Science.gov

Sample records for sphingomyelins

  1. Regulation of sphingomyelin metabolism.

    PubMed

    Bienias, Kamil; Fiedorowicz, Anna; Sadowska, Anna; Prokopiuk, Sławomir; Car, Halina

    2016-06-01

    Sphingolipids (SFs) represent a large class of lipids playing diverse functions in a vast number of physiological and pathological processes. Sphingomyelin (SM) is the most abundant SF in the cell, with ubiquitous distribution within mammalian tissues, and particularly high levels in the Central Nervous System (CNS). SM is an essential element of plasma membrane (PM) and its levels are crucial for the cell function. SM content in a cell is strictly regulated by the enzymes of SM metabolic pathways, which activities create a balance between SM synthesis and degradation. The de novo synthesis via SM synthases (SMSs) in the last step of the multi-stage process is the most important pathway of SM formation in a cell. The SM hydrolysis by sphingomyelinases (SMases) increases the concentration of ceramide (Cer), a bioactive molecule, which is involved in cellular proliferation, growth and apoptosis. By controlling the levels of SM and Cer, SMSs and SMases maintain cellular homeostasis. Enzymes of SM cycle exhibit unique properties and diverse tissue distribution. Disturbances in their activities were observed in many CNS pathologies. This review characterizes the physiological roles of SM and enzymes controlling SM levels as well as their involvement in selected pathologies of the Central Nervous System, such as ischemia/hypoxia, Alzheimer disease (AD), Parkinson disease (PD), depression, schizophrenia and Niemann Pick disease (NPD). Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Molecular packing in sphingomyelin bilayers and sphingomyelin/phospholid mixtures

    NASA Astrophysics Data System (ADS)

    Byström, Tomas; Lindblom, Göran

    2003-07-01

    The molecular packing properties of sphingomyelin (SM) from egg yolk were studied. The influence of the spontaneous curvature of SM on the phase behaviour of SM/dodecane/water systems was investigated. A comparison was made to a previous study by Lindblom et al. (Liq. Cryst. 3 (1988) 783), of the phase behaviour of dipalmitoylphosphatidylcholine (DPPC)/dodecane/water systems, where a reversed hexagonal liquid crystalline was shown to form at high water contents (60-80%, w/w). In contrast, SM/dodecane/water systems mainly maintained a lamellar liquid crystalline phase at all compositions and temperatures >35 °C. This suggests that the spontaneous curvature of SM is larger than for DPPC. To further examine the packing properties of SM and DPPC, the phase behaviour of SM/dioleoylphosphatidylethanolamine (DOPE)/water and DPPC/DOPE/water systems were investigated. Aqueous dispersions of DOPE normally form a reversed hexagonal liquid crystalline phase, while an isotropic phase was formed at small additions (20 mol.%) of SM or DPPC and a lamellar liquid crystalline phase was maintained at higher fractions (>35 mol.%) of SM or DPPC.

  3. Cellular and enzymic synthesis of sphingomyelin.

    PubMed

    Voelker, D R; Kennedy, E P

    1982-05-25

    The synthesis of sphingomyelin was studied in baby hamster kidney cells and in subcellular fractions derived from rat liver. During pulse-chase experiments with [3H]choline in tissue culture cells, the specific radioactivity of sphingomyelin continued to increase after the specific activities of phosphocholine and cytidine 5'-diphosphate choline (CDP-choline) had declined by a factor of 10. The addition of [3H]methionine to cells that were grown in 1 mM dimethylethanolamine efficiently radiolabeled phosphatidylcholine (by methylation of phosphatidyldimethylethanolamine) and sphingomyelin but not phosphocholine or CDP-choline. Thus, the proximal donor of the phosphocholine moiety of sphingomyelin was not CDP-choline but probably phosphatidylcholine. These in vivo results prompted investigation of the enzymic synthesis using phosphatidyl[3H]choline or [3H]ceramide as substrates. With both substrates the subcellular fraction with the highest specific enzyme activity was the plasma membrane. When phosphatidyl[3H]choline was used as the substrate, phospholipid exchange proteins were included in the reaction to effect the transfer of the labeled phospholipid from liposomes into the membrane bilayer in which the enzyme resided. Under these conditions the synthesis of sphingomyelin was almost completely dependent upon the addition of phospholipid exchange proteins. When [3H]ceramide was used as the substrate, the addition of detergents was necessary for sphingomyelin synthesis. The use of phospholipid exchange proteins to introduce lipid substrates to membrane-bound enzymes may have much broader applicability.

  4. Structure of Sphingomyelin Bilayers: A Simulation Study

    PubMed Central

    Chiu, S. W.; Vasudevan, S.; Jakobsson, Eric; Mashl, R. Jay; Scott, H. Larry

    2003-01-01

    We have carried out a molecular dynamics simulation of a hydrated 18:0 sphingomyelin lipid bilayer. The bilayer contained 1600 sphingomyelin (SM) molecules, and 50,592 water molecules. After construction and initial equilibration, the simulation was run for 3.8 ns at a constant temperature of 50°C and a constant pressure of 1 atm. We present properties of the bilayer calculated from the simulation, and compare with experimental data and with properties of dipalmitoyl phosphatidylcholine (DPPC) bilayers. The SM bilayers are significantly more ordered and compact than DPPC bilayers at the same temperature. SM bilayers also exhibit significant intramolecular hydrogen bonding between phosphate ester oxygen and hydroxyl hydrogen atoms. This results in a decreased hydration in the polar region of the SM bilayer compared with DPPC. Since our simulation system is very large we have calculated the power spectrum of bilayer undulation and peristaltic modes, and we compare these data with similar calculations for DPPC bilayers. We find that the SM bilayer has significantly larger bending modulus and area compressibility compared to DPPC. PMID:14645055

  5. New method for determining lecithin and sphingomyelin in amniotic fluid.

    PubMed

    McDonald, L J; Robin, N I; Siegel, L

    1981-03-01

    We describe a new method of complete analysis for lecithin, lysolecithin, and sphingomyelin in amniotic fluid. The analysis is based on alkaline hydrolysis of the lecithins and the enzymic hydrolysis of sphingomyelin. The choline formed in each instance is enzymically phosphorylated with [gamma-32P]ATP to yield [gamma-32P]phosphorylcholine, which is isolated by anion-exchange chromatography and shown to be stoichiometrically related to lecithin, lysolecithin, and sphingomyelin. Other phospholipids do not interfere. Using this methodology, we developed three potential approaches to the assessment of fetal lung maturity: the ratio of lecithin plus lysolecithin (total lecithin) to sphingomyelin, the total lecithin concentration, and total lecithin as a percentage of total amniotic fluid phospholipids. All three indices were compared with the lecithin/sphingomyelin ratio obtained by a chromatographic procedure. Our data suggest that measuring the percentage of total lecithin may provide the best means of evaluating fetal lung maturity, but a final judgment must await clinical investigation.

  6. ATPase activity of human ABCG1 is stimulated by cholesterol and sphingomyelin[S

    PubMed Central

    Hirayama, Hiroshi; Kimura, Yasuhisa; Kioka, Noriyuki; Matsuo, Michinori; Ueda, Kazumitsu

    2013-01-01

    ATP-binding cassette protein G1 (ABCG1) is important for the formation of HDL. However, the biochemical properties of ABCG1 have not been reported, and the mechanism of how ABCG1 is involved in HDL formation remains unclear. We established a procedure to express and purify human ABCG1 using the suspension-adapted human cell FreeStyle293-F. ABCG1, fused at the C terminus with green fluorescent protein and Flag-peptide, was solubilized with n-dodecyl-β-D-maltoside and purified via a single round of Flag-M2 antibody affinity chromatography. The purified ABCG1 was reconstituted in liposome of various lipid compositions, and the ATPase activity was analyzed. ABCG1 reconstituted in egg lecithin showed ATPase activity (150 nmol/min/mg), which was inhibited by beryllium fluoride. The ATPase activity of ABCG1, reconstituted in phosphatidylserine liposome, was stimulated by cholesterol and choline phospholipids (especially sphingomyelin), and the affinity for cholesterol was increased by the addition of sphingomyelin. These results suggest that ABCG1 is an active lipid transporter and possesses different binding sites for cholesterol and sphingomyelin, which may be synergistically coupled. PMID:23172659

  7. Characterization of the association of Electrophorus electricus acetylcholinesterase with sphingomyelin liposomes. Relevance to collagen-sphingomyelin interactions.

    PubMed

    Cohen, R; Barenholz, Y

    1984-11-21

    Electrophorus electricus acetylcholinesterase is a large polymorphic enzyme. Its native forms 18 S, 14 S and 8.5 S possess a tail having a collagen-like structure. It was suggested that this tail is involved in the anchorage of the enzyme at the terminal of the synapse. Watkins et al. [1] showed that all forms of the enzyme having a collagen segment also bind to sphingomyelin liposomes with almost no binding to phosphatidylcholine (PC) liposomes. In agreement with the above results, the binding of acetylcholinesterase reported here was independent of the following liposomal parameters (a) curvature, (b) the physical state of the bilayer, (c) the gel to liquid crystalline phase transition of sphingomyelin, (d) stereospecificity of the sphingomyelin, (e) acyl chain of the sphingomyelin. The binding was reduced with increasing PC content in sphingomyelin vesicles. The binding has no effect on the bilayer integrity. The enzymatic activity can be released from the vesicles by incubation with collagenase. The association of the enzyme with the liposomes had minimal effect on its kinetic parameters (Km, Vmax). The only detectable effect was increasing enzyme stability at low enzyme concentration. This suggested that the binding of the enzyme to sphingomyelin liposomes reduced its surface denaturation. Such association was not unique to acetylcholinesterase since collagen showed similar behavior. Collagen binding to sphingomyelin liposomes was 5-10-times larger than to PC liposomes. The exact details of the interaction of collagen and collagen-like peptides with sphingomyelin bilayers are yet unknown although it differs from the well documented hydrophobic or electrostatic interactions [7]. This work proposes hydrogen bonding as a third mechanism which involves the interface region of sphingolipids molecules and the collagen or collagen-like tail of acetylcholinesterase. This binding is also of interest due to its correlation to the accumulation of sphingomyelin and

  8. Sphingomyelin induces structural alteration in canine parvovirus capsid.

    PubMed

    Pakkanen, Kirsi; Karttunen, Jenni; Virtanen, Salla; Vuento, Matti

    2008-03-01

    One of the essential steps in canine parvovirus (CPV) infection, the release from endosomal vesicles, is dominated by interactions between the virus capsid and the endosomal membranes. In this study, the effect of sphingomyelin and phosphatidyl serine on canine parvovirus capsid and on the phospholipase A(2) (PLA(2)) activity of CPV VP1 unique N-terminus was analyzed. Accordingly, a significant (P< or =0.05) shift of tryptophan fluorescence emission peak was detected at pH 5.5 in the presence of sphingomyelin, whereas at pH 7.4 a similar but minor shift was observed. This effect may relate to the exposure of VP1 N-terminus in acidic pH as well as to interactions between sphingomyelin and CPV. When the phenomenon was further characterized using circular dichroism spectroscopy, differences in CPV capsid CD spectra with and without sphingomyelin and phosphatidyl serine were detected, corresponding to data obtained with tryptophan fluorescence. However, when the enzymatic activity of CPV PLA(2) was tested in the presence of sphingomyelin, no significant effect in the function of the enzyme was detected. Thus, the structural changes observed with spectroscopic techniques appear not to manipulate the activity of CPV PLA(2), and may therefore implicate alternative interactions between CPV capsid and sphingomyelin.

  9. Inhibition of endothelial lipase activity by sphingomyelin in the lipoproteins

    PubMed Central

    Yang, Peng; Belikova, Natalia A.; Billheimer, Jeff; Rader, Daniel J.; Hill, John S.; Subbaiah, Papasani V.

    2014-01-01

    Endothelial lipase (EL) is a major determinant of plasma HDL concentration, its activity being inversely proportional to HDL levels. Although it is known that it preferentially acts on HDL, compared to LDL and VLDL, the basis for this specificity is not known. Here we tested the hypothesis that sphingomyelin, a major phospholipid in lipoproteins is a physiological inhibitor of EL, and that the preference of the enzyme for HDL may be due to low sphingomyelin/ phosphatidylcholine (PtdCho) ratio in HDL, compared to other lipoproteins. Using recombinant human EL, we showed that sphingomyelin inhibits the hydrolysis of PtdCho in the liposomes in a concentration-dependent manner. While the enzyme showed lower hydrolysis of LDL PtdCho, compared to HDL PtdCho, this difference disappeared after the degradation of lipoprotein sphingomyelin by bacterial sphingomyelinase. Analysis of molecular species of PtdCho hydrolyzed by EL in the lipoproteins showed that the enzyme preferentially hydrolyzed PtdCho containing polyunsaturated fatty acids (PUFA) such as 22:6, 20:5, 20:4 at sn-2 position, generating the corresponding PUFA-lyso PtdCho. This specificity for PUFA-PtdCho species was not observed after depletion of sphingomyelin by sphingomyelinase. These results show that sphingomyelin not only plays a role in regulating EL activity, but also influences its specificity towards PtdCho species. PMID:25167836

  10. Inhibition of endothelial lipase activity by sphingomyelin in the lipoproteins.

    PubMed

    Yang, Peng; Belikova, Natalia A; Billheimer, Jeff; Rader, Daniel J; Hill, John S; Subbaiah, Papasani V

    2014-10-01

    Endothelial lipase (EL) is a major determinant of plasma HDL concentration, its activity being inversely proportional to HDL levels. Although it is known that it preferentially acts on HDL compared to LDL and VLDL, the basis for this specificity is not known. Here we tested the hypothesis that sphingomyelin, a major phospholipid in lipoproteins is a physiological inhibitor of EL, and that the preference of the enzyme for HDL may be due to low sphingomyelin/phosphatidylcholine (PtdCho) ratio in HDL, compared to other lipoproteins. Using recombinant human EL, we showed that sphingomyelin inhibits the hydrolysis of PtdCho in the liposomes in a concentration-dependent manner. While the enzyme showed lower hydrolysis of LDL PtdCho, compared to HDL PtdCho, this difference disappeared after the degradation of lipoprotein sphingomyelin by bacterial sphingomyelinase. Analysis of molecular species of PtdCho hydrolyzed by EL in the lipoproteins showed that the enzyme preferentially hydrolyzed PtdCho containing polyunsaturated fatty acids (PUFA) such as 22:6, 20:5, 20:4 at the sn-2 position, generating the corresponding PUFA-lyso PtdCho. This specificity for PUFA-PtdCho species was not observed after depletion of sphingomyelin by sphingomyelinase. These results show that sphingomyelin not only plays a role in regulating EL activity, but also influences its specificity towards PtdCho species.

  11. The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration-from cell and animal models to human disorders.

    PubMed

    Taniguchi, Makoto; Okazaki, Toshiro

    2014-05-01

    Sphingomyelin constitutes membrane microdomains such as lipid raft, caveolae, and clathrin-coated pits and implicates in the regulation of trans-membrane signaling. On the other hand, sphingomyelin emerges as an important molecule to generate bioactive sphingolipids through ceramide. Sphingomyelin synthase is an enzyme that generates sphingomyelin and diacylglycerol from phosphatidylcholine and ceramide. Although ceramide has a well-known role as a lipid mediator to regulate cell death and survival, the only known biological role of sphingomyelin regulated by sphingomyelin synthases was limited to being a source of bioactive lipids. Here, we describe the basic characters of sphingomyelin synthases and discuss additional roles for sphingomyelin and sphingomyelin synthase in biological functions including cell migration, apoptosis, autophagy, and cell survival/proliferation as well as in human disorders such as cancer and cardiovascular disorders. It is expected that a better understanding of the role of sphingomyelin regulated by sphingomyelin synthase will shed light on new mechanisms in cell biology, physiology and pathology. In the future, novel therapeutic procedures for currently incurable diseases could be developed through modifying the function of not only sphingolipids, such as sphingomyelin and ceramide, but also of their regulatory enzymes. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.

  12. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure

    PubMed Central

    Corcelle-Termeau, Elisabeth; Vindeløv, Signe Diness; Hämälistö, Saara; Mograbi, Baharia; Keldsbo, Anne; Bräsen, Jan Hinrich; Favaro, Elena; Adam, Dieter; Szyniarowski, Piotr; Hofman, Paul; Krautwald, Stefan; Farkas, Thomas; Petersen, Nikolaj H.T.; Rohde, Mikkel; Linkermann, Andreas; Jäättelä, Marja

    2016-01-01

    ABSTRACT Sphingomyelin is an essential cellular lipid that traffics between plasma membrane and intracellular organelles until directed to lysosomes for SMPD1 (sphingomyelin phosphodiesterase 1)-mediated degradation. Inactivating mutations in the SMPD1 gene result in Niemann-Pick diseases type A and B characterized by sphingomyelin accumulation and severely disturbed tissue homeostasis. Here, we report that sphingomyelin overload disturbs the maturation and closure of autophagic membranes. Niemann-Pick type A patient fibroblasts and SMPD1-depleted cancer cells accumulate elongated and unclosed autophagic membranes as well as abnormally swollen autophagosomes in the absence of normal autophagosomes and autolysosomes. The immature autophagic membranes are rich in WIPI2, ATG16L1 and MAP1LC3B but display reduced association with ATG9A. Contrary to its normal trafficking between plasma membrane, intracellular organelles and autophagic membranes, ATG9A concentrates in transferrin receptor-positive juxtanuclear recycling endosomes in SMPD1-deficient cells. Supporting a causative role for ATG9A mistrafficking in the autophagy defect observed in SMPD1-deficient cells, ectopic ATG9A effectively reverts this phenotype. Exogenous C12-sphingomyelin induces a similar juxtanuclear accumulation of ATG9A and subsequent defect in the maturation of autophagic membranes in healthy cells while the main sphingomyelin metabolite, ceramide, fails to revert the autophagy defective phenotype in SMPD1-deficient cells. Juxtanuclear accumulation of ATG9A and defective autophagy are also evident in tissues of smpd1-deficient mice with a subsequent inability to cope with kidney ischemia-reperfusion stress. These data reveal sphingomyelin as an important regulator of ATG9A trafficking and maturation of early autophagic membranes. PMID:27070082

  13. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  14. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  15. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  16. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  17. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  18. Sphingomyelin Synthase 1-generated Sphingomyelin Plays an Important Role in Transferrin Trafficking and Cell Proliferation*

    PubMed Central

    Shakor, Abo Bakr Abdel; Taniguchi, Makoto; Kitatani, Kazuyuki; Hashimoto, Mayumi; Asano, Satoshi; Hayashi, Akira; Nomura, Kenichi; Bielawski, Jacek; Bielawska, Alicja; Watanabe, Ken; Kobayashi, Toshihide; Igarashi, Yasuyuki; Umehara, Hisanori; Takeya, Hiroyuki; Okazaki, Toshiro

    2011-01-01

    Transferrin (Tf) endocytosis and recycling are essential for iron uptake and the regulation of cell proliferation. Tf and Tf receptor (TfR) complexes are internalized via clathrin-coated pits composed of a variety of proteins and lipids and pass through early endosomes to recycling endosomes. We investigated the role of sphingomyelin (SM) synthases (SMS1 and SMS2) in clathrin-dependent trafficking of Tf and cell proliferation. We employed SM-deficient lymphoma cells that lacked SMSs and that failed to proliferate in response to Tf. Transfection of SMS1, but not SMS2, enabled these cells to incorporate SM into the plasma membrane, restoring Tf-mediated proliferation. SM-deficient cells showed a significant reduction in clathrin-dependent Tf uptake compared with the parental SM-producing cells. Both SMS1 gene transfection and exogenous short-chain SM treatment increased clathrin-dependent Tf uptake in SM-deficient cells, with the Tf being subsequently sorted to Rab11-positive recycling endosomes. We observed trafficking of the internalized Tf to late/endolysosomal compartments, and this was not dependent on the clathrin pathway in SM-deficient cells. Thus, SMS1-mediated SM synthesis directs Tf-TfR to undergo clathrin-dependent endocytosis and recycling, promoting the proliferation of lymphoma cells. PMID:21856749

  19. Deficiency of sphingomyelin synthase-1 but not sphingomyelin synthase-2 causes hearing impairments in mice

    PubMed Central

    Lu, Mei-Hong; Takemoto, Makoto; Watanabe, Ken; Luo, Huan; Nishimura, Masataka; Yano, Masato; Tomimoto, Hidekazu; Okazaki, Toshiro; Oike, Yuichi; Song, Wen-Jie

    2012-01-01

    Sphingomyelin (SM) is a sphingolipid reported to function as a structural component of plasma membranes and to participate in signal transduction. The role of SM metabolism in the process of hearing remains controversial. Here, we examined the role of SM synthase (SMS), which is subcategorized into the family members SMS1 and SMS2, in auditory function. Measurements of auditory brainstem response (ABR) revealed hearing impairment in SMS1−/− mice in a low frequency range (4–16 kHz). As a possible mechanism of this impairment, we found that the stria vascularis (SV) in these mice exhibited atrophy and disorganized marginal cells. Consequently, SMS1−/− mice exhibited significantly smaller endocochlear potentials (EPs). As a possible mechanism for EP reduction, we found altered expression patterns and a reduced level of KCNQ1 channel protein in the SV of SMS1−/− mice. These mice also exhibited reduced levels of distortion product otoacoustic emissions. Quantitative comparison of the SV atrophy, KCNQ1 expression, and outer hair cell density at the cochlear apical and basal turns revealed no location dependence, but more macrophage invasion into the SV was observed in the apical region than the basal region, suggesting a role of cochlear location-dependent oxidative stress in producing the frequency dependence of hearing loss in SMS1−/− mice. Elevated ABR thresholds, decreased EPs, and abnormal KCNQ1 expression patterns in SMS1−/− mice were all found to be progressive with age. Mice lacking SMS2, however, exhibited neither detectable hearing loss nor changes in their EPs. Taken together, our results suggest that hearing impairments occur in SMS1−/− but not SMS2−/− mice. Defects in the SV with subsequent reductions in EPs together with hair cell dysfunction may account, at least partially, for hearing impairments in SMS1−/− mice. PMID:22641779

  20. Deficiency of sphingomyelin synthase-1 but not sphingomyelin synthase-2 causes hearing impairments in mice.

    PubMed

    Lu, Mei-Hong; Takemoto, Makoto; Watanabe, Ken; Luo, Huan; Nishimura, Masataka; Yano, Masato; Tomimoto, Hidekazu; Okazaki, Toshiro; Oike, Yuichi; Song, Wen-Jie

    2012-08-15

    Sphingomyelin (SM) is a sphingolipid reported to function as a structural component of plasma membranes and to participate in signal transduction. The role of SM metabolism in the process of hearing remains controversial. Here, we examined the role of SM synthase (SMS), which is subcategorized into the family members SMS1 and SMS2, in auditory function. Measurements of auditory brainstem response (ABR) revealed hearing impairment in SMS1−/− mice in a low frequency range (4–16 kHz). As a possible mechanism of this impairment, we found that the stria vascularis (SV) in these mice exhibited atrophy and disorganized marginal cells. Consequently, SMS1−/− mice exhibited significantly smaller endocochlear potentials (EPs). As a possible mechanism for EP reduction, we found altered expression patterns and a reduced level of KCNQ1 channel protein in the SV of SMS1−/− mice. These mice also exhibited reduced levels of distortion product otoacoustic emissions. Quantitative comparison of the SV atrophy, KCNQ1 expression, and outer hair cell density at the cochlear apical and basal turns revealed no location dependence, but more macrophage invasion into the SV was observed in the apical region than the basal region, suggesting a role of cochlear location-dependent oxidative stress in producing the frequency dependence of hearing loss in SMS1−/− mice. Elevated ABR thresholds, decreased EPs, and abnormal KCNQ1 expression patterns in SMS1−/− mice were all found to be progressive with age. Mice lacking SMS2, however, exhibited neither detectable hearing loss nor changes in their EPs. Taken together, our results suggest that hearing impairments occur in SMS1−/− but not SMS2−/− mice. Defects in the SV with subsequent reductions in EPs together with hair cell dysfunction may account, at least partially, for hearing impairments in SMS1−/− mice.

  1. Sphingomyelin Synthase 1 Is Essential for Male Fertility in Mice.

    PubMed

    Wittmann, Anke; Grimm, Marcus O W; Scherthan, Harry; Horsch, Marion; Beckers, Johannes; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Ford, Steven J; Burton, Neal C; Razansky, Daniel; Trümbach, Dietrich; Aichler, Michaela; Walch, Axel Karl; Calzada-Wack, Julia; Neff, Frauke; Wurst, Wolfgang; Hartmann, Tobias; Floss, Thomas

    2016-01-01

    Sphingolipids and the derived gangliosides have critical functions in spermatogenesis, thus mutations in genes involved in sphingolipid biogenesis are often associated with male infertility. We have generated a transgenic mouse line carrying an insertion in the sphingomyelin synthase gene Sms1, the enzyme which generates sphingomyelin species in the Golgi apparatus. We describe the spermatogenesis defect of Sms1-/- mice, which is characterized by sloughing of spermatocytes and spermatids, causing progressive infertility of male homozygotes. Lipid profiling revealed a reduction in several long chain unsaturated phosphatidylcholins, lysophosphatidylcholins and sphingolipids in the testes of mutants. Multi-Spectral Optoacoustic Tomography indicated blood-testis barrier dysfunction. A supplementary diet of the essential omega-3 docosahexaenoic acid and eicosapentaenoic acid diminished germ cell sloughing from the seminiferous epithelium and restored spermatogenesis and fertility in 50% of previously infertile mutants. Our findings indicate that SMS1 has a wider than anticipated role in testis polyunsaturated fatty acid homeostasis and for male fertility.

  2. Sphingomyelin Synthase 1 Is Essential for Male Fertility in Mice

    PubMed Central

    Scherthan, Harry; Horsch, Marion; Beckers, Johannes; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Ford, Steven J.; Burton, Neal C.; Razansky, Daniel; Trümbach, Dietrich; Aichler, Michaela; Walch, Axel Karl; Calzada-Wack, Julia; Neff, Frauke; Wurst, Wolfgang; Hartmann, Tobias; Floss, Thomas

    2016-01-01

    Sphingolipids and the derived gangliosides have critical functions in spermatogenesis, thus mutations in genes involved in sphingolipid biogenesis are often associated with male infertility. We have generated a transgenic mouse line carrying an insertion in the sphingomyelin synthase gene Sms1, the enzyme which generates sphingomyelin species in the Golgi apparatus. We describe the spermatogenesis defect of Sms1-/- mice, which is characterized by sloughing of spermatocytes and spermatids, causing progressive infertility of male homozygotes. Lipid profiling revealed a reduction in several long chain unsaturated phosphatidylcholins, lysophosphatidylcholins and sphingolipids in the testes of mutants. Multi-Spectral Optoacoustic Tomography indicated blood-testis barrier dysfunction. A supplementary diet of the essential omega-3 docosahexaenoic acid and eicosapentaenoic acid diminished germ cell sloughing from the seminiferous epithelium and restored spermatogenesis and fertility in 50% of previously infertile mutants. Our findings indicate that SMS1 has a wider than anticipated role in testis polyunsaturated fatty acid homeostasis and for male fertility. PMID:27788151

  3. A fluorescence-based, high-throughput sphingomyelin assay for the analysis of Niemann-Pick disease and other disorders of sphingomyelin metabolism.

    PubMed

    He, Xingxuan; Chen, Fei; McGovern, Margaret M; Schuchman, Edward H

    2002-07-01

    Sphingomyelin is an important lipid component of cell membranes and lipoproteins that can be hydrolyzed by sphingomyelinases into ceramide and phosphorylcholine. The Type A and B forms of Niemann-Pick disease (NPD) are lipid storage disorders due to the deficient activity of the enzyme acid sphingomyelinase and the resultant accumulation of sphingomyelin in cells, tissues, and fluids. In this paper we report a new, enzymatic method to quantify the levels of sphingomyelin in plasma, urine, or tissues from NPD patients and mice. In this assay, bacterial sphingomyelinase is first used to hydrolyze sphingomyelin to phosphorylcholine and ceramide. Alkaline phosphatase then generates choline from the phosphorylcholine, and the newly formed choline is then used to generate hydrogen peroxide in a reaction catalyzed by choline oxidase. Finally, with peroxidase as a catalyst, hydrogen peroxide reacts with the Amplex Red reagent to generate a highly fluorescent product, resorufin. These enzymatic reactions are carried out simultaneously in a single 100-microl reaction mixture for 20 min. Use of a 96-well microtiter plate permits automated and sensitive quantification using a plate reader and fluorescence detector. This procedure allowed quantification of sphingomyelin over a broad range from 0.02 to 10 nmol, similar in sensitivity to a recently described radioactive method using diacylglycerol kinase and 50 times more sensitive than a colorimetric, aminoantipyrine/phenol-based assay. To validate this new assay method, we quantified sphingomyelin in plasma, urine, and tissues from normal individuals and from NPD mice and patients. The sphingomyelin content in adult homozygous or heterozygous NPD mouse plasma and urine was significantly elevated compared to that of normal mice. Moreover, the accumulated sphingomyelin in the tissues of NPD mice was 4 to 15 times higher than that in normal mice depending on the tissue analyzed. The sphingomyelin levels in plasma from several Type

  4. Alpha Particles Induce Apoptosis through the Sphingomyelin Pathway

    PubMed Central

    Seideman, Jonathan H.; Stancevic, Branka; Rotolo, Jimmy A.; McDevitt, Michael R.; Howell, Roger W.; Kolesnick, Richard N.; Scheinberg, David A.

    2011-01-01

    The sphingomyelin pathway involves the enzymatic cleavage of sphingomyelin to produce ceramide, a second messenger that serves as a key mediator in the rapid apoptotic response to various cell stressors. Low-linear energy transfer (LET) γ radiation can initiate this pathway, independent of DNA damage, via the cell membrane. Whether short-ranged, high-LET a particles, which are of interest as potent environmental carcinogens, radiotherapies and potential components of dirty bombs, can act through this mechanism to signal apoptosis is unknown. Here we show that irradiation of Jurkat cells with a particles emitted by the 225Ac-DOTA-anti-CD3 IgG antibody construct results in dose-dependent apoptosis. This apoptosis was significantly reduced by pretreating cells with cholesterol-depleting nystatin, a reagent known to inhibit ceramide signaling by interfering with membrane raft coalescence and ceramide-rich platform generation. The effects of nystatin on α-particle-induced apoptosis were related to disruption of the ceramide pathway and not to microdosimetry alterations, because similar results were obtained after external irradiation of the cells with a broad beam of collimated a particles using a planar 241Am source. External irradiation allowed for more precise control of the dosimetry and geometry of the irradiation, independent of antibody binding or cell internalization kinetics. Mechanistically consistent with these findings, Jurkat cells rapidly increased membrane concentrations of ceramide after external irradiation with an average of five α-particle traversals per cell. These data indicate that a particles can activate the sphingomyelin pathway to induce apoptosis. PMID:21631289

  5. Alpha particles induce apoptosis through the sphingomyelin pathway.

    PubMed

    Seideman, Jonathan H; Stancevic, Branka; Rotolo, Jimmy A; McDevitt, Michael R; Howell, Roger W; Kolesnick, Richard N; Scheinberg, David A

    2011-10-01

    The sphingomyelin pathway involves the enzymatic cleavage of sphingomyelin to produce ceramide, a second messenger that serves as a key mediator in the rapid apoptotic response to various cell stressors. Low-linear energy transfer (LET) γ radiation can initiate this pathway, independent of DNA damage, via the cell membrane. Whether short-ranged, high-LET α particles, which are of interest as potent environmental carcinogens, radiotherapies and potential components of dirty bombs, can act through this mechanism to signal apoptosis is unknown. Here we show that irradiation of Jurkat cells with α particles emitted by the ²²⁵Ac-DOTA-anti-CD3 IgG antibody construct results in dose-dependent apoptosis. This apoptosis was significantly reduced by pretreating cells with cholesterol-depleting nystatin, a reagent known to inhibit ceramide signaling by interfering with membrane raft coalescence and ceramide-rich platform generation. The effects of nystatin on α-particle-induced apoptosis were related to disruption of the ceramide pathway and not to microdosimetry alterations, because similar results were obtained after external irradiation of the cells with a broad beam of collimated α particles using a planar ²⁴¹Am source. External irradiation allowed for more precise control of the dosimetry and geometry of the irradiation, independent of antibody binding or cell internalization kinetics. Mechanistically consistent with these findings, Jurkat cells rapidly increased membrane concentrations of ceramide after external irradiation with an average of five α-particle traversals per cell. These data indicate that α particles can activate the sphingomyelin pathway to induce apoptosis.

  6. Miscibility Phase Diagrams of Giant Vesicles Containing Sphingomyelin

    NASA Astrophysics Data System (ADS)

    Veatch, Sarah L.; Keller, Sarah L.

    2005-04-01

    Saturated sphingomyelin (SM) lipids are implicated in lipid rafts in cell plasma membranes. Here we use fluorescence microscopy to observe coexisting liquid domains in vesicles containing SM, an unsaturated phosphatidylcholine lipid (either DOPC or POPC), and cholesterol. We note similar phase behavior in a model membrane mixture without SM (DOPC/DPPC/Chol), but find no micron-scale liquid domains in membranes of POPC/PSM/Chol. We delineate the onset of solid phases below the miscibility transition temperature, and detail indirect evidence for a three-phase coexistence of one solid and two liquid phases.

  7. Lysenin-sphingomyelin binding at the surface of oligodendrocyte lineage cells increases during differentiation in vitro.

    PubMed

    Nakai, Y; Sakurai, Y; Yamaji, A; Asou, H; Umeda, M; Uyemura, K; Itoh, K

    2000-11-15

    We have investigated the relationship between the developmental expression of sphingomyelin, a major component of myelin, and oligodendrocyte lineage. Using lysenin as a cytochemical probe for membrane sphingomyelin, we have now determined the distribution pattern of sphingomyelin on the plasma membrane of rat cultured oligodendrocytes. Although lysenin does not bind to A2B5(+)/NG2(+) bipolar oligodendrocyte progenitors, lysenin recognizes sphingomyelin on the cell bodies of multipolar A2B5(+) cells, but not on their processes. O4(+) and O1(+) immature and MBP(+) mature oligodendrocytes are strongly labeled by lysenin from cell bodies to the tips of processes. The content of sphingomyelin in immature and mature oligodendrocytes is approximately 2-fold higher than that in oligodendrocyte progenitors. These findings show that sphingomyelin increases during differentiation of cells in the oligodendrocyte lineage. In multipolar oligodendrocyte progenitors exposed to Triton X-100 at 4 degrees C, lysenin labels cell processes in addition to cell bodies. In contrast, Triton X-100 extraction does not alter the distribution of lysenin binding on O4(+), O1(+) and MBP(+) cells, although the immunocytochemical intensities of the lysenin bindings increase. Our data suggest that the alteration in sphingomyelin content and distribution in the oligodendrocyte lineage cells could have important consequences for cell recognition and downstream signaling events through sphingomyelin-rich domains. Copyright 2000 Wiley-Liss, Inc.

  8. Thermotropic and structural evaluation of the interaction of natural sphingomyelins with cholesterol.

    PubMed

    Quinn, Peter J; Wolf, Claude

    2009-09-01

    The structural transitions in aqueous dispersions of egg-sphingomyelin and bovine brain-sphingomyelin and sphingomyelin co-dispersed with different proportions of cholesterol were compared during temperature scans between 20 degrees and 50 degrees Celsius using small-angle and wide-angle X-ray scattering techniques. The Bragg reflections observed in the small-angle scattering region from pure phospholipids and codispersions of sphingomyelin:cholesterol in molar ratios 80:20 and 50:50 could all be deconvolved using peak fitting methods into two coexisting lamellar structures. Electron density profiles through the unit cell normal to the bilayer plane were calculated to derive bilayer and water layer thicknesses of coexisting structures at 20 degrees and 50 degrees Celsius. Codispersions of sphingomyelin:cholesterol in a molar ratio 60:40 consisted of an apparently homogeneous bilayer structure designated as liquid-ordered phase. Curve fitting analysis of the wide-angle scattering bands were applied to correlate changes in packing arrangements of hydrocarbon in the hydrophobic domain of the bilayer with changes in enthalpy recorded by differential scanning calorimetry. At 20 degrees Celsius the wide-angle scattering bands of both pure sphingomyelins and codispersions of sphingomyelin and cholesterol could be deconvolved into two symmetric components. A sharp component located at a d-spacing of 0.42 nm was assigned to a gel phase in which the hydrocarbon chains are oriented perpendicular to the bilayer plane. A broader symmetric band centered at d-spacings in the region of 0.44 nm was assigned as disordered hydrocarbon in dispersions of pure sphingomyelin and as liquid-ordered phase in codispersions of sphingomyelin and cholesterol. It is concluded from the peak fitting analysis that cholesterol is excluded from gel phases of egg and brain sphingomyelins at 20 degrees Celsius. The gel phases coexist with liquid-ordered phase comprised of egg-sphingomyelin and 27 mol

  9. Sphingomyelin Liposomes Containing Porphyrin-phospholipid for Irinotecan Chemophototherapy

    PubMed Central

    Carter, Kevin A; Luo, Dandan; Razi, Aida; Geng, Jumin; Shao, Shuai; Ortega, Joaquin; Lovell, Jonathan F

    2016-01-01

    Porphyrin-phospholipid (PoP) liposomes can entrap anti-cancer agents and release them in response to near infrared (NIR) light. Doxorubicin, when remotely loaded via an ammonium sulfate gradient at a high drug-to-lipid ratio, formed elongated crystals that altered liposome morphology and could not be loaded into liposomes with higher PoP content. On the other hand, irinotecan could also be remotely loaded but did not form large crystals and did not induce liposome elongation. The loading, stability, and NIR light-triggered release of irinotecan in PoP liposomes was altered by the types of lipids used and the presence of PEGylation. Sphingomyelin, which has been explored previously for liposomal irinotecan, was found to produce liposomes with relatively improved serum stability and rapid NIR light-triggered drug release. PoP liposomes composed from sphingomyelin, cholesterol and 2 molar percent PoP rapidly released irinotecan in vivo in response to NIR irradiation as monitored by intravital microscopy and also induced effective tumor eradication in mice bearing MIA Paca-2 subcutaneous tumor xenografts. PMID:27877238

  10. Membrane interaction of Pasteurella multocida toxin involves sphingomyelin.

    PubMed

    Brothers, Michael C; Ho, Mengfei; Maharjan, Ram; Clemons, Nathan C; Bannai, Yuka; Waites, Mark A; Faulkner, Melinda J; Kuhlenschmidt, Theresa B; Kuhlenschmidt, Mark S; Blanke, Steven R; Rienstra, Chad M; Wilson, Brenda A

    2011-12-01

    Pasteurella multocida toxin (PMT) is an AB toxin that causes pleiotropic effects in targeted host cells. The N-terminus of PMT (PMT-N) is considered to harbor the membrane receptor binding and translocation domains responsible for mediating cellular entry and delivery of the C-terminal catalytic domain into the host cytosol. Previous studies have implicated gangliosides as the host receptors for PMT binding. To gain further insight into the binding interactions involved in PMT binding to cell membranes, we explored the role of various membrane components in PMT binding, utilizing four different approaches: (a) TLC-overlay binding experiments with (125) I-labeled PMT, PMT-N or the C-terminus of PMT; (b) pull-down experiments using reconstituted membrane liposomes with full-length PMT; (c) surface plasmon resonance analysis of PMT-N binding to reconstituted membrane liposomes; (d) and surface plasmon resonance analysis of PMT-N binding to HEK-293T cell membranes without or with sphingomyelinase, phospholipase D or trypsin treatment. The results obtained revealed that, in our experimental system, full-length PMT and PMT-N did not bind to gangliosides, including monoasialogangliosides GM(1) , GM(2) or GM(3) , but instead bound to membrane phospholipids, primarily the abundant sphingophospholipid sphingomyelin or phosphatidylcholine with other lipid components. Collectively, these studies demonstrate the importance of sphingomyelin for PMT binding to membranes and suggest the involvement of a protein co-receptor.

  11. Cog2 Null Mutant CHO Cells Show Defective Sphingomyelin Synthesis*

    PubMed Central

    Spessott, Waldo; Uliana, Andrea; Maccioni, Hugo J. F.

    2010-01-01

    The COG (conserved oligomeric Golgi complex) is a Golgi-associated tethering complex involved in retrograde trafficking of multiple Golgi enzymes. COG deficiencies lead to misorganization of the Golgi, defective trafficking of glycosylation enzymes, and abnormal N-, O- and ceramide-linked oligosaccharides. Here, we show that in Cog2 null mutant ldlC cells, the content of sphingomyelin (SM) is reduced to ∼25% of WT cells. Sphingomyelin synthase (SMS) activity is essentially normal in ldlC cells, but in contrast with the typical Golgi localization in WT cells, in ldlC cells, transfected SMS1 localizes to vesicular structures scattered throughout the cytoplasm, which show almost no signal of co-transfected ceramide transfer protein (CERT). Cog2 transfection restores SM formation and the typical SMS1 Golgi localization phenotype. Adding exogenous N-6-[(7-nitrobenzo-2-oxa-1,3-diazol-4-yl)amino]hexanoyl-4-d-erythro-sphingosine (C6-NBD-ceramide) to ldlC cell cultures results in normal SM formation. Endogenous ceramide levels were 3-fold higher in ldlC cells than in WT cells, indicating that Golgi misorganization caused by Cog2 deficiency affects the delivery of ceramide to sites of SM synthesis by SMS1. Considering the importance of SM as a structural component of membranes, this finding is also worth of consideration in relation to a possible contribution to the clinical phenotype of patients suffering congenital disorders of glycosylation type II. PMID:21047787

  12. The subcellular sites of sphingomyelin synthesis in BHK cells.

    PubMed

    Miro Obradors, M J; Sillence, D; Howitt, S; Allan, D

    1997-10-30

    The subcellular distributions of the enzymes which synthesise sphingomyelin (SM) and glucosylceramide (GluCer) from ceramide have been assessed in BHK cells. On a sucrose density gradient GluCer synthase (a marker of the cis/medial Golgi apparatus) and the trans-Golgi marker galactosyltransferase showed an similar monotonic distribution. In contrast, SM synthase showed two peaks of activity, a minor one which migrated with the Golgi markers and a major one which had a density close to that of plasma membrane markers (sphingomyelin, cholesterol, PtdSer, ganglioside GM3 and alkaline phosphodiesterase). When cell homogenates were treated with digitonin, the sedimentation characteristics of the Golgi markers was largely unaffected whereas the plasma membrane markers and the main peak of SM synthase activity were shifted to higher density. In contrast, when cells were treated with brefeldin A (BFA) the Golgi markers were shifted to higher density but not the plasma membrane markers or the main peak of SM synthase. These results suggest that the bulk of SM synthase activity in BHK cells is not associated with the Golgi cisternae but with a cell compartment which is relatively rich in cholesterol (e.g., plasma membrane, endosomes or trans-Golgi network.) Further experiments in which cells were treated with sphingomyelinase provided evidence that SM synthase activity was in an internal compartment and not at the plasma membrane.

  13. Staurosporines decrease ORMDL proteins and enhance sphingomyelin synthesis resulting in depletion of plasmalemmal phosphatidylserine

    PubMed Central

    Maekawa, Masashi; Lee, Minhyoung; Wei, Kuiru; Ridgway, Neale D.; Fairn, Gregory D.

    2016-01-01

    Accumulation of phosphatidylserine in the inner leaflet of the plasma membrane is a hallmark of eukaryotes. Sublethal levels of staurosporine and related compounds deplete phosphatidylserine from the plasma membrane and abrogate K-Ras signaling. Here, we report that low-dose staurosporine and related compounds increase sphingomyelin mass. Mass-spectrometry and metabolic tracer analysis revealed an increase in both the levels and rate of synthesis of sphingomyelin in response to sublethal staurosporine. Mechanistically, it was determined that the abundance of the ORMDL proteins, which negatively regulate serine-palmitoyltransferase, are decreased by low-dose staurosporine. Finally, inhibition of ceramide synthesis, and thus sphingomyelin, prevented the displacement of phosphatidylserine and cholesterol from the inner leaflet of the plasma membrane. The results establish that an optimal level of sphingomyelin is required to maintain the distribution of phosphatidylserine and cholesterol in the plasma membrane and further demonstrate a complex relationship between the trafficking of phosphatidylserine and sphingomyelin. PMID:27805006

  14. Regulation of Cell Migration by Sphingomyelin Synthases: Sphingomyelin in Lipid Rafts Decreases Responsiveness to Signaling by the CXCL12/CXCR4 Pathway

    PubMed Central

    Asano, Satoshi; Kitatani, Kazuyuki; Taniguchi, Makoto; Hashimoto, Mayumi; Zama, Kota; Mitsutake, Susumu; Igarashi, Yasuyuki; Takeya, Hiroyuki; Kigawa, Junzo; Hayashi, Akira; Umehara, Hisanori

    2012-01-01

    Sphingomyelin synthase (SMS) catalyzes the formation of sphingomyelin, a major component of the plasma membrane and lipid rafts. To investigate the role of SMS in cell signaling and migration induced by binding of the chemokine CXCL12 to CXCR4, we used mouse embryonic fibroblasts deficient in SMS1 and/or SMS2 and examined the effects of SMS deficiency on cell migration. SMS deficiency promoted cell migration through a CXCL12/CXCR4-dependent signaling pathway involving extracellular signal-regulated kinase (ERK) activation. In addition, SMS1/SMS2 double-knockout cells had heightened sensitivity to CXCL12, which was significantly suppressed upon transfection with the SMS1 or SMS2 gene or when they were treated with exogenous sphingomyelin but not when they were treated with the SMS substrate ceramide. Notably, SMS deficiency facilitated relocalization of CXCR4 to lipid rafts, which form platforms for the regulation and transduction of receptor-mediated signaling. Furthermore, we found that SMS deficiency potentiated CXCR4 dimerization, which is required for signal transduction. This dimerization was significantly repressed by sphingomyelin treatment. Collectively, our data indicate that SMS-derived sphingomyelin lowers responsiveness to CXCL12, thereby reducing migration induced by this chemokine. Our findings provide the first direct evidence for an involvement of SMS-generated sphingomyelin in the regulation of cell migration. PMID:22688512

  15. Reversible effects of sphingomyelin degradation on cholesterol distribution and metabolism in fibroblasts and transformed neuroblastoma cells.

    PubMed Central

    Pörn, M I; Slotte, J P

    1990-01-01

    Plasma-membrane sphingomyelin appears to be one of the major determinants of the preferential allocation of cell cholesterol into the plasma-membrane compartment, since removal of sphingomyelin leads to a dramatic redistribution of cholesterol within the cell [Slotte & Bierman (1988) Biochem. J. 250, 653-658]. In the present study we examined the long-term effects of sphingomyelin degradation on cholesterol redistribution in cells and determined the reversibility of the process. In a human lung fibroblast-cell line, removal of 80% of the sphingomyelin led to a rapid and transient up-regulation (3-fold) of acyl-CoA:cholesterol acyltransferase (ACAT) activity, and also, within 30 h, to the translocation of about 50% of the cell non-esterified cholesterol from a cholesterol oxidase-susceptible compartment (i.e. the cell surface) to oxidase-resistant compartments. At 49 h after the initial sphingomyelin degradation, the cell sphingomyelin level was back to 45% of the control level, and the direction of cell cholesterol flow was toward the cell surface, although the original distribution was not achieved. In a transformed neuroblastoma cell line (SH-SY5Y), the depletion of sphingomyelin led to a similarly rapid and transient up-regulation of ACAT activity, and to the translocation of about 25% of cell-surface cholesterol into internal membranes (within 3 h). The flow of cholesterol back to the cholesterol oxidase-susceptible pool was rapid, and a pretreatment cholesterol distribution was reached within 20-49 h. Also, the resynthesis of sphingomyelin was faster in SH-SY5Y neuroblastoma cells and reached control levels within 24 h. The findings of the present study show that the cellular redistribution of cholesterol, as induced by sphingomyelin degradation, is reversible and suggest that the normalization of cellular cholesterol distribution is linked to the re-synthesis of sphingomyelin. PMID:2222406

  16. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts.

    PubMed

    Quinn, Peter J

    2013-07-30

    Sphingomyelin and cholesterol are of interest to biologists because they interact to form condensed structures said to be responsible for a variety of functions that membranes perform. Synchrotron X-ray diffraction methods have been used to investigate the structure of bilayers of D-erythro palmitoyl-sphingomyelin and complexes formed by palmitoyl- and egg-sphingomyelin with cholesterol in aqueous multibilayer dispersions. D-erythro palmitoyl sphingomyelin bilayers exist in two conformers that are distinguished by their lamellar repeat spacing, bilayer thickness, and polar group hydration. The distinction is attributed to hydrogen bonding to water or to intermolecular hydrogen bonds that are disrupted by the formation of ripple structure. The coexisting bilayer structures of pure palmitoyl sphingomyelin are observed in the presence of cholesterol-rich bilayers that are characterized by different bilayer parameters. The presence of cholesterol preferentially affects the conformer of D-erythro sphingomyelin with thicker, more hydrated bilayers. Coexisting bilayers of sphingomyelin and complexes with cholesterol are in register and remain coupled at temperatures at least up to 50 °C. Cholesterol forms a complex of 1.8 mols of sphingomyelin per cholesterol at 37 °C that coexists with bilayers of pure sphingomyelin up to 50 °C. Redistribution of the two lipids takes place on cooling below the fluid- to gel-phase transition temperature, resulting in the withdrawal of sphingomyelin into gel phase and the formation of coexisting bilayers of equimolar proportions of the two lipids. Cholesterol-rich bilayers fit a stripe model at temperatures less than 37 °C characterized by alternating rows of sphingomyelin and cholesterol molecules. A quasicrystalline array models the arrangement at higher temperatures in which each cholesterol molecule is surrounded by seven hydrocarbon chains, each of which is in contact with two cholesterol molecules. The thickness of bilayer

  17. Cardiovascular effects of sphingosine-1-phosphate and other sphingomyelin metabolites.

    PubMed

    Alewijnse, Astrid E; Peters, Stephan L M; Michel, Martin C

    2004-11-01

    Upon various stimuli, cells metabolize sphingomyelin from the cellular plasma membrane to form sphingosylphosphorylcholine (SPC) or ceramide. The latter can be further metabolized to sphingosine and then sphingosine-1-phosphate (S1P). Apart from local formation, S1P and SPC are major constituents of blood plasma. All four sphingomyelin metabolites (SMM) can act upon intracellular targets, and at least S1P and probably also SPC can additionally act upon G-protein-coupled receptors. While the molecular identity of the SPC receptors remains unclear, several subtypes of S1P receptors have been cloned and their distribution in cardiovascular tissues is described. In the heart SMM can alter intracellular Ca(2+) release, particularly via the ryanodine receptor, and conductance of various ion channels in the plasma membrane, particularly I(K(Ach)). While the various SMM differ somewhat in their effects, the above alterations of ion homeostasis result in reduced cardiac function in most cases, and ceramide and/or sphingosine may be the mediators of the negative inotropic effects of tumour necrosis factor. In the vasculature, SMM mainly act as acute vasoconstrictors in most vessels, but ceramide can be a vasodilator. SMM-induced vasoconstriction involves mobilization of Ca(2+) from intracellular stores, influx of extracellular Ca(2+) via L-type channels and activation of a rho-kinase. Extended exposure to SMM, particularly S1P, promotes several stages of the angiogenic process like endothelial cell activation, migration, proliferation, tube formation and vascular maturation. We propose that SMM are an important class of endogenous modulators of cardiovascular function. British Journal of Pharmacology (2004).

  18. Egg-sphingomyelin and cholesterol form a stoichiometric molecular complex in bilayers of egg-phosphatidylcholine.

    PubMed

    Quinn, Peter J; Wolf, Claude

    2010-12-02

    Sphingomyelin and cholesterol are membrane lipids that interact to form liquid-ordered phase believed to act as a platform for the organization of signaling proteins. We report analyses of synchrotron X-ray powder diffraction patterns recorded from aqueous dispersions of ternary mixtures of sphingomyelin and phosphatidylcholine from egg yolk and cholesterol to investigate how cholesterol distributes between the two phospholipids. In the absence of cholesterol the two phospholipids are immiscible between 20 and 50 °C. Addition of up to 22 mol % cholesterol to equimolar mixtures of the phospholipids results in partition of some sphingomyelin into a phosphatidylcholine phase at 37 °C. Increased proportions of cholesterol result in partition of the excess cholesterol into the phosphatidylcholine phase which is in equilibrium with a stoichiometric complex of 1.7:1, sphingomyelin:cholesterol. The molecular order of the complex may explain the basis upon which proteins are assembled within the membrane raft.

  19. Optimization of a Histopathological Biomarker for Sphingomyelin Accumulation in Acid Sphingomyelinase Deficiency

    PubMed Central

    Johnson, Jennifer; Maloney, Colleen L.; Yandl, Emily; Griffiths, Denise; Thurberg, Beth L.; Ryan, Susan

    2012-01-01

    Niemann-Pick disease (types A and B), or acid sphingomyelinase deficiency, is an inherited deficiency of acid sphingomyelinase, resulting in intralysosomal accumulation of sphingomyelin in cells throughout the body, particularly within those of the reticuloendothelial system. These cellular changes result in hepatosplenomegaly and pulmonary infiltrates in humans. A knockout mouse model mimics many elements of human ASMD and is useful for studying disease histopathology. However, traditional formalin-fixation and paraffin embedding of ASMD tissues dissolves sphingomyelin, resulting in tissues with a foamy cell appearance, making quantitative analysis of the substrate difficult. To optimize substrate fixation and staining, a modified osmium tetroxide and potassium dichromate postfixation method was developed to preserve sphingomyelin in epon-araldite embedded tissue and pulmonary cytology specimens. After processing, semi-thin sections were incubated with tannic acid solution followed by staining with toluidine blue/borax. This modified method provides excellent preservation and staining contrast of sphingomyelin with other cell structures. The resulting high-resolution light microscopy sections permit digital quantification of sphingomyelin in light microscopic fields. A lysenin affinity stain for sphingomyelin was also developed for use on these semi-thin epon sections. Finally, ultrathin serial sections can be cut from these same tissue blocks and stained for ultrastructural examination by electron microscopy. PMID:22614361

  20. Optimization of a histopathological biomarker for sphingomyelin accumulation in acid sphingomyelinase deficiency.

    PubMed

    Taksir, Tatyana V; Johnson, Jennifer; Maloney, Colleen L; Yandl, Emily; Griffiths, Denise; Thurberg, Beth L; Ryan, Susan

    2012-08-01

    Niemann-Pick disease (types A and B), or acid sphingomyelinase deficiency, is an inherited deficiency of acid sphingomyelinase, resulting in intralysosomal accumulation of sphingomyelin in cells throughout the body, particularly within those of the reticuloendothelial system. These cellular changes result in hepatosplenomegaly and pulmonary infiltrates in humans. A knockout mouse model mimics many elements of human ASMD and is useful for studying disease histopathology. However, traditional formalin-fixation and paraffin embedding of ASMD tissues dissolves sphingomyelin, resulting in tissues with a foamy cell appearance, making quantitative analysis of the substrate difficult. To optimize substrate fixation and staining, a modified osmium tetroxide and potassium dichromate postfixation method was developed to preserve sphingomyelin in epon-araldite embedded tissue and pulmonary cytology specimens. After processing, semi-thin sections were incubated with tannic acid solution followed by staining with toluidine blue/borax. This modified method provides excellent preservation and staining contrast of sphingomyelin with other cell structures. The resulting high-resolution light microscopy sections permit digital quantification of sphingomyelin in light microscopic fields. A lysenin affinity stain for sphingomyelin was also developed for use on these semi-thin epon sections. Finally, ultrathin serial sections can be cut from these same tissue blocks and stained for ultrastructural examination by electron microscopy.

  1. Effects of sphingomyelin and phosphatidylcholine degradation on cyclodextrin-mediated cholesterol efflux in cultured fibroblasts.

    PubMed

    Ohvo, H; Olsio, C; Slotte, J P

    1997-11-15

    The hydrolysis of plasma membrane sphingomyelin is known to dramatically alter cellular cholesterol homeostasis in different ways, whereas the degradation of plasma membrane phosphatidylcholine has much less or no effects on cell cholesterol homeostasis [Pörn, Ares, Slotte, J. Lipid Res. 34 (1993) 1385-1392]. In this study, we used an efficient extracellular cholesterol acceptor (cyclodextrin) and determined the extent of cholesterol efflux from cultured fibroblasts in which plasma membrane sphingomyelin or phosphatidylcholine was degraded. Treatment of cells with sphingomyelinase reduced the cell sphingomyelin content by about 76% (about 13 nmol SM degraded), and dramatically increased the desorption of [3H]cholesterol from the plasma membrane to 2-hydroxypropyl-beta-cyclodextrin. The corresponding hydrolysis of cell surface phosphatidylcholine (about 12% reduction of the cellular phosphatidylcholine content, corresponding to about 12 nmol degraded PC) had almost no effect on cell [3H]cholesterol efflux. The stimulatory effect of sphingomyelin degradation on cell [3H]cholesterol efflux was reversible, since rates of [3H]cholesterol efflux dropped back to control levels when cells (in this case baby hamster kidney cells) were allowed to restore their sphingomyelin content by re-synthesis in the absence of sphingomyelinase. The findings of this study clearly demonstrate that plasma membrane sphingomyelin markedly affected the rate of cholesterol transfer between cells and an extracellular acceptor (i.e., cyclodextrin), whereas the effect of phosphatidylcholine on cholesterol efflux was much smaller.

  2. Interaction of Egg-Sphingomyelin with DOPC in Langmuir Monolayers

    NASA Astrophysics Data System (ADS)

    Hao, Chang-chun; Sun, Run-guang; Zhang, Jing

    2012-12-01

    Lipid rafts are a dynamic microdomain structure found in recent years, enriched in sphingolipids, cholesterol and particular proteins. The change of structure and function of lipid rafts could result in many diseases. In this work, the monolayer miscibility behavior of mixed systems of Egg-Sphingomyelin (ESM) 1 with 2-dioleoyl-sn-glycero-3-phosphocholine was investigated in terms of mean surface area per molecule and excess molecular area ΔAex at certain surface pressure, surface pressure and excess surface pressure Δπex at certain mean molecular area. The stability and compressibility of the mixed monolayers was assessed by the parameters of surface excess Gibbs free energy ΔGex, excess Helmholtz energy ΔHex and elasticity. Thermodynamic analysis indicates ΔAex and Δπex in the binary systems with positive deviations from the ideal behavior, suggesting repulsive interaction. The maximum of ΔGex and ΔHex was at the molar fraction of ESM of 0.6, demonstrating the mixed monolayer was more unstable. The repulsive interaction induced phase separation in the monolayer.

  3. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    PubMed

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. Published by Elsevier B.V.

  4. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins

    PubMed Central

    Yang, Peng; Subbaiah, Papasani V.

    2015-01-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. PMID:26193433

  5. Cholesterol in Bilayers of Sphingomyelin or Dihydrosphingomyelin at Concentrations Found in Ocular Lens Membranes

    PubMed Central

    Epand, Richard M.

    2003-01-01

    Membranes of the lens of the eye of mammals have two particular characteristics, high concentrations of sphingomyelin, and dihydrosphingomyelin and cholesterol. We have studied the miscibility of cholesterol with both egg sphingomyelin and with dihydrosphingomyelin made by hydrogenation of egg sphingomyelin. At a cholesterol mol fraction of 0.5 and lower, crystallites of cholesterol are not present with either form of sphingomyelin, as observed by differential scanning calorimetry and by 13C CP/MAS NMR. However, in the range of 0.6 to 0.8 mol fraction of cholesterol increasing amounts of crystallites form, with the amount of anhydrous cholesterol crystals formed being somewhat greater with dihyrosphingomyelin compared with sphingomyelin. Interestingly, cholesterol monohydrate crystallites formed in these two phospholipids exhibit a temperature of dehydration higher than that of pure cholesterol monohydrate crystals. These cholesterol monohydrate crystals form more rapidly and in greater amounts with the unmodified form of sphingomyelin. This difference is likely a consequence of differences at the membrane interface. The chemical shift of the 13C of the carbonyl group, as measured by CP/MAS NMR, shows that there are differences between the two phospholipids in both the presence and absence of cholesterol. The bilayers with dihydrosphingomyelin are more hydrogen bonded. Cholesterol crystallites are known to be present in the lens of the eye. Our studies show that the ratio of sphingomyelin to dihydrosphingomyelin can affect the rate of formation of these cholesterol crystallites and thus play a role in the membrane of cells of the lens, affecting ocular function. PMID:12719240

  6. Sphingomyelin interfacial behavior: the impact of changing acyl chain composition.

    PubMed Central

    Li, X M; Smaby, J M; Momsen, M M; Brockman, H L; Brown, R E

    2000-01-01

    Sphingomyelins (SMs) containing homogeneous acyl chains with 12, 14, 16, 18, 24, or 26 carbons were synthesized and characterized using an automated Langmuir-type film balance. Surface pressure was monitored as a function of lipid molecular area at constant temperatures between 10 degrees C and 30 degrees C. SM containing lauroyl (12:0) acyl chains displayed only liquid-expanded behavior. Increasing the length of the saturated acyl chain (e.g., 14:0, 16:0, or 18:0) resulted in liquid-expanded to condensed two-dimensional phase transitions at many temperatures in the 10-30 degrees C range. Similar behavior was observed for SMs with lignoceroyl (24:0) or (cerotoyl) 26:0 acyl chains, but isotherms showed only condensed behavior at 10 and 15 degrees C. Insights into the physico-mechanical in-plane interactions occurring within the different SM phases and accompanying changes in SM phase state were provided by analyzing the interfacial area compressibility moduli. At similar surface pressures, SM fluid phases were less compressible than those of phosphatidylcholines with similar chain structures. The area per molecule and compressibility of SM condensed phases depended upon the length of the saturated acyl chain and upon spreading temperature. Spreading of SMs with very long saturated acyl chains at temperatures 30-35 degrees below T(m) resulted in condensed films with lower in-plane compressibilities, but consistently larger cross-sectional molecular areas than the condensed phases achieved by spreading at temperatures only 10-20 degrees below T(m). This behavior is discussed in terms of the enhancement of SM lateral aggregation by temperature reduction, a common approach used during domain isolation from biomembranes. PMID:10733971

  7. Microsomal Triglyceride Transfer Protein Transfers and Determines Plasma Concentrations of Ceramide and Sphingomyelin but Not Glycosylceramide*

    PubMed Central

    Iqbal, Jahangir; Walsh, Meghan T.; Hammad, Samar M.; Cuchel, Marina; Tarugi, Patrizia; Hegele, Robert A.; Davidson, Nicholas O.; Rader, Daniel J.; Klein, Richard L.; Hussain, M. Mahmood

    2015-01-01

    Sphingolipids, a large family of bioactive lipids, are implicated in stress responses, differentiation, proliferation, apoptosis, and other physiological processes. Aberrant plasma levels of sphingolipids contribute to metabolic disease, atherosclerosis, and insulin resistance. They are fairly evenly distributed in high density and apoB-containing lipoproteins (B-lps). Mechanisms involved in the transport of sphingolipids to the plasma are unknown. Here, we investigated the role of microsomal triglyceride transfer protein (MTP), required for B-lp assembly and secretion, in sphingolipid transport to the plasma. Abetalipoproteinemia patients with deleterious mutations in MTP and absence of B-lps had significantly lower plasma ceramide and sphingomyelin but normal hexosylceramide, lactosylceramide, and different sphingosines compared with unaffected controls. Furthermore, similar differential effects on plasma sphingolipids were seen in liver- and intestine-specific MTP knock-out (L,I-Mttp−/−) mice, suggesting that MTP specifically plays a role in the regulation of plasma ceramide and sphingomyelin. We hypothesized that MTP deficiency may affect either their synthesis or secretion. MTP deficiency had no effect on ceramide and sphingomyelin synthesis but reduced secretion from primary hepatocytes and hepatoma cells. Therefore, MTP is involved in ceramide and sphingomyelin secretion but not in their synthesis. We also found that MTP transferred these lipids between vesicles in vitro. Therefore, we propose that MTP might regulate plasma ceramide and sphingomyelin levels by transferring these lipids to B-lps in the liver and intestine and facilitating their secretion. PMID:26350457

  8. Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex

    PubMed Central

    Duran, Juan M; Campelo, Felix; van Galen, Josse; Sachsenheimer, Timo; Sot, Jesús; Egorov, Mikhail V; Rentero, Carles; Enrich, Carlos; Polishchuk, Roman S; Goñi, Félix M; Brügger, Britta; Wieland, Felix; Malhotra, Vivek

    2012-01-01

    Sphingomyelin and cholesterol can assemble into domains and segregate from other lipids in the membranes. These domains are reported to function as platforms for protein transport and signalling. Do similar domains exist in the Golgi membranes and are they required for protein secretion? We tested this hypothesis by using D-ceramide-C6 to manipulate lipid homeostasis of the Golgi membranes. Lipidomics of the Golgi membranes isolated from D-ceramide-C6-treated HeLa cells revealed an increase in the levels of C6-sphingomyelin, C6-glucosylceramide, and diacylglycerol. D-ceramide-C6 treatment in HeLa cells inhibited transport carrier formation at the Golgi membranes without affecting the fusion of incoming carriers. The defect in protein secretion as a result of D-ceramide-C6 treatment was alleviated by knockdown of the sphingomyelin synthases 1 and 2. C6-sphingomyelin prevented liquid-ordered domain formation in giant unilamellar vesicles and reduced the lipid order in the Golgi membranes of HeLa cells. These findings highlight the importance of a regulated production and organization of sphingomyelin in the biogenesis of transport carriers at the Golgi membranes. PMID:23178595

  9. Solid Character of Membrane Ceramides: A Surface Rheology Study of Their Mixtures with Sphingomyelin

    PubMed Central

    Catapano, Elisa R.; Arriaga, Laura R.; Espinosa, Gabriel; Monroy, Francisco; Langevin, Dominique; López-Montero, Iván

    2011-01-01

    The compression and shear viscoelasticities of egg-ceramide and its mixtures with sphingomyelin were investigated using oscillatory surface rheology performed on Langmuir monolayers. We found high values for the compression and shear moduli for ceramide, compatible with a solid-state membrane, and extremely high surface viscosities when compared to typical fluid lipids. A fluidlike rheological behavior was found for sphingomyelin. Lateral mobilities, measured from particle tracking experiments, were correlated with the monolayer viscosities through the usual hydrodynamic relationships. In conclusion, ceramide increases the solid character of sphingomyelin-based membranes and decreases their fluidity, thus drastically decreasing the lateral mobilities of embedded objects. This mechanical behavior may involve important physiological consequences in biological membranes containing ceramides. PMID:22261061

  10. Intracellular Lipid Droplets Contain Dynamic Pools of Sphingomyelin: ADRP Binds Phospholipids with High Affinity

    PubMed Central

    McIntosh, Avery L.; Storey, Stephen M.

    2011-01-01

    During the last several years, intracellular lipid droplets have become the focus of intense study. No longer an inert bystander, the lipid droplet is now known as a dynamic organelle contributing lipids to many cellular events. However, while the dynamics of cholesterol efflux from both the plasma membrane and lipid droplets have been studied, less is known regarding the efflux of sphingomyelin from these membranes. In order to address this issue, sphingomyelin efflux kinetics and binding affinities from different intracellular pools were examined. When compared to the plasma membrane, lipid droplets had a smaller exchangeable sphingomyelin efflux pool and the time required to efflux that pool was significantly shorter. Fluorescence binding assays revealed that proteins in the plasma membrane and lipid droplet pool bound sphingomyelin with high affinity. Further characterization identified adipose differentiation-related protein (ADRP) as one of the sphingomyelin binding proteins in the lipid droplet fraction and revealed that ADRP demonstrated saturable binding to 6-((N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-hexanoyl)sphingosyl-phosphocholine (NBD-sphingomyelin) and also 2-(6-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-phosphatidylcholine) with binding affinities in the nanomolar range. Taken together, these results suggest that lipid droplet associated proteins such as ADRP may play a significant role in regulating the intracellular distribution of phospholipids and lipids in general. Overall, insights from the present work suggest new and important roles for lipid droplets and ADRP in phospholipid metabolism. PMID:20473576

  11. The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines.

    PubMed Central

    Smaby, J M; Kulkarni, V S; Momsen, M; Brown, R E

    1996-01-01

    The interfacial elastic packing interactions of different galactosylceramides (GalCers), sphingomyelins (SMs), and phosphatidylcholines (PC) were compared by determining their elastic area compressibility moduli (Cs-1) as a function of lateral packing pressure (pi) in a Langmuir-type film balance. To assess the relative contributions of the lipid headgroups as well as those of the ceramide and diacylglycerol hydrocarbon regions, we synthesized various GalCer and SM species with identical, homogeneous acyl residues and compared their behavior to that of PCs possessing similar hydrocarbon structures. For PCs, this meant that the sn-1 acyl chain was long and saturated (e.g., palmitate) and the sn-2 chain composition was varied to match that of GalCer or SM. When at equivalent pi and in either the chain-disordered (liquid-expanded) or chain-ordered (liquid-condensed) state, GalCer films were less elastic than either SM or PC films. When lipid headgroups were identical (SM and PC), Cs-1 values (at equivalent pi) for chain-disordered SMs, but not chain-ordered SMs, were 25-30% higher than those of PCs. Typical values for fluid phase (liquid-expanded) GalCer at 30 mN/m and 24 degrees C were 158 (+/- 7) mN/m, whereas those of SM were 135 (+/- 7) mN/m and those of PC were 123 (+/- 2) mN/m. Pressure-induced transitions to chain-ordered states (liquid-condensed) resulted in significant increases (two- to fourfold) in the "in-plane" compressibility for all three lipid types. Typical Cs-1 values for chain-ordered GalCers at 30 mN/m and 24 degrees C were between 610 and 650 mN/m, whereas those of SM and of PC were very similar and were between 265 and 300 mN/m. Under fluid phase conditions, the pi-Cs-1 behavior for each lipid type was insensitive to whether the acyl chain was saturated or monounsaturated. Measurement of the Cs-1 values also provided an effective way to evaluate the two-dimensional phase transition region of SMs, GalCers, and PCs. Modest heterogeneity in the acyl

  12. Brefeldin A-induced increase of sphingomyelin synthesis. Assay for the action of the antibiotic in mammalian cells.

    PubMed

    Brüning, A; Karrenbauer, A; Schnabel, E; Wieland, F T

    1992-03-15

    Brefeldin A leads to an increase of sphingomyelin in Chinese hamster ovary cells. The antibiotic is known to cause a dramatic morphological change of the endomembrane system in various mammalian cells resulting in a redistribution of Golgi resident proteins to the endoplasmic reticulum (Lippincott-Schwartz, J., Donaldson, J. G., Schweizer, A., Berger, E. G., Hauri, H. P., Yuan, L. C., and Klausner, R. D. (1990) Cell 60, 821-836). A strict correlation was found between the brefeldin A-induced increase of sphingomyelin and the biochemical criteria that apply for this morphological change. From our data we conclude that the increase in sphingomyelin caused by brefeldin A reflects translocation of the enzyme sphingomyelin synthase from the Golgi apparatus to the endoplasmic reticulum. Using a radioactively labeled truncated ceramide this increase in sphingomyelin synthesis is easily detectable, and thus this method can serve as a convenient biochemical assay for the action of brefeldin A in mammalian cells.

  13. Pressure-temperature phase behavior of mixtures of natural sphingomyelin and ceramide extracts.

    PubMed

    Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Seddon, John M; Law, Robert V; Brooks, Nicholas J

    2015-03-31

    Ceramides are a group of sphingolipids that act as highly important signaling molecules in a variety of cellular processes including differentiation and apoptosis. The predominant in vivo synthetic pathway for ceramide formation is via sphingomyelinase catalyzed hydrolysis of sphingomyelin. The biochemistry of this essential pathway has been studied in detail; however, there is currently a lack of information on the structural behavior of sphingomyelin- and ceramide-rich model membrane systems, which is essential for developing a bottom-up understanding of ceramide signaling and platform formation. We have studied the lyotropic phase behavior of sphingomyelin-ceramide mixtures in excess water as a function of temperature (30-70 °C) and pressure (1-200 MPa) by small- and wide-angle X-ray scattering. At low ceramide concentrations the mixtures form the ripple gel phase (P(β)') below the gel transition temperature for sphingomyelin, and this observation has been confirmed by atomic force microscopy. Formation of the ripple gel phase can also be induced at higher temperatures via the application of hydrostatic pressure. At high ceramide concentration an inverse hexagonal phase (HII) is formed coexisting with a cubic phase.

  14. Tracking Cholesterol/Sphingomyelin-Rich Membrane Domains with the Ostreolysin A-mCherry Protein

    PubMed Central

    Skočaj, Matej; Resnik, Nataša; Grundner, Maja; Ota, Katja; Rojko, Nejc; Hodnik, Vesna; Anderluh, Gregor; Sobota, Andrzej; Maček, Peter; Veranič, Peter; Sepčić, Kristina

    2014-01-01

    Ostreolysin A (OlyA) is an ∼15-kDa protein that has been shown to bind selectively to membranes rich in cholesterol and sphingomyelin. In this study, we investigated whether OlyA fluorescently tagged at the C-terminal with mCherry (OlyA-mCherry) labels cholesterol/sphingomyelin domains in artificial membrane systems and in membranes of Madin-Darby canine kidney (MDCK) epithelial cells. OlyA-mCherry showed similar lipid binding characteristics to non-tagged OlyA. OlyA-mCherry also stained cholesterol/sphingomyelin domains in the plasma membranes of both fixed and living MDCK cells, and in the living cells, this staining was abolished by pretreatment with either methyl-β-cyclodextrin or sphingomyelinase. Double labelling of MDCK cells with OlyA-mCherry and the sphingomyelin-specific markers equinatoxin II–Alexa488 and GST-lysenin, the cholera toxin B subunit as a probe that binds to the ganglioside GM1, or the cholesterol-specific D4 domain of perfringolysin O fused with EGFP, showed different patterns of binding and distribution of OlyA-mCherry in comparison with these other proteins. Furthermore, we show that OlyA-mCherry is internalised in living MDCK cells, and within 90 min it reaches the juxtanuclear region via caveolin-1–positive structures. No binding to membranes could be seen when OlyA-mCherry was expressed in MDCK cells. Altogether, these data clearly indicate that OlyA-mCherry is a promising tool for labelling a distinct pool of cholesterol/sphingomyelin membrane domains in living and fixed cells, and for following these domains when they are apparently internalised by the cell. PMID:24664106

  15. Thermotropic Behavior of Membranes Containing DMPC and Chemically and Stereochemically Pure Sphingomyelin upon Cholesterol Addition

    NASA Astrophysics Data System (ADS)

    Shibakami, Motonari; Sonoyama, Masashi; Goto, Rie; Mori, Michiko; Suzuki, Hikokazu; Mitaku, Shigeki

    2004-12-01

    High sensitivity differential scanning calorimetry is applied to the problem of interaction between phospholipids and cholesterol in bilayers, i.e., whether or not cholesterol shows a preferential interaction with sphingomyelins over glycerophospholipids. The simplest system yet used for exploring this problem is designed—one composed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), chemically and stereochemically pure N-palmitoyl-sphingomyelin (pure-C16:0-SM), and cholesterol, based on a belief that chemically and stereochemically purity excludes chain length mismatch and chiral interaction that may affect the interaction from this system. Incremental addition of cholesterol to mixtures of DMPC and pure-C16:0-SM with a ratio of 6:4 or 4:6 leads to a continuous shift in endotherm due to DMPC toward a lower temperature. Such results indicate that cholesterol favors pure-C16:0-SM.

  16. The effect of phosphatidylcholine to sphingomyelin mole ratio on the dynamic properties of sheep erythrocyte membrane.

    PubMed

    Borochov, H; Zahler, P; Wilbrandt, W; Shinitzky, M

    1977-11-01

    Sheep red blood cells are shown to incorporate phosphatidylchline when incubated in human plasma in the presence of EGTA. This treatment results in up to a 5-fold increase in mol ratio of phosphatidylcholine to sphingomyelin. By replacing EGTA with Ca+ the increase of phsphatidylcholine content is completely inhibited, due to the activation of the membrane bound lecithinase which rapidly degrades the incorporated phosphatidylcholine. Analogous treatments of the isolate membranes resulted in similar phosphatidylcholine incorporation but in the presence of Ca+ a residual phosphatidylcholine uptake was still oberved. These results suggest that in the isolated membranes small amounts of phosphatidylcholine can be incorporated into an additional region which is unavailable for the membrane lecithinase. The increase in the phosphatidylcholine to sphingomyelin mol ratio in sheep red blood cells is concomitant with an increase in lipid fluidity, as well as increase in osmotic fragility9

  17. Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages.

    PubMed

    Speer, Alexander; Sun, Jim; Danilchanka, Olga; Meikle, Virginia; Rowland, Jennifer L; Walter, Kerstin; Buck, Bradford R; Pavlenok, Mikhail; Hölscher, Christoph; Ehrt, Sabine; Niederweis, Michael

    2015-09-01

    Sphingomyelinases secreted by pathogenic bacteria play important roles in host-pathogen interactions ranging from interfering with phagocytosis and oxidative burst to iron acquisition. This study shows that the Mtb protein Rv0888 possesses potent sphingomyelinase activity cleaving sphingomyelin, a major lipid in eukaryotic cells, into ceramide and phosphocholine, which are then utilized by Mtb as carbon, nitrogen and phosphorus sources, respectively. An Mtb rv0888 deletion mutant did not grow on sphingomyelin as a sole carbon source anymore and replicated poorly in macrophages indicating that Mtb utilizes sphingomyelin during infection. Rv0888 is an unusual membrane protein with a surface-exposed C-terminal sphingomyelinase domain and a putative N-terminal channel domain that mediated glucose and phosphocholine uptake across the outer membrane in an M. smegmatis porin mutant. Hence, we propose to name Rv0888 as SpmT (sphingomyelinase of Mycobacterium tuberculosis). Erythrocyte membranes contain up to 27% sphingomyelin. The finding that Rv0888 accounts for half of Mtb's hemolytic activity is consistent with its sphingomyelinase activity and the observation that Rv0888 levels are increased in the presence of erythrocytes and sphingomyelin by 5- and 100-fold, respectively. Thus, Rv0888 is a novel outer membrane protein that enables Mtb to utilize sphingomyelin as a source of several essential nutrients during intracellular growth.

