and the structure of the excited states of the nucleon and what we learn about their internal structure. The focus is on the effort to obtain a more complete picture of the light-quark baryon excitation spectrum employing electromagnetic beams, and on the study of the transition form factors and helicity amplitudes and their dependence on the size of the four-momentum transfer $Q^2$, especially on some of the most prominent resonances. These were obtained in pion and eta electroproduction experiments off proton targets.

  20. N^* Experiments and Their Impact on Strong QCD Physics

    NASA Astrophysics Data System (ADS)

    Burkert, Volker D.

    2018-07-01

    I give a brief report on experimental studies of the spectrum and the structure of the excited states of the nucleon and what we learn about their internal structure. The focus is on the effort to obtain a more complete picture of the light-quark baryon excitation spectrum employing electromagnetic beams, and on the study of the transition form factors and helicity amplitudes an their dependence on the size of the four-momentum transfer Q^2, especially on some of the most prominent resonances. These were obtained in pion and eta electroproduction experiments off proton targets.

  1. N* Experiments and Their Impact on Strong QCD Physics

    DOE PAGES

    Burkert, Volker D.

    2018-04-23

    Here, I give a brief overview of experimental studies of the spectrum and the structure of the excited states of the nucleon and what we learn about their internal structure. The focus is on the effort to obtain a more complete picture of the light-quark baryon excitation spectrum employing electromagnetic beams, and on the study of the transition form factors and helicity amplitudes and their dependence on the size of the four-momentum transfer $Q^2$, especially on some of the most prominent resonances. These were obtained in pion and eta electroproduction experiments off proton targets.

  2. Mental Health Consumer Experiences and Strategies When Seeking Physical Health Care

    PubMed Central

    Ewart, Stephanie B.; Bocking, Julia; Happell, Brenda; Platania-Phung, Chris; Stanton, Robert

    2016-01-01

    People with mental illness have higher rates of physical health problems and consequently live significantly shorter lives. This issue is not yet viewed as a national health priority and research about mental health consumer views on accessing physical health care is lacking. The aim of this study is to explore the experience of mental health consumers in utilizing health services for physical health needs. Qualitative exploratory design was utilized. Semistructured focus groups were held with 31 consumer participants. Thematic analysis revealed that three main themes emerged: scarcity of physical health care, with problems accessing diagnosis, advice or treatment for physical health problems; disempowerment due to scarcity of physical health care; and tenuous empowerment describing survival resistance strategies utilized. Mental health consumers were concerned about physical health and the nonresponsive health system. A specialist physical health nurse consultant within mental health services should potentially redress this gap in health care provision. PMID:28462330

  3. The physical mechanism of comet outbursts: An experiment

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.

    1993-01-01

    During a series of impact experiments into regolith-like powders at the NASA Ames Research Center Vertical Gun Facility in 1976, I observed and filmed a unique anomalous event that may illuminate outburst mechanisms in comets. During one test, a new batch of basalt powder (half the mass in particles less than 800 microns in diameter) retained some air pressure while the vacuum chamber was being evacuated. As a result, the projectile impacted into gas-charged regolith. Instead of ejecting the normal, relatively negligible amount of debris, the disturbance triggered a major eruption that lasted at least 18 seconds. The experimental results have been recently re-analyzed with reference to cometary phenomena. A series of frames from this eruption experiment are shown. The ejecta velocities of 150 to 300 cm/s would have been sufficient to drive debris into the coma of a comet nucleus smaller than a few kilometers diameter. The event suggests a mechanism for comet outbursts, discussed briefly by Hartmann et al.: the pore space in a layer of regolith, possibly with weak effective tensile strength, becomes gas charged as ice slowly sublimates. Once the effective tensile strength is exceeded by the gas pressure, the surface fails locally, triggering an eruption such as photographed here. This model is consistent with the emerging view of regolith materials on comets and is closest to the recent model of Rickman et al. The earlier models generally picture a more uniform flow of debris off the comet, not outbursts. Rickman et al. allow gas pressure to build until it matches the overburden pressure, followed by 'instantaneous blow-off'. They note that as soon as the mantle is found to be unstable, we consider it to be instantaneously swept away by the gas pressure. The main new points made here are that the experiment gives a more realistic view of the blow-off process after surface failure occurs, and the present model gives a recharge mechanism that can explain recurrent

  4. Can Building Design Impact Physical Activity? A Natural Experiment.

    PubMed

    Eyler, Amy A; Hipp, Aaron; Valko, Cheryl Ann; Ramadas, Ramya; Zwald, Marissa

    2018-05-01

    Workplace design can impact workday physical activity (PA) and sedentary time. The purpose of this study was to evaluate PA behavior among university employees before and after moving into a new building. A pre-post, experimental versus control group study design was used. PA data were collected using surveys and accelerometers from university faculty and staff. Accelerometry was used to compare those moving into the new building (MOVERS) and those remaining in existing buildings (NONMOVERS) and from a control group (CONTROLS). Survey results showed increased self-reported PA for MOVERS and NONMOVERS. All 3 groups significantly increased in objectively collected daily energy expenditure and steps per day. The greatest steps per day increase was in CONTROLS (29.8%) compared with MOVERS (27.5%) and NONMOVERS (15.9%), but there were no significant differences between groups at pretest or posttest. Self-reported and objectively measured PA increased from pretest to posttest in all groups; thus, the increase cannot be attributed to the new building. Confounding factors may include contamination bias due to proximity of control site to experimental site and introduction of a university PA tracking contest during postdata collection. Methodology and results can inform future studies on best design practices for increasing PA.

  5. SU-E-E-05: Initial Experience On Physics Rotation of Radiological Residents

    SciTech Connect

    Zhang, J; Williams, D; DiSantis, D

    Purpose: The new ABR core exam integrates physics into clinical teaching, with an emphasis on understanding image quality, image artifacts, radiation dose and patient safety for each modality and/or sub-specialty. Accordingly, physics training of radiological residents faces a challenge. A traditional teaching of physics through didactic lectures may not fully fulfill this goal. It is also difficult to incorporate physics teaching in clinical practice due to time constraints. A dedicated physics rotation may be a solution. This study is to evaluate a full week physics workshop developed for the first year radiological residents. Methods: The physics rotation took a fullmore » week. It included three major parts, introduction lectures, hand-on experiences and observation of technologist operation. An introduction of basic concepts was given to each modality at the beginning. Hand-on experiments were emphasized and took most of time. During hand-on experiments, residents performed radiation measurements, studied the relationship between patient dose and practice (i.e., fluoroscopy), investigated influence of acquisition parameters (i.g., kV, mAs) on image quality, and evaluated image quality using phantoms A physics test before and after the workshop was also given but not for comparison purpose. Results: The evaluation shows that the physics rotation during the first week of residency in radiology is preferred by all residents. The length of a full week of physics workshop is appropriate. All residents think that the intensive workshop can significantly benefit their coming clinical rotations. Residents become more comfortable regarding the use of radiation and counseling relevant questions such as a pregnant patient risk from a CE PE examination. Conclusion: A dedicated physics rotation, assisting with didactic lectures, may fulfill the requirements of physics of the new ABR core exam. It helps radiologists deeply understand the physics concepts and more

  6. Review of Nuclear Physics Experiments for Space Radiation

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.

    2011-01-01

    Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.

  7. The 1975 accident experience of civilian pilots with static physical defects.

    DOT National Transportation Integrated Search

    1977-08-01

    The 1974 aircraft accident experience of civilian pilots with eight selected static physical defects has been examined and reported previously. Three categories--blindness or absence of either eye, deficient color vision with a waiver, and deficient ...

  8. Lesbians with Physical Disabilities: A Qualitative Study of Their Experiences with Counseling

    ERIC Educational Resources Information Center

    Hunt, Brandon; Matthews, Connie; Milsom, Amy; Lammel, Julie A.

    2006-01-01

    The authors interviewed 25 lesbians with physical disabilities about their counseling experiences. Using a phenomenological qualitative approach, the authors identified 9 themes. Five themes addressed participants' perceptions of their counselors: general satisfaction or dissatisfaction, counselors' general effectiveness, counselors' awareness and…

  9. Gender Differences in the High School and Affective Experiences of Introductory College Physics Students

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra; Sadler, Philip M.; Tai, Robert H.

    2008-10-01

    The disparity in persistence between males and females studying physics has been a topic of concern to physics educators for decades. Overall, while female students perform as well as or better than male students, they continue to lag considerably in terms of persistence. The most significant drop in females studying physics occurs between high school and college.2 Since most female physicists report that they became attracted to physics and decided to study it further while in high school, according to the International Study of Women in Physics,3 it is problematic that high school is also the stage at which females begin to opt out at much higher rates than males. Although half of the students taking one year of physics in high school are female, females are less likely than males to take a second or Advanced Placement (AP) physics course.4 In addition, the percentage of females taking the first physics course in college usually falls between 30% and 40%. In other words, although you may see gender parity in a first high school physics course, this parity does not usually persist to the next level of physics course. In addition, even if there is parity in a high school physics course, it does not mean that males and females experience the course in the same way. It is this difference in experience that may help to explain the drop in persistence of females.

  10. Physics of Colloids in Space: Microgravity Experiment Launched, Installed, and Activated on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.

  11. Overcoming Acculturation: Physical Education Recruits' Experiences of an Alternative Pedagogical Approach to Games Teaching

    ERIC Educational Resources Information Center

    Moy, Brendan; Renshaw, Ian; Davids, Keith; Brymer, Eric

    2016-01-01

    Background: Physical education teacher education (PETE) programmes have been identified as a critical platform to encourage the exploration of alternative teaching approaches by pre-service teachers. However, the socio-cultural constraint of acculturation or past physical education and sporting experiences results in the maintenance of the status…

  12. Experiences and Outcomes of Preschool Physical Education: An Analysis of Developmental Discourses in Scottish Curricular Documentation

    ERIC Educational Resources Information Center

    McEvilly, Nollaig

    2014-01-01

    This article provides an analysis of developmental discourses underpinning preschool physical education in Scotland's Curriculum for Excellence. Implementing a post-structural perspective, the article examines the preschool experiences and outcomes related to physical education as presented in the Curriculum for Excellence "health and…

  13. Physical Activity Experiences and Beliefs among Single Mothers: A Qualitative Study

    ERIC Educational Resources Information Center

    Dlugonski, Deirdre; Motl, Robert W.

    2016-01-01

    Purpose: Single motherhood has been associated with negative health consequences such as depression and cardiovascular disease. Physical activity might reduce these consequences, but little is known about physical activity experiences and beliefs that might inform interventions and programs for single mothers. The present study used…

  14. The Nature and Role of Thought Experiments in Solving Conceptual Physics Problems

    ERIC Educational Resources Information Center

    Kösem, Sule Dönertas; Özdemir, Ömer Faruk

    2014-01-01

    This study describes the possible variations of thought experiments in terms of their nature, purpose, and reasoning resources adopted during the solution of conceptual physics problems. A phenomenographic research approach was adopted for this study. Three groups of participants with varying levels of physics knowledge--low, medium, and high…

  15. Digital Video: The Impact on Children's Learning Experiences in Primary Physical Education

    ERIC Educational Resources Information Center

    O'Loughlin, Joe; Chroinin, Deirdre Ni; O'Grady, David

    2013-01-01

    Technology can support teaching, learning and assessment in physical education. The purpose of this study was to examine children's perspectives and experiences of using digital video in primary physical education. The impact on motivation, feedback, self-assessment and learning was examined. Twenty-three children aged 9-10 years participated in a…

  16. Fifth Grade Students' Experiences Participating in Active Gaming in Physical Education: The Persistence to Game

    ERIC Educational Resources Information Center

    Hansen, Lisa; Sanders, Steve

    2010-01-01

    Although video games are often associated with sedentary behaviors, active gaming is a new genre that requires children to become physically active while playing the games. In this study six fifth grade students' experiences participating in active gaming in eight-week physical education classes were explored. Qualitative methods of interviews,…

  17. African American Teacher Candidates' Experiences in Teaching Secondary Physical Education

    ERIC Educational Resources Information Center

    Sato, Takahiro; Hodge, Samuel Russell

    2017-01-01

    The purpose of this study was to describe and explain the teaching experiences of African American physical education teacher candidates in secondary physical education programs at urban schools. The research design was explanatory multiple-case study situated in positioning theory (Harré & van Langenhove, 1999). The participants were seven…

  18. The Acculturation Experiences of Foreign-Born Students of Color in Physics

    ERIC Educational Resources Information Center

    Fries-Britt, Sharon; George Mwangi, Chrystal A.; Peralta, Alicia M.

    2014-01-01

    This study focuses on 15 foreign-born students majoring in physics who are also racial/ethnic minorities. We address the research question: What are the acculturation experiences of foreign-born Students of Color majoring in physics? Berry's (2003) theory of acculturation and Bandura's (1994) theory of self-efficacy were substantive…

  19. The Experiences of Students without Disabilities in Inclusive Physical Education Classrooms: A Review of Literature

    ERIC Educational Resources Information Center

    Ruscitti, Robert Joseph; Thomas, Scott Gordon; Bentley, Danielle Christine

    2017-01-01

    The purpose of this literature review was to analyse studies of the experiences of students without disabilities (SWOD) in inclusive physical education (PE) classes. The literature published from 1975 to 2015 was compiled from three online databases (PsycInfo, Physical Education Index and ERIC). Included literature met inclusion criteria focussed…

  20. Including Visually Impaired Students in Physical Education Lessons: A Case Study of Teacher and Pupil Experiences

    ERIC Educational Resources Information Center

    Herold, Frank; Dandolo, Jack

    2009-01-01

    Following recent education policy and curriculum changes in England, the notion of inclusion of children with special educational needs in physical education has increasingly become a topic of research interest and concern. It was the aim of this study to explore personal experiences and perspectives of inclusion in physical education. To this end…

  1. Investigation of the Perceived Causes of Pre-Service Physics Teachers' Problems Encountered in School Experience

    ERIC Educational Resources Information Center

    Körhasan, Nilüfer Didis; Didis, M. Gözde

    2015-01-01

    This study investigates a group of pre-service physics teachers' perceptions about the causes of problems in school experience through the attribution theory. The participants were thirteen pre-service physics teachers from a public university in Turkey. Data were collected through the interviews by requesting the participants to reflect their own…

  2. Physics reach of the XENON1T dark matter experiment

    SciTech Connect

    Aprile, E.; Anthony, M.; Aalbers, J.

    2016-04-01

    The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) · 10{sup −4} (kg·day·keV){sup −1}, mainly due to the decay of {sup 222}Rn daughters inside the xenon target. The nuclear recoil background in the correspondingmore » nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (t·y){sup −1} from radiogenic neutrons, (1.8 ± 0.3) · 10{sup −2} (t·y){sup −1} from coherent scattering of neutrinos, and less than 0.01 (t·y){sup −1} from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency L{sub eff}, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 · 10{sup −47} cm{sup 2} at m{sub χ} = 50 GeV/c{sup 2}.« less

  3. New calorimeters for space experiments: physics requirements and technological challenges

    NASA Astrophysics Data System (ADS)

    Marrocchesi, Pier Simone

    2015-07-01

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described.

  4. Versatile single-chip event sequencer for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Eyler, Edward

    2010-03-01

    A very inexpensive dsPIC microcontroller with internal 32-bit counters is used to produce a flexible timing signal generator with up to 16 TTL-compatible digital outputs, with a time resolution and accuracy of 50 ns. This time resolution is easily sufficient for event sequencing in typical experiments involving cold atoms or laser spectroscopy. This single-chip device is capable of triggered operation and can also function as a sweeping delay generator. With one additional chip it can also concurrently produce accurately timed analog ramps, and another one-chip addition allows real-time control from an external computer. Compared to an FPGA-based digital pattern generator, this design is slower but simpler and more flexible, and it can be reprogrammed using ordinary `C' code without special knowledge. I will also describe the use of the same microcontroller with additional hardware to implement a digital lock-in amplifier and PID controller for laser locking, including a simple graphics-based control unit. This work is supported in part by the NSF.

  5. Approximations, idealizations and 'experiments' at the physics-biology interface.

    PubMed

    Rowbottom, Darrell P

    2011-06-01

    This paper, which is based on recent empirical research at the University of Leeds, the University of Edinburgh, and the University of Bristol, presents two difficulties which arise when condensed matter physicists interact with molecular biologists: (1) the former use models which appear to be too coarse-grained, approximate and/or idealized to serve a useful scientific purpose to the latter; and (2) the latter have a rather narrower view of what counts as an experiment, particularly when it comes to computer simulations, than the former. It argues that these findings are related; that computer simulations are considered to be undeserving of experimental status, by molecular biologists, precisely because of the idealizations and approximations that they involve. The complexity of biological systems is a key factor. The paper concludes by critically examining whether the new research programme of 'systems biology' offers a genuine alternative to the modelling strategies used by physicists. It argues that it does not. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.

    1972-01-01

    A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.

  7. CALET on the ISS: a high energy astroparticle physics experiment

    NASA Astrophysics Data System (ADS)

    Marrocchesi, Pier Simone; CALET Collaboration

    2016-05-01

    CALET is a space mission of the Japanese Aerospace Agency (JAXA) in collaboration with the Italian Space Agency (ASI) and NASA. The CALET instrument (CALorimetric Electron Telescope) is planned for a long exposure on the JEM-EF, an external platform of the Japanese Experiment Module KIBO, aboard the International Space Station (ISS). The main science objectives include high precision measurements of the inclusive electron (+positron) spectrum below 1 TeV and the exploration of the energy region above 1 TeV, where the shape of the high end of the spectrum might reveal the presence of nearby sources of acceleration. With an excellent energy resolution and low background contamination CALET will search for possible spectral signatures of dark matter with both electrons and gamma rays. It will also measure the high energy spectra and relative abundance of cosmic nuclei from proton to iron and detect trans-iron elements up to Z ~ 40. With a large exposure and high energy resolution, CALET will be able to verify and complement the observations of CREAM, PAMELA and AMS-02 on a possible deviation from a pure power-law of proton and He spectra in the region of a few hundred GeV and to extend the study to the multi-TeV region. CALET will also contribute to clarify the present experimental picture on the energy dependence of the boron/carbon ratio, below and above 1 TeV/n, thereby providing valuable information on cosmic-ray propagation in the galaxy. Gamma-ray transients will be studied with a dedicated Gamma-ray Burst Monitor (GBM).

  8. Physics of Regolith Impacts in Microgravity Experiment (PRIME)

    NASA Technical Reports Server (NTRS)

    Motil, Brian (Technical Monitor); Colwell, Joshua; Sture, S.

    2003-01-01

    Collisions between planetary ring particles and in some protoplanetary disk environments occur at low impact velocities (v less than 1 m/s) . In some regions of Saturn s rings, for example, the typical collision velocity inferred from observations by the Voyager spacecraft and dynamical modeling is a fraction of a centimeter per second. Although no direct observations of an individual ring particle exist, the abundance of dust in planetary rings and protoplanetary disks suggests that larger ring and disk particles are coated with a layer of smaller particles and dust - the "regolith". Because the ring particles and proto-planetesimals are small (cm to m-sized), the regolith is only weakly bound to the surface by gravity. Similarly, secondary impacts on asteroids by large blocks of ejecta from high velocity cratering events result in low velocity impacts into the asteroid regolith, which is also weakly bound by the asteroid s gravity. At the current epoch and throughout their history, low velocity collisions have played an important role in sculpting planetary systems. In a one-Earth-gravity environment, it is not possible to experimentally determine the behavior of impact eject from such low velocity collisions. Impacts typically occur at speeds exceeding the mutual escape velocity of the two bodies. Thus, impacts at speeds on the order of 10 m/sec or less involve objects that are tens of meters across, or smaller. This research program is an experimental study of such low velocity collisions in a microgravity environment. The experimental work builds on the Collisions Into Dust Experiment (COLLIDE), which has flown twice on the space shuttle. The PRIME experimental apparatus is a new apparatus designed specifically for the environment provided on the NASA KC- 135 reduced gravity aircraft.

  9. Physical Activity Experiences and Beliefs Among Single Mothers: A Qualitative Study.

    PubMed

    Dlugonski, Deirdre; Motl, Robert W

    2016-09-01

    Single motherhood has been associated with negative health consequences such as depression and cardiovascular disease. Physical activity might reduce these consequences, but little is known about physical activity experiences and beliefs that might inform interventions and programs for single mothers. The present study used social-cognitive theory as a framework to explore physical activity beliefs and experiences among single mothers. Single mothers (N = 14) completed a semistructured interview and the International Physical Activity Questionnaire. Participants were categorized into 3 activity levels, and data were analyzed according to these categories. All participants reported barriers to physical activity. Physically active single mothers seemed to be more confident in their ability to overcome these barriers and more likely to plan physical activity in their daily routine, and they more frequently reported having social support compared with low-active single mothers. Across all activity levels, participants focused on the physical outcomes of physical activity participation such as weight loss. These results provide information that is useful for designing and delivering behavioral interventions for increasing physical activity among single mothers.