  18. Rapid turn-over of plasma membrane sphingomyelin and cholesterol in baby hamster kidney cells after exposure to sphingomyelinase.

    PubMed

    Slotte, J P; Härmälä, A S; Jansson, C; Pörn, M I

    1990-12-14

    Plasma membrane sphingomyelin in baby hamster kidney (BHK-21) cells was hydrolyzed with sphingomyelinase (Staphylococcus aureus) and the effects on membrane cholesterol translocation and the properties of membrane bound adenylate cyclase and Na+/K(+)-ATPase were determined. Exposure of confluent BHK-21 cells to 0.1 U/ml of sphingomyelinase led to the degradation (at 37 degrees C) of about 60% of cell sphingomyelin. No simultaneous hydrolysis of phosphatidylcholine occurred. The hydrolysis of sphingomyelin subsequently led to the translocation (within 40 min) of about 50-60% of cell [3H]cholesterol from a cholesterol oxidase susceptible pool to an oxidase resistant compartment. The translocation of [3H]cholesterol from the cell surface to intracellular membranes was accompanied by a paralleled increase in [3H]cholesterol ester formation. When cells were first exposed to sphingomyelinase (to degrade sphingomyelin) and then incubated without the enzyme in serum-free media, the mass of cell sphingomyelin decreased initially (by 60%), but then began to increase and reached control levels within 3-4 h. The rapid re-synthesis of sphingomyelin was accompanied by an equally rapid normalization of cell [3H]cholesterol distribution. The re-formation of cell sphingomyelin also led to a decreased content of cellular [3H]cholesterol esters, indicating that unesterified [3H]cholesterol was pulled out of the cholesterol ester cycle and transported to the cell surface. Exposure of BHK-21 cells to sphingomyelinase further led to a dramatically decreased activity of ouabain-sensitive Na+/K(+)-ATPase, whereas forskolin-stimulated adenylate cyclase activity was not affected. The activity of Na+/K(+)-ATPase returned to normal in parallel with the normalization of cell sphingomyelin mass and cholesterol distribution. We conclude that sphingomyelin has profound effects on the steady-state distribution of cell cholesterol, and that manipulations of cell sphingomyelin levels directly and

  19. Ceramide acyl chain length markedly influences miscibility with palmitoyl sphingomyelin in bilayer membranes.

    PubMed

    Westerlund, Bodil; Grandell, Pia-Maria; Isaksson, Y Jenny E; Slotte, J Peter

    2010-07-01

    Ceramides are precursors of major sphingolipids and can be important cellular effectors. The biological effects of ceramides have been suggested to stem from their biophysical effects on membrane structure affecting the lateral and transbilayer organization of other membrane components. In this study we investigated the effect of acyl chain composition in ceramides (C4-C24:1) on their miscibility with N-palmitoyl-sphingomyelin (PSM) using differential scanning calorimetry. We found that short-chain (C4 and C8) ceramides induced phase separation and lowered the T (m) and enthalpy of the PSM endotherm. We conclude that short-chain ceramides were more miscible in the fluid-phase than in the gel-phase PSM bilayers. Long-chain ceramides induced apparent heterogeneity in the bilayers. The main PSM endotherm decreased in cooperativity and enthalpy with increasing ceramide concentration. New ceramide-enriched components could be seen in the thermograms at all ceramide concentrations above X (Cer) = 0.05. These broad components had higher T (m) values than pure PSM. C24:1 ceramide exhibited complex behavior in the PSM bilayers. The miscibility of C24:1 ceramide with PSM at low (X (Cer) = 0.05-0.10) concentrations was exceptionally good according to the cooperativity of the transition. At higher concentrations, multiple components were detected, which might have arisen from interdigitated gel-phases formed by this very asymmetric ceramide. The results of this study indicate that short-chain and long-chain ceramides have very different effects on the sphingomyelin bilayers. There also seems to be a correlation between their miscibility in binary systems and the effect of ceramides of different hydrophobic length on sphingomyelin-rich domains in multicomponent membranes.

  20. Amniotic fluid lecithin/sphingomyelin ratio: comparison between an African and North American community.

    PubMed

    Olowe, S A; Akinkugbe, A

    1978-07-01

    One hundred nineteen samples of amniotic fluid obtained from healthy pregnant Nigerian women were analyzed for their lecithin/sphingomyelin (L/S) ratio. There was a gradual increase in the L/S ratio with increasing maturity from week 23 to week 42 when values of 0.69 and 5.73, respectively, were obtained. Compared with the ratios reported from San Diego, our ratios were significantly higher where numbers were adequate for statistical tests. The higher L/S ratio probably shows that pulmonary maturity occurs earlier in the African babies and might partly explain the low incidence of respiratory distress syndrome in our premature babies.

  1. Selective modulation of membrane sphingomyelin fatty acid turnover by nigericin. A study in the rat reticulocyte.

    PubMed

    Le Petit-Thevenin, J; Nobili, O; Vérine, A; Boyer, J

    1996-01-01

    Exposure of rat reticulocytes to Nigericin produced a selective modulation of fatty acid incorporation into sphingomyelin (SM) of the cell membrane, via changes in SM acylation kinetics. At physiological fatty acid concentration, Nigericin accelerated 8-fold SM acylation by decreasing the apparent K(m) for oleate from 14.7 microM to 2.0 microM. The response was diminished in high K(+)-containing media, suggesting an effect of Nigericin as K+ transporter. This constitutes a novel piece of evidence for the important role of ions in SM metabolism.

  2. Increased Oxidative Stress Impairs Adipose Tissue Function in Sphingomyelin Synthase 1 Null Mice

    PubMed Central

    Nishimura, Naotaka; Gotoh, Tomomi; Watanabe, Ken; Ikeda, Kazutaka; Garan, Yohei; Taguchi, Ryo; Node, Koichi; Okazaki, Toshiro; Oike, Yuichi

    2013-01-01

    Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we found that SMS1 null mice showed lipodystrophic phenotype. Mutant mice showed up-regulation of plasma triglyceride concentrations accompanied by reduction of white adipose tissue (WAT) as they aged. Lipoprotein lipase (LPL) activity was severely reduced in mutant mice. In vivo analysis indicated that fatty acid uptake in WAT but not in liver decreased in SMS1 null compared to wild-type mice. In vitro analysis using cultured cell revealed that SMS1 depletion reduced fatty acid uptake. Proteins extracted from WAT of mutant mice were severely modified by oxidative stress, and up-regulation of mRNAs related to apoptosis, redox adjustment, mitochondrial stress response and mitochondrial biogenesis was observed. ATP content of WAT was reduced in SMS1 null mice. Blue native gel analysis indicated that accumulation of mitochondrial respiratory chain complexes was reduced. These results suggest that WAT of SMS1 null mice is severely damaged by oxidative stress and barely functional. Indeed, mutant mice treated with the anti-oxidant N-acetyl cysteine (NAC) showed partial recovery of lipodystrophic phenotypes together with normalized plasma triglyceride concentrations. Altogether, our data suggest that SMS1 is crucial to control oxidative stress in order to maintain WAT function. PMID:23593476

  3. Hepatic uptake and degradation of unilamellar sphingomyelin/cholesterol liposomes: a kinetic study.

    PubMed Central

    Hwang, K J; Luk, K F; Beaumier, P L

    1980-01-01

    The kinetics of hepatic uptake and degradation of sphingomyelin/cholesterol (2:1, M/M) small unilamellar liposomes were investigated in a BALB/c mouse. The tissue distribution of liposomes was determined by scintillation spectrometry. The percentage of intact liposomes in tissues was estimated by the technique of gamma-ray perturbed angular correlation. A kinetic model was developed to analyze the above data. A remarkable agreement was noted between the experimental data and the corresponding theoretical values. Our results indicate that the sphingomyelin/cholesterol unilamellar liposomes had an unusually long half-life of 16.5 hr in the circulation after intravenous administration to mice. The hepatic degradation of the liposomes in vitro at 37 degrees C followed first-order kinetics, with a half-life of 3.5 +/- 0.2 (SEM) hr. Furthermore, the rate of the in vivo degradation of liposomes in the liver was found to be quite similar to that in vitro, with a half-life of 3.6 +/- 0.4 hr. The rate of release of the liposome-encapsulated agent, indium-111, in the liver was not constant, and reached a maximum at about 8 hr after the administration of liposomes. The approach developed in the present study is general and can be applied to the investigation of factors that may control the release of pharmacologically active agents in any tissue. PMID:6933450

  4. The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes

    PubMed Central

    Lokar, Maruša; Kabaso, Doron; Resnik, Nataša; Sepčić, Kristina; Kralj-Iglič, Veronika; Veranič, Peter; Zorec, Robert; Iglič, Aleš

    2012-01-01

    Intercellular membrane nanotubes (ICNs) are highly curved tubular structures that connect neighboring cells. The stability of these structures depends on the inner cytoskeleton and the cell membrane composition. Yet, due to the difficulty in the extraction of ICNs, the cell membrane composition remains elusive. In the present study, a raft marker, ostreolysin, revealed the enrichment of cholesterol-sphingomyelin membrane nanodomains along ICNs in a T24 (malignant) urothelial cancer cell line. Cholesterol depletion, due to the addition of methyl-β-cyclodextrin, caused the dispersion of cholesterol-sphingomyelin membrane nanodomains and the retraction of ICNs. The depletion of cholesterol also led to cytoskeleton reorganization and to formation of actin stress fibers. Live cell imaging data revealed the possible functional coupling between the change from polygonal to spherical shape, cell separation, and the disconnection of ICNs. The ICN was modeled as an axisymmetric tubular structure, enabling us to investigate the effects of cholesterol content on the ICN curvature. The removal of cholesterol was predicted to reduce the positive spontaneous curvature of the remaining membrane components, increasing their curvature mismatch with the tube curvature. The mechanisms by which the increased curvature mismatch could contribute to the disconnection of ICNs are discussed. PMID:22605937

  5. Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering.

    PubMed

    Molnár, Eszter; Swamy, Mahima; Holzer, Martin; Beck-García, Katharina; Worch, Remigiusz; Thiele, Christoph; Guigas, Gernot; Boye, Kristian; Luescher, Immanuel F; Schwille, Petra; Schubert, Rolf; Schamel, Wolfgang W A

    2012-12-14

    The T-cell antigen receptor (TCR) exists in monomeric and nanoclustered forms independently of antigen binding. Although the clustering is involved in the regulation of T-cell sensitivity, it is unknown how the TCR nanoclusters form. We show that cholesterol is required for TCR nanoclustering in T cells and that this clustering enhances the avidity but not the affinity of the TCR-antigen interaction. Investigating the mechanism of the nanoclustering, we found that radioactive photocholesterol specifically binds to the TCRβ chain in vivo. In order to reduce the complexity of cellular membranes, we used a synthetic biology approach and reconstituted the TCR in liposomes of defined lipid composition. Both cholesterol and sphingomyelin were required for the formation of TCR dimers in phosphatidylcholine-containing large unilamellar vesicles. Further, the TCR was localized in the liquid disordered phase in giant unilamellar vesicles. We propose a model in which cholesterol and sphingomyelin binding to the TCRβ chain causes TCR dimerization. The lipid-induced TCR nanoclustering enhances the avidity to antigen and thus might be involved in enhanced sensitivity of memory compared with naive T cells. Our work contributes to the understanding of the function of specific nonannular lipid-membrane protein interactions.

  6. Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice.

    PubMed

    Sugimoto, Masayuki; Wakabayashi, Masato; Shimizu, Yoichi; Yoshioka, Takeshi; Higashino, Kenichi; Numata, Yoshito; Okuda, Tomohiko; Zhao, Songji; Sakai, Shota; Igarashi, Yasuyuki; Kuge, Yuji

    2016-01-01

    Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2) is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18-C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18-C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys.

  7. Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice

    PubMed Central

    Sugimoto, Masayuki; Wakabayashi, Masato; Shimizu, Yoichi; Yoshioka, Takeshi; Higashino, Kenichi; Numata, Yoshito; Okuda, Tomohiko; Zhao, Songji; Sakai, Shota; Igarashi, Yasuyuki; Kuge, Yuji

    2016-01-01

    Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2) is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18–C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18–C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys. PMID:27010944

  8. Detection of lipid phase coexistence and lipid interactions in sphingomyelin/cholesterol membranes by ATR-FTIR spectroscopy.

    PubMed

    Arsov, Zoran; Quaroni, Luca

    2008-04-01

    The phase behavior of binary mixtures of egg sphingomyelin and cholesterol has been inspected by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy in the amide I' band region of the spectrum. Because cholesterol does not have any major absorption bands in this region, effects seen in the spectra of mixtures of sphingomyelin and cholesterol can be attributed to the change in the lipid phase and to the interaction with cholesterol. It is shown that the temperature dependence of the overall bandwidth of the amide I' band displays a phase-specific behavior. In addition, it is observed that the amide I' band for a sample exhibiting phase coexistence can be described by a linear combination of the spectra of the individual lipid phases. Description of changes in the amide I' band shape and by that the study of possible hydrogen bonding interactions of sphingomyelin with cholesterol was assisted by the use of curve fitting. It turns out that the presence of hydrogen bonding between hydroxyl group of cholesterol and carbonyl group of sphingomyelin is obscured by the complexity of different possible hydrogen bonding and coupling between the N-H (N-D) and the CO group vibrations.

  9. Raftlike Mixtures of Sphingomyelin and Cholesterol Investigated by Solid-State 2H NMR Spectroscopy

    PubMed Central

    Bartels, Tim; Lankalapalli, Ravi S.; Bittman, Robert; Beyer, Klaus; Brown, Michael F.

    2009-01-01

    Sphingomyelin is a lipid that is abundant in the nervous systems of mammals, where it is associated with putative microdomains in cellular membranes and undergoes alterations due to aging or neurodegeneration. We investigated the effect of varying the concentration of cholesterol in binary and ternary mixtures with N-palmitoylsphingomyelin (PSM) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using deuterium nuclear magnetic resonance (2H NMR) spectroscopy in both macroscopically aligned and unoriented multilamellar dispersions. In our experiments, we used PSM and POPC perdeuterated on the N-acyl and sn-1 acyl chains, respectively. By measuring solid-state 2H NMR spectra of the two lipids separately in mixtures with the same compositions as a function of cholesterol mole fraction and temperature, we obtained clear evidence for the coexistence of two liquid-crystalline domains in distinct regions of the phase diagram. According to our analysis of the first moments M1 and the observed 2H NMR spectra, one of the domains appears to be a liquid-ordered phase. We applied a mean-torque potential model as an additional tool to calculate the average hydrocarbon thickness, the area per lipid, and structural parameters such as chain extension and thermal expansion coefficient in order to further define the two coexisting phases. Our data imply that phase separation takes place in raftlike ternary PSM/POPC/cholesterol mixtures over a broad temperature range but vanishes at cholesterol concentrations equal to or greater than a mole fraction of 0.33. Cholesterol interacts preferentially with sphingomyelin only at smaller mole fractions, above which a homogeneous liquid-ordered phase is present. The reasons for these phase separation phenomena seem to be differences in the effects of cholesterol on the configurational order of the palmitoyl chains in PSM-d31 and POPC-d31 and a difference in the affinity of cholesterol for sphingomyelin observed at low temperatures

  10. Association of p75(NTR) with caveolin and localization of neurotrophin-induced sphingomyelin hydrolysis to caveolae.

    PubMed

    Bilderback, T R; Grigsby, R J; Dobrowsky, R T

    1997-04-18

    Caveolae are plasma membrane microdomains that are enriched in caveolin, the structural protein of caveolae, sphingomyelin, and other signaling molecules. We previously suggested that neurotrophin-induced p75(NTR)-dependent sphingomyelin hydrolysis may be localized to the plasma membrane. Therefore, we examined if caveolae were a major site of p75(NTR)-dependent sphingomyelin hydrolysis in p75(NTR)-NIH 3T3 fibroblasts. Caveolin-enriched membranes (CEMs) were prepared by either detergent or detergent-free extraction and separated from noncaveolar membranes by centrifugation through sucrose gradients. Immunoblot analysis of the individual gradient fractions indicated that caveolin and p75(NTR) were enriched in CEMs. The localization of p75(NTR) to CEMs was not an artifact of receptor overexpression in the fibroblasts because a similar distribution of p75(NTR) was evident from PC12 cells, which endogenously express p75(NTR). In the p75(NTR) fibroblasts, nerve growth factor induced a time-dependent hydrolysis of sphingomyelin only in CEMs with no hydrolysis detected in noncaveolar membranes. Intriguingly, endogenous p75(NTR) was found to co-immunoprecipitate with caveolin, suggesting that p75(NTR) may associate with caveolin in vivo. This interaction was confirmed in vitro by the co-immunoprecipitation of a glutathione S-transferase fusion protein expressing the cytoplasmic domain of p75(NTR) with caveolin. Collectively, these results demonstrate that neurotrophin-induced p75(NTR)-dependent sphingomyelin hydrolysis localizes to CEMs and suggest that the interaction of p75(NTR) with caveolin may affect signaling through p75(NTR).

  11. Increased steroid hormone secretion in mouse Leydig tumor cells after induction of cholesterol translocation by sphingomyelin degradation.

    PubMed

    Pörn, M I; Tenhunen, J; Slotte, J P

    1991-06-07

    The effects of sphingomyelin degradation on [3H]cholesterol transfer from the cell surface to mitochondria were examined in mouse Leydig tumor cells. These cells were used since they utilize cholesterol for steroid hormone synthesis in the mitochondria, and also possess acyl-CoA: cholesterol acyl transferase (ACAT) activity in the endoplasmic reticulum. Exposure of glutaraldehyde-fixed mouse Leydig tumor cells to sphingomyelinase (50 mU/ml, 60 min) resulted in the degradation of about 50% of cell sphingomyelin, suggesting that only half of the sphingomyelin mass in these cells was located in the exoleaflet of the plasma membrane. The partial sphingomyelin degradation resulted in the translocation of cellular unesterified [3H]cholesterol from plasma membranes (cholesterol oxidase-susceptible) to intracellular compartments (oxidase-resistant). The fraction of [3H]cholesterol that was translocated, i.e., between 20 and 50%, varied with different [3H]cholesterol-labeling methods. Cholesterol translocation induced by sphingomyelin degradation subsequently led to the stimulation of ACAT activity, suggesting that a fraction of cell surface cholesterol was transported to the endoplasmic reticulum. The sphingomyelinase-induced [3H]cholesterol flow from the cell surface to the cell interior was also in part directed to the mitochondria, as evidenced by the increased secretion of [3H]steroid hormones. In addition, the cyclic AMP-induced activation of steroidogenesis was further enhanced by the sphingomyelinase-induced cholesterol translocation. Based on the current results, it seems evident that a significant portion of the translocated [3H]cholesterol made its way from plasma membranes into the mitochondria for steroidogenesis.

  12. Analysis of Molecular Species Profiles of Ceramide-1-phosphate and Sphingomyelin Using MALDI-TOF Mass Spectrometry.

    PubMed

    Yamashita, Ryouhei; Tabata, Yumika; Iga, Erina; Nakao, Michiyasu; Sano, Shigeki; Kogure, Kentaro; Tokumura, Akira; Tanaka, Tamotsu

    2016-02-01

    Ceramide-1-phosphate (C1P) is a potential signaling molecule that modulates various cellular functions in animals. It has been known that C1P with different N-acyl lengths induce biological responses differently. However, molecular species profiles of the C1P in animal tissues have not been extensively examined yet. Here, we developed a method for determination of the molecular species of a C1P using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with Phos-tag, a phosphate capture molecule. The amounts of total C1P in skin, brain, liver, kidney and small intestine of mice were determined to be 344, 151, 198, 96 and 90 pmol/g wet weight, respectively. We found a C1P species having an α-hydroxypalmitoyl residue (h-C1P, 44 pmol/g wet weight) in mouse skin. The h-C1P was detected only in the skin, and not other tissues of mice. The same analysis was applied to sphingomyelin after conversion of sphingomyelin to C1P by Streptomyces chromofuscus phospholipase D. We found that molecular species profiles of sphingomyelin in skin, kidney and small intestine of mice were similar to those of C1P in corresponding tissues. In contrast, molecular species profiles of sphingomyelin in liver and brain were quite different from those of C1P in these tissues, indicating selective synthesis or degradation of C1P in these tissues. The method described here will be useful for detection of changes in molecular species profiles of C1P and sphingomyelin.

  13. Sphingomyelin homeostasis is required to form functional enzymatic domains at the trans-Golgi network.

    PubMed

    van Galen, Josse; Campelo, Felix; Martínez-Alonso, Emma; Scarpa, Margherita; Martínez-Menárguez, José Ángel; Malhotra, Vivek

    2014-09-01

    Do lipids such as sphingomyelin (SM) that are known to assemble into specific membrane domains play a role in the organization and function of transmembrane proteins? In this paper, we show that disruption of SM homeostasis at the trans-Golgi network (TGN) by treatment of HeLa cells with d-ceramide-C6, which was converted together with phosphatidylcholine to short-chain SM and diacylglycerol by SM synthase, led to the segregation of Golgi-resident proteins from each other. We found that TGN46, which cycles between the TGN and the plasma membrane, was not sialylated by a sialyltransferase at the TGN and that this enzyme and its substrate TGN46 could not physically interact with each other. Our results suggest that SM organizes transmembrane proteins into functional enzymatic domains at the TGN.

  14. Sphingomyelin lipidosis (Niemann-Pick disease) in a juvenile raccoon (Procyon lotor).

    PubMed

    Vapniarsky, N; Wenger, D A; Scheenstra, D; Mete, A

    2013-01-01

    A wild caught juvenile male raccoon with neurological disease was humanely destroyed due to poor prognosis. Necropsy examination revealed hepatomegaly, splenomegaly and multicentric lymphadenomegaly with diffuse hepatic pallor and pulmonary consolidation with pinpoint pale subpleural foci. Microscopically, there was marked pale cytoplasmic swelling of the central and peripheral neurons as well as the glial cells in the brain, accompanied by multiorgan infiltration by abundant foamy macrophages. Ultrastructural investigation revealed accumulation of concentrically arranged lamellar material within lysosomes of the affected neurons, macrophages and endothelial cells. Biochemical enzymatic analysis detected sphingomyelinase deficiency and lysosomal storage disease consistent with sphingomyelin lipidosis (Niemann-Pick disease [NPD]) was diagnosed. This is the first report of NPD in a raccoon.

  15. Molecular mechanisms of action of sphingomyelin-specific pore-forming toxin, lysenin.

    PubMed

    Yilmaz, Neval; Yamaji-Hasegawa, Akiko; Hullin-Matsuda, Françoise; Kobayashi, Toshihide

    2017-07-24

    Lysenin, which is an earthworm toxin, strongly binds to sphingomyelin (SM). Lysenin oligomerizes on SM-rich domains and can induce cell death by forming pores in the membrane. In this review, the assembly of lysenin on SM-containing membranes is discussed mostly on the basis of the information gained by atomic force microscopy (AFM). AFM data show that lysenin assembles into a hexagonal close packed (hcp) structure by rapid reorganization of its oligomers on an SM/cholesterol membrane. In case of a phase-separated membrane of SM, lysenin induces phase mixing as a result of pore formation in SM-rich domains, and consequently its hcp assembly covers the entire membrane. Besides the lytic action, lysenin is important as an SM marker and its pore has the potential to be used as a biosensor in the future. These points are also highlighted in this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Enhancement of interferon-beta production with sphingomyelin from fermented milk.

    PubMed

    Osada, K; Nagira, K; Teruya, K; Tachibana, H; Shirahata, S; Murakami, H

    A fermented milk, Kefir, contains an active substance which enhances IFN-beta secretion of a human osteosarcoma line MG-63 treated with a chemical inducer, poly I: poly C. The active substance in the fermented milk was identified to be sphingomyelin (SpM) by a combined use of a fast atom bombardment mass spectrometry (FAB-MS) and a fast atom bombardment tandem mass spectrometry (FAB-MS/MS). SpM from fermented milk (F-SpM) was a mixture of four molecular species of SpMs having C21-, C22-, C23- and C24-fatty acids. F-SpM enhanced the IFN secretion 14 times, SpMs from other sources also enhanced moderately (2-3 times). Sphingosine and lysosphingomyelin also enhanced the activity but ceramide and cerebroside did not.

  17. Phospholipase D toxins of brown spider venom convert lysophosphatidylcholine and sphingomyelin to cyclic phosphates.

    PubMed

    Lajoie, Daniel M; Zobel-Thropp, Pamela A; Kumirov, Vlad K; Bandarian, Vahe; Binford, Greta J; Cordes, Matthew H J

    2013-01-01

    Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using (31)P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation.

  18. High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A

    PubMed Central

    Gabandé-Rodríguez, E; Boya, P; Labrador, V; Dotti, C G; Ledesma, M D

    2014-01-01

    Niemann Pick disease type A (NPA), which is caused by loss of function mutations in the acid sphingomyelinase (ASM) gene, is a lysosomal storage disorder leading to neurodegeneration. Yet, lysosomal dysfunction and its consequences in the disease are poorly characterized. Here we show that undegraded molecules build up in neurons of acid sphingomyelinase knockout mice and in fibroblasts from NPA patients in which autophagolysosomes accumulate. The latter is not due to alterations in autophagy initiation or autophagosome–lysosome fusion but because of inefficient autophago–lysosomal clearance. This, in turn, can be explained by lysosomal membrane permeabilization leading to cytosolic release of Cathepsin B. High sphingomyelin (SM) levels account for these effects as they can be induced in control cells on addition of the lipid and reverted on SM-lowering strategies in ASM-deficient cells. These results unveil a relevant role for SM in autophagy modulation and characterize autophagy anomalies in NPA, opening new perspectives for therapeutic interventions. PMID:24488099

  19. Phospholipase D Toxins of Brown Spider Venom Convert Lysophosphatidylcholine and Sphingomyelin to Cyclic Phosphates

    PubMed Central

    Lajoie, Daniel M.; Zobel-Thropp, Pamela A.; Kumirov, Vlad K.; Bandarian, Vahe; Binford, Greta J.; Cordes, Matthew H. J.

    2013-01-01

    Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using 31P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation. PMID:24009677

  20. Sphingomyelin homeostasis is required to form functional enzymatic domains at the trans-Golgi network

    PubMed Central

    van Galen, Josse; Campelo, Felix; Martínez-Alonso, Emma; Scarpa, Margherita; Martínez-Menárguez, José Ángel

    2014-01-01

    Do lipids such as sphingomyelin (SM) that are known to assemble into specific membrane domains play a role in the organization and function of transmembrane proteins? In this paper, we show that disruption of SM homeostasis at the trans-Golgi network (TGN) by treatment of HeLa cells with d-ceramide-C6, which was converted together with phosphatidylcholine to short-chain SM and diacylglycerol by SM synthase, led to the segregation of Golgi-resident proteins from each other. We found that TGN46, which cycles between the TGN and the plasma membrane, was not sialylated by a sialyltransferase at the TGN and that this enzyme and its substrate TGN46 could not physically interact with each other. Our results suggest that SM organizes transmembrane proteins into functional enzymatic domains at the TGN. PMID:25179630

  1. Isolated guinea pig gastric chief cells express tumour necrosis factor receptors coupled with the sphingomyelin pathway.

    PubMed Central

    Fiorucci, S; Santucci, L; Migliorati, G; Riccardi, C; Amorosi, A; Mancini, A; Roberti, R; Morelli, A

    1996-01-01

    The tumour necrosis factor alpha (TNF), has been implicated in the pathogenesis of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy and Helicobacter pylori induced gastritis. Both conditions are characterised by high plasma pepsinogen concentrations, which are thought to reflect an increased rate of enzyme release by the pepsinogen secreting (chief) cells. The mechanisms responsible for this cell dysfunction are unknown. This study investigates whether chief cells express TNF receptors and, if so, whether their activation results in cell death. Immunohistochemical studies conducted with monoclonal antibodies (mAbs) directed against two TNF receptor associated proteins of 55 kDa (TNF-R1) and 75 kDa (TNF-R2) showed that TNF binding sites were expressed in approximately 100% gastric chief cells. Western blot analysis of whole chief cell lysates probed with the TNF-R1 and TNF-R2 mAbs gave two distinct bands of 55 and 75 kDa in the immunoprecipitate. Incubating chief cells with TNF caused concentration and time dependent cell death, which was prevented by pretreating the cells with anti-TNF receptor mAbs. Exposing the cells to TNF reduced sphingomyelin content by 25%. Sphingomyelinase (10(-6) to 10(-2) IU/ml) mimicked the effect of TNF in that it provoked a concentration and time dependent reduction in chief cell viability and increased pepsinogen release. In conclusion, gastric chief cells express two TNF receptors partially linked to the sphingomyelin pathway. TNF induced chief cell dysfunction might be responsible for the high plasma pepsinogen concentrations seen in patients with NSAID gastropathy or H pylori induced gastritis. Images Figure 1 Figure 2 PMID:8801194

  2. Effect of Ca(2+) to Sphingomyelin Investigated by Sum Frequency Generation Vibrational Spectroscopy.

    PubMed

    Feng, Rong-Juan; Lin, Lu; Li, Yi-Yi; Liu, Ming-Hua; Guo, Yuan; Zhang, Zhen

    2017-05-23

    The interactions between Ca(2+) ions and sphingomyelin play crucial roles in a wide range of cellular activities. However, little is known about the molecular details of the interactions at interfaces. In this work, we investigated the interactions between Ca(2+) ions and egg sphingomyelin (ESM) Langmuir monolayers at the air/water interface by subwavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). We show that Ca(2+) ions can induce ordering of the acyl chains in the ESM monolayer. An analysis of the one alkyl-chain-deuterated ESM revealed that the Ca(2+) ions do not affect the N-linked saturated fatty acid chain, although they make the sphingosine backbone become ordered. Further analysis of the SFG-VS spectra shows that the interactions between ESM and Ca(2+) ions make the orientation of the methyl group at the end of sphingosine backbone change from pointing downward to pointing upward. Moreover, a large blue shift of the phosphate group at the CaCl2 solution interface indicates, to our knowledge, new cation binding modes. Such binding causes the phosphate moiety to dehydrate, resulting in the conformation change of the phosphate moiety. Based on these results, we propose the molecular mechanism that Ca(2+) ions can bind to the phosphate group and subsequently destroy the intramolecular hydrogen bond between the 3-hydroxyl group and the phosphate oxygen, which results in an ordering change of the sphingosine backbone. These findings illustrate the potential application of HR-BB-SFG-VS to investigate lipid-cation interactions and the calcium channel modulated by lipid domain formation through slight structural changes in the membrane lipid. It will also shed light on the interactions of complex molecules at surfaces and interfaces. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. The Influence of Hydrogen Bonding on Sphingomyelin/Colipid Interactions in Bilayer Membranes

    PubMed Central

    Yasuda, Tomokazu; Al Sazzad, Md. Abdullah; Jäntti, Niklas Z.; Pentikäinen, Olli T.; Slotte, J. Peter

    2016-01-01

    The phospholipid acyl chain composition and order, the hydrogen bonding, and properties of the phospholipid headgroup all influence cholesterol/phospholipid interactions in hydrated bilayers. In this study, we examined the influence of hydrogen bonding on sphingomyelin (SM) colipid interactions in fluid uni- and multilamellar vesicles. We have compared the properties of oleoyl or palmitoyl SM with comparable dihydro-SMs, because the hydrogen bonding properties of SM and dihydro-SM differ. The association of cholestatrienol, a fluorescent cholesterol analog, with oleoyl sphingomyelin (OSM) was significantly stronger than its association with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, in bilayers with equal acyl chain order. The association of cholestatrienol with dihydro-OSM, which lacks a trans double bond in the sphingoid base, was even stronger than the association with OSM, suggesting an important role for hydrogen bonding in stabilizing sterol/SM interactions. Furthermore, with saturated SM in the presence of 15 mol % cholesterol, cholesterol association with fluid dihydro-palmitoyl SM bilayers was stronger than seen with palmitoyl SM under similar conditions. The different hydrogen bonding properties in OSM and dihydro-OSM bilayers also influenced the segregation of palmitoyl ceramide and dipalmitoylglycerol into an ordered phase. The ordered, palmitoyl ceramide-rich phase started to form above 2 mol % in the dihydro-OSM bilayers but only above 6 mol % in the OSM bilayers. The lateral segregation of dipalmitoylglycerol was also much more pronounced in dihydro-OSM bilayers than in OSM bilayers. The results show that hydrogen bonding is important for sterol/SM and ceramide/SM interactions, as well as for the lateral segregation of a diglyceride. A possible molecular explanation for the different hydrogen bonding in SM and dihydro-SM bilayers is presented and discussed. PMID:26789766

  4. Observing the mouse thyroid sphingomyelin under space conditions: a case study from the MDS mission in comparison with hypergravity conditions.

    PubMed

    Albi, E; Curcio, F; Spelat, R; Lazzarini, A; Lazzarini, R; Loreti, E; Ferri, I; Ambesi-Impiombato, F S

    2012-11-01

    This is a case report of apparent thyroid structural and functional alteration in a single mouse subjected to low Earth orbit spaceflight for 91 days. Histological examination of the thyroid gland revealed an increase in the average follicle size compared to that of three control animals and three animals exposed to hypergravity (2g) conditions. Immunoblotting analysis detected an increase in two thyroid gland enzymes, sphingomyelinase and sphingomyelin-synthase1. In addition, sphingomyelinase, an enzyme confined to the cell nucleus in the control animals, was found in the mouse exposed to hypogravity to be homogeneously distributed throughout the cell bodies. It represents the first animal observation of the influence of weightlessness on sphingomyelin metabolism.

  5. Directed evolution of a sphingomyelin flippase reveals mechanism of substrate backbone discrimination by a P4-ATPase

    PubMed Central

    Graham, Todd R.

    2016-01-01

    Phospholipid flippases in the type IV P-type ATPase (P4-ATPases) family establish membrane asymmetry and play critical roles in vesicular transport, cell polarity, signal transduction, and neurologic development. All characterized P4-ATPases flip glycerophospholipids across the bilayer to the cytosolic leaflet of the membrane, but how these enzymes distinguish glycerophospholipids from sphingolipids is not known. We used a directed evolution approach to examine the molecular mechanisms through which P4-ATPases discriminate substrate backbone. A mutagenesis screen in the yeast Saccharomyces cerevisiae has identified several gain-of-function mutations in the P4-ATPase Dnf1 that facilitate the transport of a novel lipid substrate, sphingomyelin. We found that a highly conserved asparagine (N220) in the first transmembrane segment is a key enforcer of glycerophospholipid selection, and specific substitutions at this site allow transport of sphingomyelin. PMID:27432949

  6. Microwave Energy Increases Fatty Acid Methyl Ester Yield in Human Whole Blood Due to Increased Sphingomyelin Transesterification.

    PubMed

    Metherel, Adam H; Aristizabal Henao, Juan J; Ciobanu, Flaviu; Taha, Ameer Y; Stark, Ken D

    2015-09-01

    Dried blood spots (DBS) by fingertip prick collection for fatty acid profiling are becoming increasingly popular due to ease of collection, minimal invasiveness and its amenability to high-throughput analyses. Herein, we assess a microwave-assisted direct transesterification method for the production of fatty acid methyl esters (FAME) from DBS. Technical replicates of human whole blood were collected and 25-μL aliquots were applied to chromatography strips prior to analysis by a standard 3-h transesterification method or microwave-assisted direct transesterification method under various power (variable vs constant), time (1-5 min) and reagent (1-10% H2SO4 in methanol) conditions. In addition, a standard method was compared to a 5-min, 30-W power microwave in 1% H2SO4 method for FAME yield from whole blood sphingomyelin, and sphingomyelin standards alone and spiked in whole blood. Microwave-assisted direct transesterification yielded no significant differences in both quantitative (nmol/100 µL) and qualitative (mol%) fatty acid assessments after as little as 1.5- and 1-min reaction times, respectively, using the variable power method and 5% H2SO4 in methanol. However, 30-W power for 5 min increased total FAME yield of the technical replicates by 14%. This increase appears largely due to higher sphingomyelin-derived FAME yield of up to 109 and 399% compared to the standard method when determined from whole blood or pure standards, respectively. In conclusion, microwave-assisted direct transesterification of DBS achieved in as little as 1-min, and 5-min reaction times increase total fatty acids primarily by significantly improving sphingomyelin-derived fatty acid yield.

  7. Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway.

    PubMed

    Mendez, A J; Lin, G; Wade, D P; Lawn, R M; Oram, J F

    2001-02-02

    Efflux of excess cellular cholesterol mediated by lipid-poor apolipoproteins occurs by an active mechanism distinct from passive diffusion and is controlled by the ATP-binding cassette transporter ABCA1. Here we examined whether ABCA1-mediated lipid efflux involves the selective removal of lipids associated with membrane rafts, plasma membrane domains enriched in cholesterol and sphingomyelin. ABCA1 was not associated with cholesterol and sphingolipid-rich membrane raft domains based on detergent solubility and lack of colocalization with marker proteins associated with raft domains. Lipid efflux to apoA-I was accounted for by decreases in cellular lipids not associated with cholesterol/sphingomyelin-rich membranes. Treating cells with filipin, to disrupt raft structure, or with sphingomyelinase, to digest plasma membrane sphingomyelin, did not impair apoA-I-mediated cholesterol or phosphatidylcholine efflux. In contrast, efflux of cholesterol to high density lipoproteins (HDL) or plasma was partially accounted for by depletion of cholesterol from membrane rafts. Additionally, HDL-mediated cholesterol efflux was partially inhibited by filipin and sphingomyelinase treatment. Apo-A-I-mediated cholesterol efflux was absent from fibroblasts with nonfunctional ABCA1 (Tangier disease cells), despite near normal amounts of cholesterol associated with raft domains and normal abilities of plasma and HDL to deplete cholesterol from these domains. Thus, the involvement of membrane rafts in cholesterol efflux applies to lipidated HDL particles but not to lipid-free apoA-I. We conclude that cholesterol and sphingomyelin-rich membrane rafts do not provide lipid for efflux promoted by apolipoproteins through the ABCA1-mediated lipid secretory pathway and that ABCA1 is not associated with these domains.

  8. Circular RNA of the human sphingomyelin synthase 1 gene: Multiple splice variants, evolutionary conservatism and expression in different tissues

    PubMed Central

    Filippenkov, Ivan B; Sudarkina, Olga Yu; Limborska, Svetlana A; Dergunova, Lyudmila V

    2015-01-01

    The human sphingomyelin synthase 1 gene (SGMS1) encodes an essential enzyme that is involved in the synthesis of sphingomyelin and diacylglycerol from phosphatidylcholine and ceramide. Among the products of SGMS1, we found new transcripts, circular RNAs (circRNAs), that contain sequences of the gene's 5′ untranslated region (5′UTR). Some of them include the gene's coding region and fragments of introns. An analysis of the abundance of circRNAs in human tissues showed that the largest transcripts were predominantly found in different parts of the brain. circRNAs of rat and mouse sphingomyelin synthase 1 orthologous genes were detected and are highly similar to the human SGMS1 gene transcripts. A quantitative analysis of the abundance of such transcripts also revealed their elevated amount in the brain. A computational analysis of sequences of human circRNAs showed their high potential of binding microRNAs (miRNAs), including the miRNAs that form complexes with Ago proteins and the mRNA of SGMS1. We assume that the circRNAs identified here participate in the regulation of the function of the SGMS1 gene in the brain. PMID:26274505

  9. Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes.

    PubMed

    Elmendorf, H G; Haldar, K

    1994-02-01

    This work describes two unusual features of membrane development in a eukaryotic cell. (a) The induction of an extensive network of tubovesicular membranes by the malaria parasite Plasmodium falciparum in the cytoplasm of the mature erythrocyte, and its visualization with two ceramide analogues C5-DMB-ceramide and C6-NBD-ceramide. "Sectioning" of the infected erythrocytes using laser confocal microscopy has allowed the reconstruction of detailed three-dimensional images of this novel membrane network. (b) The stage-specific export of sphingomyelin synthase, a biosynthetic activity concentrated in the Golgi of mammalian cells, to this tubovesicular network. Evidence is presented that in the extracellular merozoite stage the parasite retains sphingomyelin synthase within its plasma membrane. However, intracellular ring- and trophozoite-stage parasites export a substantial fraction (approximately 26%) of sphingomyelin synthase activity to membranes beyond their plasma membrane. Importantly we do not observe synthesis of new enzyme during these intracellular stages. Taken together these results strongly suggest that the export of this classic Golgi enzyme is developmentally regulated in Plasmodium. We discuss the significance of this export and the tubovesicular network with respect to membrane development and function in the erythrocyte cytosol.

  10. Protection of membrane cholesterol by sphingomyelin against free radical-mediated oxidation

    PubMed Central

    Sargis, Robert M; Subbaiah, Papasani V.

    2006-01-01

    Although the free radical-mediated oxidation of free cholesterol (FC) is critical in the generation of regulatory sterols and in atherogenesis, the physiological regulation of this process is poorly understood. We tested the hypothesis that sphingomyelin (SM), a major phospholipid of cell membranes, which is closely associated with FC, protects FC against oxidation, because of its unique structure, and affinity to the sterol. We employed phosphatidylcholine (PC) liposomes containing varying amounts of SM, and either radioactive FC or a fluorescent analog, dehydroergosterol (DHE), and determined the oxidative decay of the sterol in presence of 2,2′ azo bis(2-amidinopropane hydrochloride) (AAPH). Incorporation of 25 mol% of SM in the liposomes inhibited the oxidation of FC or DHE by up to 50%. This inhibition was specific for SM among phospholipids, and was abolished by sphingomyelinase treatment. SM was not degraded during the oxidation reaction, and its effect was not dependent upon the nature of the oxidizing agent, because it also inhibited sterol oxidation by FeSO4/ascorbate, and by cholesterol oxidase. These studies show that SM plays a physiological role in the regulation of cholesterol oxidation by free radicals. PMID:16785023

  11. Chronic Ethanol Consumption Profoundly Alters Regional Brain Ceramide and Sphingomyelin Content in Rodents

    PubMed Central

    2015-01-01

    Ceramides (CER) are involved in alcohol-induced neuroinflammation. In a mouse model of chronic alcohol exposure, 16 CER and 18 sphingomyelin (SM) concentrations from whole brain lipid extracts were measured using electrospray mass spectrometry. All 18 CER concentrations in alcohol exposed adults increased significantly (range: 25–607%); in juveniles, 6 CER decreased (range: −9 to −37%). In contrast, only three SM decreased in adult and one increased significantly in juvenile. Next, regional identification at 50 μm spatial resolution from coronal sections was obtained with matrix implanted laser desorption/ionization mass spectrometry imaging (MILDI-MSI) by implanting silver nanoparticulate matrices followed by focused laser desorption. Most of the CER and SM quantified in whole brain extracts were detected in MILDI images. Coronal sections from three brain levels show qualitative regional changes in CER-SM ion intensities, as a function of group and brain region, in cortex, striatum, accumbens, habenula, and hippocampus. Highly correlated changes in certain white matter CER-SM pairs occur in regions across all groups, including the hippocampus and the lateral (but not medial) cerebellar cortex of adult mice. Our data provide the first microscale MS evidence of regional lipid intensity variations induced by alcohol. PMID:25387107

  12. Phospholipid lateral diffusion in phosphatidylcholine-sphingomyelin-cholesterol monolayers; effects of oxidatively truncated phosphatidylcholines.

    PubMed

    Parkkila, Petteri; Stefl, Martin; Olżyńska, Agnieszka; Hof, Martin; Kinnunen, Paavo K J

    2015-01-01

    Oxidative stress is involved in a number of pathological conditions and the generated oxidatively modified lipids influence membrane properties and functions, including lipid-protein interactions and cellular signaling. Brewster angle microscopy demonstrated oxidatively truncated phosphatidylcholines to promote phase separation in monolayers of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol). More specifically, 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), was found to increase the miscibility transition pressure of the SM/Chol-phase. Lateral diffusion of lipids is influenced by a variety of membrane properties, thus making it a sensitive parameter to observe the coexistence of different lipid phases, for instance. The dependence on lipid lateral packing of the lateral diffusion of fluorophore-containing phospholipid analogs was investigated in Langmuir monolayers composed of POPC, SM, and Chol and additionally containing oxidatively truncated phosphatidylcholines, using fluorescence correlation spectroscopy (FCS). To our knowledge, these are the first FCS results on miscibility transition in ternary lipid monolayers, confirming previous results obtained using Brewster angle microscopy on such lipid monolayers. Wide-field fluorescence microscopy was additionally employed to verify the transition, i.e. the loss and reformation of SM/Chol domains.

  13. Hexagonal Substructure and Hydrogen Bonding in Liquid-Ordered Phases Containing Palmitoyl Sphingomyelin.

    PubMed

    Sodt, Alexander J; Pastor, Richard W; Lyman, Edward

    2015-09-01

    All-atom simulation data are presented for ternary mixtures of palmitoyl sphingomyelin (PSM), cholesterol, and either palmitoyl oleoyl phosphatidyl choline or dioleoyl phosphatidyl choline (DOPC). For comparison, data for a mixture of dipalmitoyl phosphatidyl choline (DPPC), cholesterol, and DOPC are also presented. Compositions corresponding to the liquid-ordered phase, the liquid-disordered phase, and coexistence of the two phases are simulated for each mixture. Within the liquid-ordered phase, cholesterol is preferentially solvated by DOPC if it is available, but if DOPC is replaced by POPC, cholesterol is preferentially solvated by PSM. In the DPPC mixtures, cholesterol interacts preferentially with the saturated chains via its smooth face, whereas in the PSM mixtures, cholesterol interacts preferentially with PSM via its rough face. Interactions between cholesterol and PSM have a very particular character: hydrogen bonding between cholesterol and the amide of PSM rotates the tilt of the amide plane, which primes it for more robust hydrogen bonding with other PSM. Cholesterol-PSM hydrogen bonding also locally modifies the hexagonal packing of hydrocarbon chains in the liquid-ordered phase of PSM mixtures.

  14. Chronic ethanol consumption profoundly alters regional brain ceramide and sphingomyelin content in rodents.

    PubMed

    Roux, Aurelie; Muller, Ludovic; Jackson, Shelley N; Baldwin, Katherine; Womack, Virginia; Pagiazitis, John G; O'Rourke, Joseph R; Thanos, Panayotis K; Balaban, Carey; Schultz, J Albert; Volkow, Nora D; Woods, Amina S

    2015-02-18

    Ceramides (CER) are involved in alcohol-induced neuroinflammation. In a mouse model of chronic alcohol exposure, 16 CER and 18 sphingomyelin (SM) concentrations from whole brain lipid extracts were measured using electrospray mass spectrometry. All 18 CER concentrations in alcohol exposed adults increased significantly (range: 25-607%); in juveniles, 6 CER decreased (range: -9 to -37%). In contrast, only three SM decreased in adult and one increased significantly in juvenile. Next, regional identification at 50 μm spatial resolution from coronal sections was obtained with matrix implanted laser desorption/ionization mass spectrometry imaging (MILDI-MSI) by implanting silver nanoparticulate matrices followed by focused laser desorption. Most of the CER and SM quantified in whole brain extracts were detected in MILDI images. Coronal sections from three brain levels show qualitative regional changes in CER-SM ion intensities, as a function of group and brain region, in cortex, striatum, accumbens, habenula, and hippocampus. Highly correlated changes in certain white matter CER-SM pairs occur in regions across all groups, including the hippocampus and the lateral (but not medial) cerebellar cortex of adult mice. Our data provide the first microscale MS evidence of regional lipid intensity variations induced by alcohol.

  15. Detailed Comparison of Deuterium Quadrupole Profiles between Sphingomyelin and Phosphatidylcholine Bilayers

    PubMed Central

    Yasuda, Tomokazu; Kinoshita, Masanao; Murata, Michio; Matsumori, Nobuaki

    2014-01-01

    Lipid rafts are microdomains rich in sphingomyelin (SM) and cholesterol (Chol). The essential question is why natural lipid rafts prefer SM rather than saturated diacyl glycerophosphocholine, although both form ordered membranes with Chol in model systems. Hence in this study, we synthesized site-specifically deuterated 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholines that match the acyl chain length of stearoyl-SM (SSM), and compared their deuterium quadrupole coupling profiles in detail. The results suggest a deeper distribution of Chol in the SSM membranes, a lower entropic penalty upon accommodation of Chol in SSM membranes, and a higher thermal stability of acyl-chain orders in the SSM-Chol bilayers than in the 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine-Chol system at various Chol concentrations. The entropy effect and thermal stability should render SM a more preferred raft constituent than saturated diacyl glycerophosphocholine. Our data also demonstrate that the selective and comprehensive deuteration strategy is indispensable for accurate comparison of order profiles. PMID:24507603

  16. Sphingomyelin synthase SMS2 displays dual activity as ceramide phosphoethanolamine synthase[S

    PubMed Central

    Ternes, Philipp; Brouwers, Jos F. H. M.; van den Dikkenberg, Joep; Holthuis, Joost C. M.

    2009-01-01

    Sphingolipids are vital components of eukaryotic membranes involved in the regulation of cell growth, death, intracellular trafficking, and the barrier function of the plasma membrane (PM). While sphingomyelin (SM) is the major sphingolipid in mammals, previous studies indicate that mammalian cells also produce the SM analog ceramide phosphoethanolamine (CPE). Little is known about the biological role of CPE or the enzyme(s) responsible for CPE biosynthesis. SM production is mediated by the SM synthases SMS1 in the Golgi and SMS2 at the PM, while a closely related enzyme, SMSr, has an unknown biochemical function. We now demonstrate that SMS family members display striking differences in substrate specificity, with SMS1 and SMSr being monofunctional enzymes with SM and CPE synthase activity, respectively, and SMS2 acting as a bifunctional enzyme with both SM and CPE synthase activity. In agreement with the PM residency of SMS2, we show that both SM and CPE synthase activities are enhanced at the surface of SMS2-overexpressing HeLa cells. Our findings reveal an unexpected diversity in substrate specificity among SMS family members that should enable the design of specific inhibitors to target the biological role of each enzyme individually. PMID:19454763

  17. Endocytosis and intracellular processing of BODIPY-sphingomyelin by murine CATH.a neurons☆

    PubMed Central

    Nusshold, Christoph; Uellen, Andreas; Bernhart, Eva; Hammer, Astrid; Damm, Sabine; Wintersperger, Andrea; Reicher, Helga; Hermetter, Albin; Malle, Ernst; Sattler, Wolfgang

    2013-01-01

    Neuronal sphingolipids (SL) play important roles during axonal extension, neurotrophic receptor signaling and neurotransmitter release. Many of these signaling pathways depend on the presence of specialized membrane microdomains termed lipid rafts. Sphingomyelin (SM), one of the main raft constituents, can be formed de novo or supplied from exogenous sources. The present study aimed to characterize fluorescently-labeled SL turnover in a murine neuronal cell line (CATH.a). Our results demonstrate that at 4 °C exogenously added BODIPY-SM accumulates exclusively at the plasma membrane. Treatment of cells with bacterial sphingomyelinase (SMase) and back-exchange experiments revealed that 55–67% of BODIPY-SM resides in the outer leaflet of the plasma membrane. Endocytosis of BODIPY-SM occurs via caveolae with part of internalized BODIPY-fluorescence ending up in the Golgi and the ER. Following endocytosis BODIPY-SM undergoes hydrolysis, a reaction substantially faster than BODIPY-SM synthesis from BODIPY-ceramide. RNAi demonstrated that both, acid (a)SMase and neutral (n)SMases contribute to BODIPY-SM hydrolysis. Finally, high-density lipoprotein (HDL)-associated BODIPY-SM was efficiently taken up by CATH.a cells. Our findings indicate that endocytosis of exogenous SM occurs almost exclusively via caveolin-dependent pathways, that both, a- and nSMases equally contribute to neuronal SM turnover and that HDL-like particles might represent physiological SM carriers/donors in the brain. PMID:23973266

  18. Sphingomyelin is sorted at the trans Golgi network into a distinct class of secretory vesicle

    PubMed Central

    Deng, Yongqiang; Rivera-Molina, Felix E.; Toomre, Derek K.; Burd, Christopher G.

    2016-01-01

    One of the principal functions of the trans Golgi network (TGN) is the sorting of proteins into distinct vesicular transport carriers that mediate secretion and interorganelle trafficking. Are lipids also sorted into distinct TGN-derived carriers? The Golgi is the principal site of the synthesis of sphingomyelin (SM), an abundant sphingolipid that is transported. To address the specificity of SM transport to the plasma membrane, we engineered a natural SM-binding pore-forming toxin, equinatoxin II (Eqt), into a nontoxic reporter termed Eqt-SM and used it to monitor intracellular trafficking of SM. Using quantitative live cell imaging, we found that Eqt-SM is enriched in a subset of TGN-derived secretory vesicles that are also enriched in a glycophosphatidylinositol-anchored protein. In contrast, an integral membrane secretory protein (CD8α) is not enriched in these carriers. Our results demonstrate the sorting of native SM at the TGN and its transport to the plasma membrane by specific carriers. PMID:27247384

  19. Sphingomyelin in High-Density Lipoproteins: Structural Role and Biological Function

    PubMed Central

    Martínez-Beamonte, Roberto; Lou-Bonafonte, Jose M.; Martínez-Gracia, María V.; Osada, Jesús

    2013-01-01

    High-density lipoprotein (HDL) levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM) is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin–cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat), drugs (statins or diuretics) and modified in diseases such as diabetes, renal failure or Niemann–Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future. PMID:23571495

  20. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy.

    PubMed

    Ando, Jun; Kinoshita, Masanao; Cui, Jin; Yamakoshi, Hiroyuki; Dodo, Kosuke; Fujita, Katsumasa; Murata, Michio; Sodeoka, Mikiko

    2015-04-14

    Sphingomyelin (SM) and cholesterol (chol)-rich domains in cell membranes, called lipid rafts, are thought to have important biological functions related to membrane signaling and protein trafficking. To visualize the distribution of SM in lipid rafts by means of Raman microscopy, we designed and synthesized an SM analog tagged with a Raman-active diyne moiety (diyne-SM). Diyne-SM showed a strong peak in a Raman silent region that is free of interference from intrinsic vibrational modes of lipids and did not appear to alter the properties of SM-containing monolayers. Therefore, we used Raman microscopy to directly visualize the distribution of diyne-SM in raft-mimicking domains formed in SM/dioleoylphosphatidylcholine/chol ternary monolayers. Raman images visualized a heterogeneous distribution of diyne-SM, which showed marked variation, even within a single ordered domain. Specifically, diyne-SM was enriched in the central area of raft domains compared with the peripheral area. These results seem incompatible with the generally accepted raft model, in which the raft and nonraft phases show a clear biphasic separation. One of the possible reasons is that gradual changes of SM concentration occur between SM-rich and -poor regions to minimize hydrophobic mismatch. We believe that our technique of hyperspectral Raman imaging of a single lipid monolayer opens the door to quantitative analysis of lipid membranes by providing both chemical information and spatial distribution with high (diffraction-limited) spatial resolution.

  1. Switching head group selectivity in mammalian sphingolipid biosynthesis by active-site engineering of sphingomyelin synthases

    PubMed Central

    Kol, Matthijs; Panatala, Radhakrishnan; Nordmann, Mirjana; Swart, Leoni; van Suijlekom, Leonie; Cabukusta, Birol; Hilderink, Angelika; Grabietz, Tanja; Mina, John G. M.; Somerharju, Pentti; Korneev, Sergei; Tafesse, Fikadu G.; Holthuis, Joost C. M.

    2016-01-01

    SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS) 1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, sphingomyelin synthase-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmatic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with glutamic acid permitting SMS-catalyzed CPE production and aspartic acid confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes. PMID:27165857

  2. Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy

    PubMed Central

    Ando, Jun; Kinoshita, Masanao; Cui, Jin; Yamakoshi, Hiroyuki; Dodo, Kosuke; Fujita, Katsumasa; Murata, Michio; Sodeoka, Mikiko

    2015-01-01

    Sphingomyelin (SM) and cholesterol (chol)-rich domains in cell membranes, called lipid rafts, are thought to have important biological functions related to membrane signaling and protein trafficking. To visualize the distribution of SM in lipid rafts by means of Raman microscopy, we designed and synthesized an SM analog tagged with a Raman-active diyne moiety (diyne-SM). Diyne-SM showed a strong peak in a Raman silent region that is free of interference from intrinsic vibrational modes of lipids and did not appear to alter the properties of SM-containing monolayers. Therefore, we used Raman microscopy to directly visualize the distribution of diyne-SM in raft-mimicking domains formed in SM/dioleoylphosphatidylcholine/chol ternary monolayers. Raman images visualized a heterogeneous distribution of diyne-SM, which showed marked variation, even within a single ordered domain. Specifically, diyne-SM was enriched in the central area of raft domains compared with the peripheral area. These results seem incompatible with the generally accepted raft model, in which the raft and nonraft phases show a clear biphasic separation. One of the possible reasons is that gradual changes of SM concentration occur between SM-rich and -poor regions to minimize hydrophobic mismatch. We believe that our technique of hyperspectral Raman imaging of a single lipid monolayer opens the door to quantitative analysis of lipid membranes by providing both chemical information and spatial distribution with high (diffraction-limited) spatial resolution. PMID:25825736

  3. Sphingomyelin as a myelin biomarker in CSF of acquired demyelinating neuropathies.

    PubMed

    Capodivento, Giovanna; Visigalli, Davide; Garnero, Martina; Fancellu, Roberto; Ferrara, Michela Demetra; Basit, Abdul; Hamid, Zeeshan; Pastore, Vito Paolo; Garibaldi, Silvano; Armirotti, Andrea; Mancardi, Gianluigi; Serrati, Carlo; Capello, Elisabetta; Schenone, Angelo; Nobbio, Lucilla

    2017-08-10

    Fast, accurate and reliable methods to quantify the amount of myelin still lack, both in humans and experimental models. The overall objective of the present study was to demonstrate that sphingomyelin (SM) in the cerebrospinal fluid (CSF) of patients affected by demyelinating neuropathies is a myelin biomarker. We found that SM levels mirror both peripheral myelination during development and small myelin rearrangements in experimental models. As in acquired demyelinating peripheral neuropathies myelin breakdown occurs, SM amount in the CSF of these patients might detect the myelin loss. Indeed, quantification of SM in 262 neurological patients showed a significant increase in patients with peripheral demyelination (p = 3.81 * 10 - 8) compared to subjects affected by non-demyelinating disorders. Interestingly, SM alone was able to distinguish demyelinating from axonal neuropathies and differs from the principal CSF indexes, confirming the novelty of this potential CSF index. In conclusion, SM is a specific and sensitive biomarker to monitor myelin pathology in the CSF of peripheral neuropathies. Most importantly, SM assay is simple, fast, inexpensive, and promising to be used in clinical practice and drug development.

  4. Sphingomyelin metabolism controls the shape and function of the Golgi cisternae

    PubMed Central

    Campelo, Felix; van Galen, Josse; Turacchio, Gabriele; Parashuraman, Seetharaman; Kozlov, Michael M; García-Parajo, María F; Malhotra, Vivek

    2017-01-01

    The flat Golgi cisterna is a highly conserved feature of eukaryotic cells, but how is this morphology achieved and is it related to its function in cargo sorting and export? A physical model of cisterna morphology led us to propose that sphingomyelin (SM) metabolism at the trans-Golgi membranes in mammalian cells essentially controls the structural features of a Golgi cisterna by regulating its association to curvature-generating proteins. An experimental test of this hypothesis revealed that affecting SM homeostasis converted flat cisternae into highly curled membranes with a concomitant dissociation of membrane curvature-generating proteins. These data lend support to our hypothesis that SM metabolism controls the structural organization of a Golgi cisterna. Together with our previously presented role of SM in controlling the location of proteins involved in glycosylation and vesicle formation, our data reveal the significance of SM metabolism in the structural organization and function of Golgi cisternae. DOI: http://dx.doi.org/10.7554/eLife.24603.001 PMID:28500756

  5. Relative activity of cholesterol in OPPC/cholesterol/sphingomyelin mixtures measured with an acoustic sensor.

    PubMed

    Melzak, Kathryn A; Gizeli, Electra

    2009-03-01

    Acoustic devices are sensitive to the mole fraction of cholesterol present in liposomes adsorbed to the device surface as a result of the different mechanical properties of the liposomes. This fact was exploited to develop an acoustic assay to determine the relative affinity of cholesterol for different lipid mixtures. In the assay described here, the initial rate of beta-cyclodextrin-induced removal of cholesterol was measured for liposomes having a range of compositions. The initial rate of cholesterol removal was found to be directly proportional to the concentration of beta-cyclodextrin (betaCD) present over the range of 0-7.5 mg/ml (0-6.6 mM), consistent with other assays measuring the betaCD-accelerated transfer of cholesterol between liposomes. The affinity of cholesterol for 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (OPPC) liposomes with a sphingomyelin mole fraction, chi(SPM), of 0.2 was found to be 1.4x higher than that for pure OPPC liposomes. For liposomes composed only of OPPC and cholesterol in varying ratios, the initial rate of cholesterol removal was determined as a function of cholesterol mole fraction (chi(C)). The initial rate of removal showed an increase at chi(C) = 0.13, consistent with phase diagrams showing the start of liquid ordered domain formation, but no such increase at chi(C) = 0.25, in contrast to the predictions of the umbrella model for OPPC/cholesterol interactions.

  6. Invariant natural killer T cells from children with versus without food allergy exhibit differential responsiveness to milk-derived sphingomyelin.

    PubMed

    Jyonouchi, Soma; Abraham, Valsamma; Orange, Jordan S; Spergel, Jonathan M; Gober, Laura; Dudek, Emily; Saltzman, Rushani; Nichols, Kim E; Cianferoni, Antonella

    2011-07-01

    A key immunologic feature of food allergy (FA) is the presence of a T(h)2-type cytokine bias. Ligation of the invariant natural killer T cell (iNKT) T-cell receptor (TCR) by sphingolipids presented via the CD1d molecule leads to copious secretion of T(h)2-type cytokines. Major food allergens (eg, milk, egg) are the richest dietary source of sphingolipids (food-derived sphingolipids [food-SLs]). Nonetheless, the role of iNKTs in FA is unknown. To investigate the role of iNKTs in FA and to assess whether food-SL-CD1d complexes can engage the iNKT-TCR and induce iNKT functions. PBMCs from 15 children with cow's milk allergy (MA), 12 children tolerant to cow's milk but with allergy to egg, and 13 healthy controls were incubated with α-galactosylceramide (αGal), cow's milk-sphingomyelin, or hen's egg-ceramide. iNKTs were quantified, and their cytokine production and proliferation were assessed. Human CD1d tetramers loaded with milk-sphingomyelin or egg-ceramide were used to determine food-SL binding to the iNKT-TCR. Milk-sphingomyelin, but not egg-ceramide, can engage the iNKT-TCR and induce iNKT proliferation and T(h)2-type cytokine secretion. Children with FA, especially those with MA, had significantly fewer peripheral blood iNKTs and their iNKTs exhibited a greater T(h)2 response to αGal and milk-sphingomyelin than iNKTs of healthy controls. iNKTs from children with FA, especially those with MA, are reduced in number and exhibit a T(h)2 bias in response to αGal and milk-sphingomyelin. These data suggest a potential role for iNKTs in FA. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  7. Effects of dietary sphingomyelin on central nervous system myelination in developing rats.

    PubMed

    Oshida, Kyoichi; Shimizu, Takashi; Takase, Mitsunori; Tamura, Yoshitaka; Shimizu, Toshiaki; Yamashiro, Yuichiro

    2003-04-01

    Human milk contains sphingomyelin (SM) as a major component of the phospholipid fraction. Galactosylceramide (cerebroside), a metabolite of sphingolipids, increases along with CNS myelination, and is generally considered a universal marker of myelination in all vertebrates. l-Cycloserine (LCS) is an inhibitor of serine palmitoyltransferase (SPT), a rate-limiting enzyme for sphingolipid biosynthesis that is reported to show increased activity with development of the rat CNS. The present study examined the effects of dietary SM on CNS myelination during development in LCS-treated rats. From 8 d after birth, Wistar rat pups received a daily s.c. injection (100 mg/kg) of LCS. From 17 d after birth, the animals were fed an 810 mg/100g of bovine SM-supplemented diet (SM-LCS group) or a nonsupplemented diet (LCS group). At 28 d after birth, the animals were killed and subjected to biochemical and morphometric analyses. The myelin dry weight, myelin total lipid content, and cerebroside content were significantly lower in the SM-LCS and LCS groups than in a group not treated with LCS (the non-LCS group). However, these levels were significantly higher in the SM-LCS group than in the LCS group. Morphometric analysis of the optic nerve revealed that the axon diameter, nerve fiber diameter, myelin thickness, and g value (used to compare the relative thickness of myelin sheaths around fibers of different diameter) were significantly lower in the LCS group than in the other groups, but were similar in the SM-LCS and non-LCS groups. These findings suggest that dietary SM contributes to CNS myelination in developing rats with experimental inhibition of SPT activity corrected].

  8. Sphingomyelin Functions as a Novel Receptor for Helicobacter pylori VacA

    PubMed Central

    Kostolansky, Sean S.; Ballivian, Roberto A.; Eichberg, Joseph; Blanke, Steven R.

    2008-01-01

    The vacuolating cytotoxin (VacA) of the gastric pathogen Helicobacter pylori binds and enters epithelial cells, ultimately resulting in cellular vacuolation. Several host factors have been reported to be important for VacA function, but none of these have been demonstrated to be essential for toxin binding to the plasma membrane. Thus, the identity of cell surface receptors critical for both toxin binding and function has remained elusive. Here, we identify VacA as the first bacterial virulence factor that exploits the important plasma membrane sphingolipid, sphingomyelin (SM), as a cellular receptor. Depletion of plasma membrane SM with sphingomyelinase inhibited VacA-mediated vacuolation and significantly reduced the sensitivity of HeLa cells, as well as several other cell lines, to VacA. Further analysis revealed that SM is critical for VacA interactions with the plasma membrane. Restoring plasma membrane SM in cells previously depleted of SM was sufficient to rescue both toxin vacuolation activity and plasma membrane binding. VacA association with detergent-resistant membranes was inhibited in cells pretreated with SMase C, indicating the importance of SM for VacA association with lipid raft microdomains. Finally, VacA bound to SM in an in vitro ELISA assay in a manner competitively inhibited by lysenin, a known SM-binding protein. Our results suggest a model where VacA may exploit the capacity of SM to preferentially partition into lipid rafts in order to access the raft-associated cellular machinery previously shown to be required for toxin entry into host cells. PMID:18497859

  9. A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems.

    PubMed

    Guo, Wen; Kurze, Volker; Huber, Thomas; Afdhal, Nezam H; Beyer, Klaus; Hamilton, James A

    2002-09-01

    We used solid-state NMR techniques to probe the interactions of cholesterol (Chol) with bovine brain sphingomyelin (SM) and for comparison of the interactions of Chol with dipalmitoylphosphatidylcholine (DPPC), which has a similar gel-to-liquid crystalline transition temperature. (1)H-, (31)P-, and (13)C-MASNMR yielded high-resolution spectra from multilamellar dispersions of unlabeled brain SM and Chol for analysis of chemical shifts and linewidths. In addition, (2)H-NMR spectra of oriented lipid membranes with specific deuterium labels gave information about membrane ordering and mobility. Chol disrupted the gel-phase of pure SM and increased acyl chain ordering in the liquid crystalline phase. As inferred from (13)C chemical shifts, the boundaries between the ordered and disordered liquid crystalline phases (L and L) were similar for SM and DPPC. The solubility limit of Chol in SM was ~50 mol %, the same value as previously reported for DPPC membranes. We found no evidence for specific H-bonding between Chol and the amide group of SM. The order parameters of a probe molecule, d31-sn1-DPPC, in SM were slightly higher than in DPPC for all carbons except the terminal groups at 30 mol % but were not significantly different at 5 and 60 mol % Chol. These studies show a general similarity with some subtle differences in the way Chol interacts with DPPC and SM. In the environment of a typical biomembrane, the higher proportion of saturated fatty acyl chains in SM compared to other phospholipids may be the most significant factor influencing interactions with Chol.

  10. Ordered Raft Domains Induced by Outer Leaflet Sphingomyelin in Cholesterol-Rich Asymmetric Vesicles

    PubMed Central

    Lin, Qingqing; London, Erwin

    2015-01-01

    Sphingolipid- and cholesterol-rich liquid-ordered (Lo) lipid domains (rafts) are thought to be important organizing elements in eukaryotic plasma membranes. How they form in the sphingolipid-poor cytosolic (inner) membrane leaflet is unclear. Here, we characterize how outer-leaflet Lo domains induce inner-leaflet-ordered domains, i.e., interleaflet coupling. Asymmetric vesicles studied contained physiologically relevant cholesterol levels (∼37 mol %), a mixture of SM (sphingomyelin) and DOPC (dioleoylphosphatidylcholine) in their outer leaflets, and DOPC in their inner leaflets. Lo domains were observed in both leaflets, and were in register, indicative of coupling between SM-rich outer-leaflet-ordered domains and inner-leaflet-ordered domains. For asymmetric vesicles with outer-leaflet egg SM or milk SM, a fluorescent lipid with unsaturated acyl chains (NBD-DOPE) was depleted in both the outer- and inner-leaflet-ordered domains. This suggests the inner-leaflet-ordered domains were depleted in unsaturated lipid (i.e., DOPC) and thus rich in cholesterol. For asymmetric vesicles containing egg SM, outer-leaflet Lo domains were also depleted in a saturated fluorescent lipid (NBD-DPPE), while inner-leaflet Lo domains were not. This indicates that inner- and outer-leaflet Lo domains can have significantly different physical properties. In contrast, in asymmetric vesicles containing outer-leaflet milk SM, which has long acyl chains capable of interdigitating into the inner leaflet, both outer- and inner-leaflet Lo domains were depleted, to a similar extent, in NBD-DPPE. This is indicative of interdigitation-enhanced coupling resulting in inner- and outer-leaflet Lo domains with similar physical properties. PMID:25954879

  11. Phase Behavior and Domain Size in Sphingomyelin-Containing Lipid Bilayers

    PubMed Central

    Petruzielo, Robin S.; Heberle, Frederick A.; Drazba, Paul; Katsaras, John; Feigenson, Gerald W.

    2013-01-01

    Membrane raft size measurements are crucial to understanding the stability and functionality of rafts in cells. The challenge of accurately measuring raft size is evidenced by the disparate reports of domain sizes, which range from nanometers to microns for the ternary model membrane system sphingomyelin (SM)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). Using Förster resonance energy transfer (FRET) and differential scanning calorimetry (DSC), we established phase diagrams for porcine brain SM (bSM)/dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Chol and bSM/POPC/Chol at 15 and 25°C. By combining two techniques with different spatial sensitivities, namely FRET and small-angle neutron scattering (SANS), we have significantly narrowed the uncertainty in domain size estimates for bSM/POPC/Chol mixtures. Compositional trends in FRET data revealed coexisting domains at 15 and 25°C for both mixtures, while SANS measurements detected no domain formation for bSM/POPC/Chol. Together these results indicate that liquid domains in bSM/POPC/Chol are between 2 and 7 nm in radius at 25°C: that is, domains must be on the order of the 2–6 nm Förster distance of the FRET probes, but smaller than the ~7 nm minimum cluster size detectable with SANS. However, for palmitoyl SM (PSM)/POPC/Chol at a similar composition, SANS detected coexisting liquid domains. This increase in domain size upon replacing the natural SM component (which consists of a mixture of chain lengths) with synthetic PSM, suggests a role for SM chain length in modulating raft size in vivo. PMID:23337475

  12. Oleic- and Docosahexaenoic Acid-Containing Phosphatidylethanolamines Differentially Phase Separate from Sphingomyelin

    PubMed Central

    Shaikh, Saame Raza; LoCascio, Daniel S.; Soni, Smita P.; Wassall, Stephen R.; Stillwell, William

    2009-01-01

    A central tenet of the lipid raft model is the existence of non-raft domains. In support of this view, we have established in model membranes that a phosphatidylethanolamine (PE)-containing docosahexaenoic acid (DHA) forms organizationally distinct non-raft domains in the presence of sphingomyelin (SM) and cholesterol (Chol). We have shown that formation of DHA-rich domains is driven by unfavorable molecular interactions between the rigid Chol molecule and the highly flexible DHA acyl chain. However, the molecular interactions between SM and the DHA-containing PE, which could also contribute to the formation of DHA-rich non-raft domains, have not been sufficiently investigated. To address this issue, we use differential scanning calorimetry (DSC) to study the phase behavior of mixtures of SM with either 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE), an oleic acid (OA)-containing control, over a wide range of concentrations. Deconvolution of binary DSC scans shows that both 16:0-22:6PE and 16:0-18:1PE phase separate from SM. Analysis of transition temperatures and partial phase diagrams, constructed from the DSC scans for the first time, show that 16:0-22:6PE displays greater non-ideal mixing with SM compared to 16:0-18:1PE. Our findings support a model in which DHA- and OA-containing PEs differentially phase separate from SM over a wide range of molar ratios to initiate the formation of non-raft domains, which is greatly enhanced by DHA, but not OA, in the presence of cholesterol. PMID:19735642

  13. Phase Behavior and Domain Size in Sphingomyelin-Containing Lipid Bilayers

    SciTech Connect

    Petruzielo, Robin S; Heberle, Frederick A; Drazba, Paul; Katsaras, John; Feigenson, Gerald

    2013-01-01

    Membrane raft size measurements are crucial to understanding the stability and functionality of rafts in cells. The challenge of accurately measuring raft size is evidenced by the disparate reports of domain sizes, which range from nanometers to microns for the ternary model membrane system sphingomyelin (SM)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). Using F rster resonance energy transfer (FRET) and differential scanning calorimetry (DSC), we established phase diagrams for porcine brain SM (bSM)/dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Chol and bSM/POPC/Chol at 15 and 25 C. By combining two techniqueswith different spatial sensitivities, namely FRET and small-angle neutron scattering (SANS),we have significantly narrowed the uncertainty in domain size estimates for bSM/POPC/Chol mixtures. Compositional trends in FRET data revealed coexisting domains at 15 and 25 C for bothmixtures, while SANS measurements detected no domain formation for bSM/POPC/Chol. Together these results indicate that liquid domains in bSM/POPC/Chol are between 2 and 7 nmin radius at 25 C: that is, domains must be on the order of the 2 6 nmF rster distance of the FRET probes, but smaller than the ~7 nm minimum cluster size detectable with SANS. However, for palmitoyl SM (PSM)/POPC/Chol at a similar composition, SANS detected coexisting liquid domains. This increase in domain size upon replacing the natural SMcomponent (which consists of amixture of chain lengths) with synthetic PSM, suggests a role for SM chain length in modulating raft size in vivo.

  14. Nanoscale Packing Differences in Sphingomyelin and Phosphatidylcholine Revealed by BODIPY Fluorescence in Monolayers: Physiological Implications

    PubMed Central

    2015-01-01

    Phosphatidycholines (PC) with two saturated acyl chains (e.g., dipalmitoyl) mimic natural sphingomyelin (SM) by promoting raft formation in model membranes. However, sphingoid-based lipids, such as SM, rather than saturated-chain PCs have been implicated as key components of lipid rafts in biomembranes. These observations raise questions about the physical packing properties of the phase states that can be formed by these two major plasma membrane lipids with identical phosphocholine headgroups. To investigate, we developed a monolayer platform capable of monitoring changes in surface fluorescence by acquiring multiple spectra during measurement of a lipid force–area isotherm. We relied on the concentration-dependent emission changes of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled PC to detect nanoscale alterations in lipid packing and phase state induced by monolayer lateral compression. The BODIPY-PC probe contained an indacene ring with four symmetrically located methyl (Me) substituents to enhance localization to the lipid hydrocarbon region. Surface fluorescence spectra indicated changes in miscibility even when force–area isotherms showed no deviation from ideal mixing behavior in the surface pressure versus cross-sectional molecular area response. We detected slightly better mixing of Me4-BODIPY-8-PC with the fluid-like, liquid expanded phase of 1-palmitoyl-2-oleoyl-PC compared to N-oleoyl-SM. Remarkably, in the gel-like, liquid condensed phase, Me4-BODIPY-8-PC mixed better with N-palmitoyl-SM than dipalmitoyl-PC, suggesting naturally abundant SMs with saturated acyl chains form gel-like lipid phase(s) with enhanced ability to accommodate deeply embedded components compared to dipalmitoyl-PC gel phase. The findings reveal a fundamental difference in the lateral packing properties of SM and PC that occurs even when their acyl chains match. PMID:24564829

  15. Effect of topically applied sphingomyelin-based liposomes on the ceramide level in a three-dimensional cultured human skin model.

    PubMed

    Tokudome, Yoshihiro; Uchida, Raina; Yokote, Takeshi; Todo, Hiroaki; Hada, Nobuko; Kon, Tatsuhiko; Yasuda, Junko; Hayashi, Hidenori; Hashimoto, Fumie; Sugibayashi, Kenji

    2010-03-01

    Sphingomyelin-based liposomes were prepared and applied to the stratum corneum side or basal layer side of a three-dimensional (3D) cultured human skin model, and the increase in the type II ceramide (ceramide II) content of the cultured skin model was evaluated. The sphingomyelin-based liposomes were prepared by a high-pressure emulsification method, and the obtained liposomes were characterized; the particle diameter and zeta potential of the liposomes were 155.3 nm and -11.4 mV, respectively. Their spherical shape and lamella structure were observed by transmission electron microscopy. The sphingomyelin-based liposomes or saline were applied to the cultured skin model, and ceramide II was extracted from the skin model. The extracted ceramide II was separated by high-performance thin-layer chromatography and quantified by a densitometer. The amount of ceramide II in the cultured skin model was significantly increased by the application of the sphingomyelin-based liposomes, compared with the nonapplication group. Thus, sphingomyelin-based liposomes are useful for enriching the ceramide level in 3D cultured skin models.

  16. Importance of the sphingosine base double-bond geometry for the structural and thermodynamic properties of sphingomyelin bilayers.