  10. A Narration of a Physical Science Teacher's Experience of Implementing a New Curriculum

    ERIC Educational Resources Information Center

    Koopman, Oscar; Le Grange, Lesley; de Mink, Karen Joy

    2016-01-01

    This article narrates the lived experiences of a Physical Science teacher named Thobani (pseudonym) in implementing a new curriculum in South Africa. Drawing on the work of Husserl and Heidegger, the article describes the objects of direct experience in Thobani's consciousness about his life as a learner and teacher as revealed during an in-depth…

  11. Grounded Learning Experience: Helping Students Learn Physics through Visuo-Haptic Priming and Instruction

    ERIC Educational Resources Information Center

    Huang, Shih-Chieh Douglas

    2013-01-01

    In this dissertation, I investigate the effects of a grounded learning experience on college students' mental models of physics systems. The grounded learning experience consisted of a priming stage and an instruction stage, and within each stage, one of two different types of visuo-haptic representation was applied: visuo-gestural simulation…

  12. Teaching with Socio-Scientific Issues in Physical Science: Teacher and Students' Experiences

    ERIC Educational Resources Information Center

    Talens, Joy

    2016-01-01

    Socio-scientific issues (SSI) are recommended by many science educators worldwide for learners to acquire first hand experience to apply what they learned in class. This investigated experiences of teacher-researcher and students in using SSI in Physical Science, Second Semester, School Year 2012-2013. Latest and controversial news articles on…

  13. Using Student Peer Review of Experiment Reports in an Undergraduate Physics Class

    ERIC Educational Resources Information Center

    Moran, Timothy; Van Hook, Stephen J.

    2006-01-01

    A class centered on student design of experiments and peer review of the resulting reports is described. Thirteen students in an honors seminar section of an introductory physics class designed experiments to test various types of paranormal phenomena. Each experimental report was evaluated and ranked by several other students. To give them…

  14. Rich Experiences, Physical Activity Create Healthy Brains: An Interview with Developmental Psychologist William Greenough. Perspectives

    ERIC Educational Resources Information Center

    Ray, Marcy, Ed.

    2006-01-01

    In this interview, Council member William Greenough discusses the need for rich, complex experiences combined with physical activity in early childhood to help build a strong foundation for learning. He explains how rich, complex experiences are necessary for the development of sound brain architecture, particularly during early childhood, but…

  15. Practical Ways Psychotherapy Can Support Physical Healthcare Experiences for Male Survivors of Childhood Sexual Abuse

    ERIC Educational Resources Information Center

    Hovey, Angela; Stalker, Carol A.; Schachter, Candice L.; Teram, Eli; Lasiuk, Gerri

    2011-01-01

    Many survivors of child sexual abuse who engage in psychotherapy also experience physical health problems. This article summarizes the findings of a multiphased qualitative study about survivors' experiences in healthcare settings. The study informed the development of the "Handbook on Sensitive Practice for Health Care Practitioners: Lessons…

  16. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  17. Lived Employment Experiences of College Students and Graduates with Physical Disabilities in the United States

    ERIC Educational Resources Information Center

    Kim, Mikyong Minsun; Williams, Brenda C.

    2012-01-01

    This phenomenological study aims at understanding lived experiences of college seniors and recent college graduates with physical disabilities seeking employment opportunities after graduation in the USA The extensive interviews revealed that participants' attitudes about and experiences with disability are diverse (pain to pride, denied…

  18. Muslim Girls' Experiences in Physical Education in Norway: What Role Does Religiosity Play?

    ERIC Educational Resources Information Center

    Walseth, Kristin

    2015-01-01

    Recent years have seen an increase in scholarly attention to minority pupils and their experience of physical education (PE). UK research identifies specific challenges related to Muslim pupils' participation in PE. In Norway, little research has been undertaken on Muslim pupils' experiences in PE, something this paper hopes to redress in part. In…

  19. Effects of Experimenting with Physical and Virtual Manipulatives on Students' Conceptual Understanding in Heat and Temperature

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; Olympiou, Georgios; Papaevripidou, Marios

    2008-01-01

    This study aimed to investigate the comparative value of experimenting with physical manipulatives (PM) in a sequential combination with virtual manipulatives (VM), with the use of PM preceding the use of VM, and of experimenting with PM alone, with respect to changes in students' conceptual understanding in the domain of heat and temperature. A…

  20. Practical Applications for Using Peer Assessment in Physical Education Teacher Education Field Experiences

    ERIC Educational Resources Information Center

    Patton, Beth J.; Marty-Snyder, Melissa

    2014-01-01

    Peer assessment (PA) occurs in many higher education programs. However, there is limited research examining PA in physical education teacher education (PETE) in regards to student teaching experiences. PA may be a method to better prepare PETE students to assess their future students. The field experience students assessed their fellow peers on…

  1. Studying Gender Bias in Physics Grading: The Role of Teaching Experience and Country

    ERIC Educational Resources Information Center

    Hofer, Sarah I.

    2015-01-01

    The existence of gender-STEM (science, technology, engineering, and mathematics) stereotypes has been repeatedly documented. This article examines physics teachers' gender bias in grading and the influence of teaching experience in Switzerland, Austria, and Germany. In a 2?×?2 between-subjects design, with years of teaching experience included as…

  2. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  3. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  4. Fiber-optical sensor with intensity compensation model in college teaching of physics experiment

    NASA Astrophysics Data System (ADS)

    Su, Liping; Zhang, Yang; Li, Kun; Zhang, Yu

    2017-08-01

    Optical fiber sensor technology is one of the main contents of modern information technology, which has a very important position in modern science and technology. Fiber optic sensor experiment can improve students' enthusiasm and broaden their horizons in college physics experiment. In this paper the main structure and working principle of fiberoptical sensor with intensity compensation model are introduced. And thus fiber-optical sensor with intensity compensation model is applied to measure micro displacement of Young's modulus measurement experiment and metal linear expansion coefficient measurement experiment in the college physics experiment. Results indicate that the measurement accuracy of micro displacement is higher than that of the traditional methods using fiber-optical sensor with intensity compensation model. Meanwhile this measurement method makes the students understand on the optical fiber, sensor and nature of micro displacement measurement method and makes each experiment strengthen relationship and compatibility, which provides a new idea for the reform of experimental teaching.

  5. Experiences With Parents and Youth Physical Health Symptoms and Cortisol: A Daily Diary Investigation

    PubMed Central

    Lippold, Melissa A.; McHale, Susan M.; Davis, Kelly D.; Almeida, David M.; King, Rosalind B.

    2014-01-01

    Using daily diary data, this study examined the associations between positive and negative parent-youth experiences and youth cortisol and physical health symptoms among a sample of adolescents (N=132, Mean Age = 13.39). On days when girls reported more negative experiences than usual, they exhibited more physical health symptoms and flatter evening cortisol slopes than usual. Negative experiences with mothers were associated with higher dinner and bedtime youth cortisol levels (between-person). Daily positive experiences with fathers were linked with lower dinner cortisol levels. Youth with high levels of negative experiences, on average, were less sensitive to daily variation in negative experiences than youth who experienced lower parental negativity. We discuss the benefits of a daily diary approach. PMID:27231418

  6. Virtual reality visualization algorithms for the ALICE high energy physics experiment on the LHC at CERN

    NASA Astrophysics Data System (ADS)

    Myrcha, Julian; Trzciński, Tomasz; Rokita, Przemysław

    2017-08-01

    Analyzing massive amounts of data gathered during many high energy physics experiments, including but not limited to the LHC ALICE detector experiment, requires efficient and intuitive methods of visualisation. One of the possible approaches to that problem is stereoscopic 3D data visualisation. In this paper, we propose several methods that provide high quality data visualisation and we explain how those methods can be applied in virtual reality headsets. The outcome of this work is easily applicable to many real-life applications needed in high energy physics and can be seen as a first step towards using fully immersive virtual reality technologies within the frames of the ALICE experiment.

  7. Physical pendulum—a simple experiment can give comprehensive information about a rigid body

    NASA Astrophysics Data System (ADS)

    Kladivová, Mária; Mucha, L'ubomír

    2014-03-01

    A simple experiment with a physical pendulum examining some aspects of rigid body motion is presented in this paper. The experiment consists of measuring the period of oscillation of a rod with non-homogeneous mass distribution used as a physical pendulum, dependent upon the position of the pivot axis. The obtained dependence provides sufficient information to calculate the position of the centre of mass, moment of inertia of the rigid body and local gravitational acceleration. This experiment is intended for secondary school and undergraduate students.

  8. Experiences of Physical Therapists Working in the Acute Hospital Setting: Systematic Review.

    PubMed

    Lau, Bonnie; Skinner, Elizabeth H; Lo, Kristin; Bearman, Margaret

    2016-09-01

    Physical therapists working in acute care hospitals require unique skills to adapt to the challenging environment and short patient length of stay. Previous literature has reported burnout of clinicians and difficulty with staff retention; however, no systematic reviews have investigated qualitative literature in the area. The purpose of this study was to investigate the experiences of physical therapists working in acute hospitals. Six databases (MEDLINE, CINAHL Plus, EMBASE, AMED, PsycINFO, and Sociological Abstracts) were searched up to and including September 30, 2015, using relevant terms. Studies in English were selected if they included physical therapists working in an acute hospital setting, used qualitative methods, and contained themes or descriptive data relating to physical therapists' experiences. Data extraction included the study authors and year, settings, participant characteristics, aims, and methods. Key themes, explanatory models/theories, and implications for policy and practice were extracted, and quality assessment was conducted. Thematic analysis was used to conduct qualitative synthesis. Eight articles were included. Overall, study quality was high. Four main themes were identified describing factors that influence physical therapists' experience and clinical decision making: environmental/contextual factors, communication/relationships, the physical therapist as a person, and professional identity/role. Qualitative synthesis may be difficult to replicate. The majority of articles were from North America and Australia, limiting transferability of the findings. The identified factors, which interact to influence the experiences of acute care physical therapists, should be considered by therapists and their managers to optimize the physical therapy role in acute care. Potential strategies include promotion of interprofessional and collegial relationships, clear delineation of the physical therapy role, multidisciplinary team member education

  9. Professional tools and a personal touch - experiences of physical therapy of persons with migraine.

    PubMed

    Rutberg, Stina; Kostenius, Catrine; Öhrling, Kerstin

    2013-09-01

    The aim was to explore the lived experience of physical therapy of persons with migraine. Data were collected by conducting narrative interviews with 11 persons with migraine. Inspired by van Manen, a hermeneutic phenomenological method was used to analyse the experiences of physical therapy which these persons had. Physical therapy for persons with migraine meant making an effort in terms of time and energy to improve their health by meeting a person who was utilising his or her knowledge and skill to help. Being respected and treated as an individual and having confidence in the physical therapist were highlighted aspects. The analysis revealed a main theme, "meeting a physical therapist with professional tools and a personal touch". The main theme included four sub-themes, "investing time and energy to feel better", "relying on the competence of the physical therapist", "wanting to be treated and to become involved as an individual" and "being respected in a trustful relationship". The therapeutic relationship with the physical therapist is important and the findings of this study can increase awareness about relational aspects of physical therapy and encourage thoughtfulness among physical therapists and other healthcare professionals interacting with persons with migraine. Physical therapists use both professional tools and a personal touch in their interaction with persons with migraine and this article can increase physical therapists' awareness and encourage thoughtfulness in their professional practice. Being respected and treated as an individual and having confidence in the physical therapist are important aspects of the therapeutic relationship and indicate a need for patient-centred care. By making the effort of spending the time and energy required, physical therapy could be a complement or an alternative to medication to ease the consequences of migraine.

  10. Work-related behaviour and experience pattern in nurses: impact on physical and mental health.

    PubMed

    Schulz, M; Damkröger, A; Voltmer, E; Löwe, B; Driessen, M; Ward, M; Wingenfeld, K

    2011-06-01

    Nursing is associated with high levels of emotional strain and heavy workloads. Changing working conditions raise the importance of investigating job satisfaction, stress and burnout and its consequences for nurses. The aim of the study was to investigate whether work-related behaviour and experience patterns are associated with mental and physical health status in nurses. A sample of 356 nurses in four German hospitals were interviewed using questionnaires regarding work-related behaviour and experience patterns, work stress, depression, anxiety and physical symptoms ('Work-related Behaviour and Experience Pattern'--AVEM and ERI). The main result of this study is that unhealthy work-related behaviour and experience patterns (i.e. the excessive ambitious type and the resigned type) are associated with reduced mental and physical health. Preventive, as well as intervention, strategies are needed that focus both on the individual as well as on working conditions. © 2011 Blackwell Publishing.

  11. Control-based continuation: Bifurcation and stability analysis for physical experiments

    NASA Astrophysics Data System (ADS)

    Barton, David A. W.

    2017-02-01

    Control-based continuation is technique for tracking the solutions and bifurcations of nonlinear experiments. The idea is to apply the method of numerical continuation to a feedback-controlled physical experiment such that the control becomes non-invasive. Since in an experiment it is not (generally) possible to set the state of the system directly, the control target becomes a proxy for the state. Control-based continuation enables the systematic investigation of the bifurcation structure of a physical system, much like if it was numerical model. However, stability information (and hence bifurcation detection and classification) is not readily available due to the presence of stabilising feedback control. This paper uses a periodic auto-regressive model with exogenous inputs (ARX) to approximate the time-varying linearisation of the experiment around a particular periodic orbit, thus providing the missing stability information. This method is demonstrated using a physical nonlinear tuned mass damper.

  12. Active experiments using rocket-borne shaped charge barium releases. [solar-terrestrial magnetospheric physics

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Davis, T. N.

    1980-01-01

    A reliable payload system and scaled down shaped charges were developed for carrying out experiments in solar-terrestrial magnetospheric physics. Four Nike-Tomahawk flights with apogees near 450 km were conducted to investigate magnetospheric electric fields, and two Taurus-Tomahawk rockets were flown in experiments on the auroral acceleration process in discrete auroras. In addition, a radial shaped charge was designed for plasma perturbation experiments.

  13. Professional tools and a personal touch – experiences of physical therapy of persons with migraine

    PubMed Central

    Kostenius, Catrine; Öhrling, Kerstin

    2013-01-01

    Purpose: The aim was to explore the lived experience of physical therapy of persons with migraine. Method: Data were collected by conducting narrative interviews with 11 persons with migraine. Inspired by van Manen, a hermeneutic phenomenological method was used to analyse the experiences of physical therapy which these persons had. Results: Physical therapy for persons with migraine meant making an effort in terms of time and energy to improve their health by meeting a person who was utilising his or her knowledge and skill to help. Being respected and treated as an individual and having confidence in the physical therapist were highlighted aspects. The analysis revealed a main theme, “meeting a physical therapist with professional tools and a personal touch”. The main theme included four sub-themes, “investing time and energy to feel better”, “relying on the competence of the physical therapist”, “wanting to be treated and to become involved as an individual” and “being respected in a trustful relationship”. Conclusions: The therapeutic relationship with the physical therapist is important and the findings of this study can increase awareness about relational aspects of physical therapy and encourage thoughtfulness among physical therapists and other healthcare professionals interacting with persons with migraine. PMID:23311671

  14. The whole picture: Child maltreatment experiences of youths who were physically abused.

    PubMed

    Stevens, Kristopher I; Schneiderman, Janet U; Negriff, Sonya; Brinkmann, Andrea; Trickett, Penelope K

    2015-05-01

    The purpose of the current study was to describe the maltreatment experiences of a sample of urban youths identified as physically abused using the Maltreatment Case Record Abstraction Instrument (MCRAI). The sample (n=303) of 9-12 year old youths was recruited from active child protective services (CPS) cases in 2002-2005, and five years of child protective service records were reviewed. The demographic and maltreatment experiences of MCRAI-identified youths with physical abuse were compared to maltreated youths who were not physically abused and youths who were identified as physically abused by CPS when they entered this longitudinal study. T-tests and chi-square tests were used to compare the demographics and maltreatment experiences of the sample MCRAI-identified physically abused to the sample MCRAI-identified as nonphysically abused maltreated by gender. Of the total sample, 156 (51%) were identified by MCRAI as physically abused and 96.8% of these youth also experienced other types of maltreatment. Whereas youth with the initial CPS identification of physical abuse showed little co-occurrence (37.7%) with other forms of maltreatment. The MCRAI-identified physically abused youths had a significantly higher mean number of CPS reports and higher mean number of incidents of maltreatment than MCRAI-identified nonphysically maltreated youths. Lifeline plots of case record history from the time of first report to CPS to entry into the study found substantial individual variability in maltreatment experiences for both boys and girls. Thus, obtaining maltreatment information from a single report vastly underestimates the prevalence of physical abuse and the co-occurrence of other maltreatment types. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Experiments on Physics in the Arts: Papers from a Workshop (University of South Carolina, Columbia, June 10-21, 1974).

    ERIC Educational Resources Information Center

    South Carolina Univ., Columbia. Dept. of Physics.

    This book contains 65 physics experiments. The experiments are for a college-level physics course for music and art majors. The initial experiments are devoted to the general concept of vibration and cover vibrating strings, air columns, reflection, and interference. Later experiments explore light, color perception, cameras, mirrors and symmetry,…

  16. High-beta spherical tokamak startup in TS-4 merging experiment by use of toroidal field ramp-up

    NASA Astrophysics Data System (ADS)

    Kaminou, Yasuhiro; , Toru, II; Kato, Joji; Inomoto, Michiaki; Ono, Yasushi; TS Group Team; National InstituteFusion Science Collaboration

    2014-10-01

    We demonstrated the formation method of an ultrahigh-beta spherical tokamak by use of a field-reversed configuration and a spheromak in TS-4 device (R ~ 0.5 m, A ~ 1.5, Ip ~ 30-100 kA, B ~ 100 mT). This method is composed of the following steps: 1. Two spheromaks are merged together and a high-beta spheromak or FRC is formed by reconnection heating. 2. External toroidal magnetic field is added (current rising time ~50 μs), and spherical tokamak-like configuration is formed. In this way, the ultrahigh-beta ST is formed. The ultrahigh-beta ST formed by FRC has a diamagnetic toroidal field, and it presumed to be in a second-stable state for ballooning stability, and the one formed by spheromak has a weak paramagnetic toroidal magnetic field, while a spheormak has a strong paramagnetic toroidal magnetic field. This diamagnetic current derives from inductive electric field by ramping up the external toroidal magnetic field, and the diamagnetic current sustains high thermal pressure of the ultrahigh-beta spherical tokamak. And the beta of the ultrahigh-beta ST formed by FRC reaches about 50%. To sustain the high-beta state, 0.6 MW neutral beam injection and center solenoid coils are installed to the TS-4 device. In the poster, we report the experimental results of ultrahigh-beta spherical tokamak startup and sustainment by NBI and CS current driving experiment.

  17. Plans and Recent Developments for Fluid Physics Experiments Aboard the ISS

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Motil, Brian J.

    2016-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensable laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for Fluid Physics, NASA GRC is developing and testing the Pack Bed Reactor Experiment (PBRE), Zero Boil Off (ZBOT) Two Phase Flow Separator Experiment (TPFSE), Multiphase Flow Heat Transfer (MFHT) Experiment and the Electro-HydroDynamic (EHD) experiment. An overview each experiment, including its objectives, concept and status will be presented. In addition, data will be made available after a nominal period to NASAs Physical Science Informatics PSI database to the scientific community to enable additional analyses of results.

  18. Probing the frontiers of particle physics with tabletop-scale experiments.

    PubMed

    DeMille, David; Doyle, John M; Sushkov, Alexander O

    2017-09-08

    The field of particle physics is in a peculiar state. The standard model of particle theory successfully describes every fundamental particle and force observed in laboratories, yet fails to explain properties of the universe such as the existence of dark matter, the amount of dark energy, and the preponderance of matter over antimatter. Huge experiments, of increasing scale and cost, continue to search for new particles and forces that might explain these phenomena. However, these frontiers also are explored in certain smaller, laboratory-scale "tabletop" experiments. This approach uses precision measurement techniques and devices from atomic, quantum, and condensed-matter physics to detect tiny signals due to new particles or forces. Discoveries in fundamental physics may well come first from small-scale experiments of this type. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Revealing Fundamental Physics from the Daya Bay Neutrino Experiment Using Deep Neural Networks

    DOE PAGES

    Racah, Evan; Ko, Seyoon; Sadowski, Peter; ...

    2017-02-02

    Experiments in particle physics produce enormous quantities of data that must be analyzed and interpreted by teams of physicists. This analysis is often exploratory, where scientists are unable to enumerate the possible types of signal prior to performing the experiment. Thus, tools for summarizing, clustering, visualizing and classifying high-dimensional data are essential. Here in this work, we show that meaningful physical content can be revealed by transforming the raw data into a learned high-level representation using deep neural networks, with measurements taken at the Daya Bay Neutrino Experiment as a case study. We further show how convolutional deep neural networksmore » can provide an effective classification filter with greater than 97% accuracy across different classes of physics events, significantly better than other machine learning approaches.« less

  20. Magnetic Compression Experiment at General Fusion with Simulation Results

    NASA Astrophysics Data System (ADS)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  1. Investigating children's spiritual experiences through the Health and Physical Education (HPE) learning area in Australian schools.