    PubMed

    Janosi, Lorant; Gorfe, Alemayehu

    2010-11-03

    The precise role of the sphingosine base trans double bond for the unique properties of sphingomyelins (SMs), one of the main lipid components in raftlike structures of biological membranes, has not been fully explored. Several reports comparing the hydration, lipid packing, and hydrogen-bonding behaviors of SM and glycerophospholipid bilayers found remarkable differences overall. However, the atomic interactions linking the double-bond geometry with these thermodynamic and structural changes remained elusive. A recent report on ceramides, which differ from SMs only by their hydroxyl headgroup, has shown that replacing the trans double bond of the sphingosine base by cis weakens the hydrogen-bonding potential of these lipids and thereby alters their biological activity. Based on data from extensive (a total 0.75 μs) atomistic molecular dynamics simulations of bilayers composed of all-trans, all-cis, and a trans/cis (4:1 ratio) racemic mixture of sphingomyelin lipids, here we show that the trans configuration allows for the formation of significantly more hydrogen bonds than the cis. The extra hydrogen bonds enabled tighter packing of lipids in the all-trans and trans/cis bilayers, thus reducing the average area per lipid while increasing the chain order and the bilayer thickness. Moreover, fewer water molecules access the lipid-water interface of the all-trans bilayer than of the all-cis bilayer. These results provide the atomic basis for the importance of the natural sphingomyelin trans double-bond conformation for the formation of ordered membrane domains.

  17. Gel-gel phase separation within milk sphingomyelin domains revealed at the nanoscale using atomic force microscopy.

    PubMed

    Guyomarc'h, Fanny; Chen, Maohui; Et-Thakafy, Oumaima; Zou, Shan; Lopez, Christelle

    2017-05-01

    The milk sphingomyelin (MSM) is involved in the formation of ordered lipid domains in the biological milk fat globule membrane (MFGM), where it accounts for about 30%wt of the polar lipids. Moreover, MSM exhibits a large variety in saturated acyl chain lengths (from C16:0 to C24:0-SM) compared to other natural sphingomyelins, which may impact the packing of MSM molecular species in the gel phase domains and the topography of the MFGM. To investigate this, supported lipid bilayers of synthetic sphingomyelins or of MSM-containing mixtures, including a MFGM polar lipid extract, were imaged at temperatures below the Tm of MSM (i.e. <34°C for which MSM is in the gel phase) in hydrated conditions using atomic force microscopy. In all compositions containing MSM, the MSM-rich gel phase domains exhibited lower and upper height levels H, interpreted as two distinct gel phases with ∆H~0.5-1.1nm. Two (lower and upper) gel phases were also found for pure C24:0-SM bilayers or for bilayers of a C16:0-SM/C24:0-SM equimolar mixture, while C16:0-SM bilayers were uniformly flat and less thick than C24:0-SM bilayers. The upper gel phase of MSM-containing bilayers was interpreted as mixed interdigitated C24:0-SM molecules, while the lower gel phase was attributed both to fully interdigitated C24:0-SM molecules and non-interdigitated C16:0-SM molecules. These results show that the composition of natural sphingomyelins, inducing a mismatch between the d18:1 sphingosine and the acyl chains, is important in both the internal organization and the topography of biological membranes, especially that of the MFGM. This organization could be involved in specific biological functions, e.g. the insertion of proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Rapid enzyme analysis of amniotic fluid phospholipids containing choline: a comparison with the lecithin to sphingomyelin ratio in prenatal assessment of fetal lung maturity.

    PubMed Central

    Teng, S H; Andrews, A G; Horacek, I

    1985-01-01

    The relation between the choline containing surfactant phospholipids lecithin and sphingomyelin in amniotic fluid and fetal lung maturity is well established. An enzymatic method that had been automated and optimised for use on a centrifugal analyser was used to measure the total choline containing phospholipids in amniotic fluid. The total time taken for this assay was 10 minutes. The results obtained from 100 patient samples, using this procedure, compared favourably with the results obtained by the thin layer chromatography procedure used to determine the lecithin to sphingomyelin ratio (r = 0.93). A clinical study of 60 patients showed that this assay predicted prenatal respiratory distress syndrome as well as the lecithin to sphingomyelin ratios. The advantage of this assay over existing procedures is that it requires minimum preparation of the specimen and no extraction, is quick, and shows a high degree of precision. PMID:4066990

  19. Lipid raft components cholesterol and sphingomyelin increase H+/OH− permeability of phosphatidylcholine membranes

    PubMed Central

    Gensure, Rebekah H.; Zeidel, Mark L.; Hill, Warren G.

    2006-01-01

    H+/OH− permeation through lipid bilayers occurs at anomalously high rates and the determinants of proton flux through membranes are poorly understood. Since all life depends on proton gradients, it is important to develop a greater understanding of proton leak phenomena. We have used stopped-flow fluorimetry to probe the influence of two lipid raft components, chol (cholesterol) and SM (sphingomyelin), on H+/OH− and water permeability. Increasing the concentrations of both lipids in POPC (palmitoyl-2-oleoyl phosphatidylcholine) liposomes decreased water permeability in a concentration-dependent manner, an effect that correlated with increased lipid order. Surprisingly, proton flux was increased by increasing the concentration of chol and SM. The chol effect was complex with molar concentrations of 17.9, 33 and 45.7% giving 2.8-fold (P<0.01), 2.2-fold (P<0.001) and 5.1-fold (P<0.001) increases in H+/OH− permeability from a baseline of 2.4×10−2 cm/s. SM at 10 mole% effected a 2.8-fold increase (P<0.01), whereas 20 and 30 mole% enhanced permeability by 3.6-fold (P<0.05) and 4.1-fold respectively (P<0.05). Supplementing membranes containing chol with SM did not enhance H+/OH− permeability. Of interest was the finding that chol addition to soya-bean lipids decreased H+/OH− permeability, consistent with an earlier report [Ira and Krishnamoorthy (2001) J. Phys. Chem. B 105, 1484–1488]. We speculate that the presence of proton carriers in crude lipid extracts might contribute to this result. We conclude that (i) chol and SM specifically and independently increase rates of proton permeation in POPC bilayers, (ii) domains enriched in these lipids or domain interfaces may represent regions with high H+/OH− conductivity, (iii) H+/OH− fluxes are not governed by lipid order and (iv) chol can inhibit or promote H+/OH− permeability depending on the total lipid environment. Theories of proton permeation are discussed in the light of these results. PMID

  20. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane

    PubMed Central

    1985-01-01

    When monolayer cultures of Chinese hamster lung fibroblasts are briefly incubated at 2 degrees C with the fluorescent sphingolipid analogue, C6- NBD-ceramide (N- [7-(4-nitrobenzo-2-oxa-1,3-diazole)] aminocaproyl sphingosine), fluorescent labeling of the mitochondria, endoplasmic reticulum, and nuclear envelope occur. During further incubation at 37 degrees C, the Golgi apparatus, and later the plasma membrane, become intensely fluorescent. Within this period, the C6-NBD-ceramide is converted to equal amounts of fluorescent sphingomyelin and glucocerebroside (Lipsky, N. G., and R. E. Pagano, 1983, Proc. Natl. Acad. Sci. USA., 80:2608-2612). In the present study, the intracellular translocation of these metabolites and their subsequent appearance at the plasma membrane were investigated by fluorescence microscopy, the addition of the ionophore monensin, and the technique of "back exchange," in which the amounts and types of fluorescent lipids present at the cell surface are identified after their transfer from the cell surface into recipient vesicles. In control cells, the amount of fluorescent glucocerebroside and sphingomyelin that could be removed from the cell surface by back exchange increased during incubation at 37 degrees C, correlating with the increased fluorescence of the plasma membrane observed by microscopy. In the presence of 10 microM monensin, visible labeling of the plasma membrane was greatly diminished, whereas the Golgi apparatus became highly fluorescent and distended. The ability to remove fluorescent metabolites from the cell surface by back exchange was significantly but reversibly inhibited by monensin. Monensin also increased the total amount of fluorescent sphingomyelin, but not the glucocerebroside found in cells. Subcellular fractions were assayed for their ability to convert radiolabeled and fluorescent ceramides to the corresponding sphingomyelins and glucocerebrosides. The activities of parallel fractions coincided, suggesting that

  1. Ab initio and DFT study of 31P-NMR chemical shifts of sphingomyelin and dihydrosphingomyelin lipid molecule

    NASA Astrophysics Data System (ADS)

    Sugimori, K.; Kawabe, H.; Nagao, H.; Nishikawa, K.

    One of the phospholipids, sphingomyelin (SM, N-acyl-sphingosine-1-phosphorylcholine) is the most abundant component of mammalian membranes in brain, nervous tissues, and human ocular lens. It plays an important role for apoptosis, aging, and signal transduction. Recently, Yappert and coworkers have shown that human lens sphingomyelin and its hydrogenated derivative, dihydrosphingomyelin (DHSM) are interacted with Ca2+ ions to develop human cataracts. Previously, we have investigated conformational differences between an isolated SM/DHSM molecule and Ca2+-coordinated form by using density functional theory (DFT) for geometry optimization and normal mode analysis. As a result, one of stable conformers of SMs has a hydrogen bonding between hydroxyl group and phosphate group, whereas another conformer has a hydrogen bonding between hydroxyl and phosphate amide group. In this study, 31P-Nuclear Magnetic Resonance (NMR) shielding constants of the obtained conformers are investigated by using ab initio and DFT with NMR-gauge invariant atomic orbitals (NMR-GIAO) calculations. The experimental 31P-NMR chemical shifts of SMs and DHSMs have significant small value around 0.1 ppm. We consider the relative conformational changes between SMs and DHSMs affect the slight deviations of 31P-NMR chemical shifts, and discuss intramolecular hydrogen bondings and the solvent effect in relation to NMR experimental reference.

  2. Characterisation of plasmalemmal shedding of vesicles induced by the cholesterol/sphingomyelin binding protein, ostreolysin A-mCherry.

    PubMed

    Skočaj, Matej; Yu, Yang; Grundner, Maja; Resnik, Nataša; Bedina Zavec, Apolonija; Leonardi, Adrijana; Križaj, Igor; Guella, Graziano; Maček, Peter; Kreft, Mateja Erdani; Frangež, Robert; Veranič, Peter; Sepčić, Kristina

    2016-11-01

    Ostreolysin A (OlyA) is a 15-kDa protein that binds selectively to cholesterol/sphingomyelin membrane nanodomains. This binding induces the production of extracellular vesicles (EVs) that comprise both microvesicles with diameters between 100nm and 1μm, and larger vesicles of around 10-μm diameter in Madin-Darby canine kidney cells. In this study, we show that vesiculation of these cells by the fluorescent fusion protein OlyA-mCherry is not affected by temperature, is not mediated via intracellular Ca(2+) signalling, and does not compromise cell viability and ultrastructure. Seventy-one proteins that are mostly of cytosolic and nuclear origin were detected in these shed EVs using mass spectroscopy. In the cells and EVs, 218 and 84 lipid species were identified, respectively, and the EVs were significantly enriched in lysophosphatidylcholines and cholesterol. Our collected data suggest that OlyA-mCherry binding to cholesterol/sphingomyelin membrane nanodomains induces specific lipid sorting into discrete patches, which promotes plasmalemmal blebbing and EV shedding from the cells. We hypothesize that these effects are accounted for by changes of local membrane curvature upon the OlyA-mCherry-plasmalemma interaction. We suggest that the shed EVs are a potentially interesting model for biophysical and biochemical studies of cell membranes, and larger vesicles could represent tools for non-invasive sampling of cytosolic proteins from cells and thus metabolic fingerprinting. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes.

    PubMed

    Pullmannová, Petra; Staňková, Klára; Pospíšilová, Markéta; Skolová, Barbora; Zbytovská, Jarmila; Vávrová, Kateřina

    2014-08-01

    The conversion of sphingomyelin (SM) to a ceramide (Cer) by acid sphingomyelinase (aSMase) is an important event in skin barrier development. A deficiency in aSMase in diseases such as Niemann-Pick disease and atopic dermatitis coincides with impaired skin barrier recovery after disruption. We studied how an increased SM/Cer ratio influences the barrier function and microstructure of model stratum corneum (SC) lipid membranes. In the membranes composed of isolated human SC Cer (hCer)/cholesterol/free fatty acids/cholesteryl sulfate, partial or full replacement of hCer by SM increased water loss. Partial replacement of 25% and 50% of hCer by SM also increased the membrane permeability to theophylline and alternating electric current, while a higher SM content either did not alter or even decreased the membrane permeability. In contrast, in a simple membrane model with only one type of Cer (nonhydroxyacyl sphingosine, CerNS), an increased SM/Cer ratio provided a similar or better barrier against the permeation of various markers. X-ray powder diffraction revealed that the replacement of hCer by SM interferes with the formation of the long periodicity lamellar phase with a repeat distance of d=12.7nm. Our results suggest that SM-to-Cer processing in the human epidermis is essential for preventing excessive water loss, while the permeability barrier to exogenous compounds is less sensitive to the presence of sphingomyelin. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Determination of plasma membrane fluidity with a fluorescent analogue of sphingomyelin by FRAP measurement using a standard confocal microscope.

    PubMed

    Klein, Christophe; Pillot, Thierry; Chambaz, Jean; Drouet, Beatrice

    2003-03-01

    Membrane perturbing effects have been described in neurodegenerative process like Alzheimer's disease and prion disorders. For example, non fibrillar amyloid-beta peptides (Abeta) implicated in Alzheimer's disease may exert its toxicity via membrane perturbation. Membrane organisation can be evaluated by its influence on lateral diffusion of lipids, which itself can be measured by FRAP (fluorescence recovery after photobleaching). We used this technique to study the effects of Abeta on membrane fluidity (Pillot et al., manuscript in preparation). We propose here a simple adaptation of FRAP using standard confocal laser scanning microscopy (CLSM). As a test experiment, we analysed the lateral diffusion of a fluorescent analogue of sphingomyelin and were able to demonstrate its increase upon cholesterol depletion induced by methyl-beta-cyclodextrin (cdx).

  5. Secretion of small/microRNAs including miR-638 into extracellular spaces by sphingomyelin phosphodiesterase 3.

    PubMed

    Kubota, Shiori; Chiba, Mitsuru; Watanabe, Miki; Sakamoto, Maki; Watanabe, Narumi

    2015-01-01

    A recent study demonstrated that intracellular small/microRNAs are released from cells, and some of these extracellular RNAs are embedded in vesicles, such as ceramide-rich exosomes, on lipid-bilayer membranes. In the present study, we examined the effects of sphingomyelin phosphodiesterase 3 (SMPD3), which generates ceramide from sphingomyelin, on the release of small/microRNAs from intracellular to extracellular spaces. In these experiments, SW480 human colorectal and HuH-7 human hepatocellular cancer cells were cultured for 48 h in serum-free media. Culture supernatants were then collected, and floating cells and debris were removed by centrifugation and filtration through a 0.22-µm filter. Extracellular small RNAs in purified culture supernatants were stable for 4 weeks at room temperature, after 20 freeze-thaw cycles and exposure to pH 2.0, and were resistant to ribonuclease A degradation. Amino acid sequence analyses of SMPD3 showed high homology between mammals, indicating evolutionary conservation. Therefore, to investigate the mechanisms of cellular small/microRNA export, SW480 and HuH-7 cells were treated with the SMPD3 inhibitor GW4869 in serum-free media. Culture supernatants were collected for microarray and/or reverse transcription quantitative polymerase chain reaction (RT-qPCR) experiments. The number of microRNAs in culture supernatants was decreased following treatment with GW4869. Among these, extracellular and intracellular miR-638 were dose-dependently decreased and increased, respectively. These data suggest that SMPD3 plays an important role in the release of microRNAs into extracellular spaces.

  6. Evaluation of sphingomyelin, cholester, and phosphatidylcholine-based immobilized artificial membrane liquid chromatography to predict drug penetration across the blood-brain barrier.

    PubMed

    De Vrieze, Mike; Verzele, Dieter; Szucs, Roman; Sandra, Pat; Lynen, Frédéric

    2014-10-01

    Over the past decades, several in vitro methods have been tested for their ability to predict drug penetration across the blood-brain barrier. So far, in high-performance liquid chromatography, most attention has been paid to micellar liquid chromatography and immobilized artificial membrane (IAM) LC. IAMLC has been described as a viable approach, since the stationary phase emulates the lipid environment of a cell membrane. However, research in IAMLC has almost exclusively been limited to phosphatidylcholine (PC)-based stationary phases, even though PC is only one of the lipids present in cell membranes. In this article, sphingomyelin and cholester stationary phases have been tested for the first time towards their ability to predict drug penetration across the blood-brain barrier. Upon comparison with the PC stationary phase, the sphingomyelin- and cholester-based columns depict similar predictive performance. Combining data from the different stationary phases did not lead to improvements of the models.

  7. Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models[S

    PubMed Central

    Chughtai, Kamila; Jiang, Lu; Greenwood, Tiffany R.; Glunde, Kristine; Heeren, Ron M. A.

    2013-01-01

    The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models. PMID:22930811

  8. Effect of dietary sphingomyelin on absorption and fractional synthetic rate of cholesterol and serum lipid profile in humans

    PubMed Central

    2013-01-01

    Background Diets enriched with sphingolipids may improve blood lipid profiles. Studies in animals have shown reductions in cholesterol absorption and alterations in blood lipids after treatment with sphingomyelin (SM). However, minimal information exists on effect of SM on cholesterol absorption and metabolism in humans. The objective was to assess the effect of SM consumption on serum lipid concentrations and cholesterol metabolism in healthy humans. Methods Ten healthy adult males and females completed a randomized crossover study. Subjects consumed controlled diets with or without 1 g/day SM for 14 days separated by at least 4 week washout period. Serum lipid profile and markers of cholesterol metabolism including cholesterol absorption and synthesis were analyzed. Results Serum triglycerides, total, LDL- and VLDL- cholesterol were not affected while HDL cholesterol concentrations were increased (p = 0.043) by SM diet consumption. No change in cholesterol absorption and cholesterol fractional synthesis rate was observed with supplementation of SM compared to control. Intraluminal cholesterol solubilization was also not affected by consumption of SM enriched diet. Conclusions In humans, 1 g/day of dietary SM does not alter the blood lipid profile except for an increased HDL-cholesterol concentration and has no effect on cholesterol absorption, synthesis and intraluminal solubilization compared to control. Trial registration Clinicaltrials.gov # NCT00328211 PMID:23958473

  9. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus

    SciTech Connect

    Futerman, A.H.; Stieger, B.; Hubbard, A.L.; Pagano, R.E. )

    1990-05-25

    The intracellular site of sphingomyelin (SM) synthesis was examined in subcellular fractions from rat liver using a radioactive ceramide analog N-((1-14C)hexanoyl)-D-erythro-sphingosine. This lipid readily transferred from a complex with bovine serum albumin to liver fractions without disrupting the membranes, and was metabolized to radioactive SM. To prevent degradation of the newly synthesized SM to ceramide, all experiments were performed in the presence of EDTA to minimize neutral sphingomyelinase activity and at neutral pH to minimize acid sphingomyelinase activity. An intact Golgi apparatus fraction gave an 85-98-fold enrichment of SM synthesis and a 58-83-fold enrichment of galactosyltransferase activity. Controlled trypsin digestion demonstrated that SM synthesis was localized to the lumen of intact Golgi apparatus vesicles. Although small amounts of SM synthesis were detected in plasma membrane and rough microsome fractions, after accounting for contamination by Golgi apparatus membranes, their combined activity contributed less than 13% of the total SM synthesis in rat liver. Subfractions of the Golgi apparatus were obtained and characterized by immunoblotting and biochemical assays using cis/medial (mannosidase II) and trans (sialyltransferase and galactosyltransferase) Golgi apparatus markers. The specific activity of SM synthesis was highest in enriched cis and medial fractions but far lower in a trans fraction. We conclude that SM synthesis in rat liver occurs predominantly in the cis and medial cisternae of the Golgi apparatus and not at the plasma membrane or endoplasmic reticulum as has been previously suggested.

  10. Dietary Milk Sphingomyelin Prevents Disruption of Skin Barrier Function in Hairless Mice after UV-B Irradiation.

    PubMed

    Oba, Chisato; Morifuji, Masashi; Ichikawa, Satomi; Ito, Kyoko; Kawahata, Keiko; Yamaji, Taketo; Asami, Yukio; Itou, Hiroyuki; Sugawara, Tatsuya

    2015-01-01

    Exposure to ultraviolet-B (UV-B) irradiation causes skin barrier defects. Based on earlier findings that milk phospholipids containing high amounts of sphingomyelin (SM) improved the water content of the stratum corneum (SC) in normal mice, here we investigated the effects of dietary milk SM on skin barrier defects induced by a single dose of UV-B irradiation in hairless mice. Nine week old hairless mice were orally administrated SM (146 mg/kg BW/day) for a total of ten days. After seven days of SM administration, the dorsal skin was exposed to a single dose of UV-B (20 mJ/cm2). Administration of SM significantly suppressed an increase in transepidermal water loss and a decrease in SC water content induced by UV-B irradiation. SM supplementation significantly maintained covalently-bound ω-hydroxy ceramide levels and down-regulated mRNA levels of acute inflammation-associated genes, including thymic stromal lymphopoietin, interleukin-1 beta, and interleukin-6. Furthermore, significantly higher levels of loricrin and transglutaminase-3 mRNA were observed in the SM group. Our study shows for the first time that dietary SM modulates epidermal structures, and can help prevent disruption of skin barrier function after UV-B irradiation.

  11. Viperin inhibits rabies virus replication via reduced cholesterol and sphingomyelin and is regulated upstream by TLR4

    PubMed Central

    Tang, Hai-Bo; Lu, Zhuan-Ling; Wei, Xian-Kai; Zhong, Tao-Zhen; Zhong, Yi-Zhi; Ouyang, Ling-Xuan; Luo, Yang; Xing, Xing-Wei; Liao, Fang; Peng, Ke-Ke; Deng, Chao-Qian; Minamoto, Nobuyuki; Luo, Ting Rong

    2016-01-01

    Viperin (virus inhibitory protein, endoplasmic reticulum-associated, IFN-inducible) is an interferon-inducible protein that mediates antiviral activity. Generally, rabies virus (RABV) multiplies extremely well in susceptible cells, leading to high virus titres. In this study, we found that viperin was significantly up-regulated in macrophage RAW264.7 cells but not in NA, BHK-21 or BSR cells. Transient viperin overexpression in BSR cells and stable expression in BHK-21 cells could inhibit RABV replication, including both attenuated and street RABV. Furthermore, the inhibitory function of viperin was related to reduce cholesterol/sphingomyelin on the membranes of RAW264.7 cells. We explored the up-stream regulation pathway of viperin in macrophage RAW264.7 cells in the context of RABV infection. An experiment confirmed that a specific Toll-like receptor 4 (TLR4) inhibitor, TAK-242, could inhibit viperin expression in RABV-infected RAW264.7 cells. These results support a regulatory role for TLR4. Geldanamycin, a specific inhibitor of interferon regulatory factor 3 (IRF3) (by inhibiting heat-shock protein 90 (Hsp90) of the IRF3 phosphorylation chaperone), significantly delayed and reduced viperin expression, indicating that IRF3 is involved in viperin induction in RAW264.7 cells. Taken together, our data support the therapeutic potential for viperin to inhibit RABV replication, which appears to involve upstream regulation by TLR4. PMID:27456665

  12. Combined Monte Carlo and molecular dynamics simulation of hydrated 18:0 sphingomyelin-cholesterol lipid bilayers

    NASA Astrophysics Data System (ADS)

    Khelashvili, George A.; Scott, H. L.

    2004-05-01

    We have carried out atomic level molecular dynamics and Monte Carlo simulations of hydrated 18:0 sphingomyelin (SM)-cholesterol (CHOL) bilayers at temperatures of 20 and 50 °C. The simulated systems each contained 266 SM, 122 CHOL, and 11861 water molecules. Each simulation was run for 10 ns under semi-isotropic pressure boundary conditions. The particle-mesh Ewald method was used for long-range electrostatic interactions. Properties of the systems were calculated over the final 3 ns. We compare the properties of 20 and 50 °C bilayer systems with each other, with experimental data, and with experimental and simulated properties of pure SM bilayers and dipalmitoyl phospatidyl choline (DPPC)-CHOL bilayers. The simulations reveal an overall similarity of both systems, despite the 30 °C temperature difference which brackets the pure SM main phase transition. The area per molecule, lipid chain order parameter profiles, atom distributions, and electron density profiles are all very similar for the two simulated systems. Consistent with simulations from our lab and others, we find strong intramolecular hydrogen bonding in SM molecules between the phosphate ester oxygen and the hydroxyl hydrogen atoms. We also find that cholesterol hydroxyl groups tend to form hydrogen bonds primarily with SM carbonyl, methyl, and amide moieties and to a lesser extent methyl and hydroxyl oxygens.

  13. Short-term magnesium deficiency results in decreased levels of serum sphingomyelin, lipid peroxidation, and apoptosis in cardiovascular tissues.

    PubMed

    Altura, Burton M; Shah, Nilank C; Jiang, Xian-Cheng; Li, Zhiqiang; Perez-Albela, José Luis; Sica, Anthony C; Altura, Bella T

    2009-07-01

    The present study tested the hypothesis that short-term dietary deficiency of magnesium (Mg) (21 days) in rats would 1) result in decreased serum(s) [the present study tested the levels of Mg, sphingomyelin (SM), and phosphatidylcholine (PC)]; 2) promote DNA fragmentation, lipid peroxidation (LP), and activation of caspase-3 in cardiac (ventricular and atrial) and vascular(aortic) muscle; and 3) low levels of Mg(2+) added to drinking water would either prevent or greatly ameliorate these manifestations. The data indicate that short-term Mg deficiency (10% normal dietary intake) resulted in profound reductions in serum-ionized Mg and total Mg with an elevation in serum-ionized calcium (Ca(2+)), significant lowering of serum SM and serum PC, with concomitant LP, DNA fragmentation, and activation of caspase-3 in ventricular (right and left chambers), atrial (right and left chambers) and abdominal aortic smooth muscle. The greater the reduction in serum-ionized Mg, the greater the effects on DNA fragmentation, LP, and caspase-3 activity. The intake of water-borne Mg(2+) at all levels greatly attenuated or inhibited the reductions in serum SM and serum PC, activation of LP, DNA fragmentation, and the activation of caspase-3; even very low levels of Mg(2+) in drinking water (i.e., 15 parts.million(-1).day(-1)) were cardio- and vascular protective. In addition, we demonstrate that short-term dietary deficiency of Mg probably results in a downregulation of SM synthase and a decreased synthesis of PC.

  14. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model

    PubMed Central

    Arroyo, Ana I; Camoletto, Paola G; Morando, Laura; Sassoe-Pognetto, Marco; Giustetto, Maurizio; Van Veldhoven, Paul P; Schuchman, Edward H; Ledesma, Maria D

    2014-01-01

    Understanding the role of lipids in synapses and the aberrant molecular mechanisms causing the cognitive deficits that characterize most lipidosis is necessary to develop therapies for these diseases. Here we describe sphingomyelin (SM) as a key modulator of the dendritic spine actin cytoskeleton. We show that increased SM levels in neurons of acid sphingomyelinase knock out mice (ASMko), which mimic Niemann Pick disease type A (NPA), result in reduced spine number and size and low levels of filamentous actin. Mechanistically, SM accumulation decreases the levels of metabotropic glutamate receptors type I (mGluR1/5) at the synaptic membrane impairing membrane attachment and activity of RhoA and its effectors ROCK and ProfilinIIa. Pharmacological enhancement of the neutral sphingomyelinase rescues the aberrant molecular and morphological phenotypes in vitro and in vivo and improves motor and memory deficits in ASMko mice. Altogether, these data demonstrate the influence of SM and its catabolic enzymes in dendritic spine physiology and contribute to our understanding of the cognitive deficits of NPA patients, opening new perspectives for therapeutic interventions. Subject Categories Genetics, Gene Therapy & Genetic Disease; Neuroscience PMID:24448491

  15. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model.

    PubMed

    Arroyo, Ana I; Camoletto, Paola G; Morando, Laura; Sassoe-Pognetto, Marco; Giustetto, Maurizio; Van Veldhoven, Paul P; Schuchman, Edward H; Ledesma, Maria D

    2014-03-01

    Understanding the role of lipids in synapses and the aberrant molecular mechanisms causing the cognitive deficits that characterize most lipidosis is necessary to develop therapies for these diseases. Here we describe sphingomyelin (SM) as a key modulator of the dendritic spine actin cytoskeleton. We show that increased SM levels in neurons of acid sphingomyelinase knock out mice (ASMko), which mimic Niemann Pick disease type A (NPA), result in reduced spine number and size and low levels of filamentous actin. Mechanistically, SM accumulation decreases the levels of metabotropic glutamate receptors type I (mGluR1/5) at the synaptic membrane impairing membrane attachment and activity of RhoA and its effectors ROCK and ProfilinIIa. Pharmacological enhancement of the neutral sphingomyelinase rescues the aberrant molecular and morphological phenotypes in vitro and in vivo and improves motor and memory deficits in ASMko mice. Altogether, these data demonstrate the influence of SM and its catabolic enzymes in dendritic spine physiology and contribute to our understanding of the cognitive deficits of NPA patients, opening new perspectives for therapeutic interventions.

  16. Sphingomyelin-induced inhibition of the plasma membrane calcium ATPase causes neurodegeneration in type A Niemann-Pick disease.

    PubMed

    Pérez-Cañamás, A; Benvegnù, S; Rueda, C B; Rábano, A; Satrústegui, J; Ledesma, M D

    2017-05-01

    Niemann-Pick disease type A (NPA) is a rare lysosomal storage disorder characterized by severe neurological alterations that leads to death in childhood. Loss-of-function mutations in the acid sphingomyelinase (ASM) gene cause NPA, and result in the accumulation of sphingomyelin (SM) in lysosomes and plasma membrane of neurons. Using ASM knockout (ASMko) mice as a NPA disease model, we investigated how high SM levels contribute to neural pathology in NPA. We found high levels of oxidative stress both in neurons from these mice and a NPA patient. Impaired activity of the plasma membrane calcium ATPase (PMCA) increases intracellular calcium. SM induces PMCA decreased activity, which causes oxidative stress. Incubating ASMko-cultured neurons in the histone deacetylase inhibitor, SAHA, restores PMCA activity and calcium homeostasis and, consequently, reduces the increased levels of oxidative stress. No recovery occurs when PMCA activity is pharmacologically impaired or genetically inhibited in vitro. Oral administration of SAHA prevents oxidative stress and neurodegeneration, and improves behavioral performance in ASMko mice. These results demonstrate a critical role for plasma membrane SM in neuronal calcium regulation. Thus, we identify changes in PMCA-triggered calcium homeostasis as an upstream mediator for NPA pathology. These findings can stimulate new approaches for pharmacological remediation in a disease with no current clinical treatments.

  17. Regulation of sphingomyelin phosphodiesterase acid-like 3A gene (SMPDL3A) by liver X receptors.

    PubMed

    Noto, Paul B; Bukhtiyarov, Yuri; Shi, Meng; McKeever, Brian M; McGeehan, Gerard M; Lala, Deepak S

    2012-10-01

    Liver X receptor (LXR) α and LXRβ function as physiological sensors of cholesterol metabolites (oxysterols), regulating key genes involved in cholesterol and lipid metabolism. LXRs have been extensively studied in both human and rodent cell systems, revealing their potential therapeutic value in the contexts of atherosclerosis and inflammatory diseases. The LXR genome landscape has been investigated in murine macrophages but not in human THP-1 cells, which represent one of the frequently used monocyte/macrophage cell systems to study immune responses. We used a whole-genome screen to detect direct LXR target genes in THP-1 cells treated with two widely used LXR ligands [N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)-ethyl]phenyl]-benzenesulfonamide (T0901317) and 3-[3-[N-(2-chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl)amino]propyloxy] phenylacetic acid hydrochloride (GW3965)]. This screen identified the sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) gene as a novel LXR-regulated gene, with an LXR response element within its promoter. We investigated the regulation of SMPDL3A gene expression by LXRs across several human and mouse cell types. These studies indicate that the induction of SMPDL3A is LXR-dependent and is restricted to human blood cells with no induction observed in mouse cellular systems.

  18. Orientation and Order of the Amide Group of Sphingomyelin in Bilayers Determined by Solid-State NMR

    PubMed Central

    Matsumori, Nobuaki; Yamaguchi, Toshiyuki; Maeta, Yoshiko; Murata, Michio

    2015-01-01

    Sphingomyelin (SM) and cholesterol (Chol) are considered essential for the formation of lipid rafts; however, the types of molecular interactions involved in this process, such as intermolecular hydrogen bonding, are not well understood. Since, unlike other phospholipids, SM is characterized by the presence of an amide group, it is essential to determine the orientation of the amide and its order in the lipid bilayers to understand the nature of the hydrogen bonds in lipid rafts. For this study, 1′-13C-2-15N-labeled and 2′-13C-2-15N-labeled SMs were prepared, and the rotational-axis direction and order parameters of the SM amide in bilayers were determined based on 13C and 15N chemical-shift anisotropies and intramolecular 13C-15N dipole coupling constants. Results revealed that the amide orientation was minimally affected by Chol, whereas the order was enhanced significantly in its presence. Thus, Chol likely promotes the formation of an intermolecular hydrogen-bond network involving the SM amide without significantly changing its orientation, providing a higher order to the SM amide. To our knowledge, this study offers new insight into the significance of the SM amide orientation with regard to molecular recognition in lipid rafts, and therefore provides a deeper understanding of the mechanism of their formation. PMID:26083921

  19. The miscibility of milk sphingomyelin and cholesterol is affected by temperature and surface pressure in mixed Langmuir monolayers.

    PubMed

    Cheng, Ken; Ropers, Marie-Hélène; Lopez, Christelle

    2017-06-01

    The miscibility of milk sphingomyelin (milk-SM) and cholesterol was investigated in this study. The effect of different physical states of milk-SM on its interactions with cholesterol was determined by the recording of isotherms of compression of Langmuir films for temperatures above and below the gel to Lα phase transition of milk-SM (Tm∼34°C). For T=15°CTm, the milk-SM molecules were in a LE phase regardless of the surface pressure applied. A phase diagram pressure - milk-SM/cholesterol composition was established. This study demonstrated that both temperature and surface pressure affected the miscibility between the milk-SM and cholesterol. The strongest attractive forces (i.e. condensing effect) were identified for 30mol% cholesterol when the milk-SM was in the LE phase state.

  20. Allometric dependence of the life span of mammal erythrocytes on thermal stability and sphingomyelin content of plasma membranes.

    PubMed

    Ivanov, Ivan Tanev

    2007-08-01

    Thermal stability of erythrocyte membrane is a measure for its ability to maintain permeability barrier at deleterious conditions. Hence, it could impact the resistance of erythrocytes against detrimental factors in circulation. In this study the thermostability of erythrocyte membranes was expressed by the temperature, T(go), at which the transmembrane gradient of ion concentration rapidly dissipated during transient heating. T(go) is the inducing temperature of the membrane transition that activated passive ion permeability at hyperthermia causing thermal hemolysis. A good allometric correlation of T(go) to the resistance against thermal hemolysis and the life span of erythrocytes were found for 13 mammals; sheep, cow, goat, dog, horse, man, rabbit, pig, cat, hamster, guinea pig, rat, and mouse. For the same group, the values of T(go) were strictly related to the sphingomyelin content of erythrocyte membranes. The residual ion permeability, P, was temperature activated from 38 to 57 degrees C with activation energy of 250+/-15 kJ/mol that strongly differed from that below 37 degrees C. The projected value of P at 37 degrees C was about half that of residual physiological permeability for Na+ and K+ that build ground for possible explanation of the life span vs membrane thermostability allometric correlation.

  1. High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm.

    PubMed

    Liebisch, Gerhard; Lieser, Bernd; Rathenberg, Jan; Drobnik, Wolfgang; Schmitz, Gerd

    2004-11-08

    The choline head group containing phosphatidylcholine (PC) and sphingomyelin (SPM) are major eukaryotic lipid components playing an important role in forming membrane microdomains and serve as precursor of signaling molecules. Both lipids can be monitored by positive ion mode electrospray tandem mass spectrometry using a parent ion scan of m/z 184. Although PC species appear at even m/z and SPM species at odd m/z, there may be a significant overlap of their isotopes. In order to separate PC and SPM species, an isotope correction algorithm was established, which utilizes calculated isotope percentages to correct the measured peak intensities for their isotopic overlap. We could demonstrate that this approach was applicable to correct the isotope overlap resulting from spiked PC and SPM species. Quantification was achieved by addition of different PC and SPM species prior to lipid extraction. The developed assay showed a precision, detection limit and robustness sufficient for routine analysis. Furthermore, an analysis time of only 1.3 min combined with automated data analysis using self-programmed Excel Macros allows high-throughput analysis. In summary, this assay may be a valuable tool for detailed lipid analysis of PC and SPM species in a variety of sample materials.

  2. Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: a glimpse into sphingolipid complexity.

    PubMed

    Jiménez-Rojo, Noemi; García-Arribas, Aritz B; Sot, Jesús; Alonso, Alicia; Goñi, Félix M

    2014-01-01

    The thermotropic properties of aqueous dispersions of sphingomyelins (SM) and ceramides (Cer) with N-acyl chains varying from C6:0 to C24:1, either pure or in binary mixtures, have been examined by differential scanning calorimetry. Even in the pure state, Cer and particularly SM exhibited complex endotherms, and their thermal properties did not vary in a predictable way with changes in structure. In some cases, e.g. C18:0 SM, atomic force microscopy revealed coexisting lamellar domains made of a single lipid. Partial chain interdigitation and metastable crystalline states were deemed responsible for the complex behavior. SM:Cer mixtures (90:10mol ratio) gave rise to bilayers containing separate SM-rich and Cer-rich domains. In vesicles made of more complex mixtures (SM:PE:Chol, 2:1:1), it is known that sphingomyelinase degradation of SM to Cer is accompanied by vesicle aggregation and release of aqueous contents. These vesicles did not reveal observable domain separation by confocal microscopy. Vesicle aggregation occurred at a faster rate for those bilayers that appeared to be more fluid according to differential scanning calorimetry. Content efflux rates measured by fluorescence spectroscopy were highest with C18:0 and C18:1 SM, and in general those rates did not vary regularly with other physical properties of SM or Cer. In general the individual SM and Cer appear to have particular thermotropic properties, often unrelated to the changes in N-acyl chain.

  3. Liver-specific Deficiency of Serine Palmitoyltransferase Subunit 2 Decreases Plasma Sphingomyelin and Increases Apolipoprotein E Levels*

    PubMed Central

    Li, Zhiqiang; Li, Yan; Chakraborty, Mahua; Fan, Yifan; Bui, Hai H.; Peake, David A.; Kuo, Ming-Shang; Xiao, Xiao; Cao, Guoqing; Jiang, Xian-Cheng

    2009-01-01

    Sphingomyelin (SM) is one of the major lipid components of plasma lipoproteins. Serine palmitoyltransferase (SPT) is the key enzyme in SM biosynthesis. Mice totally lacking in SPT are embryonic lethal. The liver is the major site for plasma lipoprotein biosynthesis, secretion, and degradation, and in this study we utilized a liver-specific knock-out approach for evaluating liver SPT activity and also its role in plasma SM and lipoprotein metabolism. We found that a deficiency of liver-specific Sptlc2 (a subunit of SPT) decreased liver SPT protein mass and activity by 95 and 92%, respectively, but had no effect on other tissues. Liver Sptlc2 deficiency decreased plasma SM levels (in both high density lipoprotein and non-high density lipoprotein fractions) by 36 and 35% (p < 0.01), respectively, and increased phosphatidylcholine levels by 19% (p < 0.05), thus increasing the phosphatidylcholine/SM ratio by 77% (p < 0.001), compared with controls. This deficiency also decreased SM levels in the liver by 38% (p < 0.01) and in the hepatocyte plasma membranes (based on a lysenin-mediated cell lysis assay). Liver-specific Sptlc2 deficiency significantly increased hepatocyte apoE secretion and thus increased plasma apoE levels 3.5-fold (p < 0.0001). Furthermore, plasma from Sptlc2 knock-out mice had a significantly stronger potential for promoting cholesterol efflux from macrophages than from wild-type mice (p < 0.01) because of a greater amount of apoE in the circulation. As a result of these findings, we believe that the ability to control liver SPT activity could result in regulation of lipoprotein metabolism and might have an impact on the development of atherosclerosis. PMID:19648608

  4. Increase in ceramide level after application of various sizes of sphingomyelin liposomes to a cultured human skin model.

    PubMed

    Tokudome, Y; Jinno, M; Todo, H; Kon, T; Sugibayashi, K; Hashimoto, F

    2011-01-01

    Sphingomyelin-based liposomes (SPM-L) that were sized (or not) by extrusion through a filter with pores of 100, 200, or 400 nm were applied to a three-dimensional cultured human skin model in order to evaluate which size of SPM-L was most effective at increasing its ceramide level. The diameters of the SPM-L in PBS were 102.7, 181.0, 224.0, and 380.1 nm. The diameters of the liposomes in the culture medium were 117.5, 199.2, 242.1, and 749.8 nm. The diameter of the small liposomes (<200 nm in diameter) did not change much, at least for 7 days. SPM-L in saline or culture medium were applied to the basal layer side or stratum corneum side of the cultured skin model, and ceramide II, III, V, and VI were then extracted from it. The extracted ceramide molecules were separated by HPTLC, and the concentration of each type of ceramide was quantified using a densitometer. When the small SPM-L (110 or 190 nm in diameter) were applied to the basal layer side, the levels of ceramide III and V were increased. When they were applied to the stratum corneum side, the levels of ceramide II, III, V, and VI were significantly increased compared to those of the PBS group, especially after the application of the small SPM-L (110 nm in diameter). Thus, the application of small SPM-L was useful for increasing the ceramide II, III, V, and VI levels of a cultured human skin model.

  5. Characterization of the role of sphingomyelin synthase 2 in glucose metabolism in whole-body and peripheral tissues in mice.

    PubMed

    Sugimoto, Masayuki; Shimizu, Yoichi; Zhao, Songji; Ukon, Naoyuki; Nishijima, Ken-ichi; Wakabayashi, Masato; Yoshioka, Takeshi; Higashino, Kenichi; Numata, Yoshito; Okuda, Tomohiko; Tamaki, Nagara; Hanamatsu, Hisatoshi; Igarashi, Yasuyuki; Kuge, Yuji

    2016-08-01

    Sphingomyelin synthase 2 (SMS2) is a proposed potential therapeutic target for obesity and insulin resistance. However, the contributions of SMS2 to glucose metabolism in tissues and its possible therapeutic mechanisms remain unclear. Thus, to determine whole-body glucose utilization and the contributions of each insulin-targeted tissue to glucose uptake, we performed a glucose kinetics study, using the radiolabeled glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG), in wild-type (WT) and SMS2 knockout (KO) mice. Insulin signaling was enhanced in the liver, white adipose tissue and skeletal muscle of SMS2 KO mice compared with those of WT mice. In addition, compared with in WT mice, blood clearance of (18)F-FDG was accelerated in SMS2 KO mice when they were fed either a normal or a high fat diet. (18)F-FDG uptake was also increased in insulin-targeted tissues such as skeletal muscle in the SMS2 KO mice. Whereas skeletal muscle sphingolipid content was not clearly affected, plasma levels of very long-chain fatty acid (VLCFA)-containing ceramides were markedly increased in SMS2 KO mice, compared with in WT mice. We also generated liver-conditional SMS2 KO mice and performed glucose and insulin tolerance tests on mice with a high fat diet. However, no significant effect was observed. Thus, our study provided evidence that genetic inhibition of SMS2 elevated glucose clearance through activation of glucose uptake into insulin-targeted tissues such as skeletal muscle by a mechanism independent of hepatic SMS2. Our findings further indicate that this occurs, at least in part, via indirect mechanisms such as elevation of VLCFA-containing ceramides.

  6. Sphingomyelin encrypts tissue factor: ATP-induced activation of A-SMase leads to tissue factor decryption and microvesicle shedding

    PubMed Central

    Wang, Jue; Pendurthi, Usha R.; Rao, L. Vijaya Mohan

    2017-01-01

    A majority of tissue factor (TF) on cell surfaces exists in an encrypted state with minimal to no procoagulant activity. At present, it is unclear whether limited availability of phosphatidylserine (PS) and/or a specific membrane lipid in the outer leaflet of the plasma membrane contributes to TF encryption. Sphingomyelin (SM) is a major phospholipid in the outer leaflet, and SM metabolism is shown to be altered in many disease settings that cause thrombotic disorders. The present study is carried out to investigate the effect of SM metabolism on TF activity and TF+ microvesicles (MVs) release. In vitro studies using TF reconstituted into liposomes containing varying molar ratios of SM showed that a high molar ratio of SM in the proteoliposomes inhibits TF coagulant activity. Treatment of macrophages with sphingomyelinase (SMase) that hydrolyzes SM in the outer leaflet results in increased TF activity at the cell surface and TF+ MVs release without increasing PS externalization. Adenosine triphosphate (ATP) stimulation of macrophages that activates TF and induces MV shedding also leads to translocation of acid-sphingomyelinase (A-SMase) to the plasma membrane. ATP stimulation increases the hydrolysis of SM in the outer leaflet. Inhibition of A-SMase expression or activity not only attenuates ATP-induced SM hydrolysis, but also inhibits ATP-induced TF decryption and TF+ MVs release. Overall, our novel findings show that SM plays a role in maintaining TF in an encrypted state in resting cells and hydrolysis of SM following cell injury removes the inhibitory effect of SM on TF activity, thus leading to TF decryption. PMID:28758160

  7. PC-PLC/sphingomyelin synthase activity plays a central role in the development of myogenic tone in murine resistance arteries.

    PubMed

    Mauban, Joseph R H; Zacharia, Joseph; Fairfax, Seth; Wier, Withrow Gil

    2015-06-15

    Myogenic tone is an intrinsic property of the vasculature that contributes to blood pressure control and tissue perfusion. Earlier investigations assigned a key role in myogenic tone to phospholipase C (PLC) and its products, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Here, we used the PLC inhibitor, U-73122, and two other, specific inhibitors of PLC subtypes (PI-PLC and PC-PLC) to delineate the role of PLC in myogenic tone of pressurized murine mesenteric arteries. U-73122 inhibited depolarization-induced contractions (high external K(+) concentration), thus confirming reports of nonspecific actions of U-73122 and its limited utility for studies of myogenic tone. Edelfosine, a specific inhibitor of PI-PLC, did not affect depolarization-induced contractions but modulated myogenic tone. Because PI-PLC produces IP3, we investigated the effect of blocking IP3 receptor-mediated Ca(2+) release on myogenic tone. Incubation of arteries with xestospongin C did not affect tone, consistent with the virtual absence of Ca(2+) waves in arteries with myogenic tone. D-609, an inhibitor of PC-PLC and sphingomyelin synthase, strongly inhibited myogenic tone and had no effect on depolarization-induced contraction. D-609 appeared to act by lowering cytoplasmic Ca(2+) concentration to levels below those that activate contraction. Importantly, incubation of pressurized arteries with a membrane-permeable analog of DAG induced vasoconstriction. The results therefore mandate a reexamination of the signaling pathways activated by the Bayliss mechanism. Our results suggest that PI-PLC and IP3 are not required in maintaining myogenic tone, but DAG, produced by PC-PLC and/or SM synthase, is likely through multiple mechanisms to increase Ca(2+) entry and promote vasoconstriction.

  8. Clearance of Hepatic Sphingomyelin by Olipudase Alfa Is Associated With Improvement in Lipid Profiles in Acid Sphingomyelinase Deficiency.

    PubMed

    Thurberg, Beth L; Wasserstein, Melissa P; Jones, Simon A; Schiano, Thomas D; Cox, Gerald F; Puga, Ana Cristina

    2016-09-01

    Acid sphingomyelinase deficiency (ASMD; Niemann-Pick disease type A and B) is a lysosomal storage disorder characterized by abnormal intracellular sphingomyelin (SM) accumulation. Prominent liver involvement results in hepatomegaly, fibrosis/cirrhosis, abnormal liver chemistries, and a proatherogenic lipid profile. Olipudase alfa (recombinant human ASM) is in clinical development as an investigational enzyme replacement therapy for the non-neurological manifestations of ASMD. In a phase 1b study conducted to evaluate the safety and tolerability of within-patient dose escalation with olipudase alfa, measurement of SM levels in liver biopsies was used as a pharmacodynamic biomarker of substrate burden. Five adult patients with non neuronopathic ASMD received escalating doses of olipudase alfa every 2 weeks for 26 weeks. Liver biopsies obtained at baseline and 26 weeks after treatment were evaluated for SM storage by histomorphometric analysis, biochemistry, and electron microscopy. Biopsies were also assessed for inflammation and fibrosis, and for the association of SM levels with liver volume, liver function tests, and lipid profiles. At baseline, SM storage present in Kupffer cells and hepatocytes ranged from 9.8% to 53.8% of the microscopic field. After 26 weeks of treatment, statistically significant reductions in SM (P<0.0001) measured by morphometry were seen in 4 patients with evaluable liver biopsies. The 26-week biopsy of the fifth patient was insufficient for morphometric quantitation. Posttreatment SM levels ranged from 1.2% to 9.5% of the microscopic field, corresponding to an 84% to 92% relative reduction from baseline. Improvements in liver volume, liver function tests, and lipid profiles were also observed. This study illustrates the utility of SM assessment by liver biopsy as a pharmacodynamic biomarker of disease burden in these patients.

  9. Ceramides and sphingomyelins with high proportions of very long-chain polyunsaturated fatty acids in mammalian germ cells.

    PubMed

    Furland, Natalia E; Zanetti, Samanta R; Oresti, Gerardo M; Maldonado, Eduardo N; Aveldaño, Marta I

    2007-06-22

    Very long-chain polyunsaturated fatty acids (VLCPUFA) have previously been shown to be components of sphingomyelin (SM) of mammalian testis and spermatozoa. Here we examined the fatty acids of testicular ceramide (Cer) in comparison with those of SM in some mammals with a special focus on the rat testis. In bull, cat, dog, rabbit, mouse, and rat, VLCPUFA were found in both testicular lipids, Cer having a higher percentage of VLCPUFA than SM. Rat testis had the highest percentage of VLCPUFA in both lipids, the major ones being 28:4n-6 and 30:5n-6. VLCPUFA-containing SM and Cer occurred in cells located in the seminiferous tubules, where germ cells had a higher percentage of these species than Sertoli cells. Seminiferous tubule fractionation showed that SM and Cer of mitochondria and lysosomes had mostly saturates and negligible VLCPUFA, the latter being important in the SM and Cer of microsomes and other membrane fractions. VLCPUFA were absent from the SM and Cer of rat prepuberal testis, increased with the onset of spermatogenesis to account for nearly 15 and 40% of the total fatty acids of testicular SM and Cer, respectively, remained at those levels throughout the adult life of fertile rats and tended to decrease at advanced ages. Four conditions that lead to selective death of germ cells in vivo, namely experimental cryptorchidism, post-ischemic reperfusion, focalized x-ray irradiation and treatments with the antineoplasic drug doxorubicin, caused the VLCPUFA to disappear from the testicular SM and Cer of adult fertile rats, showing that these lipids are specific traits of spermatogenic cells.

  10. Sustained Epigenetic Drug Delivery Depletes Cholesterol-Sphingomyelin Rafts from Resistant Breast Cancer Cells, Influencing Biophysical Characteristics of Membrane Lipids.

    PubMed

    Raghavan, Vijay; Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Yamada, Masayoshi; Morisada, Megan; Labhasetwar, Vinod

    2015-10-27

    Cell-membrane lipid composition can greatly influence biophysical properties of cell membranes, affecting various cellular functions. We previously showed that lipid synthesis becomes altered in the membranes of resistant breast cancer cells (MCF-7/ADR); they form a more rigid, hydrophobic lipid monolayer than do sensitive cell membranes (MCF-7). These changes in membrane lipids of resistant cells, attributed to epigenetic aberration, significantly affected drug transport and endocytic function, thus impacting the efficacy of anticancer drugs. The present study's objective was to determine the effects of the epigenetic drug, 5-aza-2'-deoxycytidine (DAC), delivered in sustained-release nanogels (DAC-NGs), on the composition and biophysical properties of membrane lipids of resistant cells. Resistant and sensitive cells were treated with DAC in solution (DAC-sol) or DAC-NGs, and cell-membrane lipids were isolated and analyzed for lipid composition and biophysical properties. In resistant cells, we found increased formation of cholesterol-sphingomyelin (CHOL-SM) rafts with culturing time, whereas DAC treatment reduced their formation. In general, the effect of DAC-NGs was greater in changing the lipid composition than with DAC-sol. DAC treatment also caused a rise in levels of certain phospholipids and neutral lipids known to increase membrane fluidity, while reducing the levels of certain lipids known to increase membrane rigidity. Isotherm data showed increased lipid membrane fluidity following DAC treatment, attributed to decrease levels of CHOL-SM rafts (lamellar beta [Lβ] structures or ordered gel) and a corresponding increase in lipids that form lamellar alpha-structures (Lα, liquid crystalline phase). Sensitive cells showed marginal or insignificant changes in lipid profile following DAC-treatment, suggesting that epigenetic changes affecting lipid biosynthesis are more specific to resistant cells. Since membrane fluidity plays a major role in drug transport

  11. Interaction Between Luteinizing Hormone-Releasing Hormone and GM1-Doped Cholesterol/Sphingomyelin Vesicles: A Spectroscopic Study.

    PubMed

    Shahzadi, Zarrin; Mukhopadhyay, Chaitali

    2017-09-11

    Understanding the role of neural membrane in translocation and action of neurohormone is of great importance. Luteinizing hormone-releasing hormone (LHRH) is a neuropeptide hormone and it acts as a final signaling molecule by stimulating the synthesis of LH and FSH to maintain reproduction in all vertebrates. The receptors of LHRH are found in breast tumors and pituitary gland in the brain. Moreover, neural plasma membrane is also found to contain specific binding site for LHRH. The mechanism by which LHRH binds to membrane before it binds to the receptors is a very critical step and can have a profound impact upon the translation of peptide across the membrane. A complex form of glycosphingolipids known as Ganglioside is an important component of plasma membrane of nerve cells and breast tumor tissues. They play an important role in various physiological membrane processes. Therefore, the interaction of ganglioside-containing membrane with LHRH might be crucial in aiding the LHRH to translate through the neural membrane and reach its receptor for binding and activation. Using CD, UV-Absorbance, and fluorescence spectroscopy, the effect of Ganglioside Monosialo 1(GM1)-induced conformational changes of LHRH in the presence of Cholesterol (CHOL)/Sphingomyelin (SM) and GM1/CHOL/SM vesicles was studied. The aforesaid spectroscopic studies show that LHRH is able to bind with both the vesicles, but GM1-containing vesicles interact more effectively than vesicles without GM1. CHOL/SM vesicles partially disturb the conformation of the peptide. Moreover, binding of LHRH to GM1/CHOL/SM vesicles induces loss of conformational rigidity and attainment of a random coil.

  12. Clearance of Hepatic Sphingomyelin by Olipudase Alfa Is Associated With Improvement in Lipid Profiles in Acid Sphingomyelinase Deficiency

    PubMed Central

    Wasserstein, Melissa P.; Jones, Simon A.; Schiano, Thomas D.; Cox, Gerald F.; Puga, Ana Cristina

    2016-01-01

    Acid sphingomyelinase deficiency (ASMD; Niemann-Pick disease type A and B) is a lysosomal storage disorder characterized by abnormal intracellular sphingomyelin (SM) accumulation. Prominent liver involvement results in hepatomegaly, fibrosis/cirrhosis, abnormal liver chemistries, and a proatherogenic lipid profile. Olipudase alfa (recombinant human ASM) is in clinical development as an investigational enzyme replacement therapy for the non-neurological manifestations of ASMD. In a phase 1b study conducted to evaluate the safety and tolerability of within-patient dose escalation with olipudase alfa, measurement of SM levels in liver biopsies was used as a pharmacodynamic biomarker of substrate burden. Five adult patients with non neuronopathic ASMD received escalating doses of olipudase alfa every 2 weeks for 26 weeks. Liver biopsies obtained at baseline and 26 weeks after treatment were evaluated for SM storage by histomorphometric analysis, biochemistry, and electron microscopy. Biopsies were also assessed for inflammation and fibrosis, and for the association of SM levels with liver volume, liver function tests, and lipid profiles. At baseline, SM storage present in Kupffer cells and hepatocytes ranged from 9.8% to 53.8% of the microscopic field. After 26 weeks of treatment, statistically significant reductions in SM (P<0.0001) measured by morphometry were seen in 4 patients with evaluable liver biopsies. The 26-week biopsy of the fifth patient was insufficient for morphometric quantitation. Posttreatment SM levels ranged from 1.2% to 9.5% of the microscopic field, corresponding to an 84% to 92% relative reduction from baseline. Improvements in liver volume, liver function tests, and lipid profiles were also observed. This study illustrates the utility of SM assessment by liver biopsy as a pharmacodynamic biomarker of disease burden in these patients. PMID:27340749

  13. Sphingomyelin Liposomes Containing Soluble Leishmania major antigens Induced Strong Th2 Immune Response in BALB/c Mice

    PubMed Central

    Chavoshian, Omid; Biari, Nazanin; Badiee, Ali; Khamesipour, Ali; Abbasi, Azam; Saberi, Zahra; Jalali, Seyed Amir; Jaafari, Mahmoud Reza

    2013-01-01

    Objective(s): Soluble Leishmania antigens (SLA) provide suitable protection against leishmaniasis in murine model when delivered by an appropriate delivery system. Liposomes have been shown to be suitable vaccine delivery systems against leishmaniasis, however, the phospholipase-A (PLA) activity of SLA is a drawback to prepare a stable liposomal SLA. One strategy to overcome this problem might be using a lipid which is resistant to PLA activity of SLA such as sphingomyelin (SM). The aim of this study was to evaluate the effect of stable SM liposomes containing SLA on the immune response induced against leishmaniasis in BALB/c mice . Materials and Methods: BALB/c mice were immunized subcutaneously, three times with 2-week intervals, with SLA, SM-liposome-SLA, empty liposome or buffer. As criteria for protection, footpads swelling at the site of challenge and foot parasite loads were assessed. The immune responses were also evaluated by determination of IgG subtypes and the level of IFN-γ and IL-4 in cultured splenocytes. Results: The group of mice receiving SM-liposome-SLA, showed a significant large footpad swelling, higher parasite burden in foot and higher IL-4 level compared to the group immunized with buffer. In terms of IgG and IgG isotypes, there was no significant difference between the mice receiving SM-liposome-SLA and the mice that received buffer. Moreover, the immune response induced by SM-liposome-SLA showed no significant difference compared with the one caused by SLA alone. Conclusion: It is concluded that SM-liposome-SLA is not an appropriate strategy to induce Th1 immune response and protect the mice against Leishmaniasis; however, SM-liposomes could be suitable vaccine delivery systems when a Th2 response is needed. PMID:24171074

  14. Sustained Epigenetic Drug Delivery Depletes Cholesterol-Sphingomyelin Rafts from Resistant Breast Cancer Cells, Influencing Biophysical Characteristics of Membrane Lipids

    PubMed Central

    Raghavan, Vijay; Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Yamada, Masayoshi; Morisada, Megan; Labhasetwar, Vinod

    2016-01-01

    Cell-membrane lipid composition can greatly influence biophysical properties of cell membranes, affecting various cellular functions. We previously showed that lipid synthesis becomes altered in the membranes of resistant breast cancer cells (MCF-7/ADR); they form a more rigid, hydrophobic lipid monolayer than do sensitive cell membranes (MCF-7). These changes in membrane lipids of resistant cells, attributed to epigenetic aberration, significantly affected drug transport and endocytic function, thus impacting the efficacy of anticancer drugs. The present study’s objective was to determine the effects of the epigenetic drug 5-aza-2′-deoxycytidine (DAC), delivered in sustained-release nanogels (DAC-NGs), on the composition and biophysical properties of membrane lipids of resistant cells. Resistant and sensitive cells were treated with DAC in solution (DAC-sol) or DAC-NGs, and cell-membrane lipids were isolated and analyzed for lipid composition and biophysical properties. In resistant cells, we found increased formation of Cholesterol-Sphingomyelin (CHOL-SM) rafts with culturing time, whereas DAC treatment reduced their formation. In general, the effect of DAC-NGs was greater in changing the lipid composition than with DAC-sol. DAC treatment also caused a rise in levels of certain phospholipids and neutral lipids known to increase membrane fluidity while reducing the levels of certain lipids known to increase membrane rigidity. Isotherm data showed increased lipid membrane fluidity following DAC treatment, attributed to decrease levels of CHOL-SM rafts (lamellar beta [Lβ] structures or ordered gel) and a corresponding increase in lipids that form lamellar alpha structures (Lα, liquid crystalline phase). Sensitive cells showed marginal or insignificant changes in lipid profile following DAC-treatment, suggesting that epigenetic changes affecting lipid biosynthesis are more specific to resistant cells. Since membrane fluidity plays a major role in drug transport

  15. Regulation of SREBPs by Sphingomyelin in Adipocytes via a Caveolin and Ras-ERK-MAPK-CREB Signaling Pathway

    PubMed Central

    Makdissy, Nehman; Popa, Iuliana; Younsi, Mohamed; Valet, Philippe; Brunaud, Laurent; Ziegler, Olivier; Quilliot, Didier

    2015-01-01

    Sterol response element binding protein (SREBP) is a key transcription factor in insulin and glucose metabolism. We previously demonstrated that elevated levels of membrane sphingomyelin (SM) were related to peroxisome proliferator–activated receptor-γ (PPARγ), which is a known target gene of SREBP-1 in adipocytes. However, the role of SM in SREBP expression in adipocytes remains unknown. In human abdominal adipose tissue from obese women with various concentrations of fasting plasma insulin, SREBP-1 proteins decreased in parallel with increases in membrane SM levels. An inverse correlation was found between the membrane SM content and the levels of SREBP-1c/ERK/Ras/PPARγ/CREB proteins. For the first time, we demonstrate the effects of SM and its signaling pathway in 3T3-F442A adipocytes. These cells were enriched or unenriched with SM in a range of concentrations similar to those observed in obese subjects by adding exogenous natural SMs (having different acyl chain lengths) or by inhibiting neutral sphingomyelinase. SM accumulated in caveolae of the plasma membrane within 24 h and then in the intracellular space. SM enrichment decreased SREBP-1 through the inhibition of extracellular signal-regulated protein kinase (ERK) but not JNK or p38 mitogen-activated protein kinase (MAPK). Ras/Raf-1/MEK1/2 and KSR proteins, which are upstream mediators of ERK, were down-regulated, whereas SREBP-2/caveolin and cholesterol were up-regulated. In SM-unmodulated adipocytes treated with DL-1-Phenyl-2-Palmitoylamino-3-morpholino-1-propanol (PPMP), where the ceramide level increased, the expression levels of SREBPs and ERK were modulated in an opposite direction relative to the SM-enriched cells. SM inhibited the insulin-induced expression of SREBP-1. Rosiglitazone, which is an anti-diabetic agent and potent activator of PPARγ, reversed the effects of SM on SREBP-1, PPARγ and CREB. Taken together, these findings provide novel insights indicating that excess membrane SM

  16. Exchange of polar lipids from adults to neonates in Daphnia magna: Perturbations in sphingomyelin allocation by dietary lipids and environmental toxicants.

    PubMed

    Sengupta, Namrata; Reardon, Delaney C; Gerard, Patrick D; Baldwin, William S

    2017-01-01

    Because xenosensing nuclear receptors are also lipid sensors that regulate lipid allocation, we hypothesized that toxicant-induced modulation of HR96 activity would alter lipid profiles and the balance between adult survival and neonate production following exposure in Daphnia magna. Adult daphnids were exposed to unsaturated fatty acid- and toxicant- activators or inhibitors of HR96 and later starved to test whether chemical exposure altered allocation toward survival or reproduction. The HR96 activators, linoleic acid and atrazine, decreased reproduction as expected with concomitant changes in the expression of HR96 regulated genes such as magro. The HR96 inhibitors, docosahexaenoic acid (DHA) and triclosan, increased reproduction or neonate starvation survival, respectively. However, pre-exposure to triclosan increased in neonate survival at the expense of reproductive maturation. Lipidomic analysis revealed that sphingomyelins (SM) are predominantly found in neonates and therefore we propose are important in development. DHA and triclosan increased neonatal SM, consistent with HR96's regulation of Niemann-Pick genes. While DHA altered expression of magro, Niemann-Pick 1b, mannosidase, and other HR96-regulated genes as expected, triclosan primarily perturbed sphingomyelinase and mannosidase expression indicating different but potentially overlapping mechanisms for perturbing SM. Overall, SM appears to be a key lipid in Daphnia maturation and further support was provided by carmofur, which inhibits sphingomyelin/ceramide metabolism and in turn severely represses Daphnia maturation and initial brood production. In conclusion, toxicants can perturb lipid allocation and in turn impair development and reproduction.

  17. Exchange of polar lipids from adults to neonates in Daphnia magna: Perturbations in sphingomyelin allocation by dietary lipids and environmental toxicants

    PubMed Central

    Sengupta, Namrata; Reardon, Delaney C.; Gerard, Patrick D.

    2017-01-01

    Because xenosensing nuclear receptors are also lipid sensors that regulate lipid allocation, we hypothesized that toxicant-induced modulation of HR96 activity would alter lipid profiles and the balance between adult survival and neonate production following exposure in Daphnia magna. Adult daphnids were exposed to unsaturated fatty acid- and toxicant- activators or inhibitors of HR96 and later starved to test whether chemical exposure altered allocation toward survival or reproduction. The HR96 activators, linoleic acid and atrazine, decreased reproduction as expected with concomitant changes in the expression of HR96 regulated genes such as magro. The HR96 inhibitors, docosahexaenoic acid (DHA) and triclosan, increased reproduction or neonate starvation survival, respectively. However, pre-exposure to triclosan increased in neonate survival at the expense of reproductive maturation. Lipidomic analysis revealed that sphingomyelins (SM) are predominantly found in neonates and therefore we propose are important in development. DHA and triclosan increased neonatal SM, consistent with HR96’s regulation of Niemann-Pick genes. While DHA altered expression of magro, Niemann-Pick 1b, mannosidase, and other HR96-regulated genes as expected, triclosan primarily perturbed sphingomyelinase and mannosidase expression indicating different but potentially overlapping mechanisms for perturbing SM. Overall, SM appears to be a key lipid in Daphnia maturation and further support was provided by carmofur, which inhibits sphingomyelin/ceramide metabolism and in turn severely represses Daphnia maturation and initial brood production. In conclusion, toxicants can perturb lipid allocation and in turn impair development and reproduction. PMID:28542405

  18. Chinese hamster ovary-sphingomyelin synthase2 biospecific extraction and liquid chromatography with tandem mass spectrometry analysis for the prediction of bioactive components of Rhizoma Polygoni Cuspidati.

    PubMed

    Xue, Ying; Dong, Jibin; Liang, Jianying

    2016-03-01

    A novel strategy for predicting bioactive components in traditional Chinese medicines using Chinese hamster ovary-sphingomyelin synthase2 (CHO-SMS2 ) cell biospecific extraction and high-performance liquid chromatography with diode array detection and tandem mass spectrometry analysis was proposed. The hypothesis is that when cells are incubated with the extract of traditional Chinese medicines, the potential bioactive components in the traditional Chinese medicines should selectively combine with the cells, while the cell-combining components would be detectable in the extract of denatured cells. The identities of the cell-combining components could be determined by liquid chromatography with tandem mass spectrometry. Using the proposed approach, the potential bioactive components of Rhizoma Polygoni Cuspidati, a commonly used traditional Chinese medicine for atherosclerosis, were detected and identified. Eight compounds in the extract of Rhizoma Polygoni Cuspidati were detected as the components selectively combined with CHO-SMS2 cells, which is a stable cell line that highly expresses sphingomyelin synthases, it was found that piceid, resveratrol, emodin-8-β-d-glucoside, physcion-8-β-d-glucoside, emodin, physcion, 3,5,4'-trihydroxystilbene-3-O-(6"-galloyl)-glucoside, and emodin-1-O-glucoside combined specifically with CHO-SMS2 cells. The results indicate that the proposed approach may be applied to predict the bioactive candidates in traditional Chinese medicines.

  19. Liposomes as potential masking agents in sport doping. Part 1: analysis of phospholipids and sphingomyelins in drugs and biological fluids by aqueous normal-phase liquid chromatography-tandem mass spectrometry.

    PubMed

    Esposito, Simone; Colicchia, Sonia; de la Torre, Xavier; Mazzarino, Monica; Botrè, Francesco

    2017-01-01

    In the present work, aqueous normal-phase liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), in different acquisition modes, was employed for the direct analysis and profiling of nine phospholipid classes (phosphatidic acids, phosphatidylserines, phosphatidylethanolamines, lysophosphatidylethanolamines, phosphatidylglycerols, phosphatidylinositols, phosphatidylcholines, lysophosphatidylcholines, and sphingomyelins) in biological and pharmaceutical matrices. After chromatographic separation by a diol column, detection and elucidation of phospholipid and sphingomyelin classes and molecular species were performed by different scan acquisition modes. For screening analysis, molecular ions [M + H](+) were detected in positive precursor ion scan of m/z 184 for the classes of phosphatidylcholines, lyso-phosphatidylcholines and sphingomyelins; while phosphatidylethanolamines and lyso-phosphatidylethanolamines were detected monitoring neutral loss scan of 141 Da; and phosphatidylserines detected using neutral loss scan of 184 Da. Molecular ions [M-H](-) were instead acquired in negative precursor ion scan of m/z 153 for the classes of phosphatidic acids and phosphatidylglycerols; and of m/z 241 for the phosphatidylinositols. For the identification of the single molecular species, product ion scan mass spectra of the [M + HCOO](-) ions for phosphatidylcholines and [M + H](+) ions for the other phospholipids considered were determined for each class and compared with the fragmentation pattern of model phospholipid reference standard. By this approach, nearly 100 phospholipids and sphingomyelins were detected and identified. The optimized method was then used to characterize the phospholipid and sphingomyelin profiles in human plasma and urine samples and in two phospholipid-based pharmaceutical formulations, proving that it also allows to discriminate compounds of endogenous origin from those resulting from the intake of pharmaceutical

  20. Compounds of the sphingomyelin-ceramide-glycosphingolipid pathways as secondary messenger molecules: new targets for novel therapies for fatty liver disease and insulin resistance.

    PubMed

    Ilan, Yaron

    2016-06-01

    The compounds of sphingomyelin-ceramide-glycosphingolipid pathways have been studied as potential secondary messenger molecules in various systems, along with liver function and insulin resistance. Secondary messenger molecules act directly or indirectly to affect cell organelles and intercellular interactions. Their potential role in the pathogenesis of steatohepatitis and diabetes has been suggested. Data samples collected from patients with Gaucher's disease, who had high levels of glucocerebroside, support a role for compounds from these pathways as a messenger molecules in the pathogenesis of fatty liver disease and diabetes. The present review summarizes some of the recent data on the role of glycosphingolipid molecules as messenger molecules in various physiological and pathological conditions, more specifically including insulin resistance and fatty liver disease.

  1. Pharmacologic inhibition of sphingomyelin synthase (SMS) activity reduces apolipoprotein-B secretion from hepatocytes and attenuates endotoxin-mediated macrophage inflammation.

    PubMed

    Lou, Bin; Dong, Jibin; Li, Yali; Ding, Tingbo; Bi, Tingting; Li, Yue; Deng, Xiaodong; Ye, Deyong; Jiang, Xian-Cheng

    2014-01-01

    Sphingomyelin synthase (SMS) plays an important role in plasma atherogenic lipoprotein metabolism, inflammation, and the development of atherosclerosis. To understand whether the impaired apoB secretion and inflammation response is a direct result from lack of SMS activity, in this study, we prepared a series of compounds that inhibit SMS activity. Further, we characterized Dy105, the most potent inhibitor. We found that Dy105 treatment significantly reduces SM levels in SM-rich microdomain on cell membranes. Moreover, we found that SMS inhibition reduces apoB secretion in a human hepatoma cell line and reduces the activation of NFκB and p38, a MAP kinase, in bone marrow derived macrophages. These studies provided further evidence that SMS activity regulates atherogenic lipoprotein metabolism and inflammatory responses. Pharmacologic inhibition of SMS may be a new therapy for atherosclerosis by reducing apoB secretion, and reducing inflammation.

  2. Short-term magnesium deficiency upregulates sphingomyelin synthase and p53 in cardiovascular tissues and cells: relevance to the de novo synthesis of ceramide.

    PubMed

    Altura, Burton M; Shah, Nilank C; Li, Zhiqiang; Jiang, Xian-Cheng; Zhang, Aimin; Li, Wenyan; Zheng, Tao; Perez-Albela, Jose Luis; Altura, Bella T

    2010-12-01

    The present study tested the hypotheses that 1) short-term dietary deficiency of magnesium (21 days) in rats would result in the upregulation of sphingomyelin synthase (SMS) and p53 in cardiac and vascular (aortic) smooth muscles, 2) low levels of Mg(2+) added to drinking water would either prevent or greatly reduce the upregulation of both SMS and p53, 3) exposure of primary cultured vascular smooth muscle cells (VSMCs) to low extracellular Mg(2+) concentration ([Mg(2)](o)) would lead to the de novo synthesis of ceramide, 4) inhibition of either SMS or p53 in primary culture VSMCs exposed to low [Mg(2+)](o) would lead to reductions in the levels of de novo ceramide synthesis, and 5) inhibition of sphingomyelin palmitoyl-CoA transferase (SPT) or ceramide synthase (CS) in primary cultured VSMCs exposed to low [Mg(2+)](o) would lead to a reduction in the levels of de novo ceramide synthesis. The data indicated that short-term magnesium deficiency (10% normal dietary intake) resulted in the upregulation of SMS and p53 in both ventricular and aortic smooth muscles; even very low levels of water-borne Mg(2+) (e.g., 15 mg·l(-1)·day(-1)) either prevented or ameliorated the upregulation in SMS and p53. Our experiments also showed that VSMCs exposed to low [Mg(2+)](o) resulted in the de novo synthesis of ceramide; the lower the [Mg(2+)](o), the greater the synthesis of ceramide. In addition, the data indicated that inhibition of either SMS, p53, SPT, or CS in VSMCs exposed to low [Mg(2+)](o) resulted in marked reductions in the de novo synthesis of ceramide.

  3. Multi-dimensional 1H- 13C HETCOR and FSLG-HETCOR NMR study of sphingomyelin bilayers containing cholesterol in the gel and liquid crystalline states

    NASA Astrophysics Data System (ADS)

    Holland, Gregory P.; Alam, Todd M.

    2006-08-01

    13C cross polarization magic angle spinning (CP-MAS) and 1H MAS NMR spectra were collected on egg sphingomyelin (SM) bilayers containing cholesterol above and below the liquid crystalline phase transition temperature ( Tm). Two-dimensional (2D) dipolar heteronuclear correlation (HETCOR) spectra were obtained on SM bilayers in the liquid crystalline ( Lα) state for the first time and display improved resolution and chemical shift dispersion compared to the individual 1H and 13C spectra and significantly aid in spectral assignment. In the gel ( Lβ) state, the 1H dimension suffers from line broadening due to the 1H- 1H homonuclear dipolar coupling that is not completely averaged by the combination of lipid mobility and MAS. This line broadening is significantly suppressed by implementing frequency switched Lee-Goldburg (FSLG) homonuclear 1H decoupling during the evolution period. In the liquid crystalline ( Lα) phase, no improvement in line width is observed when FSLG is employed. All of the observed resonances are assignable to cholesterol and SM environments. This study demonstrates the ability to obtain 2D heteronuclear correlation experiments in the gel state for biomembranes, expands on previous SM assignments, and presents a comprehensive 1H/ 13C NMR assignment of SM bilayers containing cholesterol. Comparisons are made to a previous report on cholesterol chemical shifts in dimyristoylphosphatidylcholine (DMPC) bilayers. A number of similarities and some differences are observed and discussed.

  4. New look inside human breast ducts with Raman imaging. Raman candidates as diagnostic markers for breast cancer prognosis: Mammaglobin, palmitic acid and sphingomyelin.

    PubMed

    Abramczyk, Halina; Brozek-Pluska, Beata

    2016-02-25

    Looking inside the human body fascinated mankind for thousands of years. Current diagnostic and therapy methods are often limited by inadequate sensitivity, specificity and spatial resolution. Raman imaging may bring revolution in monitoring of disease and treatment. The main advantage of Raman imaging is that it gives spatial information about various chemical constituents in defined cellular organelles in contrast to conventional methods (liquid chromatography/mass spectrometry, NMR, HPLC) that rely on bulk or fractionated analyses of extracted components. We demonstrated how Raman imaging can drive the progress on breast cancer just unimaginable a few years ago. We looked inside human breast ducts answering fundamental questions about location and distribution of various biochemical components inside the lumen, epithelial cells of the duct and the stroma around the duct during cancer development. We have identified Raman candidates as diagnostic markers for breast cancer prognosis: carotenoids, mammaglobin, palmitic acid and sphingomyelin as key molecular targets in ductal breast cancer in situ, and propose the molecular mechanisms linking oncogenes with lipid programming.

  5. Visualization of phosphatidylcholine, lysophosphatidylcholine and sphingomyelin in mouse tongue body by matrix-assisted laser desorption/ionization imaging mass spectrometry.

    PubMed

    Enomoto, Hirofumi; Sugiura, Yuki; Setou, Mitsutoshi; Zaima, Nobuhiro

    2011-06-01

    The mammalian tongue is one of the most important organs during food uptake because it is helpful for mastication and swallowing. In addition, taste receptors are present on the surface of the tongue. Lipids are the second most abundant biomolecules after water in the tongue. Lipids such as phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin (SM) are considered to play fundamental roles in the mediation of cell signaling. Imaging mass spectrometry (IMS) is powerful tool for determining and visualizing the distribution of lipids across sections of dissected tissue. In this study, we identified and visualized the PC, LPC, and SM species in a mouse tongue body section with matrix-assisted laser desorption/ionization (MALDI)-IMS. The ion image constructed from the peaks revealed that docosahexaenoic acid (DHA)-containing PC, LPC, linoleic acid-containing PC and SM (d18:1/16:0), and oleic acid-containing PC were mainly distributed in muscle, connective tissue, stratified epithelium, and the peripheral nerve, respectively. Furthermore, the distribution of SM (d18:1/16:0) corresponded to the distribution of nerve tissue relating to taste in the stratified epithelium. This study represents the first visualization of PC, LPC and SM localization in the mouse tongue body.