    PubMed

    Lynch, Timothy

    2015-02-01

    The purpose of this study is to explore spirituality within the Health and Physical Education (HPE) learning area, through investigating children's experiences within three Brisbane Catholic Education primary schools (Queensland, Australia). There are seven dimensions of wellness: physical, intellectual, emotional, social, spiritual, environmental, and occupational, which are all strongly connected (Robbins et al. in A wellness way of life, 9th edition, McGraw Hill, USA, 2011). It is logical that HPE, which promotes students to adopt lifelong health and well-being, offers opportunities for spirituality to be experienced and warrants investigation. Data gathered in this qualitative research suggest that regular quality inclusive HPE lessons increased students' potential for spiritual experiences.

  2. Status and perspectives of neutrino physics at present and future experiments

    SciTech Connect

    Pagliarone, Carmine Elvezio, E-mail: pagliarone@unicas.it, E-mail: carmine.pagliarone@lngs.infn.it; Laboratori Nazionali del Gran Sasso

    2016-03-25

    Neutrino Physics and Dark Matter searches play a crucial role in nowadays Particle and Astroparticle Physics. The present review paper will describe general properties of neutrinos and neutrino mass phenomenology (Dirac and Majorana masses). Space will be dedicated to the experimental attempts to answer the question of the neutrino mass hierarchy. We will give, then, a short review of the results of part of the experiments that have been running so far. We will also shortly summarize future experiments that plan to explore this very wide scientific area.

  3. [Gender and physical activity in Mexican women with experience of migration to the USA].

    PubMed

    Ruiz-Rodríguez, Myriam; Arenas-Monreal, Luz; Bonilla-Fernández, Pastor; Valdez-Santiago, Rosario; Rueda-Neria, Celina M; Hernández-Tezoquipa, Isabel

    2014-01-01

    To analyze the influence of gender on the practice of physical activity, in women with experiences of migration to the U.S.A. Qualitative design with methods based on grounded theory. The information was obtained through in-depth interviews of 19 women living in rural localities in the central zone of Mexico. Through this analysis, a core category arose: social criticism of physical exercise. The results show that married women do not perform physical exercise because, due social norms, it is socially frowned upon and men are responsible for making the decision to permit it. Gender, female identity, women's role as subordinates to men, and social criticism are elements that contribute to understanding the lack of physical activity among these women. We suggest that healthcare programs be designed to promote physical activity among adult women in rural areas, taking gender perspective and the population's context into account.

  4. Obese persons' physical activity experiences and motivations across weight changes: a qualitative exploratory study.

    PubMed

    Bombak, Andrea E

    2015-11-14

    Obese individuals are encouraged to participate in physical activity. However, few qualitative studies have explored obese individuals' motivations for and experiences with physical activity. The physical activity experiences of self-identified obese or formerly obese persons (n = 15) were explored through in-depth, semi-structured, audio-taped, repeated interviews and ethnography over one year. Participant observation occurred at multiple sites identified by participants as meaningful to them as obese persons. Data from interview transcripts and fieldnotes were analyzed via thematic content analysis. Underlying goals for engaging in physical activity were diverse. Emergent motivation themes included: protection, pressure, and pleasure. Participants were protective of maintaining functional capacity, establishing fit identities, and achieving weight loss. Participants also discussed feelings of excessive pressure to continue progressing toward weight and fitness goals. Enjoyment in physical activity was often a by-product for all participants and could become a sought-after endpoint. Finding an environment in which participants felt safe, accepted, and encouraged to be active was extremely important for continual engagement. Obese individuals enjoyed physical activity and were concerned about maintaining functional fitness. Stigmatization and untenable goals and monitoring could disrupt physical activity.

  5. Experiences and unmet needs of women with physical disabilities for pain relief during labor and delivery.

    PubMed

    Long-Bellil, Linda; Mitra, Monika; Iezzoni, Lisa I; Smeltzer, Suzanne C; Smith, Lauren D

    2017-07-01

    Childbirth is widely acknowledged as one of the most painful experiences most women will undergo in their lifetimes. Alleviating labor and delivery pain for women with physical disabilities can involve an additional level of complexity beyond that experienced by most women, but little research has explored their experiences. The purpose of this study was to explore the experiences of women with physical disabilities with respect to pain relief during labor and delivery with the goal of informing their care. Data were collected using semi-structured interviews with twenty-five women with physical disabilities from across the United States. Women expressed specific preferences for the method of pain relief. Some confronted systemic barriers in exploring their options for pain relief, while others were given a choice. At times, anesthesiologists lacked knowledge and experience in caring for women with disabilities. Conversely, some women described how the administration of anesthesia was meticulously planned and attributed their positive labor and delivery experiences to this careful planning. Advanced, individualized planning and evaluation of their options for pain relief was most satisfying to women and enabled them to make an informed choice. This approach is consistent with the recommendations of clinicians who have successfully provided pain relief during labor to women with complex physical disabilities. Clinicians who have successfully delivered babies of women with these and similar disabilities emphasize the importance of a team approach where the anesthesiologist and other specialists are involved early on in a woman's care. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Grounded Learning Experience: Helping Students Learn Physics through Visuo-Haptic Priming and Instruction

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chieh Douglas

    In this dissertation, I investigate the effects of a grounded learning experience on college students' mental models of physics systems. The grounded learning experience consisted of a priming stage and an instruction stage, and within each stage, one of two different types of visuo-haptic representation was applied: visuo-gestural simulation (visual modality and gestures) and visuo-haptic simulation (visual modality, gestures, and somatosensory information). A pilot study involving N = 23 college students examined how using different types of visuo-haptic representation in instruction affected people's mental model construction for physics systems. Participants' abilities to construct mental models were operationalized through their pretest-to-posttest gain scores for a basic physics system and their performance on a transfer task involving an advanced physics system. Findings from this pilot study revealed that, while both simulations significantly improved participants' mental modal construction for physics systems, visuo-haptic simulation was significantly better than visuo-gestural simulation. In addition, clinical interviews suggested that participants' mental model construction for physics systems benefited from receiving visuo-haptic simulation in a tutorial prior to the instruction stage. A dissertation study involving N = 96 college students examined how types of visuo-haptic representation in different applications support participants' mental model construction for physics systems. Participant's abilities to construct mental models were again operationalized through their pretest-to-posttest gain scores for a basic physics system and their performance on a transfer task involving an advanced physics system. Participants' physics misconceptions were also measured before and after the grounded learning experience. Findings from this dissertation study not only revealed that visuo-haptic simulation was significantly more effective in promoting mental model

  7. Leisure-Time Physical Activity: Experiences of College Students With Disabilities.

    PubMed

    Devine, Mary Ann

    2016-04-01

    College years are an experimental phase in young adulthood and can lay the foundation for lifelong behaviors. One type of behavior developed during these years is the use of leisure-time physical activity (LTPA). LTPA experiences of typical college students have been examined, but there is a lack of studies examining the experiences of students with disabilities. The purpose of this inquiry is to understand the experiences of college students with disabilities and their LTPA, with focus on factors that facilitate or create barriers to engagement. Grounded theory was used to understand LTPA with undergraduates with mobility or visual impairments. Results indicated a theme of culture of physical activity and disability as they received a message that engagement in LTPA was "unnecessary" or "heroic," which altered their LTPA experiences. Barriers to LTPA can be understood through a social relational lens to recognize the multidimensionality of barriers and facilitators to LTPA.

  8. Realizing a Framework for Enhancing the Laboratory Experiences of Non-Physics Majors: From Pilot to Large-Scale Implementation

    ERIC Educational Resources Information Center

    Kirkup, Les; Pizzica, Jenny; Waite, Katrina; Srinivasan, Lakshmi

    2010-01-01

    Physics experiments for students not majoring in physics may have little meaning for those students and appear to them unconnected in any way to their majors. This affects student engagement and influences the extent to which they regard their experiences in the physics laboratory as positive. We apply a framework for the development and…

  9. Middle School Students' Learning of Mechanics Concepts through Engagement in Different Sequences of Physical and Virtual Experiments

    ERIC Educational Resources Information Center

    Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon

    2017-01-01

    Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may…

  10. A Study of the Nature of Students' Models of Microscopic Processes in the Context of Modern Physics Experiments.

    ERIC Educational Resources Information Center

    Thacker, Beth Ann

    2003-01-01

    Interviews university students in modern physics about their understanding of three fundamental experiments. Explores their development of models of microscopic processes. Uses interactive demonstrations to probe student understanding of modern physics experiments in two high school physics classes. Analyzes the nature of students' models and the…

  11. A Physics Experiment Concerning the Measurement of the Torque of a Rotating Body Using a Magnetoelectrical Technique

    ERIC Educational Resources Information Center

    Sakon, Takuo; Nakagawa, Keisuke

    2016-01-01

    A physical experiment concerning the moment of inertia of a rigid disk is described. Basic physical quantities such as the moment of inertia and torque are very important in elementary physics courses. This experiment was designed to improve students' understanding of the relation between the rigid moment of inertia and torque. The moment of…

  12. Physical, sexual and emotional abuse during childhood: Experiences of a sample of Sri Lankan Young adults.

    PubMed

    Chandraratne, Nadeeka K; Fernando, Asvini D; Gunawardena, Nalika

    2018-07-01

    Abuse during childhood is a human tragedy leading to lifelong adverse health, social, and economic consequences for survivors. This descriptive, cross-sectional study aimed to determine the prevalence of childhood physical, sexual and emotional abusive experiences among students (aged 18-19 years) in a Sri Lankan district. Multistage cluster sampling was used to select a sample of 1500 students. Experiences of physical, sexual and emotional abuse and age at abuse, perpetrators, consequences and severity were assessed using a version of ISPCAN Child Abuse Screening Tool-Retrospective Version (ICAST-R) which was culturally adapted and validated by the authors for use amongst Sinhalese students. The prevalence of the various forms of abuse during childhood was as follows: physical: 45.4% (95% CI: 42.9-7.9); sexual: 9.1% (95% CI: 7.6-10.5); emotional: 27.9% (95% CI: 25.7-30.2). The corresponding percentages of individuals categorized as having experienced severe or very severe abuse were as follows, physical: 0.3% (2/672); sexual: 4.05% (3/135); emotional: 8.8% (36/412). Experience of physical abuse was more prevalent amongst male students (54.8% vs. 38.3%) as was emotional abuse (33.9% vs. 23.2%), whereas experience of sexual abuse was more prevalent amongst female students (11.5% vs. 6.4%). Parents and teachers were the commonest perpetrators of physical and emotional abuse. Most of the sexually abusive acts were committed by neighbors or strangers. Some physically abusive acts were more frequent at earlier ages than emotional and sexual abusive acts, which were more common in late adolescence. The results indicate the necessity of targeted interventions to address this public health issue. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Simulation experience enhances physical therapist student confidence in managing a patient in the critical care environment.

    PubMed

    Ohtake, Patricia J; Lazarus, Marcilene; Schillo, Rebecca; Rosen, Michael

    2013-02-01

    Rehabilitation of patients in critical care environments improves functional outcomes. This finding has led to increased implementation of intensive care unit (ICU) rehabilitation programs, including early mobility, and an associated increased demand for physical therapists practicing in ICUs. Unfortunately, many physical therapists report being inadequately prepared to work in this high-risk environment. Simulation provides focused, deliberate practice in safe, controlled learning environments and may be a method to initiate academic preparation of physical therapists for ICU practice. The purpose of this study was to examine the effect of participation in simulation-based management of a patient with critical illness in an ICU setting on levels of confidence and satisfaction in physical therapist students. A one-group, pretest-posttest, quasi-experimental design was used. Physical therapist students (N=43) participated in a critical care simulation experience requiring technical (assessing bed mobility and pulmonary status), behavioral (patient and interprofessional communication), and cognitive (recognizing a patient status change and initiating appropriate responses) skill performance. Student confidence and satisfaction were surveyed before and after the simulation experience. Students' confidence in their technical, behavioral, and cognitive skill performance increased from "somewhat confident" to "confident" following the critical care simulation experience. Student satisfaction was highly positive, with strong agreement the simulation experience was valuable, reinforced course content, and was a useful educational tool. Limitations of the study were the small sample from one university and a control group was not included. Incorporating a simulated, interprofessional critical care experience into a required clinical course improved physical therapist student confidence in technical, behavioral, and cognitive performance measures and was associated with high

  14. Experiences and Perspectives of Physical Therapists Managing Patients Covered by Workers' Compensation in Queensland, Australia

    PubMed Central

    Nielsen, Mandy; Corbière, Marc; Franche, Reneé-Louise

    2012-01-01

    Background Physical therapists have an active role in the rehabilitation of injured workers. However, regulations in Queensland, Australia, do not afford them the opportunity to participate in return-to-work (RTW) decisions in a standardized way. No prior research has explored the experiences and perceptions of therapists in determining work capacity. Objectives The aim of this study was to investigate physical therapists' experiences with and perspectives on their role in determining readiness for RTW and work capacity for patients receiving workers' compensation in Queensland. Design A qualitative design was used. Participants were physical therapists who manage injured workers. Methods Novice (n=5) and experienced (n=20) therapists managing patients receiving workers' compensation were selected through purposeful sampling to participate in a focus group or semistructured telephone interviews. Data obtained were audio-recorded and transcribed verbatim. Transcripts were thematically analyzed. Physical therapists' confidence in making RTW decisions was determined with 1 question scored on a 0 to 10 scale. Results Themes identified were: (1) physical therapists believe they are important in RTW, (2) physical therapists use a variety of methods to determine work capacity, and (3) physical therapists experience a lack of role clarity. Therapists made recommendations for RTW using clinical judgment informed by subjective and objective information gathered from the injured worker. Novice therapists were less confident in making RTW decisions. Conclusion Therapists are well situated to gather and interpret the information necessary to make RTW recommendations. Strategies targeting the Australian Physiotherapy Association, physical therapists, and the regulators are needed to standardize assessment of readiness for RTW, improve role clarity, and assist novice practitioners. PMID:22745200

  15. Physical health and well-being: Experiences and perspectives of young adult mental health consumers.

    PubMed

    McCloughen, Andrea; Foster, Kim; Kerley, David; Delgado, Cynthia; Turnell, Adrienne

    2016-08-01

    Compromised physical health and raised levels of morbidity and mortality are experienced by young people (16-24 years) with mental illness, and are compounded by psychotropic medication. How this group conceives and experiences physical health is not well understood. We investigated the meanings, beliefs, and endeavours of young people that impact their physical health understandings and behaviours. The present study formed the qualitative phase of a sequential mixed-methods study, and incorporated semistructured interviews with 12 hospitalized young people. Qualitative content analysis was used to analyse data. Participants held a holistic ideal of physical health that they did not meet. Weight change, poor sleep, and limited exercise adversely impacted their lives and self-image. Sedentary behaviour, reduced energy, and limited health literacy compromised effective management of physical health. Young people needed structure and support to assist them in addressing their physical health needs when amotivation overwhelmed their internal resources. Nurses are well placed to help young people increase their competency for health management. Individualized information and methods to promote good physical health are required for this group in jeopardy from physical morbidity and mortality. © 2016 Australian College of Mental Health Nurses Inc.

  16. Comparative Urban Bangladesh Physics Learning Experiences as Described by Students and Alumni

    ERIC Educational Resources Information Center

    Ali, Tanzeem Iqbal

    2013-01-01

    A neo-culture of extra-curricular coaching prior to sitting the terminal exam was once the privileged domain of public education systems in the Eastern world, but this is no longer the case. This multi-phase study based on a grounded theory approach considered a diversity of physics learning experiences of students and alumni from two urban…

  17. Coordination of Scheduling Clinical Externship or Clinical Practice Experiences for Students in Physical Therapy Educational Programs.

    ERIC Educational Resources Information Center

    Patterson, Robert K.; Kass, Susan H.

    A project to coordinate the scheduling of allied health occupations students for clinical practice or externship experiences in Southeast Florida is described. A model clinical facility utilization and time schedule matrix was developed for four programs: the physical therapy programs at Florida International University (FIU) and the University of…

  18. Lift, Squeeze, Stretch, and Twist: Research-Based Inquiry Physics Experiences (RIPE) of Energy for Kindergartners

    ERIC Educational Resources Information Center

    Van Hook, Stephen J.; Huziak-Clark, Tracy L.

    2008-01-01

    This study examines changes in kindergarten students' understanding of energy after participating in a series of lessons developed using an inquiry-based early childhood science teaching model: Research-based Inquiry Physics Experiences (RIPE). The lessons addressed where objects get their energy and what they use their energy to do, and how…

  19. The Learners' Experience of Variation: Following Students' Threads of Learning Physics in Computer Simulation Sessions

    ERIC Educational Resources Information Center

    Ingerman, Ake; Linder, Cedric; Marshall, Delia

    2009-01-01

    This article attempts to describe students' process of learning physics using the notion of experiencing variation as the basic mechanism for learning, and thus explores what variation, with respect to a particular object of learning, that students experience in their process of constituting understanding. Theoretically, the analysis relies on…

  20. An Attenuated Total Reflectance Sensor for Copper: An Experiment for Analytical or Physical Chemistry

    ERIC Educational Resources Information Center

    Shtoyko, Tanya; Zudans, Imants; Seliskar, Carl J.; Heineman, William R.; Richardson, John N.

    2004-01-01

    A sensor experiment which can be applied to advanced undergraduate laboratory course in physical or analytical chemistry is described along with certain concepts like the demonstration of chemical sensing, preparation of thin films on a substrate, microtitration, optical determination of complex ion stoichiometry and isosbestic point. It is seen…

  1. Physical Education Experiences at Residential Schools for Students Who Are Blind: A Phenomenological Inquiry

    ERIC Educational Resources Information Center

    Haegele, Justin A.; Sato, Takahiro; Zhu, Xihe; Avery, Timothy

    2017-01-01

    Introduction: Recently, researchers have explored the perspectives of those with disabilities to better understand their experiences in physical education. However, little has been done with focusing on those with visual impairments. Utilizing a qualitative interpretive phenomenological analysis framework, the purpose of this study was to examine…

  2. Thought Experiments in Physics Problem-solving: On Intuition and Imagistic Simulation

    ERIC Educational Resources Information Center

    Georgiou, Andreas

    2005-01-01

    This study is part of a larger research agenda, which includes future doctoral study, aiming to investigate the psychological processes of thought experiments. How do thought-experimenters establish relations between their imaginary worlds and the physical one? How does a technique devoid of new sensory input result to new empirical knowledge? In…

  3. On-line computer system for use with low- energy nuclear physics experiments is reported

    NASA Technical Reports Server (NTRS)

    Gemmell, D. S.

    1969-01-01

    Computer program handles data from low-energy nuclear physics experiments which utilize the ND-160 pulse-height analyzer and the PHYLIS computing system. The program allows experimenters to choose from about 50 different basic data-handling functions and to prescribe the order in which these functions will be performed.

  4. Measurement of the Compressibility Factor of Gases: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Bendelsmith, Andrew J.; Kuwata, Keith T.

    2011-01-01

    In this article, we describe an experiment for the undergraduate physical chemistry laboratory in which students measure the compressibility factor of two gases, helium and carbon dioxide, as a function of pressure at constant temperature. The experimental apparatus is relatively inexpensive to construct and is described and diagrammed in detail.…

  5. Experiments Using Cell Phones in Physics Classroom Education: The Computer-Aided "g" Determination

    ERIC Educational Resources Information Center

    Vogt, Patrik; Kuhn, Jochen; Muller, Sebastian

    2011-01-01

    This paper continues the collection of experiments that describe the use of cell phones as experimental tools in physics classroom education. We describe a computer-aided determination of the free-fall acceleration "g" using the acoustical Doppler effect. The Doppler shift is a function of the speed of the source. Since a free-falling objects…

  6. High School Physical Education: What Contributes to the Experience of Flow?

    ERIC Educational Resources Information Center

    Stormoen, Sidsel; Urke, Helga Bjørnøy; Tjomsland, Hege Eikeland; Wold, Bente; Diseth, Åge

    2016-01-01

    This study seeks to identify factors that promote positive experiences in high school physical education (PE). The study combines elements of Self-determination Theory (SDT) with the theory of "flow". Special attention is given to gender differences. The study sample consisted of 167 Norwegian senior high school students (78 females and…

  7. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    ERIC Educational Resources Information Center

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  8. Playing the "Race" Card? Black and Minority Ethnic Students' Experiences of Physical Education Teacher Education

    ERIC Educational Resources Information Center

    Flintoff, Anne

    2015-01-01

    This paper reports on a study that explored black and minority ethnic (BME) students' experiences of physical education teacher education (PETE) in England. Widening the ethnic diversity of those choosing to enter the teaching profession has been a key policy objective of the Training and Development Agency--the government agency responsible for…

  9. Aesthetic Experience as an Aspect of Embodied Learning: Stories from Physical Education Student Teachers

    ERIC Educational Resources Information Center

    Maivorsdotter, Ninitha; Lundvall, Suzanne

    2009-01-01

    In this article we explore aesthetic experience as an aspect of embodied learning with focus on the moving body. Our theoretical framework is mainly based on the work of John Dewey. In the first part of the article we identify our understanding of central concepts and draw some lines to their implication for physical education (PE). In the second…

  10. Theoretical Frames and Teaching Styles of Physical Therapy Faculty Who Lead International Service-Learning Experiences

    ERIC Educational Resources Information Center

    Audette, Jennifer Gail

    2011-01-01

    Purpose: International service-learning (ISL) is popular in higher education, and many physical therapy educational programs are adding ISL opportunities to their curricula because doing so aligns with student interest and the increasingly global nature of the profession. The faculty leading these experiences have not been studied. Nearly all…

  11. Reflective Voices: Understanding University Students' Experiences of Urban High School Physical Education

    ERIC Educational Resources Information Center

    Lackman, Jeremy; Chepyator-Thomson, Jepkorir

    2017-01-01

    Purpose: The purpose of this study was to understand first-year college students' reflections on past physical education (PE) experiences in urban high school settings. Method: Data collection included semi-structured, open-ended, qualitative interviews. Constant comparison method was used for data analysis. Results: Several findings emerged: (a)…

  12. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  13. Experiences of Individuals with Visual Impairments in Integrated Physical Education: A Retrospective Study

    ERIC Educational Resources Information Center

    Haegele, Justin A.; Zhu, Xihe

    2017-01-01

    Purpose: The purpose of this retrospective study was to examine the experiences of adults with visual impairments during school-based integrated physical education (PE). Method: An interpretative phenomenological analysis (IPA) research approach was used and 16 adults (ages 21-48 years; 10 women, 6 men) with visual impairments acted as…

  14. Powerful Raman Lidar systems for atmospheric analysis and high-energy physics experiments

    NASA Astrophysics Data System (ADS)

    Avdikos, George

    2015-03-01

    In this paper the author presents modern commercial Raman Lidar systems which can be applied to high-energy physics experiments. Raymetrics is a world-leader in laser remote (lidar) sensing applications. Products series include lidar systems for various applications like atmospheric analysis, meteorology, and recently more operational applications including volcanic ash detection systems, visual rangers for application to airports etc.

  15. Computational Modeling of the Optical Rotation of Amino Acids: An "in Silico" Experiment for Physical Chemistry

    ERIC Educational Resources Information Center

    Simpson, Scott; Autschbach, Jochen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates the optical activity of the amino acid valine has been developed for an upper-level undergraduate physical chemistry laboratory course. Hybrid density functional theory calculations were carried out for valine to confirm the rule that adding a strong acid to a solution of an amino acid in the l…

  16. Physical and Chemical Change: The Long History of the Iron Filings and Sulfur Experiment

    ERIC Educational Resources Information Center

    Palmer, W. P.

    1995-01-01

    As a part of a doctoral thesis considering the history of teaching physical and chemical change, 641 chemistry/science textbooks have currently been examined. These books are from many different countries and date from the eighteenth century to the present time. The books have described a wide variety of experiments to illustrate the difference…

  17. A Practical and Convenient Diffusion Apparatus: An Undergraduate Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Clifford, Ben; Ochiai, E. I.

    1980-01-01

    Described is a diffusion apparatus to be used in an undergraduate physical chemistry laboratory experiment to determine the diffusion coefficients of aqueous solutions of sucrose and potassium dichromate. Included is the principle of the method, apparatus design and description, and experimental procedure. (Author/DS)

  18. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  19. Parents' Perceptions of Their Children's Experiences in Physical Education and Youth Sport

    ERIC Educational Resources Information Center

    Na, Jaekwon

    2015-01-01

    The purpose of this study was to examine parents' perceptions of their children's experiences in physical education and youth sport. Qualitative research design was employed in this study. Data collection methods included phenomenological interviews and qualitative questionnaires. Forty-one questionnaires were collected and analyzed through…

  20. Young Muslim Women's Experiences of Islam and Physical Education in Greece and Britain: A Comparative Study

    ERIC Educational Resources Information Center

    Dagkas, Symeon; Benn, Tansin

    2006-01-01

    Previous research suggests that Muslim women can experience particular problems when taking physical education (PE) lessons, for example with dress codes, mixed-teaching and exercise during Ramadan; and they can face restrictions in extra-curricular activities for cultural and religious reasons. The area is under-researched and there is little…

  1. "In Situ" Observation of a Soap-Film Catenoid--A Simple Educational Physics Experiment

    ERIC Educational Resources Information Center

    Ito, Masato; Sato, Taku

    2010-01-01

    The solution to the Euler-Lagrange equation is an extremal functional. To understand that the functional is stationary at local extrema (maxima or minima), we propose a physics experiment that involves using a soap film to form a catenoid. A catenoid is a surface that is formed between two coaxial circular rings and is classified mathematically as…

  2. Doctoral Sojourn Experiences of Adapted Physical Education Students from Asian Countries

    ERIC Educational Resources Information Center

    Sato, Takahiro

    2016-01-01

    The purpose of this study was to describe and explain Asian international doctoral students' sojourn experiences into Adapted Physical Education (APE) programs at two universities. The participants were six doctoral students from Japan, Taiwan, and South Korea. This case study was conceptualized within sojourner theory (Siu, 1952). The data…

  3. The Oil Drop Experiment: An Illustration of Scientific Research Methodology and its Implications for Physics Textbooks

    ERIC Educational Resources Information Center

    Rodriguez, Maria A.; Niaz, Mansoor

    2004-01-01

    The objectives of this study are: (1) evaluation of the methodology used in recent search for particles with fractional electrical charge (quarks) and its implications for understanding the scientific research methodology of Millikan; (2) evaluation of 43 general physics textbooks and 11 laboratory manuals, with respect to the oil drop experiment,…

  4. Looking Back into Trans Persons' Experiences in Heteronormative Secondary Physical Education Contexts

    ERIC Educational Resources Information Center

    Devís-Devís, José; Pereira-García, Sofía; López-Cañada, Elena; Pérez-Samaniego, Víctor; Fuentes-Miguel, Jorge

    2018-01-01

    Background: School is one of the primary settings where non-gender conformer children and adolescents emerge as vulnerable groups at high risk of suffering violence and harassment. Within schooling contexts, embodied experiences in physical education (PE) may become particularly problematic for trans students. However, there is little research…

  5. The Adiabatic Expansion of Gases and the Determination of Heat Capacity Ratios: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Moore, William M.

    1984-01-01

    Describes the procedures and equipment for an experiment on the adiabatic expansion of gases suitable for demonstration and discussion in the physical chemical laboratory. The expansion produced shows how the process can change temperature and still return to a different location on an isotherm. (JN)

  6. Inclusion and Participation in Everyday School Life: Experiences of Children with Physical (Dis)Abilities

    ERIC Educational Resources Information Center

    Asbjørnslett, Mona; Engelsrud, Gunn Helene; Helseth, Sølvi

    2015-01-01

    This study explores the school experiences of children with physical (dis)abilities. Based on 39 interviews with 15 Norwegian children, participation in everyday school life is introduced as a central theme and divided into three sub-themes: community and independence; adequate help and influence in the classroom; and influence in planning and…

  7. Coping experience of health concerns and physical disability for older Chinese people: A qualitative, descriptive study.

    PubMed

    Mei, He; Turale, Sue

    2017-12-01

    In this qualitative, descriptive study, we explored the perspectives of older, community-dwelling Chinese people regarding their experiences of coping with a physical disability and their health concerns. Twenty participants were interviewed in-depth, and data were analyzed using content analysis. Five themes with 13 subthemes emerged that described older people's experiences of coping with health concerns and disability: (i) ignoring health concerns; (ii) managing self; (iii) seeking medical help; (iv) living with physical disability; and (v) relying on limited resources. Most participants did not have sufficient access to health services due to physical disability and financial deficits, so they tended to ignore their health conditions or tackle them independently before seeking medical help. At the same time, they were impacted on by social and cultural factors. Policies are required that offer more resources to community-dwelling people with disabilities in China. © 2017 John Wiley & Sons Australia, Ltd.

  8. Using assistive technology for schoolwork: the experience of children with physical disabilities.

    PubMed

    Murchland, Sonya; Parkyn, Helen

    2010-01-01

    This study explored the experience of children with physical disabilities using assistive technology for participation with schoolwork to gain a greater understanding of their perspectives and subjective experiences. A qualitative study involving thematic analysis of in-depth interviews of the child with a parent or significant adult. Purposeful sampling from a larger study recruited five children aged between 10 and 14 years, with differing physical disabilities who attended mainstream schools. All children used computer-based assistive technology. All of the children recognised that assistive technology enabled them to participate and reduced the impact of their physical disability, allowing independent participation, and facilitated higher learning outcomes. Issues related to ease of use, social implications and assistive technology systems are discussed.

  9. Physical Science Informatics: Providing Open Science Access to Microheater Array Boiling Experiment Data

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Green, Robert D.; Henrie, Ben; Miller, Teresa; Chiaramonte, Fran

    2014-01-01

    The Physical Science Informatics (PSI) system is the next step in this an effort to make NASA sponsored flight data available to the scientific and engineering community, along with the general public. The experimental data, from six overall disciplines, Combustion Science, Fluid Physics, Complex Fluids, Fundamental Physics, and Materials Science, will present some unique challenges. Besides data in textual or numerical format, large portions of both the raw and analyzed data for many of these experiments are digital images and video, requiring large data storage requirements. In addition, the accessible data will include experiment design and engineering data (including applicable drawings), any analytical or numerical models, publications, reports, and patents, and any commercial products developed as a result of the research. This objective of paper includes the following: Present the preliminary layout (Figure 2) of MABE data within the PSI database. Obtain feedback on the layout. Present the procedure to obtain access to this database.

  10. Experience matters: Dogs (Canis familiaris) infer physical properties of objects from movement clues.

    PubMed

    Kuroshima, Hika; Nabeoka, Yukari; Hori, Yusuke; Chijiiwa, Hitomi; Fujita, Kazuo

    2017-03-01

    Reasoning about physical properties of objects such as heaviness by observing others' actions toward them is important and useful for adapting to the environment. In this study, we asked whether domestic dogs (Canis familiaris) can use a human's action to infer a physical property of target objects. In Experiment 1, dogs watched an experimenter opening two differently loaded swinging doors with different corresponding degrees of effort, and then were allowed to open one of the doors. Dogs chose randomly between the two doors. In Experiment 2, we gave new dogs the same test as in Experiment 1, but only after giving them experience of opening the doors by themselves, so that they already knew that the doors could be either light or heavy. In this test the dogs reliably chose the light door. These results indicate that dogs are able to infer physical characteristics of objects from the latters' movement caused by human action, but that this inferential reasoning requires direct own experience of the objects. Copyright © 2017. Published by Elsevier B.V.

  11. The use of a Nintendo Wii remote control in physics experiments

    NASA Astrophysics Data System (ADS)

    Abellán, F. J.; Arenas, A.; Núñez, M. J.; Victoria, L.

    2013-09-01

    In this paper we describe how a Nintendo Wii remote control (known as the Wiimote) can be used in the design and implementation of several undergraduate-level experiments in a physics laboratory class. An experimental setup composed of a Wiimote and a conveniently located IR LED allows the trajectory of one or several moving objects to be tracked and recorded accurately, in both long and short displacement. The authors have developed a user interface program to configure the operation of the acquisition system of such data. The two experiments included in this work are the free fall of a body with magnetic braking and the simple pendulum, but other physics experiments could have been chosen. The treatment of the data was performed using Bayesian inference.

  12. Gender discrimination in physics and astronomy: Graduate student experiences of sexism and gender microaggressions

    NASA Astrophysics Data System (ADS)

    Barthelemy, Ramón S.; McCormick, Melinda; Henderson, Charles

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Sexism occurs when men are believed to be superior to women, and is thought to be one of the reasons for women's underrepresentation in physics and astronomy. The issue of sexism in physics and astronomy has not been thoroughly explored in the physics education literature and there is currently no clear language for discussing sexism in the field. This article seeks to begin a conversation on sexism in physics and astronomy and offer a starting point for language to discuss sexism in research groups and departments. Interviews with 21 women in graduate physics and astronomy programs are analyzed for their individual experiences of sexism. Although a subset of women did not report experiencing sexual discrimination, the majority experienced subtle insults and slights known as microaggressions. Other participants also experienced more traditional hostile sexism in the form of sexual harassment, gender role stereotypes, and overt discouragement. These results indicate the existence of sexism in the current culture of physics and astronomy, as well as the importance departments must put on eliminating it and educating students about sexism and microaggressions.

  13. The Impact of Space Experiments on our Knowledge of the Physics of the Universe

    NASA Astrophysics Data System (ADS)

    Giovannelli, Franco; Sabau-Graziati, Lola

    2004-05-01

    With the advent of space experiments it was demonstrated that cosmic sources emit energy practically across all the electromagnetic spectrum via different physical processes. Several physical quantities give witness to these processes which usually are not stationary; those physical observable quantities are then generally variable. Therefore simultaneous multifrequency observations are strictly necessary in order to understand the actual behaviour of cosmic sources. Space experiments have opened practically all the electromagnetic windows on the Universe. A discussion of the most important results coming from multifrequency photonic astrophysics experiments will provide new inputs for the advance of the knowledge of the physics, very often in its more extreme conditions. A multitude of high quality data across practically the whole electromagnetic spectrum came at the scientific community's disposal a few years after the beginning of the Space Era. With these data we are attempting to explain the physics governing the Universe and, moreover, its origin, which has been and still is a matter of the greatest curiosity for humanity. In this paper we will try to describe the last steps of the investigation born with the advent of space experiments, to note upon the most important results and open problems still existing, and to comment upon the perspectives we can reasonably expect. Once the idea of this paper was well accepted by ourselves, we had the problem of how to plan the exposition. Indeed, the exposition of the results can be made in different ways, following several points of view, according to: - a division in diffuse and discrete sources; - different classes of cosmic sources; - different spectral ranges, which implies in turn a sub-classification in accordance with different techniques of observations; - different physical emission mechanisms of electromagnetic radiation; - different vehicles used for launching the experiments (aircraft, balloons, rockets

  14. Use of Tablet Computers to Promote Physical Therapy Students' Engagement in Knowledge Translation During Clinical Experiences.

    PubMed

    Tilson, Julie K; Loeb, Kathryn; Barbosa, Sabrina; Jiang, Fei; Lee, Karin T

    2016-04-01

    Physical therapists strive to integrate research into daily practice. The tablet computer is a potentially transformational tool for accessing information within the clinical practice environment. The purpose of this study was to measure and describe patterns of tablet computer use among physical therapy students during clinical rotation experiences. Doctor of physical therapy students (n = 13 users) tracked their use of tablet computers (iPad), loaded with commercially available apps, during 16 clinical experiences (6-16 weeks in duration). The tablets were used on 70% of 691 clinic days, averaging 1.3 uses per day. Information seeking represented 48% of uses; 33% of those were foreground searches for research articles and syntheses and 66% were for background medical information. Other common uses included patient education (19%), medical record documentation (13%), and professional communication (9%). The most frequently used app was Safari, the preloaded web browser (representing 281 [36.5%] incidents of use). Users accessed 56 total apps to support clinical practice. Physical therapy students successfully integrated use of a tablet computer into their clinical experiences including regular activities of information seeking. Our findings suggest that the tablet computer represents a potentially transformational tool for promoting knowledge translation in the clinical practice environment.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A127).

  15. Use of Tablet Computers to Promote Physical Therapy Students' Engagement in Knowledge Translation During Clinical Experiences

    PubMed Central

    Loeb, Kathryn; Barbosa, Sabrina; Jiang, Fei; Lee, Karin T.

    2016-01-01

    Background and Purpose: Physical therapists strive to integrate research into daily practice. The tablet computer is a potentially transformational tool for accessing information within the clinical practice environment. The purpose of this study was to measure and describe patterns of tablet computer use among physical therapy students during clinical rotation experiences. Methods: Doctor of physical therapy students (n = 13 users) tracked their use of tablet computers (iPad), loaded with commercially available apps, during 16 clinical experiences (6-16 weeks in duration). Results: The tablets were used on 70% of 691 clinic days, averaging 1.3 uses per day. Information seeking represented 48% of uses; 33% of those were foreground searches for research articles and syntheses and 66% were for background medical information. Other common uses included patient education (19%), medical record documentation (13%), and professional communication (9%). The most frequently used app was Safari, the preloaded web browser (representing 281 [36.5%] incidents of use). Users accessed 56 total apps to support clinical practice. Discussion and Conclusions: Physical therapy students successfully integrated use of a tablet computer into their clinical experiences including regular activities of information seeking. Our findings suggest that the tablet computer represents a potentially transformational tool for promoting knowledge translation in the clinical practice environment. Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A127). PMID:26945431

  16. Studying Gender Bias in Physics Grading: The role of teaching experience and country

    NASA Astrophysics Data System (ADS)

    Hofer, Sarah I.

    2015-11-01

    The existence of gender-STEM (science, technology, engineering, and mathematics) stereotypes has been repeatedly documented. This article examines physics teachers' gender bias in grading and the influence of teaching experience in Switzerland, Austria, and Germany. In a 2 × 2 between-subjects design, with years of teaching experience included as moderating variable, physics teachers (N = 780) from Switzerland, Austria, and Germany graded a fictive student's answer to a physics test question. While the answer was exactly the same for each teacher, only the student's gender and specialization in languages vs. science were manipulated. Specialization was included to gauge the relative strength of potential gender bias effects. Multiple group regression analyses, with the grade that was awarded as the dependent variable, revealed only partial cross-border generalizability of the effect pattern. While the overall results in fact indicated the existence of a consistent and clear gender bias against girls in the first part of physics teachers' careers that disappeared with increasing teaching experience for Swiss teachers, Austrian teachers, and German female teachers, German male teachers showed no gender bias effects at all. The results are discussed regarding their relevance for educational practice and research.

  17. Korean immigrant women's physical activity experience: a situation-specific theory.

    PubMed

    Im, Eun-Ok; Chang, Sun Ju; Nguyen, Giang; Stringer, Lynn; Chee, Wonshik; Chee, Eunice

    2015-01-01

    To develop successful physical activity promotion programs for midlife immigrant women, especially for Korean immigrant midlife women, concrete theoretical bases are needed. However, virtually no theoretical frameworks and/or theories exist that can explain the influences of immigration transition on the physical activity experience of midlife immigrant women in general or Korean immigrant midlife women in specific. The purpose of this article is to present a situation-specific theory on physical activity experience of Korean immigrant midlife women (SPAKIM) with its development process. An integrative approach was used to develop the theory based on the midlife women's attitudes toward physical activity (MAPA) theory, the transitions theory, a review of the relevant literature, and two studies on midlife women's attitudes toward physical activity. The proposed theory includes nature of transitions, nonmodifiable and modifiable transition conditions, contexts of daily life, patterns of response, and nursing therapeutics as major concepts, and each major concept includes several related subconcepts. Because several concepts of the theory were developed mainly based on the literature review, the major concepts and related subconcepts need to be further developed and evaluated in future studies.

  18. UTDallas Offline Computing System for B Physics with the Babar Experiment at SLAC

    NASA Astrophysics Data System (ADS)

    Benninger, Tracy L.

    1998-10-01

    The University of Texas at Dallas High Energy Physics group is building a high performance, large storage computing system for B physics research with the BaBar experiment (``factory'') at the Stanford Linear Accelerator Center. The goal of this system is to analyze one terabyte of complex Event Store data from BaBar in one to two days. The foundation of the computing system is a Sun E6000 Enterprise multiprocessor system, with additions of a Sun StorEdge L1800 Tape Library, a Sun Workstation for processing batch jobs, staging disks and interface cards. The design considerations, current status, projects underway, and possible upgrade paths will be discussed.