  6. Raman spectroscopy for detecting supported planar lipid bilayers composed of ganglioside-GM1/sphingomyelin/cholesterol in the presence of amyloid-β.

    PubMed

    Hu, Zhiping; Wang, Xiaoli; Wang, Weirong; Zhang, Zhenlong; Gao, Huiping; Mao, Yanli

    2015-09-21

    The aggregation and fibril formation of amyloid β(Aβ) peptides onto a ganglioside-GM1-containing lipid membrane is a cause of neurodegenerative diseases. The mechanism of the initial binding and the conformational changes of Aβ on the membrane should be clarified. Fluorescence microscopy and Raman spectroscopy have been performed to investigate the supporting planar lipid bilayers (SPBs) composed of ganglioside-GM1, sphingomyelin and cholesterol. It is demonstrated that the SPBs are in a liquid-crystalline state when placed on mica, and increasing the amount of ganglioside-GM1 can decrease the lateral interaction between the acyl chains of the SPBs. It has been found that Aβ(1-40) initially interacts with the galactose ring of the ganglioside-GM1 head group, leading to its binding and gradual aggregation on the membrane surface. The obvious change observed in Raman spectroscopy in the ν(C-H) region confirms that the hydrophobic C-terminal of Aβ(1-40) inserts itself into the hydrophobic part of the SPBs. The Raman data indicate that α-helix and β-sheet structures of Aβ(1-40) increase and coexist over longer time frames. Based on these results, a model was proposed to describe the mechanism of the conformational changes and the aggregation of Aβ(1-40) that are mediated by ganglioside-GM1-containing SPBs.

  7. Sphingomyelin Phosphodiesterase Acid-like 3A (SMPDL3A) Is a Novel Nucleotide Phosphodiesterase Regulated by Cholesterol in Human Macrophages*

    PubMed Central

    Traini, Mathew; Quinn, Carmel M.; Sandoval, Cecilia; Johansson, Erik; Schroder, Kate; Kockx, Maaike; Meikle, Peter J.; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    Cholesterol-loaded foam cell macrophages are prominent in atherosclerotic lesions and play complex roles in both inflammatory signaling and lipid metabolism, which are underpinned by large scale reprogramming of gene expression. We performed a microarray study of primary human macrophages that showed that transcription of the sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) gene is up-regulated after cholesterol loading. SMPDL3A protein expression in and secretion from primary macrophages are stimulated by cholesterol loading, liver X receptor ligands, and cyclic AMP, and N-glycosylated SMPDL3A protein is detectable in circulating blood. We demonstrate for the first time that SMPDL3A is a functional phosphodiesterase with an acidic pH optimum. We provide evidence that SMPDL3A is not an acid sphingomyelinase but unexpectedly is active against nucleotide diphosphate and triphosphate substrates at acidic and neutral pH. SMPDL3A is a major source of nucleotide phosphodiesterase activity secreted by liver X receptor-stimulated human macrophages. Extracellular nucleotides such as ATP may activate pro-inflammatory responses in immune cells. Increased expression and secretion of SMPDL3A by cholesterol-loaded macrophage foam cells in lesions may decrease local concentrations of pro-inflammatory nucleotides and potentially represent a novel anti-inflammatory axis linking lipid metabolism with purinergic signaling in atherosclerosis. PMID:25288789

  8. [Urinary oestriol excretion and the lecithin/sphingomyelin ratio in amniotic fluid in Bogota (2600 m) I. Normal pregnancy (author's transl)].

    PubMed

    Sobrevilla, L A; Cristina Peña, M; Jaramillo, R

    1980-01-01

    We have studied 22 pregnancies in order to establish normal values for the urinary oestriol excretion in Bogotá, a city 2600 metres above sea level. The study subjects were normal pregnant women attending the prenatal clinic of the Hospital San José de Bogotá, and belong to a racially mixed community of medium to low socio-economic level. In the study, new born weight was found low (mean +/- SEM 2.97 +/-0.06 kg) while placental weight was high (0.6 +/- 0.02 kg) with a high placenta/newborn ratio. Maternal hemoglobin was elevated (12.8 +/- 0.2g/100 ml) reflecting the effect of altitude. In 66 determinations, oestriol excretion was more than 4mg/24 hours from week 31 to 36 and of more than 5 mg/24 hours from week 35 to 40. The decreased excretion of oestriol most likely reflects impaired intrauterine fetal growth, and is probably related to nutrional, racial and socio-economic factors as well as to the altitude. In five normal term pregnancies studied, the lecithin/sphingomyelin ratio was of 2 or more and amniotic fluid creatinine was also elevated, indicating maturity of the pulmonary and renal enzyme systems of the fetus.

  9. The putative benzene metabolite 2,3, 5-tris(glutathion-S-yl)hydroquinone depletes glutathione, stimulates sphingomyelin turnover, and induces apoptosis in HL-60 cells.

    PubMed

    Bratton, S B; Lau, S S; Monks, T J

    2000-07-01

    In this study, we show that 2,3,5-tris(glutathion-S-yl)hydroquinone (TGHQ), a putative metabolite of benzene, induces apoptosis in human promyelocytic leukemia (HL-60) cells. Prior to the onset of apoptosis, TGHQ depletes intracellular glutathione (GSH) in a reactive oxygen species (ROS)-independent manner. Neutral, Mg(2+)-dependent sphingomyelinases, which are normally inhibited by GSH, are subsequently activated, as evidenced by increases in intracellular ceramide and depletion of sphingomyelin. As ceramide levels rise, effector caspase (DEVDase) activity steadily increases. Interestingly, while catalase has no effect on TGHQ-mediated depletion of GSH, this hydrogen peroxide (H(2)O(2)) scavenger does inhibit DEVDase activity and apoptosis, provided the enzyme is added to HL-60 cells before an increase in ceramide can be observed. Since ceramide analogues inhibit the mitochondrial respiratory chain, these data imply that ceramide-mediated generation of H(2)O(2) is necessary for the activation of effector caspases-3 and/or -7, and apoptosis. In summary, these studies indicate that TGHQ, and perhaps many quinol-based toxicants and chemotherapeutics, may induce apoptosis in hematopoietic cells by depleting GSH and inducing the proapoptotic ceramide-signaling pathway.

  10. Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi.

    PubMed

    Elmendorf, H G; Haldar, K

    1993-12-01

    The ERD2 gene product in mammalian cells and yeast is a receptor required for protein retention in the endoplasmic reticulum (ER); immunolocalization studies indicate that the protein is concentrated in the cis Golgi. We have identified a homologue of ERD2 in the malaria parasite, Plasmodium falciparum (PfERD2). The deduced protein sequence is 42% identical to mammalian and yeast homologues and bears striking homology in its proposed tertiary structure. PfERD2 is tightly confined to a single focus of staining in the perinuclear region as seen by indirect immunofluorescence. This is redistributed by brefeldin A (BFA) to a diffuse pattern similar to that of parasite BiP, a marker for the ER; removal of the drug results in recovery of the single focus, consistent with the localization of PfERD2 to the parasite Golgi and its participation in a retrograde transport pathway to the ER. Sphingomyelin synthesis is a second resident activity of the cis Golgi whose organization is sensitive to BFA in mammalian cells. Within the parasite it again localizes to a perinuclear region but does not reorganize upon BFA treatment. The results strongly suggest that these two activities are in distinct compartments of the Golgi in the malaria parasite.

  11. Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi.

    PubMed Central

    Elmendorf, H G; Haldar, K

    1993-01-01

    The ERD2 gene product in mammalian cells and yeast is a receptor required for protein retention in the endoplasmic reticulum (ER); immunolocalization studies indicate that the protein is concentrated in the cis Golgi. We have identified a homologue of ERD2 in the malaria parasite, Plasmodium falciparum (PfERD2). The deduced protein sequence is 42% identical to mammalian and yeast homologues and bears striking homology in its proposed tertiary structure. PfERD2 is tightly confined to a single focus of staining in the perinuclear region as seen by indirect immunofluorescence. This is redistributed by brefeldin A (BFA) to a diffuse pattern similar to that of parasite BiP, a marker for the ER; removal of the drug results in recovery of the single focus, consistent with the localization of PfERD2 to the parasite Golgi and its participation in a retrograde transport pathway to the ER. Sphingomyelin synthesis is a second resident activity of the cis Golgi whose organization is sensitive to BFA in mammalian cells. Within the parasite it again localizes to a perinuclear region but does not reorganize upon BFA treatment. The results strongly suggest that these two activities are in distinct compartments of the Golgi in the malaria parasite. Images PMID:8223485

  12. A comparative study between the values of lecithin, sphingomyelin, lysolecithin, the L/S index, and the Clements test in amniotic fluid.

    PubMed

    Cabero, L; Carreras, M; Viscasillas, P; Rosés, A; Grau, V; Durán-Sánchez, P; Massanas, J; Esteban-Altirriba, J

    1976-01-01

    The relationship between the concentration of several phospholipids in amniotic fluid and the ocurrence of neonatal RDS was established some years ago. However the methods used for the determination of those substances are sophisticated and time consuming. They require specalized equipment and take at least 2 or 3 hours. CLEMENTS described a semiquantitative method which overcomes these disadvantages. The present study compared the concentration of lecithin, shingomyelin, lysolecithin and the L/S ratio against the results obtained when processing the same samples with the CLEMENTS Test. the results are expressed in mg/100 ml. for the different phospholipids and the test was evaluated as positive, intermediate or negative. a statistically significant correlation has been found between the values of lecithin, lysolecithin and L/S ratio and the results of the CLEMENTS Test, respectively. No correlation could be found with sphingomyelin (Figs. 1-4). It is concluded that the CLEMENTS Test can be a useful tool as a screening test available to any obstetrical centre.

  13. Sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) is a novel nucleotide phosphodiesterase regulated by cholesterol in human macrophages.

    PubMed

    Traini, Mathew; Quinn, Carmel M; Sandoval, Cecilia; Johansson, Erik; Schroder, Kate; Kockx, Maaike; Meikle, Peter J; Jessup, Wendy; Kritharides, Leonard

    2014-11-21

    Cholesterol-loaded foam cell macrophages are prominent in atherosclerotic lesions and play complex roles in both inflammatory signaling and lipid metabolism, which are underpinned by large scale reprogramming of gene expression. We performed a microarray study of primary human macrophages that showed that transcription of the sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) gene is up-regulated after cholesterol loading. SMPDL3A protein expression in and secretion from primary macrophages are stimulated by cholesterol loading, liver X receptor ligands, and cyclic AMP, and N-glycosylated SMPDL3A protein is detectable in circulating blood. We demonstrate for the first time that SMPDL3A is a functional phosphodiesterase with an acidic pH optimum. We provide evidence that SMPDL3A is not an acid sphingomyelinase but unexpectedly is active against nucleotide diphosphate and triphosphate substrates at acidic and neutral pH. SMPDL3A is a major source of nucleotide phosphodiesterase activity secreted by liver X receptor-stimulated human macrophages. Extracellular nucleotides such as ATP may activate pro-inflammatory responses in immune cells. Increased expression and secretion of SMPDL3A by cholesterol-loaded macrophage foam cells in lesions may decrease local concentrations of pro-inflammatory nucleotides and potentially represent a novel anti-inflammatory axis linking lipid metabolism with purinergic signaling in atherosclerosis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Upregulation of gene expression levels of ceramide metabolic enzymes after application of sphingomyelin-based liposomes to a three-dimensional cultured human epidermis model.

    PubMed

    Itaya, Yurina; Tokudome, Yoshihiro

    2016-04-22

    We have previously reported that the application of sphingomyelin-based liposomes (SM-L) to a three-dimensional cultured skin model increase the content of ceramides NS, NP, AS and AP. However, the mechanism responsible for these increased ceramide levels was not identified. SM-L and sphingomyelinase (SMase) were combined and incubated at 37 °C for 24 h. SM-L were also applied to three-dimensional cultured skin for 24 h and quantification of SMase and β-glucocerebrosidase (β-GCase) mRNA expression levels performed using real-time PCR. Additionally, three dimensional cultured skin was incubated with SM-L and the β-GCase inhibitor conduritol B epoxide (CBE) and the ceramide content determined by high performance thin layer chromatography. We observed generation of ceramide NS after reaction of SM-L and SMase. However, the other ceramide classes were not detected. Notably, SMase and β-GCase mRNA expression levels were significantly increased in cells of the skin model following application of SM-L. The levels of ceramides NS, NP, AS and AP were decreased by treatment with CBE. However, only ceramide NS was significantly increased by treatment with CBE and SM-L in combination. These findings indicate that application of SM-L to cultured skin upregulates the expression of SMase and β-GCase and increases ceramide content. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport.

    PubMed

    Dille, Stephanie; Kleinschnitz, Eva-Maria; Kontchou, Collins Waguia; Nölke, Thilo; Häcker, Georg

    2015-08-01

    The Chlamydiales are an order of obligate intracellular bacteria sharing a developmental cycle inside a cytosolic vacuole, with very diverse natural hosts, from amoebae to mammals. The clinically most important species is Chlamydia trachomatis. Many uncertainties remain as to how Chlamydia organizes its intracellular development and replication. The discovery of new Chlamydiales species from other families permits the comparative analysis of cell-biological events and may indicate events that are common to all or peculiar to some species and more or less tightly linked to "chlamydial" development. We used this approach in the infection of human cells with Waddlia chondrophila, a species from the family Waddliaceae whose natural host is uncertain. Compared to C. trachomatis, W. chondrophila had slightly different growth characteristics, including faster cytotoxicity. The embedding in cytoskeletal structures was not as pronounced as for the C. trachomatis inclusion. C. trachomatis infection generates proteolytic activity by the protease Chlamydia protease-like activity factor (CPAF), which degrades host substrates upon extraction; these substrates were not cleaved in the case of W. chondrophila. Unlike Chlamydia, W. chondrophila did not protect against staurosporine-induced apoptosis. C. trachomatis infection causes Golgi apparatus fragmentation and redirects post-Golgi sphingomyelin transport to the inclusion; both were absent from W. chondrophila-infected cells. When host cells were infected with both species, growth of both species was reduced. This study highlights differences between bacterial species that both depend on obligate intracellular replication inside an inclusion. Some features seem principally dispensable for intracellular development of Chlamydiales in vitro but may be linked to host adaptation of Chlamydia and the higher virulence of C. trachomatis.

  16. In Contrast to Chlamydia trachomatis, Waddlia chondrophila Grows in Human Cells without Inhibiting Apoptosis, Fragmenting the Golgi Apparatus, or Diverting Post-Golgi Sphingomyelin Transport

    PubMed Central

    Dille, Stephanie; Kleinschnitz, Eva-Maria; Kontchou, Collins Waguia; Nölke, Thilo

    2015-01-01

    The Chlamydiales are an order of obligate intracellular bacteria sharing a developmental cycle inside a cytosolic vacuole, with very diverse natural hosts, from amoebae to mammals. The clinically most important species is Chlamydia trachomatis. Many uncertainties remain as to how Chlamydia organizes its intracellular development and replication. The discovery of new Chlamydiales species from other families permits the comparative analysis of cell-biological events and may indicate events that are common to all or peculiar to some species and more or less tightly linked to “chlamydial” development. We used this approach in the infection of human cells with Waddlia chondrophila, a species from the family Waddliaceae whose natural host is uncertain. Compared to C. trachomatis, W. chondrophila had slightly different growth characteristics, including faster cytotoxicity. The embedding in cytoskeletal structures was not as pronounced as for the C. trachomatis inclusion. C. trachomatis infection generates proteolytic activity by the protease Chlamydia protease-like activity factor (CPAF), which degrades host substrates upon extraction; these substrates were not cleaved in the case of W. chondrophila. Unlike Chlamydia, W. chondrophila did not protect against staurosporine-induced apoptosis. C. trachomatis infection causes Golgi apparatus fragmentation and redirects post-Golgi sphingomyelin transport to the inclusion; both were absent from W. chondrophila-infected cells. When host cells were infected with both species, growth of both species was reduced. This study highlights differences between bacterial species that both depend on obligate intracellular replication inside an inclusion. Some features seem principally dispensable for intracellular development of Chlamydiales in vitro but may be linked to host adaptation of Chlamydia and the higher virulence of C. trachomatis. PMID:26056386

  17. Liquid chromatography-tandem mass spectrometry for the determination of sphingomyelin species from calf brain, ox liver, egg yolk, and krill oil.

    PubMed

    Zhou, Li; Zhao, Minjie; Ennahar, Saïd; Bindler, Françoise; Marchioni, Eric

    2012-01-11

    In this study, molecular species of sphingomyelin (SM) in egg yolk, calf brain, ox liver, and krill oil were investigated. Classes of phospholipids (PLs) were purified, identified, and quantified by normal phase semipreparative high-performance liquid chromatography (HPLC) combined with evaporative light scattering detectors (ELSD). For SM molecular species identification, pure SM collected through a flow splitter was loaded to HPLC-electrospray ionization-tandem mass spectrometry (LC-ESI-MS(2)), with 100% methanol containing 5 mM ammonium formate as mobile phase. In addition to classes of PLs, the used approach allowed the determination of profiles of SM species in egg yolk, ox liver, and calf brain, whereas krill oil turned out not to contain any SM. It also allowed the separation and identification of SM subclasses, as well as tentative identification of species with the same molecular mass, including isomers. The results showed that egg yolk contained the highest proportion of (d18:1-16:0)SM (94.1%). The major SM molecular species in ox liver were (d18:1-16:0)SM (25.5%), (d18:1-23:0)SM (19.7%), (d18:1-24:0)SM (13.2%), and (d18:1-22:0)SM (12.5%). Calf brain SM was rich in species such as (d18:1-18:0)SM (40.7%), (d18:1-24:1)SM (17.1%), and (d18:1-20:0)SM (10.8%).

  18. Human milk fat globules: polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane.

    PubMed

    Lopez, Christelle; Ménard, Olivia

    2011-03-01

    Although human milk fat globules (MFG) are of primary importance since they are the exclusive lipid delivery carriers in the gastrointestinal tract of breast-fed infants, they remain the poorly understood aspect of milk. The objectives of this study were to investigate these unique colloidal assemblies and their interfacial properties, i.e. composition and structure of their biological membrane. In mature breast milk, MFG have a mean diameter of 4-5 microm, a surface area of about 2m(2)/g fat and an apparent zeta potential ζ=-6.7 ± 0.5 mV at 37°C. Human MFG contain 3-4mg polar lipids/g fat as quantified by HPLC/ELSD. The main polar lipids are sphingomyelin (SM; 36-45%, w/w), phosphatidylcholine (19-23%, w/w) and phosphatidylethanolamine (10-15%, w/w). In situ structural investigations of human MFG have been performed using light and confocal microscopy with adapted fluorescent probes, i.e. Nile Red, the extrinsic phospholipid Rh-DOPE, Fast Green and the lectin WGA-488. This study revealed a spatial heterogeneity in the human milk fat globule membrane (MFGM), with the lateral segregation of SM in liquid-ordered phase domains of various shapes and sizes surrounded by a liquid-disordered phase composed of the glycerophospholipids in which the proteins are dispersed. The glycocalyx formed by glycoproteins and cytoplasmic remnents have also been characterised around human MFG. A new model for the structure of the human MFGM is proposed and discussed. The unique composition and lateral organisation of the human MFGM components could be of metabolic significance and have health impact for the infants that need to be further explored.

  19. Expression, immunolocalization, and serological reactivity of a novel sphingomyelin phosphodiesterase-like protein, an excretory/secretory antigen from Clonorchis sinensis.

    PubMed

    Huang, Yanwei; Zheng, Youwei; Li, Yuzhe; Yang, Mei; Li, Ting; Zeng, Suxiang; Yu, Xinbing; Huang, Huaiqiu; Hu, Xuchu

    2013-06-01

    Clonorchiasis, caused by Clonorchis sinensis infection, is a zoonotic parasitic disease of hepatobiliary system in which the proteins released by adult are major pathogenetic factors. In this study, we first characterized a putative sphingomyelin phosphodiesterase (CsSMPase) A-like secretory protein, which was highly expressed in the adult worm. The full-length gene was cloned. The putative protein is of relatively low homology comparing with SMPase from other species, and of rich T cell and B cell epitopes, suggesting that it is an antigen of strong antigenicity. The complete coding sequence of the gene was expressed in the Escherichia coli. The recombinant CsSMPase (rCsSMPase) can be recognized by C. sinensis-infected serum, and the protein immunoserum can recognize a specific band in excretory/secretory products (ESPs) of C. sinensis adult by western blotting. Immunolocalization revealed that CsSMPase was not only localized on tegument, ventral sucker of metacercaria, and the intestine of adult but also on the nearby epithelium of bile duct of the infected Sprague-Dawley rats, implying that CsSMPase was mainly secreted and excreted through adult intestine and directly interacted with bile duct epithelium. Although immunized rats evoked high level antibody response, the antigen level was low in clonorchiasis patients. And the sensitivity and specificity of rCsSMPase were 50.0 % (12/24) and 88.4 % (61/69), in sera IgG-ELISA, respectively. It is likely due to the fact that CsSMPase binding to the plasma membrane of biliary epithelium decreases the antigen immune stimulation.

  20. Unique thermal behavior of sphingomyelin species with nonhydroxy and 2-hydroxy very-long-chain (C28-C32) PUFAs[S

    PubMed Central

    Peñalva, Daniel A.; Furland, Natalia E.; López, Gustavo H.; Aveldaño, Marta I.; Antollini, Silvia S.

    2013-01-01

    In rat germ cells and spermatozoa, sphingomyelin (SM) contains molecular species with nonhydroxy (n) and 2-hydroxy (h) very-long-chain polyunsaturated fatty acids (V), the most abundant being SMs with (n- and h-) 28:4n-6, 30:5n-6, and 32:5n-6 as acyl chains. The aim of this study was to gain information about their thermotropic behavior and interactions with other lipids. After isolation from rat testis, multilamellar and giant unilamellar vesicles from these SMs were examined using fluorescent probes. Only n-32:5 SM and h-32:5 SM displayed a gel-liquid transition temperature (Tt ∼ 21–22°C), the rest remaining in the liquid state in the 5°C–45°C range. The degree of order was larger in bilayers of any of the h-V SMs than in those of their chain-matched n-V SMs. Both, but n-V SM relatively more than h-V SM, decreased the Tt of dimyristoylphosphatidylcholine as their proportion increased in binary phosphatidylcholine:SM liposomes. In contrast to the established ability of 16:0 SM to form lateral cholesterol/SM-rich ordered domains in ternary dioleoylphosphatidylcholine:cholesterol:SM bilayers, neither n-V SM nor h-V SM showed a tendency to do so. Thus, these SMs are in the fluid state and are not involved in this type of domains in spermatozoa at physiological temperatures. However, this state could be altered at the very low temperatures at which these gametes are usually preserved. PMID:23687296

  1. Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts.

    PubMed

    Sudano, Mateus J; Santos, Vanessa G; Tata, Alessandra; Ferreira, Christina R; Paschoal, Daniela M; Machado, Rui; Buratini, José; Eberlin, Marcos N; Landim-Alvarenga, Fernanda D C

    2012-06-01

    Lipid droplets, subspecies (Bos taurus indicus vs. Bos taurus taurus), and in vitro culture are known to influence cryopreservation of bovine embryos. Limited information is available regarding differences in membrane lipids in embryo, such as phosphatidylcholines (PC) and sphingomyelins (SM). The objective of the present study was to compare the profiles of several PC and SM species and relate this information to cytoplasmic lipid levels present in Nellore (B. taurus indicus) and Simmental (B. taurus taurus) blastocysts produced in vitro (IVP) or in vivo (ET). Simmental and IVP embryos had more cytoplasmic lipid content than Nellore and ET embryos (n = 30). Blastocysts were submitted to matrix-assisted laser desorption/ionization mass spectrometry. Differences in the PC profile were addressed by principal component analysis. The lipid species with PC (32:1) and PC (34:1) had higher ion abundances in Nellore embryos, whereas PC (34:2) was higher in Simmental embryos. IVP embryos had less abundant ions of PC (32:1), PC (34:2), and PC (36:5) compared to ET embryos. Moreover, ion abundance of PC (32:0) was higher in both Nellore and Simmental IVP embryos compared to ET embryos. Therefore, mass spectrometry profiles of PC and SM species significantly differ with regard to unsaturation level and carbon chain composition in bovine blastocysts due to subspecies and in vitro culture conditions. Because PC abundances of Nellore and Simmental embryos were distinct (34:1 vs. 34:2), as were those of IVP and ET embryos (32:0 vs. 36:5), they are potential markers of postcryopreservation embryonic survival.

  2. Ligand-dependent and -independent regulation of human hepatic sphingomyelin phosphodiesterase acid-like 3A expression by pregnane X receptor and crosstalk with liver X receptor.

    PubMed

    Jeske, Judith; Bitter, Andreas; Thasler, Wolfgang E; Weiss, Thomas S; Schwab, Matthias; Burk, Oliver

    2017-07-15

    Pregnane X receptor (PXR) mainly regulates xenobiotic metabolism and detoxification. Additionally, it exerts pleiotropic effects on liver physiology, which in large parts depend on transrepression of other liver-enriched transcription factors. Based on the hypothesis that lower expression levels of PXR may reduce the extent of this inhibition, an exploratory genome-wide transcriptomic profiling was performed using HepG2 cell clones with different expression levels of PXR. This screen and confirmatory real-time RT-PCR identified sphingomyelin phosphodiesterase acid-like (SMPDL) 3A, a novel nucleotide phosphodiesterase and phosphoramidase, as being up-regulated by PXR-deficiency. Transient siRNA-mediated knock-down of PXR in HepG2 cells and primary human hepatocytes similarly induced mRNA up-regulation, which translated into increased intracellular and secreted extracellular protein levels. Interestingly, ligand-dependent PXR activation also induced SMPDL3A in HepG2 cells and primary human hepatocytes. Electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated binding of PXR to the previously identified liver X receptor (LXR)-binding DR4 motif as well as to an adjacent ER8 motif in intron 1 of SMPDL3A. Constitutive binding of the unliganded receptor to the intron 1 chromatin indicated ligand-independent repression of SMPDL3A by PXR. Transient transfection and reporter gene analysis confirmed the specific role of these motifs in PXR- and LXR-dependent activation of the SMPDL3A intronic enhancer. PXR inhibited LXR mainly by competition for binding sites. In conclusion, this study describes that a decrease in PXR expression levels and ligand-dependent activation of PXR and LXR increase hepatic SMPDL3A levels, which possibly connects these receptors to hepatic purinergic signaling and phospholipid metabolism and may result in drug-drug interactions with phosphoramidate pro-drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Formation of Gel-like Nanodomains in Cholesterol-Containing Sphingomyelin or Phosphatidylcholine Binary Membrane As Examined by Fluorescence Lifetimes and (2)H NMR Spectra.

    PubMed

    Yasuda, Tomokazu; Matsumori, Nobuaki; Tsuchikawa, Hiroshi; Lönnfors, Max; Nyholm, Thomas K M; Slotte, J Peter; Murata, Michio

    2015-12-29

    In this study, we measured the time-resolved fluorescence of trans-parinaric acid (tPA), steady-state fluorescence anisotropy of diphenylhexatriene (DPH), and (2)H NMR of 10,10-d2-stearoyl lipids in stearoyl sphingomyelin with cholesterol (SSM/Chol) and l-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine with Chol (PSPC/Chol) binary membranes. The results suggest that the membrane order obtained from the fluorescence experiments shows a similar temperature dependency as those of the (2)H NMR data. More importantly, the time-resolved fluorescence data implied the presence of at least two types of domains, cholesterol-poor gel-like domains (CPGLD) and cholesterol-enriched liquid-ordered (Lo) domains. These domains appear on a nano-to-micro second time scale for both SSM-Chol and PSPC-Chol membranes. The relative size of the gel-like domain was also estimated from the temperature-dependent lifetime measurements and (2)H NMR spectral changes. The results imply that the size of the gel-like domains is very small, probably on the nanometer scale, and smaller in SSM-Chol membrane than those in PSPC-Chol bilayers, which could account for the higher thermal stability of SM-Chol membranes. The present study demonstrates that gel-like nanodomains occur in SM-Chol binary membrane even with Chol content of over 33 mol %, which has been thought to consist exclusively of Lo phase, implying that not only Lo domains but also gel-like nanodomains are important for formation of lipid-ordered phase in SM-Chol and PC-Chol membranes.

  4. Invariant natural killer T cells from food allergic versus non-allergic children exhibit differential responsiveness to milk-derived sphingomyelin

    PubMed Central

    Jyonouchi, Soma; Abraham, Valsamma; Orange, Jordan S.; Spergel, Jonathan M.; Gober, Laura; Dudek, Emily; Saltzman, Rushani; Nichols, Kim E.; Cianferoni, Antonella

    2011-01-01

    Background A key immunological feature of food allergy (FA) is the presence of a T-helper-2 (Th2)-type cytokine bias. Ligation of the invariant natural killer T cell (iNKT) T cell receptor (TCR) by sphingolipids (SL) presented via the CD1d molecule leads to copious secretion of Th2-type cytokines. Major food allergens (e.g. milk, egg) are the richest dietary source of SL (food-SL). Nonetheless, the role of iNKTs in FA is unknown. Objective To investigate the role of iNKTs in FA and to assess whether food-SL-CD1d complexes can engage the iNKT-TCR and induce iNKT cell functions. Methods Peripheral blood mononuclear cells from 15 children allergic to cow's milk (FA-MA), 12 children tolerant to cow's milk but with allergy to egg (FA-NMA) and 13 healthy controls were incubated with α-galactosylceramide (αGal), cow's milk-sphingomyelin-[SM] or hen's egg-ceramide-[CE]. iNKTs were quantified and their cytokine production and proliferation were assessed. Human CD1d tetramers loaded with milk-SM or egg-CE were used to determine food-SL binding to the iNKT-TCR. Results Milk-SM, but not egg-CE, can engage the iNKT-TCR and induce iNKT-proliferation and Th2-type cytokine secretion. FA-children, especially those with MA, had significantly fewer peripheral blood (PB) iNKTs and their iNKTs exhibited a greater Th2-response to αGal and milk-SM compared to iNKTs of healthy controls. Conclusion iNKTs from FA-children, especially those with MA, are reduced in number and exhibit a Th2-bias in response to αGal and milk-SM. These data suggest a potential role for iNKTs in FA. Clinical Implications Milk-SM activate PB-iNKTs to produce Th2-cytokines and this effect is greater in FA-MA-children. Hence, SL contained in milk may promote an iNKT cell-mediated-Th2-type-cytokine bias that facilitates sensitization to food allergens. PMID:21458849

  5. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals.

    PubMed

    Sághy, Éva; Szőke, Éva; Payrits, Maja; Helyes, Zsuzsanna; Börzsei, Rita; Erostyák, János; Jánosi, Tibor Zoltán; Sétáló, György; Szolcsányi, János

    2015-10-01

    Transient Receptor Potential (TRP) cation channels, such as TRP Vanilloid 1 and TRP Ankyrin repeat domain 1 (TRPV1 and TRPA1) are nocisensors playing important role to signal pain. Two "melastatin" TRP receptors, like TRPM8 and TRPM3 are also expressed in a subgroup of primary sensory neurons. These channels serve as thermosensors with unique thermal sensitivity ranges and are activated also by several exogenous and endogenous chemical ligands inducing conformational changes from various allosteric ("multisteric") sites. We analysed the role of plasma membrane microdomains of lipid rafts on isolated trigeminal (TRG) neurons and TRPV1-expressing CHO cell line by measuring agonist-induced Ca2+ transients with ratiometric technique. Stimulation-evoked calcitonin gene related peptide (CGRP) release from sensory nerve endings of the isolated rat trachea by radioimmunoassay was also measured. Lipid rafts were disrupted by cleaving sphingomyelin (SM) with sphingomyelinase (SMase), cholesterol depletion with methyl β-cyclodextrin (MCD) and ganglioside breakdown with myriocin. It has been revealed that intracellular Ca2+ increase responses evoked by the TRPV1 agonist capsaicin, the TRPA1 agonsits allyl isothiocyanate (AITC) and formaldehyde as well as the TRPM8 activator icilin were inhibited after SMase, MCD and myriocin incubation but the response to the TRPM3 agonist pregnenolon sulphate was not altered. Extracellular SMase treatment did not influence the thapsigargin-evoked Ca2+-release from intracellular stores. Besides the cell bodies, SMase also inhibited capsaicin- or AITC-evoked CGRP release from peripheral sensory nerve terminals, this provides the first evidence for the importance of lipid raft integrity in TRPV1 and TRPA1 gating on capsaicin-sensitive nerve terminals. SM metabolites, ceramide and sphingosine, did not influence TRPA1 and TRPV1 activation on TRG neurons, TRPV1-expressing CHO cell line, and nerve terminals. We suggest, that the hydrophobic

  6. † THE GROUP VIA CALCIUM-INDEPENDENT PHOSPHOLIPASE A2 (iPLA2β)1 PARTICIPATES IN ER STRESS-INDUCED INS-1 INSULINOMA CELL APOPTOSIS BY PROMOTING CERAMIDE GENERATION VIA HYDROLYSIS OF SPHINGOMYELINS BY NEUTRAL SPHINGOMYELINASE

    PubMed Central

    Lei, Xiao-Yong; Zhang, Sheng; Bohrer, Alan; Bao, Shunzhong; Song, Haowei; Ramanadham, Sasanka

    2008-01-01

    β-cell mass is regulated by a balance between β-cell growth and β-cell death, due to apoptosis. We previously reported that apoptosis of INS-1 insulinoma cells due to thapsigargin-induced ER stress was suppressed by inhibition of the Group VIA Ca2+-independent phospholipase A2 (iPLA2β), associated with increased ceramide generation, and that the effects of ER stress were amplified in INS-1 cells in which iPLA2β was over expressed (OE INS-1 cells). These findings suggested that iPLA2β and ceramides participate in ER stress-induced INS-1 cell apoptosis. Here, we addressed this possibility and also the source of the ceramides by examining the effects of ER stress in empty vector (V)-transfected and iPLA2β-OE INS-1 cells using apoptosis assays and immunoblotting, quantitative PCR, and mass spectrometry analyses. ER stress induced expression of ER stress factors GRP78 and BiP, cleavage of apoptotic factor PARP, and apoptosis in V and OE INS-1 cells. Ceramide accumulation during ER stress was not associated with changes in mRNA levels of serine palmitoyl-transferase (SPT), the rate-limiting enzyme in de novo synthesis of ceramides but both message and protein levels of neutral sphingomyelinase (NSMase), which hydrolyzes sphingomyelins to generate ceramides, temporally increased in the INS-1 cells. The increases in NSMase expression in the ER-stressed INS-1 cells were associated with corresponding temporal elevations in ER-associated iPLA2β protein and catalytic activity. Pretreatment with BEL inactivated iPLA2β and prevented induction of NSMase message and protein in ER-stressed INS-1 cells. Relative to V INS-1 cells, the effects of ER stress were accelerated and/or amplified in the OE INS-1 cells. However, inhibition of iPLA2β or NSMase (chemically or with siRNA) suppressed induction of NSMase message, ceramide generation, sphingomyelin hydrolysis, and apoptosis in both V and OE INS-1 cells during ER stress. In contrast, inhibition of SPT did not suppress

  7. The dietary effect of milk sphingomyelin on the lipid metabolism of obese/diabetic KK-A(y) mice and wild-type C57BL/6J mice.

    PubMed

    Yamauchi, Ippei; Uemura, Mariko; Hosokawa, Masashi; Iwashima-Suzuki, Ai; Shiota, Makoto; Miyashita, Kazuo

    2016-09-14

    Purified milk sphingomyelin (SM) was obtained from lipid concentrated butter serum (LC-BS) by successive separations involving solvent fractionation, selective saponification, and silicic acid column chromatography. The SM obtained was given to obese/diabetic KK-A(y) mice and wild-type C57BL/6J mice. SM supplementation significantly increased fecal lipids paralleled with a decrease in non-HDL cholesterol levels in the serum and neutral lipids and in cholesterol levels in the livers of KK-A(y) mice. The reduction of liver lipid levels also resulted in a decrease in the total fatty acid content of the KK-A(y) mice livers, while n-3 fatty acids derived from the conversion of α-linolenic acid (18:3n-3) increased due to SM supplementation. In contrast to the KK-A(y) mice, little change in the serum and liver lipids was observed in wild-type C57BL/6J mice. The present study suggests that SM may be effective only in subjects with metabolic disorders.

  8. Interactions between single-chained ether phospholipids and sphingomyelin in mixed monolayers at the air/water interface-Grazing incidence X-ray diffraction and Brewster angle microscopy studies.

    PubMed

    Flasiński, Michał; Hąc-Wydro, Katarzyna; Wydro, Paweł; Broniatowski, Marcin; Dynarowicz-Łątka, Patrycja

    2013-11-01

    Single-chained ether phospholipids comprise a class of both natural (PAF, lyso-PAF) and synthetic (edelfosine, ED) compounds possessing confirmed extensive biological activities. Among them ED is known to exhibit antineoplastic properties, while PAF and its lyso-precursor are lipids implicated e.g. in the functioning of organism immune system. In our study the interactions of ED, PAF and lyso-PAF with sphingomyelin (SM) being one of the main lipid found in a high concentration in membrane microdomains, like lipid rafts, were investigated in mixed monolayers at the air/water interface. The traditional Langmuir methodology was complemented with modern physicochemical techniques: Grazing incidence X-ray diffraction and Brewster angle microscopy. The investigated compounds, i.e.: platelet activating factor (PAF), (lyso-PAF) and edelfosine were selected because of their highly different physiological properties despite very similar chemical structure and evidenced membrane activity. The obtained results demonstrate that all the investigated three single-chained phospholipids cause strong modification of the model membrane properties in a concentration dependent manner. It has been proved that there are significant differences regarding the influence of the single-chained lipids on model SM membrane--in the region of low concentration, edelfosine was found to be the most effective among all the investigated compounds. The collected data shed new light onto the membrane behavior of the investigated herein biochemically active compounds, which can be of help in understanding their different biological activity and designing of new, more biocompatible drugs.

  9. Host sphingomyelin increases West Nile virus infection in vivo

    PubMed Central

    Martín-Acebes, Miguel A.; Gabandé-Rodríguez, Enrique; García-Cabrero, Ana M.; Sánchez, Marina P.; Ledesma, María Dolores; Sobrino, Francisco; Saiz, Juan-Carlos

    2016-01-01

    Flaviviruses, such as the dengue virus and the West Nile virus (WNV), are arthropod-borne viruses that represent a global health problem. The flavivirus lifecycle is intimately connected to cellular lipids. Among the lipids co-opted by flaviviruses, we have focused on SM, an important component of cellular membranes particularly enriched in the nervous system. After infection with the neurotropic WNV, mice deficient in acid sphingomyelinase (ASM), which accumulate high levels of SM in their tissues, displayed exacerbated infection. In addition, WNV multiplication was enhanced in cells from human patients with Niemann-Pick type A, a disease caused by a deficiency of ASM activity resulting in SM accumulation. Furthermore, the addition of SM to cultured cells also increased WNV infection, whereas treatment with pharmacological inhibitors of SM synthesis reduced WNV infection. Confocal microscopy analyses confirmed the association of SM with viral replication sites within infected cells. Our results unveil that SM metabolism regulates flavivirus infection in vivo and propose SM as a suitable target for antiviral design against WNV. PMID:26764042

  10. Host sphingomyelin increases West Nile virus infection in vivo.

    PubMed

    Martín-Acebes, Miguel A; Gabandé-Rodríguez, Enrique; García-Cabrero, Ana M; Sánchez, Marina P; Ledesma, María Dolores; Sobrino, Francisco; Saiz, Juan-Carlos

    2016-03-01

    Flaviviruses, such as the dengue virus and the West Nile virus (WNV), are arthropod-borne viruses that represent a global health problem. The flavivirus lifecycle is intimately connected to cellular lipids. Among the lipids co-opted by flaviviruses, we have focused on SM, an important component of cellular membranes particularly enriched in the nervous system. After infection with the neurotropic WNV, mice deficient in acid sphingomyelinase (ASM), which accumulate high levels of SM in their tissues, displayed exacerbated infection. In addition, WNV multiplication was enhanced in cells from human patients with Niemann-Pick type A, a disease caused by a deficiency of ASM activity resulting in SM accumulation. Furthermore, the addition of SM to cultured cells also increased WNV infection, whereas treatment with pharmacological inhibitors of SM synthesis reduced WNV infection. Confocal microscopy analyses confirmed the association of SM with viral replication sites within infected cells. Our results unveil that SM metabolism regulates flavivirus infection in vivo and propose SM as a suitable target for antiviral design against WNV. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. ABCB4 exports phosphatidylcholine in a sphingomyelin-dependent manner.

    PubMed

    Zhao, Yu; Ishigami, Masato; Nagao, Kohjiro; Hanada, Kentaro; Kono, Nozomu; Arai, Hiroyuki; Matsuo, Michinori; Kioka, Noriyuki; Ueda, Kazumitsu

    2015-03-01

    ABCB4, which is specifically expressed on the canalicular membrane of hepatocytes, exports phosphatidylcholine (PC) into bile. Because SM depletion increases cellular PC content and stimulates PC and cholesterol efflux by ABCA1, a key transporter involved in generation of HDL, we predicted that SM depletion also stimulates PC efflux through ABCB4. To test this prediction, we compared the lipid efflux activity of ABCB4 and ABCA1 under SM depletion induced by two different types of inhibitors for SM synthesis, myriocin and (1R,3S)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide, in human embryonic kidney 293 and baby hamster kidney cells. Unexpectedly, SM depletion exerted opposite effects on ABCB4 and ABCA1, suppressing PC efflux through ABCB4 while stimulating efflux through ABCA1. Both ABCB4 and ABCA1 were recovered from Triton-X-100-soluble membranes, but ABCB4 was mainly recovered from CHAPS-insoluble SM-rich membranes, whereas ABCA1 was recovered from CHAPS-soluble membranes. These results suggest that a SM-rich membrane environment is required for ABCB4 to function. ABCB4 must have evolved to exert its maximum activity in the SM-rich membrane environment of the canalicular membrane, where it transports PC as the physiological substrate.

  12. Consequences of ions and pH on the supramolecular organization of sphingomyelin and sphingomyelin/cholesterol bilayers.

    PubMed

    Chemin, Caroline; Bourgaux, Claudie; Péan, Jean-Manuel; Pabst, Georg; Wüthrich, Patrick; Couvreur, Patrick; Ollivon, Michel

    2008-06-01

    For drug delivery purpose the anticancer drug S12363 was loaded into ESM/Chol-liposomes using either a pH or an ammonium gradient. Association between the drug and the liposome depends markedly on the liposome membrane structure. Thus, ESM and ESM/Chol bilayer organization had been characterized by coupled DSC and XRDT as a function of both cholesterol concentration and aqueous medium composition. ESM bilayers exhibited a ripple lamellar gel phase P(beta') below the melting temperature and adopted a L(beta)-like gel phase upon Chol insertion. Supramolecular organization of ESM and ESM/Chol bilayers was not modified by citrate buffer or ammonium sulfate solution whatever the pH (3< or = pH < or =7). Nevertheless, in ESM bilayer, ammonium sulfate salt induced a peculiar organization of head groups, leading to irregular d-spacing and weakly correlated bilayers. Moreover, in the presence of salts, a weakening of van der Waals attraction forces was seen and led to a swelling of the water layer.

  13. Sphingomyelin metabolism is involved in the differentiation of MDCK cells induced by environmental hypertonicity

    PubMed Central

    Favale, Nicolás Octavio; Santacreu, Bruno Jaime; Pescio, Lucila Gisele; Marquez, Maria Gabriela; Sterin-Speziale, Norma Beatriz

    2015-01-01

    Sphingolipids (SLs) are relevant lipid components of eukaryotic cells. Besides regulating various cellular processes, SLs provide the structural framework for plasma membrane organization. Particularly, SM is associated with detergent-resistant microdomains. We have previously shown that the adherens junction (AJ) complex, the relevant cell-cell adhesion structure involved in cell differentiation and tissue organization, is located in an SM-rich membrane lipid domain. We have also demonstrated that under hypertonic conditions, Madin-Darby canine kidney (MDCK) cells acquire a differentiated phenotype with changes in SL metabolism. For these reasons, we decided to evaluate whether SM metabolism is involved in the acquisition of the differentiated phenotype of MDCK cells. We found that SM synthesis mediated by SM synthase 1 is involved in hypertonicity-induced formation of mature AJs, necessary for correct epithelial cell differentiation. Inhibition of SM synthesis impaired the acquisition of mature AJs, evoking a disintegration-like process reflected by the dissipation of E-cadherin and β- and α-catenins from the AJ complex. As a consequence, MDCK cells did not develop the hypertonicity-induced differentiated epithelial cell phenotype. PMID:25670801

  14. ABCB4 exports phosphatidylcholine in a sphingomyelin-dependent manner[S

    PubMed Central

    Zhao, Yu; Ishigami, Masato; Nagao, Kohjiro; Hanada, Kentaro; Kono, Nozomu; Arai, Hiroyuki; Matsuo, Michinori; Kioka, Noriyuki; Ueda, Kazumitsu

    2015-01-01

    ABCB4, which is specifically expressed on the canalicular membrane of hepatocytes, exports phosphatidylcholine (PC) into bile. Because SM depletion increases cellular PC content and stimulates PC and cholesterol efflux by ABCA1, a key transporter involved in generation of HDL, we predicted that SM depletion also stimulates PC efflux through ABCB4. To test this prediction, we compared the lipid efflux activity of ABCB4 and ABCA1 under SM depletion induced by two different types of inhibitors for SM synthesis, myriocin and (1R,3S)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide, in human embryonic kidney 293 and baby hamster kidney cells. Unexpectedly, SM depletion exerted opposite effects on ABCB4 and ABCA1, suppressing PC efflux through ABCB4 while stimulating efflux through ABCA1. Both ABCB4 and ABCA1 were recovered from Triton-X-100-soluble membranes, but ABCB4 was mainly recovered from CHAPS-insoluble SM-rich membranes, whereas ABCA1 was recovered from CHAPS-soluble membranes. These results suggest that a SM-rich membrane environment is required for ABCB4 to function. ABCB4 must have evolved to exert its maximum activity in the SM-rich membrane environment of the canalicular membrane, where it transports PC as the physiological substrate. PMID:25601960

  15. In-depth sphingomyelin characterization using electron impact excitation of ions from organics and mass spectrometry[S

    PubMed Central

    Baba, Takashi; Campbell, J. Larry; Le Blanc, J. C. Yves; Baker, Paul R. S.

    2016-01-01

    Electron impact excitation of ions from organics (EIEIO), also referred to as electron-induced dissociation, was applied to singly charged SM molecular species in the gas phase. Using ESI and a quadrupole TOF mass spectrometer equipped with an electron-ion reaction device, we found that SMs fragmented sufficiently to identify their lipid class, acyl group structure, and the location of double bond(s). Using this technique, nearly 200 SM molecular species were found in four natural lipid extracts: bovine milk, porcine brain, chicken egg yolk, and bovine heart. In addition to the most common backbone, d18:1, sphingosines with a range of carbon chain lengths, sphingadienes, and some sphinganine backbones were also detected. Modifications in natural SMs were also identified, including addition of iodine/methanol across a carbon-carbon double bond. This unparalleled new approach to SM analysis using EIEIO-MS shows promise as a unique and powerful tool for structural characterization. PMID:27005317

  16. Global Metabolic Profiling of Plasma Shows that Three-Year Mild-Caloric Restriction Lessens an Age-Related Increase in Sphingomyelin and Reduces L-leucine and L-phenylalanine in Overweight and Obese Subjects

    PubMed Central

    Kim, Minjoo; Lee, Sang-Hyun; Lee, Jong Ho

    2016-01-01

    The effect of weight loss from long-term, mild-calorie diets (MCD) on plasma metabolites is unknown. This study was to examine whether MCD-induced weight reduction caused changes in the extended plasma metabolites. Overweight and obese subjects aged 40-59 years consumed a MCD (approximately 100 kcal/day deficit, n=47) or a weight-maintenance diet (control, n=47) in a randomized, controlled design with a three-year clinical intervention period and plasma samples were analyzed by using UPLC-LTQ-Orbitrap mass spectrometry. The three-year MCD intervention resulted in weight loss (-8.87%) and significant decreases in HOMA-IR and TG. The three-year follow-up of the MCD group showed reductions in the following 13 metabolites: L-leucine; L-phenylalanine; 9 lysoPCs; PC (18:0/20:4); and SM (d18:0/16:1). The three-year MCD group follow-up identified increases in palmitic amide, oleamide, and PC (18:2/18:2). Considering the age-related alterations in the identified metabolites, the MCD group showed a greater decrease in L-leucine, L-phenylalanine, and SM (d18:0/16:1) compared with those of the control group. Overall, the change (Δ) in BMI positively correlated with the ΔTG, ΔHOMA-IR, ΔL-leucine, and ΔSM (d18:0/16:1). The ΔHOMA-IR positively correlated with ΔTG, ΔL-leucine, ΔL-phenylalanine, and ΔSM (d18:0/16:1). The weight loss resulting from three-year mild-caloric restriction lessens the age-related increase in SM and reduces L-leucine and L-phenylalanine in overweight and obese subjects. These changes were coupled with improved insulin resistance (ClinicalTrials.gov: NCT02081898). PMID:28053823

  17. Global Metabolic Profiling of Plasma Shows that Three-Year Mild-Caloric Restriction Lessens an Age-Related Increase in Sphingomyelin and Reduces L-leucine and L-phenylalanine in Overweight and Obese Subjects.

    PubMed

    Kim, Minjoo; Lee, Sang-Hyun; Lee, Jong Ho

    2016-12-01

    The effect of weight loss from long-term, mild-calorie diets (MCD) on plasma metabolites is unknown. This study was to examine whether MCD-induced weight reduction caused changes in the extended plasma metabolites. Overweight and obese subjects aged 40-59 years consumed a MCD (approximately 100 kcal/day deficit, n=47) or a weight-maintenance diet (control, n=47) in a randomized, controlled design with a three-year clinical intervention period and plasma samples were analyzed by using UPLC-LTQ-Orbitrap mass spectrometry. The three-year MCD intervention resulted in weight loss (-8.87%) and significant decreases in HOMA-IR and TG. The three-year follow-up of the MCD group showed reductions in the following 13 metabolites: L-leucine; L-phenylalanine; 9 lysoPCs; PC (18:0/20:4); and SM (d18:0/16:1). The three-year MCD group follow-up identified increases in palmitic amide, oleamide, and PC (18:2/18:2). Considering the age-related alterations in the identified metabolites, the MCD group showed a greater decrease in L-leucine, L-phenylalanine, and SM (d18:0/16:1) compared with those of the control group. Overall, the change (Δ) in BMI positively correlated with the ΔTG, ΔHOMA-IR, ΔL-leucine, and ΔSM (d18:0/16:1). The ΔHOMA-IR positively correlated with ΔTG, ΔL-leucine, ΔL-phenylalanine, and ΔSM (d18:0/16:1). The weight loss resulting from three-year mild-caloric restriction lessens the age-related increase in SM and reduces L-leucine and L-phenylalanine in overweight and obese subjects. These changes were coupled with improved insulin resistance (ClinicalTrials.gov: NCT02081898).

  18. A Thin Layer Chromatography Laboratory Experiment of Medical Importance

    ERIC Educational Resources Information Center

    Sharma, Loretta; Desai, Ankur; Sharma, Ajit

    2006-01-01

    A thin layer chromatography experiment of medical importance is described. The experiment involves extraction of lipids from simulated amniotic fluid samples followed by separation, detection, and scanning of the lecithin and sphingomyelin bands on TLC plates. The lecithin-to-sphingomyelin ratio is calculated. The clinical significance of this…

  19. A Thin Layer Chromatography Laboratory Experiment of Medical Importance

    ERIC Educational Resources Information Center

    Sharma, Loretta; Desai, Ankur; Sharma, Ajit

    2006-01-01

    A thin layer chromatography experiment of medical importance is described. The experiment involves extraction of lipids from simulated amniotic fluid samples followed by separation, detection, and scanning of the lecithin and sphingomyelin bands on TLC plates. The lecithin-to-sphingomyelin ratio is calculated. The clinical significance of this…

  20. COX-2 and Prostate Cancer Angiogenesis

    DTIC Science & Technology

    2002-03-01

    sphingomyelin to ceramide , a mediator of apopto- sis (Figure 1).10 The initial interest in COX-2 grew out of the In colon cancer, much of the focus has been...Sphingomyelin - Ceramide Arachidanic Acid \\\\ COX-1 / COX-2 Prostaglandin G2 Prostaglandin H2 Oxidation of Xenobiolics Prostaglandins Malordialdehyde FIGURE 1...variety of tissues in- corneal model, it was demonstrated that endothe- cluding skin , urinary bladder, gastric mucosa, lial cell COX-2 is essential for

  1. Phospholipids of liver cell nuclei during hibernation of Yakutian ground squirrel.

    PubMed

    Lakhina, A A; Markevich, L N; Zakharova, N M; Afanasyev, V N; Kolomiytseva, I K; Fesenko, E E

    2016-07-01

    In hibernating Yakutian ground squirrels S. undulatus, the content of total phospholipids in the nuclei of liver increased by 40% compared to that in animals in summer. In torpid state, the amount of sphingomyelin increased almost 8 times; phosphatidylserine, 7 times; and cardiolipin, 4 times. In active "winter" ground squirrels, the amount of sphingomyelin, phosphatidylserine, and cardiolipin decreased compared to the hibernating individuals but remained high compared to the "summer" ones. The torpor state did not affect the amount of lysophosphatidylcholine and phosphatidylinositol.

  2. Membrane microdomains: role of ceramides in the maintenance of their structure and functions.

    PubMed

    Staneva, Galya; Momchilova, Albena; Wolf, Claude; Quinn, Peter J; Koumanov, Kamen

    2009-03-01

    Free-standing giant unilamellar vesicles were used to visualize the complex lateral heterogeneity, induced by ceramide in the membrane bilayer at micron scale using C(12)-NBD-PC probe partitioning under the fluorescence microscope. Ceramide gel domains exist as leaf-like structures in glycerophospholipid/ceramide mixtures. Cholesterol readily increases ceramide miscibility with glycerophospholipids but cholesterol-ceramide interactions are not involved in the organization of the liquid-ordered phase as exemplified by sphingomyelin/cholesterol mixtures. Sphingomyelin stabilizes the gel phase and thus decreases ceramide miscibility in the presence of cholesterol. Gel/liquid-ordered/liquid-disordered phase coexistence was visualized in quaternary phosphatidylcholine/sphingomyelin/ceramide/cholesterol mixtures as occurrence of dark leaf-like and circular domains within a bright liquid phase. Sphingomyelin initiates specific ceramide-sphingomyelin interactions to form a highly ordered gel phase appearing at temperatures higher than pure ceramide gel phase in phosphatidylcholine/ceramide mixtures. Less sphingomyelin is engaged in formation of liquid-ordered phase leading to a shift in its formation to lower temperatures. Sphingomyelinase activity on substrate vesicles destroys micron L(o) domains but induces the formation of a gel-like phase. The activation of phospholipase A(2) by ceramide on heterogeneous membranes was visualized. Changes in the phase state of the membrane bilayer initiates such morphological processes as membrane fragmentation, budding in and budding out was demonstrated.

  3. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis

    PubMed Central

    1994-01-01

    Recent investigations provided evidence that the sphingomyelin signal transduction pathway mediates apoptosis for tumor necrosis factor alpha (TNF-alpha) in several hematopoietic and nonhematopoietic cells. In this pathway, TNF-receptor interaction initiates sphingomyelin hydrolysis to ceramide by a sphingomyelinase. Ceramide acts as a second messenger stimulating a ceramide-activated serine/threonine protein kinase. The present studies show that ionizing radiation, like TNF, induces rapid sphingomyelin hydrolysis to ceramide and apoptosis in bovine aortic endothelial cells. Elevation of ceramide with exogenous ceramide analogues was sufficient for induction of apoptosis. Protein kinase C activation blocked both radiation-induced sphingomyelin hydrolysis and apoptosis, and apoptosis was restored by ceramide analogues added exogenously. Ionizing radiation acted directly on membrane preparations devoid of nuclei, stimulating sphingomyelin hydrolysis enzymatically through a neutral sphingomyelinase. These studies provide the first conclusive evidence that apoptotic signaling can be generated by interaction of ionizing radiation with cellular membranes and suggest an alternative to the hypothesis that direct DNA damage mediates radiation-induced cell kill. PMID:8046331

  4. Composition and fatty acid distribution of bovine milk phospholipids from processed milk products.

    PubMed

    Gallier, Sophie; Gragson, Derek; Cabral, Charles; Jiménez-Flores, Rafael; Everett, David W

    2010-10-13

    The aim of this work was to assess the accuracy of different extraction methods of phospholipids and to measure the effect that processing has on phospholipid composition. Four methods of extracting phospholipids from buttermilk powder were compared to optimize recovery of sphingomyelin. Using the optimal method, the phospholipid profile of four dairy products (raw milk, raw cream, homogenized and pasteurized milk, and buttermilk powder) was determined. A total lipid extraction by the Folch method followed by a solid-phase extraction using the Bitman method was the most efficient technique to recover milk sphingomyelin. Milk processing (churning, centrifuging, homogenization, spray-drying) affected the profile of milk phospholipids, leading to a loss of sphingomyelin and phosphatidylcholine after centrifugation for cream separation. A corresponding decrease in the saturation content of the raw cream phospholipids and a loss of phosphatidylethanolamine after spray-drying to produce buttermilk powder were also observed.

  5. Composition and fatty acid distribution of bovine milk phospholipids from processed milk products

    PubMed Central

    Gallier, Sophie; Gragson, Derek; Cabral, Charles; Jiménez-Flores, Rafael; Everett, David W.

    2014-01-01

    The aim of this work was to assess the accuracy of different extraction methods of phospholipids and to measure the effect that processing has on phospholipid composition. Four methods of extracting phospholipids from buttermilk powder were compared to optimize recovery of sphingomyelin. Using the optimal method, the phospholipid profile of four dairy products (raw milk, raw cream, homogenized and pasteurized milk, and buttermilk powder) was determined. A total lipid extraction by the Folch method followed by a solid-phase extraction using the Bitman method was the most efficient technique to recover milk sphingomyelin. Milk processing (churning, centrifuging, homogenization, spray-drying) affected the profile of milk phospholipids, leading to a loss of sphingomyelin and phosphatidylcholine after centrifugation for cream separation. We also observed a corresponding decrease in the saturation content of the raw cream phospholipids, and a loss of phosphatidylethanolamine after spray-drying to produce buttermilk powder. PMID:20828196

  6. Effect of the nature of phospholipids on the degree of their interaction with isobornylphenol antioxidants

    NASA Astrophysics Data System (ADS)

    Marakulina, K. M.; Kramor, R. V.; Lukanina, Yu. K.; Plashchina, I. G.; Polyakov, A. V.; Fedorova, I. V.; Chukicheva, I. Yu.; Kutchin, A. V.; Shishkina, L. N.

    2016-02-01

    The parameters of complexation between natural phospholipids (lecithin, sphingomyelin, and cephalin) with antioxidants of a new class, isobornylphenols (IBPs), were determined by UV and IR spectroscopy. The self-organization of phospholipids (PLs) was studied depending on the structure of IBPs by dynamic light scattering. The nature of phospholipids and the structure of IBPs was found to produce a substantial effect both on the degree of complexation and on the size of PL aggregates in a nonpolar solvent. Based on the obtained data it was concluded that the structure of biological membranes mainly depends on the complexation of IBP with sphingomyelin.

  7. Molecular mechanism for sphingosine-induced Pseudomonas ceramidase expression through the transcriptional regulator SphR

    PubMed Central

    Okino, Nozomu; Ito, Makoto

    2016-01-01

    Pseudomonas aeruginosa, an opportunistic, but serious multidrug-resistant pathogen, secretes a ceramidase capable of cleaving the N-acyl linkage of ceramide to generate fatty acids and sphingosine. We previously reported that the secretion of P. aeruginosa ceramidase was induced by host-derived sphingolipids, through which phospholipase C-induced hemolysis was significantly enhanced. We herein investigated the gene(s) regulating sphingolipid-induced ceramidase expression and identified SphR, which encodes a putative AraC family transcriptional regulator. Disruption of the sphR gene in P. aeruginosa markedly decreased the sphingomyelin-induced secretion of ceramidase, reduced hemolytic activity, and resulted in the loss of sphingomyelin-induced ceramidase expression. A microarray analysis confirmed that sphingomyelin significantly induced ceramidase expression in P. aeruginosa. Furthermore, an electrophoretic mobility shift assay revealed that SphR specifically bound free sphingoid bases such as sphingosine, dihydrosphingosine, and phytosphingosine, but not sphingomyelin or ceramide. A β-galactosidase-assisted promoter assay showed that sphingosine activated ceramidase expression through SphR at a concentration of 100 nM. Collectively, these results demonstrated that sphingosine induces the secretion of ceramidase by promoting the mRNA expression of ceramidase through SphR, thereby enhancing hemolytic phospholipase C-induced cytotoxicity. These results facilitate understanding of the physiological role of bacterial ceramidase in host cells. PMID:27941831

  8. Diversity and Complexity of Ceramide Generation After Exposure of Jurkat Leukemia Cells to Irradiation

    SciTech Connect

    Ardail, Dominique Maalouf, Mira; Boivin, Anthony; Chapet, Olivier; Bodennec, Jacques; Rousson, Robert; Rodriguez-Lafrasse, Claire

    2009-03-15

    Purpose: To define which intracellular pools of sphingomyelin and ceramide are involved in the triggering of apoptosis of Jurkat leukemia cells in response to {gamma}-ray exposure. Methods and Materials: We examined the kinetics of ceramide generation at the whole-cell level and in different subcellular compartments (plasma membrane rafts, mitochondria, and endoplasmic reticulum) after irradiation with photons. Ceramide was measured by high-performance liquid chromatography or after pulse labeling experiments, and the presence of sphingomyelinase within mitochondria was assessed by electron microscopy. Results: Irradiation of Jurkat leukemia cells resulted in the sequential triggering of sphingomyelin hydrolysis, followed by de novo synthesis that led to a late ceramide response (from 24 h) correlated with the triggering of apoptosis. At the subcellular level, pulse-label experiments, using [{sup 3}H]-palmitate as a precursor, strengthened the involvement of the radiation-induced sphingomyelin breakdown and revealed a very early peak (15 min) of ceramide in plasma membrane rafts. A second peak in mitochondria was measured 4 h after irradiation, resulting from an increase of the sphingomyelin content relating to the targeting of acid sphingomyelinase toward this organelle. Conclusion: These data confirm that ceramide is a major determinant in the triggering of radiation-induced apoptosis and highlight the complexity of the sequential compartment-specific ceramide-mediated response of Jurkat leukemia cells to {gamma}-rays.

  9. The human plasma-metabolome: Reference values in 800 French healthy volunteers; impact of cholesterol, gender and age.

    PubMed

    Trabado, Séverine; Al-Salameh, Abdallah; Croixmarie, Vincent; Masson, Perrine; Corruble, Emmanuelle; Fève, Bruno; Colle, Romain; Ripoll, Laurent; Walther, Bernard; Boursier-Neyret, Claire; Werner, Erwan; Becquemont, Laurent; Chanson, Philippe

    2017-01-01

    Metabolomic approaches are increasingly used to identify new disease biomarkers, yet normal values of many plasma metabolites remain poorly defined. The aim of this study was to define the "normal" metabolome in healthy volunteers. We included 800 French volunteers aged between 18 and 86, equally distributed according to sex, free of any medication and considered healthy on the basis of their medical history, clinical examination and standard laboratory tests. We quantified 185 plasma metabolites, including amino acids, biogenic amines, acylcarnitines, phosphatidylcholines, sphingomyelins and hexose, using tandem mass spectrometry with the Biocrates AbsoluteIDQ p180 kit. Principal components analysis was applied to identify the main factors responsible for metabolome variability and orthogonal projection to latent structures analysis was employed to confirm the observed patterns and identify pattern-related metabolites. We established a plasma metabolite reference dataset for 144/185 metabolites. Total blood cholesterol, gender and age were identified as the principal factors explaining metabolome variability. High total blood cholesterol levels were associated with higher plasma sphingomyelins and phosphatidylcholines concentrations. Compared to women, men had higher concentrations of creatinine, branched-chain amino acids and lysophosphatidylcholines, and lower concentrations of sphingomyelins and phosphatidylcholines. Elderly healthy subjects had higher sphingomyelins and phosphatidylcholines plasma levels than young subjects. We established reference human metabolome values in a large and well-defined population of French healthy volunteers. This study provides an essential baseline for defining the "normal" metabolome and its main sources of variation.

  10. Influence of lipids on the interfacial disposition of respiratory syncytical virus matrix protein.

    PubMed

    McPhee, Helen K; Carlisle, Jennifer L; Beeby, Andrew; Money, Victoria A; Watson, Scott M D; Yeo, R Paul; Sanderson, John M

    2011-01-04

    The propensity of a matrix protein from an enveloped virus of the Mononegavirales family to associate with lipids representative of the viral envelope has been determined using label-free methods, including tensiometry and Brewster angle microscopy on lipid films at the air-water interface and atomic force microscopy on monolayers transferred to OTS-treated silicon wafers. This has enabled factors that influence the disposition of the protein with respect to the lipid interface to be characterized. In the absence of sphingomyelin, respiratory syncytial virus matrix protein penetrates monolayers composed of mixtures of phosphocholines with phosphoethanolamines or cholesterol at the air-water interface. In ternary mixtures composed of sphingomyelin, 1,2-dioleoyl-sn-glycero-3-phosphocholine, and cholesterol, the protein exhibits two separate behaviors: (1) peripheral association with the surface of sphingomyelin-rich domains and (2) penetration of sphingomyelin-poor domains. Prolonged incubation of the protein with mixtures of phosphocholines and phosphoethanolamines leads to the formation of helical protein assemblies of uniform diameter that demonstrate an inherent propensity of the protein to assemble into a filamentous form.

  11. The human plasma-metabolome: Reference values in 800 French healthy volunteers; impact of cholesterol, gender and age

    PubMed Central

    Al-Salameh, Abdallah; Croixmarie, Vincent; Masson, Perrine; Corruble, Emmanuelle; Fève, Bruno; Colle, Romain; Ripoll, Laurent; Walther, Bernard; Boursier-Neyret, Claire; Werner, Erwan; Becquemont, Laurent; Chanson, Philippe

    2017-01-01

    Metabolomic approaches are increasingly used to identify new disease biomarkers, yet normal values of many plasma metabolites remain poorly defined. The aim of this study was to define the “normal” metabolome in healthy volunteers. We included 800 French volunteers aged between 18 and 86, equally distributed according to sex, free of any medication and considered healthy on the basis of their medical history, clinical examination and standard laboratory tests. We quantified 185 plasma metabolites, including amino acids, biogenic amines, acylcarnitines, phosphatidylcholines, sphingomyelins and hexose, using tandem mass spectrometry with the Biocrates AbsoluteIDQ p180 kit. Principal components analysis was applied to identify the main factors responsible for metabolome variability and orthogonal projection to latent structures analysis was employed to confirm the observed patterns and identify pattern-related metabolites. We established a plasma metabolite reference dataset for 144/185 metabolites. Total blood cholesterol, gender and age were identified as the principal factors explaining metabolome variability. High total blood cholesterol levels were associated with higher plasma sphingomyelins and phosphatidylcholines concentrations. Compared to women, men had higher concentrations of creatinine, branched-chain amino acids and lysophosphatidylcholines, and lower concentrations of sphingomyelins and phosphatidylcholines. Elderly healthy subjects had higher sphingomyelins and phosphatidylcholines plasma levels than young subjects. We established reference human metabolome values in a large and well-defined population of French healthy volunteers. This study provides an essential baseline for defining the “normal” metabolome and its main sources of variation. PMID:28278231

  12. The α7 nicotinic acetylcholine receptor function in hippocampal neurons is regulated by the lipid composition of the plasma membrane.

    PubMed

    Colón-Sáez, José O; Yakel, Jerrel L

    2011-07-01

    The α7 nicotinic acetylcholine receptors (nAChRs) play an important role in cellular events such as neurotransmitter release, second messenger cascades, cell survival and apoptosis. In addition, they are a therapeutic target for the treatment of neurological disorders such as Alzheimer's disease and schizophrenia, and drugs that potentiate α7 nAChRs through the regulation of desensitization are currently being developed. Recently, these channels were found to be localized into lipid rafts. Here we show that the disruption of lipid rafts in rat primary hippocampal neurons, through cholesterol-scavenging drugs (methyl-β-cyclodextrin) and the enzymatic breakdown of sphingomyelin (sphingomyelinase), results in significant changes in the desensitization kinetics of native and expressed α7 nAChRs. These effects can be prevented by cotreatment with cholesterol and sphingomyelin, and can be mimicked by treatment with cholesterol and sphingomyelin synthesis inhibitors (mevastatin and myriocin, respectively), suggesting that the effects on desensitization kinetics are indeed due to changes in the levels of cholesterol and sphingomyelin in the plasma membrane. These data provide new insights into themechanism of desensitization of α7 nAChRs by providing evidence that the lipid composition of the plasma membrane can modulate the activity of the α7 nAChRs.

  13. [The role of ceramides in selected brain pathologies: ischemia/hypoxia, Alzheimer disease].

    PubMed

    Car, Halina; Zendzian-Piotrowska, Małgorzata; Fiedorowicz, Anna; Prokopiuk, Sławomir; Sadowska, Anna; Kurek, Krzysztof

    2012-05-30

     Ceramides, members of the sphingolipids, are produced in the central nervous system by de novo synthesis, sphingomyelin hydrolysis or the so-called salvage pathway. They are engaged in formation of lipid rafts that are essential in regulation and transduction of signals coming to the cell from the environment. Ceramides represent the major transmitters of the sphingomyelin pathway of signal transduction. They regulate proliferation, differentiation, programmed cell death and senescence. Ceramide overexpression, mainly as a result of sphingomyelin hydrolysis, is a component of brain damage caused by ischemia and early reperfusion. Their high concentrations induce mitochondria-dependent neuronal apoptosis, exacerbate the synthesis of reactive oxygen species, decrease ATP level, inhibit electron transport and release cytochrome c, and activate caspase-3. Reduced ceramide accumulation in the brain, dependent mainly on ceramide synthesized de novo, may exert an anti-apoptotic effect after pre-conditioning. The increase of ceramide content in the brain was observed in Alzheimer disease and its animal models. Enhanced ceramide concentration in this pathology is an effect of their synthesis de novo or sphingomyelin metabolism augmentation. The ceramide pathway can directly stimulate biochemical changes in the brain noted at the onset of disease: tau overphosphorylation and β-amyloid peptide accumulation. The higher concentration of ceramides in blood in the pre-clinical phase of the illness may mark early brain changes.

  14. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate.

    PubMed

    Stock, Roberto P; Brewer, Jonathan; Wagner, Kerstin; Ramos-Cerrillo, Blanca; Duelund, Lars; Jernshøj, Kit Drescher; Olsen, Lars Folke; Bagatolli, Luis A

    2012-01-01

    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.

  15. Sphingomyelinase D Activity in Model Membranes: Structural Effects of in situ Generation of Ceramide-1-Phosphate

    PubMed Central

    Stock, Roberto P.; Brewer, Jonathan; Wagner, Kerstin; Ramos-Cerrillo, Blanca; Duelund, Lars; Jernshøj, Kit Drescher; Olsen, Lars Folke; Bagatolli, Luis A.

    2012-01-01

    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes. PMID:22558302

  16. Unprecedented staining of polar lipids by a luminescent rhenium complex revealed by FTIR microspectroscopy in adipocytes.

    PubMed

    Bader, C A; Carter, E A; Safitri, A; Simpson, P V; Wright, P; Stagni, S; Massi, M; Lay, P A; Brooks, D A; Plush, S E

    2016-06-21

    Fourier transform infrared (FTIR) microspectroscopy and confocal imaging have been used to demonstrate that the neutral rhenium(i) tricarbonyl 1,10-phenanthroline complex bound to 4-cyanophenyltetrazolate as the ancillary ligand is able to localise in regions with high concentrations of polar lipids such as phosphatidylethanolamine (PE), sphingomyelin, sphingosphine and lysophosphatidic acid (LPA) in mammalian adipocytes.

  17. Phospholipases in arterial tissue

    PubMed Central

    Eisenberg, S.; Stein, Y.; Stein, O.

    1969-01-01

    The role of phospholipases in the regulation of the changing phospholipid composition of normal human aortae with age was studied. Portions of grossly and histologically lesion-free ascending aortae from 16 females and 29 males obtained at autopsy, were analyzed for deoxyribonucleic acid (DNA), phospholipid, and cholesterol content and phospholipid composition. Enzymic activity toward four substrates, lecithin (LE), phosphatidyl ethanolamine, lysolecithin, and sphingomyelin (SP), was determined on portions of the same homogenate. By regression analysis for correlation between all determinations and age the following results were obtained: (a) total phospholipids and choleserol increased linearly with age; (b) the increase in sphingomyelin accounted for about 70% of the phospholipid increment; (c) hydrolysis of lecithin and phosphatidyl ethanolamine increased markedly with age, that of lysolecithin only moderately; (d) hydrolysis of sphingomyelin decreased with age; and (e) an inverse relation between the SP/LE ratio and age and sphingomyelinase/lecithinase activity and age was obtained. These results were interpreted to indicate that a causal relation exists between the fall in sphingomyelinase activity, both absolute and relative to lecithinase activity, and the accumulation of sphingomyelin with age. PMID:5355343

  18. Integration of Cytokine Biology and Lipid Metabolism in Stroke**

    PubMed Central

    Adibhatla, Rao Muralikrishna; Dempsey, R.; Hatcher, J. F.

    2007-01-01

    Cytokines regulate the innate and adaptive immune responses and are pleiotropic, redundant and multifunctional. Expression of most cytokines, including TNF-α and IL-1α/ß, is very low in normal brain. Metabolism of lipids is of particular interest due to their high concentration in the brain. Inflammatory response after stroke suggests that cytokines (TNF-α, IL-1 α/ß, IL-6), affect the phospholipid metabolism and subsequent production of eicosanoids, ceramide, and ROS that may potentiate brain injury. Phosphatidylcholine and sphingomyelin are source for lipid messengers. Sphingomyelin synthase serves as a bridge between metabolism of glycerolipids and sphingolipids. TNF-α and IL-1 α/ß can induce phospholipases (A2, C, and D) and sphingomyelinases, and concomitantly proteolyse phosphatidylcholine and sphingomyelin synthesizing enzymes. Together, these alterations contribute to loss of phosphatidylcholine and sphingomyelin after stroke that can be attenuated by inhibiting TNF-α or IL-1 α/ß signaling. Inflammatory responses are instrumental in the formation and destabilization of atherosclerotic plaques. Secretory PLA2 IIA is found in human atherosclerotic lesions and is implicated in initiation, progression and maturation of atherosclerosis, a risk factor for stroke. Lipoprotein-PLA2, part of apolipoprotein B-100 of LDL, plays a role in vascular inflammation and coronary endothelial dysfunction. Cytokine antagonism attenuated secretory PLA2 IIA actions, suggesting cytokine-lipid integration studies will lead to new concepts contributing to bench-to-bedside transition for stroke therapy. PMID:17981627

  19. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes.

    PubMed Central

    Holopainen, J M; Angelova, M I; Kinnunen, P K

    2000-01-01

    Sphingomyelin is an abundant component of eukaryotic membranes. A specific enzyme, sphingomyelinase can convert this lipid to ceramide, a central second messenger in cellular signaling for apoptosis (programmed cell death), differentiation, and senescence. We used microinjection and either Hoffman modulation contrast or fluorescence microscopy of giant liposomes composed of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), N-palmitoyl-sphingomyelin (C16:0-SM), and Bodipy-sphingomyelin as a fluorescent tracer (molar ratio 0.75:0.20:0.05, respectively) to observe changes in lipid lateral distribution and membrane morphology upon formation of ceramide. Notably, in addition to rapid domain formation (capping), vectorial budding of vesicles, i.e., endocytosis and shedding, can be induced by the asymmetrical sphingomyelinase-catalyzed generation of ceramide in either the outer or the inner leaflet, respectively, of giant phosphatidylcholine/sphingomyelin liposomes. These results are readily explained by 1) the lateral phase separation of ceramide enriched domains, 2) the area difference between the adjacent monolayers, 3) the negative spontaneous curvature, and 4) the augmented bending rigidity of the ceramide-containing domains, leading to membrane invagination and vesiculation of the bilayer. PMID:10653795

  20. Developmentally Regulated Sphingolipid Synthesis in African Trypanosomes

    PubMed Central

    Sutterwala, Shaheen S.; Hsu, Fong Fu; Sevova, Elitza S.; Schwartz, Kevin J.; Zhang, Kai; Key, Phillip; Turk, John; Beverley, Stephen M.; Bangs, James D.

    2008-01-01

    Sphingolipids are essential components of eukaryotic membranes, and many unicellular eukaryotes, including kinetoplastid protozoa, are thought to synthesize exclusively inositol phosphorylceramide (IPC). Here we characterize sphingolipids from Trypanosoma brucei, and a trypanosome sphingolipid synthase gene family (TbSLS1-4) that is orthologous to Leishmania IPC synthase. Procyclic trypanosomes contain IPC, but also sphingomyelin, while surprisingly bloodstream stage parasites contain sphingomyelin and ethanolamine phosphorylceramide (EPC), but no detectable IPC. In vivo fluorescent ceramide labeling confirmed stage specific biosynthesis of both sphingomyelin and IPC. Expression of TbSLS4 in Leishmania resulted in production of sphingomyelin and EPC suggesting that the TbSLS gene family has bi-functional synthase activity. RNAi silencing of TbSLS1-4 in bloodstream trypanosomes led to rapid growth arrest and eventual cell death. Ceramide levels were increased >3-fold by silencing suggesting a toxic downstream effect mediated by this potent intracellular messenger. Topology predictions support a revised six transmembrane domain model for the kinetoplastid sphingolipid synthases consistent with the proposed mammalian SM synthase structure. This work reveals novel diversity and regulation in sphingolipid metabolism in this important group of human parasites. PMID:18699867

  1. Evidence for a relationship between bovine erythrocyte lipid membrane peculiarities and immune pressure from ruminal ciliates

    USDA-ARS?s Scientific Manuscript database

    Erythrocytes of bovines and other ruminants have a strikingly anomalous phospholipid composition, with low or absent phosphatidylcholine (PC) together with high sphingomyelin (SM) content. Here, we report the presence in normal bovine serum of high levels of anti-phospholipid antibodies of IgM isoty...

  2. Antibodies to Liposomal Phosphatidylcholine and Phosphatidylsulfocholine

    DTIC Science & Technology

    1990-01-01

    689: 319-326. ing mice with bromelain -treated mouse erythrocytes (Cox BiSSERET, P., ITO, S., TREMBLAY, P.-A., VOLCANI, B.E., and Hardy 1985), and...Cox, K.O., and HARDY, S.J. 1985. Autoantibodies against mouse and cross-reacted with lysolecithin and sphingomyelin, thus bromelain -modified RBC are

  3. Antibodies to Liposomal, Phosphatidylcholine and Phosphatidylsulfocholine

    DTIC Science & Technology

    1990-01-01

    Biochim. Biophys. tidylcholine have also been induced by immuniz- Acta, 689: 319-326. ing mice with bromelain -treated mouse erythrocytes (Cox BISSERET, P...with lysolecithin and sphingomyelin, thus bromelain -modified RBC are specifically inhibited by a common indicating specificity for the phosphocholine

  4. Localization of cholesterol in sphingomyelinase-treated fibroblasts.

    PubMed

    Pörn, M I; Slotte, J P

    1995-05-15

    The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible

  5. Localization of cholesterol in sphingomyelinase-treated fibroblasts.

    PubMed Central

    Pörn, M I; Slotte, J P

    1995-01-01

    The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible

  6. Colorimetric determination of phospholipids by use of molybdophosphate, and its application to amniotic fluid.

    PubMed

    Worth, H G; Wright, D J

    1977-11-01

    We studied the reaction between molybdophosphoric acid and lecithin. The resulting complex was isolated and shown to contain molybdophosphate and lecithin in the molar ratio 1/3. It is insoluble in water but soluble in chloroform, and the reaction is specific for molecules containing electrophilic nitrogen, indicating good specificity in biological fluids for nitrogen-containing phospholipids. In solution the complex may be reduced, yielding molybdenum blue. We applied the reaction to the measurement of phospholipid concentrations in amniotic fluid. As compared with procedures involving either digestion or the determination of lecithin/sphingomyelin ratio, the present technique is faster and its analytical precision exceeds that of the lecithin/sphingomyelin ratio determination. Although results by the three methods do not correlate well, the predictive value of the present method appears to be comparable with the other two.

  7. Crassaostrea gigas oyster shell extract inhibits lipogenesis via suppression of serine palmitoyltransferase.

    PubMed

    Tran, Nguyen Khoi Song; Kwon, Jeong Eun; Kang, Se Chan; Shim, Soon-Mi; Park, Tae-Sik

    2015-02-01

    Oysters are widely consumed seafood, but their shells impose a serious environmental problem. To extend the utilization of oyster shell waste, we investigated the biological role of oyster shell extract. In this study, we verified that the ethanol extract of oyster shell (EOS) contains taurine and betaine, the major components of oyster body. EOS downregulated transcription of Sptlc1 and Sptlc2 mRNA, the subunits of serine palmitoyltransferase (SPT). Suppression of SPT subunits reduced sphinganine and sphingomyelin by inhibiting de novo sphingolipid biosynthesis. Inhibition of sphingomyelin biosynthesis resulted in downregulation of lipogenic gene expression such as ACC, FAS, SCD1, and DGAT2. Consistent with inhibition of lipogenesis, cellular triglyceride levels were diminished by EOS, but cholesterol levels were not altered. Taken together, these results suggest that EOS has a lipid-lowering effect and could be applied as either a therapeutic or preventive measure for metabolic dysfunction.

  8. Comparing the content of lipids derived from the eye lenses of various species.

    PubMed

    Panz, Tomasz; Lepiarczyk, Magdalena; Zuber, Agnieszka

    2011-01-01

    The lipid content in the eye lens was analyzed and compared among various species in this study. The eye lens lipids of the following species were investigated: cow, horse, duck, and freshwater trout. Additionally, the lipids derived from cataractous bovine lens and from cataractous human eye lens lipoprotein complexes were analyzed. The following lipid classes were detected in clear lenses: cholesterol, sphingomyelin, phosphatidylcholine, phosphatidyletanolamine, and phosphatidylserine. In cataractous bovine lens and in lipoprotein complexes from human nuclear cataract, phosphatidyloinositol and phosphatidyloglycerol were detected. Cholesterol and sphingomyelin, essential for hypothetical formation of cholesterol-rich domains, were the most abundant lipids in the lenses of all investigated species. These two components of eye lens lipid fraction were analyzed quantitatively using thin layer chromatography and spectrophotometric assay; the other lipids were identified qualitatively using thin layer chromatography.

  9. Sphingolipids in High Fat Diet and Obesity-Related Diseases

    PubMed Central

    Choi, Songhwa; Snider, Ashley J.

    2015-01-01

    Nutrient oversupply associated with a high fat diet (HFD) significantly alters cellular metabolism, and specifically including sphingolipid metabolism. Sphingolipids are emerging as bioactive lipids that play key roles in regulating functions, in addition to their traditional roles as membrane structure. HFD enhances de novo sphingolipid synthesis and turnover of sphingolipids via the salvage pathway, resulting in the generation of ceramide, and more specifically long chain ceramide species. Additionally, HFD elevates sphingomyelin and sphingosine-1 phosphate (S1P) levels in several tissues including liver, skeletal muscle, adipose tissue, and cardiovascular tissues. HFD-stimulated sphingolipid generation contributes to systemic insulin resistance, dysregulated lipid accumulation, and cytokine expression and secretion from skeletal muscle and adipose tissues, exacerbating obesity-related conditions. Furthermore, altered sphingolipid levels, particularly ceramide and sphingomyelin, are involved in obesity-induced endothelial dysfunction and atherosclerosis. In this review, HFD-mediated sphingolipid metabolism and its impact on HFD-induced biology and pathobiology will be discussed. PMID:26648664

  10. Molecular-dynamics simulation of a ceramide bilayer

    NASA Astrophysics Data System (ADS)

    Pandit, Sagar A.; Scott, H. Larry

    2006-01-01

    Ceramide is the simplest lipid in the biologically important class of glycosphingolipids. Ceramide is an important signaling molecule and a major component of the strateum corneum layer in the skin. In order to begin to understand the biophysical properties of ceramide, we have carried out a molecular-dynamics simulation of a hydrated 16:0 ceramide lipid bilayer at 368K (5° above the main phase transition). In this paper we describe the simulation and present the resulting properties of the bilayer. We compare the properties of the simulated ceramide bilayer to an earlier simulation of 18:0 sphingomyelin, and we discuss the results as they relate to experimental data for ceramide and other sphingolipids. The most significant differences arise at the lipid/water interface, where the lack of a large ceramide polar group leads to a different electron density and a different electrostatic potential but, surprisingly, not a different overall "dipole potential," when ceramide is compared to sphingomyelin.

  11. Serum sphingolipids: relationships to insulin sensitivity and changes with exercise in humans.

    PubMed

    Bergman, Bryan C; Brozinick, Joseph T; Strauss, Allison; Bacon, Samantha; Kerege, Anna; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Kuo, Ming Shang; Perreault, Leigh

    2015-08-15

    Ceramides and sphingolipids are a family of lipid molecules that circulate in serum and accumulate in skeletal muscle, promoting insulin resistance. Plasma ceramide and dihydroceramide are related to insulin resistance, yet less is known regarding other ceramide and sphingolipid species. Despite its association with insulin sensitivity, chronic endurance exercise training does not change plasma ceramide and sphingolipid content, with little known regarding a single bout of exercise. We measured basal relationships and the effect of acute exercise (1.5 h at 50% V̇o2 max) and recovery on serum ceramide and sphingolipid content in sedentary obese individuals, endurance-trained athletes, and individuals with type 2 diabetes (T2D). Basal serum C18:0, C20:0, and C24:1 ceramide and C18:0 and total dihydroceramide were significantly higher in T2D and, along with C16:0 ceramide and C18:0 sphingomyelin, correlated positively with insulin resistance. Acute exercise significantly increased serum ceramide, glucosylceramide, and GM3 gangliosides, which largely decreased to basal values in recovery. Sphingosine 1-phosphate and sphingomyelin did not change during exercise but decreased below basal values in recovery. Serum C16:0 and C18:0 ceramide and C18:0 sphingomyelin, but not the total concentrations of either of them, were positively correlated with markers of muscle NF-κB activation, suggesting that specific species activate intracellular inflammation. Interestingly, a subset of sphingomyelin species, notably C14:0, C22:3, and C24:4 species, was positively associated with insulin secretion and glucose tolerance. Together, these data show that unique ceramide and sphingolipid species associate with either protective or deleterious features for diabetes and could provide novel therapeutic targets for the future.

  12. Brain microvessel endothelin type A receptors are coupled to ceramide production.

    PubMed

    Collado, M Pilar; Latorre, Eduardo; Fernández, Inmaculada; Aragonés, M Dolores; Catalán, R Edgardo

    2003-06-20

    Treatment of brain microvessels with endothelin-1 evoked an early decrease in the sphingomyelin levels concomitantly with an increase in those of ceramides. These responses were time- and concentration-dependent. Evidence also shows that endothelin type A receptors are involved. This is the first report on the involvement of an agonist in the regulation of the ceramide signal transduction system on blood-brain barrier and shows a new pathway likely involved in the regulation of the cerebral microvascular functioning.

  13. Potential of polyE-323 coated capillaries for capillary electrophoresis of lipids.

    PubMed

    Martma, Kert; Lindenburg, Petrus W; Habicht, Kaia-Liisa; Vulla, Kaspar; Resik, Kristiin; Kuut, Gunnar; Shimmo, Ruth

    2013-11-22

    In this note the feasibility of a polyamine-based capillary coating, polyE-323, for capillary electrophoresis (CE) of lipids is explored. PolyE-323 has previously been demonstrated to be suitable to suppress analyte-wall interaction of proteins in CE. However, the full applicability range of polyE-323 has not been exploited yet and it might be useful in the analysis of hydrophobic analytes, such as lipids. In this study, the stability of polyE-323 when using highly organic background electrolytes (BGEs), which are needed to solubilize the lipid analytes, was studied. For this, we used three different lipid samples: sphingomyelin, cardiolipin and a lipid extract from a cell culture. The highly organic BGEs that were used in this study consisted of 94.5% of organic solvents and 5.5% of an aqueous buffer. First, the influence of pure acetonitrile, methanol, propylene carbonate, isopropanol and chloroform on the polyE-323 coating was investigated. Then BGEs were developed and tested, using sphingomyelin and cardiolipin as test analytes in CE-UV experiments. After establishing the best BGEs (in terms of analysis time and repeatability) by CE-UV, sphingomyelin was used as a test analyte to demonstrate that method was also suitable for CE with mass-spectrometry detection (CE-MS). The LOD of sphingomyelin was estimated to be 100 nM and its migration time repeatability was 1.3%. The CE-MS analysis was further applied on a lipid extract obtained from human glioblastoma cells, which resulted in the separation and detection of a multitude of putative lipids. The results of our feasibility study indicate that CE systems based on polyE-323 coated capillaries and highly organic BGEs are promising for fast electromigration-based analysis of lipids.

  14. MT2013-31: Allo HCT for Metabolic Disorders and Severe Osteopetrosis

    ClinicalTrials.gov

    2017-03-22

    Mucopolysaccharidosis Disorders; Hurler Syndrome; Hunter Syndrome; Maroteaux Lamy Syndrome; Sly Syndrome; Alpha-Mannosidosis; Fucosidosis; Aspartylglucosaminuria; Glycoprotein Metabolic Disorders; Sphingolipidoses; Recessive Leukodystrophies; Globoid Cell Leukodystrophy; Metachromatic Leukodystrophy; Niemann-Pick B; Niemann-Pick C Subtype 2; Sphingomyelin Deficiency; Peroxisomal Disorders; Adrenoleukodystrophy With Cerebral Involvement; Zellweger Syndrome; Neonatal Adrenoleukodystrophy; Infantile Refsum Disease; Acyl-CoA Oxidase Deficiency; D-Bifunctional Enzyme Deficiency; Multifunctional Enzyme Deficiency; Alpha-methylacyl-CoA Racmase Deficiency; Mitochondrial Neurogastrointestingal Encephalopathy; Severe Osteopetrosis; Hereditary Leukoencephalopathy; Inherited Metabolic Disorders

  15. Analysis of sphingolipid classes and their contents in meals.

    PubMed

    Yunoki, Keita; Ogawa, Takuya; Ono, Jisaburo; Miyashita, Rumiko; Aida, Kazuhiko; Oda, Yuji; Ohnishi, Masao

    2008-01-01

    Sphingolipids have attracted attention as physiologically functional lipids. We determined their class and content in Japanese meals that had been prepared by a nutritionist, mainly by using HPLC-ELSD. In all 12 meals tested, cerebroside and/or sphingomyelin were generally detected as the major sphingolipids. The total amounts of sphingolipids in typical high- and low-calorie meal samples over 2 days were 292 and 128 mg/day, and 81 and 45 mg/day, respectively.

  16. Effect of hydrogen peroxide on ejection of cell nucleus from pigeon erythrocytes and state of membrane lipids.

    PubMed

    Devyatkin, A A; Revin, V V; Yudanov, M A; Kozlova, O V; Samuilov, V D

    2006-02-01

    The nuclei are ejected from the pigeon erythrocytes and apoptotic vesicles form in these cells in the presence of hydrogen peroxide. Hydrogen peroxide intensifies LPO processes and changes phospholipid content. The relative content of phosphatidylcholine, sphingomyelin, and phosphatidylserine decreased, while that of phosphatidylethanolamine and lisophosphatidylcholine increased. The content of unsaturated fatty acids also decreased under these conditions. Presumably, these changes in the lipid phase of the erythrocyte membrane are a mechanism preparing the cell to nucleus ejection and apoptosis.

  17. Metabolomics in Early Alzheimer's Disease: Identification of Altered Plasma Sphingolipidome Using Shotgun Lipidomics

    PubMed Central

    Han, Xianlin; Rozen, Steve; Boyle, Stephen H.; Hellegers, Caroline; Cheng, Hua; Burke, James R.; Welsh-Bohmer, Kathleen A.; Doraiswamy, P. Murali; Kaddurah-Daouk, Rima

    2011-01-01

    Background The development of plasma biomarkers could facilitate early detection, risk assessment and therapeutic monitoring in Alzheimer's disease (AD). Alterations in ceramides and sphingomyelins have been postulated to play a role in amyloidogensis and inflammatory stress related neuronal apoptosis; however few studies have conducted a comprehensive analysis of the sphingolipidome in AD plasma using analytical platforms with accuracy, sensitivity and reproducibility. Methods and Findings We prospectively analyzed plasma from 26 AD patients (mean MMSE 21) and 26 cognitively normal controls in a non-targeted approach using multi-dimensional mass spectrometry-based shotgun lipidomics [1], [2] to determine the levels of over 800 molecular species of lipids. These data were then correlated with diagnosis, apolipoprotein E4 genotype and cognitive performance. Plasma levels of species of sphingolipids were significantly altered in AD. Of the 33 sphingomyelin species tested, 8 molecular species, particularly those containing long aliphatic chains such as 22 and 24 carbon atoms, were significantly lower (p<0.05) in AD compared to controls. Levels of 2 ceramide species (N16:0 and N21:0) were significantly higher in AD (p<0.05) with a similar, but weaker, trend for 5 other species. Ratios of ceramide to sphingomyelin species containing identical fatty acyl chains differed significantly between AD patients and controls. MMSE scores were correlated with altered mass levels of both N20:2 SM and OH-N25:0 ceramides (p<0.004) though lipid abnormalities were observed in mild and moderate AD. Within AD subjects, there were also genotype specific differences. Conclusions In this prospective study, we used a sensitive multimodality platform to identify and characterize an essentially uniform but opposite pattern of disruption in sphingomyelin and ceramide mass levels in AD plasma. Given the role of brain sphingolipids in neuronal function, our findings provide new insights into the

  18. Lipid profile of human synovial fluid following intra-articular ankle fracture.

    PubMed

    Leimer, Elizabeth M; Pappan, Kirk L; Nettles, Dana L; Bell, Richard D; Easley, Mark E; Olson, Steven A; Setton, Lori A; Adams, Samuel B

    2017-03-01

    This study characterizes the metabolic profile of synovial fluid after intra-articular ankle fracture with an emphasis on changes in the lipid profile. Bilateral ankle synovial fluid from 19 patients with unilateral intra-articular ankle fracture was submitted for metabolic profiling. Contralateral ankle synovial fluid from each patient served as a matched control. Seven patients participated in a second bilateral synovial fluid collection after 6 months. Random forest classification, matched pairs t-tests (α < 0.01), repeated measures ANOVA with post-test contrasts (α < 0.01), correlation to cytokines and matrix metalloproteinases, and fracture and injury classification analyses yielded key lipid biomarkers in synovial fluid following intra-articular fracture. Free fatty acids, sphingomyelins, and lysolipids demonstrated significant elevation in fractured ankles at baseline. Fatty acids and sphingomyelins showed a significant decrease 6 months post-surgery. Random forest analysis showed predominantly fatty acids differentiating between groups. Significant correlations included fatty acids, sphingomyelins, and lysolipids with inflammatory cytokines and matrix metalloproteinases. Fracture classification showed increased fatty acids, lysolipids, and inositol metabolites as fracture severity increased. Fatty acid and sn-1 lysolipid elevation could be detrimental to the joint, as these strongly correlated with matrix metalloproteinases and TNF-α. This elevation also suggests involvement of phospholipase A2 , a potential target for therapeutic intervention. Together with elevated 2-hydroxyl fatty acids, these findings suggest elevated sn-1 lysolipids, sphingomyelins, and subsequent lipid metabolites in synovial fluid as biomarkers of ankle injury. Reversal of this signature after 6 months suggests temporary involvement of these metabolites in disease progression, although they may activate signaling pathways which drive progression to osteoarthritis. © 2016

  19. Cholesterol-rich Fluid Membranes Solubilize Ceramide Domains

    PubMed Central

    Castro, Bruno M.; Silva, Liana C.; Fedorov, Alexander; de Almeida, Rodrigo F. M.; Prieto, Manuel

    2009-01-01

    A uniquely sensitive method for ceramide domain detection allowed us to study in detail cholesterol-ceramide interactions in lipid bilayers with low (physiological) ceramide concentrations, ranging from low or no cholesterol (a situation similar to intracellular membranes, such as endoplasmic reticulum) to high cholesterol (similar to mammalian plasma membrane). Diverse fluorescence spectroscopy and microscopy experiments were conducted showing that for low cholesterol amounts ceramide segregates into gel domains that disappear upon increasing cholesterol levels. This was observed in different raft (sphingomyelin/cholesterol-containing) and non-raft (sphingomyelin-absent) membranes, i.e. mimicking different types of cell membranes. Cholesterol-ceramide interactions have been described mainly as raft sphingomyelin-dependent. Here sphingomyelin independence is demonstrated. In addition, ceramide-rich domains re-appear when either cholesterol is converted by cholesterol oxidase to cholestenone or the temperature is decreased. Ceramide is more soluble in cholesterol-rich fluid membranes than in cholesterol-poor ones, thereby increasing the chemical potential of cholesterol. Ceramide solubility depends on the average gel-fluid transition temperature of the remaining membrane lipids. The inability of cholestenone-rich membranes to dissolve ceramide gel domains shows that the cholesterol ordering and packing properties are fundamental to the mixing process. We also show that the solubility of cholesterol in ceramide domains is low. The results are rationalized by a ternary phospholipid/ceramide/cholesterol phase diagram, providing the framework for the better understanding of biochemical phenomena modulated by cholesterol-ceramide interactions such as cholesterol oxidase activity, lipoprotein metabolism, and lipid targeting in cancer therapy. It also suggests that the lipid compositions of different organelles are such that ceramide gel domains are not formed unless a

  20. Interaction of the Hemolysin of (Chironex fleckeri) Tentacle Extracts with Lipid Monolayers,

    DTIC Science & Technology

    cephalin > sphingomyelin > gangliosides . Penetration of the hemolytic fraction into lipid monolayers became greater as the protein concentration in...surface pressure of ganglioside monolayers, and the total film pressure was low, which was interpreted as being due to binding of the hemolysin to the...monolayer. Hemolytic activity was shown to be inhibited by gangliosides in vitro. These findings suggested that lytic activity might be associated with an interaction between gangliosides and hemolytic protein. (Author)

  1. Prion protein accumulation in lipid rafts of mouse aging brain.

    PubMed

    Agostini, Federica; Dotti, Carlos G; Pérez-Cañamás, Azucena; Ledesma, Maria Dolores; Benetti, Federico; Legname, Giuseppe

    2013-01-01

    The cellular form of the prion protein (PrP(C)) is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C). In old mice, this change favors PrP(C) accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C) translocation into detergent-resistant membranes (DRMs), we looked at PrP(C) compartmentalization in hippocampi from acid sphingomyelinase (ASM) knockout (KO) mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C) in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.

  2. [Comparative analysis of phospholipid composition in erythrocytes of mouse-like rodents of different species].

    PubMed

    Shevchenko, O G; Shishkina, L N

    2011-01-01

    Comparative analysis of phospholipid quantitative composition of blood erythrocytes has been performed in white (laboratory mice and rats) and wild (tundra voles) mouse-like rodents. A non-characteristic of mammals low relative content of sphingomyelin is revealed in erythrocyte phospholipids in tundra voles. A hypothesis is put forward that the unique composition of erythrocyte lipids is a peculiar evolutionary developed strategy of adaptation aimed at survival under condition of constant circulation of agents of leptospirosis in populations of this species.

  3. Sphingolipid Metabolism Correlates with Cerebrospinal Fluid Beta Amyloid Levels in Alzheimer’s Disease

    PubMed Central

    Fonteh, Alfred N.; Ormseth, Cora; Chiang, Jiarong; Cipolla, Matthew; Arakaki, Xianghong; Harrington, Michael G.

    2015-01-01

    Sphingolipids are important in many brain functions but their role in Alzheimer’s disease (AD) is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF) contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a) total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b) levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c) three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but not impaired

  4. Synthesis of 2-n-(hexadecanoyl)-amino-4-nitrophenyl phosphorylcholine-hydroxide, a chromogenic substrate for assaying sphingomyelinase activity.

    PubMed

    Gal, A E; Fash, F J

    1976-02-01

    2-N-(Hexadecanoyl)-amino-4-nitrophenyl phosphorylcholine-hydroxide a compound resembling sphingomyelin is synthesized. It is cleaved by sphingomyelinase to the chromogenic N-acylaminonitrophenyl moiety. Phospholipase C preparations do not hydrolyze this compound. The starting material is 2-amino-4-nitrophenol which when acylated with palmitoyl chloride yields the hexadecananilide. Reaction with beta-bromoethylphosphoryldichloride gives the phosphate which is quaternized with trimethylamine to give the title compound.

  5. Phospholipids as Biomarkers for Excessive Alcohol Use

    DTIC Science & Technology

    2016-10-01

    is designed to evaluate the utility of levels of two phospholipids in serum as a marker of past drinking behavior across month - level time horizons...panel of serum phospholipids (sphingomyelin, and lysophosphatidylcholines) in proportion to the level of consumption in the past month . Further, we...the relationship between the panel of serum phospholipids of interest and the amount of alcohol consumption during the past month in returning

  6. Glycosphingolipids as Putative Receptor for Staphylococcal Enterotoxin-B in Cultured Human Kidney Cells.

    DTIC Science & Technology

    1996-08-01

    SMase cleaves sphingomyelin to ceramide and phosphocholine. Ceramide in turn, induces apoptosis. In this regard, our preliminary results indicate that SEB...sensitivity of the assay for SEB in human urine is higher than in human serum. A possible reason may be that serum has a number of lipid binding proteins...hemagglutination or latexagglutination assay, radioimrnunoassay, enzyme-linked immunosorbent assay, and skin test assay. However, such studies have not

  7. Prion Protein Accumulation in Lipid Rafts of Mouse Aging Brain

    PubMed Central

    Agostini, Federica; Dotti, Carlos G.; Pérez-Cañamás, Azucena; Ledesma, Maria Dolores; Benetti, Federico; Legname, Giuseppe

    2013-01-01

    The cellular form of the prion protein (PrPC) is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrPC. In old mice, this change favors PrPC accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrPC translocation into detergent-resistant membranes (DRMs), we looked at PrPC compartmentalization in hippocampi from acid sphingomyelinase (ASM) knockout (KO) mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrPC in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases. PMID:24040215

  8. Phase diagrams of lipid mixtures relevant to the study of membrane rafts

    PubMed Central

    Goñi, Félix M.; Alonso, Alicia; Bagatolli, Luis A.; Brown, Rhoderick E.; Marsh, Derek; Prieto, Manuel; Thewalt, Jenifer L.

    2008-01-01

    The present paper reviews the phase properties of phosphatidylcholine-sphingomyelin-cholesterol mixtures, that are often used as models for membrane “raft” microdomains. The available data based on X-ray, microscopic and spectroscopic observations, surface pressure and calorimetric measurements, and detergent solubilization assays, are critically evaluated and rationalized in terms of triangular phase diagrams. The remaining uncertainties are discussed specifically and separately from the data on which a consensus appears to exist. PMID:18952002

  9. Nonclinical safety assessment of recombinant human acid sphingomyelinase (rhASM) for the treatment of acid sphingomyelinase deficiency:the utility of animal models of disease in the toxicological evaluation of potential therapeutics.

    PubMed

    Murray, James M; Thompson, Anne Marie; Vitsky, Allison; Hawes, Michael; Chuang, Wei-Lien; Pacheco, Joshua; Wilson, Stephen; McPherson, John M; Thurberg, Beth L; Karey, Kenneth P; Andrews, Laura

    2015-02-01

    Recombinant human acid sphingomyelinase (rhASM) is being developed as an enzyme replacement therapy for patients with acid sphingomyelinase deficiency (Niemann-Pick disease types A and B), which causes sphingomyelin to accumulate in lysosomes. In the acid sphingomyelinase knock-out (ASMKO) mouse, intravenously administered rhASM reduced tissue sphingomyelin levels in a dose-dependent manner. When rhASM was administered to normal rats, mice, and dogs, no toxicity was observed up to a dose of 30mg/kg. However, high doses of rhASM≥10mg/kg administered to ASMKO mice resulted in unexpected toxicity characterized by cardiovascular shock, hepatic inflammation, adrenal hemorrhage, elevations in ceramide and cytokines (especially IL-6, G-CSF, and keratinocyte chemoattractant [KC]), and death. The toxicity could be completely prevented by the administration of several low doses (3mg/kg) of rhASM prior to single or repeated high doses (≥20mg/kg). These results suggest that the observed toxicity involves the rapid breakdown of large amounts of sphingomyelin into ceramide and/or other toxic downstream metabolites, which are known signaling molecules with cardiovascular and pro-inflammatory effects. Our results suggest that the nonclinical safety assessment of novel therapeutics should include the use of specific animal models of disease whenever feasible.

  10. Dynamics and Ordering of Lipid Spin-Labels along the Coexistence Curve of Two Membrane Phases: An ESR Study

    PubMed Central

    Smith, Andrew K; Freed, Jack H.

    2012-01-01

    An analysis of electron spin resonance (ESR) spectra from compositions along the liquid-ordered (Lo) and liquid-disordered (Ld) coexistence curve from the brain-sphingomyelin/dioleoylphosphatidylcholine/cholesterol (SPM/DOPC/Chol) model lipid system was performed to characterize the dynamic structure on a molecular level of these coexisting phases. We obtained 200 continuous-wave ESR spectra from glycerophospholipid spin-labels labeled at the 5, 7, 10, 12, 14, and 16 carbon positions of the 2nd acyl chain, a sphingomyelin spin-label labeled at the 14 carbon position of the amide-linked acyl chain, a headgroup-labeled glycerophospholipid, a headgroup-labeled sphingomyelin, and the cholesterol analogue spin-label cholestane all within multi-lamellar vesicle suspensions at room temperature. The spectra were analyzed using the MOMD (microscopic-order macroscopic-disorder) model to provide the rotational diffusion rates and order parameters which characterize the local molecular dynamics in these phases. The analysis also incorporated the known critical point and invariant points of the neighboring three-phase triangle along the coexistence curve. The variation in the molecular dynamic structures of coexisting Lo and Ld compositions as one moves toward the critical point is discussed. Based on these results, a molecular model of the Lo phase is proposed incorporating the “condensing effect” of cholesterol on the phospholipid acyl chain dynamics and ordering and the “umbrella model” of the phospholipid headgroup dynamics and ordering. PMID:22586732

  11. Low serum sphingolipids in children with attention deficit-hyperactivity disorder

    PubMed Central

    Henríquez-Henríquez, Marcela P.; Solari, Sandra; Quiroga, Teresa; Kim, Benjamin I.; Deckelbaum, Richard J.; Worgall, Tilla S.

    2015-01-01

    Background: Attention deficit-hyperactivity disorder (ADHD) is the most prevalent neuropsychiatric condition in childhood. ADHD is a multifactorial trait with a strong genetic component. One neurodevelopmental hypothesis is that ADHD is associated with a lag in brain maturation. Sphingolipids are essential for brain development and neuronal functioning, but their role in ADHD pathogenesis is unexplored. We hypothesized that serum sphingolipid levels distinguish ADHD patients from unaffected subjects. Methods: We characterized serum sphingolipid profiles of ADHD patients and two control groups: non-affected relatives and non-affected subjects without a family history of ADHD. Sphingolipids were measured by LC-MS/MS in 77 participants (28 ADHD patients, 28 related controls, and 21 unrelated controls). ADHD diagnosis was based on the Diagnostic and Statistical Manual of Mental Disorders (DSM IV-TR). Diagnostic criteria were assessed by two independent observers. Groups were compared by parametrical statistics. Results: Serum sphingomyelins C16:0, C18:0, C18:1, C24:1, ceramide C24:0, and deoxy-ceramide C24:1 were significantly decreased in ADHD patients at 20–30% relative reductions. In our sample, decreased serum sphingomyelin levels distinguished ADHD patients with 79% sensitivity and 78% specificity. Conclusions: Our results showed lower levels of all major serum sphingomyelins in ADHD. These findings may reflect brain maturation and affect neuro-functional pathways characteristic for ADHD. PMID:26379487

  12. Ceramide: second messenger or modulator of membrane structure and dynamics?

    PubMed Central

    van Blitterswijk, Wim J; van der Luit, Arnold H; Veldman, Robert Jan; Verheij, Marcel; Borst, Jannie

    2003-01-01

    The physiological role of ceramide formation in response to cell stimulation remains controversial. Here, we emphasize that ceramide is not a priori an apoptotic signalling molecule. Recent work points out that the conversion of sphingomyelin into ceramide can play a membrane structural (physical) role, with consequences for membrane microdomain function, membrane vesiculation, fusion/fission and vesicular trafficking. These processes contribute to cellular signalling. At the Golgi, ceramide takes part in a metabolic flux towards sphingomyelin, diacylglycerol and glycosphingolipids, which drives lipid raft formation and vesicular transport towards the plasma membrane. At the cell surface, receptor clustering in lipid rafts and the formation of endosomes can be facilitated by transient ceramide formation. Also, signalling towards mitochondria may involve glycosphingolipid-containing vesicles. Ceramide may affect the permeability of the mitochondrial outer membrane and the release of cytochrome c. In the effector phase of apoptosis, the breakdown of plasma membrane sphingomyelin to ceramide is a consequence of lipid scrambling, and may regulate apoptotic body formation. Thus ceramide formation serves many different functions at distinct locations in the cell. Given the limited capacity for spontaneous intracellular diffusion or membrane flip-flop of natural ceramide species, the topology and membrane sidedness of ceramide generation are crucial determinants of its impact on cell biology. PMID:12408751

  13. Lipidome of Atherosclerotic Plaques from Hypercholesterolemic Rabbits

    PubMed Central

    Bojic, Lazar A.; McLaren, David G.; Shah, Vinit; Previs, Stephen F.; Johns, Douglas G.; Castro-Perez, Jose M.

    2014-01-01

    The cellular, macromolecular and neutral lipid composition of the atherosclerotic plaque has been extensively characterized. However, a comprehensive lipidomic analysis of the major lipid classes within atherosclerotic lesions has not been reported. The objective of this study was to produce a detailed framework of the lipids that comprise the atherosclerotic lesion of a widely used pre-clinical model of plaque progression. Male New Zealand White rabbits were administered regular chow supplemented with 0.5% cholesterol (HC) for 12 weeks to induce hypercholesterolemia and atherosclerosis. Our lipidomic analyses of plaques isolated from rabbits fed the HC diet, using ultra-performance liquid chromatography (UPLC) and high-resolution mass spectrometry, detected most of the major lipid classes including: Cholesteryl esters, triacylglycerols, phosphatidylcholines, sphingomyelins, diacylglycerols, fatty acids, phosphatidylserines, lysophosphatidylcholines, ceramides, phosphatidylglycerols, phosphatidylinositols and phosphatidylethanolamines. Given that cholesteryl esters, triacylglycerols and phosphatidylcholines comprise greater than 75% of total plasma lipids, we directed particular attention towards the qualitative and quantitative assessment of the fatty acid composition of these lipids. We additionally found that sphingomyelins were relatively abundant lipid class within lesions, and compared the abundance of sphingomyelins to their precursor phosphatidylcholines. The studies presented here are the first approach to a comprehensive characterization of the atherosclerotic plaque lipidome. PMID:25517033

  14. Lipidome of atherosclerotic plaques from hypercholesterolemic rabbits.

    PubMed

    Bojic, Lazar A; McLaren, David G; Shah, Vinit; Previs, Stephen F; Johns, Douglas G; Castro-Perez, Jose M

    2014-12-15

    The cellular, macromolecular and neutral lipid composition of the atherosclerotic plaque has been extensively characterized. However, a comprehensive lipidomic analysis of the major lipid classes within atherosclerotic lesions has not been reported. The objective of this study was to produce a detailed framework of the lipids that comprise the atherosclerotic lesion of a widely used pre-clinical model of plaque progression. Male New Zealand White rabbits were administered regular chow supplemented with 0.5% cholesterol (HC) for 12 weeks to induce hypercholesterolemia and atherosclerosis. Our lipidomic analyses of plaques isolated from rabbits fed the HC diet, using ultra-performance liquid chromatography (UPLC) and high-resolution mass spectrometry, detected most of the major lipid classes including: Cholesteryl esters, triacylglycerols, phosphatidylcholines, sphingomyelins, diacylglycerols, fatty acids, phosphatidylserines, lysophosphatidylcholines, ceramides, phosphatidylglycerols, phosphatidylinositols and phosphatidylethanolamines. Given that cholesteryl esters, triacylglycerols and phosphatidylcholines comprise greater than 75% of total plasma lipids, we directed particular attention towards the qualitative and quantitative assessment of the fatty acid composition of these lipids. We additionally found that sphingomyelins were relatively abundant lipid class within lesions, and compared the abundance of sphingomyelins to their precursor phosphatidylcholines. The studies presented here are the first approach to a comprehensive characterization of the atherosclerotic plaque lipidome.

  15. Purification and characterization of a membrane bound neutral pH optimum magnesium-dependent and phosphatidylserine-stimulated sphingomyelinase from rat brain.

    PubMed

    Liu, B; Hassler, D F; Smith, G K; Weaver, K; Hannun, Y A

    1998-12-18

    Sphingomyelin hydrolysis and ceramide generation catalyzed by sphingomyelinases (SMase) are key components of the signaling pathways in cytokine- and stress-induced cellular responses. In this study, we report the partial purification and characterization of the membrane bound, neutral pH optimal, and magnesium-dependent SMase (N-SMase) from rat brain. Proteins from Triton X-100 extract of brain membrane were purified sequentially with DEAE-Sephacel, heparin-Sepharose, ceramic hydroxyapatite, Mono Q, phenyl-Superose, and Superose 12 column chromatography. After eight purification steps, the specific activity of the enzyme increased by 3030-fold over the brain homogenate. The enzyme hydrolyzed sphingomyelin but not phosphatidylcholine and its activity was dependent upon magnesium with an optimal pH of 7.5 and a native pI of 5.2. Delipidation of the enzyme through chromatographic purification or by extraction with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid followed by gel filtration revealed that the enzyme became increasingly dependent on phosphatidylserine (PS). Up to 20-fold stimulation was observed with PS whereas other lipids examined were either ineffective or only mildly stimulatory. The Km of the enzyme for substrate sphingomyelin (3.4 mol %) was not affected by PS. The highly purified enzyme was inhibited by glutathione with a >95% inhibition observed with 3 mM glutathione and with a Hill number calculated at approximately 8. The significance of these results to the regulation of N-SMase is discussed.

  16. Role of Inositol Phosphosphingolipid Phospholipase C1, the Yeast Homolog of Neutral Sphingomyelinases in DNA Damage Response and Diseases.

    PubMed

    Tripathi, Kaushlendra

    2015-01-01

    Sphingolipids play a very crucial role in many diseases and are well-known as signaling mediators in many pathways. Sphingolipids are produced during the de novo process in the ER (endoplasmic reticulum) from the nonsphingolipid precursor and comprise both structural and bioactive lipids. Ceramide is the central core of the sphingolipid pathway, and its production has been observed following various treatments that can induce several different cellular effects including growth arrest, DNA damage, apoptosis, differentiation, and senescence. Ceramides are generally produced through the sphingomyelin hydrolysis and catalyzed by the enzyme sphingomyelinase (SMase) in mammals. Presently, there are many known SMases and they are categorized into three groups acid SMases (aSMases), alkaline SMases (alk-SMASES), and neutral SMases (nSMases). The yeast homolog of mammalians neutral SMases is inositol phosphosphingolipid phospholipase C. Yeasts generally have inositol phosphosphingolipids instead of sphingomyelin, which may act as a homolog of mammalian sphingomyelin. In this review, we shall explain the structure and function of inositol phosphosphingolipid phospholipase C1, its localization inside the cells, mechanisms, and its roles in various cell responses during replication stresses and diseases. This review will also give a new basis for our understanding for the mechanisms and nature of the inositol phosphosphingolipid phospholipase C1/nSMase.

  17. The essential neutral sphingomyelinase is involved in the trafficking of the variant surface glycoprotein in the bloodstream form of Trypanosoma brucei

    PubMed Central

    Young, Simon A; Smith, Terry K

    2010-01-01

    Sphingomyelin is the main sphingolipid in Trypanosoma brucei, the causative agent of African sleeping sickness. In vitro and in vivo characterization of the T. brucei neutral sphingomyelinase demonstrates that it is directly involved in sphingomyelin catabolism. Gene knockout studies in the bloodstream form of the parasite indicate that the neutral sphingomyelinase is essential for growth and survival, thus highlighting that the de novo biosynthesis of ceramide is unable to compensate for the loss of sphingomyelin catabolism. The phenotype of the conditional knockout has given new insights into the highly active endocytic and exocytic pathways in the bloodstream form of T. brucei. Hence, the formation of ceramide in the endoplasmic reticulum affects post-Golgi sorting and rate of deposition of newly synthesized GPI-anchored variant surface glycoprotein on the cell surface. This directly influences the corresponding rate of endocytosis, via the recycling endosomes, of pre-existing cell surface variant surface glycoprotein. The trypanosomes use this coupled endocytic and exocytic mechanism to maintain the cell density of its crucial variant surface glycoprotein protective coat. TbnSMase is therefore genetically validated as a drug target against African trypanosomes, and suggests that interfering with the endocytic transport of variant surface glycoprotein is a highly desirable strategy for drug development against African trypanosomasis. PMID:20398210

  18. High-Throughput Lipidomic and Transcriptomic Analysis To Compare SP2/0, CHO, and HEK-293 Mammalian Cell Lines.

    PubMed

    Zhang, Yue; Baycin-Hizal, Deniz; Kumar, Amit; Priola, Joseph; Bahri, Michelle; Heffner, Kelley M; Wang, Miao; Han, Xianlin; Bowen, Michael A; Betenbaugh, Michael J

    2017-02-07

    A combined lipidomics and transcriptomics analysis was performed on mouse myeloma SP2/0, Chinese hamster ovary (CHO), and human embryonic kidney (HEK) cells in order to compare widely used mammalian expression systems. Initial thin layer chromatography (TLC) analysis indicated that phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were the major lipid components in all cell lines with lower amounts of sphingomyelin (SM) in SP2/0 compared to CHO and HEK, which was subsequently confirmed and expanded upon following mass spectrometry (MS) analysis. HEK contained 4-10-fold higher amounts of lyso phosphatidylethanolamine (LPE) and 2-4-fold higher amounts of lyso phosphatidylcholine (LPC) compared to SP2/0 and CHO cell lines. C18:1 followed by C16:1 were the main contributors to the difference in both LPE and LPC levels. Alternatively, the SP2/0 cell line exhibited 30-65-fold lower amounts of SM principally in the amount of 16:0. By mapping the transcriptomics data to KEGG pathways, we found expression levels of secretory phospholipase A2 (sPLA2), lysophospholipid acyltransferase (LPEAT), lysophosphatidylcholine acyltransferase (LPCAT), and lysophospholipase (LYPLA) can contribute to the differences in LPE and LPC. Sphingomyelin synthases (SMS) and sphingomyelin phosphodiesterase (SMase) enzymes may play roles in SM differences across the three cell lines. The results of this study provide insights that will aid the understanding of the physiological and secretory differences across recombinant protein production systems.

  19. Role of the Tryptophan Residues in the Specific Interaction of the Sea Anemone Stichodactyla helianthus's Actinoporin Sticholysin II with Biological Membranes.

    PubMed

    García-Linares, Sara; Maula, Terhi; Rivera-de-Torre, Esperanza; Gavilanes, José G; Slotte, J Peter; Martínez-Del-Pozo, Álvaro

    2016-11-22

    Actinoporins are pore-forming toxins from sea anemones. Upon interaction with sphingomyelin-containing bilayers, they become integral oligomeric membrane structures that form a pore. Sticholysin II from Stichodactyla helianthus contains five tryptophans located at strategic positions; its role has now been studied using different mutants. Results show that W43 and W115 play a determinant role in maintaining the high thermostability of the protein, while W146 provides specific interactions for protomer-protomer assembly. W110 and W114 sustain the hydrophobic effect, which is one of the major driving forces for membrane binding in the presence of Chol. However, in its absence, additional interactions with sphingomyelin are required. These conclusions were confirmed with two sphingomyelin analogues, one of which had impaired hydrogen bonding properties. The results obtained support actinoporins' Trp residues playing a major role in membrane recognition and binding, but their residues have an only minor influence on the diffusion and oligomerization steps needed to assemble a functional pore.

  20. Size fractionation and size characterization of nanoemulsions of lipid droplets and large unilamellar lipid vesicles by asymmetric-flow field-flow fractionation/multi-angle light scattering and dynamic light scattering.

    PubMed

    Vezočnik, Valerija; Rebolj, Katja; Sitar, Simona; Ota, Katja; Tušek-Žnidarič, Magda; Štrus, Jasna; Sepčić, Kristina; Pahovnik, David; Maček, Peter; Žagar, Ema

    2015-10-30

    Asymmetric-flow field-flow fractionation technique coupled to a multi-angle light-scattering detector (AF4-MALS) was used together with dynamic light-scattering (DLS) in batch mode and transmission electron microscopy (TEM) to study the size characteristics of the trioleoylglycerol lipid droplets covered by a monolayer of sphingomyelin and cholesterol, in water phase. These lipid droplet nanoemulsions (LD) were formed by ultrasonication. In parallel, the size characteristics of large unilamellar lipid vesicles (LUV) prepared by extrusion and composed of sphingomyelin and cholesterol were determined. LD and LUV were prepared at two different molar ratios (1/1, 4/1) of sphingomyelin and cholesterol. In AF4-MALS, various cross-flow conditions and mobile phase compositions were tested to optimize the separation of LD or LUV particles. The particle radii, R, as well as the root-mean-square radii, Rrms, of LD and LUV were determined by AF4-MALS, whereas the hydrodynamic radii, Rh, were obtained by DLS. TEM visualization revealed round shape particles of LD and LUV.

  1. Reliability of Serum Metabolites over a Two-Year Period: A Targeted Metabolomic Approach in Fasting and Non-Fasting Samples from EPIC.

    PubMed

    Carayol, Marion; Licaj, Idlir; Achaintre, David; Sacerdote, Carlotta; Vineis, Paolo; Key, Timothy J; Onland Moret, N Charlotte; Scalbert, Augustin; Rinaldi, Sabina; Ferrari, Pietro

    2015-01-01

    Although metabolic profiles have been associated with chronic disease risk, lack of temporal stability of metabolite levels could limit their use in epidemiological investigations. The present study aims to evaluate the reliability over a two-year period of 158 metabolites and compare reliability over time in fasting and non-fasting serum samples. Metabolites were measured with the AbsolueIDQp180 kit (Biocrates, Innsbruck, Austria) by mass spectrometry and included acylcarnitines, amino acids, biogenic amines, hexoses, phosphatidylcholines and sphingomyelins. Measurements were performed on repeat serum samples collected two years apart in 27 fasting men from Turin, Italy, and 39 non-fasting women from Utrecht, The Netherlands, all participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Reproducibility was assessed by estimating intraclass correlation coefficients (ICCs) in multivariable mixed models. In fasting samples, a median ICC of 0.70 was observed. ICC values were <0.50 for 48% of amino acids, 27% of acylcarnitines, 18% of lysophosphatidylcholines and 4% of phosphatidylcholines. In non-fasting samples, the median ICC was 0.54. ICC values were <0.50 for 71% of acylcarnitines, 48% of amino acids, 44% of biogenic amines, 36% of sphingomyelins, 34% of phosphatidylcholines and 33% of lysophosphatidylcholines. Overall, reproducibility was lower in non-fasting as compared to fasting samples, with a statistically significant difference for 19-36% of acylcarnitines, phosphatidylcholines and sphingomyelins. A single measurement per individual may be sufficient for the study of 73% and 52% of the metabolites showing ICCs >0.50 in fasting and non-fasting samples, respectively. ICCs were higher in fasting samples that are preferable to non-fasting.

  2. Reliability of Serum Metabolites over a Two-Year Period: A Targeted Metabolomic Approach in Fasting and Non-Fasting Samples from EPIC

    PubMed Central

    Achaintre, David; Sacerdote, Carlotta; Vineis, Paolo; Key, Timothy J.; Onland Moret, N. Charlotte; Scalbert, Augustin; Rinaldi, Sabina; Ferrari, Pietro

    2015-01-01

    Objective Although metabolic profiles have been associated with chronic disease risk, lack of temporal stability of metabolite levels could limit their use in epidemiological investigations. The present study aims to evaluate the reliability over a two-year period of 158 metabolites and compare reliability over time in fasting and non-fasting serum samples. Methods Metabolites were measured with the AbsolueIDQp180 kit (Biocrates, Innsbruck, Austria) by mass spectrometry and included acylcarnitines, amino acids, biogenic amines, hexoses, phosphatidylcholines and sphingomyelins. Measurements were performed on repeat serum samples collected two years apart in 27 fasting men from Turin, Italy, and 39 non-fasting women from Utrecht, The Netherlands, all participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Reproducibility was assessed by estimating intraclass correlation coefficients (ICCs) in multivariable mixed models. Results In fasting samples, a median ICC of 0.70 was observed. ICC values were <0.50 for 48% of amino acids, 27% of acylcarnitines, 18% of lysophosphatidylcholines and 4% of phosphatidylcholines. In non-fasting samples, the median ICC was 0.54. ICC values were <0.50 for 71% of acylcarnitines, 48% of amino acids, 44% of biogenic amines, 36% of sphingomyelins, 34% of phosphatidylcholines and 33% of lysophosphatidylcholines. Overall, reproducibility was lower in non-fasting as compared to fasting samples, with a statistically significant difference for 19–36% of acylcarnitines, phosphatidylcholines and sphingomyelins. Conclusion A single measurement per individual may be sufficient for the study of 73% and 52% of the metabolites showing ICCs >0.50 in fasting and non-fasting samples, respectively. ICCs were higher in fasting samples that are preferable to non-fasting. PMID:26274920

  3. Ceramide in primary astrocytes from cerebellum: metabolism and role in cell proliferation.

    PubMed

    Riboni, Laura; Tettamanti, Guido; Viani, Paola

    2002-04-01

    Cerebellar astrocytes are equipped with an efficient molecular machinery able to control the levels, and possibly the subcellular location, of ceramide. The major metabolic routes that contribute to the maintenance and variation of the cellular ceramide include ceramide biosynthesis, by de novo pathway or sphingosine recycling, ceramide formation from complex sphingolipids degradation and ceramide catabolism. In cerebellar astrocytes from rat cerebellum a peculiar metabolism of sphingomyelin occurs. This includes the preponderance of acidic sphingomyelinase, paralleled by a deficiency of the neutral Mg2+-dependent enzyme, as well as the presence of an extra-Golgi form of sphingomyelin synthase, which shares many characteristics with PC-PLC. Moreover these cells are characterized by a high efficiency in converting sphingosine to ceramide, possibly functional to the role played by astrocytes in the prevention of neuronal damage by high sphingosine concentration. Recent evidence demonstrates that a change of ceramide level is one of the key steps in the chain of reactions elicited by mitogenic stimuli. In fact, low cellular levels of ceramide characterize, and appear to be required for, the proliferation of cerebellar astrocytes. In particular mitogenic stimuli, such as basic fibroblast growth factor (bFGF), rapidly down regulate the cellular levels of ceramide by stimulating sphingomyelin synthase. Ceramide acts as an intracellular physiological inhibitor of cell growth, being able to counteract the effect of bFGF by inhibiting the MAP kinase pathway. Although many questions remain in this field, the present knowledge strongly supports that ceramide represents a crucial member within lipid mediators, involved in the signaling pathways underlying cell proliferation in cerebellar astrocytes.

  4. The removal of cholesterol from aortic smooth muscle cells in culture and Landschutz ascites cells by fractions of human high-density apolipoprotein.

    PubMed

    Stein, Y; Glangeaud, M C; Fainaru, M; Stein, O

    1975-01-24

    Ascites cells were labeled by intraperitoneal injection of [3H]cholesterol and aortic smooth muscle cells by addition of [3H]cholesterol to the serum component of the culture medium. The release of cholesterol from cells into a serum-free medium supplemented with the various "acceptors" was studied using ascites cells in suspension and aortic smooth muscle cells in a multilayer culture. Unfractionated human high-density apolipoprotein was somewhat more effective in the removal of labeled cellular free cholesterol, in both cell types, than apolipoprotein derived from rat high-density lipoprotein. Following separation of human high-density apolipoprotein into four fractions by Sephadex chromatography, the effect of each fraction on the removal of cellular cholesterol from ascites cells was studied. The individual fractions had a lower capacity for cholesterol removal than the original unfractionated high-density apolipoprotein and the lowest activity was detected in Fraction II which comprised 75% of the total apolipoprotein. The effectiveness to remove cholesterol could be restored to all the fractions, as well as enhanced, by addition of sonicated suspensions of lecithin or sphingomyelin, which by themselves promoted a more limited removal of cellular cholesterol. Negatively stained preparations of mixtures of the four fractions and sonicated dispersion of lecithin were shown to consist of vesicles and discs of various sizes. Addition of the apolipoprotein fractions (especially Fractions II and IV) to sonicated dispersion of sphingomyelin resulted in a pronounced formation of discs which showed a high tendency towards stack formation. Mixtures of Fraction II and lecithin or sphingomyelin were effective in the release of cellular cholesterol from multilayers of aortic smooth muscle cells in culture. These results show the feasibility of net removal of cholesterol from cells which grow in a form resembling a tissue and thus provide a model to study the role of

  5. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function

    SciTech Connect

    Dannhausen, Katharina; Karlstetter, Marcus; Caramoy, Albert; Volz, Cornelia; Jägle, Herbert; Liebisch, Gerhard; Utermöhlen, Olaf; Langmann, Thomas

    2015-08-21

    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase{sup −/−} mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase{sup −/−} mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase{sup −/−} mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. - Highlights: • aSMase-deficient mice show impaired retinal function and reactive microgliosis. • aSMase-deficient microglia express pro-inflammatory transcripts. • aSMase-deficient microglia proliferate and have increased cell body size. • In vivo imaging shows hyperreflective spots in the fundus of aSMase-deficient mice. • aSMase-deficient microglia accumulate sphingolipid-rich intracellular deposits.

  6. Associative and predictive biomarkers of dementia in HIV-1–infected patients

    PubMed Central

    Bandaru, V.V.R.; McArthur, J.C.; Sacktor, N.; Cutler, R.G.; Knapp, E.L.; Mattson, M.P.; Haughey, N.J.

    2015-01-01

    Background Infection with HIV can result in a debilitating CNS disorder known as HIV dementia (HIV-D). Since the advent of highly active antiretroviral therapy (HAART), the incidence of HIV-D has declined, but the prevalence continues to increase. In this new era of HIV-D, traditional biomarkers such as CSF viral load and monocyte chemotactic protein 1 levels are less likely to be associated with dementia in patients on HAART and biomarkers that can predict HIV-D have not yet been identified. Objective To identify biomarkers that are associated with and can predict HIV-D. Methods We grouped patients with HIV based on changes in cognitive status over a 1-year period and analyzed sphingolipid, sterol, triglyceride, antioxidant, and lipid peroxidation levels in CSF. Results We found that increased levels of the vitamin E and triglyceride C52 predicted the onset or worsening of dementia. Elevated levels of sphingomyelin were associated with inactive dementia. Elevated levels of ceramide and the accumulation of 4-hydroxynonenals were associated with active dementia. Conclusions We interpret these findings to indicate that early in the pathogenesis of HIV dementia, there is an up-regulation of endogenous antioxidant defenses in brain. The failure of this attempted neuroprotective mechanism leads to the accumulation of sphingomyelin and moderate cognitive dysfunction. The breakdown of this enlarged pool of sphingomyelin to ceramide and the accumulation of highly reactive aldehydes are associated with declining cognitive function. Thus, elevations in endogenous protective mechanisms may identify patients who are at increased risk of the development of HIV dementia. PMID:17470750

  7. Cows' milk fat components as potential anticarcinogenic agents.

    PubMed

    Parodi, P W

    1997-06-01

    The optimum approach to conquering cancer is prevention. Although the human diet contains components which promote cancer, it also contains components with the potential to prevent it. Recent research shows that milk fat contains a number of potential anticarcinogenic components including conjugated linoleic acid, sphingomyelin, butyric acid and ether lipids. Conjugated linoleic acid inhibited proliferation of human malignant melanoma, colorectal, breast and lung cancer cell lines. In animals, it reduced the incidence of chemically induced mouse epidermal tumors, mouse forestomach neoplasia and aberrant crypt foci in the rat colon. In a number of studies, conjugated linoleic acid, at near-physiological concentrations, inhibited mammary tumorigenesis independently of the amount and type of fat in the diet. In vitro studies showed that the milk phospholipid, sphingomyelin, through its biologically active metabolites ceramide and sphingosine, participates in three major antiproliferative pathways influencing oncogenesis, namely, inhibition of cell growth, and induction of differentiation and apoptosis. Mice fed sphingomyelin had fewer colon tumors and aberrant crypt foci than control animals. About one third of all milk triacylglycerols contain one molecule of butyric acid, a potent inhibitor of proliferation and inducer of differentiation and apoptosis in a wide range of neoplastic cell lines. Although butyrate produced by colonic fermentation is considered important for colon cancer protection, an animal study suggests dietary butyrate may inhibit mammary tumorigenesis. The dairy cow also has the ability to extract other potential anticarcinogenic agents such as beta-carotene, beta-ionone and gossypol from its feed and transfer them to milk. Animal studies comparing the tumorigenic potential of milk fat or butter with linoleic acid-rich vegetable oils or margarines are reviewed. They clearly show less tumor development with dairy products.

  8. Successful Within-patient Dose Escalation of Olipudase Alfa in Acid Sphingomyelinase Deficiency

    PubMed Central

    Wasserstein, Melissa P.; Jones, Simon A.; Soran, Handrean; Diaz, George A.; Lippa, Natalie; Thurberg, Beth L.; Culm-Merdek, Kerry; Shamiyeh, Elias; Inguilizian, Haig; Cox, Gerald F.; Puga, Ana Cristina

    2015-01-01

    Background Olipudase alfa, a recombinant human acid sphingomyelinase (rhASM), is an investigational enzyme replacement therapy (ERT) for patients with ASM deficiency [ASMD; Niemann-Pick Disease (NPD) A and B]. This open-label phase 1b study assessed the safety and tolerability of olipudase alfa using within-patient dose escalation to gradually debulk accumulated sphingomyelin and mitigate the rapid production of metabolites, which can be toxic. Secondary objectives were pharmacokinetics, pharmacodynamics, and exploratory efficacy. Methods Five adults with nonneuronopathic ASMD (NPD B) received escalating doses (0.1 to 3.0 mg/kg) of olipudase alfa intravenously every 2 weeks for 26 weeks. Results All patients successfully reached 3.0 mg/kg without serious or severe adverse events. One patient repeated a dose (2.0 mg/kg) and another had a temporary dose reduction (1.0 to 0.6 mg/kg). Most adverse events (97%) were mild and all resolved without sequelae. The most common adverse events were headache, arthralgia, nausea and abdominal pain. Two patients experienced single acute phase reactions. No patient developed hypersensitivity or anti-olipudase alfa antibodies. The mean circulating half-life of olipudase alfa ranged from 20.9 to 23.4 hours across doses without accumulation. Ceramide, a sphingomyelin catabolite, rose transiently in plasma after each dose, but decreased over time. Reductions in sphingomyelin storage, spleen and liver volumes, and serum chitotriosidase activity, as well as improvements in infiltrative lung disease, lipid profiles, platelet counts, and quality of life assessments, were observed. Conclusions This study provides proof-of-concept for the safety and efficacy of within-patient dose escalation of olipudase alfa in patients with nonneuronopathic ASMD. PMID:26049896

  9. Cholesterol-dependent increases in glucosylceramide synthase activity in Niemann-Pick disease type C model cells: Abnormal trafficking of endogenously formed ceramide metabolites by inhibition of the enzyme.

    PubMed

    Hashimoto, Naohiro; Matsumoto, Ikiru; Takahashi, Hiromasa; Ashikawa, Hitomi; Nakamura, Hiroyuki; Murayama, Toshihiko

    2016-11-01

    Sphingolipids such as sphingomyelin and glycosphingolipids (GSLs) derived from glucosylceramide (GlcCer), in addition to cholesterol, accumulate in cells/neurons in Niemann-Pick disease type C (NPC). The activities of acid sphingomyelinase and lysosomal glucocerebrosidase (GCase), which degrade sphingomyelin and GlcCer, respectively, are down-regulated in NPC cells, however, changes in GlcCer synthase activity have not yet been elucidated. We herein demonstrated for the first time that GlcCer synthase activity for the fluorescent ceramide, 4-nitrobenzo-2-oxa-1,3-diazole-labeled C6-ceramide (NBD-ceramide) increased in intact NPC1((-/-)) cells and cell lysates without affecting the protein levels. In NBD-ceramide-labeled NPC1((-/-)) cells, NBD-fluorescence preferentially accumulated in the Golgi complex and vesicular specks in the cytoplasm 40 and 150 min, respectively, after labeling, while a treatment for 48 h with the GlcCer synthase inhibitors, N-butyldeoxynojirimycin (NB-DNJ) and 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, accelerated the appearance of vesicular specks emitting NBD-fluorescence within 40 min. The treatment of NPC1((-/-)) cells with NB-DNJ for 48 h additionally increased the levels of cholesterol, but not those of sphingomyelin. Increases in the activity of GlcCer synthase and formation of vesicular specks emitting NBD-fluorescence in NPC1((-/-)) cells were dependent on cholesterol. LacCer taken up by endocytosis, which accumulated in the Golgi complex in normal cells, accumulated in vesicular specks after 10 and 40 min in NPC1((-/-)) cells, and this response was not accelerated by the NB-DNJ treatment, but was restored by the depletion of cholesterol. The cellular roles for enhanced GlcCer synthesis and increased levels of cholesterol in the trafficking of NBD-ceramide metabolites in NPC1((-/-)) cells have been discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Lipid composition of human serum lipoproteins

    PubMed Central

    Skipski, V. P.; Barclay, Marion; Barclay, R. K.; Fetzer, Valentina A.; Good, J. J.; Archibald, F. M.

    1967-01-01

    1. The lipid compositions of the low-density lipoproteins, the high-density lipoproteins and the ultracentrifugal residue of human serum are presented, with emphasis on certain lipoprotein classes and lipid components not previously described. 2. Except for the lipoproteins with the lowest and highest densities, there is a trend for stepwise successive increase or, respectively, decrease in the relative amounts of the main constituents of lipoproteins. 3. High-density lipoprotein-2 and high-density lipoprotein-3 have different amounts of certain lipids; high-density lipoprotein-2 has relatively more free cholesterol and sphingomyelin; high-density lipoprotein-3 has more free fatty acids, diglycerides and ceramide monohexosides. 4. All the lipoproteins contain hydrocarbons of the alkane series. The greatest amount, which averages 4·4% of total lipid extracted, is in the ultracentrifugal residue; n-alkanes comprise 18–50% of the hydrocarbons. 5. All the lipoproteins contain ceramide monohexosides. The highest relative contents of these glycolipids are in high-density lipoprotein-3 and in the ultracentrifugal residue. 6. The ultracentrifugal residue contains 55% of the total quantity of free fatty acids present in serum. The remaining free fatty acids are distributed among the other lipoprotein classes. 7. The choline-containing phospholipids (phosphatidylcholine, lysophosphatidylcholine and sphingomyelin) comprise about 90% of the phospholipids in all the lipoprotein classes except the low-density lipoprotein-2, which contains about 80% of these phospholipids. 8. The presence of a large amount of lysophosphatidylcholine in the ultracentrifugal residue and the successive decrease of sphingomyelin from the low-density lipoprotein-1 to the ultracentrifugal residue was confirmed. 9. The low-density lipoprotein-2 and the ultracentrifugal residue are characterized by relatively high contents of the lower glycerides. PMID:6048776

  11. Lack of ceramide generation and altered sphingolipid composition are associated with drug resistance in human ovarian carcinoma cells

    PubMed Central

    Prinetti, Alessandro; Millimaggi, Danilo; D'Ascenzo, Sandra; Clarkson, Matilda; Bettiga, Arianna; Chigorno, Vanna; Sonnino, Sandro; Pavan, Antonio; Dolo, Vincenza

    2005-01-01

    PTX (Paclitaxel®) is an antimitotic agent used in the treatment of a number of major solid tumours, particularly in breast and ovarian cancer. This study was undertaken to gain insight into the molecular alterations producing PTX resistance in ovarian cancer. PTX treatment is able to induce apoptosis in the human ovarian carcinoma cell line, CABA I. PTX-induced apoptosis in CABA I cells was accompanied by an increase in the cellular Cer (ceramide) levels and a decrease in the sphingomyelin levels, due to the activation of sphingomyelinases. The inhibition of acid sphingomyelinase decreased PTX-induced apoptosis. Under the same experimental conditions, PTX had no effect on Cer and sphingomyelin levels in the stable PTX-resistant ovarian carcinoma cell line, CABA-PTX. The acquisition of the PTX-resistant phenotype is accompanied by unique alterations in the complex sphingolipid pattern found on lipid extraction. In the drug-resistant cell line, the levels of sphingomyelin and neutral glycosphingolipids were unchanged compared with the drug-sensitive cell line. The ganglioside pattern in CABA I cells is more complex compared with that of CABA-PTX cells. Specifically, we found that the total ganglioside content in CABA-PTX cells was approximately half of that in CABA I cells, and GM3 ganglioside content was remarkably higher in the drug-resistant cell line. Taken together our findings indicate that: i) Cer generated by acid sphingomyelinase is involved in PTX-induced apoptosis in ovarian carcinoma cells, and PTX-resistant cells are characterized by their lack of increased Cer upon drug treatment, ii) PTX resistance might be correlated with an alteration in metabolic Cer patterns specifically affecting cellular ganglioside composition. PMID:16356169

  12. Structural Basis for Nucleotide Hydrolysis by the Acid Sphingomyelinase-like Phosphodiesterase SMPDL3A*

    PubMed Central

    Gorelik, Alexei; Illes, Katalin; Superti-Furga, Giulio; Nagar, Bhushan

    2016-01-01

    Sphingomyelin phosphodiesterase, acid-like 3A (SMPDL3A) is a member of a small family of proteins founded by the well characterized lysosomal enzyme, acid sphingomyelinase (ASMase). ASMase converts sphingomyelin into the signaling lipid, ceramide. It was recently discovered that, in contrast to ASMase, SMPDL3A is inactive against sphingomyelin and, surprisingly, can instead hydrolyze nucleoside diphosphates and triphosphates, which may play a role in purinergic signaling. As none of the ASMase-like proteins has been structurally characterized to date, the molecular basis for their substrate preferences is unknown. Here we report crystal structures of murine SMPDL3A, which represent the first structures of an ASMase-like protein. The catalytic domain consists of a central mixed β-sandwich surrounded by α-helices. Additionally, SMPDL3A possesses a unique C-terminal domain formed from a cluster of four α-helices that appears to distinguish this protein family from other phosphoesterases. We show that SMDPL3A is a di-zinc-dependent enzyme with an active site configuration that suggests a mechanism of phosphodiester hydrolysis by a metal-activated water molecule and protonation of the leaving group by a histidine residue. Co-crystal structures of SMPDL3A with AMP and α,β-methylene ADP (AMPCP) reveal that the substrate binding site accommodates nucleotides by establishing interactions with their base, sugar, and phosphate moieties, with the latter the major contributor to binding affinity. Our study provides the structural basis for SMPDL3A substrate specificity and sheds new light on the function of ASMase-like proteins. PMID:26792860

  13. Effect of sterol carrier protein-2 expression on sphingolipid distribution in plasma membrane lipid rafts/caveolae.

    PubMed

    Atshaves, Barbara P; Jefferson, John R; McIntosh, Avery L; Gallegos, Adalberto; McCann, Bonnie M; Landrock, Kerstin K; Kier, Ann B; Schroeder, Friedhelm

    2007-10-01

    Although sphingolipids are highly important signaling molecules enriched in lipid rafts/caveolae, relatively little is known regarding factors such as sphingolipid binding proteins that may regulate the distribution of sphingolipids to lipid rafts/caveolae of living cells. Since early work demonstrated that sterol carrier protein-2 (SCP-2) enhanced glycosphingolipid transfer from membranes in vitro, the effect of SCP-2 expression on sphingolipid distribution to lipid rafts/caveolae in living cells was examined. Using a non-detergent affinity chromatography method to isolate lipid rafts/caveolae and non-rafts from purified L-cell plasma membranes, it was shown that lipid rafts/caveolae were highly enriched in multiple sphingolipid species including ceramides, acidic glycosphingolipids (ganglioside GM1); neutral glycosphingolipids (monohexosides, dihexosides, globosides), and sphingomyelin as compared to non-raft domains. SCP-2 overexpression further enriched the content of total sphingolipids and select sphingolipid species in the lipid rafts/caveolae domains. Analysis of fluorescence binding and displacement data revealed that purified human recombinant SCP-2 exhibited high binding affinity (nanomolar range) for all sphingolipid classes tested. The binding affinity decreased in the following order: ceramides > acidic glycosphingolipid (ganglioside GM1) > neutral glycosphingolipid (monohexosides, hexosides, globosides) > sphingomyelin. Enrichment of individual sphingolipid classes to lipid rafts/caveolae versus non-rafts in SCP-2 expressing plasma membranes followed closely with those classes most strongly bound to SCP-2 (ceramides, GM1 > the neutral glycosphingolipids (monohexosides, dihexosides, and globosides) > sphingomyelin). Taken together these data suggested that SCP-2 acts to selectively regulate sphingolipid distribution to lipid rafts/caveolae in living cells.

  14. Sphingolipids metabolism in the salivary glands of rats with obesity and streptozotocin induced diabetes

    PubMed Central

    Garbowska, Marta; Mikłosz, Agnieszka; Wróblewski, Igor; Kurek, Krzysztof; Ostrowska, Lucyna; Chabowski, Adrian; Żendzian‐Piotrowska, Małgorzata; Zalewska, Anna

    2017-01-01

    Diabetes is considered a major public health problem affecting millions of individuals worldwide. Remarkably, scientific reports regarding salivary glands sphingolipid metabolism in diabetes are virtually non‐existent. This is odd given the well‐established link between the both in other tissues (e.g., skeletal muscles, liver) and the key role of these glands in oral health preservation. The aim of this paper is to examine sphingolipids metabolism in the salivary glands in (pre)diabetes (evoked by high fat diet feeding or streptozotocin). Wistar rats were allocated into three groups: control, HFD‐, or STZ‐diabetes. The content of major sphingolipid classes in the parotid (PSG) and submandibular (SMSG) glands was assessed via chromatography. Additionally, Western blot analyses were employed for the evaluation of key sphingolipid signaling pathway enzyme levels. No changes in ceramide content in the PSG were found, whereas an increase in ceramide concentration for SMSG of the STZ group was observed. This was accompanied by an elevation in SPT1 level. Probably also sphingomyelin hydrolysis was increased in the SMSG of the STZ‐diabetic rats, since we observed a significant drop in the amount of SM. PSG and SMSG respond differently to (pre)diabetes, with clearer pattern presented by the later gland. An activation of sphingomyelin signaling pathway was observed in the course of STZ‐diabetes, that is, metabolic condition with rapid onset/progression. Whereas, chronic HFD lead to an inhibition of sphingomyelin signaling pathway in the salivary glands (manifested in an inhibition of ceramide de novo synthesis and accumulation of S1P). PMID:28369933

  15. Sphingolipids metabolism in the salivary glands of rats with obesity and streptozotocin induced diabetes.

    PubMed

    Garbowska, Marta; Łukaszuk, Bartłomiej; Mikłosz, Agnieszka; Wróblewski, Igor; Kurek, Krzysztof; Ostrowska, Lucyna; Chabowski, Adrian; Żendzian-Piotrowska, Małgorzata; Zalewska, Anna

    2017-10-01

    Diabetes is considered a major public health problem affecting millions of individuals worldwide. Remarkably, scientific reports regarding salivary glands sphingolipid metabolism in diabetes are virtually non-existent. This is odd given the well-established link between the both in other tissues (e.g., skeletal muscles, liver) and the key role of these glands in oral health preservation. The aim of this paper is to examine sphingolipids metabolism in the salivary glands in (pre)diabetes (evoked by high fat diet feeding or streptozotocin). Wistar rats were allocated into three groups: control, HFD-, or STZ-diabetes. The content of major sphingolipid classes in the parotid (PSG) and submandibular (SMSG) glands was assessed via chromatography. Additionally, Western blot analyses were employed for the evaluation of key sphingolipid signaling pathway enzyme levels. No changes in ceramide content in the PSG were found, whereas an increase in ceramide concentration for SMSG of the STZ group was observed. This was accompanied by an elevation in SPT1 level. Probably also sphingomyelin hydrolysis was increased in the SMSG of the STZ-diabetic rats, since we observed a significant drop in the amount of SM. PSG and SMSG respond differently to (pre)diabetes, with clearer pattern presented by the later gland. An activation of sphingomyelin signaling pathway was observed in the course of STZ-diabetes, that is, metabolic condition with rapid onset/progression. Whereas, chronic HFD lead to an inhibition of sphingomyelin signaling pathway in the salivary glands (manifested in an inhibition of ceramide de novo synthesis and accumulation of S1P). © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  16. Sphingomyelinase activates GLUT4 translocation via a cholesterol-dependent mechanism.

    PubMed

    Liu, Ping; Leffler, Brian J; Weeks, Lara K; Chen, Guoli; Bouchard, Christine M; Strawbridge, Andrew B; Elmendorf, Jeffrey S

    2004-02-01

    A basis for the insulin mimetic effect of sphingomyelinase on glucose transporter isoform GLUT4 translocation remains unclear. Because sphingomyelin serves as a major determinant of plasma membrane cholesterol and a relationship between plasma membrane cholesterol and GLUT4 levels has recently become apparent, we assessed whether GLUT4 translocation induced by sphingomyelinase resulted from changes in membrane cholesterol content. Exposure of 3T3-L1 adipocytes to sphingomyelinase resulted in a time-dependent loss of sphingomyelin from the plasma membrane and a concomitant time-dependent accumulation of plasma membrane GLUT4. Degradation products of sphingomyelin did not mimic this stimulatory action. Plasma membrane cholesterol amount was diminished in cells exposed to sphingomyelinase. Restoration of membrane cholesterol blocked the stimulatory effect of sphingomyelinase. Increasing concentrations of methyl-beta-cyclodextrin, which resulted in a dose-dependent reversible decrease in membrane cholesterol, led to a dose-dependent reversible increase in GLUT4 incorporation into the plasma membrane. Although increased plasma membrane GLUT4 content by cholesterol extraction with concentrations of methyl-beta-cyclodextrin above 5 mM most likely reflected decreased GLUT4 endocytosis, translocation stimulated by sphingomyelinase or concentrations of methyl-beta-cyclodextrin below 2.5 mM occurred without any visible changes in the endocytic retrieval of GLUT4. Furthermore, moderate loss of cholesterol induced by sphingomyelinase or low concentrations of methyl-beta-cyclodextrin did not alter membrane integrity or increase the abundance of other plasma membrane proteins such as the GLUT1 glucose transporter or the transferrin receptor. Regulation of GLUT4 translocation by moderate cholesterol loss did not involve known insulin-signaling proteins. These data reveal that sphingomyelinase enhances GLUT4 exocytosis via a novel cholesterol-dependent mechanism.

  17. Association of Vibrio parahaemolyticus thermostable direct hemolysin with lipid rafts is essential for cytotoxicity but not hemolytic activity.

    PubMed

    Matsuda, Shigeaki; Kodama, Toshio; Okada, Natsumi; Okayama, Kanna; Honda, Takeshi; Iida, Tetsuya

    2010-02-01

    Thermostable direct hemolysin (TDH), a major virulence factor of Vibrio parahaemolyticus, induces cytotoxicity in cultured cells. However, the mechanism of TDH's cytotoxic effect including its target molecules on the plasma membrane of eukaryotic cells remains unclear. In this study, we identified the role of lipid rafts, cholesterol- and sphingolipid-enriched microdomains, in TDH cytotoxicity. Treatment of cells with methyl-beta-cyclodextrin (MbetaCD), a raft-disrupting agent, inhibited TDH cytotoxicity. TDH was associated with detergent-resistant membranes (DRMs), and MbetaCD eliminated this association. In contrast, there was no such association between a nontoxic TDH mutant and DRMs. The disruption of lipid rafts neither affected hemolysis nor inhibited Ca(2+) influx into HeLa cells induced by TDH. These findings indicate that the cytotoxicity but not the hemolytic activity of TDH is dependent on lipid rafts. The exogenous and endogenous depletion of cellular sphingomyelin also prevented TDH cytotoxicity, but a direct interaction between TDH and sphingomyelin was not detected with either a lipid overlay assay or a liposome absorption test. Treatment with sphingomyelinase (SMase) at 100 mU/ml disrupted the association of TDH with DRMs but did not affect the localization of lipid raft marker proteins (caveolin-1 and flotillin-1) with DRMs. These results suggest that sphingomyelin is important for the association of TDH with lipid rafts but is not a molecular target of TDH. We hypothesize that TDH may target a certain group of rafts that are sensitive to SMase at a certain concentration, which does not affect other types of rafts.

  18. Alterations of the Lipid Metabolome in Dairy Cows Experiencing Excessive Lipolysis Early Postpartum

    PubMed Central

    Humer, Elke; Khol-Parisini, Annabella; Metzler-Zebeli, Barbara U.; Gruber, Leonhard; Zebeli, Qendrim

    2016-01-01

    A decrease in insulin sensitivity enhances adipose tissue lipolysis helping early lactation cows counteracting their energy deficit. However, excessive lipolysis poses serious health risks for cows, and its underlying mechanisms are not clearly understood. The present study used targeted ESI-LC-MS/MS-based metabolomics and indirect insulin sensitivity measurements to evaluate metabolic alterations in the serum of dairy cows of various parities experiencing variable lipolysis early postpartum. Thirty (12 primiparous and 18 multiparous) cows of Holstein Friesian and Simmental breeds, fed the same diet and kept under the same management conditions, were sampled at d 21 postpartum and classified as low (n = 10), medium (n = 8), and high (n = 12) lipolysis groups, based on serum concentration of nonesterified fatty acids. Overall, excessive lipolysis in the high group came along with impaired estimated insulin sensitivity and characteristic shifts in acylcarnitine, sphingomyelin, phosphatidylcholine and lysophospholipid metabolome profiles compared to the low group. From the detected phosphatidylcholines mainly those with diacyl-residues showed differences among lipolysis groups. Furthermore, more than half of the detected sphingomyelins were increased in cows experiencing high lipomobilization. Additionally, strong differences in serum acylcarnitines were noticed among lipolysis groups. The study suggests an altered serum phospholipidome in dairy cows associated with an increase in certain long-chain sphingomyelins and the progression of disturbed insulin function. In conclusion, the present study revealed 37 key metabolites as part of alterations in the synthesis or breakdown of sphingolipids and phospholipids associated with lowered estimated insulin sensitivity and excessive lipolysis in early-lactating cows. PMID:27383746

  19. The lipid requirement of the (Ca2+ + Mg2+)-ATPase in the human erythrocyte membrane, as studied by various highly purified phospholipases.