  19. Benchmarking the Physical Therapist Academic Environment to Understand the Student Experience.

    PubMed

    Shields, Richard K; Dudley-Javoroski, Shauna; Sass, Kelly J; Becker, Marcie

    2018-04-19

    Identifying excellence in physical therapist academic environments is complicated by the lack of nationally available benchmarking data. The objective of this study was to compare a physical therapist academic environment to another health care profession (medicine) academic environment using the Association of American Medical Colleges Graduation Questionnaire (GQ) survey. The design consisted of longitudinal benchmarking. Between 2009 and 2017, the GQ was administered to graduates of a physical therapist education program (Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa [PTRS]). Their ratings of the educational environment were compared to nationwide data for a peer health care profession (medicine) educational environment. Benchmarking to the GQ capitalizes on a large, psychometrically validated database of academic domains that may be broadly applicable to health care education. The GQ captures critical information about the student experience (eg, faculty professionalism, burnout, student mistreatment) that can be used to characterize the educational environment. This study hypothesized that the ratings provided by 9 consecutive cohorts of PTRS students (n = 316) would reveal educational environment differences from academic medical education. PTRS students reported significantly higher ratings of the educational emotional climate and student-faculty interactions than medical students. PTRS and medical students did not differ on ratings of empathy and tolerance for ambiguity. PTRS students reported significantly lower ratings of burnout than medical students. PTRS students descriptively reported observing greater faculty professionalism and experiencing less mistreatment than medical students. The generalizability of these findings to other physical therapist education environments has not been established. Selected elements of the GQ survey revealed differences in the educational environments

  20. Medical students’ experiences learning intimate physical examination skills: a qualitative study

    PubMed Central

    2014-01-01

    Background Intimate physical examination skills are essential skills for any medical graduate to have mastered to an appropriate level for the safety of his or her future patients. Medical schools are entrusted with the complex task of teaching and assessing these skills for their students. The objectives of this study were to explore a range of medical students’ experiences of learning intimate physical examination skills and to explore their perceptions of factors which impede or promote the learning of these skills. Methods Individual semi-structured interviews (N = 16) were conducted with medical students in years two to five from the University of Newcastle, as part of a larger research project investigating how medical students develop their attitudes to gender and health. This was a self-selected sample of the entire cohort who were all invited to participate. A thematic analysis of the transcribed data was performed. Results Students reported differing levels of discomfort with their learning experiences in the area of intimate physical examination and differing beliefs about the helpfulness of these experiences. The factors associated with levels of discomfort and the helpfulness of the experience for learning were: satisfaction with teaching techniques, dealing with an uncomfortable situation and perceived individual characteristics in both the patients and the students. The examination causing the greatest reported discomfort was the female pelvic examination by male students. Conclusions Student discomfort with the experience of learning intimate physical examination skills may be common and has ongoing repercussions for students and patients. Recommendations are made of ways to modify teaching technique to more closely match students’ perceived needs. PMID:24575827

  1. Medical students' experiences learning intimate physical examination skills: a qualitative study.

    PubMed

    Dabson, Andra M; Magin, Parker J; Heading, Gaynor; Pond, Dimity

    2014-02-28

    Intimate physical examination skills are essential skills for any medical graduate to have mastered to an appropriate level for the safety of his or her future patients. Medical schools are entrusted with the complex task of teaching and assessing these skills for their students. The objectives of this study were to explore a range of medical students' experiences of learning intimate physical examination skills and to explore their perceptions of factors which impede or promote the learning of these skills. Individual semi-structured interviews (N = 16) were conducted with medical students in years two to five from the University of Newcastle, as part of a larger research project investigating how medical students develop their attitudes to gender and health. This was a self-selected sample of the entire cohort who were all invited to participate. A thematic analysis of the transcribed data was performed. Students reported differing levels of discomfort with their learning experiences in the area of intimate physical examination and differing beliefs about the helpfulness of these experiences. The factors associated with levels of discomfort and the helpfulness of the experience for learning were: satisfaction with teaching techniques, dealing with an uncomfortable situation and perceived individual characteristics in both the patients and the students. The examination causing the greatest reported discomfort was the female pelvic examination by male students. Student discomfort with the experience of learning intimate physical examination skills may be common and has ongoing repercussions for students and patients. Recommendations are made of ways to modify teaching technique to more closely match students' perceived needs.

  2. Middle school students' learning of mechanics concepts through engagement in different sequences of physical and virtual experiments

    NASA Astrophysics Data System (ADS)

    Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon

    2017-08-01

    Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students' learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students' (N = 100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n = 55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n = 45), with the opposite sequence. Repeated measures ANOVA's were conducted to examine how physical and virtual labs impacted students' learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.

  3. Experiences of older women with cancer receiving hospice care: significance for physical therapy.

    PubMed

    Mackey, K M; Sparling, J W

    2000-05-01

    The number of older adults with cancer is growing, increasing the need for professionals who are able to meet these patients' special needs. In palliative care settings, physical therapists strive to promote quality of life. Minimal research exists, however, to guide therapists working with patients with terminal illness. The purpose of this study was to gain knowledge that can be used by physical therapists to more effectively assess and treat older people with cancer receiving hospice care. A qualitative single-case study with replication was conducted with 3 older women with cancer who were receiving hospice care. Interview data were analyzed using grounded theory techniques. Four themes emerged as central to the experience of the informants: social relationships, spirituality, outlook on mortality, and meaningful physical activity. In addition to maintaining physical function, physical therapists, who attend to nonphysical as well as physical aspects of care, may foster social cohesion, help maximize life's meaning, and support stabilizing strategies of older women with cancer who receive hospice care.

  4. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    NASA Technical Reports Server (NTRS)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  5. Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery

    NASA Astrophysics Data System (ADS)

    Fowler, T. Kenneth; Li, Hui

    2016-10-01

    > eV or more, finally ejected as ultra high energy cosmic rays (UHECRs) long regarded as one of the mysteries of astrophysics. The acceleration is mainly due to the drift cyclotron loss cone kinetic instability known from plasma research. Experiments and simulations are suggested to verify the acceleration process.

  6. Experiences of Individuals With Visual Impairments in Integrated Physical Education: A Retrospective Study.

    PubMed

    Haegele, Justin A; Zhu, Xihe

    2017-12-01

    The purpose of this retrospective study was to examine the experiences of adults with visual impairments during school-based integrated physical education (PE). An interpretative phenomenological analysis (IPA) research approach was used and 16 adults (ages 21-48 years; 10 women, 6 men) with visual impairments acted as participants for this study. The primary sources of data were semistructured audiotaped telephone interviews and reflective field notes, which were recorded during and immediately following each interview. Thematic development was undertaken utilizing a 3-step analytical process guided by IPA. Based on the data analysis, 3 interrelated themes emerged from the participant transcripts: (a) feelings about "being put to the side," frustration and inadequacy; (b) "She is blind, she can't do it," debilitating feelings from physical educators' attitudes; and (c) "not self-esteem raising," feelings about peer interactions. The 1st theme described the participants' experiences and ascribed meaning to exclusionary practices. The 2nd theme described the participants' frustration over being treated differently by their PE teachers because of their visual impairments. Lastly, "not self-esteem raising," feelings about peer interactions demonstrated how participants felt about issues regarding challenging social situations with peers in PE. Utilizing an IPA approach, the researchers uncovered 3 interrelated themes that depicted central feelings, experiences, and reflections, which informed the meaning of the participants' PE experiences. The emerged themes provide unique insight into the embodied experiences of those with visual impairments in PE and fill a previous gap in the extant literature.

  7. Physics of Colloids in Space--Plus (PCS+) Experiment Completed Flight Acceptance Testing

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2004-01-01

    The Physics of Colloids in Space--Plus (PCS+) experiment successfully completed system-level flight acceptance testing in the fall of 2003. This testing included electromagnetic interference (EMI) testing, vibration testing, and thermal testing. PCS+, an Expedite the Process of Experiments to Space Station (EXPRESS) Rack payload will deploy a second set of colloid samples within the PCS flight hardware system that flew on the International Space Station (ISS) from April 2001 to June 2002. PCS+ is slated to return to the ISS in late 2004 or early 2005.

  8. An analysis of learning process based on scientific approach in physical chemsitry experiment

    NASA Astrophysics Data System (ADS)

    Arlianty, Widinda Normalia; Febriana, Beta Wulan; Diniaty, Artina

    2017-03-01

    This study aimed to analysis the quality of learning process based on scientific approach in physical chemistry experiment of Chemistry Education students, Islamic University of Indonesia. The research was descriptive qualitative. The samples of this research were 2nd semester student, class of 2015. Scientific data of learning process were collected by observation sheet and documentation of seven title experimental. The results showed that the achievement of scientific learning process on observing, questioning, experimenting and associating data were 73.98%; 81.79%; 80.74%; and 76.94% respectively, which categorized as medium. Furthermore, for aspect communicating had high category at 86.11% of level achievement.

  9. Moment-Tensor Spectra of Source Physics Experiments (SPE) Explosions in Granite

    NASA Astrophysics Data System (ADS)

    Yang, X.; Cleveland, M.

    2016-12-01

    We perform frequency-domain moment tensor inversions of Source Physics Experiments (SPE) explosions conducted in granite during Phase I of the experiment. We test the sensitivity of source moment-tensor spectra to factors such as the velocity model, selected dataset and smoothing and damping parameters used in the inversion to constrain the error bound of inverted source spectra. Using source moments and corner frequencies measured from inverted source spectra of these explosions, we develop a new explosion P-wave source model that better describes observed source spectra of these small and over-buried chemical explosions detonated in granite than classical explosion source models derived mainly from nuclear-explosion data. In addition to source moment and corner frequency, we analyze other features in the source spectra to investigate their physical causes.

  10. A 41 ps ASIC time-to-digital converter for physics experiments

    NASA Astrophysics Data System (ADS)

    Russo, Stefano; Petra, Nicola; De Caro, Davide; Barbarino, Giancarlo; Strollo, Antonio G. M.

    2011-12-01

    We present a novel Time-to-Digital (TDC) converter for physics experiments. Proposed TDC is based on a synchronous counter and an asynchronous fine interpolator. The fine part of the measurement is obtained using NORA inverters that provide improved resolution. A prototype IC was fabricated in 180 nm CMOS technology. Experimental measurements show that proposed TDC features 41 ps resolution associated with 0.35LSB differential non-linearity, 0.77LSB integral non-linearity and a negligible single shot precision. The whole dynamic range is equal to 18 μs. The proposed TDC is designed using a flash architecture that reduces dead time. Data reported in the paper show that our design is well suited for present and future particle physics experiments.

  11. Monochromatic radiography of high energy density physics experiments on the MAGPIE generator.

    PubMed

    Hall, G N; Burdiak, G C; Suttle, L; Stuart, N H; Swadling, G F; Lebedev, S V; Smith, R A; Patankar, S; Suzuki-Vidal, F; de Grouchy, P; Harvey-Thompson, A J; Bennett, M; Bland, S N; Pickworth, L; Skidmore, J

    2014-11-01

    A monochromatic X-ray backlighter based on Bragg reflection from a spherically bent quartz crystal has been developed for the MAGPIE pulsed power generator at Imperial College (1.4 MA, 240 ns) [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (2005)]. This instrument has been used to diagnose high energy density physics experiments with 1.865 keV radiation (Silicon He-α) from a laser plasma source driven by a ∼7 J, 1 ns pulse from the Cerberus laser. The design of the diagnostic, its characterisation and performance, and initial results in which the instrument was used to radiograph a shock physics experiment on MAGPIE are discussed.

  12. Freshman year computer engineering students' experiences for flipped physics lab class: An action research

    NASA Astrophysics Data System (ADS)

    Akı, Fatma Nur; Gürel, Zeynep

    2017-02-01

    The purpose of this research is to determine the university students' learning experiences about flipped-physics laboratory class. The research has been completed during the fall semester of 2015 at Computer Engineering Department of Istanbul Commerce University. In this research, also known as a teacher qualitative research design, action research method is preferred to use. The participants are ten people, including seven freshman and three junior year students of Computer Engineering Department. The research data was collected at the end of the semester with the focus group interview which includes structured and open-ended questions. And data was evaluated with categorical content analysis. According to the results, students have some similar and different learning experiences to flipped education method for physics laboratory class.

  13. Framing curriculum discursively: theoretical perspectives on the experience of VCE physics

    NASA Astrophysics Data System (ADS)

    Hart, Christina

    2002-10-01

    The process of developing prescribed curricula has been subject to little empirical investigation, and there have been few attempts to develop theoretical frameworks for understanding the shape and content of particular subjects. This paper presents an account of the author's experience of developing a new course for school physics in the State of Victoria, Australia, at the end of the 1980s. The course was to represent a significant departure from traditional physics courses, and was intended to broaden participation and improve the quality of student learning. In the event the new course turned out to be very similar to traditional courses in Physics. The paper explores the reasons for this outcome. Some powerful discursive mechanisms are identified and some implications of post-structuralism for the theoretical understanding of curriculum are discussed.

  14. The Source Physics Experiments (SPE): A Physics-Based Approach to Discriminate Low-Yield Nuclear Events (Invited)

    NASA Astrophysics Data System (ADS)

    Snelson, C. M.; Chipman, V.; White, R. L.; Emmitt, R.; Townsend, M.

    2013-12-01

    Discriminating low-yield nuclear explosions is one of the current challenges in the field of monitoring and verification. Work is currently underway in Nevada to address this challenge by conducting a series of experiments using a physics-based approach. This has been accomplished by using a multifaceted, multi-disciplinary approach that includes a range of activities, from characterizing the shallow subsurface to acquiring new explosion data both in the near field (< 100 m from the source) to the far field (> 100 m to 10 s km from the source). The Source Physics Experiment (SPE) is a collaborative project between National Security Technologies, LLC, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Sandia National Laboratories, the Defense Threat Reduction Agency, and the Air Force Technical Applications Center. The goal of the SPE is to understand the transition of seismic energy from the near field to the far field; to understand the development of S-waves in explosives sources; and to understand how anisotropy controls seismic energy transmission and partitioning. To fully explore these problems, the SPE test series includes tests in both simple and complex geology cases. The current series is being conducted in a highly fractured granite body. This location was chosen, in part, because it was the location of previous nuclear tests in the same rock body and because generally the geology has been well characterized. In addition to historic data, high-resolution seismic reflection, cross-hole tomography, core samples, LIDAR, hyperspectral, and fracture mapping data have been acquired to further characterize and detect changes after each of the shot across the test bed. The complex geology series includes 7 planned shots using conventional explosives in the same shot hole surrounded by Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival, Velocity of Detonation, down-hole accelerometers, surface accelerometers

  15. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  16. Analysis and Simulation of Far-Field Seismic Data from the Source Physics Experiment

    DTIC Science & Technology

    2012-09-01

    ANALYSIS AND SIMULATION OF FAR-FIELD SEISMIC DATA FROM THE SOURCE PHYSICS EXPERIMENT Arben Pitarka, Robert J. Mellors, Arthur J. Rodgers, Sean...Security Site (NNSS) provides new data for investigating the excitation and propagation of seismic waves generated by buried explosions. A particular... seismic model. The 3D seismic model includes surface topography. It is based on regional geological data, with material properties constrained by shallow

  17. Study and practice in the construction of open physical experiments teaching system

    NASA Astrophysics Data System (ADS)

    Xu, Yan

    2017-09-01

    Based on open physical experiments teaching system put forward by Ministry of Education, HHU(Hohai University) has carried out the construction of open experimental manage system, which includes course selecting system, teaching system, manage system and information desk. The innovation is in order to mobilize the students’ learning autonomy, cultivate the students’ creative ability and improve teaching quality. Besides, it achieves direct management from school to college to the laboratory and traced manage to the working device regardless of distance and time.

  18. Qualitative Development of a Discrete Choice Experiment for Physical Activity Interventions to Improve Knee Osteoarthritis.

    PubMed

    Pinto, Daniel; Danilovich, Margaret K; Hansen, Paul; Finn, Daniel J; Chang, Rowland W; Holl, Jane L; Heinemann, Allen W; Bockenholt, Ulf

    2017-06-01

    To describe the qualitative process used to develop attributes and attribute levels for inclusion in a discrete choice experiments (DCE) for older adult physical activity interventions. Five focus groups (n=41) were conducted, grounded in the Health Action Process Approach framework. Discussion emphasized identification and prioritization attributes for a DCE on physical activity. Semi-structured interviews (n=6) investigated attribute levels and lay-language for the DCE. A focus group with physical activity researchers and health care providers was the final stakeholder group used to establish a comprehensive approach for the generation of attributes and levels. A DCE pilot test (n=8) was then conducted with individuals of the target patient population. All transcripts were analyzed using a constant comparative approach. General community and university-based research setting. Volunteers (N=55) aged >45 years with knee pain, aches, or stiffness for at least 1 month over the previous 12 months. Not applicable. Interview guides, attributes, attribute levels, and discrete choice experiment. The most influential identified attributes for physical activity were time, effort, cost, convenience, enjoyment, and health benefits. Each attribute had 3 levels that were understandable in the pilot test of the DCE. The identification of 6 physical activity attributes that are most salient to adults with knee osteoarthritis resulted from a systematic qualitative process, including attribute-ranking exercises. A DCE will provide insight into the relative importance of these attributes for participating in physical activity, which can guide intervention development. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Physics opportunities with a fixed target experiment at the LHC (AFTER@LHC)

    SciTech Connect

    Hadjidakis, Cynthia; Anselmino, Mauro; Arnaldi, R.

    By extracting the beam with a bent crystal or by using an internal gas target, the multi-TeV proton and lead LHC beams allow one to perform the most energetic fixed-target experiments (AFTER@LHC) and to study p+p and p+A collisions at \\sqrt{s_NN}=115 GeV and Pb+p and Pb+A collisions at \\sqrt{s_NN}=72 GeV. Such studies would address open questions in the domain of the nucleon and nucleus partonic structure at high-x, quark-gluon plasma and, by using longitudinally or transversally polarised targets, spin physics. In this paper, we discuss the physics opportunities of a fixed-target experiment at the LHC and we report on themore » possible technical implementations of a high-luminosity experiment. We finally present feasibility studies for Drell-Yan, open heavy-flavour and quarkonium production, with an emphasis on high-x and spin physics.« less

  20. The Physical Layer Security Experiments of Cooperative Communication System with Different Relay Behaviors.

    PubMed

    Su, Yishan; Han, Guangyao; Fu, Xiaomei; Xu, Naishen; Jin, Zhigang

    2017-04-06

    Physical layer security is an attractive security mechanism, which exploits the randomness characteristics of wireless transmission channel to achieve security. However, it is hampered by the limitation of the channel condition that the main channel must be better than the eavesdropper channel. To alleviate the limitation, cooperative communication is introduced. Few studies have investigated the physical layer security of the relay transmission model. In this paper, we performed some experiments to evaluate the physical layer security of a cooperative communication system, with a relay operating in decode-and-forward (DF) cooperative mode, selfish and malicious behavior in real non-ideal transmission environment. Security performance is evaluated in terms of the probability of non-zero secrecy capacity. Experiments showed some different results compared to theoretical simulation: (1) to achieve the maximum secrecy capacity, the optimal relay power according to the experiments result is larger than that of ideal theoretical results under both cooperative and selfish behavior relay; (2) the relay in malicious behavior who forwards noise to deteriorate the main channel may deteriorate the eavesdropper channel more seriously than the main channel; (3) the optimal relay positions under cooperative and selfish behavior relay cases are both located near the destination because of non-ideal transmission.

  1. Physical examination of arteriovenous fistula: The influence of professional experience in the detection of complications.

    PubMed

    Sousa, Clemente Neves; Teles, Paulo; Dias, Vanessa Filipa Ferreira; Apóstolo, João Luís Alves; Figueiredo, Maria Henriqueta Jesus Silva; Martins, Maria Manuela

    2014-07-01

    Vascular access is one of the leading causes of mobilization of financial resources in health systems for people with chronic kidney disease on hemodialysis. Physical examination of the arteriovenous fistula (AVF) has demonstrated its effectiveness in identifying complications. We decided to evaluate the influence of nurses' professional experience in the detection of complications of the AVF (venous stenosis and steal syndrome). The study took place in eight hemodialysis centers between May and September of 2011 in the north of Portugal. Sample was constituted by registered nurses. The nurses involved in the experiment were divided in two groups: those who had more than 5 years of experience and those who had less than 5 years of experience. Ninety-two nurses participated in the study: 34 nurses had less than 5 years of professional experience and 58 had more than 5 years of professional experience. In the practices considered by nurses in the detection of venous stenosis, there were no differences observed between the groups (P > 0.05). In steal syndrome, there were no differences observed between the groups in the practices of the nurses in the detection of this complication of the AVF (P > 0.05). We concluded that professional experience does not influence the detection of venous stenosis and steal syndrome. © 2014 International Society for Hemodialysis.

  2. Physics of Hard Sphere Experiment: Scattering, Rheology and Microscopy Study of Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Cheng, Z.-D.; Zhu, J.; Phan, S.-E.; Russel, W. B.; Chaikin, P. M.; Meyer, W. V.

    2002-01-01

    The Physics of Hard Sphere Experiment has two incarnations: the first as a scattering and rheology experiment on STS-83 and STS-94 and the second as a microscopy experiment to be performed in the future on LMM on the space station. Here we describe some of the quantitative and qualitative results from previous flights on the dynamics of crystallization in microgravity and especially the observed interaction of growing crystallites in the coexistance regime. To clarify rheological measurements we also present ground based experiments on the low shear rate viscosity and diffusion coefficient of several hard sphere experiments at high volume fraction. We also show how these experiments will be performed with confocal microscopy and laser tweezers in our lab and as preparation for the phAse II experiments on LMM. One of the main aims of the microscopy study will be the control of colloidal samples using an array of applied fields with an eye toward colloidal architectures. Temperature gradients, electric field gradients, laser tweezers and a variety of switchable imposed surface patterns are used toward this control.