    PubMed

    Roelofsen, B; Schatzmann, H J

    1977-01-04

    1. When complete hydrolysis of glycerophosphlipids and sphingomyelin in the outer membrane leaflet is brought about by treatment of intact red blood cells with phospholipase A2 and sphingomyelinase C, the (Ca2+ + Mg2+)-ATPase activity is not affected. 2. Complete hydrolysis of sphingomyelin, by treatment of leaky ghosts with spingomyelinase C, does not lead to an inactivation of the (Ca2+ + Mg2+)-ATPase. 3. Treatment of ghosts with phospholipase A2 (from either procine pancreas of Naja naja venom), under conditions causing an essentially complete hydrolysis of the total glycerophospholipid fraction of the membrane, results in inactivation of the (Ca2+ + Mg2+)-ATPase by some 80--85%. The residual activity is lost when the produced lyso-compounds (and fatty acids) are removed by subsequent treatment of the ghosts with bovine serum albumin. 4. The degree of inactivation of the (Ca2+ + Mg2+)-ATPase, caused by treatment of ghosts with phospholipase C, is directly proportional to the percentage by which the glycerophospholipid fraction in the inner membrane layer is degraded. 5. After essentially complete inactivation of the (Ca2+ + Mg2+)-ATPase by treatment of ghosts with phospholipase C from Bacillus cereus, the enzyme is reactivated by the addition of any of the glycerophospholipids, phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine or lysophosphatidylcholine, but not by addition of sphingomyeline, free fatty acids or the detergent Triton X-100. 6. It is concluded that only the glycerophospholipids in the human erythrocyte membrane are involved in the maintenance of the (Ca2+ + Mg2+)-ATPase activity, and in particular that fraction of these phospholipids located in the inner half of the membrane.

  20. Role of curvature and phase transition in lipid sorting and fission of membrane tubules.

    PubMed

    Roux, Aurélien; Cuvelier, Damien; Nassoy, Pierre; Prost, Jacques; Bassereau, Patricia; Goud, Bruno

    2005-04-20

    We have recently developed a minimal system for generating long tubular nanostructures that resemble tubes observed in vivo with biological membranes. Here, we studied membrane tube pulling in ternary mixtures of sphingomyelin, phosphatidylcholine and cholesterol. Two salient results emerged: the lipid composition is significantly different in the tubes and in the vesicles; tube fission is observed when phase separation is generated in the tubes. This shows that lipid sorting may depend critically on both membrane curvature and phase separation. Phase separation also appears to be important for membrane fission in tubes pulled out of giant liposomes or purified Golgi membranes.

  1. Improved separation of radioactively labelled cellular phospholipids by high-performance liquid chromatography.

    PubMed

    Trümbach, B; Rogler, G; Lackner, K J; Schmitz, G

    1994-06-03

    An improved high-performance liquid chromatographic method for the separation and determination of radioactively labelled cellular phospholipids is described. The method is based on separation of phospholipids on a 250 x 4 mm I.D. LiChrospher DIOL 100 (5 microns) column, fitted with a 50 x 4 mm I.D. LiChrospher Si 60 (5 microns) precolumn and a gradient of 5% H3PO4 and acetonitrile. It allows the determination of small amounts of labelled phosphatidylcholine and sphingomyelin due to the sharp elution profile in spite of long retention times.

  2. Phytosphingosine is a characteristic component of the glycolipids in the vertebrate intestine.

    PubMed

    Nishimura, K

    1987-01-01

    Sphingoids in the intestinal lipids of an agnatha, a chondrichthyes, two osteichthyes, three amphibia, three reptiles and two avian species were analyzed by reversed phase high performance liquid chromatography. The glycolipid fraction of all the samples studied contained 4-D-hydroxysphinganine as the major component together with sphingosine and sphinganine. While the trihydroxy base was not found in their sphingomyelin fraction. The trihydroxy base was considered to be a characteristic component of the intestinal glycolipids for the vertebrates in general. Its concentration in the intestinal tissue had little correlation with the food habitat of the animals.

  3. Tools for characterizing biomembranes : final LDRD report.

    SciTech Connect

    Alam, Todd Michael; Stevens, Mark; Holland, Gregory P.; McIntyre, Sarah K.

    2007-10-01

    A suite of experimental nuclear magnetic resonance (NMR) spectroscopy tools were developed to investigate lipid structure and dynamics in model membrane systems. By utilizing both multinuclear and multidimensional NMR experiments a range of different intra- and inter-molecular contacts were probed within the membranes. Examples on pure single component lipid membranes and on the canonical raft forming mixture of DOPC/SM/Chol are presented. A unique gel phase pretransition in SM was also identified and characterized using these NMR techniques. In addition molecular dynamics into the hydrogen bonding network unique to sphingomyelin containing membranes were evaluated as a function of temperature, and are discussed.

  4. Metabolic alterations in children with environmental enteric dysfunction.

    PubMed

    Semba, Richard D; Shardell, Michelle; Trehan, Indi; Moaddel, Ruin; Maleta, Kenneth M; Ordiz, M Isabel; Kraemer, Klaus; Khadeer, Mohammed; Ferrucci, Luigi; Manary, Mark J

    2016-06-13

    Environmental enteric dysfunction, an asymptomatic condition characterized by inflammation of the small bowel mucosa, villous atrophy, malabsorption, and increased intestinal permeability, is a major contributor to childhood stunting in low-income countries. Here we report the relationship of increased intestinal permeability with serum metabolites in 315 children without acute malnutrition, aged 12-59 months, in rural Malawi. Increased gut permeability was associated with significant differences in circulating metabolites that included lower serum phosphatidylcholines, sphingomyelins, tryptophan, ornithine, and citrulline, and elevated serum glutamate, taurine, and serotonin. Our findings suggest that environmental enteric dysfunction is characterized by alterations in important metabolites involved in growth and differentiation and gut function and integrity.

  5. Metabolic alterations in children with environmental enteric dysfunction

    PubMed Central

    Semba, Richard D.; Shardell, Michelle; Trehan, Indi; Moaddel, Ruin; Maleta, Kenneth M.; Ordiz, M. Isabel; Kraemer, Klaus; Khadeer, Mohammed; Ferrucci, Luigi; Manary, Mark J.

    2016-01-01

    Environmental enteric dysfunction, an asymptomatic condition characterized by inflammation of the small bowel mucosa, villous atrophy, malabsorption, and increased intestinal permeability, is a major contributor to childhood stunting in low-income countries. Here we report the relationship of increased intestinal permeability with serum metabolites in 315 children without acute malnutrition, aged 12–59 months, in rural Malawi. Increased gut permeability was associated with significant differences in circulating metabolites that included lower serum phosphatidylcholines, sphingomyelins, tryptophan, ornithine, and citrulline, and elevated serum glutamate, taurine, and serotonin. Our findings suggest that environmental enteric dysfunction is characterized by alterations in important metabolites involved in growth and differentiation and gut function and integrity. PMID:27294788

  6. Clustering effects of GM1 and formation mechanisms of interdigitated liquid disordered domains in GM1/SM/CHOL-supported planar bilayers on mica surfaces

    NASA Astrophysics Data System (ADS)

    Shang, Zhiguo; Mao, Yanli; Tero, Ryugo; Liu, Xinli; Hoshino, Tyuji; Tanaka, Motohiko; Urisu, Tsuneo

    2010-09-01

    We have observed by atomic force microscopy that an interdigitated liquid disordered domain (ILDD) is formed in the ganglioside (GM1)/sphingomyelin (SM)/cholesterol (CHOL) bilayers on a mica surface and accelerates the formation of fibriller Aβ agglomerates. By studies of the mechanisms using molecular dynamics simulations, we conclude that the ILDD structure is formed as a result of the phase separation to SM- and GM1-rich domains on the mica surface induced by the effects of GM1 clustering and the interaction between the GM1 head group and the water layer adsorbed in the ditrigonal cavity on the mica surface.

  7. Electrophysiological and Electrochemical Methods Development for the Detection of Biologically Active Chemical Agents

    DTIC Science & Technology

    1988-11-01

    Hexane +/- 90-130 Very good Phosphatidic acid * Sigma Hexane ++ 60-90 Good PA:lecithin 4:1 Sigma Pentane +++ >90 Good Cholesterol Sigma Hexane - None...to chamber in a concentration of 5-15 mg/ml of solvent. P’tdyl, phosphatidyl; PA, phosphatidic acid ; PC, phosphatidyl choline; PS, phosphatidyl serine...in Figure 15 were from a lecithin:sphingomyelin (5:1) bilayer. The records in Figure 16 were from a phosphatidic acid bilayer. Amphotericin B inserts

  8. Modulation of signal transduction in cancer cells by phytosterols.

    PubMed

    Bradford, Peter G; Awad, Atif B

    2010-01-01

    Phytosterols are biofactors found enriched in plant foods such as seeds, grains, and legumes. Their dietary consumption is associated with numerous health benefits. Epidemiologic and experimental animal studies indicate that phytosterols are cancer chemopreventive agents particularly against cancers of the colon, breast, and prostate. Phytosterols impede oncogenesis and prevent cancer cell proliferation and survival. The molecular mechanisms underlying these beneficial actions involve effects on signal transduction processes which regulate cell growth and apoptosis. Phytosterols increase sphingomyelin turnover, ceramide formation, and liver X receptor activation. In concert, these actions slow cell cycle progression, inhibit cell proliferation, and activate caspase cascades and apoptosis in cancer cells.

  9. Induced Pluripotent Stem Cells for Disease Modeling and Evaluation of Therapeutics for Niemann-Pick Disease Type A.

    PubMed

    Long, Yan; Xu, Miao; Li, Rong; Dai, Sheng; Beers, Jeanette; Chen, Guokai; Soheilian, Ferri; Baxa, Ulrich; Wang, Mengqiao; Marugan, Juan J; Muro, Silvia; Li, Zhiyuan; Brady, Roscoe; Zheng, Wei

    2016-12-01

    : Niemann-Pick disease type A (NPA) is a lysosomal storage disease caused by mutations in the SMPD1 gene that encodes acid sphingomyelinase (ASM). Deficiency in ASM function results in lysosomal accumulation of sphingomyelin and neurodegeneration. Currently, there is no effective treatment for NPA. To accelerate drug discovery for treatment of NPA, we generated induced pluripotent stem cells from two patient dermal fibroblast lines and differentiated them into neural stem cells. The NPA neural stem cells exhibit a disease phenotype of lysosomal sphingomyelin accumulation and enlarged lysosomes. By using this disease model, we also evaluated three compounds that reportedly reduced lysosomal lipid accumulation in Niemann-Pick disease type C as well as enzyme replacement therapy with ASM. We found that α-tocopherol, δ-tocopherol, hydroxypropyl-β-cyclodextrin, and ASM reduced sphingomyelin accumulation and enlarged lysosomes in NPA neural stem cells. Therefore, the NPA neural stem cells possess the characteristic NPA disease phenotype that can be ameliorated by tocopherols, cyclodextrin, and ASM. Our results demonstrate the efficacies of cyclodextrin and tocopherols in the NPA cell-based model. Our data also indicate that the NPA neural stem cells can be used as a new cell-based disease model for further study of disease pathophysiology and for high-throughput screening to identify new lead compounds for drug development. Currently, there is no effective treatment for Niemann-Pick disease type A (NPA). To accelerate drug discovery for treatment of NPA, NPA-induced pluripotent stem cells were generated from patient dermal fibroblasts and differentiated into neural stem cells. By using the differentiated NPA neuronal cells as a cell-based disease model system, α-tocopherol, δ-tocopherol, and hydroxypropyl-β-cyclodextrin significantly reduced sphingomyelin accumulation in these NPA neuronal cells. Therefore, this cell-based NPA model can be used for further study of

  10. Identification and Quantitation of Plasma Membrane Components: A Biochemical Experiment for Lipid Investigations

    NASA Astrophysics Data System (ADS)

    Keys, Susan

    2000-11-01

    In this biochemistry exercise, students isolate and investigate lipid components of erythrocyte membranes. Erythrocytes are separated from sheep's blood by centrifugation. Lipids are extracted using chloroform-methanol (2:1 by volume). Individual lipid components (phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingomyelin, and cholesterol) are separated and identified by thin-layer chromatography using chloroform-methanol-acetic acid-0.9% NaCl (75:45:3:1 by volume) as solvent. Nanomolar amounts of phospholipids are detected and quantified using a spectrophotometric phosphorus assay. Students learn to construct and use a standard concentration curve and test its accuracy.

  11. Increased erythrocyte lipid peroxidation in hereditary xerocytosis.

    PubMed

    Harm, W; Fortier, N L; Lutz, H U; Fairbanks, G; Snyder, L M

    1979-12-03

    Xerocytosis is a chronic hemolytic anemia with abnormal membrane function manifested by an increase in passive potassium permeability. Xerocytes demonstrate a greater susceptibility to hydrogen peroxide manifested by the production of malondialdehyde (MDA). Xerocyte membrane phospholipid and fatty acid analysis is normal except for a slight increase in phosphatidyl choline, a commensurate decrease in sphingomyelin, as well as a decrease in linoleic acid. Metabolism and glutathione stability are normal as well as plasma vitamin E levels in patients with xerocytosis. The increased susceptibility to oxidant stress is exaggerated in the "older aged" xerocyte population and correlated well with decreased intracellular potassium concentration.

  12. Pulmonary surfactant dysfunction in congenital diaphragmatic hernia: experimental and clinical findings.

    PubMed

    Valls-i-Soler, A; Alfonso, L F; Arnaiz, A; Alvarez, F J; Tovar, J A

    1996-01-01

    Experimental and clinical findings indicate immaturity of pulmonary surfactant in congenital diaphragmatic hernia (CDH). Lung histology has shown a decreased amount of lamellar bodies. A low lecithin/sphingomyelin ratio in the amniotic fluid, and decreased concentrations of surfactant protein A and disaturated phosphatidylcholine in the pulmonary tissue and the amniotic fluid have been reported. Furthermore, low compliance and high surface tension have also been found. Evidence of clinical and experimental findings of structural, biochemical and functional pulmonary immaturity in CDH is reviewed. Prenatal administration of corticosteroids to accelerate fetal pulmonary maturation, and the use of early surfactant therapy, should be further evaluated in the clinical management of CDH.

  13. ABCA1 (ATP-Binding Cassette Transporter A1) Mediates ApoA-I (Apolipoprotein A-I) and ApoA-I Mimetic Peptide Mobilization of Extracellular Cholesterol Microdomains Deposited by Macrophages.

    PubMed

    Jin, Xueting; Sviridov, Denis; Liu, Ying; Vaisman, Boris; Addadi, Lia; Remaley, Alan T; Kruth, Howard S

    2016-12-01

    We examined the function of ABCA1 (ATP-binding cassette transporter A1) in ApoA-I (apolipoprotein A-I) mobilization of cholesterol microdomains deposited into the extracellular matrix by cholesterol-enriched macrophages. We have also determined whether an ApoA-I mimetic peptide without and with complexing to sphingomyelin can mobilize macrophage-deposited cholesterol microdomains. Extracellular cholesterol microdomains deposited by cholesterol-enriched macrophages were detected with a monoclonal antibody, 58B1. ApoA-I and an ApoA-I mimetic peptide 5A mobilized cholesterol microdomains deposited by ABCA1(+/+) macrophages but not by ABCA1(-/-) macrophages. In contrast, ApoA-I mimetic peptide 5A complexed with sphingomyelin could mobilize cholesterol microdomains deposited by ABCA1(-/-) macrophages. Our findings show that a unique pool of extracellular cholesterol microdomains deposited by macrophages can be mobilized by both ApoA-I and an ApoA-I mimetic peptide but that mobilization depends on macrophage ABCA1. It is known that ABCA1 complexes ApoA-I and ApoA-I mimetic peptide with phospholipid, a cholesterol-solubilizing agent, explaining the requirement for ABCA1 in extracellular cholesterol microdomain mobilization. Importantly, ApoA-I mimetic peptide already complexed with phospholipid can mobilize macrophage-deposited extracellular cholesterol microdomains even in the absence of ABCA1. © 2016 American Heart Association, Inc.

  14. Isolation and Analysis of Phospholipids in Dairy Foods

    PubMed Central

    Pimentel, Lígia; Gomes, Ana; Pintado, Manuela

    2016-01-01

    The lipid fraction of milk is one of the most complex matrixes in foodstuffs due to the presence of a high number of moieties with different physical and chemical properties. Glycerolipids include glycerol and two fatty acids esterified in positions sn-1 and sn-2 with higher concentration of unsaturated fatty acids than in the triglyceride fraction of milk. Sphingolipids consist of a sphingoid base linked to a fatty acid across an amide bond. Their amphiphilic nature makes them suitable to be added into a variety of foods and recent investigations show that phospholipids, mainly phosphatidylserine and sphingomyelin, can exert antimicrobial, antiviral, and anticancer activities as well as positive effects in Alzheimer's disease, stress, and memory decline. Polar lipids can be found as natural constituents in the membranes of all living organisms with soybean and eggs as the principal industrial sources, yet they have low contents in phosphatidylserine and sphingomyelin. Animal products are rich sources of these compounds but since there are legal restrictions to avoid transmission of prions, milk and dairy products are gaining interest as alternative sources. This review summarizes the analysis of polar lipids in dairy products including sample preparation (extraction and fractionation/isolation) and analysis by GC or HPLC and the latest research works using ELSD, CAD, and MS detectors. PMID:27610267

  15. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann–Pick disease

    SciTech Connect

    Zhou, Yan-Feng; Metcalf, Matthew C.; Garman, Scott C.; Edmunds, Tim; Qiu, Huawei; Wei, Ronnie R.

    2016-10-26

    Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and phosphocholine, essential components of myelin in neurons. Genetic alterations in ASM lead to ASM deficiency (ASMD) and have been linked to Niemann–Pick disease types A and B. Olipudase alfa, a recombinant form of human ASM, is being developed as enzyme replacement therapy to treat the non-neurological manifestations of ASMD. Here we present the human ASM holoenzyme and product bound structures encompassing all of the functional domains. The catalytic domain has a metallophosphatase fold, and two zinc ions and one reaction product phosphocholine are identified in a histidine-rich active site. The structures reveal the underlying catalytic mechanism, in which two zinc ions activate a water molecule for nucleophilic attack of the phosphodiester bond. Docking of sphingomyelin provides a model that allows insight into the selectivity of the enzyme and how the ASM domains collaborate to complete hydrolysis. Mapping of known mutations provides a basic understanding on correlations between enzyme dysfunction and phenotypes observed in ASMD patients.

  16. A cell-autonomous requirement for neutral sphingomyelinase 2 in bone mineralization

    PubMed Central

    Khavandgar, Zohreh; Poirier, Christophe; Clarke, Christopher J.; Li, Jingjing; Wang, Nicholas; McKee, Marc D.; Hannun, Yusuf A.

    2011-01-01

    A deletion mutation called fro (fragilitas ossium) in the murine Smpd3 (sphingomyelin phosphodiesterase 3) gene leads to a severe skeletal dysplasia. Smpd3 encodes a neutral sphingomyelinase (nSMase2), which cleaves sphingomyelin to generate bioactive lipid metabolites. We examined endochondral ossification in embryonic day 15.5 fro/fro mouse embryos and observed impaired apoptosis of hypertrophic chondrocytes and severely undermineralized cortical bones in the developing skeleton. In a recent study, it was suggested that nSMase2 activity in the brain regulates skeletal development through endocrine factors. However, we detected Smpd3 expression in both embryonic and postnatal skeletal tissues in wild-type mice. To investigate whether nSMase2 plays a cell-autonomous role in these tissues, we examined the in vitro mineralization properties of fro/fro osteoblast cultures. fro/fro cultures mineralized less than the control osteoblast cultures. We next generated fro/fro;Col1a1-Smpd3 mice, in which osteoblast-specific expression of Smpd3 corrected the bone abnormalities observed in fro/fro embryos without affecting the cartilage phenotype. Our data suggest tissue-specific roles for nSMase2 in skeletal tissues. PMID:21788370

  17. Detection of apoptosis through the lipid order of the outer plasma membrane leaflet.

    PubMed

    Darwich, Zeinab; Klymchenko, Andrey S; Kucherak, Oleksandr A; Richert, Ludovic; Mély, Yves

    2012-12-01

    Cell plasma membranes of living cells maintain their asymmetry, so that the outer leaflet presents a large quantity of sphingomyelin, which is critical for formation of ordered lipid domains. Here, a recently developed probe based on Nile Red (NR12S) was applied to monitor changes in the lipid order specifically at the outer leaflet of cell membranes. Important key features of NR12S are its ratiometric response exclusively to lipid order (liquid ordered vs. liquid disordered phase) and not to surface charge, the possibility of using it at very low concentrations (10-20nM) and the very simple staining protocol. Cholesterol extraction, oxidation and sphingomyelin hydrolysis were found to red shift the emission spectrum of NR12S, indicating a decrease in the lipid order at the outer plasma membrane leaflet. Remarkably, apoptosis induced by three different agents (actinomycin D, camptothecin, staurosporine) produced very similar spectroscopic effects, suggesting that apoptosis also significantly decreases the lipid order at this leaflet. The applicability of NR12S to detect apoptosis was further validated by fluorescence microscopy and flow cytometry, using the ratio between the blue and red parts of its emission band. Thus, for the first time, an environment-sensitive probe, sensitive to lipid order, is shown to detect apoptosis, suggesting a new concept in apoptosis sensing.

  18. Binding of LL-37 to model biomembranes: insight into target vs host cell recognition.

    PubMed

    Sood, Rohit; Domanov, Yegor; Pietiäinen, Milla; Kontinen, Vesa P; Kinnunen, Paavo K J

    2008-04-01

    Pursuing the molecular mechanisms of the concentration dependent cytotoxic and hemolytic effects of the human antimicrobial peptide LL-37 on cells, we investigated the interactions of this peptide with lipids using different model membranes, together with fluorescence spectroscopy for the Trp-containing mutant LL-37(F27W). Minimum concentrations inhibiting bacterial growth and lipid interactions assessed by dynamic light scattering and monolayer penetration revealed the mutant to retain the characteristics of native LL-37. Although both LL-37 and the mutant intercalated effectively into zwitterionic phosphatidylcholine membranes the presence of acidic phospholipids caused augmented membrane binding. Interestingly, strongly attenuated intercalation of LL-37 into membranes containing both cholesterol and sphingomyelin (both at X=0.3) was observed. Accordingly, the distinction between target and host cells by LL-37 is likely to derive from i) acidic phospholipids causing enhanced association with the former cells as well as ii) from attenuated interactions with the outer surface of the plasma membrane of the peptide secreting host, imposed by its high content of cholesterol and sphingomyelin. Our results further suggest that LL-37 may exert its antimicrobial effects by compromising the membrane barrier properties of the target microbes by a mechanism involving cytotoxic oligomers, similarly to other peptides forming amyloid-like fibers in the presence of acidic phospholipids.

  19. Evolution of the Cytolytic Pore-Forming Proteins (Actinoporins) in Sea Anemones

    PubMed Central

    Macrander, Jason; Daly, Marymegan

    2016-01-01

    Sea anemones (Cnidaria, Anthozoa, and Actiniaria) use toxic peptides to incapacitate and immobilize prey and to deter potential predators. Their toxin arsenal is complex, targeting a variety of functionally important protein complexes and macromolecules involved in cellular homeostasis. Among these, actinoporins are one of the better characterized toxins; these venom proteins form a pore in cellular membranes containing sphingomyelin. We used a combined bioinformatic and phylogenetic approach to investigate how actinoporins have evolved across three superfamilies of sea anemones (Actinioidea, Metridioidea, and Actinostoloidea). Our analysis identified 90 candidate actinoporins across 20 species. We also found clusters of six actinoporin-like genes in five species of sea anemone (Nematostella vectensis, Stomphia coccinea, Epiactis japonica, Heteractis crispa, and Diadumene leucolena); these actinoporin-like sequences resembled actinoporins but have a higher sequence similarity with toxins from fungi, cone snails, and Hydra. Comparative analysis of the candidate actinoporins highlighted variable and conserved regions within actinoporins that may pertain to functional variation. Although multiple residues are involved in initiating sphingomyelin recognition and membrane binding, there is a high rate of replacement for a specific tryptophan with leucine (W112L) and other hydrophobic residues. Residues thought to be involved with oligomerization were variable, while those forming the phosphocholine (POC) binding site and the N-terminal region involved with cell membrane penetration were highly conserved. PMID:27941639

  20. Hypoxia remodels the composition of the constituent ceramide species of HexCer and Hex2Cer with phytosphingosine and hydroxy fatty acids in human colon cancer LS174T cells.

    PubMed

    Tanaka, Kouji; Tamiya-Koizumi, Keiko; Yamada, Masaki; Murate, Takashi; Kannagi, Reiji; Kyogashima, Mamoru

    2015-11-01

    Oxygen-requiring enzymes, such as Δ4-desaturase (dihydroceramide desaturase), sphingolipid Δ4-desaturase/C-4-hydroxylase, and fatty acid 2-hydroxylase are involved in ceramide synthesis. We prepared free ceramides, sphingomyelins and glycosphingolipids (GSLs) from cancer cells cultivated under conditions of normoxia and hypoxia, and analyzed these compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Human colon cancer LS174T cells were employed because these cells highly express hydroxyl fatty acids and phytosphingosine (t18:0) which are expected to be greatly influenced by changes in oxygen levels. As expected, the populations of dihydro-species of free ceramide and sphingomyelin with C16:0 non-hydroxy fatty acid were elevated, and the populations of HexCers and Hex2Cers, composed of C16:0 or C16:0 hydroxy fatty acid (C16:0h), and sphingosine (d18:1) or t18:0, were decreased under hypoxia. However, appreciable populations of HexCer and Hex2Cer species of C24:0 or C24:0h and t18:0 remained. These results suggest that the individual species of GSLs with fatty acids possessing different alkyl chain lengths, either non-hydroxy fatty acids or hydroxyl fatty acids, may be metabolized individually.

  1. Triton promotes domain formation in lipid raft mixtures.

    PubMed Central

    Heerklotz, H

    2002-01-01

    Biological membranes are supposed to contain functional domains (lipid rafts) made up in particular of sphingomyelin and cholesterol, glycolipids, and certain proteins. It is often assumed that the application of the detergent Triton at 4 degrees C allows the isolation of these rafts as a detergent-resistant membrane fraction. The current study aims to clarify whether and how Triton changes the domain properties. To this end, temperature-dependent transitions in vesicles of an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, egg sphingomyelin, and cholesterol were monitored at different Triton concentrations by differential scanning calorimetry and pressure perturbation calorimetry. Transitions initiated by the addition of Triton to the lipid mixture were studied by isothermal titration calorimetry, and the structure was investigated by (31)P-NMR. The results are discussed in terms of liquid-disordered (ld) and -ordered (lo) bilayer and micellar (mic) phases, and the typical sequence encountered with increasing Triton content or decreasing temperature is ld, ld + lo, ld + lo + mic, and lo + mic. That means that addition of Triton may create ordered domains in a homogeneous fluid membrane, which are, in turn, Triton resistant upon subsequent membrane solubilization. Hence, detergent-resistant membranes should not be assumed to resemble biological rafts in size, structure, composition, or even existence. Functional rafts may not be steady phenomena; they might form, grow, cluster or break up, shrink, and vanish according to functional requirements, regulated by rather subtle changes in the activity of membrane disordering or ordering compounds. PMID:12414701

  2. Fluorescence recovery after photobleaching measured by confocal microscopy as a tool for the analysis of vesicular lipid transport and plasma membrane mobility

    NASA Astrophysics Data System (ADS)

    Schmitz, Gerd; Goetz, Alexandra; Orso, Evelyn; Rothe, Gregor

    1998-04-01

    The vesicular transport of lipids from the endoplasmic reticulum via the Golgi apparatus affects the composition of the plasma membrane. The purpose of our study was to develop an in vitro test system for characterization of vesicular lipid transport kinetics by using confocal microscopy and fluorescence recovery after photobleaching (FRAP). Fibroblasts from two patients homozygous for the hypercatabolic HDL deficiency syndrome Tangier disease and 4 control subjects were pulsed with the C6-NBD-ceramide for 30 minutes. Chase incubation at room temperature resulted in the metabolic accumulation of fluorescent C6-NBD-sphingolyelin and C6-NBD-glycosylceramides in the medial- and trans-Golgi region. Cells were analyzed with an inverted Leica TCS microscope. Calibration was performed through the analysis of diffusion of 50 nm microparticles embedded in media of different viscosity. An acousto optical tunable filter (AOTF) was used for the selective bleaching of the medial- and trans- Golgi region followed by analysis of the fluorescence recovery for 4 minutes. Post-bleach fluorescence recovery through the trans-Golgi-oriented transport of NBD-sphingomyelin was calculated from 2-dimensional scans. Tangier fibroblasts displayed a retarded recovery of fluorescence in the trans- Golgi region. This suggests that the vesicular transport of sphingomyelin and cholesterol is disturbed in Tangier disease confirming data from our laboratory generated with radiometabolites on whole cells. Our data suggest that FRAP analysis allows a sensitive kinetic and spatially resolved analysis of disturbances of vesicular lipid transport.

  3. Variable substrate preference among phospholipase D toxins from sicariid spiders

    DOE PAGES

    Lajoie, Daniel M.; Roberts, Sue A.; Zobel-Thropp, Pamela A.; ...

    2015-03-09

    Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used 31P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, andmore » all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. Lastly, the evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey.« less

  4. Asymmetric Structural Features in Single Supported Lipid Bilayers Containing Cholesterol and GM1 Resolved with Synchrotron X-Ray Reflectivity

    PubMed Central

    Reich, Christian; Horton, Margaret R.; Krause, Bärbel; Gast, Alice P.; Rädler, Joachim O.; Nickel, Bert

    2008-01-01

    The cell membrane comprises numerous protein and lipid molecules capable of asymmetric organization between leaflets and liquid-liquid phase separation. We use single supported lipid bilayers (SLBs) to model cell membranes, and study how cholesterol and asymmetrically oriented ganglioside receptor GM1 affect membrane structure using synchrotron x-ray reflectivity. Using mixtures of cholesterol, sphingomyelin, and 1,2-dioleoyl-sn-glycero-3-phosphocholine, we characterize the structure of liquid-ordered and liquid-disordered SLBs in terms of acyl-chain density, headgroup size, and leaflet thickness. SLBs modeling the liquid-ordered phase are 10 Å thicker and have a higher acyl-chain electron density (〈ρchain〉 = 0.33 e−/Å3) compared to SLBs modeling the liquid-disordered phase, or pure phosphatidylcholine SLBs (〈ρchain〉 = 0.28 e−/Å3). Incorporating GM1 into the distal bilayer leaflet results in membrane asymmetry and thickening of the leaflet of 4–9 Å. The structural effect of GM1 is more complex in SLBs of cholesterol/sphingomyelin/1,2-dioleoyl-sn-glycero-3-phosphocholine, where the distal chains show a high electron density (〈ρchain〉 = 0.33 e−/Å3) and the lipid diffusion constant is reduced by ∼50%, as measured by fluorescence microscopy. These results give quantitative information about the leaflet asymmetry and electron density changes induced by receptor molecules that penetrate a single lipid bilayer. PMID:18375517

  5. Quantitative Shape Analysis of Giant Unilamellar Vesicles as a Function of Cholesterol Content

    NASA Astrophysics Data System (ADS)

    Mlodzianoski, Michael; Gudheti, Manasa; Hess, Samuel

    2007-04-01

    Giant unilamellar vesicles (GUVs) created from a ternary mixture of saturated lipids, unsaturated lipids, and cholesterol are a way to effectively model cell membranes. For specific concentrations of the constituent components, the model membranes separate into two distinct phases, liquid ordered and liquid disordered. The liquid ordered phase is sometimes referred to as a lipid raft, a region enriched in cholesterol and saturated lipid. This experiment offers an insight into the effects of cholesterol concentration on the physical properties of the membrane, which could alter protein distribution and cell function. We use confocal fluorescence microscopy to image GUVs created from egg sphingomyelin, dioleoylphosphatidylcholine, and cholesterol as well as trace amounts of two fluorescent probes, Bodipy-FL C12-sphingomyelin and lissamine rhodamine-B-DOPE. Shape tracing programs analyze the confocal images to determine dye partitioning, phase area fractions, meridional curvature, and line tensions at the phase boundary of GUVs. The differences resulting from changes in cholesterol concentration could significantly affect function in cellular membranes. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.B1.1

  6. Nonadditive Compositional Curvature Energetics of Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Sodt, A. J.; Venable, R. M.; Lyman, E.; Pastor, R. W.

    2016-09-01

    The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.

  7. The 2003 ASBMB-Avanti Award in Lipids Address: Applications of novel synthetic lipids to biological problems.

    PubMed

    Bittman, Robert

    2004-05-01

    This paper is an overview of the 2003 Avanti Award in Lipids address that was presented by Robert Bittman at the American Society for Biochemistry and Molecular Biology (ASBMB) Annual Meeting held in San Diego, CA in conjunction with meetings of five other FASEB Societies, April 15, 2003. The theme of the lecture is: "How can the chemical synthesis of unnatural lipids provide insights into problems ranging from cell biology to biophysics?" The following examples are presented: (1) novel ceramide analogs as experimental anticancer agents, (2) photoactivatable sphingosine 1-phosphate analogs as probes of protein targets of this bioactive lipid, (3) a 13C-enriched cerebroside as a quantitative probe of glycosphingolipid (GSL) transbilayer distribution in bilayers with and without sphingomyelin, (4) cis and trans unsaturated sphingomyelin analogs as modulators of the existence of cholesterol-enriched microdomains (rafts) that may facilitate fusion of alphaviruses with target membranes, (5) ceramide as an indirect enhancer of the permeabilization of membranes induced by cholesterol-specific cytolysins, (6) fluorescent GSL analogs of widely disparate structure as probes of the molecular features responsible for the selective internalization of GSLs in caveolae of living mammalian cells, (7) enantiomeric lysophosphatidic acid (LPA) analogs as probes of receptor subtypes that mediate LPA signaling, and (8) phosphonocholine analogs of the antitumor ether lipid ET-18-OCH3 as tools for discerning the primary targets that are critical for cytotoxic activity in tumor cells.

  8. A Metabolomics Signature Linked To Liver Fibrosis In The Serum Of Transplanted Hepatitis C Patients.

    PubMed

    Cano, Ainara; Mariño, Zoe; Millet, Oscar; Martínez-Arranz, Ibon; Navasa, Miquel; Falcón-Pérez, Juan Manuel; Pérez-Cormenzana, Miriam; Caballería, Joan; Embade, Nieves; Forns, Xavier; Bosch, Jaume; Castro, Azucena; Mato, José María

    2017-09-05

    Liver fibrosis must be evaluated in patients with hepatitis C virus (HCV) after liver transplantation because its severity affects their prognosis and the recurrence of HCV. Since invasive biopsy is still the gold standard to identify patients at risk of graft loss from rapid fibrosis progression, it becomes crucial the development of new accurate, non-invasive methods that allow repetitive examination of the patients. Therefore, we have developed a non-invasive, accurate model to distinguish those patients with different liver fibrosis stages. Two hundred and three patients with HCV were histologically classified (METAVIR) into five categories of fibrosis one year after liver transplantation. In this cross-sectional study, patients at fibrosis stages F0-F1 (n = 134) were categorised as "slow fibrosers" and F2-F4 (n = 69) as "rapid fibrosers". Chloroform/methanol serum extracts were analysed by reverse ultra-high performance liquid chromatography coupled to mass spectrometry. A diagnostic model was built through linear discriminant analyses. An algorithm consisting of two sphingomyelins and two phosphatidylcholines accurately classifies rapid and slow fibrosers after transplantation. The proposed model yielded an AUROC of 0.92, 71% sensitivity, 85% specificity, and 84% accuracy. Moreover, specific bile acids and sphingomyelins increased notably along with liver fibrosis severity, differentiating between rapid and slow fibrosers.

  9. Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry.

    PubMed

    Voisset, Cécile; Lavie, Muriel; Helle, François; Op De Beeck, Anne; Bilheu, Angéline; Bertrand-Michel, Justine; Tercé, François; Cocquerel, Laurence; Wychowski, Czeslaw; Vu-Dac, Ngoc; Dubuisson, Jean

    2008-03-01

    Virus entry is a major step in which host-cell lipids can play an essential role. In this report, we investigated the importance of sphingolipids in hepatitis C virus (HCV) entry. For this purpose, sphingomyelin present in the plasma membrane of target cells was hydrolysed into ceramide by sphingomyelinase treatment. Interestingly, ceramide enrichment of the plasma membrane strongly inhibited HCV entry. To understand how ceramide affected HCV entry, we analysed the effect of ceramide enrichment of the plasma membrane on three cell-surface molecules identified as entry factors for HCV: CD81 tetraspanin, scavenger receptor BI and Claudin-1. These proteins, which we found to be mainly associated with detergent-soluble membranes in Huh-7 cells, were not relocated in detergent-resistant microdomains after sphingomyelin hydrolysis into ceramide. Importantly, ceramide enrichment of the plasma membrane led to a 50% decrease in cell-surface CD81, which was due to its ATP-independent internalization. Our results strongly suggest that the ceramide-induced internalization of CD81 is responsible for the inhibitory effect of ceramide on HCV entry. Together, these data indicate that some specific lipids of the plasma membrane are essential for HCV entry and highlight plasma membrane lipids as potential targets to block HCV entry.

  10. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann–Pick disease

    PubMed Central

    Zhou, Yan-Feng; Metcalf, Matthew C.; Garman, Scott C.; Edmunds, Tim; Qiu, Huawei; Wei, Ronnie R.

    2016-01-01

    Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and phosphocholine, essential components of myelin in neurons. Genetic alterations in ASM lead to ASM deficiency (ASMD) and have been linked to Niemann–Pick disease types A and B. Olipudase alfa, a recombinant form of human ASM, is being developed as enzyme replacement therapy to treat the non-neurological manifestations of ASMD. Here we present the human ASM holoenzyme and product bound structures encompassing all of the functional domains. The catalytic domain has a metallophosphatase fold, and two zinc ions and one reaction product phosphocholine are identified in a histidine-rich active site. The structures reveal the underlying catalytic mechanism, in which two zinc ions activate a water molecule for nucleophilic attack of the phosphodiester bond. Docking of sphingomyelin provides a model that allows insight into the selectivity of the enzyme and how the ASM domains collaborate to complete hydrolysis. Mapping of known mutations provides a basic understanding on correlations between enzyme dysfunction and phenotypes observed in ASMD patients. PMID:27725636

  11. Ceramide and neurodegeneration: Susceptibility of neurons and oligodendrocytes to cell damage and death

    PubMed Central

    Jana, Arundhati; Hogan, Edward L.; Pahan, Kalipada

    2009-01-01

    Neurodegenerative disorders are marked by extensive neuronal apoptosis and gliosis. Although several apoptosis-inducing agents have been described, understanding of the regulatory mechanisms underlying modes of cell death is incomplete. A major breakthrough in delineation of the mechanism of cell death came from elucidation of the sphingomyelin (SM)-ceramide pathway that has received worldwide attention in recent years. The SM pathway induces apoptosis, differentiation, proliferation, and growth arrest depending upon cell and receptor types, and on downstream targets. Sphingomyelin, a plasma membrane constituent, is abundant in mammalian nervous system, and ceramide, its primary catabolic product released by activation of either neutral or acidic sphingomyelinase, serves as a potential lipid second messenger or mediator molecule modulating diverse cellular signaling pathways. Neutral sphingomyelinase (NSMase) is a key enzyme in the regulated activation of the SM cycle and is particularly sensitive to oxidative stress. In a context of increasing clarification of the mechanisms of neurodegeneration, we thought that it would be useful to review details of recent findings that we and others have made concerning different pro-apoptotic neurotoxins including proinflammatory cytokines, hypoxia-induced SM hydrolysis and ceramide production that induce cell death in human primary neurons and primary oligodendrocytes: redox sensitive events. What has and is emerging is a vista of therapeutically important ceramide regulation affecting a variety of different neurodegenerative and neuroinflammatory disorders. PMID:19147160

  12. Sphingolipid metabolism and its role in the skeletal tissues.

    PubMed

    Khavandgar, Zohreh; Murshed, Monzur

    2015-03-01

    The regulators affecting skeletal tissue formation and its maintenance include a wide array of molecules with very diverse functions. More recently, sphingolipids have been added to this growing list of regulatory molecules in the skeletal tissues. Sphingolipids are integral parts of various lipid membranes present in the cells and organelles. For a long time, these macromolecules were considered as inert structural elements. This view, however, has radically changed in recent years as sphingolipids are now recognized as important second messengers for signal-transduction pathways that affect cell growth, differentiation, stress responses and programmed death. In the current review, we discuss the available data showing the roles of various sphingolipids in three different skeletal cell types-chondrocytes in cartilage and osteoblasts and osteoclasts in bone. We provide an overview of the biology of sphingomyelin phosphodiesterase 3 (SMPD3), an important regulator of sphingolipid metabolism in the skeleton. SMPD3 is localized in the plasma membrane and has been shown to cleave sphingomyelin to generate ceramide, a bioactive lipid second messenger, and phosphocholine, an essential nutrient. SMPD3 deficiency in mice impairs the mineralization in both cartilage and bone extracellular matrices leading to severe skeletal deformities. A detailed understanding of SMPD3 function may provide a novel insight on the role of sphingolipids in the skeletal tissues.

  13. Testosterone replacement therapy improves erythrocyte membrane lipid composition in hypogonadal men.

    PubMed

    Angelova, Petya; Momchilova, Albena; Petkova, Diana; Staneva, Galya; Pankov, Roumen; Kamenov, Zdravko

    2012-09-01

    The aim of this study was to investigate the effects of testosterone replacement therapy (TRT) on erythrocyte membrane (EM) lipid composition and physico-chemical properties in hypogonadal men. EM isolated from three patients before and after TRT with injectable testosterone undecanoate or testosterone gel were used for analysis of the phospholipid and fatty acid composition, cholesterol/phospholipid ratio, membrane fluidity, ceramide level and enzyme activities responsible for sphingomyelin metabolism. TRT induced increase of phosphatidylethanolamine (PE) in the EMs and sphingomyelin. Reduction of the relative content of the saturated palmitic and stearic fatty acids and a slight increase of different unsaturated fatty acids was observed in phosphatidylcholine (PC). TRT also induced decrease of the cholesterol/total phospholipids ratio and fluidization of the EM. The TRT induced increase of PE content and the reduction of saturation in the PC acyl chains induced alterations in the structure of EM could result in higher flexibility of the erythrocytes. The increase of the SM-metabolizing enzyme neutral sphingomyelinase, which regulates the content of ceramide in membranes has a possible impact on the SM signaling pathway. We presume that the observed effect of TRT on the composition and fluidity of the EM contributes for improvement of blood rheology and may diminish the thrombosis risk. Larger studies are needed to confirm the findings of this pilot study.

  14. Magnesium deficiency upregulates serine palmitoyl transferase (SPT 1 and SPT 2) in cardiovascular tissues: relationship to serum ionized Mg and cytochrome c.

    PubMed

    Altura, Burton M; Shah, Nilank C; Li, Zhiqiang; Jiang, Xian-Cheng; Perez-Albela, Jose Luis; Altura, Bella T

    2010-09-01

    The present work tested the hypothesis that a short-term dietary deficiency of magnesium (Mg) (21 days) in rats would result in the upregulation of the two major subunits of serine palmitoyl-CoA-transferase, serine palmitoyl transferase (SPT 1) and SPT 2 (the rate-limiting enzymes responsible for the de novo biosynthesis of ceramides) in left ventricular, right ventricular, and atrial heart muscle and abdominal aortic smooth muscle, as well as induce a reduction in serum sphingomyelin concomitant with the release of mitochondrial cytochrome c (Cyto c) in these tissues. Our data indicate that short-term Mg deficiency (MgD) resulted in an upregulation of SPT 1 and SPT 2, concomitant with a very significant release of Cyto c in left ventricular, right ventricular, atrial, and abdominal aortic smooth muscle. Short-term MgD also produced a lowering of serum sphingomyelin and ionized Mg. The greater the reduction in serum ionized Mg, the greater the upregulation of SPT 1 and 2 and the more the increase in free Cyto c. The data suggest that MgD, most likely, causes a biosynthesis of ceramides via two pathways in cardiovascular tissues, viz., via the activation of serine palmitoyl-CoA-transferase and sphingomyelinase, which lead to apoptotic events via intrinsic (present study) and extrinsic pathways (previous studies). Low levels of drinking water Mg were cardio- and vasculoprotective.

  15. Plasma Sphingolipids Associated with Chronic Obstructive Pulmonary Disease Phenotypes

    PubMed Central

    Jacobson, Sean; Cruickshank, Charmion; Hughes, Grant J.; Siska, Charlotte; Ory, Daniel S.; Petrache, Irina; Schaffer, Jean E.; Reisdorph, Nichole; Kechris, Katerina

    2015-01-01

    Rationale: Chronic obstructive pulmonary disease (COPD) occurs in a minority of smokers and is characterized by intermittent exacerbations and clinical subphenotypes such as emphysema and chronic bronchitis. Although sphingolipids as a class are implicated in the pathogenesis of COPD, the particular sphingolipid species associated with COPD subphenotypes remain unknown. Objectives: To use mass spectrometry to determine which plasma sphingolipids are associated with subphenotypes of COPD. Methods: One hundred twenty-nine current and former smokers from the COPDGene cohort had 69 distinct sphingolipid species detected in plasma by targeted mass spectrometry. Of these, 23 were also measured in 131 plasma samples (117 independent subjects) using an untargeted platform in an independent laboratory. Regression analysis with adjustment for clinical covariates, correction for false discovery rate, and metaanalysis were used to test associations between COPD subphenotypes and sphingolipids. Peripheral blood mononuclear cells were used to test associations between sphingolipid gene expression and plasma sphingolipids. Measurements and Main Results: Of the measured plasma sphingolipids, five sphingomyelins were associated with emphysema; four trihexosylceramides and three dihexosylceramides were associated with COPD exacerbations. Three sphingolipids were strongly associated with sphingolipid gene expression, and 15 sphingolipid gene/metabolite pairs were differentially regulated between COPD cases and control subjects. Conclusions: There is evidence of systemic dysregulation of sphingolipid metabolism in patients with COPD. Subphenotyping suggests that sphingomyelins are strongly associated with emphysema and glycosphingolipids are associated with COPD exacerbations. PMID:25494452

  16. Toxic effects of cadmium on the developing rat lung. II. Glycogen and phospholipid metabolism

    SciTech Connect

    Daston, G.P.

    1982-01-01

    Maternal exposure to Cd reduces lung weight and alters pulmonary surfactant accumulation in the fetus. This may lead to respiratory distress and death postnatally. In this study, the effects of maternal Cd administration on additional biochemical parameters of the fetal lung were investigated. Pregnant rats were given sc injections of 8 mg/kg CdCl/sub 2/ on d 12-15 of gestation and sacrificed throughout late gestation. Fetal lungs were examined for protein, DNA, and glycogen. Incorporation of choline into total and disaturated phosphatidylcholine and sphingomyelin were measured in fetal lung slices. The DNA content of the treated lungs was reduced, but the protein/DNA ratio was not altered. Thus the reduced lung weight was due to hypoplasia, not hypotrophy. Incorporation of choline into pulmonary sphingomyelin was not altered by the treatment. Choline incorporation into both total and disaturated phosphatidylcholine, the most important surfactant component, was reduced on the final days of gestation. Glycogen was reduced in both absolute quantity and cellular concentration in lungs of treated fetuses. Glucose derived from glycogen is a major metabolic substrate in the fetal lung and probably contributes greatly to phospholipid synthesis. The reduction in glucose concentration in lungs of treated fetuses may be a factor in the diminished synthesis of pulmonary surfactant phosphatidylcholine before birth. Prenatal Cd exposure causes pulmonary hypoplasia; reduces the amount of glycogen present in the fetal lung; and diminishes the rate of synthesis of pulmonary surfactant phosphatidylcholine.

  17. Non-additive compositional curvature energetics of lipid bilayers

    PubMed Central

    Sodt, A.J.; Venable, R.M.; Lyman, E.; Pastor, R.W.

    2016-01-01

    The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface in turn govern the formation of membrane structures and membrane reshaping processes, and will thus underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. The letter describes observations from simulations of unexpected non-additive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature. PMID:27715135

  18. Hyperresponsiveness of mice deficient in plasma-secreted sphingomyelinase reveals its pivotal role in early phase of host response

    PubMed Central

    Jbeily, Nayla; Suckert, Iris; Gonnert, Falk A.; Acht, Benedikt; Bockmeyer, Clemens L.; Grossmann, Sascha D.; Blaess, Markus F.; Lueth, Anja; Deigner, Hans-Peter; Bauer, Michael; Claus, Ralf A.

    2013-01-01

    Plasma secretion of acid sphingomyelinase is a hallmark of cellular stress response resulting in the formation of membrane embedded ceramide-enriched lipid rafts and the reorganization of receptor complexes. Consistently, decompartmentalization of ceramide formation from inert sphingomyelin has been associated with signaling events and regulation of the cellular phenotype. Herein, we addressed the question of whether the secretion of acid sphingomyelinase is involved in host response during sepsis. We found an exaggerated clinical course in mice genetically deficient in acid sphingomyelinase characterized by an increased bacterial burden, an increased phagocytotic activity, and a more pronounced cytokine storm. Moreover, on a functional level, leukocyte-endothelial interaction was found diminished in sphingomyelinase-deficient animals corresponding to a distinct leukocytes’ phenotype with respect to rolling and sticking as well as expression of cellular surface proteins. We conclude that hydrolysis of membrane-embedded sphingomyelin, triggered by circulating sphingomyelinase, plays a pivotal role in the first line of defense against invading microorganisms. This function might be essential during the early phase of infection leading to an adaptive response of remote cells and tissues. PMID:23230083

  19. Role of side-edge site of sphingomyelinase from Bacillus cereus.

    PubMed

    Oda, Masataka; Takahashi, Masaya; Tsuge, Hideaki; Nagahama, Masahiro; Sakurai, Jun

    2012-05-25

    Bacillus cereus sphingomyelinase (Bc-SMase) belongs to the Mg(2+)-dependent neutral sphingomyelinase (nSMase) which hydrolyzes sphingomyelin (SM) to produce phosphocholine and ceramide, and acts as an extracellular hemolysin. Bc-SMase has two metal ion-binding sites in a long horizontal cleft across the molecule, with one Mg(2+) in the central region of the cleft and one divalent metal ion at the side-edge of the cleft. The role of the Mg(2+) at the side-edge of the long horizontal cleft in Bc-SMase remains unresolved. The replacement of Asn-57, Glu-99, and Asp-100 located in close proximity to Mg(2+) at the side-edge with alanine resulted in a striking reduction in binding to and hydrolysis of sphingomyelin in membranes of sheep erythrocytes or SM-liposomes but that of Phe-55 did not. However, the replacement of these residues had little effect on the enzymatic activity. N57A, E99A, and D100A contained 2 mol of Mg(2+) per mol of protein, and the wild type and F55A contained 3 mol. A crystal analysis showed that N57A with Mg(2+) had no metal ion at the side-edge. These results indicate that the Mg(2+) at the side-edge of Bc-SMase plays an important role in the binding to membranes.

  20. Modulation of plasma metabolite biomarkers of MAPK pathway with the MEK inhibitor RO4987655: pharmacodynamic and predictive potential in metastatic melanoma.

    PubMed

    Ang, Joo Ern; Pal, Akos; Asad, Yasmin J; Henley, Alan T; Valenti, Melanie; Box, Gary; de Haven Brandon, Alexis; Revell, Victoria; Skene, Debra J; Venturi, Miro; Rueger, Ruediger; Meresse, Valerie; Eccles, Suzanne A; de Bono, Johann S; Kaye, Stanley B; Workman, Paul; Banerji, Udai; Raynaud, Florence I

    2017-06-21

    MAPK pathway activation is frequently observed in human malignancies, including melanoma, and is associated with sensitivity to MEK inhibition and changes in cellular metabolism. Using quantitative mass spectrometry-based metabolomics, we identified in preclinical models 21 plasma metabolites including amino acids, propionylcarnitine, phosphatidylcholines and sphingomyelins that were significantly altered in two B-RAF mutant melanoma xenografts and that were reversed following a single dose of the potent and selective MEK inhibitor RO4987655. Treatment of non-tumour bearing animals and mice bearing the PTEN null U87MG human glioblastoma xenograft elicited plasma changes only in amino acids and propionylcarnitine. In patients with advanced melanoma treated with RO4987655, on-treatment changes of amino acids were observed in patients with disease progression and not in responders. In contrast, changes in phosphatidylcholines and sphingomyelins were observed in responders. Furthermore, pre-treatment levels of 7 lipids identified in the preclinical screen were statistically significantly able to predict objective responses to RO4987655. The RO4987655 treatment-related changes were greater than baseline physiological variability in non-treated individuals. This study provides evidence of a translational exo-metabolomic plasma readout predictive of clinical efficacy together with pharmacodynamic utility following treatment with a signal transduction inhibitor. Copyright ©2017, American Association for Cancer Research.

  1. End-products diacylglycerol and ceramide modulate membrane fusion induced by a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa

    PubMed Central

    Ibarguren, Maitane; Bomans, Paul H. H.; Frederik, Peter M.; Stonehouse, Martin; Vasil, Michael L.; Alonso, Alicia; Goñi, Félix M.

    2009-01-01

    A phospholipase C/ sphingomyelinase from Pseudomonas aeruginosa has been assayed on vesicles containing phosphatidylcholine, sphingomyelin, phosphatidylethanolamine and cholesterol, at equimolar ratios. The enzyme activity modifies the bilayer chemical composition giving rise to diacylglycerol (DAG) and ceramide (Cer). Assays of enzyme activity, enzyme-induced aggregation and fusion have been performed. Ultrastructural evidence of vesicle fusion at various stages of the process is presented, based on cryo-EM observations. The two enzyme lipidic end-products, DAG and Cer, have opposite effects on the bilayer physical properties, the former abolishes lateral phase separation, while the latter generates a new gel phase [Sot et al., FEBS Lett. 582, 3230–3236 (2008)]. Addition of either DAG, or Cer, or both to the liposome mixture causes an increase in enzyme binding to the bilayers and a decrease in lag time of hydrolysis. These two lipids also have different effects on the enzyme activity, DAG enhancing enzyme-induced vesicle aggregation and fusion, Cer inhibiting the hydrolytic activity. These effects are explained in terms of the different physical properties of the two lipids. DAG increases bilayers fluidity and decreases lateral separation of lipids, thus increasing enzyme activity and substrate accessibility to the enzyme. Cer has the opposite effect mainly because of its tendency to sequester sphingomyelin, an enzyme substrate, into rigid domains, presumably less accessible to the enzyme. PMID:19891956

  2. Altered ceramide acyl chain length and ceramide synthase gene expression in Parkinson’s disease.

    PubMed

    Abbott, Sarah K; Li, Hongyun; Muñoz, Sonia Sanz; Knoch, Bianca; Batterham, Marijka; Murphy, Karen E; Halliday, Glenda M; Garner, Brett

    2014-04-01

    Genetic studies have provided increasing evidence that ceramide homeostasis plays a role in neurodegenerative diseases including Parkinson’s disease (PD). It is known that the relative amounts of different ceramide molecular species, as defined by their fatty acyl chain length, regulate ceramide function in lipid membranes and in signaling pathways. In the present study we used a comprehensive sphingolipidomic case-control approach to determine the effects of PD on ceramide composition in postmortem brain tissue from the anterior cingulate cortex (a region with significant PD pathology) and the occipital cortex (spared in PD), also assessing mRNA expression of the major ceramide synthase genes that regulate ceramide acyl chain composition in the same tissue using quantitative PCR. In PD anterior cingulate cortex but not occipital cortex, total ceramide and sphingomyelin levels were reduced from control levels by 53% (P < 0.001) and 42% (P < 0.001), respectively. Of the 13 ceramide and 15 sphingomyelin molecular lipid species identified and quantified, there was a significant shift in the ceramide acyl chain composition toward shorter acyl chain length in the PD anterior cingulate cortex. This PD-associated change in ceramide acyl chain composition was accompanied by an upregulation of ceramide synthase-1 gene expression, which we consider may represent a response to reduced ceramide levels. These data suggest a significant shift in ceramide function in lipid membranes and signaling pathways occurs in regions with PD pathology. Identifying the regulatory mechanisms precipitating this change may provide novel targets for future therapeutics.

  3. The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme.

    PubMed

    Blázquez, C; Sánchez, C; Daza, A; Galve-Roperh, I; Guzmán, M

    1999-04-01

    The effects of cannabinoids on ketogenesis in primary cultures of rat astrocytes were studied. Delta9-Tetrahydrocannabinol (THC), the major active component of marijuana, produced a malonyl-CoA-independent stimulation of carnitine palmitoyltransferase I (CPT-I) and ketogenesis from [14C]palmitate. The THC-induced stimulation of ketogenesis was mimicked by the synthetic cannabinoid HU-210 and was prevented by pertussis toxin and the CB1 cannabinoid receptor antagonist SR141716. Experiments performed with different cellular modulators indicated that the THC-induced stimulation of ketogenesis was independent of cyclic AMP, Ca2+, protein kinase C, and mitogen-activated protein kinase (MAPK). The possible involvement of ceramide in the activation of ketogenesis by cannabinoids was subsequently studied. THC produced a CB1 receptor-dependent stimulation of sphingomyelin breakdown that was concomitant to an elevation of intracellular ceramide levels. Addition of exogenous sphingomyelinase to the astrocyte culture medium led to a MAPK-independent activation of ketogenesis that was quantitatively similar and not additive to that exerted by THC. Furthermore, ceramide activated CPT-I in astrocyte mitochondria. Results thus indicate that cannabinoids stimulate ketogenesis in astrocytes by a mechanism that may rely on CB1 receptor activation, sphingomyelin hydrolysis, and ceramide-mediated activation of CPT-I.

  4. Characteristics of the Rat Cardiac Sphingolipid Pool in Two Mitochondrial Subpopulations

    PubMed Central

    Monette, Jeffrey S.; Gómez, Luis A.; Moreau, Régis F.; Bemer, Brett A.; Taylor, Alan W.; Hagen, Tory M.

    2010-01-01

    Mitochondrial sphingolipids play a diverse role in normal cardiac function and diseases, yet a precise quantification of cardiac mitochondrial sphingolipids has never been performed. Therefore, rat heart interfibrillary (IFM) and subsarcolemmal (SSM) mitochondria were isolated, lipids extracted, and sphingolipids quantified by LC-tandem mass spectrometry. Results showed that sphingomyelin (~10,000 pmols/mg protein) was the predominant sphingolipid regardless of mitochondrial subpopulation, and measurable amounts of ceramide (~70 pmols/mg protein) sphingosine, and sphinganine were also found in IFM and SSM. Both mitochondrial populations contained similar quantities of sphingolipids except for ceramide which was much higher in SSM. Analysis of sphingolipid isoforms revealed ten different sphingomyelins and six ceramides that differed from 16 to 24 carbon units in their acyl side-chains. Sub-fractionation experiments further showed that sphingolipids are a constituent part of the inner mitochondrial membrane. Furthermore, inner membrane ceramide levels were 32% lower versus whole mitochondria (45 pmols/mg protein). Three ceramide isotypes (C20-, C22-, and C24-ceramide) accounted for the lower amounts. The concentrations of the ceramides present in the inner membranes of SSM and IFM differed greatly. Overall, mitochondrial sphingolipid content reflected levels seen in cardiac tissue, but the specific ceramide distribution distinguished IFM and SSM from each other. PMID:20599536

  5. Nuclear lipid microdomain as resting place of dexamethasone to impair cell proliferation.

    PubMed

    Cataldi, Samuela; Codini, Michela; Cascianelli, Giacomo; Tringali, Sabina; Tringali, Anna Rita; Lazzarini, Andrea; Floridi, Alessandro; Bartoccini, Elisa; Garcia-Gil, Mercedes; Lazzarini, Remo; Ambesi-Impiombato, Francesco Saverio; Curcio, Francesco; Beccari, Tommaso; Albi, Elisabetta

    2014-10-31

    The action of dexamethasone is initiated by, and strictly dependent upon, the interaction of the drug with its receptor followed by its translocation into the nucleus where modulates gene expression. Where the drug localizes at the intranuclear level is not yet known. We aimed to study the localization of the drug in nuclear lipid microdomains rich in sphingomyelin content that anchor active chromatin and act as platform for transcription modulation. The study was performed in non-Hodgkin's T cell human lymphoblastic lymphoma (SUP-T1 cell line). We found that when dexamethasone enters into the nucleus it localizes in nuclear lipid microdomains where influences sphingomyelin metabolism. This is followed after 24 h by a cell cycle block accompanied by the up-regulation of cyclin-dependent kinase inhibitor 1A (CDKN1A), cyclin-dependent kinase inhibitor 1B (CDKN1B), growth arrest and DNA-damage 45A (GADD45A), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) genes and by the reduction of signal transducer and activator of transcription 3 (STAT3) and phospho signal transducer and activator of transcription 3 (phoshoSTAT3) proteins. After 48 h some cells show morphological changes characteristic of apoptosis while the number of the cells that undergo cell division and express B-cell lymphoma-2 (Bcl-2) is very low. We suggest that the integrity of nuclear lipid microdomains is important for the response to glucocorticoids of cancer cells.

  6. Detergent-free domain isolated from Xenopus egg plasma membrane with properties similar to those of detergent-resistant membranes.

    PubMed

    Luria, Ayala; Vegelyte-Avery, Vaida; Stith, Brad; Tsvetkova, Nelly M; Wolkers, Willem F; Crowe, John H; Tablin, Fern; Nuccitelli, Richard

    2002-11-05

    Microdomains known as "rafts" have been isolated from many cell types as detergent-resistant membranes (DRMs) and are enriched in sphingolipids and cholesterol. However, there has been considerable controversy over whether such domains are found in native membranes or are artificially generated by the purification procedure. This controversy is based at least in part on the fact that raft membranes were first detected following detergent extraction in the cold. We isolated two plasma membrane fractions, without detergent treatment, using a discontinuous sucrose density gradient. One fraction was designated "light" and the other "heavy." These fractions were compared with DRMs, which were isolated in the presence of 1% Triton X-100. We found that Xenopus DRMs are enriched with sphingomyelin and cholesterol and exhibit a phase state similar to the liquid-ordered phase. Comparison of DRM complexes with the light and heavy plasma membrane fractions revealed some physical and biochemical similarities between the light fraction of the plasma membrane and the DRM complexes, based on (1) the phosphatidylcholine/sphingomyelin ratio and (2) the protein composition visualized on a two-dimensional gel. These two fractions are also quite similar in their thermotropic phase behavior, and their high levels of ganglioside GM1. We conclude that the light membrane fraction isolated in a detergent-free environment has many of the characteristics normally associated with DRMs.

  7. Isolation and Analysis of Phospholipids in Dairy Foods.

    PubMed

    Pimentel, Lígia; Gomes, Ana; Pintado, Manuela; Rodríguez-Alcalá, Luis Miguel

    2016-01-01

    The lipid fraction of milk is one of the most complex matrixes in foodstuffs due to the presence of a high number of moieties with different physical and chemical properties. Glycerolipids include glycerol and two fatty acids esterified in positions sn-1 and sn-2 with higher concentration of unsaturated fatty acids than in the triglyceride fraction of milk. Sphingolipids consist of a sphingoid base linked to a fatty acid across an amide bond. Their amphiphilic nature makes them suitable to be added into a variety of foods and recent investigations show that phospholipids, mainly phosphatidylserine and sphingomyelin, can exert antimicrobial, antiviral, and anticancer activities as well as positive effects in Alzheimer's disease, stress, and memory decline. Polar lipids can be found as natural constituents in the membranes of all living organisms with soybean and eggs as the principal industrial sources, yet they have low contents in phosphatidylserine and sphingomyelin. Animal products are rich sources of these compounds but since there are legal restrictions to avoid transmission of prions, milk and dairy products are gaining interest as alternative sources. This review summarizes the analysis of polar lipids in dairy products including sample preparation (extraction and fractionation/isolation) and analysis by GC or HPLC and the latest research works using ELSD, CAD, and MS detectors.

  8. End-products diacylglycerol and ceramide modulate membrane fusion induced by a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa.

    PubMed

    Ibarguren, Maitane; Bomans, Paul H H; Frederik, Peter M; Stonehouse, Martin; Vasil, Adriana I; Vasil, Michael L; Alonso, Alicia; Goñi, Félix M

    2010-01-01

    A phospholipase C/sphingomyelinase from Pseudomonas aeruginosa has been assayed on vesicles containing phosphatidylcholine, sphingomyelin, phosphatidylethanolamine and cholesterol at equimolar ratios. The enzyme activity modifies the bilayer chemical composition giving rise to diacylglycerol (DAG) and ceramide (Cer). Assays of enzyme activity, enzyme-induced aggregation and fusion have been performed. Ultrastructural evidence of vesicle fusion at various stages of the process is presented, based on cryo-EM observations. The two enzyme lipidic end-products, DAG and Cer, have opposite effects on the bilayer physical properties; the former abolishes lateral phase separation, while the latter generates a new gel phase [Sot et al., FEBS Lett. 582, 3230-3236 (2008)]. Addition of either DAG, or Cer, or both to the liposome mixture causes an increase in enzyme binding to the bilayers and a decrease in lag time of hydrolysis. These two lipids also have different effects on the enzyme activity, DAG enhancing enzyme-induced vesicle aggregation and fusion, Cer inhibiting the hydrolytic activity. These effects are explained in terms of the different physical properties of the two lipids. DAG increases bilayers fluidity and decreases lateral separation of lipids, thus increasing enzyme activity and substrate accessibility to the enzyme. Cer has the opposite effect mainly because of its tendency to sequester sphingomyelin, an enzyme substrate, into rigid domains, presumably less accessible to the enzyme.

  9. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues

    PubMed Central

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A.; Anunciado-Koza, Rea V.; Siviski, Matthew E.; Lindner, Volkhard; Friesel, Robert E.; Rosen, Clifford J.; Baker, Paul R.S.; Simons, Brigitte; Vary, Calvin P.H.

    2016-01-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MSALL. Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-derived BAT-C1 cells were also characterized. Over 3000 unique lipid species were quantified. Principal component analysis showed that perirenal versus inguinal white adipose tissues varied in lipid composition of triacyl- and diacylglycerols, sphingomyelins, glycerophospholipids and, notably, cardiolipin CL 72:3. In contrast, hexosylceramides and sphingomyelins distinguished brown from white adipose. Adipocyte differentiation models showed broad differences in lipid composition among themselves, upon adipogenic differentiation, and with adipose tissues. Palmitoyl triacylglycerides predominate in 3T3-L1 differentiation models, whereas cardiolipin CL 72:1 and SM 45:4 were abundant in brown adipose-derived cell differentiation models, respectively. MS/MSALL data suggest new lipid biomarkers for tissue-specific lipid contributions to adipogenesis, thus providing a foundation for using in vitro models of adipogenesis to reflect potential changes in adipose tissues in vivo. PMID:26910604

  10. Rapid test for lung maturity, based on spectroscopy of gastric aspirate, predicted respiratory distress syndrome with high sensitivity.

    PubMed

    Verder, Henrik; Heiring, Christian; Clark, Howard; Sweet, David; Jessen, Torben E; Ebbesen, Finn; Björklund, Lars J; Andreasson, Bengt; Bender, Lars; Bertelsen, Aksel; Dahl, Marianne; Eschen, Christian; Fenger-Grøn, Jesper; Hoffmann, Stine F; Höskuldsson, Agnar; Bruusgaard-Mouritsen, Maria; Lundberg, Fredrik; Postle, Anthony D; Schousboe, Peter; Schmidt, Peter; Stanchev, Hristo; Sørensen, Lars

    2017-03-01

    Respiratory distress syndrome (RDS) is a major cause of mortality and morbidity in premature infants. By the time symptoms appear, it may already be too late to prevent a severe course, with bronchopulmonary dysplasia or mortality. We aimed to develop a rapid test of lung maturity for targeting surfactant supplementation. Concentrations of the most surface-active lung phospholipid dipalmitoylphosphatidylcholine and sphingomyelin in gastric aspirates from premature infants were measured by mass spectrometry and expressed as the lecithin/sphingomyelin ratio (L/S). The same aspirates were analysed with mid-infrared spectroscopy. Subsequently, L/S was measured in gastric aspirates and oropharyngeal secretions from another group of premature infants using spectroscopy and the results were compared with RDS development. The 10-minute analysis required 10 μL of aspirate. An L/S algorithm was developed based on 89 aspirates. Subsequently, gastric aspirates were sampled in 136 infants of 24-31 weeks of gestation and 61 (45%) developed RDS. The cut-off value of L/S was 2.2, sensitivity was 92%, and specificity was 73%. In 59 cases, the oropharyngeal secretions had less valid L/S than gastric aspirate results. Our rapid test for lung maturity, based on spectroscopy of gastric aspirate, predicted RDS with high sensitivity. ©2016 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.

  11. Characteristics of the rat cardiac sphingolipid pool in two mitochondrial subpopulations.

    PubMed

    Monette, Jeffrey S; Gómez, Luis A; Moreau, Régis F; Bemer, Brett A; Taylor, Alan W; Hagen, Tory M

    2010-07-23

    Mitochondrial sphingolipids play a diverse role in normal cardiac function and diseases, yet a precise quantification of cardiac mitochondrial sphingolipids has never been performed. Therefore, rat heart interfibrillary mitochondria (IFM) and subsarcolemmal mitochondria (SSM) were isolated, lipids extracted, and sphingolipids quantified by LC-tandem mass spectrometry. Results showed that sphingomyelin (approximately 10,000 pmol/mg protein) was the predominant sphingolipid regardless of mitochondrial subpopulation, and measurable amounts of ceramide (approximately 70 pmol/mg protein) sphingosine, and sphinganine were also found in IFM and SSM. Both mitochondrial populations contained similar quantities of sphingolipids except for ceramide which was much higher in SSM. Analysis of sphingolipid isoforms revealed ten different sphingomyelins and six ceramides that differed from 16- to 24-carbon units in their acyl side chains. Sub-fractionation experiments further showed that sphingolipids are a constituent part of the inner mitochondrial membrane. Furthermore, inner membrane ceramide levels were 32% lower versus whole mitochondria (45 pmol/mg protein). Three ceramide isotypes (C20-, C22-, and C24-ceramide) accounted for the lower amounts. The concentrations of the ceramides present in the inner membranes of SSM and IFM differed greatly. Overall, mitochondrial sphingolipid content reflected levels seen in cardiac tissue, but the specific ceramide distribution distinguished IFM and SSM from each other.

  12. Highly Selective Anti-Cancer Activity of Cholesterol-Interacting Agents Methyl-β-Cyclodextrin and Ostreolysin A/Pleurotolysin B Protein Complex on Urothelial Cancer Cells

    PubMed Central

    Resnik, Nataša; Repnik, Urška; Kreft, Mateja Erdani; Sepčić, Kristina; Maček, Peter; Turk, Boris; Veranič, Peter

    2015-01-01

    Cholesterol content can vary distinctly between normal and cancer cells, with elevated levels in cancer cells. Here, we investigated cholesterol sequestration with methyl-β-cyclodextrin (MCD), and pore-formation with the ostreolysin A/pleurotolysin B (OlyA/PlyB) protein complex that binds to cholesterol/sphingomyelin-rich membrane domains. We evaluated the effects on viability of T24 invasive and RT4 noninvasive human urothelial cancer cells and normal porcine urothelial (NPU) cells. Cholesterol content strongly correlated with cancerous transformation, as highest in the T24 high-grade invasive urothelial cancer cells, and lowest in NPU cells. MCD treatment induced prominent cell death of T24 cells, whereas OlyA/PlyB treatment resulted in greatly decreased viability of the RT4 low-grade noninvasive carcinoma cells. Biochemical and transmission electron microscopy analyses revealed that MCD and OlyA/PlyB induce necrotic cell death in these cancer cells, while viability of NPU cells was not significantly affected by either treatment. We conclude that MCD is more toxic for T24 high-grade invasive urothelial cancer cells, and OlyA/PlyB for RT4 low-grade noninvasive urothelial cancer cells, and neither is toxic for NPU cells. The cholesterol and cholesterol/sphingomyelin-rich membrane domains in urothelial cancer cells thus constitute a selective therapeutic target for elimination of urothelial cancer cells. PMID:26361392

  13. A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: potential implications in tumour necrosis factor signalling.

    PubMed Central

    Veldman, R J; Maestre, N; Aduib, O M; Medin, J A; Salvayre, R; Levade, T

    2001-01-01

    Sphingomyelinases hydrolyse sphingomyelin to ceramide, a process involved in signal-transduction routes leading to apoptosis and various other cellular responses. In the present study, we investigated the sphingomyelinase content of caveolae, invaginated plasma-membrane microdomains that contain a variety of signalling molecules. These structures are highly enriched in sphingomyelin as well as in ceramide, which suggests that metabolism of these lipids might, to some extent, occur locally. By cell fractionation, we demonstrate that, in addition to a previously reported minute amount of acidic sphingomyelinase activity, a substantial amount of neutral sphingomyelinase activity resides in caveolae of human skin fibroblasts. This caveolar neutral sphingomyelinase activity was also detected in Niemann-Pick disease type A fibroblasts, which are completely devoid of functional acidic sphingomyelinase. Neutral (but not acidic) sphingomyelinase activity was specifically inhibited by a peptide that corresponds to the scaffolding domain of caveolin, which suggests a direct molecular interaction between the two proteins. In addition, this finding implies a cytosolic orientation of the caveolar neutral sphingomyelinase. Interestingly, stimulation of fibroblasts with tumour necrosis factor alpha (TNFalpha) resulted in a partial shift of its p55 receptor to caveolin-enriched membrane fractions and the appearance of caveolin-sensitive neutral sphingomyelinase activity in the non-caveolar fractions. These results suggest that (part of) the presently identified caveolar neutral sphingomyelinase activity is involved in TNFalpha signalling. PMID:11311151

  14. Sphingolipid metabolism regulates development and lifespan in Caenorhabditis elegans

    PubMed Central

    Cutler, Roy G.; Thompson, Kenneth W.; Camandola, Simonetta; Mack, Kendra T.; Mattson, Mark P.

    2015-01-01

    Sphingolipids are a highly conserved lipid component of cell membranes involved in the formation of lipid raft domains that house many of the receptors and cell-to-cell signaling factors involved in regulating cell division, maturation, and terminal differentiation. By measuring and manipulating sphingolipid metabolism using pharmacological and genetic tools in Caenorhabditis elegans, we provide evidence that the synthesis and remodeling of specific ceramides (e.g., dC18:1–C24:1), gangliosides (e.g., GM1–C24:1), and sphingomyelins (e.g., dC18:1–C18:1) influence development rate and lifespan. We found that the levels of fatty acid chain desaturation and elongation in many sphingolipid species increased during development and aging, with no such changes in developmentally-arrested dauer larvae or normal adults after food withdrawal (an anti-aging intervention). Pharmacological inhibitors and small interfering RNAs directed against serine palmitoyl transferase and glucosylceramide synthase acted to slow development rate, extend the reproductive period, and increase lifespan. In contrast, worms fed an egg yolk diet rich in sphingolipids exhibited accelerated development and reduced lifespan. Our findings demonstrate that sphingolipid accumulation and remodeling are critical events that determine development rate and lifespan in the nematode model, with both development rate and aging being accelerated by the synthesis of sphingomyelin, and its metabolism to ceramides and gangliosides. PMID:25437839

  15. Isolation and biochemical characterisation of lipid rafts from Atlantic cod (Gadus morhua) intestinal enterocytes.

    PubMed

    Gylfason, Gudjón Andri; Knútsdóttir, Erna; Asgeirsson, Bjarni

    2010-01-01

    Lipid rafts are glycosphingolipid/cholesterol-enriched membrane microdomains that have been extensively studied during the past two decades. Our aim was to isolate and perform biochemical characterization of lipid rafts from the intestinal brush border membrane (BBM) of Atlantic cod (Gadus morhua) to confirm their existence in a cold-water species and compare their characteristics with lipid rafts from other species in terms of lipid and protein content. To validate the isolation process, we assayed marker enzymes for subcellular organelles, including alkaline phosphatase (AP) and leucine aminopeptidase (LAP), both well-known marker enzymes for BBM and lipid rafts. All biochemical methods showed enrichment of AP in both the BBM and lipid raft fractions. Proteomic studies were performed by MALDI-TOF mass spectrometry using trypsin digested SDS-PAGE samples. Various proteins were associated with the cod intestinal lipid raft preparation such as aminopeptidase-N, prohibitin, and beta-actin. Lipid analysis with (31)P NMR and thin layer chromatography on BBMs and lipid rafts samples gave higher content of sphingomyelin than previously reported in the BBM and lower content of phosphatidylcholine. Furthermore, sphingomyelin was highly dominant in the lipid rafts together with cholesterol. The existence of lipid rafts containing previously reported lipid raft characteristics from the cod intestine has, therefore, been confirmed in a ray-finned fish for the first time to the best of our knowledge.

  16. Isolation and analysis of membrane lipids and lipid rafts in common carp (Cyprinus carpio L.).

    PubMed

    Brogden, Graham; Propsting, Marcus; Adamek, Mikolaj; Naim, Hassan Y; Steinhagen, Dieter

    2014-03-01

    Cell membranes act as an interface between the interior of the cell and the exterior environment and facilitate a range of essential functions including cell signalling, cell structure, nutrient uptake and protection. It is composed of a lipid bilayer with integrated proteins, and the inner leaflet of the lipid bilayer comprises of liquid ordered (Lo) and liquid disordered (Ld) domains. Lo microdomains, also named as lipid rafts are enriched in cholesterol, sphingomyelin and certain types of proteins, which facilitate cell signalling and nutrient uptake. Lipid rafts have been extensively researched in mammals and the presence of functional lipid rafts was recently demonstrated in goldfish, but there is currently very little knowledge about their composition and function in fish. Therefore a protocol was established for the analysis of lipid rafts and membranous lipids in common carp (Cyprinus carpio L.) tissues. Twelve lipids were identified and analysed in the Ld domain of the membrane with the most predominant lipids found in all tissues being; triglycerides, cholesterol, phosphoethanolamine and phosphatidylcholine. Four lipids were identified in lipid rafts in all tissues analysed, triglycerides (33-62%) always found in the highest concentration followed by cholesterol (24-32%), phosphatidylcholine and sphingomyelin. Isolation of lipid rafts was confirmed by identifying the presence of the lipid raft associated protein flotillin, present at higher concentrations in the detergent resistant fraction. The data provided here build a lipid library of important carp tissues as a baseline for further studies into virus entry, protein trafficking or environmental stress analysis.

  17. Sphingosine and Sphingosine Kinase 1 Involvement in Endocytic Membrane Trafficking.

    PubMed

    Lima, Santiago; Milstien, Sheldon; Spiegel, Sarah

    2017-02-24

    The balance between cholesterol and sphingolipids within the plasma membrane has long been implicated in endocytic membrane trafficking. However, in contrast to cholesterol functions, little is still known about the roles of sphingolipids and their metabolites. Perturbing the cholesterol/sphingomyelin balance was shown to induce narrow tubular plasma membrane invaginations enriched with sphingosine kinase 1 (SphK1), the enzyme that converts the bioactive sphingolipid metabolite sphingosine to sphingosine-1-phosphate, and suggested a role for sphingosine phosphorylation in endocytic membrane trafficking. Here we show that sphingosine and sphingosine-like SphK1 inhibitors induced rapid and massive formation of vesicles in diverse cell types that accumulated as dilated late endosomes. However, much smaller vesicles were formed in SphK1-deficient cells. Moreover, inhibition or deletion of SphK1 prolonged the lifetime of sphingosine-induced vesicles. Perturbing the plasma membrane cholesterol/sphingomyelin balance abrogated vesicle formation. This massive endosomal influx was accompanied by dramatic recruitment of the intracellular SphK1 and Bin/Amphiphysin/Rvs domain-containing proteins endophilin-A2 and endophilin-B1 to enlarged endosomes and formation of highly dynamic filamentous networks containing endophilin-B1 and SphK1. Together, our results highlight the importance of sphingosine and its conversion to sphingosine-1-phosphate by SphK1 in endocytic membrane trafficking. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Crystal structure of SmcL, a bacterial neutral sphingomyelinase C from Listeria.

    PubMed

    Openshaw, Amy E A; Race, Paul R; Monzó, Hector J; Vázquez-Boland, José-Antonio; Banfield, Mark J

    2005-10-14

    Sphingomyelinases C are enzymes that catalyze the hydrolysis of sphingomyelin in biological membranes to ceramide and phosphorylcholine. Various pathogenic bacteria produce secreted neutral sphingomyelinases C that act as membrane-damaging virulence factors. Mammalian neutral sphingomyelinases C, which display sequence homology to the bacterial enzymes, are involved in sphingolipid metabolism and signaling. This article describes the first structure to be determined for a member of the neutral sphingomyelinase C family, SmcL, from the intracellular bacterial pathogen Listeria ivanovii. The structure has been refined to 1.9-A resolution with phases derived by single isomorphous replacement with anomalous scattering techniques from a single iridium derivative. SmcL adopts a DNase I-like fold, and is the first member of this protein superfamily to have its structure determined that acts as a phospholipase. The structure reveals several unique features that adapt the protein to its phospholipid substrate. These include large hydrophobic beta-hairpin and hydrophobic loops surrounding the active site that may bind and penetrate the lipid bilayer to position sphingomyelin in a catalytically competent position. The structure also provides insight into the proposed general base/acid catalytic mechanism, in which His-325 and His-185 play key roles.

  19. Blood Metabolic Signatures of Body Mass Index: A Targeted Metabolomics Study in the EPIC Cohort.

    PubMed

    Carayol, Marion; Leitzmann, Michael F; Ferrari, Pietro; Zamora-Ros, Raul; Achaintre, David; Stepien, Magdalena; Schmidt, Julie A; Travis, Ruth C; Overvad, Kim; Tjønneland, Anne; Hansen, Louise; Kaaks, Rudolf; Kühn, Tilman; Boeing, Heiner; Bachlechner, Ursula; Trichopoulou, Antonia; Bamia, Christina; Palli, Domenico; Agnoli, Claudia; Tumino, Rosario; Vineis, Paolo; Panico, Salvatore; Quirós, J Ramón; Sánchez-Cantalejo, Emilio; Huerta, José María; Ardanaz, Eva; Arriola, Larraitz; Agudo, Antonio; Nilsson, Jan; Melander, Olle; Bueno-de-Mesquita, Bas; Peeters, Petra H; Wareham, Nick; Khaw, Kay-Tee; Jenab, Mazda; Key, Timothy J; Scalbert, Augustin; Rinaldi, Sabina

    2017-09-01

    Metabolomics is now widely used to characterize metabolic phenotypes associated with lifestyle risk factors such as obesity. The objective of the present study was to explore the associations of body mass index (BMI) with 145 metabolites measured in blood samples in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Metabolites were measured in blood from 392 men from the Oxford (UK) cohort (EPIC-Oxford) and in 327 control subjects who were part of a nested case-control study on hepatobiliary carcinomas (EPIC-Hepatobiliary). Measured metabolites included amino acids, acylcarnitines, hexoses, biogenic amines, phosphatidylcholines, and sphingomyelins. Linear regression models controlled for potential confounders and multiple testing were run to evaluate the associations of metabolite concentrations with BMI. 40 and 45 individual metabolites showed significant differences according to BMI variations, in the EPIC-Oxford and EPIC-Hepatobiliary subcohorts, respectively. Twenty two individual metabolites (kynurenine, one sphingomyelin, glutamate and 19 phosphatidylcholines) were associated with BMI in both subcohorts. The present findings provide additional knowledge on blood metabolic signatures of BMI in European adults, which may help identify mechanisms mediating the relationship of BMI with obesity-related diseases.

  20. Variable Substrate Preference among Phospholipase D Toxins from Sicariid Spiders.

    PubMed

    Lajoie, Daniel M; Roberts, Sue A; Zobel-Thropp, Pamela A; Delahaye, Jared L; Bandarian, Vahe; Binford, Greta J; Cordes, Matthew H J

    2015-04-24

    Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used (31)P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, and all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. The evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Variable Substrate Preference among Phospholipase D Toxins from Sicariid Spiders*

    PubMed Central

    Lajoie, Daniel M.; Roberts, Sue A.; Zobel-Thropp, Pamela A.; Delahaye, Jared L.; Bandarian, Vahe; Binford, Greta J.; Cordes, Matthew H. J.

    2015-01-01

    Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used 31P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, and all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. The evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey. PMID:25752604

  2. Ceramide as a Mediator of Non-Alcoholic Fatty Liver Disease and Associated Atherosclerosis

    PubMed Central

    Kasumov, Takhar; Li, Ling; Li, Min; Gulshan, Kailash; Kirwan, John P.; Liu, Xiuli; Previs, Stephen; Willard, Belinda; Smith, Jonathan D.; McCullough, Arthur

    2015-01-01

    Cardiovascular disease (CVD) is a serious comorbidity in nonalcoholic fatty liver disease (NAFLD). Since plasma ceramides are increased in NAFLD and sphingomyelin, a ceramide metabolite, is an independent risk factor for CVD, the role of ceramides in dyslipidemia was assessed using LDLR-/- mice, a diet-induced model of NAFLD and atherosclerosis. Mice were fed a standard or Western diet (WD), with or without myriocin, an inhibitor of ceramide synthesis. Hepatic and plasma ceramides were profiled and lipid and lipoprotein kinetics were quantified. Hepatic and intestinal expression of genes and proteins involved in insulin, lipid and lipoprotein metabolism were also determined. WD caused hepatic oxidative stress, inflammation, apoptosis, increased hepatic long-chain ceramides associated with apoptosis (C16 and C18) and decreased very-long-chain ceramide C24 involved in insulin signaling. The plasma ratio of ApoB/ApoA1 (proteins of VLDL/LDL and HDL) was increased 2-fold due to increased ApoB production. Myriocin reduced hepatic and plasma ceramides and sphingomyelin, and decreased atherosclerosis, hepatic steatosis, fibrosis, and apoptosis without any effect on oxidative stress. These changes were associated with decreased lipogenesis, ApoB production and increased HDL turnover. Thus, modulation of ceramide synthesis may lead to the development of novel strategies for the treatment of both NAFLD and its associated atherosclerosis. PMID:25993337

  3. Characterization of Phospholipids in Insulin Secretory Granules and Mitochondria in Pancreatic Beta Cells and Their Changes with Glucose Stimulation*

    PubMed Central

    MacDonald, Michael J.; Ade, Lacmbouh; Ntambi, James M.; Ansari, Israr-Ul H.; Stoker, Scott W.

    2015-01-01

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. PMID:25762724

  4. Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation.

    PubMed

    MacDonald, Michael J; Ade, Lacmbouh; Ntambi, James M; Ansari, Israr-Ul H; Stoker, Scott W

    2015-04-24

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.

    PubMed

    Shaw, James E; Alattia, Jean-René; Verity, Jocelyne E; Privé, Gilbert G; Yip, Christopher M

    2006-04-01

    We report here on an in situ atomic force microscopy study of the interaction of indolicidin, a tryptophan-rich antimicrobial peptide, with phase-segregated zwitterionic DOPC/DSPC supported planar bilayers. By varying the peptide concentration and bilayer composition through the inclusion of anionic lipids (DOPG or DSPG), we found that indolicidin interacts with these model membranes in one of two concentration-dependent manners. At low peptide concentrations, indolicidin forms an amorphous layer on the fluid domains when these domains contain anionic lipids. At high peptide concentrations, indolicidin appears to initiate a lowering of the gel-phase domains independent of the presence of an anionic lipid. Similar studies performed using membrane-raft mimetic bilayers comprising 30mol% cholesterol/1:1 DOPC/egg sphingomyelin revealed that indolicidin does not form a carpet-like layer on the zwitterionic DOPC domains at low peptide concentrations and does not induce membrane lowering of the liquid-ordered sphingomyelin/cholesterol-rich domains at high peptide concentration. Simultaneous AFM-confocal microscopy imaging did however reveal that indolicidin preferentially inserts into the fluid-phase DOPC domains. These data suggest that the indolicidin-membrane association is influenced greatly by specific electrostatic interactions, lipid fluidity, and peptide concentration. These insights provide a glimpse into the mechanism of the membrane selectivity of antibacterial peptides and suggest a powerful correlated approach for characterizing peptide-membrane interactions.

  6. An acidic sphingomyelinase Type C activity from Mycobacterium tuberculosis.

    PubMed

    Castro-Garza, Jorge; González-Salazar, Francisco; Quinn, Frederick D; Karls, Russell K; De La Garza-Salinas, Laura Hermila; Guzmán-de la Garza, Francisco J; Vargas-Villarreal, Javier

    2016-01-01

    Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Sphingolipids are recognized as diverse and dynamic regulators of a multitude of cellular processes mediating cell cycle control, differentiation, stress response, cell migration, adhesion, and apoptosis. Bacterial SMases are virulence factors for several species of pathogens. Whole cell extracts of Mycobacterium tuberculosis strains H37Rv and CDC1551 were assayed using [N-methyl-(14)C]-sphingomyelin as substrate. Acidic Zn(2+)-dependent SMase activity was identified in both strains. Peak SMase activity was observed at pH 5.5. Interestingly, overall SMase activity levels from CDC1551 extracts are approximately 1/3 of those of H37Rv. The presence of exogenous SMase produced by M. tuberculosis during infection may interfere with the normal host inflammatory response thus allowing the establishment of infection and disease development. This Type C activity is different from previously identified M. tuberculosis SMases. Defining the biochemical characteristics of M. tuberculosis SMases helps to elucidate the roles that these enzymes play during infection and disease. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Digestion of Ceramide 2-Aminoethylphosphonate, a Sphingolipid from the Jumbo Flying Squid Dosidicus gigas, in Mice.

    PubMed

    Tomonaga, Nami; Manabe, Yuki; Sugawara, Tatsuya

    2017-04-01

    Ceramide 2-aminoethylphosphonate (CAEP), a sphingophosphonolipid containing a carbon-phosphorus bond, is frequently found in marine organisms and has a unique triene type of sphingoid base in its structure. CAEP has not been evaluated as a food ingredient, although it is generally contained in Mollusca organisms such as squids and shellfish, which are consumed worldwide. In this study, we aimed to elucidate the effects of CAEP as a food component by evaluating the digestion of CAEP extracted from the skin of the jumbo flying squid Dosidicus gigas. Our results revealed that dietary CAEP was digested to free sphingoid bases via ceramides by the mouse small intestinal mucosa. At pH 7.2, CAEP was hydrolyzed more rapidly than the major mammalian sphingolipid sphingomyelin; however, the hydrolysis of CAEP was similar to that of sphingomyelin at pH 9.0. Thus, the digestion of CAEP may be catalyzed by alkaline spingomyelinase and other enzymes. Our findings provide important insights into the digestion of the dietary sphingophosphonolipid CAEP in marine foods.

  8. Nonadditive Compositional Curvature Energetics of Lipid Bilayers.

    PubMed

    Sodt, A J; Venable, R M; Lyman, E; Pastor, R W

    2016-09-23

    The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.

  9. Cholesterol segregates into submicrometric domains at the living erythrocyte membrane: evidence and regulation.

    PubMed

    Carquin, Mélanie; Conrard, Louise; Pollet, Hélène; Van Der Smissen, Patrick; Cominelli, Antoine; Veiga-da-Cunha, Maria; Courtoy, Pierre J; Tyteca, Donatienne

    2015-12-01

    Although cholesterol is essential for membrane fluidity and deformability, the level of its lateral heterogeneity at the plasma membrane of living cells is poorly understood due to lack of appropriate probe. We here report on the usefulness of the D4 fragment of Clostridium perfringens toxin fused to mCherry (theta*), as specific, non-toxic, sensitive and quantitative cholesterol-labeling tool, using erythrocyte flat membrane. By confocal microscopy, theta* labels cholesterol-enriched submicrometric domains in coverslip-spread but also gel-suspended (non-stretched) fresh erythrocytes, suggesting in vivo relevance. Cholesterol domains on spread erythrocytes are stable in time and space, restricted by membrane:spectrin anchorage via 4.1R complexes, and depend on temperature and sphingomyelin, indicating combined regulation by extrinsic membrane:cytoskeleton interaction and by intrinsic lipid packing. Cholesterol domains partially co-localize with BODIPY-sphingomyelin-enriched domains. In conclusion, we show that theta* is a useful vital probe to study cholesterol organization and demonstrate that cholesterol forms submicrometric domains in living cells.

  10. Stabilizing factors of phospholipid asymmetry in the erythrocyte membrane.

    PubMed

    Dressler, V; Haest, C W; Plasa, G; Deuticke, B; Erusalimsky, J D

    1984-08-22

    Transbilayer reorientation (flip) of exogenous lysophospholipids and changes of the transbilayer distribution of endogenous phospholipids were studied in human erythrocytes and membrane vesicles. (1) Exogenous lysophosphatidylserine irreversibly accumulates in the inner membrane layer of resealed ghosts of human erythrocytes. (2) This accumulation even occurs after complete loss of asymmetric distribution of endogenous phosphatidylethanolamine and partial loss of phosphatidylserine asymmetry in diamide-treated cells. (3) Formation of inside-out and right-side-out vesicles from erythrocyte membranes results in a loss of endogenous phospholipid asymmetry as well as of the ability to establish asymmetry of exogenous lysophosphatidylserine. Rates of transbilayer reorientation of lysophospholipids for the vesicles, however, are comparable to those for intact cells. (4) Loss of endogenous asymmetry of phosphatidylserine is also observed in vesicles isolated from erythrocytes after heat denaturation of spectrin. The asymmetry in the residual cells is maintained. (5) In contrast to the loss of asymmetry of phosphatidylethanolamine and of phosphatidylserine, the asymmetry of sphingomyelin is completely maintained in the vesicles. (6) The stability of phospholipid asymmetry in the native cell is discussed in terms of a limitation of access of phospholipids to hypothetical reorientation sites. Such a limitation may either be the result of interaction of phospholipids with the membrane skeleton as in case of phosphatidylserine and phosphatidylethanolamine, or the result of lipid-lipid interactions as in case of sphingomyelin.

  11. Intravesical liposome therapy for interstitial cystitis.

    PubMed

    Tyagi, Pradeep; Kashyap, Mahendra; Majima, Tsuyoshi; Kawamorita, Naoki; Yoshizawa, Tsuyoshi; Yoshimura, Naoki

    2017-04-01

    Over the past two decades, there has been lot of interest in the use of liposomes as lipid-based biocompatible carriers for drugs administered by the intravesical route. The lipidic bilayer structure of liposomes facilitates their adherence to the apical membrane surface of luminal cells in the bladder, and their vesicular shape allows them to co-opt the endocytosis machinery for bladder uptake after instillation. Liposomes have been shown to enhance the penetration of both water-soluble and insoluble drugs, toxins, and oligonucleotides across the bladder epithelium. Empty liposomes composed entirely of the endogenous phospholipid, sphingomyelin, could counter mucosal inflammation and promote wound healing in patients suffering from interstitial cystitis. Recent clinical studies have tested multilamellar liposomes composed entirely of sphingomyelin as a novel intravesical therapy for interstitial cystitis. In addition, liposomes have been used as a delivery platform for the instillation of botulinum toxin in overactive bladder patients. The present review discusses the properties of liposomes that are important for their intrinsic therapeutic effect, summarizes the recently completed clinical studies with intravesical liposomes and covers the latest developments in this field. © 2017 The Japanese Urological Association.

  12. Alterations in the plasma metabolite profile associated with improved hepatic function and glycemia in mice fed lingonberry supplemented high-fat diets.

    PubMed

    Al Hamimi, Said; Heyman-Lindén, Lovisa; Plaza, Merichel; Turner, Charlotta; Berger, Karin; Spégel, Peter

    2017-03-01

    Lingonberries have been shown to reduce the detrimental effects of high-fat diet (HFD) on weight gain, plasma glucose, and inflammation. However, the extent of effects was recently shown to vary between different batches of berries. Here, we examine the metabolic response to two independent batches of lingonberries. Alterations in the phenotype and circulating metabolome elicited by three matched HFDs, two of which containing lingonberries (L1D and L2D) from different sources, were investigated. Glycemia was improved only in mice fed L1D, whereas liver function was improved and inflammation reduced in mice fed both L1D and L2D, compared to mice fed HFD. The unique improvement in glycemia elicited by L1D was associated with a 21% increase in circulating levels of fatty acids. Increased levels of phosphatidylcholines (62%) and lysophosphatidylcholines (28%) and decreased levels of serine (-13%) and sphingomyelins (-26%) were observed in mice fed L1D and L2D, as compared to HFD. The unique improvement in glycemia in mice fed L1D was associated with a normal metabolic control with an altered set point. Moreover, the batch-independent reduction in liver steatosis and inflammation, was associated with an altered sphingomyelin metabolism. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thyroid function appears to be significantly reduced in Space-borne MDS mice

    NASA Astrophysics Data System (ADS)

    Saverio Ambesi-Impiombato, Francesco; Curcio, Francesco; Fontanini, Elisabetta; Perrella, Giuseppina; Spelat, Renza; Zambito, Anna Maria; Damaskopoulou, Eleni; Peverini, Manola; Albi, Elisabetta

    It is known that prolonged space flights induced changes in human cardiovascular, muscu-loskeletal and nervous systems whose function is regulated by the thyroid gland but, until now, no data were reported about thyroid damage during space missions. We have demonstrated in vitro that, during space missions (Italian Soyuz Mission "ENEIDE" in 2005, Shuttle STS-120 "ESPERIA" in 2007), thyroid in vitro cultured cells did not respond to thyroid stimulating hor-mone (TSH) treatment; they appeared healthy and alive, despite their being in a pro-apopotic state characterised by a variation of sphingomyelin metabolism and consequent increase in ce-ramide content. The insensitivity to TSH was largely due to a rearrangement of specific cell membrane microdomains, acting as platforms for TSH-receptor (TEXUS-44 mission in 2008). To study if these effects were present also in vivo, as part of the Mouse Drawer System (MDS) Tissue Sharing Program, we performed experiments in mice maintained onboard the Interna-tional Space Station during the long-duration (90 days) exploration mission STS-129. After return to earth, the thyroids isolated from the 3 animals were in part immediately frozen to study the morphological modification in space and in part immediately used to study the effect of TSH treatment. For this purpose small fragments of tissue were treated with 10-7 or 10-8 M TSH for 1 hour by using untreated fragments as controls. Then the fragments were fixed with absolute ethanol for 10 min at room temperature and centrifuged for 20 min. at 3000 x g. The supernatants were used for cAMP analysis whereas the pellet were used for protein amount determination and for immunoblotting analysis of TSH-receptor, sphingomyelinase and sphingomyelin-synthase. The results showed a modification of the thyroid structure and also the values of cAMP production after treatment with 10-7 M TSH for 1 hour were significantly lower than those obtained in Earth's gravity. The treatment with TSH

  14. Metabolomics evidences plasma and serum biomarkers differentiating two heavy pig breeds.

    PubMed

    Bovo, S; Mazzoni, G; Galimberti, G; Calò, D G; Fanelli, F; Mezzullo, M; Schiavo, G; Manisi, A; Trevisi, P; Bosi, P; Dall'Olio, S; Pagotto, U; Fontanesi, L

    2016-10-01

    In pigs, many production traits are known to vary among breeds or lines. These traits can be considered end phenotypes or external traits as they are the final results of complex biological interactions and processes whose fine biological mechanisms are still largely unknown. This study was designed to compare plasma and serum metabolomic profiles between animals of two heavy pig breeds (12 Italian Large White and 12 Italian Duroc), testing indirectly the hypothesis that different genetic backgrounds might be the determining factors of differences observed on the level of metabolites in the analyzed biofluids between breeds. We used a targeted metabolomic approach based on mass spectrometric detection of about 180 metabolites and applied a statistical validation pipeline to identify differences in the metabolomic profiles of the two heavy pig breeds. Blood samples were collected after jugulation at the slaughterhouse and prepared for metabolomics analysis that was carried out using the Biocrates AbsoluteIDQ p180 Kit, covering five different biochemical classes: glycerophospholipids, amino acids, biogenic amines, hexoses and acylcarnitines. A statistical pipeline that included the selection of the most relevant metabolites differentiating the two breeds by sparse Partial Least Squares Discriminant Analysis (sPLS-DA) was coupled with a stability test and significance test determined with leave one out and permutation procedures. sPLS-DA plots clearly separated the pigs of the two investigated breeds. A few metabolites (a total of five metabolites considering the two biofluids) involved in key metabolic pathways largely contributed to these differences between breeds. In particular, a higher level of the sphingomyelins SM (OH) C14:1 (both in plasma and serum), SM (OH) C16:1 (in serum) and SM C16:0 (in serum) were observed in Italian Duroc than in Italian Large White pigs and the inverse was for the biogenic amine kynurenine (in plasma). The level of another biogenic

  15. The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation.

    PubMed

    Zeidan, Y H; Hannun, Y A

    2010-07-01

    One of the most intriguing enzymes of sphingolipid biology is acid sphingomyelinase (ASMase). In a phospholipase C reaction, ASMase catalyzes the cleavage of the phosphocholine head group of sphingomyelin to generate ceramide. Cumulative efforts of various laboratories over the past 40 years have placed ASMase and its product ceramide at the forefront of lipid research. Activation of the ASMase/ceramide pathway is a shared response to an ever-growing list of receptor and non-receptor mediated forms of cellular stress including: death ligands (TNFalpha, TRAIL, Fas ligand), cytokines (IL-1, IFNgamma), radiation, pathogenic infections, cytotoxic agents and others. The strategic role of ASMase in lipid metabolism and cellular stress response has sparked interest in investigatig the molecular mechanisms underlying ASMase activation. In this article, we review the translational role of the ASMase/ceramide pathway and recent advances on its mechanisms of regulation.

  16. Isolation and Analysis of Detergent-Resistant Membrane Fractions.

    PubMed

    Aureli, Massimo; Grassi, Sara; Sonnino, Sandro; Prinetti, Alessandro

    2016-01-01

    The hypothesis that the Golgi apparatus is capable of sorting proteins and sending them to the plasma membrane through "lipid rafts," membrane lipid domains highly enriched in glycosphingolipids, sphingomyelin, ceramide, and cholesterol, was formulated by van Meer and Simons in 1988 and came to a turning point when it was suggested that lipid rafts could be isolated thanks to their resistance to solubilization by some detergents, namely Triton X-100. An incredible number of papers have described the composition and properties of detergent-resistant membrane fractions. However, the use of this method has also raised the fiercest criticisms. In this chapter, we would like to discuss the most relevant methodological aspects related to the preparation of detergent-resistant membrane fractions, and to discuss the importance of discriminating between what is present on a cell membrane and what we can prepare from cell membranes in a laboratory tube.

  17. Improved solvent extraction procedure and high-performance liquid chromatography-evaporative light-scattering detector method for analysis of polar lipids from dairy materials.

    PubMed

    Le, Thien Trung; Miocinovic, Jelena; Nguyen, Tuyet Mai; Rombaut, Roeland; van Camp, John; Dewettinck, Koen

    2011-10-12

    A normal-phase high-performance liquid chromatography-evaporative light-scattering detector method employing dichloromethane, methanol, and acetic acid/triethylamine buffer as the mobile phase was developed for analysis of polar lipids (PLs). This method was applicable for analysis of PLs from both dairy materials and soy lecithin. All of the PLs of interest such as glycolipids, phospholipids, and sphingomyelin were well separated with a total run time of 22.5 min and without necessitating the removal of neutral lipids beforehand. Peak retention times were stable, and the method was reproducible. In this study, a modified method of using solvents for extraction of PLs from dairy matrices was also investigated. The modified method offered higher extraction efficiency, consumed less time, and in some cases saved solvent use.

  18. A triterpene oleanolic acid conjugate with 3-hydroxyflavone derivative as a new membrane probe with two-color ratiometric response.

    PubMed

    Turkmen, Zeynep; Klymchenko, Andrey S; Oncul, Sule; Duportail, Guy; Topcu, Gulacti; Demchenko, Alexander P

    2005-07-29

    We report on the synthesis by coupling of a triterpenoid oleanolic acid with 4'-diethylamino-3-hydroxyflavone (FE) to produce an environment-sensitive biomembrane probe with two-band ratiometric response in fluorescence emission. The synthesized compound (probe FOT) was tested in a series of model solvents and demonstrated the response to solvent polarity and intermolecular hydrogen bonding very similar to that of parent probe FE. Meantime when incorporated into lipid bilayer membranes, it showed new features differing in response between lipids of different surface charges as well as between glycerophospholipids and sphingomyelin. We observed that in the conditions of coexistence of rafts and non-raft structures the probe is excluded from the rafts.

  19. Unique lipid composition of Treponema pallidum (Nichols virulent strain).

    PubMed Central

    Matthews, H M; Yang, T K; Jenkin, H M

    1979-01-01

    The lipid composition of Treponema pallidum (Nichols virulent strain) was determined after purification of the organisms from the infected testes of corticosteroid-treated rabbits by differential centrifugation, filtration through Nuclepore membranes, and sedimentation in Hypaque density gradients. The total lipids were comprised of 32.2% neutral lipids, mainly cholesterol, and 67.8% phospholipids consisting of phosphatidylcholine (32.1%), sphingomyelin (14.8%), cardiolipin (13.0%), phosphatidylethanolamine (6.2%), phosphatidylinositol-serine (1.2%), and lysophosphatidylcholine (0.4%). Monoglycosyldiglyceride, a glycolipid comprising 25 to 50% of thetotal lipid of all Treponema previously examined, was not detected. The fatty acid composition was similar but quntitatively distinct from that of the infected testes tissue. Images PMID:381199

  20. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    PubMed Central

    Zech, Tobias; Ejsing, Christer S; Gaus, Katharina; de Wet, Ben; Shevchenko, Andrej; Simons, Kai; Harder, Thomas

    2009-01-01

    Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T-cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate the accumulation of specific molecular lipid species with the specific plasma membrane condensation at sites of TCR activation and with early TCR activation responses. PMID:19177148

  1. Egg phospholipids and cardiovascular health.

    PubMed

    Blesso, Christopher N

    2015-04-13

    Eggs are a major source of phospholipids (PL) in the Western diet. Dietary PL have emerged as a potential source of bioactive lipids that may have widespread effects on pathways related to inflammation, cholesterol metabolism, and high-density lipoprotein (HDL) function. Based on pre-clinical studies, egg phosphatidylcholine (PC) and sphingomyelin appear to regulate cholesterol absorption and inflammation. In clinical studies, egg PL intake is associated with beneficial changes in biomarkers related to HDL reverse cholesterol transport. Recently, egg PC was shown to be a substrate for the generation of trimethylamine N-oxide (TMAO), a gut microbe-dependent metabolite associated with increased cardiovascular disease (CVD) risk. More research is warranted to examine potential serum TMAO responses with chronic egg ingestion and in different populations, such as diabetics. In this review, the recent basic science, clinical, and epidemiological findings examining egg PL intake and risk of CVD are summarized.

  2. Reconstituting ring-rafts in bud-mimicking topography of model membranes

    NASA Astrophysics Data System (ADS)

    Ryu, Yong-Sang; Lee, In-Ho; Suh, Jeng-Hun; Park, Seung Chul; Oh, Soojung; Jordan, Luke R.; Wittenberg, Nathan J.; Oh, Sang-Hyun; Jeon, Noo Li; Lee, Byoungho; Parikh, Atul N.; Lee, Sin-Doo

    2014-07-01

    During vesicular trafficking and release of enveloped viruses, the budding and fission processes dynamically remodel the donor cell membrane in a protein- or a lipid-mediated manner. In all cases, in addition to the generation or relief of the curvature stress, the buds recruit specific lipids and proteins from the donor membrane through restricted diffusion for the development of a ring-type raft domain of closed topology. Here, by reconstituting the bud topography in a model membrane, we demonstrate the preferential localization of cholesterol- and sphingomyelin-enriched microdomains in the collar band of the bud-neck interfaced with the donor membrane. The geometrical approach to the recapitulation of the dynamic membrane reorganization, resulting from the local radii of curvatures from nanometre-to-micrometre scales, offers important clues for understanding the active roles of the bud topography in the sorting and migration machinery of key signalling proteins involved in membrane budding.

  3. Bioactivity and mechanism of action of Lophozozymus pictor toxin.

    PubMed

    Lau, C O; Tan, C H; Li, Q T; Ng, F H; Yuen, R; Khoo, H E

    1995-07-01

    The bioactivity of Lophozozymus pictor toxin (LPTX) and the possible mechanism of action of the purified toxin are described. LPTX is found to possess palytoxin-like bioactivities. Besides exhibiting cytotoxic and haemolytic properties, LPTX causes the release of K+ from erythrocytes and inhibits 2-[14C]deoxy-D-glucose uptake into HeLa cells. Although LPTX acts on HeLa cell and erythrocyte membranes, it does not interact with mitochondrial or liposomal membranes containing different phospholipid compositions. Ouabain, but not sphingomyelin, is able to prevent the toxic effects of LPTX. This antagonistic effect of ouabain on LPTX suggests that the toxin might mediate its toxic effects via the membrane Na+/K(+)-ATPase but not through interaction with membrane lipids.

  4. Ceramide Formation Mediated by Acid Sphingomyelinase Facilitates Endosomal Escape of Caliciviruses

    PubMed Central

    Shivanna, Vinay; Kim, Yunjeong; Chang, Kyeong-Ok

    2015-01-01

    Our recent results demonstrated that bile acids facilitate virus escape from the endosomes into the cytoplasm for successful replication of porcine enteric calicivirus (PEC). We report a novel finding that bile acids can be substituted by cold treatment for endosomal escape and virus replication. This endosomal escape by cold treatment or bile acids is associated with ceramide formation by acid sphingomyelinase (ASM). ASM catalyzes hydrolysis of sphingomyelin into ceramide, which is known to destabilize lipid bilayer. Treatment of LLC-PK cells with bile acids or cold led to ceramide formation, and small molecule antagonists or siRNA of ASM blocked ceramide formation in the endosomes and significantly reduced PEC replication. Inhibition of ASM resulted in the retention of PEC, feline calicivirus or murine norovirus in the endosomes in correlation with reduced viral replication. These results suggest the importance of viral escape from the endosomes for the replication of various caliciviruses. PMID:25985440

  5. Crystal structure of mammalian acid sphingomyelinase

    PubMed Central

    Gorelik, Alexei; Illes, Katalin; Heinz, Leonhard X.; Superti-Furga, Giulio; Nagar, Bhushan

    2016-01-01

    Acid sphingomyelinase (ASMase, ASM, SMPD1) converts sphingomyelin into ceramide, modulating membrane properties and signal transduction. Inactivating mutations in ASMase cause Niemann–Pick disease, and its inhibition is also beneficial in models of depression and cancer. To gain a better understanding of this critical therapeutic target, we determined crystal structures of mammalian ASMase in various conformations. The catalytic domain adopts a calcineurin-like fold with two zinc ions and a hydrophobic track leading to the active site. Strikingly, the membrane interacting saposin domain assumes either a closed globular conformation independent from the catalytic domain, or an open conformation, which establishes an interface with the catalytic domain essential for activity. Structural mapping of Niemann–Pick mutations reveals that most of them likely destabilize the protein's fold. This study sheds light on the molecular mechanism of ASMase function, and provides a platform for the rational development of ASMase inhibitors and therapeutic use of recombinant ASMase. PMID:27435900

  6. Resveratrol induces ordered domains formation in biomembranes: Implication for its pleiotropic action.

    PubMed

    Neves, Ana Rute; Nunes, Cláudia; Reis, Salette

    2016-01-01

    Resveratrol is a polyphenol compound with great value in cancer therapy, cardiovascular protection, and neurodegenerative disorders. The mechanism by which resveratrol exerts such pleiotropic effects is not yet clear and there is a huge need to understand the influence of this compound on the regulation of lipid domains formation on membrane structure. The aim of the present study was to reveal potential molecular interactions between resveratrol and lipid rafts found in cell membranes by means of Förster resonance energy transfer, DPH fluorescence quenching, and triton X-100 detergent resistance assay. Liposomes composed of egg phosphatidylcholine, cholesterol, and sphingomyelin were used as model membranes. The results revealed that resveratrol induces phase separation and formation of liquid-ordered domains in bilayer structures. The formation of such tightly packed lipid rafts is important for different signal transduction pathways, through the regulation of membrane-associating proteins, that can justify several pharmacological activities of this compound.

  7. New Insights on the Biophysical Interaction of Resveratrol with Biomembrane Models: Relevance for Its Biological Effects.

    PubMed

    Neves, Ana Rute; Nunes, Cláudia; Reis, Salette

    2015-09-03

    Resveratrol has been widely studied because of its pleiotropic effects in cancer therapy, neuroprotection, and cardioprotection. It is believed that the interaction of resveratrol with biological membranes may play a key role in its therapeutic activity. The capacity of resveratrol to partition into lipid bilayers, its possible location within the membrane, and the influence of this compound on the membrane fluidity were investigated using membrane mimetic systems composed of egg l-α-phosphatidylcholine (EPC), cholesterol (CHOL), and sphingomyelin (SM). The results showed that resveratrol has greater affinity for the EPC bilayers than for EPC:CHOL [4:1] and EPC:CHOL:SM [1:1:1] membrane models. The increased difficulty in penetrating tight packed membranes is also demonstrated by fluorescence quenching of probes and by fluorescence anisotropy measurements. Resveratrol may be involved in the regulation of cell membrane fluidity, thereby contributing for cell homeostasis.

  8. Flagellar membranes are rich in raft-forming phospholipids

    PubMed Central

    Serricchio, Mauro; Schmid, Adrien W.; Steinmann, Michael E.; Sigel, Erwin; Rauch, Monika; Julkowska, Daria; Bonnefoy, Serge; Fort, Cécile; Bastin, Philippe; Bütikofer, Peter

    2015-01-01

    ABSTRACT The observation that the membranes of flagella are enriched in sterols and sphingolipids has led to the hypothesis that flagella might be enriched in raft-forming lipids. However, a detailed lipidomic analysis of flagellar membranes is not available. Novel protocols to detach and isolate intact flagella from Trypanosoma brucei procyclic forms in combination with reverse-phase liquid chromatography high-resolution tandem mass spectrometry allowed us to determine the phospholipid composition of flagellar membranes relative to whole cells. Our analyses revealed that phosphatidylethanolamine, phosphatidylserine, ceramide and the sphingolipids inositol phosphorylceramide and sphingomyelin are enriched in flagella relative to whole cells. In contrast, phosphatidylcholine and phosphatidylinositol are strongly depleted in flagella. Within individual glycerophospholipid classes, we observed a preference for ether-type over diacyl-type molecular species in membranes of flagella. Our study provides direct evidence for a preferential presence of raft-forming phospholipids in flagellar membranes of T. brucei. PMID:26276100

  9. The OSBP-related proteins (ORPs): global sterol sensors for co-ordination of cellular lipid metabolism, membrane trafficking and signalling processes?

    PubMed

    Olkkonen, V M; Johansson, M; Suchanek, M; Yan, D; Hynynen, R; Ehnholm, C; Jauhiainen, M; Thiele, C; Lehto, M

    2006-06-01

    Protein families related to OSBP (oxysterol-binding protein) are present in eukaryotes from yeast to human. The functions of the ORPs (OSBP-related proteins) have remained largely enigmatic. Even though they have been implicated in the function of ERJs (endoplasmic reticulum junctions), it is evident that any single model for their mechanism of action is insufficient. The existing evidence points in many different directions, such as integration of sterol and sphingomyelin metabolism, regulation of neutral lipid metabolism, control of signalling cascades, regulation of secretory vesicle generation, and function in the microtubule-based motility of endo/lysosomes. Some of these functions could involve ERJ and non-vesicular transport of lipids, but this is unlikely to be the unifying feature. We believe, rather, that the common denominator for ORP function is acting as sterol sensors that relay information to a spectrum of cellular processes.

  10. Method of fabricating lipid bilayer membranes on solid supports

    NASA Technical Reports Server (NTRS)

    Cho, Nam-Joon (Inventor); Frank, Curtis W. (Inventor); Glenn, Jeffrey S. (Inventor); Cheong, Kwang Ho (Inventor)

    2012-01-01

    The present invention provides a method of producing a planar lipid bilayer on a solid support. With this method, a solution of lipid vesicles is first deposited on the solid support. Next, the lipid vesicles are destabilized by adding an amphipathic peptide solution to the lipid vesicle solution. This destabilization leads to production of a planar lipid bilayer on the solid support. The present invention also provides a supported planar lipid bilayer, where the planar lipid bilayer is made of naturally occurring lipids and the solid support is made of unmodified gold or titanium oxide. Preferably, the supported planar lipid bilayer is continuous. The planar lipid bilayer may be made of any naturally occurring lipid or mixture of lipids, including, but not limited to phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinsitol, cardiolipin, cholesterol, and sphingomyelin.

  11. Lysosomal degradation of membrane lipids.

    PubMed

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. No evidence for substrate accumulation in Parkinson brains with GBA mutations

    PubMed Central

    Gegg, Matthew E.; Sweet, Lindsay; Wang, Bing H.; Shihabuddin, Lamya S.; Sardi, Sergio Pablo

    2015-01-01

    Abstract Background To establish whether Parkinson's disease (PD) brains previously described to have decreased glucocerebrosidase activity exhibit accumulation of the lysosomal enzyme's substrate, glucosylceramide, or other changes in lipid composition. Methods Lipidomic analyses and cholesterol measurements were performed on the putamen (n = 5‐7) and cerebellum (n = 7‐14) of controls, Parkinson's disease brains with heterozygote GBA1 mutations (PD+GBA), or sporadic PD. Results Total glucosylceramide levels were unchanged in both PD+GBA and sporadic PD brains when compared with controls. No changes in glucosylsphingosine (deacetylated glucosylceramide), sphingomyelin, gangliosides (GM2, GM3), or total cholesterol were observed in either putamen or cerebellum. Conclusions This study did not demonstrate glucocerebrosidase substrate accumulation in PD brains with heterozygote GBA1 mutations in areas of the brain with low α‐synuclein pathology. © 2015 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. PMID:26096906

  13. Unique Lipid Chemistry of Synaptic Vesicle and Synaptosome Membrane Revealed Using Mass Spectrometry.

    PubMed

    Lewis, Kenneth T; Maddipati, Krishna R; Naik, Akshata R; Jena, Bhanu P

    2017-03-02

    Synaptic vesicles measuring 30-50 nm in diameter containing neurotransmitters either completely collapse at the presynaptic membrane or dock and transiently fuse at the base of specialized 15 nm cup-shaped lipoprotein structures called porosomes at the presynaptic membrane of synaptosomes to release neurotransmitters. Recent study reports the unique composition of major lipids associated with neuronal porosomes. Given that lipids greatly influence the association and functions of membrane proteins, differences in lipid composition of synaptic vesicle and the synaptosome membrane was hypothesized. To test this hypothesis, the lipidome of isolated synaptosome, synaptosome membrane, and synaptic vesicle preparation were determined by using mass spectrometry in the current study. Results from the study demonstrate the enriched presence of triacyl glycerols and sphingomyelins in synaptic vesicles, as opposed to the enriched presence of phospholipids in the synaptosome membrane fraction, reflecting on the tight regulation of nerve cells in compartmentalization of membrane lipids at the nerve terminal.

  14. The morphology of GM1 x/SM 0.6-x/Chol 0.4 planar bilayers supported on SiO 2 surfaces

    NASA Astrophysics Data System (ADS)

    Mao, Yanli; Tero, Ryugo; Imai, Yosuke; Hoshino, Tyuji; Urisu, Tsuneo

    2008-07-01

    Ganglioside GM1 (GM1), sphingomyelin (SM) and cholesterol (Chol) are dominant lipid components of rafts in plasma membranes. The morphology of GM1 x/SM 0.6-x/Chol 0.4 SPBs on SiO 2 surfaces has been studied by atomic force microscopy and fluorescence microscopy at various ratios of GM1/SM ( x = 0-0.25). The unique changes in morphology depending on the GM1 concentrations are qualitatively explained by hydrogen bonding and the hydrophobic interactions between SM and Chol, and by hydrogen bonding and the steric effects between bulky GM1 headgroups under Ca 2+ existing conditions and the electrostatic repulsion between the negative charges of GM1 headgroups under Ca 2+ nonexisting conditions.

  15. Lateral organization of complex lipid mixtures from multiscale modeling

    NASA Astrophysics Data System (ADS)

    Tumaneng, Paul W.; Pandit, Sagar A.; Zhao, Guijun; Scott, H. L.

    2010-02-01

    The organizational properties of complex lipid mixtures can give rise to functionally important structures in cell membranes. In model membranes, ternary lipid-cholesterol (CHOL) mixtures are often used as representative systems to investigate the formation and stabilization of localized structural domains ("rafts"). In this work, we describe a self-consistent mean-field model that builds on molecular dynamics simulations to incorporate multiple lipid components and to investigate the lateral organization of such mixtures. The model predictions reveal regions of bimodal order on ternary plots that are in good agreement with experiment. Specifically, we have applied the model to ternary mixtures composed of dioleoylphosphatidylcholine:18:0 sphingomyelin:CHOL. This work provides insight into the specific intermolecular interactions that drive the formation of localized domains in these mixtures. The model makes use of molecular dynamics simulations to extract interaction parameters and to provide chain configuration order parameter libraries.

  16. Characterization of inositol phospho-sphingolipid-phospholipase C 1 (Isc1) in Cryptococcus neoformans reveals unique biochemical features.

    PubMed

    Henry, Jennifer; Guillotte, Aimee; Luberto, Chiara; Del Poeta, Maurizio

    2011-02-18

    In this work, we biochemically characterized inositol phosphosphingolipid-phospholipase C (Isc1) from the pathogenic fungus Cryptococcus neoformans. Unlike Isc1 from other fungi and parasites which hydrolyze both fungal complex sphingolipids (IPC-PLC) and mammalian sphingomyelin (SM-PLC), C. neoformans Isc1 only exerts IPC-PLC activity. Genetic mutations thought to regulate substrate recognition in other Isc1 proteins do not restore SM-PLC activity of the cryptococcal enzyme. C. neoformans Isc1 regulates the level of complex sphingolipids and certain species of phytoceramide, especially when fungal cells are exposed to acidic stress. Since growth in acidic environments is required for C. neoformans to cause disease, this study has important implications for understanding of C. neoformans pathogenicity.

  17. MALDI imaging MS of phospholipids in the mouse lung[S

    PubMed Central

    Berry, Karin A. Zemski; Li, Bilan; Reynolds, Susan D.; Barkley, Robert M.; Gijón, Miguel A.; Hankin, Joseph A.; Henson, Peter M.; Murphy, Robert C.

    2011-01-01

    Lipid mediators are important in lung biochemistry and are derived from the enzymatic oxidation of arachidonic and docosahexaenoic acids, which are PUFAs that are present in phospholipids in cell membranes. In this study, MALDI imaging MS was used to determine the localization of arachidonate- and docosahexaenoate-containing phospholipids in mouse lung. These PUFA-containing phospholipids were determined to be uniquely abundant at the lining of small and large airways, which were unequivocally identified by immunohistochemistry. In addition, it was found that the blood vessels present in the lung were characterized by sphingomyelin molecular species, and lung surfactant phospholipids appeared evenly distributed throughout the lung parenchyma, indicating alveolar localization. This technique revealed unexpected high concentrations of arachidonate- and docosahexaenoate-containing phospholipids lining the airways in pulmonary tissue, which could serve as precursors of lipid mediators affecting airways biology. PMID:21508254

  18. Inhibition of lysenin-induced hemolysis by all-E-lutein derived from the plant Dalbergia latifolia.

    PubMed

    Niwa, Yuki; Matsui, Chino; Sukumwang, Neelanun; Iinuma, Hironobu; Ikeda, Yoko; Koyano, Takashi; Kovitayakorn, Taworn; Simizu, Siro; Umezawa, Kazuo

    2012-06-01

    Lysenin is a pore-forming toxin derived from coelomic fluid of the earthworm Eisenia foetida. The model of lysenin-induced hemolysis includes the specific binding of lysenin to sphingomyelin, oligomerization of the pore proteins, and pore formation. Although the mechanism of lysenin-induced hemolysis is unique, its precise mechanism of action and its inhibitors are poorly understood. In the present study, we screened for inhibitors of lysenin-induced hemolysis by using an optimized screening system and found a methanolic extract of Dalbergia latifolia leaves to be a potential candidate. After isolation and identification, all-E-lutein was identified as the hemolysis inhibitor with an effective dose of 0.025-2.5 ng/mL without any toxicity. The inhibition by all-E-lutein is likely to occur during the receptor binding and/or pore-forming protein oligomerization. Georg Thieme Verlag KG Stuttgart · New York.

  19. [Nieman-Pick disease revealed by a pulmonary miliary tuberculosis (author's transl)].

    PubMed

    Kofman, J; Chevalier, J P; Baraton, G; Brun, J

    1979-01-01

    A diagnosis of Niemann-Pick disease was made in a 26 years old man with chronic pulmonary miliary tuberculosis and splenomegaly. It was confirmed by the drop of sphingomyelinase level in leucocytes and fibroblasts of the skin. The authors showed the presence of foamy cells with sphingomyelin in the spleen and bone marrow. They underlined the value of dosing sphingomyelinase in leucocytes for diagnosis purposes. They also observed blue histocytes in the spleen and bone marrow, next to the foamy cells which are not specific of Niemann-Pick disease and can be found in numerous other affections. This pure visceral form with delayed development without neurological involvement, corresponds to the phenotype B of Crocker.

  20. Dihydroceramides: From Bit Players to Lead Actors*

    PubMed Central

    Siddique, Monowarul Mobin; Li, Ying; Chaurasia, Bhagirath; Kaddai, Vincent A.; Summers, Scott A.

    2015-01-01

    Sphingolipid synthesis involves a highly conserved biosynthetic pathway that produces fundamental precursors of complex sphingolipids. The final reaction involves the insertion of a double bond into dihydroceramides to generate the more abundant ceramides, which are converted to sphingomyelins and glucosylceramides/gangliosides by the addition of polar head groups. Although ceramides have long been known to mediate cellular stress responses, the dihydroceramides that are transiently produced during de novo sphingolipid synthesis were deemed inert. Evidence published in the last few years suggests that these dihydroceramides accumulate to a far greater extent in tissues than previously thought. Moreover, they have biological functions that are distinct and non-overlapping with those of the more prevalent ceramides. Roles are being uncovered in autophagy, hypoxia, and cellular proliferation, and the lipids are now implicated in the etiology, treatment, and/or diagnosis of diabetes, cancer, ischemia/reperfusion injury, and neurodegenerative diseases. This minireview summarizes recent findings on this emerging class of bioactive lipids. PMID:25947377

  1. Use of canonical variate analysis biplot in examination of choline content data of some foods.

    PubMed

    Alkan, Baris; Atakan, Cemal

    2011-03-01

    Adequate intake (AI) of choline as part of the daily diet can help prevent major diseases. Low choline intake is a major risk factor for liver and several neurological disorders. Extreme choline consumption may cause diseases such as hypotension, sweating, diarrhea, and fishy body odor. The AI of choline is 425 mg/day for adult women; higher for pregnant and lactating women. The AI for adult men is 550 mg/day. The total choline content of foods is calculated as the sum of free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine and sphingomyelin. These are called the choline variables. Observed values of choline variables may be different in amounts of nutrients. So different food groups in terms of choline variables are useful to compare. The present paper shows the advantages of using canonical variate analysis biplot to optimally separate groups and explore the differentiality of choline variables amounts in foods.

  2. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    SciTech Connect

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. )

    1990-09-01

    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  3. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    PubMed Central

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  4. Mitochondrial Respiration Controls Lysosomal Function during Inflammatory T Cell Responses.

    PubMed

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Ledesma, Maria Dolores; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2015-09-01

    The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4(+) T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation, and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward proinflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD(+) levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify strategies for intervention in mitochondrial-related diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Phase separation in biological membranes: integration of theory and experiment.

    PubMed

    Elson, Elliot L; Fried, Eliot; Dolbow, John E; Genin, Guy M

    2010-01-01

    Lipid bilayer model membranes that contain a single lipid species can undergo transitions between ordered and disordered phases, and membranes that contain a mixture of lipid species can undergo phase separations. Studies of these transformations are of interest for what they can tell us about the interaction energies of lipid molecules of different species and conformations. Nanoscopic phases (<200 nm) can provide a model for membrane rafts, specialized membrane domains enriched in cholesterol and sphingomyelin, which are believed to have essential biological functions in cell membranes. Crucial questions are whether lipid nanodomains can exist in stable equilibrium in membranes and what is the distribution of their sizes and lifetimes in membranes of different composition. Theoretical methods have supplied much information on these questions, but better experimental methods are needed to detect and characterize nanodomains under normal membrane conditions. This review summarizes linkages between theoretical and experimental studies of phase separation in lipid bilayer model membranes.

  6. Plasma lipid analysis by hydrophilic interaction liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Sonomura, Kazuhiro; Kudoh, Shinobu; Sato, Taka-Aki; Matsuda, Fumihiko

    2015-06-01

    A novel method for the analysis of endogenous lipids and related compounds was developed employing hydrophilic interaction liquid chromatography with electrospray ionization tandem mass spectrometry. A hydrophilic interaction liquid chromatography with carbamoyl stationary phase achieved clear separation of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, ceramide, and mono-hexsosyl ceramide groups with good peak area repeatability (RSD% < 10) and linearity (R(2) > 0.99). The established method was applied to human plasma assays and a total of 117 endogenous lipids were successfully detected and reproducibly identified. In addition, we investigated the simultaneous detection of small polar metabolites such as amino and organic acids co-existing in the same biological samples processed in a single analytical run with lipids. Our results show that hydrophilic interaction liquid chromatography is a useful tool for human plasma lipidome analysis and offers more comprehensive metabolome coverage.

  7. Earthworm-Derived Pore-Forming Toxin Lysenin and Screening of Its Inhibitors

    PubMed Central

    Sukumwang, Neelanun; Umezawa, Kazuo

    2013-01-01

    Lysenin is a pore-forming toxin from the coelomic fluid of earthworm Eisenia foetida. This protein specifically binds to sphingomyelin and induces erythrocyte lysis. Lysenin consists of 297 amino acids with a molecular weight of 41 kDa. We screened for cellular signal transduction inhibitors of low molecular weight from microorganisms and plants. The purpose of the screening was to study the mechanism of diseases using the obtained inhibitors and to develop new chemotherapeutic agents acting in the new mechanism. Therefore, our aim was to screen for inhibitors of Lysenin-induced hemolysis from plant extracts and microbial culture filtrates. As a result, we isolated all-E-lutein from an extract of Dalbergia latifolia leaves. All-E-lutein is likely to inhibit the process of Lysenin-membrane binding and/or oligomer formation rather than pore formation. Additionally, we isolated tyrosylproline anhydride from the culture filtrate of Streptomyces as an inhibitor of Lysenin-induced hemolysis. PMID:23965430

  8. Comparison of aggressive and conservative management of premature rupture of fetal membranes.

    PubMed

    Barrett, J M; Boehm, F H

    1982-09-01

    A 3-year prospective study was undertaken to compare two types of management of rupture of the fetal membranes between 26 and 34 weeks. Patients in whom amniotic fluid, obtained by amniocentesis, was shown to have no evidence of infection, and who had less than mature lecithin/sphingomyelin (L/S) ratios, were given steroids and, if needed, treated with tocolytic agents. Patients in whom no amniotic fluid could be obtained were not given steroids, but were managed expectantly. Only patients with rupture of membranes greater than or equal to 24 hours were included in the collection of data. Despite the aggressive treatment protocol of the steroid group, no significant difference was found between the two groups in the prevalence of respiratory distress, hyperbilirubinemia, patent ductus arteriosus, episodes of apnea and bradycardia, or necrotizing enterocolitis. Perinatal mortality rates were similar in the two groups, and no difference in the incidence of maternal or neonatal infectious complications was found.

  9. Isolation and characterization of lipid-protein particles containing platelet factor 3 released from human platelets.

    PubMed Central

    Sandberg, H; Andersson, L O; Höglund, S

    1982-01-01

    Lipid-protein particles with platelet factor 3 measured by the Stypven clotting-time test [Hardisty & Hutton (1966) Br. J. Haematol. 12, 764-776] have been isolated from platelet-release supernatant. Starting material was washed platelets, which were released by treatment with collagen. Purification of the particles from other components in the release material was accomplished by gel filtration on Sepharose CL-4B followed by affinity chromatography on poly-L-lysine-Sepharose CL-4B gel. Chemical characterization showed that the particles were composed of 40% protein, 42% phospholipids, 13% cholesterol and 5% triacylglycerols. The phospholipid composition was 38% phosphatidylcholine, 25% phosphatidylethanolamine, 9% phosphatidylserine, 2% phosphatidic acid and 26% sphingomyelin. No carbohydrate was detected. Electron-microscopic studies revealed the presence of membranous particles with diameters between 70 and 170 nm. Images PLATE 1 Fig. 3. PMID:7103943

  10. Functional roles of gangliosides in neurodevelopment--An overview of recent advances

    PubMed Central

    Yu, Robert K.; Tsai, Yi-Tzang; Ariga, Toshio

    2013-01-01

    Summary Gangliosides are sialic acid-containing glycosphingolipids (GSLs) that are most abundant in the nervous system. They are localized primarily in the outer leaflets of plasma membranes and participated in cell-cell recognition, adhesion, and signal transduction and are integral components of cell surface microdomains or lipid rafts along with proteins, sphingomyelin and cholesterol. Ganglioside-rich lipid rafts play an important role in signaling events affecting neural development and the pathogenesis of certain diseases. Disruption of ganglioside synthase genes in mice induces developmental defects and neural degeneration. Targeting ganglioside metabolism may represent a novel therapeutic strategy for intervention in certain diseases. In this review, we focus on recent advances on metabolic and functional studies of gangliosides in normal brain development and in certain neurological disorders. PMID:22410735

  11. Microbial sphingomyelinase induces RhoA-mediated reorganization of the apical brush border membrane and is protective against invasion

    PubMed Central

    Saslowsky, David E.; Thiagarajah, Jay R.; McCormick, Beth A.; Lee, Jean C.; Lencer, Wayne I.

    2016-01-01

    The apical brush border membrane (BBM) of intestinal epithelial cells forms a highly structured and dynamic environmental interface that serves to regulate cellular physiology and block invasion by intestinal microbes and their products. How the BBM dynamically responds to pathogenic and commensal bacterial signals can define intestinal homeostasis and immune function. We previously found that in model intestinal epithelium, the conversion of apical membrane sphingomyelin to ceramide by exogenous bacterial sphingomyelinase (SMase) protected against the endocytosis and toxicity of cholera toxin. Here we elucidate a mechanism of action by showing that SMase induces a dramatic, reversible, RhoA-dependent alteration of the apical cortical F-actin network. Accumulation of apical membrane ceramide is necessary and sufficient to induce the actin phenotype, and this coincides with altered membrane structure and augmented innate immune function as evidenced by resistance to invasion by Salmonella. PMID:26864627

  12. [Some aspects of structural alterations of erythrocyte membranes under the effect of uranyl chloride at low concentrations].

    PubMed

    Shevchenko, O G

    2015-01-01

    The influence of nanomolar concentrations of the uranyl ion on the parameters of some membrane structures of rodent erythrocytes (laboratory mice and tundra voles--classical objects of radioecological monitoring) was investigated in vitro. A high sensitivity of the tundra vole red blood cells to the uranyl influence was shown. This fact may be determined by the cross-species difference in the membrane structures of erythrocytes--the low sphingomyelin content in tundra voles. Investigation into the phospholipid composition of the erythrocytes incubated in vitro with uranyl ions demonstrates the absence of the membrane lipid component reactions "typical" for the cells circulating in blood and also the changes pointing to the initial stages of eryptosis. Latent alterations in the membrane structure of red blood cells of both species induced by a short time contact with uranyl ions were confirmed by the increase in their sensitivity to nonionic detergent Triton X-100 and indicate the changes in orderliness of the membrane lipid phase.

  13. Activation of TLR3 in keratinocytes increases expression of genes involved in formation of the epidermis, lipid accumulation and epidermal organelles

    PubMed Central

    Borkowski, Andrew W.; Park, Kyungho; Uchida, Yoshikazu; Gallo, Richard L.

    2013-01-01

    Injury to the skin, and the subsequent release of non-coding double-stranded RNA from necrotic keratinocytes, has been identified as an endogenous activator of Toll-like receptor 3 (TLR3). Since changes in keratinocyte growth and differentiation follow injury, we hypothesized that TLR3 might trigger some elements of the barrier repair program in keratinocytes. Double-stranded RNA was observed to induce TLR3-dependent increases in human keratinocyte mRNA abundance for ABCA12 (ATP-binding cassette, sub-family A, member 12), glucocerebrosidase, acid sphingomyelinase, and transglutaminase 1. Additionally, treatment with double-stranded RNA resulted in increases in sphingomyelin and morphologic changes including increased epidermal lipid staining by oil-red O and TLR3-dependent increases in lamellar bodies and keratohyalin granules. These observations show that double-stranded RNA can stimulate some events in keratinocytes that are important for skin barrier repair and maintenance. PMID:23353987

  14. Quantification of brain lipids by FTIR spectroscopy and partial least squares regression

    NASA Astrophysics Data System (ADS)

    Dreissig, Isabell; Machill, Susanne; Salzer, Reiner; Krafft, Christoph

    2009-01-01

    Brain tissue is characterized by high lipid content. Its content decreases and the lipid composition changes during transformation from normal brain tissue to tumors. Therefore, the analysis of brain lipids might complement the existing diagnostic tools to determine the tumor type and tumor grade. Objective of this work is to extract lipids from gray matter and white matter of porcine brain tissue, record infrared (IR) spectra of these extracts and develop a quantification model for the main lipids based on partial least squares (PLS) regression. IR spectra of the pure lipids cholesterol, cholesterol ester, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, galactocerebroside and sulfatide were used as references. Two lipid mixtures were prepared for training and validation of the quantification model. The composition of lipid extracts that were predicted by the PLS regression of IR spectra was compared with lipid quantification by thin layer chromatography.

  15. Near infrared Raman spectra of human brain lipids

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Neudert, Lars; Simat, Thomas; Salzer, Reiner

    2005-05-01

    Human brain tissue, in particular white matter, contains high lipid content. These brain lipids can be divided into three principal classes: neutral lipids including the steroid cholesterol, phospholipids and sphingolipids. Major lipids in normal human brain tissue are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, sphingomyelin, galactocerebrosides, gangliosides, sulfatides and cholesterol. Minor lipids are cholesterolester and triacylglycerides. During transformation from normal brain tissue to tumors, composition and concentration of lipids change in a specific way. Therefore, analysis of lipids might be used as a diagnostic parameter to distinguish normal tissue from tumors and to determine the tumor type and tumor grade. Raman spectroscopy has been suggested as an analytical tool to detect these changes even under intra-operative conditions. We recorded Raman spectra of the 12 major and minor brain lipids with 785 nm excitation in order to identify their spectral fingerprints for qualitative and quantitative analyses.

  16. Lipid-protein interactions in human plasma LDL evidenced by magnetic resonance.

    PubMed

    Kveder, Marina; Marinić, Zeljko; Krisko, Anita; Vikić-Topić, Drazen; Pifat, Greta

    2006-06-01

    Low density lipoprotein (LDL) particles exhibit extremely complex three-dimensional structural organization which is still not understood at the molecular level. The aim of this study was to provide the experimental evidence of a direct non-covalent interaction of the protein part with the lipid matrix. The approach was based on the combination of (1)H NMR (600 MHz) spectroscopy with thiol-specific spin labeling of the protein (apoB). It is shown that the spectral peaks assigned to the methyl head groups of phosphatidylcholine and sphingomyelin in the (1)H spectra of LDL exhibit line broadening when otherwise free thiol groups of apoB are covalently modified by methanethiosulfonate spin label. The effect is similar in the presence of water soluble paramagnetic compound. These results indicate that fragments of apoB, which are part of the receptor binding region, are directly in contact with the solvated phospholipid head groups of the lipid matrix.

  17. Quantification of phospholipids in infant formula and growing up milk by high-performance liquid chromatography with evaporative light scattering detector.

    PubMed

    Braun, Marcel; Flück, Brigitte; Cotting, Claudia; Monard, Florence; Giuffrida, Francesca

    2010-01-01

    Phospholipids (PLs) are well known for their excellent emulsifier properties and more recently for their biological functions, such as cell signing, brain development, immune function, heart health, and cancer prevention, besides their physiological role in membrane composition. In dairy products, PLs represent 0.2-1% of milk fat. The milk PLs comprise phosphatidylcholine (PC), phosphatidylethanolamine (PE), and sphingomyelin (SPH) as the major compounds; phosphatidylinositol and phosphatidylserine are minor PLs. A new generation of dairy products claiming PL family content, such as SPH, is being produced; therefore, a validated method for quantifying PL families in dairy products is needed. In this study, an HPLC-evaporative light scattering detector method to quantify the most abundant milk PL families, i.e., PC, PE, and SPH, in infant formula and growing up milk was developed and validated.

  18. An improved method excluding hemoglobin interferences for lysosomal hydrolase assays using colorimetric synthetic substrates, 2-(N-hexadecanoylamino)-4-nitrophenol derivatives.

    PubMed

    Levade, T; Salvayre, R; Sicre, J; Douste-Blazy, L

    1983-04-15

    Artificial chromogenic substrates, derived from 2-(N-hexadecanoylamino)-4-nitrophenol, can be used to assay sphingomyelin phosphodiesterase, glucosylceramidase, or galactosylceramidase. Nevertheless, these enzymatic spectrophotometric assays cannot be realized on tissue preparations containing hemoglobin which interferes in the measurement. We present a selective extraction method of 2-(N-hexadecanoylamino)-4-nitrophenol which allows to avoid hemoglobin interference in this spectrophotometric assay of 2-(N-hexadecanoylamino)-4-nitrophenol. The solvents used have been tested to obtain on the one hand maximal absorbance and organic extraction of 2-(N-hexadecanoylamino)-4-nitrophenol, and on the other hand the minimal hemoglobin interference. None of the pure solvents studied being suitable, two solvent mixtures were selected: ethyl acetate/2-propanol (5/1) and 2-ethyl-1-hexanol/4-methyl-2-pentanone (1/1). These methods were tested to determine sphingomyelinase activity in enzymatic preparations and prove that they are available for lysosomal hydrolase assays using these colorimetric substrates.

  19. The Nova Scotia (type D) form of Niemann-Pick disease is caused by a G3097-->T transversion in NPC1.

    PubMed

    Greer, W L; Riddell, D C; Gillan, T L; Girouard, G S; Sparrow, S M; Byers, D M; Dobson, M J; Neumann, P E

    1998-07-01

    Niemann-Pick type D (NPD) disease is a progressive neurodegenerative disorder characterized by the accumulation of tissue cholesterol and sphingomyelin. This disorder is relatively common in southwestern Nova Scotia, because of a founder effect. Our previous studies, using classic linkage analysis of this large extended kindred, defined the critical gene region to a 13-cM chromosome segment between D18S40 and D18S66. A recently isolated gene from this region, NPC1, is mutated in the majority of patients with Niemann-Pick type C disease. We have identified a point mutation within this gene (G3097-->T; Gly992-->Trp) that shows complete linkage disequilibrium with NPD, confirming that NPD is an allelic variant of NPC1.

  20. Egg Phospholipids and Cardiovascular Health

    PubMed Central

    Blesso, Christopher N.

    2015-01-01

    Eggs are a major source of phospholipids (PL) in the Western diet. Dietary PL have emerged as a potential source of bioactive lipids that may have widespread effects on pathways related to inflammation, cholesterol metabolism, and high-density lipoprotein (HDL) function. Based on pre-clinical studies, egg phosphatidylcholine (PC) and sphingomyelin appear to regulate cholesterol absorption and inflammation. In clinical studies, egg PL intake is associated with beneficial changes in biomarkers related to HDL reverse cholesterol transport. Recently, egg PC was shown to be a substrate for the generation of trimethylamine N-oxide (TMAO), a gut microbe-dependent metabolite associated with increased cardiovascular disease (CVD) risk. More research is warranted to examine potential serum TMAO responses with chronic egg ingestion and in different populations, such as diabetics. In this review, the recent basic science, clinical, and epidemiological findings examining egg PL intake and risk of CVD are summarized. PMID:25871489

  1. A Phospholipidomic Analysis of All Defined Human Plasma Lipoproteins

    PubMed Central

    Dashti, Monireh; Kulik, Willem; Hoek, Frans; Veerman, Enno C.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2011-01-01

    Since plasma lipoproteins contain both protein and phospholipid components, either may be involved in processes such as atherosclerosis. In this study the identification of plasma lipoprotein-associated phospholipids, which is essential for understanding these processes at the molecular level, are performed. LC-ESI/MS, LC-ESI-MS/MS and High Performance Thin Layer Chromatography (HPTLC) analysis of different lipoprotein fractions collected from pooled plasma revealed the presence of phosphatidylethanolamine (PE), phosphatidylinositol (PI), and sphingomyeline (SM) only on lipoproteins and phosphatidylcholine (PC), Lyso-PC on both lipoproteins and plasma lipoprotein free fraction (PLFF). Cardiolipin, phosphatidylglycerol (PG) and Phosphatidylserine (PS) were observed neither in the lipoprotein fractions nor in PLFF. All three approaches led to the same results regarding phospholipids occurrence in plasma lipoproteins and PLFF. A high abundancy of PE and SM was observed in VLDL and LDL fractions respectively. This study provides for the first time the knowledge about the phospholipid composition of all defined plasma lipoproteins. PMID:22355656

  2. Niemann-Pick type B in adulthood

    PubMed Central

    Simões, Rita Gonçalves; Maia, Helena

    2015-01-01

    Niemann-Pick disease (NPD) is a rare group of autosomal recessive disorders associated with intracellular deposition of sphingomyelin. NPD type B is a milder form, generally later in onset, with a good prognosis for survival into adulthood and usually with no neurological abnormalities. The authors describe the case of a 52-year-old man who presented with unexplained pancytopenia and splenomegaly. He was admitted to emergency splenectomy due to pathological splenic rupture. The histological findings showed diffuse histiocytosis, suggesting lysosomal storage disease. The NPD was confirmed when residual activity of acid sphingomyelinase in peripheral blood leucocytes and cultured skin fibroblasts was detected. Besides lipid abnormalities, the patient also had lipid interstitial pneumonia. There is no treatment for NPD. Management is based on surveillance and supportive care. The patient has reached the sixth decade of life with no symptoms and, despite the pneumonia and splenectomy, he still has a fairly healthy life. PMID:25657196

  3. Reconstituting ring-rafts in bud-mimicking topography of model membranes

    PubMed Central

    Ryu, Yong-Sang; Lee, In-Ho; Suh, Jeng-Hun; Park, Seung Chul; Oh, Soojung; Jordan, Luke R.; Wittenberg, Nathan J.; Oh, Sang-Hyun; Jeon, Noo Li; Lee, Byoungho; Parikh, Atul N.; Lee, Sin-Doo

    2014-01-01

    During vesicular trafficking and release of enveloped viruses, the budding and fission processes dynamically remodel the donor cell membrane in a protein- or a lipid-mediated manner. In all cases, in addition to the generation or relief of the curvature stress, the buds recruit specific lipids and proteins from the donor membrane through restricted diffusion for the development of a ring-type raft domain of closed topology. Here, by reconstituting the bud topography in a model membrane, we demonstrate the preferential localization of cholesterol- and sphingomyelin-enriched microdomains in the collar band of the bud-neck interfaced with the donor membrane. The geometrical approach to the recapitulation of the dynamic membrane reorganization, resulting from the local radii of curvatures from nanometre-to-micrometre scales, offers important clues for understanding the active roles of the bud topography in the sorting and migration machinery of key signalling proteins involved in membrane budding. PMID:25058275

  4. INHIBITION BY PHOSPHOLIPIDS OF THE ACTION OF SYNTHETIC DETERGENTS ON BACTERIA.

    PubMed

    Baker, Z; Harrison, R W; Miller, B F

    1941-11-30

    1. Lecithin, cephalin, and sphingomyelin prevent the inhibition of bacterial metabolism which is caused by synthetic anionic and cationic detergents. The phospholipids must be added either before or simultaneously with the detergent. Addition after the detergent is without effect. Bacteria still exhibit this phenomenon after they have been exposed to the phospholipid and thoroughly washed. 2. A similar action of the phospholipids has been demonstrated towards the bactericidal compounds isolated by Dubos and Hoogerheide from soil bacteria. There is very little effect with bactericidal mercury compounds. 3. The effect of lecithin against the bactericidal action of synthetic detergents was also determined. It was found that germicidal quantities of the detergents were not effective in the presence of the phospholipids.

  5. Dolichyl phosphate phosphatase in rat liver microsomes. Avoidance of the use of detergent in testing the effect of phospholipids on dolichyl phosphate phosphatase.

    PubMed

    Boscoboinik, D O; Morera, S; Belocopitow, E

    1984-06-06

    A system was developed for testing the effect of phospholipids on dolichyl phosphate phosphatase, a membrane-associated enzyme. This enzyme was solubilized, delipidated, stabilized and concentrated in such a way that minimal quantities of Triton X-100 were carried by enzyme extracts to the incubation mixture. Its substrate, dolichyl phosphate, could be kept in aqueous medium as suspended particles without addition of detergent. When dolichyl phosphate phosphatase was assayed using the substrate in this detergent-free form, values for Km, pH optimum and temperature optimum were different from those obtained with detergent-solubilized substrate. This assay of dolichyl phosphate phosphatase almost free of detergent allowed testing of the effect of specific phospholipids on enzyme activity with minimal interference produced by endogenous phospholipids or exogenous detergent. Sphingomyelin, phosphatidylethanolamine or phosphatidylcholine (zwitterionic phospholipids) acted as activators, whereas phosphatidic acid and phosphatidylinositol, negatively-charged phospholipids, were inhibitors of dolichyl phosphate phosphatase.

  6. Lipid Microdomains in Cell Nucleus

    PubMed Central

    Cascianelli, Giacomo; Villani, Maristella; Tosti, Marcello; Marini, Francesca; Bartoccini, Elisa; Viola Magni, Mariapia

    2008-01-01

    It is known that nuclear lipids play a role in proliferation, differentiation, and apoptotic process. Cellular nuclei contain high levels of phosphatidylcholine and sphingomyelin, which are partially linked with cholesterol and proteins to form lipid–protein complexes. These lipids are also associated with transcription factors and newly synthesized RNA but, up to date, their organization is still unknown. The aim of the present work was to study if these specific lipid–protein interactions could be nuclear membrane microdomains and to evaluate their possible role. The results obtained demonstrate for the first time the existence of nuclear microdomains characterized by a specific lipid composition similar to that of intranuclear lipid–protein complexes previously described. Nuclear microdomain lipid composition changes during cell proliferation when the content of newly synthesized RNA increases. Because previous data show a correlation between nuclear lipids and transcription process, the role of nuclear microdomains in cellular functions is discussed. PMID:18923143

  7. [Serum lipid spectrum in patients with obstructive jaundice].

    PubMed

    Makarov, V K; Mokhov, E M; Mosiagin, A V

    2007-11-01

    The study was undertaken to determine the serum lipid profile in patients with obstructive jaundice (OJ) of various genesis versus those with chronic viral hepatitis B (CVHB). The serum lipid profile was studied in 50 patients with OJ whose cause was cancer diseases and calculous cholecystitis in 20 and 30 patients, respectively. Thirty patients with CVHB were examined as a control group. In patients with OJ, the relative serum content of phospholipids was found to be twice less than that in patients with CVHB. In patients with OJ, hyperlipemia was mainly caused by free cholesterol or cholesterol esters. As compared with the patients with calculous cholecystitis and CVHB, the patients with cancer diseases had low sphingomyelin levels; this fact may be used as an additional measure in detecting OJ of cancer genesis.

  8. Lipid composition of membrane rafts, isolated with and without detergent, from the spleen of a mouse model of Gaucher disease.

    PubMed

    Hattersley, Kathryn J; Hein, Leanne K; Fuller, Maria

    2013-12-06

    Biological membranes are composed of functionally relevant liquid-ordered and liquid-disordered domains that coexist. Within the liquid-ordered domains are low-density microdomains known as rafts with a unique lipid composition that is crucial for their structure and function. Lipid raft composition is altered in sphingolipid storage disorders, and here we determined the lipid composition using a detergent and detergent-free method in spleen tissue, the primary site of pathology, in a mouse model of the sphingolipid storage disorder, Gaucher disease. The accumulating lipid, glucosylceramide, was 30- and 50-fold elevated in the rafts with the detergent and detergent-free method, respectively. Secondary accumulation of di- and trihexosylceramide resided primarily in the rafts with both methods. The phospholipids distributed differently with more than half residing in the rafts with the detergent-free method and less than 10% with the detergent method, with the exception of the fully saturated species that were primarily in the rafts. Individual isoforms of sphingomyelin correlated with detergent-free extraction and more than half resided in the raft fractions. However, this correlation was not seen with the detergent extraction method as sphingomyelin species were spread across both the raft and non-raft domains. Therefore caution must be exercised when interpreting phospholipid distribution in raft domains as it differs considerably depending on the method of isolation. Importantly, both methods revealed the same lipid alterations in the raft domains in the spleen of the Gaucher disease mouse model highlighting that either method is appropriate to determine membrane lipid changes in the diseased state. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells.

    PubMed

    Di Scala, Coralie; Mazzarino, Morgane; Yahi, Nouara; Varini, Karine; Garmy, Nicolas; Fantini, Jacques; Chahinian, Henri

    2017-06-01

    Anandamide (AEA) is a ubiquitous lipid that exerts neurotransmitter functions but also controls important biological functions such as proliferation, survival, or programmed cell death. The latter effects are also regulated by ceramide, a lipid enzymatically generated from sphingomyelin hydrolysis by sphingomyelinase. Ceramide has been shown to increase the cellular toxicity of AEA, but the mechanisms controlling this potentiating effect remained unclear. Here we have used a panel of in silico, physicochemical, biochemical and cellular approaches to study the crosstalk between AEA and ceramide apoptotic pathways. Molecular dynamics simulations indicated that AEA and ceramide could form a stable complex in phosphatidylcholine membranes. Consistent with these data, we showed that AEA can specifically insert into ceramide monolayers whereas it did not penetrate into sphingomyelin membranes. Then we have studied the effects of ceramide on AEA-induced toxicity of human neuroblastoma cells. In these experiments, the cells have been either naturally enriched in ceramide by neutral sphingomyelinase pre-incubation or treated with C2-ceramide, a biologically active ceramide analog. Both treatments significantly increased the cytotoxicity of AEA as assessed by the MTS mitochondrial toxicity assay. This effect was correlated with the concomitant accumulation of natural ceramide (or its synthetic analog) and AEA in the cells. A kinetic study of AEA hydrolysis showed that ceramide inhibited the fatty acid amino hydrolase (FAAH) activity in cell extracts. Taken together, these data suggested that ceramide binds to AEA, increases its half-life and potentiates its cytotoxicity. Overall, these mechanisms account for a functional cross-talk between AEA and ceramide apoptotic pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Thyrotropin Receptor and Membrane Interactions in FRTL-5 Thyroid Cell Strain in Microgravity

    NASA Astrophysics Data System (ADS)

    Albi, E.; Ambesi-Impiombato, F. S.; Peverini, M.; Damaskopoulou, E.; Fontanini, E.; Lazzarini, R.; Curcio, F.; Perrella, G.

    2011-01-01

    The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions.

  11. Relationship between CYP1A2 Localization and Lipid Microdomain Formation as a Function of Lipid Composition

    PubMed Central

    Brignac-Huber, Lauren M.; Reed, James R.; Eyer, Marilyn K.