  3. Probing Pre-and In-Service Physics Teachers' Knowledge Using the Double-Slit Thought Experiment

    ERIC Educational Resources Information Center

    Asikainen, Mervi A.; Hirvonen, Pekka E.

    2014-01-01

    This study describes the use of the double-slit thought experiment as a diagnostic tool for probing physics teachers' understanding. A total of 9 pre-service teachers and 18 in-service teachers with a variety of different experience in modern physics teaching at the upper secondary level responded in a paper-and-pencil test and three of these…

  4. The Love of Sport: An Investigation into the Perceptions and Experiences of Physical Education Amongst Primary School Pupils

    ERIC Educational Resources Information Center

    Hayes, Deborah

    2017-01-01

    Inactivity amongst children and adults in the UK is currently of great concern. Attitudes towards physical activity develop during childhood and may influence physical activity patterns in later life. This research investigated the experiences and perceptions of physical education (P.E.) amongst primary school pupils. The study established overall…

  5. The Nature and Incorporation of CSPAP Learning Experiences in Physical Education Teacher Education: Accounts of Faculty from "Highly Effective" Programs

    ERIC Educational Resources Information Center

    Webster, Collin A.; Russ, Laura; Webster, Liana; Molina, Sergio; Lee, Heesu; Cribbs, Jason

    2016-01-01

    The purpose of this study was to examine faculty accounts of the nature and incorporation of Comprehensive School Physical Activity Program (CSPAP) learning experiences for preservice physical education teachers (PPETs) in undergraduate physical education teacher education (PETE). Nine individuals employed as faculty members in different PETE…

  6. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    ERIC Educational Resources Information Center

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  7. Experiences of Habitual Physical Activity in Maintaining Roles and Functioning among Older Adults: A Qualitative Study

    PubMed Central

    Svantesson, Ulla; Willén, Carin

    2016-01-01

    Physically active older adults have reduced risk of functional restrictions and role limitations. Several aspects may interrelate and influence habitual physical activity (PA). However, older adults' own perspectives towards their PA need to be addressed. The aim of this study was to explore the experiences of habitual physical activity in maintaining roles and functioning among older adult Palestinians ≥60 years. Data were collected through in-depth interviews based on a narrative approach. Seventeen participants were recruited (aged 64–84 years). Data were analyzed using a narrative interpretative method. Findings. Three central narratives were identified, “keep moving, stay healthy,” “social connectedness, a motive to stay active,” and “adapting strategies to age-related changes.” Conclusion. Habitual physical activity was perceived as an important factor to maintain functioning and to preserve active roles in older adults. Walking was the most prominent pattern of physical activity and it was viewed as a vital tool to maintain functioning among the older adults. Social connectedness was considered as a contributing factor to the status of staying active. To adapt the process of age-related changes in a context to stay active, the participants have used different adapting strategies, including protective strategy, awareness of own capabilities, and modifying or adopting new roles. PMID:28078141

  8. Experiences of physical activity during pregnancy resulting from in vitro fertilisation: an interpretative phenomenological analysis.

    PubMed

    Walker, Chloe; Mills, Hayley; Gilchrist, Angela

    2017-09-01

    To explore the qualitative experiences and decision-making processes surrounding physical activity (PA) for women who have undergone IVF treatment. PA during pregnancy is safe for both mother and fetus in the majority of cases, including for women who have undergone in vitro fertilisation (IVF) treatment; however, there is a paucity of research into decision-making and PA in this population. Eight women, who had undergone successful IVF treatment and were currently pregnant or had given birth within the last two years, participated in semi-structured interviews about their experiences of infertility and PA during pregnancy. Interview transcripts were analysed using interpretative phenomenological analysis. Three superordinate themes emerged from the data: 'navigating away from childlessness and towards motherhood', 'negotiating a safe passage' and 'balancing the challenges of pregnancy with the needs of the self'. Ten subthemes indicated the processes adopted to navigate experiences of infertility, the IVF process, and subsequent decision-making about PA during pregnancy. PA during pregnancy was experienced as a way to soothe the self and control the experience of pregnancy; however, this was mediated by concerns about safety and physical limitations on PA. Limitations of the study are considered, as well as implications for clinical practice and directions for future research.

  9. Lessons from the GP-B Experience for Future Fundamental Physics Missions in Space

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery

    2006-01-01

    Gravity Probe B launched in April 2004 and completed its science data collection in September 2005, with the objective of sub-milliarcsec measurement of two General Relativistic effects on the spin axis orientation of orbiting gyroscopes. Much of the technology required by GP-B has potential application in future missions intended to make precision measurements. The philosophical approach and experiment design principles developed for GP-B are equally adaptable to these mission concepts. This talk will discuss GP-B's experimental approach and the technological and philosophical lessons learned that apply to future experiments in fundamental physics. Measurement of fundamental constants to high precision, probes of short-range forces, searches for equivalence principle violations, and detection of gravitational waves are examples of concepts and missions that will benefit kern GP-B's experience.

  10. As-Run Physics Analysis for the UCSB-1 Experiment in the Advanced Test Reactor

    SciTech Connect

    Nielsen, Joseph Wayne

    2015-09-01

    The University of California Santa Barbara (UCSB) -1 experiment was irradiated in the A-10 position of the ATR. The experiment was irradiated during cycles 145A, 145B, 146A, and 146B. Capsule 6A was removed from the test train following Cycle 145A and replaced with Capsule 6B. This report documents the as-run physics analysis in support of Post-Irradiation Examination (PIE) of the test. This report documents the as-run fluence and displacements per atom (DPA) for each capsule of the experiment based on as-run operating history of the ATR. Average as-run heating rates for each capsule are also presented in this report tomore » support the thermal analysis.« less

  11. UV Radiation: a new first year physics/life sciences laboratory experiment

    NASA Astrophysics Data System (ADS)

    Petelina, S. V.; Siddaway, J. M.

    2010-12-01

    Unfortunately, Australia leads the world in the number of skin cancer cases per capita. Three major factors that contribute to this are: 1) the level of damaging ultraviolet (UV) radiation in Australia is higher than in many other countries. This is caused, among other factors, by the stratospheric ozone depletion and Antarctic ozone hole; 2) many people in Australia are of Irish-Scottish origin and their skin can not repair the damage caused by the UV radiation as effectively as the skin of people of other origins; 3) Australia is one of the world’s leaders in the outdoor activities where people tend to spend more time outside. As our experience has shown, most Australian University students, high school students, and even high school teachers were largely unaware of the UV damage details and effective safety measures. Therefore, a need for new ways to educate people became apparent. The general aim of this new 1st year laboratory experiment, developed and first offered at La Trobe University (Melbourne, Australia) in 2009, is to investigate how UV-B radiation levels change under various solar illumination conditions and how effective different types of protection are. After pre-lab readings on physical concepts and biological effects of UV radiation, and after solving all pre-lab problems, the students go outside and measure the actual change in UV-B and UV-A radiation levels under various conditions. Some of these conditions are: direct sun, shade from a building, shade under the roof, reflection from various surfaces, direct sun through cheap and expensive sunglasses and eyeglasses, direct sun through various types of cloth and hair. The equipment used is the UV-Probe manufactured by sglux SolGel Technologies GmbH. The students’ feedback on this new laboratory experiment was very positive. It was ranked top among all physics experiments offered as part of that subject (Physics for Life Sciences) in 2009 and top among all physics experiments presented for

  12. Perinatal Experiences of Women With Physical Disabilities and Their Recommendations for Clinicians

    PubMed Central

    Smeltzer, Suzanne C.; Mitra, Monika; Iezzoni, Lisa I.; Long-Bellil, Linda; Smith, Lauren D.

    2016-01-01

    Objective To explore the perinatal experiences of women with physical disabilities (WWPD) and their associated recommendations for maternity care clinicians to improve care. Design A mixed-method study was conducted using a semi-structured interview guide to identify the experiences of WWPD. This qualitative descriptive study is part of a larger study and was conducted to examine the perceptions of WWPD about their interactions with maternity care clinicians and their recommendations for maternity care clinicians to improve care. Participants Twenty-five women with physical disabilities who gave birth within the last 10 years and were 21–55 years of age were recruited and agreed to participate in the study. Methods Participants were asked about their interactions with clinicians during pregnancy and their recommendations for clinicians to improve perinatal care for women with physical disabilities. Transcribed interviews were analyzed using content analysis. Themes that emerged from analysis of the interviews were identified and coded. Kurasaski’s coding was used to establish the reliability of the coding. Results Three themes emerged from analysis of the interview data: clinicians’ lack of knowledge about pregnancy-related needs of WWPD; clinicians’ failure to consider knowledge, experience, and expertise of women about their own disabilities; and clinicians’ lack of awareness of reproductive concerns of WWPD. Women provided recommendations that warrant attention by clinicians who provide perinatal care for women who live with physical disabilities. Conclusion Participants experienced problematic interactions with clinicians related to pregnancy and identified recommendations for maternity care clinicians to address those problems with the goal of improving perinatal health care for WWPD. PMID:27619410

  13. Physics and biophysics experiments needed for improved risk assessment in space

    NASA Astrophysics Data System (ADS)

    Sihver, L.

    To improve the risk assessment of radiation carcinogenesis, late degenerative tissue effects, acute syndromes, synergistic effects of radiation and microgravity or other spacecraft factors, and hereditary effects, on future LEO and interplanetary space missions, the radiobiological effects of cosmic radiation before and after shielding must be well understood. However, cosmic radiation is very complex and includes low and high LET components of many different neutral and charged particles. The understanding of the radiobiology of the heavy ions, from GCRs and SPEs, is still a subject of great concern due to the complicated dependence of their biological effects on the type of ion and energy, and its interaction with various targets both outside and within the spacecraft and the human body. In order to estimate the biological effects of cosmic radiation, accurate knowledge of the physics of the interactions of both charged and non-charged high-LET particles is necessary. Since it is practically impossible to measure all primary and secondary particles from all projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes might be a helpful instrument to overcome those difficulties. These codes have to be carefully validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground-based accelerator experiments are needed. In this paper current and future physics and biophysics experiments needed for improved risk assessment in space will be discussed. The cyclotron HIRFL (heavy ion research facility in Lanzhou) and the new synchrotron CSR (cooling storage ring), which can be used to provide ion beams for space related experiments at the Institute of Modern Physics, Chinese Academy of Sciences (IMP-CAS), will be presented together with

  14. The Effects of Active Videogame Feedback and Practicing Experience on Children's Physical Activity Intensity and Enjoyment.

    PubMed

    Chen, Han; Sun, Haichun

    2017-08-01

    The study aims to explore the effects of receiving active videogame (AVG) feedback and playing experience on individuals' moderate-to-vigorous physical activity (MVPA) and perceived enjoyment. This was a within-subject design study. The participants included 36 (n = 15 and 21 for boys and girls, respectively) fourth graders enrolled in a rural elementary school in southern Georgia area. The experiment lasted for 6 weeks with each week including three sessions. The participants were assigned in either front row (sensor feedback) or back row (no sensor feedback) during practice, which was alternated in different sessions. Two different dance games were played during the study with each game implemented for 3 weeks. The MVPA was measured with GT3X+ accelerometers. Physical activity (PA) enjoyment was assessed after the completion of the first two and last two sessions of each game. A repeated one-way ANOVA (analysis of variance) was used to examine the effects of AVG feedback and game on MVPA. A repeated one-way MANOVA (multivariate analysis of variance) was conducted for each game to examine the effects of experience and AVG feedback on enjoyment and MVPA. No effects of AVG feedback were found for MVPA or enjoyment (P > 0.05). The effects of experience on MVPA were found for Just Dance Kids 2014 with experience decreased MVPA (P < 0.05). Students who practiced dance AVG without receiving feedback still demonstrated positive affection and accumulated similar MVPA than when practicing while receiving feedback. Experience for certain dance games tends to decrease PA intensity.

  15. Physically and sexually violent experiences of reproductive-aged women displaced by Hurricane Katrina.

    PubMed

    Picardo, Carla W; Burton, Shirley; Naponick, John

    2010-01-01

    Measure the frequency of physical and sexual abuse in a sample of reproductive aged women displaced by Hurricane Katrina, and compare those experiences to the year before Hurricane Katrina. Sixty-six English-speaking women aged 18-49 years residing in Louisiana Federal Emergency Management Agency (FEMA) housing were screened for physical and sexual abuse seven to nine months after Hurricane Katrina, using modified 30x7 cluster sampling methodology. Twenty-three percent (95% confidence interval [CI], 14, 34%) of women reported being hit or verbally threatened since Hurricane Katrina. Abuse had increased for 33% (95% CI, 13, 63%) and decreased for 13% (95% CI, 4, 37%) of women. Twenty percent (95% CI, 6, 51%) of abused women were with a new partner, while 13% (95% CI, 4, 39%) reported new abuse with the same partner. Four women reported sexual abuse since Hurricane Katrina. Compared to before the storm, the frequency of sexual abuse was the same for two women, and one reported new abuse with the same partner. Physical abuse was not uncommon among displaced women following Hurricane Katrina. Increasing and new abuse were the most commonly reported experiences. Violence against women should not be overlooked as a continued, and perhaps escalating, occurrence requiring attention following displacement after disasters of such magnitude as Hurricane Katrina.

  16. An investigation of how university sports team athletic therapists and physical therapists experience ethical issues.

    PubMed

    Riendeau, Catherine; Parent-Houle, Valérie; Lebel-Gabriel, Marie Eve; Gauvin, Patrick; Liu, Le Yu; Pearson, Isabelle; Hunt, Matthew R

    2015-03-01

    Qualitative study using interpretive description methodology. The purpose of this study was to better understand how ethical issues are experienced by university sports team athletic therapists and physical therapists. In clinical practice, sports teams are associated with a range of ethical issues. Issues commonly reported in the literature include confidentiality, return-to-play decisions, conflicts of interest, advertising, doping, and use of local anesthetic. To date, there has been limited examination of how athletic therapists and physical therapists involved with sports teams experience these ethical issues, and limited exploration of how these ethical issues, when encountered, are shaped by therapists' professional roles and responsibilities. Semi-structured interviews were conducted with 11 athletic or physical therapists working with sports teams in 5 Canadian provinces. The data were analyzed inductively, using a recursive approach and constant comparative techniques. Four key themes were developed relating to the participants' experiences of ethical issues: establishing and maintaining professional boundaries, striving for respectful and effective collaboration, seeking answers to ethical concerns, and living with the repercussions of challenging decisions. While many ethical issues reported by participants resemble those faced by sports medicine physicians, they are experienced in distinctive ways, due to differences in professional roles and identities. Issues concerning professional boundaries were also more prominent for the study participants than the literature has reported them to be for sports medicine physicians. Effective communication and enhanced collaboration appear to be key elements in managing these ethical challenges.

  17. Clinical reasoning of Filipino physical therapists: Experiences in a developing nation.

    PubMed

    Rotor, Esmerita R; Capio, Catherine M

    2018-03-01

    Clinical reasoning is essential for physical therapists to engage in the process of client care, and has been known to contribute to professional development. The literature on clinical reasoning and experiences have been based on studies from Western and developed nations, from which multiple influencing factors have been found. A developing nation, the Philippines, has distinct social, economic, political, and cultural circumstances. Using a phenomenological approach, this study explored experiences of Filipino physical therapists on clinical reasoning. Ten therapists working in three settings: 1) hospital; 2) outpatient clinic; and 3) home health were interviewed. Major findings were: a prescription-based referral system limited clinical reasoning; procedural reasoning was a commonly experienced strategy while diagnostic and predictive reasoning were limited; factors that influenced clinical reasoning included practice setting and the professional relationship with the referring physician. Physical therapists' responses suggested a lack of autonomy in practice that appeared to stifle clinical reasoning. Based on our findings, we recommend that the current regulations governing PT practice in the Philippines may be updated, and encourage educators to strengthen teaching approaches and strategies that support clinical reasoning. These recommendations are consistent with the global trend toward autonomous practice.

  18. GROWTH OF THE INTERNATIONAL CRITICALITY SAFETY AND REACTOR PHYSICS EXPERIMENT EVALUATION PROJECTS

    SciTech Connect

    J. Blair Briggs; John D. Bess; Jim Gulliford

    2011-09-01

    Since the International Conference on Nuclear Criticality Safety (ICNC) 2007, the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) have continued to expand their efforts and broaden their scope. Eighteen countries participated on the ICSBEP in 2007. Now, there are 20, with recent contributions from Sweden and Argentina. The IRPhEP has also expanded from eight contributing countries in 2007 to 16 in 2011. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments1' have increased from 442 evaluations (38000 pages), containing benchmark specifications for 3955 critical ormore » subcritical configurations to 516 evaluations (nearly 55000 pages), containing benchmark specifications for 4405 critical or subcritical configurations in the 2010 Edition of the ICSBEP Handbook. The contents of the Handbook have also increased from 21 to 24 criticality-alarm-placement/shielding configurations with multiple dose points for each, and from 20 to 200 configurations categorized as fundamental physics measurements relevant to criticality safety applications. Approximately 25 new evaluations and 150 additional configurations are expected to be added to the 2011 edition of the Handbook. Since ICNC 2007, the contents of the 'International Handbook of Evaluated Reactor Physics Benchmark Experiments2' have increased from 16 different experimental series that were performed at 12 different reactor facilities to 53 experimental series that were performed at 30 different reactor facilities in the 2011 edition of the Handbook. Considerable effort has also been made to improve the functionality of the searchable database, DICE (Database for the International Criticality Benchmark Evaluation Project) and verify the accuracy of the data contained therein. DICE will be discussed in separate papers at ICNC 2011. The status of the ICSBEP and

  19. Physical and mechanical restraint in psychiatric units: Perceptions and experiences of nursing staff.

    PubMed

    Vedana, Kelly Graziani Giacchero; da Silva, Danielle Maria; Ventura, Carla Aparecida Arena; Giacon, Bianca Cristina Ciccone; Zanetti, Ana Carolina Guidorizzi; Miasso, Adriana Inocenti; Borges, Tatiana Longo

    2018-06-01

    Physical restraint in psychiatric units is a common practice but extremely controversial and poorly evaluated by methodologically appropriate investigations. The cultural issues and professionals' perceptions and attitudes are substantial contributors to the frequency of restraint that tend to be elevated. Aim In this qualitative study, we aimed to understand the experiences and perceptions of nursing staff regarding physical restraint in psychiatric units. Through theoretical sampling, 29 nurses from two Brazilian psychiatric units participated in the study. Data were collected from 2014 to 2016 from individual interviews and analyzed through thematic analysis, employing theoretical presuppositions of symbolic interactionism. Physical restraint was considered unpleasant, challenging, risky, and associated with dilemmas and conflicts. The nursing staff was often exposed to the risks and injuries related to restraint. Professionals sought strategies to reduce restraint-related damages, but still considered it necessary due to the lack of effective options to control aggressive behavior. This study provides additional perspectives about physical restraint and reveals the need for safer, humanized and appropriate methods for the care of aggressive patients that consider the real needs and rights of these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Daily Interpersonal Experience Partially Explains the Association Between Social Rank and Physical Health.

    PubMed

    Cundiff, Jenny M; Kamarck, Thomas W; Manuck, Stephen B

    2016-12-01

    Socioeconomic position is a well-established risk factor for poor physical health. This study examines whether the effects of lower social rank on physical health may be accounted for by differences in daily social experience. In a large community sample (N = 475), we examined whether subjective social rank is associated with self-rated health, in part, through positive and negative perceptions of daily interpersonal interactions, assessed using ecological momentary assessment. Higher social rank was associated with higher average perceived positivity of social interactions in daily life (e.g., B = .18, p < .001), but not with perceived negativity of social interactions. Further, the association between social rank and self-rated physical health was partially accounted for by differences in perceived positivity of social interactions. This effect was independent of well-characterized objective markers of SES and personality traits. Differences in the quality of day-to-day social interactions is a viable pathway linking lower social rank to poorer physical health.

  1. A model independent search for new physics in final states containing leptons at the DO experiment

    NASA Astrophysics Data System (ADS)

    Piper, Joel M.

    The standard model is known to be the low energy limit of a more general theory. Several consequences of the standard model point to a strong probability of new physics becoming experimentally visible in high energy collisions of a few TeV, resulting in high momentum objects. The specific signatures of these collisions are topics of much debate. Rather than choosing a specific signature, this analysis broadly searches the data, preferring breadth over sensitivity. In searching for new physics, several different approaches are used. These include the comparison of data with standard model background expectation in overall number of events, comparisons of distributions of many kinematic variables, and finally comparisons on the tails of distributions that sum the momenta of the objects in an event. With 1.07 fb-1 at the DO experiment, we find no evidence of physics beyond the standard model. Several discrepancies from the standard model were found, but none of these provide a compelling case for new physics.

  2. Monolithic circuits for barium fluoride detectors used in nuclear physics experiments. CRADA final report

    SciTech Connect

    Varner, R.L.; Blankenship, J.L.; Beene, J.R.

    1998-02-01

    Custom monolithic electronic circuits have been developed recently for large detector applications in high energy physics where subsystems require tens of thousands of channels of signal processing and data acquisition. In the design and construction of these enormous detectors, it has been found that monolithic circuits offer significant advantages over discrete implementations through increased performance, flexible packaging, lower power and reduced cost per channel. Much of the integrated circuit design for the high energy physics community is directly applicable to intermediate energy heavy-ion and electron physics. This STTR project conducted in collaboration with researchers at the Holifield Radioactive Ion Beammore » Facility (HRIBF) at Oak Ridge National Laboratory, sought to develop a new integrated circuit chip set for barium fluoride (BaF{sub 2}) detector arrays based upon existing CMOS monolithic circuit designs created for the high energy physics experiments. The work under the STTR Phase 1 demonstrated through the design, simulation, and testing of several prototype chips the feasibility of using custom CMOS integrated circuits for processing signals from BaF{sub 2} detectors. Function blocks including charge-sensitive amplifiers, comparators, one shots, time-to-amplitude converters, analog memory circuits and buffer amplifiers were implemented during Phase 1 effort. Experimental results from bench testing and laboratory testing with sources were documented.« less

  3. Medical physics staffing for radiation oncology: a decade of experience in Ontario, Canada

    PubMed Central

    Battista, Jerry J.; Patterson, Michael S.; Beaulieu, Luc; Sharpe, Michael B.; Schreiner, L. John; MacPherson, Miller S.; Van Dyk, Jacob

    2012-01-01

    The January 2010 articles in The New York Times generated intense focus on patient safety in radiation treatment, with physics staffing identified frequently as a critical factor for consistent quality assurance. The purpose of this work is to review our experience with medical physics staffing, and to propose a transparent and flexible staffing algorithm for general use. Guided by documented times required per routine procedure, we have developed a robust algorithm to estimate physics staffing needs according to center‐specific workload for medical physicists and associated support staff, in a manner we believe is adaptable to an evolving radiotherapy practice. We calculate requirements for each staffing type based on caseload, equipment inventory, quality assurance, educational programs, and administration. Average per‐case staffing ratios were also determined for larger‐scale human resource planning and used to model staffing needs for Ontario, Canada over the next 10 years. The workload specific algorithm was tested through a survey of Canadian cancer centers. For center‐specific human resource planning, we propose a grid of coefficients addressing specific workload factors for each staff group. For larger scale forecasting of human resource requirements, values of 260, 700, 300, 600, 1200, and 2000 treated cases per full‐time equivalent (FTE) were determined for medical physicists, physics assistants, dosimetrists, electronics technologists, mechanical technologists, and information technology specialists, respectively. PACS numbers: 87.55.N‐, 87.55.Qr PMID:22231223

  4. Medical physics staffing for radiation oncology: a decade of experience in Ontario, Canada.

    PubMed

    Battista, Jerry J; Clark, Brenda G; Patterson, Michael S; Beaulieu, Luc; Sharpe, Michael B; Schreiner, L John; MacPherson, Miller S; Van Dyk, Jacob

    2012-01-05

    The January 2010 articles in The New York Times generated intense focus on patient safety in radiation treatment, with physics staffing identified frequently as a critical factor for consistent quality assurance. The purpose of this work is to review our experience with medical physics staffing, and to propose a transparent and flexible staffing algorithm for general use. Guided by documented times required per routine procedure, we have developed a robust algorithm to estimate physics staffing needs according to center-specific workload for medical physicists and associated support staff, in a manner we believe is adaptable to an evolving radiotherapy practice. We calculate requirements for each staffing type based on caseload, equipment inventory, quality assurance, educational programs, and administration. Average per-case staffing ratios were also determined for larger-scale human resource planning and used to model staffing needs for Ontario, Canada over the next 10 years. The workload specific algorithm was tested through a survey of Canadian cancer centers. For center-specific human resource planning, we propose a grid of coefficients addressing specific workload factors for each staff group. For larger scale forecasting of human resource requirements, values of 260, 700, 300, 600, 1200, and 2000 treated cases per full-time equivalent (FTE) were determined for medical physicists, physics assistants, dosimetrists, electronics technologists, mechanical technologists, and information technology specialists, respectively.

  5. Accelerator Technology and High Energy Physics Experiments, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonicselectronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].

  6. Large-N Seismic Deployment at the Source Physics Experiment (SPE) Site

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.; Mellors, R. J.; Pitarka, A.

    2015-12-01

    The Source Physics Experiment (SPE) is multi-institutional and multi-disciplinary project that consists of a series of chemical explosion experiments at the Nevada National Security Site. The goal of SPE is to understand the complicated effect of earth structures on source energy partitioning and seismic wave propagation, develop and validate physics-based monitoring, and ultimately better discriminate low-yield nuclear explosions from background seismicity. Deployment of a large number of seismic sensors is planned for SPE to image the full 3-D wavefield with about 500 three-component sensors and 500 vertical component sensors. This large-N seismic deployment will operate near the site of SPE-5 shot for about one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources. This presentation focuses on the design of the large-N seismic deployment. We show how we optimized the sensor layout based on the geological structure and experiment goals with a limited number of sensors. In addition, we will also show some preliminary record sections from deployment. This work was conducted under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.

  7. Stroke Survivors' Experiences of Physical Rehabilitation: A Systematic Review of Qualitative Studies.

    PubMed

    Luker, Julie; Lynch, Elizabeth; Bernhardsson, Susanne; Bennett, Leanne; Bernhardt, Julie

    2015-09-01

    To report and synthesize the perspectives, experiences, and preferences of stroke survivors undertaking inpatient physical rehabilitation through a systematic review of qualitative studies. MEDLINE, CINAHL, Embase, and PsycINFO were searched from database inception to February 2014. Reference lists of relevant publications were searched. All languages were included. Qualitative studies reporting stroke survivors' experiences of inpatient stroke rehabilitation were selected independently by 2 reviewers. The search yielded 3039 records; 95 full-text publications were assessed for eligibility, and 32 documents (31 studies) were finally included. Comprehensiveness and explicit reporting were assessed independently by 2 reviewers using the consolidated criteria for reporting qualitative research framework. Discrepancies were resolved by consensus. Data regarding characteristics of the included studies were extracted by 1 reviewer, tabled, and checked for accuracy by another reviewer. All text reported in studies' results sections were entered into qualitative data management software for analysis. Extracted texts were inductively coded and analyzed in 3 phases using thematic synthesis. Nine interrelated analytical themes, with descriptive subthemes, were identified that related to issues of importance to stroke survivors: (1) physical activity is valued; (2) bored and alone; (3) patient-centered therapy; (4) recreation is also rehabilitation; (5) dependency and lack of control; (6) fostering autonomy; (7) power of communication and information; (8) motivation needs nurturing; and (9) fatigue can overwhelm. The thematic synthesis provides new insights into stroke survivors' experiences of inpatient rehabilitation. Negative experiences were reported in all studies and include disempowerment, boredom, and frustration. Rehabilitation could be improved by increasing activity within formal therapy and in free time, fostering patients' autonomy through genuinely patient

  8. Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments

    NASA Astrophysics Data System (ADS)

    Kheswa, N. Y.; Papka, P.; Buthelezi, E. Z.; Lieder, R. M.; Neveling, R.; Newman, R. T.

    2010-02-01

    This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ( natCa), lithium-6 ( 6Li) and molybdenum-97 ( 97Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.

  9. Physical and mental health costs of traumatic war experiences among Civil War veterans.

    PubMed

    Pizarro, Judith; Silver, Roxane Cohen; Prause, JoAnn

    2006-02-01

    Hundreds of thousands of soldiers face exposure to combat during wars across the globe. The health effects of traumatic war experiences have not been adequately assessed across the lifetime of these veterans. To identify the role of traumatic war experiences in predicting postwar nervous and physical disease and mortality using archival data from military and medical records of veterans from the Civil War. An archival examination of military and medical records of Civil War veterans was conducted. Degree of trauma experienced (prisoner-of-war experience, percentage of company killed, being wounded, and early age at enlistment), signs of lifetime physician-diagnosed disease, and age at death were recorded. The US Pension Board surgeons conducted standardized medical examinations of Civil War veterans over their postwar lifetimes. Military records of 17,700 Civil War veterans were matched to postwar medical records. Signs of physician-diagnosed disease, including cardiac, gastrointestinal, and nervous disease; number of unique ailments within each disease; and mortality. Military trauma was related to signs of disease and mortality. A greater percentage of company killed was associated with signs of postwar cardiac and gastrointestinal disease (incidence risk ratio [IRR], 1.34; P < .02), comorbid nervous and physical disease (IRR, 1.51; P < .005), and more unique ailments within each disease (IRR, 1.14; P < .005). Younger soldiers (<18 years), compared with older enlistees (>30 years), showed a higher mortality risk (hazard ratio, 1.52), signs of comorbid nervous and physical disease (IRR, 1.93), and more unique ailments within each disease (IRR, 1.32) (P < .005 for all), controlling for time lived and other covariates. Greater exposure to death of military comrades and younger exposure to war trauma were associated with increased signs of physician-diagnosed cardiac, gastrointestinal, and nervous disease and more unique disease ailments across the life of Civil War

  10. Physics of Hard Spheres Experiment (PhaSE) or "Making Jello in Space"

    NASA Technical Reports Server (NTRS)

    Ling, Jerri S.; Doherty, Michael P.

    1998-01-01

    The Physics of Hard Spheres Experiment (PHaSE) is a highly successful experiment that flew aboard two shuttle missions to study the transitions involved in the formation of jellolike colloidal crystals in a microgravity environment. A colloidal suspension, or colloid, consists of fine particles, often having complex interactions, suspended in a liquid. Paint, ink, and milk are examples of colloids found in everyday life. In low Earth orbit, the effective force of gravity is thousands of times less than at the Earth's surface. This provides researchers a way to conduct experiments that cannot be adequately performed in an Earth-gravity environment. In microgravity, colloidal particles freely interact without the complications of settling that occur in normal gravity on Earth. If the particle interactions within these colloidal suspensions could be predicted and accurately modeled, they could provide the key to understanding fundamental problems in condensed matter physics and could help make possible the development of wonderful new "designer" materials. Industries that make semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. Atomic interactions determine the physical properties (e.g., weight, color, and hardness) of ordinary matter. PHaSE uses colloidal suspensions of microscopic solid plastic spheres to model the behavior of atomic interactions. When uniformly sized hard spheres suspended in a fluid reach a certain concentration (volume fraction), the particle-fluid mixture changes from a disordered fluid state, in which the spheres are randomly organized, to an ordered "crystalline" state, in which they are structured periodically. The thermal energy of the spheres causes them to form ordered arrays, analogous to crystals. Seven of the eight PHaSE samples ranged in volume fraction from 0.483 to 0.624 to cover the range of interest, while one sample, having a concentration of 0.019, was included for

  11. User experiences of mobile controlled games for activation, rehabilitation and recreation of elderly and physically impaired.

    PubMed

    Sirkka, Andrew; Merilampi, Sari; Koivisto, Antti; Leinonen, Markus; Leino, Mirka

    2012-01-01

    The purpose of this paper was to study how aged people experience mobile controlled game as a method of rehabilitation and recreation. The target group contained persons 70+ years of age living in assisted living conditions (N=34). The average age of the participants was 85.9 years. Women (n=17) and men (n=17) were equally presented in the sample group. Only 12 % (n=4) of participants were involved in an active weekly-based rehabilitation, light physical sitting exercises 38% (n=13). Three (n=3) of the participants (9%) used computers (net banking), and 20 (59%) used mobile phones on daily basis. Social activities and physical activation seem to be rather inadequate and traditional in assisted living organizations. The overall experiences of mobile controlled game described in this paper appeared to be a successful experiment also proving that the elderly are not as reluctant to use technical devices or playing virtual games as often thought. The game was reckoned very motivating, interesting, and entertaining both by the aged and the staff. Activation, rehabilitation and recreation in the elderly homes or assisted living organizations could benefit from utilization of new technology providing new ways and solutions that motivate the users and offer also possibilities for measuring and follow-up of the physical impacts. The future goals to improve the game were set according to the feedback given in this survey: a) wider variety of controlling modes for the game, b) developing various difficulty levels, c) developing the game to support different kinds of body movements, d) easily modified according to the individual user's exercising or rehabilitation needs as well as e) emphasizing the social aspects of the game by producing multiplayer versions.

  12. The experience of emotional wellbeing for patients with physical injury: A qualitative follow-up study.

    PubMed

    Wiseman, Taneal; Foster, Kim; Curtis, Kate

    2016-09-01

    Traumatic physical injury is abrupt, painful, debilitating, costly and life-altering. The experience of emotional wellbeing following traumatic physical injury has not been well investigated, and the role of health services and how services can support the emotional recovery of injured patients has not been well understood. This has impacted on care provision and contributed to a lack of evidence-informed guidance for clinicians to support patients' emotional wellbeing. To explore the patient experience of emotional wellbeing following injury and to understand how injured patients manage their emotional wellbeing. The study comprises the follow-up qualitative phase of a mixed-methods explanatory sequential study. Semi-structured interviews were conducted with a purposive sample of 14 participants admitted to hospital following physical injury. Participants were purposely selected where they had reported high levels of depression, anxiety and stress on the DASS-21 at 3 and 6-months after injury. The qualitative data were analysed using thematic analysis. Three main themes were identified: experiencing the many impacts of injury; facing the emotional journey following injury; and being supported and managing the impacts of injury. Key findings were the extreme negative emotional responses experienced many months after the injury; a strong physical link between the emotional and physical aspects of health; participant reluctance to seek emotional support; a lack of emotional support provision by the health service and a subsequent need for individual and group support in order to develop resilience in the injured person. Finally, male participants who reported extreme emotional responses after injury, including suicidality, were less likely to seek help for their symptoms. Injured patients can experience substantial negative emotional responses following injury. The lack of support provided by health services to injured patients identified highlights the importance of

  13. Striving to be in the profession and of It: the African American experience in physical education and kinesiology.

    PubMed

    Wiggins, David K; Wiggins, Brenda P

    2011-06-01

    This study analyzes the experiences of African Americans in the physical education and kinesiology profession since the late 1850s. Using a variety of primary and secondary source material, we place special emphasis on the experiences of African American physical educators in higher education and in the American Alliance for Health, Physical Education, Recreation and Dance and its southern, regional, and state chapters. Apparent from this examination is that African Americans have experienced various forms of racially discriminatory practices in physical education and kinesiology and have found it extraordinarily difficult to assume leader ship positions in the profession and be acknowledged for their scholarly and academic accomplishments.

  14. Localization and physical properties experiments conducted by Spirit at Gusev crater

    USGS Publications Warehouse

    Arvidson, R. E.; Anderson, R.C.; Bartlett, P.; Bell, J.F.; Blaney, D.; Christensen, P.R.; Chu, P.; Crumpler, L.; Davis, K.; Ehlmann, B.L.; Fergason, R.; Golombek, M.P.; Gorevan, S.; Grant, J. A.; Greeley, R.; Guinness, E.A.; Haldemann, A.F.C.; Herkenhoff, K.; Johnson, J.; Landis, G.; Li, R.; Lindemann, R.; McSween, H.; Ming, D. W.; Myrick, T.; Richter, L.; Seelos, F.P.; Squyres, S. W.; Sullivan, R.J.; Wang, A.; Wilson, Jim

    2004-01-01

    The precise location and relative elevation of Spirit during its traverses from the Columbia Memorial station to Bonneville crater were determined with bundle-adjusted retrievals from rover wheel turns, suspension and tilt angles, and overlapping images. Physical properties experiments show a decrease of 0.2% per Mars solar day in solar cell output resulting from deposition of airborne dust, cohesive soil-like deposits in plains and hollows, bright and dark rock coatings, and relatively weak volcanic rocks of basaltic composition. Volcanic, impact, aeolian, and water-related processes produced the encountered landforms and materials.

  15. Localization and physical properties experiments conducted by Spirit at Gusev Crater.

    PubMed

    Arvidson, R E; Anderson, R C; Bartlett, P; Bell, J F; Blaney, D; Christensen, P R; Chu, P; Crumpler, L; Davis, K; Ehlmann, B L; Fergason, R; Golombek, M P; Gorevan, S; Grant, J A; Greeley, R; Guinness, E A; Haldemann, A F C; Herkenhoff, K; Johnson, J; Landis, G; Li, R; Lindemann, R; McSween, H; Ming, D W; Myrick, T; Richter, L; Seelos, F P; Squyres, S W; Sullivan, R J; Wang, A; Wilson, J

    2004-08-06

    The precise location and relative elevation of Spirit during its traverses from the Columbia Memorial station to Bonneville crater were determined with bundle-adjusted retrievals from rover wheel turns, suspension and tilt angles, and overlapping images. Physical properties experiments show a decrease of 0.2% per Mars solar day in solar cell output resulting from deposition of airborne dust, cohesive soil-like deposits in plains and hollows, bright and dark rock coatings, and relatively weak volcanic rocks of basaltic composition. Volcanic, impact, aeolian, and water-related processes produced the encountered landforms and materials.

  16. Manifestations of the rotation and gravity of the Earth in high-energy physics experiments

    NASA Astrophysics Data System (ADS)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2016-08-01

    The inertial (due to rotation) and gravitational fields of the Earth affect the motion of an elementary particle and its spin dynamics. This influence is not negligible and should be taken into account in high-energy physics experiments. Earth's influence is manifest in perturbations in the particle motion, in an additional precession of the spin, and in a change of the constitutive tensor of the Maxwell electrodynamics. Bigger corrections are oscillatory, and their contributions average to zero. Other corrections due to the inhomogeneity of the inertial field are not oscillatory but they are very small and may be important only for the storage ring electric dipole moment experiments. Earth's gravity causes the Newton-like force, the reaction force provided by a focusing system, and additional torques acting on the spin. However, there are no observable indications of the electromagnetic effects due to Earth's gravity.

  17. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.

    1981-01-01

    In evaluating the effects of spacecraft motions on atmospheric cloud physics laboratory (ACPL) experimentation, the motions of concern are those which will result in the movement of the fluid or cloud particles within the experiment chambers. Of the various vehicle motions and residual forces which can and will occur, three types appear most likely to damage the experimental results: non-steady rotations through a large angle, long-duration accelerations in a constant direction, and vibrations. During the ACPL ice crystal growth experiments, the crystals are suspended near the end of a long fiber (20 cm long by 200 micron diameter) of glass or similar material. Small vibrations of the supported end of the fiber could cause extensive motions of the ice crystal, if care is not taken to avoid this problem.

  18. A distributed, graphical user interface based, computer control system for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  19. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  20. Institute of Theoretical and Experimental Physics (ITEP, Moscow) in the H1 experiment

    SciTech Connect

    Efremenko, V. I.

    A group of researchers from the Institute of Theoretical and Experimental Physics (ITEP, Moscow) took part at almost all stages of the H1 experiment performed at the HERA collider (Hamburg) in order to study lepton-proton interactions at high energies. Several subdetectors of the H1 detector were developed, designed, and constructed at the ITEP industrial workshop and domestic enterprises. In particular, the ITEP staff participated in assembling and tunning the equipment, servicing the detector and the data acquisition system, and analyzing and presenting the results. Researchers from ITEP have been playing a crucial role at many stages of the experiment tomore » the present day.« less

  1. How far do EPR-Bell experiments constrain physical collapse theories?

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2007-03-01

    A class of theories alternative to standard quantum mechanics, including that of Ghirardi et al ('GRWP'), postulates that when a quantum superposition becomes amplified to the point that the superposed states reach some level of 'macroscopic distinctness', then some non-quantum-mechanical principle comes into play and realizes one or other of the two macroscopic outcomes. Without specializing to any particular theory of this class, I ask how far such 'macrorealistic' theories are generically constrained, if one insists that the physical reduction process should respect Einstein locality, by the results of existing EPR-Bell experiments. I conclude that provided one does not demand that the prescription for reduction respects Lorentz invariance, at least some theories of this type, while in principle inevitably making some predictions that conflict with those of standard quantum mechanics, are not refuted by any existing experiment.

  2. Manifestations of classical physics in the quantum evolution of correlated spin states in pulsed NMR experiments.

    PubMed

    Ligare, Martin

    2016-05-01

    Multiple-pulse NMR experiments are a powerful tool for the investigation of molecules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi-classical vector representations. In this paper I present a new way in which to interpret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identically to those of classical moments. Pictorial representations of these classically evolving states provide a way to calculate the time evolution of ensembles of weakly coupled spins without the full machinery of quantum mechanics, offering insight to anyone who understands precession of magnetic moments in magnetic fields.

  3. A distributed, graphical user interface based, computer control system for atomic physics experiments.

    PubMed

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  4. 3-D High-Lift Flow-Physics Experiment - Transition Measurements

    NASA Technical Reports Server (NTRS)

    McGinley, Catherine B.; Jenkins, Luther N.; Watson, Ralph D.; Bertelrud, Arild

    2005-01-01

    An analysis of the flow state on a trapezoidal wing model from the NASA 3-D High Lift Flow Physics Experiment is presented. The objective of the experiment was to characterize the flow over a non-proprietary semi-span three-element high-lift configuration to aid in assessing the state of the art in the computation of three-dimensional high-lift flows. Surface pressures and hot-film sensors are used to determine the flow conditions on the slat, main, and flap. The locations of the attachments lines and the values of the attachment line Reynolds number are estimated based on the model surface pressures. Data from the hot-films are used to determine if the flow is laminar, transitional, or turbulent by examining the hot-film time histories, statistics, and frequency spectra.

  5. Pupils’ and teachers’ experiences of school-based physical education: a qualitative study

    PubMed Central

    Lewis, Kiara

    2014-01-01

    Objectives To explore pupils’ and teachers’ experiences of physical education (PE). Study design A qualitative investigation employing semistructured interviews. Self Determination Theory was used as a guiding theory and Template Analysis was used to analyse the data. Setting A secondary school in the North East of England. Participants 14 pupils (aged 13 and 14, boys and girls) with a range of self-perceived competencies regarding PE and four PE teachers of the pupils (3 male, 1 female). Primary and secondary outcomes (1) Attitudes and perceptions of PE pupils regarding their experiences of compulsory school PE lessons. (2) PE teachers’ experiences of teaching PE. Results Key results from pupils and teachers suggest pupils enjoy participation in PE when they feel competent, in control and supported by others. Feeling competent depended on (1) the activity within PE and (2) the pupils perceived physical capabilities/aptitude. Feeling in control related to (1) having a choice of activities, (2) being able to set exertion levels and (3) control over clothes worn while taking part. Relationships within pupil groups and between pupils and teachers were perceived as important. Teachers could positively influence their pupils’ enjoyment by understanding and supporting their personal goals, as opposed to dictating and controlling what they did and for how long, and by promoting a non-threatening atmosphere between pupils. Conclusions Rising obesity levels and concerns over the fitness of children and young people has returned the focus of PE to its potential as a vehicle for promoting health. This study suggests schools and PE teachers in particular can positively influence the PE experience of both boys and girls by providing more choice of activities and letting pupils make their own decisions based on their personal needs. PMID:25227625

  6. The MØLLER experiment at Jefferson Lab: search for physics beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    van Oers, Willem T. H.

    2010-07-01

    The MO/LLER experiment at Jefferson Lab will measure the parity-violating analyzing power Az in the scattering of 11 GeV longitudinally polarized electrons from the atomic electrons in a liquid hydrogen target (Mo/ller scattering). In the Standard Model a non-zero Az is due to the interference of the electromagnetic amplitude and the weak neutral current amplitude, the latter mediated by the Z0 boson. Az is predicted to be 35.6 parts per billion (ppb) at the kinematics of the experiment. It is the objective of the experiment to measure Az to a precision of 0.73 ppb. This result would yield a measurement of the weak charge of the electron QWe to a fractional error of 2.3% at an average value Q2 of 0.0056 (GeV/c)2. This in turn will yield a determination of the weak mixing angle sin2θw with an uncertainty of ±0.00026(stat) ±0.00013(syst), comparable to the accuracy of the two best determinations at high energy colliders (at the Z0 pole). Consequently, the result could potentially influence the central value of this fundamental electroweak parameter, which is of critical importance in deciphering any signal of new physics that might be observed at the Large Hadron Collider (LHC). The measurement is sensitive to the interference of the electromagnetic amplitude with new neutral current amplitudes as weak as 10-3 GF from as yet unknown high energy dynamics, a level of sensitivity unlikely to be matched in any experiment measuring a flavor and CP conserving process in the next decade. This provides indirect access to new physics at multi-TeV scales in a manner complementary to direct searches at the LHC.

  7. Common Problems with Pyrometry at Shock Physics Experiments and How to Avoid Them

    NASA Astrophysics Data System (ADS)

    Seifter, Achim; Obst, Andrew; Holtkamp, David

    2007-06-01

    Temperature is not only one of the most prominent parameters in shock physics experiments but also very hard to determine experimentally. Only a few techniques are available because of difficulties due to the short timescale and often very low temperatures. Pyrometry is the most portable of these techniques but has to deal with some problems which give rise to uncertainties. Only if the experiment is designed very carefully some of these difficulties like background radiation from high explosive burn products, muzzle flash or laser light can be avoided. Other problems like spatial temperature non-uniformities or thermal radiation from a transparent anvil are inherent to the experiment and cannot be avoided. By choosing the proper spectral range covered by the pyrometer and fitting the obtained spectral radiance traces with appropriate models meaningful results can be obtained. In this paper we will describe the most important points to be taken into account when designing the experiment, present considerations for choosing the wavelength range of the pyrometer and show data where spatial non uniformities or radiation from hot anvils occurred and temperature data could still be obtained.

  8. The Capabilities of the upgraded MIPP experiment with respect to Hypernuclear physics

    SciTech Connect

    Raja, Rajendran

    2012-01-01

    We describe the state of analysis of the MIPP experiment, its plans to upgrade the experiment and the impact such an upgraded experiment will have on hypernuclear physics. The upgraded MIPP experiment is designed to measure the properties of strong interaction spectra form beams {pi}{sup {+-}}, K{sup {+-}}, and p{sup {+-}}, for momenta ranging from 1 GeV/c to 120 GeV/c. The layout of the apparatus in the data taken so far can be seen in Figure 1. The centerpiece of the experiment is the time projection chamber, which is followed by the time of flight counter, a multi-cell Cerenkov detectormore » and the RICH detector. The TPC can identify charged particles with momenta less than 1 GeV/c using dE/dx, the time of flight will identify particles below approximately 2 GeV/c, the multi-cell Cerenkov detector is operational from 2.5 GeV/c to 14 GeV/c and the RICH detector can identify particles up to 120 GeVc. Following this is an EM and hadronic calorimeter capable of detecting forward going neutrons and photons. The experiment has been busy analyzing its data taken on various nuclei and beam conditions. The table 2 shows the data taken by MIPP I to date. We have almost complete acceptance in the forward hemisphere in the lab using the TPC. The reconstruction capabilities of the TPC can be seen in Figure 3. The particle identification capabilities of the TPC can be seen in Figure 4. The time of flight system provides further measurement of the particles with momenta less than 2 GeV/c. Figure 5 shows the time of flight data where a kaon peak is clearly visible.« less

  9. Barriers and facilitators to participation in physical activity: The experiences of a group of South African adolescents with cerebral palsy.

    PubMed

    Conchar, Lauren; Bantjes, Jason; Swartz, Leslie; Derman, Wayne

    2016-02-01

    Participation in regular physical activity promotes physical health and psychosocial well-being. Interventions are thus needed to promote physical activity, particularly among groups of individuals, such as persons with disability, who are marginalised from physical activity. This study explored the experiences of a group of South African adolescents with cerebral palsy. In-depth semi-structured interviews were conducted with 15 adolescents with cerebral palsy. The results provided insight into a range of factors that promote and hinder participation in physical activity among adolescents with cerebral palsy in resource-scarce environments. © The Author(s) 2014.

  10. Development of Thermal Radiation Experiments Kit Based on Data Logger for Physics Learning Media

    NASA Astrophysics Data System (ADS)

    Permana, H.; Iswanto, B. H.

    2018-04-01

    Thermal Radiation Experiments Kit (TREK) based on data logger for physics learning media was developed. TREK will be used as a learning medium on the subject of Temperature and Heat to explain the concept of emissivity of a material in grade XI so that it can add variations of experiments which are commonly done such as thermal expansion, transfer of thermal energy (conduction, convection, and radiation), and specific heat capacity. DHT11 sensor is used to measure temperature and microcontroller Arduino-uno used as data logger. The object tested are in the form of coated glass thin films and aluminum with different colors. TREK comes with a user manual and student worksheet (LKS) to make it easier for teachers and students to use. TREK was developed using the ADDIE Development Model (Analyze, Design, Development, Implementation, and Evaluation). And validated by experts, physics teachers, and students. Validation instrument is a questionnaire with a five-item Likert response scale with reviewed aspect coverage: appropriate content and concepts, design, and user friendly. The results showed that TREK was excellent (experts 88.13%, science teachers 95.68%, and students 85.77%).

  11. Forward and small-x QCD physics results from CMS experiment at LHC

    SciTech Connect

    Cerci, Deniz Sunar, E-mail: deniz.sunar.cerci@cern.ch

    2016-03-25

    The Compact Muon Solenoid (CMS) is one of the two large, multi-purpose experiments at the Large Hadron Collider (LHC) at CERN. During the Run I Phase a large pp collision dataset has been collected and the CMS collaboration has explored measurements that shed light on a new era. Forward and small-x quantum chromodynamics (QCD) physics measurements with CMS experiment covers a wide range of physics subjects. Some of highlights in terms of testing the very low-x QCD, underlying event and multiple interaction characteristics, photon-mediated processes, jets with large rapidity separation at high pseudo-rapidities and the inelastic proton-proton cross section dominatedmore » by diffractive interactions are presented. Results are compared to Monte Carlo (MC) models with different parameter tunes for the description of the underlying event and to perturbative QCD calculations. The prominent role of multi-parton interactions has been confirmed in the semihard sector but no clear deviation from the standard Dglap parton evolution due to Bfkl has been observed. An outlook to the prospects at 13 TeV is given.« less

  12. Work Optimization Predicts Accretionary Faulting: An Integration of Physical and Numerical Experiments

    NASA Astrophysics Data System (ADS)

    McBeck, Jessica A.; Cooke, Michele L.; Herbert, Justin W.; Maillot, Bertrand; Souloumiac, Pauline

    2017-09-01

    We employ work optimization to predict the geometry of frontal thrusts at two stages of an evolving physical accretion experiment. Faults that produce the largest gains in efficiency, or change in external work per new fault area, ΔWext/ΔA, are considered most likely to develop. The predicted thrust geometry matches within 1 mm of the observed position and within a few degrees of the observed fault dip, for both the first forethrust and backthrust when the observed forethrust is active. The positions of the second backthrust and forethrust that produce >90% of the maximum ΔWext/ΔA also overlap the observed thrusts. The work optimal fault dips are within a few degrees of the fault dips that maximize the average Coulomb stress. Slip gradients along the detachment produce local elevated shear stresses and high strain energy density regions that promote thrust initiation near the detachment. The mechanical efficiency (Wext) of the system decreases at each of the two simulated stages of faulting and resembles the evolution of experimental force. The higher ΔWext/ΔA due to the development of the first pair relative to the second pair indicates that the development of new thrusts may lead to diminishing efficiency gains as the wedge evolves. The numerical estimates of work consumed by fault propagation overlap the range calculated from experimental force data and crustal faults. The integration of numerical and physical experiments provides a powerful approach that demonstrates the utility of work optimization to predict the development of faults.

  13. The Deep Underground Neutrino Experiment: The precision era of neutrino physics

    SciTech Connect

    Kemp, E.

    The last decade was remarkable for neutrino physics. In particular, the phenomenon of neutrino flavor oscillations has been firmly established by a series of independent measurements. All parameters of the neutrino mixing are now known, and we have the elements to plan a judicious exploration of new scenarios that are opened by these recent advances. With precise measurements, we can test the three-neutrino paradigm, neutrino mass hierarchy, and charge conjugation parity (CP) asymmetry in the lepton sector. The future long-baseline experiments are considered to be a fundamental tool to deepen our knowledge of electroweak interactions. The Deep Underground Neutrino Experimentmore » (DUNE) will detect a broadband neutrino beam from Fermilab in an underground massive liquid argon time-projection chamber at an L/E of about 103 km GeV-1 to reach good sensitivity for CP-phase measurements and the determination of the mass hierarchy. The dimensions and the depth of the far detector also create an excellent opportunity to look for rare signals like proton decay to study violation of the baryonic number, as well as supernova neutrino bursts, broadening the scope of the experiment to astrophysics and associated impacts in cosmology. In this paper, we discuss the physics motivations and the main experimental features of the DUNE project required to reach its scientific goals.« less

  14. Empowering children with special educational needs to speak up: experiences of inclusive physical education.

    PubMed

    Coates, Janine; Vickerman, Philip

    2010-01-01

    The inclusion of children with special educational needs (SEN) has risen up the political agenda since the return of the Labour Government in 1997. This has seen increasing numbers of children with SEN being educated within mainstream schools. This study examines the perspectives of children with SEN attending both mainstream and special schools in relation to their experiences of physical education (PE). Findings demonstrate that children with SEN in both mainstream and special schools enjoy PE, although issues were raised in mainstream schools regarding bullying and the appropriateness of activities in PE lessons. The findings show how children offered suggestions about how to improve PE and make it more beneficial. The findings identify how children are empowered through consultation, and are aware of their needs and abilities. As such it is evident that schools and those supporting inclusive physical activity for children with SEN must use consultation as a tool for empowering pupils as a means of providing them with choices while gaining a rich insight into their lived experiences of PE.

  15. The Physics of Hard Spheres Experiment on MSL-1: Required Measurements and Instrument Performance

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Lant, Christian T.; Ling, Jerri S.

    1998-01-01

    The Physics of HArd Spheres Experiment (PHaSE), one of NASA Lewis Research Center's first major light scattering experiments for microgravity research on complex fluids, flew on board the Space Shuttle's Microgravity Science Laboratory (MSL-1) in 1997. Using colloidal systems of various concentrations of micron-sized plastic spheres in a refractive index-matching fluid as test samples, illuminated by laser light during and after crystallization, investigations were conducted to measure the nucleation and growth rate of colloidal crystals as well as the structure, rheology, and dynamics of the equilibrium crystal. Together, these measurements support an enhanced understanding of the nature of the liquid-to-solid transition. Achievement of the science objectives required an accurate experimental determination of eight fundamental properties for the hard sphere colloidal samples. The instrument design met almost all of the original measurement requirements, but with compromise on the number of samples on which data were taken. The instrument performs 2-D Bragg and low angle scattering from 0.4 deg. to 60 deg., dynamic and single-channel static scattering from 10 deg. to 170 deg., rheology using fiber optics, and white light imaging of the sample. As a result, PHaSE provided a timely microgravity demonstration of critical light scattering measurement techniques and hardware concepts, while generating data already showing promise of interesting new scientific findings in the field of condensed matter physics.

  16. Heavy-ion physics with the ALICE experiment at the CERN Large Hadron Collider.

    PubMed

    Schukraft, J

    2012-02-28

    After close to 20 years of preparation, the dedicated heavy-ion experiment A Large Ion Collider Experiment (ALICE) took first data at the CERN Large Hadron Collider (LHC) accelerator with proton collisions at the end of 2009 and with lead nuclei at the end of 2010. After a short introduction into the physics of ultra-relativistic heavy-ion collisions, this article recalls the main design choices made for the detector and summarizes the initial operation and performance of ALICE. Physics results from this first year of operation concentrate on characterizing the global properties of typical, average collisions, both in proton-proton (pp) and nucleus-nucleus reactions, in the new energy regime of the LHC. The pp results differ, to a varying degree, from most quantum chromodynamics-inspired phenomenological models and provide the input needed to fine tune their parameters. First results from Pb-Pb are broadly consistent with expectations based on lower energy data, indicating that high-density matter created at the LHC, while much hotter and larger, still behaves like a very strongly interacting, almost perfect liquid.

  17. Bicycle boulevards and changes in physical activity and active transportation: findings from a natural experiment.

    PubMed

    Dill, Jennifer; McNeil, Nathan; Broach, Joseph; Ma, Liang

    2014-12-01

    This study evaluates changes in physical activity and active transportation associated with installation of new bicycle boulevards. This natural experiment study uses data from a longitudinal panel of adults with children (n=353) in Portland, OR. Activity and active transportation outcomes were measured with GPS and accelerometers worn for up to 5 days in 2010-11 and 2012-13. The effect of the treatment was estimated using difference in differences estimation and multivariate regression models. In five of the seven models, the interaction term was not significant, indicating that after controlling for the main effects of time and exposure separately, there was no correlation between being in a treatment area and minutes of moderate and vigorous physical activity (MVPA) per day, bicycling >10 min, walking >20 min, minutes of walking (if >20), or making a bike trip. Significant covariates included rain, being female, living closer to downtown, and attitudes towards bicycling, walking, and car safety. This study could not confirm an increase in physical activity or active transportation among adults with children living near newly installed bicycle boulevards. Additional pre/post studies are encouraged, as well as research on the length of time after installation that behavior change is likely to occur. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Gravity beyond Einstein? Part I: Physics and the Trouble with Experiments

    NASA Astrophysics Data System (ADS)

    Hauser, Jochem; Dröscher, Walter

    2017-05-01

    This article provides a review of the latest experimental results in quantum physics and astrophysics, discussing their repercussions on the advanced physical theories that go beyond both the SMs (standard models) of particle physics and cosmology. It will be shown that many of the essential concepts of the advanced theoretical models developed over the past 40 years are no longer tenable because they are contradicting the novel data. Most recent results (December 2016) from the Large Hadron Collider revealed no new matter particles up to particle masses of 1.6 TeV/c2, which is in accordance with recent ACME experimental data (2014) that saw no electric dipole moment for the electron as predicted by these theories. Moreover, the LUX experiment (since 2013) did not see any dark matter particles either, thus independently supporting LHC and ACME measurements. Furthermore, experimental particle physics seems to be telling us that dark matter particles (LHC results) do not exist, suggesting that dark matter particles either are more exotic or are more difficult to detect than had been predicted in the past decades (less likely with recent LHC results). Astrophysical observations since 1933, starting with Caltech astronomer Zwicky, however, have provided irrefutable evidence for the existence of dark matter, for instance, based on the phenomenon of gravitational lensing as well as observed rotational velocities of stars orbiting the galactic center that are deviating from Newton's law. Surprisingly, recent astronomical observations by Bidin, ESO (2010, 2012, 2014), seem to indicate the absence of dark matter within galaxies. In addition, cosmology at present has no explanation for about 68 % of the energy in the Universe that comes in the form of dark energy. Recently, measured data from three entirely different types of experiments both on earth and in space (2006-2011) are hinting at completely novel features of gravity that, if confirmed, must be outside Einstein

  19. NIMROD simulations and physics assessment of possible designs for a next generation Steady Inductive Helicity Injection HIT device

    NASA Astrophysics Data System (ADS)

    Penna, James; Morgan, Kyle; Grubb, Isaac; Jarboe, Thomas

    2017-10-01

    The Helicity Injected Torus - Steady Inductive 3 (HIT-SI3) experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI) using discrete injectors that inject magnetic helicity via a non-axisymmetric perturbation and drive toroidally symmetric current. Newer designs for larger SIHI-driven spheromaks incorporate a set of injectors connected to a single external manifold to allow more freedom for the toroidal structure of the applied perturbation. Simulations have been carried out using the NIMROD code to assess the effectiveness of various imposed mode structures and injector schema in driving current via Imposed Dynamo Current Drive (IDCD). The results are presented here for varying flux conserver shapes on a device approximately 1.5 times larger than the current HIT-SI3 experiment. The imposed mode structures and spectra of simulated spheromaks are analyzed in order to examine magnetic structure and stability and determine an optimal regime for IDCD sustainment in a large device. The development of scaling laws for manifold operation is also presented, and simulation results are analyzed and assessed as part of the development path for the large scale device.

  20. Antenatal physical activity: a qualitative study exploring women's experiences and the acceptability of antenatal walking groups.

    PubMed

    Currie, Sinéad; Gray, Cindy; Shepherd, Ashley; McInnes, Rhona J

    2016-07-22

    Regular physical activity (PA) can be beneficial to pregnant women, however, many women do not adhere to current PA guidelines during the antenatal period. Patient and public involvement is essential when designing antenatal PA interventions in order to uncover the reasons for non-adherence and non-engagement with the behaviour, as well as determining what type of intervention would be acceptable. The aim of this research was to explore women's experiences of PA during a recent pregnancy, understand the barriers and determinants of antenatal PA and explore the acceptability of antenatal walking groups for further development. Seven focus groups were undertaken with women who had given birth within the past five years. Focus groups were transcribed and analysed using a grounded theory approach. Relevant and related behaviour change techniques (BCTs), which could be applied to future interventions, were identified using the BCT taxonomy. Women's opinions and experiences of PA during pregnancy were categorised into biological/physical (including tiredness and morning sickness), psychological (fear of harm to baby and self-confidence) and social/environmental issues (including access to facilities). Although antenatal walking groups did not appear popular, women identified some factors which could encourage attendance (e.g. childcare provision) and some which could discourage attendance (e.g. walking being boring). It was clear that the personality of the walk leader would be extremely important in encouraging women to join a walking group and keep attending. Behaviour change technique categories identified as potential intervention components included social support and comparison of outcomes (e.g. considering pros and cons of behaviour). Women's experiences and views provided a range of considerations for future intervention development, including provision of childcare, involvement of a fun and engaging leader and a range of activities rather than just walking