    2013-01-01

    Cytochrome P450 (P450) function requires the interaction of P450 and NADPH-cytochrome P450 reductase (CPR) in membranes, and is frequently studied using reconstituted systems composed solely of phosphatidylcholine. There is increasing evidence that other endoplasmic reticulum (ER) lipids can affect P450 structure, activity, and interactions with CPR. Some of these lipid effects have been attributed to the formation of organized liquid-ordered (lo) domains. The goal of this study was to determine if lo domains were formed in P450 reconstituted systems mimicking the ER membrane. CYP1A2, when incorporated in “ER-like” lipid vesicles, displayed detergent insolubility after treatment with Brij 98 and centrifugation in a sucrose gradient. Lipid probes were employed to identify domain formation in both ER-like vesicles and model membranes known to form lo domains. Changes in fluorescence resonance energy transfer (FRET) using an established donor/acceptor FRET pair in both ER-like and model lo-forming systems demonstrated the coexistence of lo- and liquid-disordered domains as a function of cholesterol and sphingomyelin content. Similarly, 6-dodecanoyl-2-dimethylaminonaphthalene (laurdan), a probe that reports on membrane organization, showed that cholesterol and sphingomyelin increased membrane order. Finally, brominated-phosphatidylcholine allowed for monitoring of the location of both CPR and CYP1A2 within the lo regions of ER-like systems. Taken together, the results demonstrate that ER-like vesicles generate microdomains, and both CYP1A2 and CPR predominantly localize into lo membrane regions. Probe fluorescent responses suggest that lipid microdomains form in these vesicles whether or not enzymes are included in the reconstituted systems. Thus, it does not appear that the proteins are critical for stabilizing lo domains. PMID:23963955

  12. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells

    SciTech Connect

    Mizutani, Naoki; Omori, Yukari; Kawamoto, Yoshiyuki; Sobue, Sayaka; Ichihara, Masatoshi; Suzuki, Motoshi; Kyogashima, Mamoru; Nakamura, Mitsuhiro; Tamiya-Koizumi, Keiko; Nozawa, Yoshinori; Murate, Takashi

    2016-02-19

    Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increased by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5′-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment. - Highlights: • Resveratrol inhibited cell proliferation of K562 and HCT116 cells. • Resveratrol increased cellular ceramide and decreased sphingomyelin and S1P. • ASMase mRNA and activity were increased with resveratrol. • ASMase inhibition suppressed RSV-induced ceramide accumulation. • Increased ASMase transcription was at least partially due to EGR family proteins.

  13. Kinetic and thermodynamic aspects of lipid translocation in biological membranes.

    PubMed Central

    Frickenhaus, S; Heinrich, R

    1999-01-01

    A theoretical analysis of the lipid translocation in cellular bilayer membranes is presented. We focus on an integrative model of active and passive transport processes determining the asymmetrical distribution of the major lipid components between the monolayers. The active translocation of the aminophospholipids phosphatidylserine and phosphatidylethanolamine is mathematically described by kinetic equations resulting from a realistic ATP-dependent transport mechanism. Concerning the passive transport of the aminophospholipids as well as of phosphatidylcholine, sphingomyelin, and cholesterol, two different approaches are used. The first treatment makes use of thermodynamic flux-force relationships. Relevant forces are transversal concentration differences of the lipids as well as differences in the mechanical states of the monolayers due to lateral compressions. Both forces, originating primarily from the operation of an aminophospholipid translocase, are expressed as functions of the lipid compositions of the two monolayers. In the case of mechanical forces, lipid-specific parameters such as different molecular surface areas and compression force constants are taken into account. Using invariance principles, it is shown how the phenomenological coefficients depend on the total lipid amounts. In a second approach, passive transport is analyzed in terms of kinetic mechanisms of carrier-mediated translocation, where mechanical effects are incorporated into the translocation rate constants. The thermodynamic as well as the kinetic approach are applied to simulate the time-dependent redistribution of the lipid components in human red blood cells. In the thermodynamic model the steady-state asymmetrical lipid distribution of erythrocyte membranes is simulated well under certain parameter restrictions: 1) the time scales of uncoupled passive transbilayer movement must be different among the lipid species; 2) positive cross-couplings of the passive lipid fluxes are

  14. Ultrafast glycerophospholipid-selective transbilayer motion mediated by a protein in the endoplasmic reticulum membrane.

    PubMed

    Buton, X; Morrot, G; Fellmann, P; Seigneuret, M

    1996-03-22

    A relatively rapid transbilayer motion of phospholipids in the microsomal membrane seems to be required due to their asymmetric synthesis in the cytoplasmic leaflet. Marked discrepancies exist with regard to the rate and specificity of this flip-flop process. To reinvestigate this problem, we have used both spin-labeled and radioactively labeled long chain phospholipids with a new fast translocation assay. Identical results were obtained with both types of probes. Transbilayer motion of glycerophospholipids was found to be much more rapid than previously reported (half-time less than 25 s) and to occur identically for phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine. Such transport is nonvectorial and leads to a symmetric transbilayer distribution of phospholipids. In contrast, transverse diffusion of sphingomyelin was 1 order of magnitude slower. Phospholipid flip-flop appears to occur by a protein-mediated transport process displaying saturable and competitive behavior. Proteolysis, chemical modification, and competition experiments suggest that this transport process may be related to that previously described in the endoplasmic reticulum for short-chain phosphatidylcholine (Bishop, W. R., and Bell, R. M. (1985) Cell 42, 51-60). The relationship between phospholipid flip-flop and nonbilayer structures occurring in the endoplasmic reticulum was also investigated by 31P-NMR. Several conditions were found under which the 31P isotropic NMR signal previously attributed to nonbilayer structures is decreased or abolished, whereas transbilayer diffusion is unaffected, suggesting that the flip-flop process is independent of such structures. It is concluded that flip-flop in the endoplasmic reticulum is mediated by a bidirectional protein transporter with a high efficiency for glycerophospholipids and a low efficiency for sphingomyelin. In vivo, the activity of this transporter would be able to redistribute all changes in phospholipid composition due

  15. Molecular mechanism of dietary phospholipid requirement of Atlantic salmon, Salmo salar, fry.

    PubMed

    Carmona-Antoñanzas, G; Taylor, J F; Martinez-Rubio, L; Tocher, D R

    2015-11-01

    The phospholipid (PL) requirement in fish is revealed by enhanced performance when larvae are provided PL-enriched diets. To elucidate the molecular mechanism underlying PL requirement in Atlantic salmon, Salmo salar, were fed a minimal PL diet and tissue samples from major lipid metabolic sites were dissected from fry and parr. In silico analysis and cloning techniques demonstrated that salmon possess a full set of enzymes for the endogenous production of PL. The gene expression data indicated that major PL biosynthetic genes of phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn) and phosphatidylinositol (PtdIns) display lower expression in intestine during the early developmental stage (fry). This is consistent with the hypothesis that the intestine of salmon is immature at the early developmental stage with limited capacity for endogenous PL biosynthesis. The results also indicate that intact PtdCho, PtdEtn and PtdIns are required in the diet at this stage. PtdCho and sphingomyelin constitute the predominant PL in chylomicrons, involved in the transport of dietary lipids from the intestine to the rest of the body. As sphingomyelin can be produced from PtdCho in intestine of fry, our findings suggest that supplementation of dietary PtdCho alone during early developmental stages of Atlantic salmon would be sufficient to promote chylomicron formation. This would support efficient transport of dietary lipids, including PL precursors, from the intestine to the liver where biosynthesis of PtdEtn, PtdSer, and PtdIns is not compromised as in intestine facilitating efficient utilisation of dietary energy and the endogenous production of membrane PL for the rapidly growing and developing animal.

  16. Variable substrate preference among phospholipase D toxins from sicariid spiders

    SciTech Connect

    Lajoie, Daniel M.; Roberts, Sue A.; Zobel-Thropp, Pamela A.; Delahaye, Jared L.; Bandarian, Vahe; Binford, Greta J.; Cordes, Matthew H. J.

    2015-03-09

    Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used 31P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, and all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. Lastly, the evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey.

  17. Alteration in metabolic signature and lipid metabolism in patients with angina pectoris and myocardial infarction.

    PubMed

    Park, Ju Yeon; Lee, Sang-Hak; Shin, Min-Jeong; Hwang, Geum-Sook

    2015-01-01

    Lipid metabolites are indispensable regulators of physiological and pathological processes, including atherosclerosis and coronary artery disease (CAD). However, the complex changes in lipid metabolites and metabolism that occur in patients with these conditions are incompletely understood. We performed lipid profiling to identify alterations in lipid metabolism in patients with angina and myocardial infarction (MI). Global lipid profiling was applied to serum samples from patients with CAD (angina and MI) and age-, sex-, and body mass index-matched healthy subjects using ultra-performance liquid chromatography/quadruple time-of-flight mass spectrometry and multivariate statistical analysis. A multivariate analysis showed a clear separation between the patients with CAD and normal controls. Lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) species containing unsaturated fatty acids and free fatty acids were associated with an increased risk of CAD, whereas species of lysoPC and lyso-alkyl PC containing saturated fatty acids were associated with a decreased risk. Additionally, PC species containing palmitic acid, diacylglycerol, sphingomyelin, and ceramide were associated with an increased risk of MI, whereas PE-plasmalogen and phosphatidylinositol species were associated with a decreased risk. In MI patients, we found strong positive correlation between lipid metabolites related to the sphingolipid pathway, sphingomyelin, and ceramide and acute inflammatory markers (high-sensitivity C-reactive protein). The results of this study demonstrate altered signatures in lipid metabolism in patients with angina or MI. Lipidomic profiling could provide the information to identity the specific lipid metabolites under the presence of disturbed metabolic pathways in patients with CAD.

  18. Changes in surfactant in bronchoalveolar lavage fluid after hemithorax irradiation in patients with mesothelioma

    SciTech Connect

    Hallman, M.; Maasilta, P.; Kivisaari, L.; Mattson, K. )

    1990-04-01

    Experimental studies have shown that the surfactant system of the lung is affected shortly after irradiation. It is unclear, however, whether surfactant plays a role in the pathogenesis of radiation pneumonitis. In the present study surfactant components (saturated phosphatidylcholine, surfactant protein A, phosphatidylglycerol, and phosphatidylinositol) and other phospholipids of bronchoalveolar lavage fluid (BAL) were studied in four patients with pleural mesothelioma before and during hemithorax irradiation (70 Gy) as well as zero, 1, 2, 3, and 4 months following irradiation. The concentrations of these same components and of soluble proteins were also estimated in the epithelial lining fluid (ELF) using urea as a marker of dilution. After radiotherapy, the concentrations of the surfactant components in ELF decreased to 12 to 55% of the control values before radiation, whereas the concentration of sphingomyelin in ELF increased ninefold. There were small changes in the other phospholipids. The concentration of soluble protein in ELF increased sevenfold. The minimum surface activity of crude BAL increased from 12 +/- 4 to 32 +/- 6 mN/m, and that of the sediment fraction of BAL increased from 7 +/- 4 to 22 +/- 6 mN/m, p less than 0.001. The protein-rich supernatant fraction of BAL from irradiated lung had a inhibitory effect on normal surfactant. There were significant correlations between the increasing severity of the radiologic changes on the one hand and, on the other, the saturated phosphatidylcholine/sphingomyelin ratio (p less than 0.001), the concentrations of soluble protein (p less than 0.001), and the concentrations of the surfactant components (p less than 0.02-0.001) in ELF.

  19. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources

    PubMed Central

    Haraszti, Reka A.; Didiot, Marie-Cecile; Sapp, Ellen; Leszyk, John; Shaffer, Scott A.; Rockwell, Hannah E.; Gao, Fei; Narain, Niven R.; DiFiglia, Marian; Kiebish, Michael A.; Aronin, Neil; Khvorova, Anastasia

    2016-01-01

    Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs). We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a) The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b) The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c) exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types. PMID:27863537

  20. Dietary milk fat globule membrane improves endurance capacity in mice.

    PubMed

    Haramizu, Satoshi; Ota, Noriyasu; Otsuka, Atsuko; Hashizume, Kohjiro; Sugita, Satoshi; Hase, Tadashi; Murase, Takatoshi; Shimotoyodome, Akira

    2014-10-15

    Milk fat globule membrane (MFGM) comprises carbohydrates, membrane-specific proteins, glycoproteins, phospholipids, and sphingolipids. We evaluated the effects of MFGM consumption over a 12-wk period on endurance capacity and energy metabolism in BALB/c mice. Long-term MFGM intake combined with regular exercise improved endurance capacity, as evidenced by swimming time until fatigue, in a dose-dependent manner. The effect of dietary MFGM plus exercise was accompanied by higher oxygen consumption and lower respiratory quotient, as determined by indirect calorimetry. MFGM intake combined with exercise increased plasma levels of free fatty acids after swimming. After chronic intake of MFGM combined with exercise, the triglyceride content in the gastrocnemius muscle increased significantly. Mice given MFGM combined with exercise had higher mRNA levels of peroxisome proliferator-activated receptor-γ coactivator 1α (Pgc1α) and CPT-1b in the soleus muscle at rest, suggesting that increased lipid metabolism in skeletal muscle contributes, in part, to improved endurance capacity. MFGM treatment with cyclic equibiaxial stretch consisting of 10% elongation at 0.5 Hz with 1 h on and 5 h off increased the Pgc1α mRNA expression of differentiating C2C12 myoblasts in a dose-dependent manner. Supplementation with sphingomyelin increased endurance capacity in mice and Pgc1α mRNA expression in the soleus muscle in vivo and in differentiating myoblasts in vitro. These results indicate that dietary MFGM combined with exercise improves endurance performance via increased lipid metabolism and that sphingomyelin may be one of the components responsible for the beneficial effects of dietary MFGM. Copyright © 2014 the American Physiological Society.

  1. Serum metabolic variables associated with impaired glucose tolerance induced by high-fat-high-cholesterol diet in Macaca mulatta.

    PubMed

    Li, Xinli; Chen, Younan; Liu, Jingping; Yang, Guang; Zhao, Jiuming; Liao, Guangneng; Shi, Meimei; Yuan, Yujia; He, Sirong; Lu, Yanrong; Cheng, Jingqiu

    2012-11-01

    Dyslipidemia caused by 'Western-diet pattern' is a strong risk factor for the onset of diabetes. This study aimed to disclose the relationship between the serum metabolite changes induced by habitual intake of high-fat and high-cholesterol (HFHC) diet and the development of impaired glucose tolerance (IGT) and insulin resistance through animal models of Macaca mulatta. Sixteen M. mulatta (six months old) were fed a control diet or a HFHC diet for 18 months. The diet effect on serum metabolic profiles was investigated by longitudinal research. Islet function was assessed by intravenous glucose tolerance and hyperinsulinemic-euglycemic clamp test. Metabonomics were determined by (1)H proton nuclear magnetic resonance spectroscopy. Prolonged diet-dependent hyperlipidemia facilitated visceral fat accumulation in liver and skeletal muscle and disorder of glucose homeostasis in juvenile monkeys. Glucose disappearance rate (K(Glu)) and insulin response to the glucose challenge effects in HFHC monkeys were significantly lower than in control monkeys. Otherwise, serum trimethylamine-N-oxide (TMAO), lactate and leucine/isoleucine were significantly higher in HFHC monkeys. Sphingomyelin and choline were the most positively correlated with K(Glu) (R(2) = 0.778), as well as negative correlation (R(2) = 0.64) with total cholesterol. The HFHC diet induced visceral fat, abnormal lipid metabolism and IGT prior to weight gain and body fat content increase in juvenile monkeys. We suggest that increased serum metabolites, such as TMAO, lactate, branched-chain amino acids and decreased sphingomyelin and choline, may serve as possible predictors for the evaluation of IGT and insulin resistance risks in the prediabetic state.

  2. Cambinol, a Novel Inhibitor of Neutral Sphingomyelinase 2 Shows Neuroprotective Properties

    PubMed Central

    Figuera-Losada, Mariana; Stathis, Marigo; Dorskind, Joelle M.; Thomas, Ajit G.; Bandaru, Veera Venkata Ratnam; Yoo, Seung-Wan; Westwood, Nicholas J.; Rogers, Graeme W.; McArthur, Justin C.; Haughey, Norman J.; Slusher, Barbara S.; Rojas, Camilo

    2015-01-01

    Ceramide is a bioactive lipid that plays an important role in stress responses leading to apoptosis, cell growth arrest and differentiation. Ceramide production is due in part to sphingomyelin hydrolysis by sphingomyelinases. In brain, neutral sphingomyelinase 2 (nSMase2) is expressed in neurons and increases in its activity and expression have been associated with pro-inflammatory conditions observed in Alzheimer’s disease, multiple sclerosis and human immunodeficiency virus (HIV-1) patients. Increased nSMase2 activity translates into higher ceramide levels and neuronal cell death, which can be prevented by chemical or genetic inhibition of nSMase2 activity or expression. However, to date, there are no soluble, specific and potent small molecule inhibitor tool compounds for in vivo studies or as a starting point for medicinal chemistry optimization. Moreover, the majority of the known inhibitors were identified using bacterial, bovine or rat nSMase2. In an attempt to identify new inhibitor scaffolds, two activity assays were optimized as screening platform using the recombinant human enzyme. First, active hits were identified using a fluorescence-based high throughput compatible assay. Then, hits were confirmed using a 14C sphingomyelin-based direct activity assay. Pharmacologically active compounds and approved drugs were screened using this strategy which led to the identification of cambinol as a novel uncompetitive nSMase2 inhibitor (Ki = 7 μM). The inhibitory activity of cambinol for nSMase2 was approximately 10-fold more potent than for its previously known target, silence information regulator 1 and 2 (SIRT1/2). Cambinol decreased tumor necrosis factor-α or interleukin-1 β-induced increases of ceramide and cell death in primary neurons. A preliminary study of cambinol structure and activity allowed the identification of the main structural features required for nSMase2 inhibition. Cambinol and its analogs may be useful as nSMase2 inhibitor tool

  3. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice.

    PubMed

    Qi, Yunpeng; Jiang, Changtao; Cheng, Jie; Krausz, Kristopher W; Li, Tiangang; Ferrell, Jessica M; Gonzalez, Frank J; Chiang, John Y L

    2015-01-01

    Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.

  4. Palmitate Diet-induced Loss of Cardiac Caveolin-3: A Novel Mechanism for Lipid-induced Contractile Dysfunction

    PubMed Central

    Knowles, Catherine J.; Cebova, Martina; Pinz, Ilka M.

    2013-01-01

    Obesity is associated with an increased risk of cardiomyopathy, and mechanisms linking the underlying risk and dietary factors are not well understood. We tested the hypothesis that dietary intake of saturated fat increases the levels of sphingolipids, namely ceramide and sphingomyelin in cardiac cell membranes that disrupt caveolae, specialized membrane micro-domains and important for cellular signaling. C57BL/6 mice were fed two high-fat diets: palmitate diet (21% total fat, 47% is palmitate), and MCT diet (21% medium-chain triglycerides, no palmitate). We established that high-palmitate feeding for 12 weeks leads to 40% and 50% increases in ceramide and sphingomyelin, respectively, in cellular membranes. Concomitant with sphingolipid accumulation, we observed a 40% reduction in systolic contractile performance. To explore the relationship of increased sphingolipids with caveolins, we analyzed caveolin protein levels and intracellular localization in isolated cardiomyocytes. In normal cardiomyocytes, caveolin-1 and caveolin-3 co-localize at the plasma membrane and the T-tubule system. However, mice maintained on palmitate lost 80% of caveolin-3, mainly from the T-tubule system. Mice maintained on MCT diet had a 90% reduction in caveolin-1. These data show that caveolin isoforms are sensitive to the lipid environment. These data are further supported by similar findings in human cardiac tissue samples from non-obese, obese, non-obese cardiomyopathic, and obese cardiomyopathic patients. To further elucidate the contractile dysfunction associated with the loss of caveolin-3, we determined the localization of the ryanodine receptor and found lower expression and loss of the striated appearance of this protein. We suggest that palmitate-induced loss of caveolin-3 results in cardiac contractile dysfunction via a defect in calcium-induced calcium release. PMID:23585895

  5. Bile acid signaling in lipid metabolism: Metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice

    PubMed Central

    Qi, Yunpeng; Jiang, Changtao; Cheng, Jie; Krausz, Kristopher W.; Li, Tiangang; Ferrell, Jessica M.; Gonzalez, Frank J.; Chiang, John Y.L.

    2014-01-01

    Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. PMID:24796972

  6. Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions.

    PubMed

    Thomas, Michael C; Mitchell, Todd W; Harman, David G; Deeley, Jane M; Nealon, Jessica R; Blanksby, Stephen J

    2008-01-01

    Ions formed from lipids during electrospray ionization of crude lipid extracts have been mass-selected within a quadrupole linear ion trap mass spectrometer and allowed to react with ozone vapor. Gas-phase ion-molecule reactions between unsaturated lipid ions and ozone are found to yield two primary product ions for each carbon-carbon double bond within the molecule. The mass-to-charge ratios of these chemically induced fragments are diagnostic of the position of unsaturation within the precursor ion. This novel analytical technique, dubbed ozone-induced dissociation (OzID), can be applied both in series and in parallel with conventional collision-induced dissociation (CID) to provide near-complete structural assignment of unknown lipids within complex mixtures without prior fractionation or derivatization. In this study, OzID is applied to a suite of complex lipid extracts from sources including human lens, bovine kidney, and commercial olive oil, thus demonstrating the technique to be applicable to a broad range of lipid classes including both neutral and acidic glycerophospholipids, sphingomyelins, and triacylglycerols. Gas-phase ozonolysis reactions are also observed with different types of precursor ions including [M+H]+, [M+Li]+, [M+Na]+, and [M-H]-: in each case yielding fragmentation data that allow double bond position to be unambiguously assigned. Within the human lens lipid extract, three sphingomyelin regioisomers, namely SM(d18:0/15Z-24:1), SM(d18:0/17Z-24:1), and SM(d18:0/19Z-24:1), and a novel phosphatidylethanolamine alkyl ether, GPEtn(11Z-18:1e/9Z-18:1), are identified using a combination of CID and OzID. These discoveries demonstrate that lipid identification based on CID alone belies the natural structural diversity in lipid biochemistry and illustrate the potential of OzID as a complementary approach within automated, high-throughput lipid analysis protocols.

  7. Lipid Adaptation of Shrimp Rimicaris exoculata in Hydrothermal Vent.

    PubMed

    Zhu, Si; Ye, Mengwei; Yan, Xiaojun; Zhou, Yadong; Wang, Chunsheng; Xu, Jilin

    2015-12-01

    The shrimp Rimicaris exoculata is the most abundant species in hydrothermal vents. Lipids, the component of membranes, play an important role in maintaining their function normally in such extreme environments. In order to understand the lipid adaptation of R. exoculata (HV shrimp) to hydrothermal vents, we compared its lipid profile with the coastal shrimp Litopenaeus vannamei (EZ shrimp) which lives in the euphotic zone, using ultra performance liquid chromatography electrospray ionization-quadrupole time-of-flight mass spectrometry. As a result, the following lipid adaptation can be observed. (1) The proportion of 16:1 and 18:1, and non-methylene interrupted fatty acid (48.9 and 6.2 %) in HV shrimp was higher than that in EZ shrimp (12.7 and 0 %). While highly-unsaturated fatty acids were only present in the EZ shrimp. (2) Ceramide and sphingomyelin in the HV shrimp were enriched in d14:1 long chain base (96.5 and 100 %) and unsaturated fatty acids (67.1 and 57.7 %). While in the EZ shrimp, ceramide and sphingomyelin had the tendency to contain d16:1 long chain base (68.7 and 75 %) and saturated fatty acids (100 and 100 %). (3) Triacylglycerol content (1.998 ± 0.005 nmol/mg) in the HV shrimp was higher than that in the EZ shrimp (0.092 ± 0.005 nmol/mg). (4) Phosphatidylinositol and diacylglycerol containing highly-unsaturated fatty acids were absent from the HV shrimp. (5) Lysophosphatidylcholine and lysophosphatidylethanolamine were rarely detected in the HV shrimp. A possible reason for such differences was the result of food resources and inhabiting environments. Therefore, these lipid classes mentioned above may be the biomarkers to compare the organisms from different environments, which will be benefit for the further exploitation of the hydrothermal environment.

  8. Markers of sympathetic nervous system activity associate with complex plasma lipids in metabolic syndrome subjects.

    PubMed

    Nestel, Paul J; Khan, Anmar A; Straznicky, Nora E; Mellett, Natalie A; Jayawardana, Kaushala; Mundra, Piyushkumar A; Lambert, Gavin W; Meikle, Peter J

    2017-01-01

    Plasma sphingolipids including ceramides, and gangliosides are associated with insulin resistance (IR) through effects on insulin signalling and glucose metabolism. Our studies of subjects with metabolic syndrome (MetS) showed close relationships between IR and sympathetic nervous system (SNS) activity including arterial norepinephrine (NE). We have therefore investigated possible associations of IR and SNS activity with complex lipids that are involved in both insulin sensitivity and neurotransmission. We performed a cross-sectional assessment of 23 lipid classes/subclasses (total 339 lipid species) by tandem mass spectrometry in 94 overweight untreated subjects with IR (quantified by HOMA-IR, Matsuda index and plasma insulin). Independently of IR parameters, several circulating complex lipids associated significantly with arterial NE and NEFA (non-esterified fatty acids) and marginally with heart rate (HR). After accounting for BMI, HOMA-IR, systolic BP, age, gender, and correction for multiple comparisons, these associations were significant (p < 0.05): NE with ceramide, phosphatidylcholine, alkyl- and alkenylphosphatidylcholine and free cholesterol; NEFA with mono- di- and trihexosylceramide, GM3 ganglioside, sphingomyelin, phosphatidylcholine, alkyl- and alkenylphosphatidylcholine, phosphatidylinositol and free cholesterol; HR marginally (p = or <0.1>0.05) with ceramide, GM3 ganglioside, sphingomyelin, lysophosphatidylcholine, phosphatidylinositol, lysophosphatidylinositol and free cholesterol. Multiple subspecies of these lipids significantly associated with NE and NEFA. None of the IR biomarkers associated significantly with lipid classes/subclasses after correction for multiple comparisons. This is the first demonstration that arterial norepinephrine and NEFA, that reflect both SNS activity and IR, associate significantly with circulating complex lipids independently of IR, suggesting a role for such lipids in neural mechanisms operating in Met

  9. Serogroup-specific interactions of lipopolysaccharides with supported lipid bilayer assemblies

    NASA Astrophysics Data System (ADS)

    Mendez, Heather M.; Stromberg, Loreen R.; Swingle, Kirstie; Graves, Steven W.; Montano, Gabriel; Mukundan, Harshini

    2017-02-01

    Lipopolysaccharide (LPS) is an amphiphilic lipoglycan that is the primary component of the outer membrane of Gramnegative bacteria. Classified as a pathogen associated molecular pattern (PAMPs), LPS is an essential biomarker for identifying pathogen serogroups. Structurally, LPS is comprised of a hydrophobic lipophilic domain that partitions into the outer membrane of Gram-negative bacteria. Previous work by our team explored biophysical interactions of LPS in supported lipid bilayer assemblies (sLBAs), and demonstrated LPS-induced hole formation in DOPC lipid bilayers. Here, we have incorporated cholesterol and sphingomyelin into sLBAs to evaluate the interaction of LPS in a more physiologically relevant system. The goal of this work was to determine whether increasing membrane complexity of sLBAs, and changing physiological parameters such as temperature, affects LPS-induced hole formation. Integrating cholesterol and sphingomyelin into sLBAs decreased LPS-induced hole formation at lower concentrations of LPS, and bacterial serotype contributed to differences in hole formation as a response to changes in temperature. We also investigated the possibility of LPS-induced hole formation in cellular systems using the cytokine response in both TLR4 (+)/(-) murine macrophages. LPS was presented to each cell line in murine serum, delipidated serum, and buffer (i.e. no serum), and the resulting cytokine levels were measured. Results indicate that the method of LPS presentation directly affects cellular cytokine expression. The two model systems presented in this study provide preliminary insight into the interactions of LPS in the host, and suggest the significance of amphiphile-carrier interactions in regulating host-pathogen biology during infection.

  10. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. I. Inhibition of de novo phosphatidylserine biosynthesis by exogenous phosphatidylserine and its efficient incorporation

    SciTech Connect

    Nishijima, M.; Kuge, O.; Akamatsu, Y.

    1986-05-05

    The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and /sup 32/Pi, the incorporation of /sup 32/Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. /sup 32/Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of /sup 32/Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol was not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using (/sup 3/H)serine-labeled phospholipid. Pulse and pulse-chase experiments with L-(U-/sup 14/C) serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine.

  11. Selective toxin-lipid membrane interactions of natural, haemolytic Scyphozoan toxins analyzed by surface plasmon resonance.

    PubMed

    Helmholz, Heike

    2010-10-01

    A comparison of the molecular interaction of natural Scyphozoan lysins with their bioactivity in a haemolytic assay was performed by establishing an efficient, automatable and reproducible procedure for the measurement of protein-membrane interactions. The toxin-membrane interactions were analyzed utilising a chip-based technology with immobilized liposomes as artificial cell membranes. The technique was established with streptolysin O as a cholesterol-selective model toxin and its cholesterol-selectivity has been proven. The haemolytic potency of protein fractions derived from the venom of the jellyfish Aurelia aurita and Cyanea capillata was tested and EC50 values of 35.3mug/mL and 43.1mug/mL against sheep and 13.5mug/mL and 8.8mug/mL against rabbit erythrocytes were measured. Cell membrane binding as a first step in the haemolytic process was analyzed using the Biacore((R)) technology. Major cell membrane lipids (cholesterol, sphingomyelin and phosphatidylcholine) were immobilized as pure liposomes and in binary mixtures. A preference for cholesterol and sphingomyelin of both jellyfish species was demonstrated. The specificity of the method was proven with a non-haemolytic A. aurita protein fraction that did not express a lipid binding. Additionally, an inactivated C. capillata lysine with negligible haemolytic activity showed a remaining but reduced adsorption onto lipid layers. The binding level of the lytic venom fraction of these dominant boreal jellyfish species increased as a function of protein concentration. The binding strength was expressed in RU50 values ranging from 12.4mug/mL to 35.4mug/mL, which were in the same order of magnitude as the EC50 values in the haemolytic assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Liposomal Bladder Instillations for IC/BPS: an Open-Label Clinical Evaluation

    PubMed Central

    Peters, Kenneth M; Hasenau, Deborah; Killinger, Kim A; Chancellor, Michael B; Anthony, Michele; Kaufman, Jonathan

    2015-01-01

    Purpose Intravesical instillation of liposomes is a potentially new therapeutic option for subjects with interstitial cystitis/bladder pain syndrome (IC/BPS). The aim of this study was to explore the safety and clinical outcomes of 4 weekly instillations of sphingomyelin liposomes in an open-label cohort of subjects with IC/BPS. Methods A total of fourteen symptomatic IC/BPS subjects were treated with intravesical liposomes once a week for 4 weeks. Safety measurements included lab specimen collection, vital signs, post void residual (PVR), and assessment of adverse events (AEs). Efficacy measurements included pain visual analog scales (VAS), voiding diaries, global response assessments (GRAs), and O'Leary-Sant Interstitial Cystitis Symptom and Problem Indices (ICSI and ICPI). Results No treatment-related adverse events (AE) were reported at any time over the course of the study. Urgency VAS scores significantly decreased at 4 weeks (p=0.0029) and 8 weeks (p=0.0112) post-treatment. Pain VAS scores significantly decreased at 4 weeks post-treatment (p=0.0073). Combined ICSI and ICPI scores improved significantly at 4 weeks and 8 weeks (p=0.002 for both time points) post-treatment. Responses to GRA showed improvement at 4 weeks post- instillation. No significant decrease in urinary frequency was found. Conclusion Sphingomyelin liposome instillations were well tolerated in subjects with IC/BPS with no AEs attributed to the test article. Treatment was associated with improvements in pain, urinary urgency, and overall symptom scores. Placebo controlled clinical trials are needed to assess this potential therapy for IC/BPS. PMID:25209396

  13. Organization of lipids in the artificial outer membrane of bull spermatozoa reconstructed at the air-water interface.

    PubMed

    Le Guillou, J; Ropers, M-H; Gaillard, C; David-Briand, E; Desherces, S; Schmitt, E; Bencharif, D; Amirat-Briand, L; Tainturier, D; Anton, M

    2013-08-01

    Cryopreservation is widely used to preserve the quality of bull spermatozoa over time. Sequestration of seminal plasma proteins by low density lipoproteins and formation of a protective film around the spermatozoa membrane by low density lipoproteins were the main mechanisms proposed. However, the organization of lipids in the outer leaflet of the spermatozoa membrane has been never considered as a possible parameter. This study evaluated whether a change in the organization of the outer leaflet of the spermotozoa membrane could occur during cooling down. The organization of the main components of the spermatozoa membrane's outer layer at the liquid-gas interface was analysed. Cryopreservative media (at 8° and 34°C) were used to study the miscibility of the spermatozoa membrane lipids using epifluorescence imaging and by tensiometry on Langmuir films. The results show that the four lipids: sphingomyelin, cholesterol, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PC) and plasmalogen 1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphocholine (P-PC) were not fully miscible and their organization was controlled by temperature. Cholesterol and sphingomyelin form condensed domains surrounded by a mixture of PC and P-PC at 34°C while these condensed domains are surrounded by separated domains of pure PC and pure P-PC at 8°C. The organization of the outer membrane lipids, in particular the separation of PC and P-PC lipids during cooling down, must be considered to fully understand preservation of membrane integrity during cryopreservation.

  14. Differential regulation of acid sphingomyelinase in macrophages stimulated with oxidized low-density lipoprotein (LDL) and oxidized LDL immune complexes: role in phagocytosis and cytokine release.

    PubMed

    Truman, Jean-Philip; Al Gadban, Mohammed M; Smith, Kent J; Jenkins, Russell W; Mayroo, Nalini; Virella, Gabriel; Lopes-Virella, Maria F; Bielawska, Alicja; Hannun, Yusuf A; Hammad, Samar M

    2012-05-01

    Oxidized low-density lipoprotein (oxLDL) and oxLDL-containing immune complexes (oxLDL-IC) contribute to the formation of lipid-laden macrophages (foam cells). Fcγ receptors mediate uptake of oxLDL-IC, whereas scavenger receptors internalize oxLDL. We have previously reported that oxLDL-IC, but not free oxLDL, activate macrophages and prolong their survival. Sphingomyelin is a major constituent of cell membranes and lipoprotein particles and acid sphingomyelinase (ASMase) hydrolyses sphingomyelin to generate the bioactive lipid ceramide. ASMase exists in two forms: lysosomal (L-ASMase) and secretory (S-ASMase). In this study we examined whether oxLDL and oxLDL-IC regulate ASMase differently, and whether ASMase mediates monocyte/macrophage activation and cytokine release. The oxLDL-IC, but not oxLDL, induced early and consistent release of catalytically active S-ASMase. The oxLDL-IC also consistently stimulated L-ASMase activity, whereas oxLDL induced a rapid transient increase in L-ASMase activity before it steadily declined below baseline. Prolonged exposure to oxLDL increased L-ASMase activity; however, activity remained significantly lower than that induced by oxLDL-IC. Further studies were aimed at defining the function of the activated ASMase. In response to oxLDL-IC, heat-shock protein 70B' (HSP70B') was up-regulated and localized with redistributed ASMase in the endosomal compartment outside the lysosome. Treatment with oxLDL-IC induced the formation and release of HSP70-containing and IL-1β-containing exosomes via an ASMase-dependent mechanism. Taken together, the results suggest that oxLDL and oxLDL-IC differentially regulate ASMase activity, and the pro-inflammatory responses to oxLDL-IC are mediated by prolonged activation of ASMase. These findings may contribute to increased understanding of mechanisms mediating macrophage involvement in atherosclerosis.

  15. Paradoxical coronary artery disease in humans with hyperalphalipoproteinemia is associated with distinct differences in the high-density lipoprotein phosphosphingolipidome.

    PubMed

    Hancock-Cerutti, William; Lhomme, Marie; Dauteuille, Carolane; Lecocq, Sora; Chapman, M John; Rader, Daniel J; Kontush, Anatol; Cuchel, Marina

    Plasma high-density lipoprotein cholesterol (HDL-C) levels are inversely associated with risk of coronary artery disease (CAD) in epidemiologic studies. Despite this, the directionality of this relationship and the underlying biology behind it remain to be firmly established, especially at the extremes of HDL-C levels. We investigated differences in the HDL phosphosphingolipidome in a rare population of subjects with premature CAD despite high HDL-C levels to gain insight into the association between the HDL lipidome and CAD disease status in this unusual phenotype. We sought to assess differences in HDL composition that are associated with CAD in subjects with HDL-C >90th percentile. We predicted that quantitative lipidomic analysis of HDL particles would reveal novel differences between CAD patients and healthy subjects with matched HDL-C levels. We collected plasma samples from 25 subjects with HDL-C >90th percentile and clinically manifest CAD and healthy controls with HDL-C >90th percentile and without self-reported CAD. More than 140 individual HDL phospholipid and sphingolipid species were analyzed by LC/MS/MS. Significant reductions in HDL phosphatidylcholine (-2.41%, Q value = 0.025) and phosphatidylinositol (-10.7%, Q value = 0.047) content, as well as elevated sphingomyelin (+10.0%, Q value = 0.025) content, and sphingomyelin/phosphatidylcholine ratio (+12.8%, P value = .005) were associated with CAD status in subjects with high HDL-C. These differences may lay the groundwork for further analysis of the relationship between the HDL lipidome and disease states, as well as for the development of biomarkers of CAD status and HDL function. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  16. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane

    PubMed Central

    Cho, Kwang-jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  17. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.

    PubMed

    Cho, Kwang-Jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei; Fairn, Gregory D; Hancock, John F

    2015-11-16

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization.

  18. Morphology and Molecular Composition of Purified Bovine Viral Diarrhea Virus Envelope

    PubMed Central

    Callens, Nathalie; Brügger, Britta; Bonnafous, Pierre; Drobecq, Hervé; Gerl, Mathias J.; Krey, Thomas; Roman-Sosa, Gleyder; Rümenapf, Till; Lambert, Olivier; Dubuisson, Jean; Rouillé, Yves

    2016-01-01

    The family Flaviviridae includes viruses that have different virion structures and morphogenesis mechanisms. Most cellular and molecular studies have been so far performed with viruses of the Hepacivirus and Flavivirus genera. Here, we studied bovine viral diarrhea virus (BVDV), a member of the Pestivirus genus. We set up a method to purify BVDV virions and analyzed their morphology by electron microscopy and their protein and lipid composition by mass spectrometry. Cryo-electron microscopy showed near spherical viral particles displaying an electron-dense capsid surrounded by a phospholipid bilayer with no visible spikes. Most particles had a diameter of 50 nm and about 2% were larger with a diameter of up to 65 nm, suggesting some size flexibility during BVDV morphogenesis. Morphological and biochemical data suggested a low envelope glycoprotein content of BVDV particles, E1 and E2 being apparently less abundant than Erns. Lipid content of BVDV particles displayed a ~2.3 to 3.5-fold enrichment in cholesterol, sphingomyelin and hexosyl-ceramide, concomitant with a 1.5 to 5-fold reduction of all glycerophospholipid classes, as compared to lipid content of MDBK cells. Although BVDV buds in the endoplasmic reticulum, its lipid content differs from a typical endoplasmic reticulum membrane composition. This suggests that BVDV morphogenesis includes a mechanism of lipid sorting. Functional analyses confirmed the importance of cholesterol and sphingomyelin for BVDV entry. Surprisingly, despite a high cholesterol and sphingolipid content of BVDV envelope, E2 was not found in detergent-resistant membranes. Our results indicate that there are differences between the structure and molecular composition of viral particles of Flaviviruses, Pestiviruses and Hepaciviruses within the Flaviviridae family. PMID:26939061

  19. Phosphoregulation of the ceramide transport protein CERT at serine 315 in the interaction with VAMP-associated protein (VAP) for inter-organelle trafficking of ceramide in mammalian cells.

    PubMed

    Kumagai, Keigo; Kawano-Kawada, Miyuki; Hanada, Kentaro

    2014-04-11

    The ceramide transport protein CERT mediates the inter-organelle transport of ceramide for the synthesis of sphingomyelin, presumably through endoplasmic reticulum (ER)-Golgi membrane contact sites. CERT has a short peptide motif named FFAT, which associates with the ER-resident membrane protein VAP. We show that the phosphorylation of CERT at serine 315, which is adjacent to the FFAT motif, markedly enhanced the interaction of CERT with VAP. The phosphomimetic CERT S315E mutant exhibited higher activity to support the ER-to-Golgi transport of ceramide than the wild-type control in a semi-intact cell system, and this enhanced activity was abrogated when its FFAT motif was deleted. The level of phosphorylation of CERT at Ser-315 increased in HeLa cells treated with a sphingolipid biosynthesis inhibitor or exogenous sphingomyelinase. Expression of CERT S315E induced intracellular punctate structures, to which CERT and VAP were co-localized, and the occurrence of the structure was dependent on both phosphatidylinositol 4-monophosphate binding and VAP binding activities of CERT. Phosphorylation of another region (named a serine-rich motif) in CERT is known to down-regulate the activity of CERT. Analysis of various CERT mutant constructs showed that the de-phosphorylation of the serine-rich motif and the phosphorylation of Ser-315 likely have the additive contribution to enhance the activity of CERT. These results demonstrate that the phosphorylation of CERT at the FFAT motif-adjacent serine affected its affinity for VAP, which may regulate the inter-organelle trafficking of ceramide in response to the perturbation of cellular sphingomyelin and/or other sphingolipids.

  20. Temporal changes in sphingolipids and systemic insulin sensitivity during the transition from gestation to lactation

    PubMed Central

    Rico, J. Eduardo; Saed Samii, Sina; Mathews, Alice T.; Lovett, Jacqueline; Haughey, Norman J.; McFadden, Joseph W.

    2017-01-01

    Reduced insulin action develops naturally during the peripartum to ensure maternal nutrient delivery to the fetus and neonate. However, increased insulin resistance can facilitate excessive lipolysis which in turn promotes metabolic disease in overweight dairy cattle. Increased fatty acid availability favors the accumulation of the sphingolipid ceramide and is implicated in the pathogenesis of insulin resistance, however, the relationship between sphingolipid metabolism and insulin resistance during the peripartum remains largely unknown. Our objectives were to characterize temporal responses in plasma and tissue sphingolipids in lean and overweight peripartal cows and to establish the relationships between sphingolipid supply and lipolysis, hepatic lipid deposition, and systemic insulin action. Twenty-one multiparous lean and overweight Holstein cows were enrolled in a longitudinal study spanning the transition from gestation to lactation (d -21 to 21, relative to parturition). Plasma, liver, and skeletal muscle samples were obtained, and sphingolipids were profiled using LC/MS/MS. Insulin sensitivity was assessed utilizing intravenous insulin and glucose challenges. Our results demonstrated the following: first, insulin resistance develops postpartum concurrently with increased lipolysis and hepatic lipid accumulation; second, ceramides and glycosylated ceramides accumulate during the transition from gestation to lactation and are further elevated in overweight cows; third, ceramide accrual is associated with lipolysis and liver lipid accumulation, and C16:0- and C24:0-ceramide are inversely associated with systemic insulin sensitivity postpartum; fourth, plasma sphingomyelin, a potential source of ceramides reaches a nadir at parturition and is closely associated with feed intake; fifth, select sphingomyelins are lower in the plasma of overweight cows during the peripartal period. Our results demonstrate that dynamic changes occur in peripartal sphingolipids

  1. Organelle biogenesis and intracellular lipid transport in eukaryotes.

    PubMed Central

    Voelker, D R

    1991-01-01

    The inter- and intramembrane transport of phospholipids, sphingolipids, and sterols involves the most fundamental processes of membrane biogenesis. Identification of the mechanisms involved in these lipid transport reactions has lagged significantly behind that for intermembrane protein traffic until recently. Application of methods that include fluorescently labeled and spin-labeled lipid analogs, new cellular fractionation techniques, topographically specific chemical modification techniques, the identification of organelle-specific metabolism, permeabilized cell methodology, and yeast molecular genetics has contributed to revealing a diverse biochemical array of transport processes for lipids. Compelling evidence now exists for ATP-dependent, ATP-independent, vesicle-dependent, and vesicle-independent transport processes that are lipid and membrane specific. ATP-dependent transport processes include the transbilayer movement of phosphatidylserine and phosphatidylethanolamine at the plasma membrane and the transport of phosphatidylserine from its site of synthesis to the mitochondria. ATP-independent processes include the transbilayer movement of virtually all lipids at the endoplasmic reticulum, the movement of phosphatidylserine between the inner and outer mitochondrial membranes, and the transfer of nascent phosphatidylcholine and phosphatidylethanolamine to the plasma membrane. The ATP-independent movement of lipids between organelles is believed to be due to the action of lipid transfer proteins, but this still remains to be proved. Vesicle-based transport mechanisms (which are also inherently ATP dependent) include the transport of nascent cholesterol, sphingomyelin, and glycosphingolipids from the Golgi apparatus to the plasma membrane and the recycling of sphingolipids and selected pools of phosphatidylcholine from the plasma membrane to the cell interior. The vesicles involved in cholesterol transport to the plasma membrane are different from those

  2. Lipidomics Reveals Associations of Phospholipids With Obesity and Insulin Resistance in Young Adults.

    PubMed

    Rauschert, Sebastian; Uhl, Olaf; Koletzko, Berthold; Kirchberg, Franca; Mori, Trevor A; Huang, Rae-Chi; Beilin, Lawrence J; Hellmuth, Christian; Oddy, Wendy H

    2016-03-01

    Obesity and related diseases have become a global public health burden. Identifying biomarkers will lead to a better understanding of the underlying mechanisms associated with obesity and the pathways leading to insulin resistance (IR) and diabetes. This study aimed to identify the lipidomic biomarkers associated with obesity and IR using plasma samples from a population-based cohort of young adults. The Western Australian Pregnancy Cohort (Raine) study enrolled 2900 pregnant women from 1989 to 1991. The 20-year follow-up was conducted between March 2010 and April 2012. Participants and Samples: Plasma samples from 1176 subjects aged 20 years were analyzed using mass spectrometry-based metabolomics. Associations of analytes with markers of obesity and IR including body mass index, waist circumference, homeostasis model assessment (HOMA-IR), and insulin were examined. Analyses were stratified by body mass index and adjusted for lifestyle and other factors. Waist circumference was positively associated with seven sphingomyelins and five diacylphosphatidylcholines and negatively associated with two lysophosphatidylcholines. HOMA-IR was negatively associated with two diacylphosphatidylcholines and positively with one lysophosphatidylcholine and one diacylphosphatidylcholine. No significant association was found in the obese/overweight group of the HOMA-IR model. In the normal-weight group, one lysophosphatidylcholine was increased. A possible discriminative effect of sphingomyelins, particularly those with two double bonds, and lysophosphatidylcholines was identified between subjects with normal weight and obesity independent of low-density lipoprotein cholesterol and high-density lipoprotein cholesterol concentrations. Our results suggest weight status-dependent mechanisms for the development of IR with lysophosphatidylcholine C14:0 as a key metabolite in nonobese IR.

  3. Influence of Hydroxylation, Chain Length, and Chain Unsaturation on Bilayer Properties of Ceramides

    PubMed Central

    Maula, Terhi; Al Sazzad, Md. Abdullah; Slotte, J. Peter

    2015-01-01

    Mammalian ceramides constitute a family of at least a few hundred closely related molecules distinguished by small structural differences, giving rise to individual molecular species that are expressed in distinct cellular compartments, or tissue types, in which they are believed to execute distinct functions. We have examined how specific structural details influence the bilayer properties of a selection of biologically relevant ceramides in mixed bilayers together with sphingomyelin, phosphatidylcholine, and cholesterol. The ceramide structure varied with regard to interfacial hydroxylation, the identity of the headgroup, the length of the N-acyl chain, and the position of cis-double bonds in the acyl chains. The interactions of the ceramides with sphingomyelin, their lateral segregation into ceramide-rich domains in phosphatidylcholine bilayers, and the effect of cholesterol on such domains were studied with DSC and various fluorescence-based approaches. The largest differences arose from the presence and relative position of cis-double bonds, causing destabilization of the ceramide’s interactions and lateral packing relative to common saturated and hydroxylated species. Less variation was observed as a consequence of interfacial hydroxylation and the N-acyl chain length, although an additional hydroxyl in the sphingoid long-chain base slightly destabilized the ceramide’s interactions and packing relative to a nonhydroxyceramide, whereas an additional hydroxyl in the N-acyl chain had the opposite effect. In conclusion, small structural details conferred variance in the bilayer behavior of ceramides, some causing more dramatic changes in the bilayer properties, whereas others imposed only fine adjustments in the interactions of ceramides with other membrane lipids, reflecting possible functional implications in distinct cell or tissue types. PMID:26488655

  4. The transport along membrane nanotubes driven by the spontaneous curvature of membrane components.

    PubMed

    Kabaso, Doron; Bobrovska, Nataliya; Góźdź, Wojciech; Gongadze, Ekaterina; Kralj-Iglič, Veronika; Zorec, Robert; Iglič, Aleš

    2012-10-01

    Intercellular membrane nanotubes (ICNs) serve as a very specific transport system between neighboring cells. The underlying mechanisms responsible for the transport of membrane components and vesicular dilations along the ICNs are not clearly understood. The present study investigated the spatial distribution of anisotropic membrane components of tubular shapes and isotropic membrane components of spherical shapes. Experimental results revealed the preferential distribution of CTB (cholera toxin B)-GM1 complexes mainly on the spherical cell membrane, and cholesterol-sphingomyelin at the membrane leading edge and ICNs. In agreement with previous studies, we here propose that the spatial distribution of CTB-GM1 complexes and cholesterol-sphingomyelin rafts were due to their isotropic and anisotropic shapes, respectively. To elucidate the relationship between a membrane component shape and its spatial distribution, a two-component computational model was constructed. The minimization of the membrane bending (free) energy revealed the enrichment of the anisotropic component along the ICN and the isotropic component in the parent cell membrane, which was due to the curvature mismatch between the ICN curvature and the spontaneous curvature of the isotropic component. The equations of motion, derived from the differentiation of the membrane free energy, revealed a curvature-dependent flux of the isotropic component and a curvature-dependent force exerted on a vesicular dilation along the ICN. Finally, the effects of possible changes in the orientational ordering of the anisotropic component attendant to the transport of the vesicular dilation were discussed with connection to the propagation of electrical and chemical signals. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Enhanced ceramide generation and induction of apoptosis in human leukemia cells exposed to DT(388)-granulocyte-macrophage colony-stimulating factor (GM-CSF), a truncated diphtheria toxin fused to human GM-CSF.

    PubMed

    Senchenkov, A; Han, T Y; Wang, H; Frankel, A E; Kottke, T J; Kaufmann, S H; Cabot, M C

    2001-09-15

    DT(388)-GM-CSF, a targeted fusion toxin constructed by conjugation of human granulocyte-macrophage colony-stimulating factor (GM-CSF) with the catalytic and translocation domains of diphtheria toxin, is presently in phase I trials for patients with resistant acute myeloid leukemia. HL-60/VCR, a multidrug-resistant human myeloid leukemia cell line, and wild-type HL-60 cells were used to study the impact of DT(388)-GM-CSF on metabolism of ceramide, a modulator of apoptosis. After 48 hours with DT(388)-GM-CSF (10 nM), ceramide levels in HL-60/VCR cells rose 6-fold and viability fell to 10%, whereas GM-CSF alone was without influence. Similar results were obtained in HL-60 cells. Examination of the time course revealed that protein synthesis decreased by about 50% and cellular ceramide levels increased by about 80% between 4 and 6 hours after addition of DT(388)-GM-CSF. By 6 hours this was accompanied by activation of caspase-9, followed by activation of caspase-3, cleavage of caspase substrates, and chromatin fragmentation. Hygromycin B and emetine failed to elevate ceramide levels or induce apoptosis at concentrations that inhibited protein synthesis by 50%. Exposure to C(6)-ceramide inhibited protein synthesis (EC(50) approximately 5 microM) and decreased viability (EC(50) approximately 6 microM). Sphingomyelinase treatment depleted sphingomyelin by about 10%, while increasing ceramide levels and inhibiting protein synthesis. Diphtheria toxin increased ceramide and decreased sphingomyelin in U-937 cells, a cell line extremely sensitive to diphtheria toxin; exposure to DT(388)-GM-CSF showed sensitivity at less than 1.0 pM. Diphtheria toxin and conjugate trigger ceramide formation that contributes to apoptosis in human leukemia cells through caspase activation and inhibition of protein synthesis.

  6. Altered Clathrin-Independent Endocytosis in Type A Niemann-Pick Disease Cells and Rescue by ICAM-1-Targeted Enzyme Delivery.

    PubMed

    Rappaport, Jeff; Manthe, Rachel L; Garnacho, Carmen; Muro, Silvia

    2015-05-04

    Pharmaceutical intervention often requires therapeutics and/or their carriers to enter cells via endocytosis. Therefore, endocytic aberrancies resulting from disease represent a key, yet often overlooked, parameter in designing therapeutic strategies. In the case of lysosomal storage diseases (LSDs), characterized by lysosomal accumulation of undegraded substances, common clinical interventions rely on endocytosis of recombinant enzymes. However, the lysosomal defect in these diseases can affect endocytosis, as we recently demonstrated for clathrin-mediated uptake in patient fibroblasts with type A Niemann-Pick disease (NPD), a disorder characterized by acid sphingomylinase (ASM) deficiency and subsequent sphingomyelin storage. Using similar cells, we have examined if this is also the case for clathrin-independent pathways, including caveolae-mediated endocytosis and macropinocytosis. We observed impaired caveolin-1 enrichment at ligand-binding sites in NPD relative to wild type fibroblasts, corresponding with altered uptake of ligands and fluid-phase markers by both pathways. Similarly, aberrant lysosomal storage of sphingomyelin induced by pharmacological means also diminished uptake. Partial degradation of the lysosomal storage by untargeted recombinant ASM led to partial uptake enhancement, whereas both parameters were restored to wild type levels by ASM delivery using model polymer nanocarriers specifically targeted to intercellular adhesion molecule-1. Carriers also restored caveolin-1 enrichment at ligand-binding sites and uptake through the caveolar and macropinocytic routes. These results demonstrate a link between lysosomal storage in NPD and alterations in clathrin-independent endocytosis, which could apply to other LSDs. Hence, this study shall guide the design of therapeutic approaches using viable endocytic pathways.

  7. An overview of sphingolipid metabolism: from synthesis to breakdown

    PubMed Central

    Gault, CR; Obeid, LM; Hannun, YA

    2011-01-01

    glycosphingolipids are divided broadly into two categories: glucosphingolipids and galactosphingolipids. The glucosphingolipids depend initially on the enzyme glucosylceramide synthase (GCS) which attaches glucose as the first residue to the C1 hydroxyl position. Galactosphingolipids, on the other hand, are generated from galactosylceramide synthase (GalCerS), an evolutionarily dissimilar enzyme from GCS. Glycosphingolipids are further divided based upon further modification by various glycosyltransferases which increases the potential variation in lipid species by several fold. Far more abundant are the sphingomyelin species which are produced in parallel with glycosphingolipids, however they are defined by a phosphocholine headgroup rather than the addition of sugar residues. Although sphingomyelin species all share a common headgroup, they too are produced from a variety of ceramide species and therefore can have differing acyl chains attached to their C-2 amino groups. Whether or not the differing acyl chain lengths in SMs dictate unique functions or important biophysical distinctions has not yet been established. Understanding the function of all the existing glycosphingolipids and sphingomyelin species will be a major undertaking in the future since the tools to study and measure these species are only beginning to be developed. The simple sphingolipids serve both as the precursors and the breakdown products of the more complex ones. Importantly, in recent decades, these simple sphingolipids have gained attention for having significant signaling and regulatory roles within cells. In addition, many tools have emerged to measure the levels of simple sphingolipids and therefore have become the focus of even more intense study in recent years. With this thought in mind, this chapter will pay tribute to the complex sphingolipids, but focus on the regulation of simple sphingolipid metabolism. PMID:20919643

  8. Modulation of the lipidomic profile due to a lipid challenge and fitness level: a postprandial study.

    PubMed

    Morris, Ciara; O'Grada, Colm M; Ryan, Miriam F; Gibney, Michael J; Roche, Helen M; Gibney, Eileen R; Brennan, Lorraine

    2015-07-01

    The lipid composition of plasma is known to vary due to both phenotypic factors such as age, gender and BMI as well as with various diseases including cancer and neurological disorders. However, there is little investigation into the variation in the lipidome due to exercise and/ or metabolic challenges. The objectives of this present study were (i) To identify the glycerophospholipid, sphingolipids and ceramide changes in response to an oral lipid tolerance test (OLTT) in healthy adults and (ii) To identify the effect of aerobic fitness level on lipidomic profiles. 214 healthy adults aged 18-60 years were recruited as part of a metabolic challenge study. A sub-group of 40 volunteers were selected for lipidomic analysis based on their aerobic fitness level. Ceramides, glycerophospholipids and sphingomyelins were quantified in baseline fasting plasma samples as well as at 60, 120, 180, 240 and 300 min following a lipid challenge using high-throughput flow injection ESI-MS/MS. Mixed model repeated measures analysis identified lipids which were significantly changing over the time course of the lipid challenge. Included in these lipids were lysophosphoethanolamines (LPE), phosphoethanolamines (PE), phosphoglycerides (PG) and ceramides (Cer). Five lipids (LPE a C18:2, LPE a C18:1, PE aa C36:2, PE aa C36:3 and N-C16:1-Cer) had a fold change > 1.5 at 120 min following the challenge and these lipids remained elevated. Furthermore, three of these lipids (LPE a C18:2, PE aa C36:2 and PE aa C36:3) were predictive of fasting and peak plasma TAG concentrations following the OLTT. Further analysis revealed that fitness level has a significant impact on the response to the OLTT: in particular significant differences between fitness groups were observed for phosphatidylcholines (PC), sphingomyelins (SM) and ceramides. This study identified specific lipids which were modulated by an acute lipid challenge. Furthermore, it identified a series of lipids which were modulated by

  9. Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes.

    PubMed

    Wittenbecher, Clemens; Mühlenbruch, Kristin; Kröger, Janine; Jacobs, Simone; Kuxhaus, Olga; Floegel, Anna; Fritsche, Andreas; Pischon, Tobias; Prehn, Cornelia; Adamski, Jerzy; Joost, Hans-Georg; Boeing, Heiner; Schulze, Matthias B

    2015-06-01

    Habitual red meat consumption was consistently related to a higher risk of type 2 diabetes in observational studies. Potentially underlying mechanisms are unclear. This study aimed to identify blood metabolites that possibly relate red meat consumption to the occurrence of type 2 diabetes. Analyses were conducted in the prospective European Prospective Investigation into Cancer and Nutrition-Potsdam cohort (n = 27,548), applying a nested case-cohort design (n = 2681, including 688 incident diabetes cases). Habitual diet was assessed with validated semiquantitative food-frequency questionnaires. Total red meat consumption was defined as energy-standardized summed intake of unprocessed and processed red meats. Concentrations of 14 amino acids, 17 acylcarnitines, 81 glycerophospholipids, 14 sphingomyelins, and ferritin were determined in serum samples from baseline. These biomarkers were considered potential mediators of the relation between total red meat consumption and diabetes risk in Cox models. The proportion of diabetes risk explainable by biomarker adjustment was estimated in a bootstrapping procedure with 1000 replicates. After adjustment for age, sex, lifestyle, diet, and body mass index, total red meat consumption was directly related to diabetes risk [HR for 2 SD (11 g/MJ): 1.26; 95% CI: 1.01, 1.57]. Six biomarkers (ferritin, glycine, diacyl phosphatidylcholines 36:4 and 38:4, lysophosphatidylcholine 17:0, and hydroxy-sphingomyelin 14:1) were associated with red meat consumption and diabetes risk. The red meat-associated diabetes risk was significantly (P < 0.001) attenuated after simultaneous adjustment for these biomarkers [biomarker-adjusted HR for 2 SD (11 g/MJ): 1.09; 95% CI: 0.86, 1.38]. The proportion of diabetes risk explainable by respective biomarkers was 69% (IQR: 49%, 106%). In our study, high ferritin, low glycine, and altered hepatic-derived lipid concentrations in the circulation were associated with total red meat consumption and

  10. The metabolomic signature of Leber's hereditary optic neuropathy reveals endoplasmic reticulum stress.

    PubMed

    Chao de la Barca, Juan Manuel; Simard, Gilles; Amati-Bonneau, Patrizia; Safiedeen, Zainab; Prunier-Mirebeau, Delphine; Chupin, Stéphanie; Gadras, Cédric; Tessier, Lydie; Gueguen, Naïg; Chevrollier, Arnaud; Desquiret-Dumas, Valérie; Ferré, Marc; Bris, Céline; Kouassi Nzoughet, Judith; Bocca, Cinzia; Leruez, Stéphanie; Verny, Christophe; Miléa, Dan; Bonneau, Dominique; Lenaers, Guy; Martinez, M Carmen; Procaccio, Vincent; Reynier, Pascal

    2016-09-15

    Leber's hereditary optic neuropathy (MIM#535000), the commonest mitochondrial DNA-related disease, is caused by mutations affecting mitochondrial complex I. The clinical expression of the disorder, usually occurring in young adults, is typically characterized by subacute, usually sequential, bilateral visual loss, resulting from the degeneration of retinal ganglion cells. As the precise action of mitochondrial DNA mutations on the overall cell metabolism in Leber's hereditary optic neuropathy is unknown, we investigated the metabolomic profile of the disease. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites in fibroblasts from 16 patients with Leber's hereditary optic neuropathy and eight healthy control subjects. Latent variable-based statistical methods were used to identify discriminating metabolites. One hundred and twenty-four of the metabolites were considered to be accurately quantified. A supervised orthogonal partial least squares discriminant analysis model separating patients with Leber's hereditary optic neuropathy from control subjects showed good predictive capability (Q(2)cumulated = 0.57). Thirty-eight metabolites appeared to be the most significant variables, defining a Leber's hereditary optic neuropathy metabolic signature that revealed decreased concentrations of all proteinogenic amino acids, spermidine, putrescine, isovaleryl-carnitine, propionyl-carnitine and five sphingomyelin species, together with increased concentrations of 10 phosphatidylcholine species. This signature was not reproduced by the inhibition of complex I with rotenone or piericidin A in control fibroblasts. The importance of sphingomyelins and phosphatidylcholines in the Leber's hereditary optic neuropathy signature, together with the decreased amino acid pool, suggested an involvement of the endoplasmic reticulum. This was confirmed by the significantly increased phosphorylation of PERK and eIF2α, as well as

  11. Bacterial phospholipases.

    PubMed

    Titball, R W

    1998-01-01

    The phospholipases are a diverse group of enzymes, produced by a variety of Gram-positive and Gram-negative bacteria. The roles of these enzymes in the pathogenesis of infectious disease is equally diverse. It is only recently that molecular genetic approaches have allowed data to be obtained which indicates the role of these enzymes in the disease process. In the case of some pathogens phospholipases play an overriding role in disease. Roles for these enzymes have been demonstrated in the pathogenesis of disease caused by extracellular and intracellular pathogens and by disease caused by pathogens which enter via the respiratory tract, the intestinal tract or after traumatic injury. Some of the mechanisms by which phospholipases C affect tissues in vitro or ex vivo are understood but, in the main, the mechanisms by which phospholipases C affect tissues in vivo are not known. A key event, which can determine the extent of involvement of phospholipases in the disease process, is the interaction of the enzyme with phospholipids in eukaryotic cell membranes. Whilst progress has been made in understanding the molecular basis of these interactions, the process is far from understood. Two theories attempt to explain the reasons why only some phospholipases C are membrane active. In general, the membrane active enzymes are able to hydrolyse both phosphatidylcholine and sphingomyelin and appear to have mechanisms which allow them to interact with membrane phospholipids. The structural differences between phosphatidylcholine and sphingomyelin lie within the fatty acyl chain/ester bond region which would be partially embedded in the membrane bilayer. Therefore, there may be a common explanation for membrane interaction and recognition of both phospholipid types. The value of this information will be several fold. The demonstration of the role of these enzymes in disease will allow the development of vaccines or therapeutics which block the effects of these enzymes. In this

  12. Sticholysins, two pore-forming toxins produced by the Caribbean Sea anemone Stichodactyla helianthus: their interaction with membranes.

    PubMed

    Alvarez, Carlos; Mancheño, José M; Martínez, Diana; Tejuca, Mayra; Pazos, Fabiola; Lanio, María E

    2009-12-15

    Sticholysins (Sts) I and II (StI/II) are pore-forming toxins (PFTs) produced by the Caribbean Sea anemone Stichodactyla helianthus belonging to the actinoporin family, a unique class of eukaryotic PFTs exclusively found in sea anemones. As for the rest of the members of this family, Sts are cysteine-less proteins, with molecular weights around 20 kDa, high isoelectric points (>9.5), and a preference for sphingomyelin-containing membranes. A three-dimensional structure of StII, solved by X-ray crystallography, showed that it is composed of a hydrophobic beta-sandwich core flanked on the opposite sides by two alpha helices comprising residues 14-23 and 128-135. A variety of experimental results indicate that the first thirty N-terminal residues, which include one of the helices, are directly involved in pore formation. This region contains an amphipathic stretch, well conserved in all actinoporins, which is the only portion of the molecule that can change conformation without perturbing the general protein fold; in fact, binding to model membranes only produces a slight increase in the regular secondary structure content of Sts. Sts are produced in soluble form but they readily bind to different cell and model membrane systems such as lipidic monolayers, micelles, and lipid vesicles. Remarkably, both the binding and pore-formation steps are critically dependent on the physico-chemical nature of the membrane. In fact, a large population of toxin irreversibly binds with high affinity in membranes containing sphingomyelin whereas binding in membranes lacking this sphingolipid is relatively low and reversible. The joint presence of SM and cholesterol largely promotes binding and pore formation. Minor amounts of lipids favoring a non-lamellar organization also augment the efficiency of pore formation. The functional pore formed in cellular and model membranes has a diameter of approximately 2.0 nm and is presumably formed by the N-terminal alpha helices of four monomers

  13. Dietary Choline Intake Is Directly Associated with Bone Mineral Density in the Hordaland Health Study.

    PubMed

    Øyen, Jannike; Gjesdal, Clara Gram; Karlsson, Therese; Svingen, Gard Ft; Tell, Grethe S; Strand, Elin; Drevon, Christian A; Vinknes, Kathrine J; Meyer, Klaus; Ueland, Per Magne; Nygård, Ottar

    2017-04-01

    Background: Choline is an important nutrient either obtained from a variety of foods or synthesized endogenously, and it is the precursor of betaine. We previously reported positive associations between plasma free choline and bone mineral density (BMD). Animal studies suggest an impact of dietary choline on bone metabolism, but the role of dietary intake of choline and betaine for human bone health is unknown.Objectives: The main aims were to examine the associations of dietary choline, choline species, and betaine with BMD and to study the relations between dietary and plasma free choline and betaine.Methods: Study subjects were participants in the Hordaland Health Study, including 2649 women and 1983 men (aged 46-49 or 71-74 y). BMD was measured by dual-energy X-ray absorptiometry, and dietary intake was obtained by using a validated 169-item food-frequency questionnaire. Risk associations were assessed by logistic regression and correlations by ρ (Spearman's bivariate rank order correlation).Results: Subjects in the lowest compared with the highest tertile of dietary total choline, free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine, and sphingomyelin had a higher risk of low-femoral neck BMD, defined as the lowest BMD quintile. Particularly strong associations were found among middle-aged men for intake of free choline (OR: 1.83; 95% CI: 1.24, 2.69; P = 0.002) and glycerophosphocholine (OR: 2.13; 95% CI: 1.43, 3.16; P < 0.001) and among elderly women for total choline (OR: 1.96; 95% CI: 1.33, 2.88; P = 0.001) and phosphatidylcholine (OR: 1.94; 95% CI: 1.33, 2.84: P = 0.001) intake. No significant associations were observed between dietary betaine and BMD. Dietary total choline, free choline, glycerophosphocholine, phosphatidylcholine, and sphingomyelin correlated weakly with plasma free choline (ρ: 0.07, 0.05, 0.07, 0.07, and 0.05, respectively; P < 0.01). Dietary betaine correlated with plasma betaine (ρ: 0.23; P < 0.001).Conclusion

  14. Biochemical characterization and membrane fluidity of membranous vesicles isolated from boar seminal plasma.

    PubMed

    Piehl, Lidia L; Cisale, Humberto; Torres, Natalia; Capani, Francisco; Sterin-Speziale, Norma; Hager, Alfredo

    2006-05-01

    Mammalian seminal plasma contains membranous vesicles (MV), which differ in composition and origin. Among these particles, human prostasomes and equine prostasome-like MV have been the most studied. The aim of the present work is to characterize the biochemical composition and membrane fluidity of MV isolated from boar seminal plasma. The MV from boar seminal plasma were isolated by ultracentrifugation and further purification by gel filtration on Sephadex G-200. The MV were examined by electron microscopy (EM), amount of cholesterol, total phospholipid, protein content, and phospholipid composition were analyzed. Membrane fluidity of MV and spermatozoa were estimated from the electron spin resonance (ESR) spectra of the 5-doxilstearic acid incorporated into the vesicle membranes by the order parameter (S). The S parameter gives a measure of degree of structural order in the membrane and is defined as the ratio of the spectral anisotropy in the membranes to the maximum anisotropy obtained in a rigidly oriented system. The S parameter takes into consideration that S = 1 for a rapid spin-label motion of about only one axis and S = 0 for a rapid isotropic motion. Intermediate S values between S = 0 and S = 1 represents the consequence of decreased membrane fluidity. The EM revealed the presence of bilaminar and multilaminar electron-dense vesicles. Cholesterol to phospholipid molar ratio from the isolated MV was 1.8. Phospholipid composition showed a predominance of sphingomyelin. The S parameter for porcine MV and for boar spermatozoa was 0.73 +/- 0.02 and 0.644 +/- 0.008, respectively, with the S for MV being greater (p < 0.001) than the S for spermatozoa. The high order for S found for boar MV was in agreement with the greater cholesterol/phospholipids ratio and the lesser ratio for phosphatidylcholine/sphingomyelin. Results obtained in the present work indicate that MV isolated from boar semen share many biochemical and morphological characteristics with equine

  15. oxLDL and eLDL Induced Membrane Microdomains in Human Macrophages

    PubMed Central

    Wallner, Stefan; Grandl, Margot; Liebisch, Gerhard; Peer, Markus; Orsó, Evelyn; Sigrüner, Alexander; Sobota, Andrzej; Schmitz, Gerd

    2016-01-01

    Background Extravasation of macrophages and formation of lipid-laden foam cells are key events in the development and progression of atherosclerosis. The degradation of atherogenic lipoproteins subsequently leads to alterations in cellular lipid metabolism that influence inflammatory signaling. Especially sphingolipids and ceramides are known to be involved in these processes. We therefore analyzed monocyte derived macrophages during differentiation and after loading with enzymatically (eLDL) and oxidatively (oxLDL) modified low-density lipoproteins (LDL). Methods Primary human monocytes were isolated from healthy, normolipidemic blood donors using leukapheresis and counterflow elutriation. On the fourth day of MCSF-induced differentiation eLDL (40 μg/ml) or oxLDL (80 μg/ml) were added for 48h. Lipid species were analyzed by quantitative tandem mass spectrometry. Taqman qPCR was performed to investigate transcriptional changes in enzymes involved in sphingolipid metabolism. Furthermore, membrane lipids were studied using flow cytometry and confocal microscopy. Results MCSF dependent phagocytic differentiation of blood monocytes had only minor effects on the sphingolipid composition. Levels of total sphingomyelin and total ceramide remained unchanged, while lactosylceramides, cholesterylesters and free cholesterol decreased. At the species level most ceramide species showed a reduction upon phagocytic differentiation. Loading with eLDL preferentially increased cellular cholesterol while loading with oxLDL increased cellular ceramide content. Activation of the salvage pathway with a higher mRNA expression of acid and neutral sphingomyelinase, neutral sphingomyelinase activation associated factor and glucosylceramidase as well as increased surface expression of SMPD1 were identified as potentially underlying mechanisms. Moreover, flow-cytometric analysis revealed a higher cell-surface-expression of ceramide, lactosylceramide (CDw17), globotriaosylceramide (CD77

  16. Niemann-Pick disease: a frequent missense mutation in the acid sphingomyelinase gene of Ashkenazi Jewish type A and B patients.

    PubMed Central

    Levran, O; Desnick, R J; Schuchman, E H

    1991-01-01

    Although the A and B subtypes of Niemann-Pick disease (NPD) both result from the deficient activity of acid sphingomyelinase (ASM; sphingomyelin cholinephosphohydrolase, EC 3.1.4.12) and the lysosomal accumulation of sphingomyelin, they have remarkably distinct phenotypes. Type A disease is a fatal neurodegenerative disorder of infancy, whereas type B disease has no neurologic manifestations and is characterized primarily by reticuloendothelial involvement and survival into adulthood. Both disorders are more frequent among individual of Ashkenazi Jewish ancestry than in the general population. The recent isolation and characterization of cDNA and genomic sequences encoding ASM has facilitated investigation of the molecular lesions causing the NPD subtypes. Total RNA was reverse-transcribed, and the ASM cDNA from an Ashkenazi Jewish type A patient was specifically amplified by the polymerase chain reaction (PCR). Molecular analysis of the PCR products revealed a G----T transversion of nucleotide 1487, which occurred at a CpG dinucleotide and predicted an Arg----Leu substitution in residue 496. Hybridization of PCR-amplified genomic DNA with allele-specific oligonucleotides indicated that the proband was homoallelic for the Arg----Leu substitution and that both parents and several other relatives were heterozygous. This mutation was detected in 32% (10 of 31) of the Ashkenazi Jewish NPD type A alleles studied and occurred in only 5.6% (2 of 36) of ASM alleles from non-Jewish type A patients. Of interest, the Arg----Leu substitution occurred in one of the ASM alleles from the two Ashkenazi Jewish NPD type B patients studied and in none of the ASM alleles of 15 non-Jewish type B patients. In contrast, the mutation was not present in 180 ASM alleles from normal individuals of Ashkenazi Jewish descent. These findings identify a frequent missense mutation among NPD patients of Ashkenazi Jewish ancestry that results in neuronopathic type A disease when homoallelic and can

  17. Deconstructing the pig sex metabolome: Targeted metabolomics in heavy pigs revealed sexual dimorphisms in plasma biomarkers and metabolic pathways.

    PubMed

    Bovo, S; Mazzoni, G; Calò, D G; Galimberti, G; Fanelli, F; Mezzullo, M; Schiavo, G; Scotti, E; Manisi, A; Samoré, A B; Bertolini, F; Trevisi, P; Bosi, P; Dall'Olio, S; Pagotto, U; Fontanesi, L

    2015-12-01

    Metabolomics has opened new possibilities to investigate metabolic differences among animals. In this study, we applied a targeted metabolomic approach to deconstruct the pig sex metabolome as defined by castrated males and entire gilts. Plasma from 545 performance-tested Italian Large White pigs (172 castrated males and 373 females) sampled at about 160 kg live weight were analyzed for 186 metabolites using the Biocrates AbsoluteIDQ p180 Kit. After filtering, 132 metabolites (20 AA, 11 biogenic amines, 1 hexose, 13 acylcarnitines, 11 sphingomyelins, 67 phosphatidylcholines, and 9 lysophosphatidylcholines) were retained for further analyses. The multivariate approach of the sparse partial least squares discriminant analysis was applied, together with a specifically designed statistical pipeline, that included a permutation test and a 10 cross-fold validation procedure that produced stability and effect size statistics for each metabolite. Using this approach, we identified 85 biomarkers (with metabolites from all analyzed chemical families) that contributed to the differences between the 2 groups of pigs ( < 0.05 at the stability statistic test). All acylcarnitines and almost all biogenic amines were higher in castrated males than in gilts. Metabolites involved in tryptophan catabolism had the largest differences (i.e., delta = 20% for serotonin) between castrated males (higher) and gilts (lower). The level of several AA (Ala, Arg, Gly, His, Lys, Ser, Thr, and Trp) was higher in gilts (delta was from approximately 1.0 to approximately 4.8%) whereas products of AA catabolism (taurine, 2-aminoadipic acid, and methionine sulfoxide) were higher in castrated males (delta was approximately 5.0-6.0%), suggesting a metabolic shift in castrated males toward energy storage and lipid production. Similar general patterns were observed for most sphingomyelins, phosphatidylcholines, and lysophosphatidylcholines. Metabolomic pathway analysis and pathway enrichment identified

  18. Sphingosine inhibits sphingomyelinase-induced cholesteryl ester formation in cultured fibroblasts.

    PubMed

    Härmälä, A S; Pörn, M I; Slotte, J P

    1993-12-02

    We have in this study examined the effects of sphingosine, a possible secondary degradation product following sphingomyelin hydrolysis, on cholesterol homeostasis in cultured human fibroblasts treated with sphingomyelinase. The activation of cholesterol esterification, which resulted from the degradation of plasma membrane sphingomyelin (by sphingomyelinase), was observed to be effectively blocked by sphingosine (half-maximal dose 6-7 microM). The inhibitory action of sphingosine could not be reproduced with other amines (e.g., dodecyl amine or imipramine). The onset of inhibition of cholesteryl ester formation by sphingosine was rapid (maximal effect within 15 min). Sphingosine itself had no spontaneous effects on the distribution of cellular cholesterol. At concentrations below 10 microM, sphingosine was not cytotoxic, as determined by cellular trypan blue permeability. The inhibitory action of sphingosine on cholesteryl ester formation apparently did not result from a direct inhibition of acyl-CoA cholesterol acyltransferase (ACAT), since the activity of this enzyme was unaffected by sphingosine (10 microM) in a cell-free homogenate, using [14C]oleoyl-CoA as a co-substrate. Sphingosine was also unable to prevent the formation of activated fatty acids (oleoyl-CoA), since acyl-CoA synthetase activity in a cell-free homogenate was not inhibited by sphingosine (at 5 microM). The cellular cholesteryl ester cycle (i.e., the neutral cholesteryl ester hydrolase) was unaffected by sphingosine (at 5 microM). Down-regulation of PKC activity (24 h exposure of cells to 100 nM (62 ng/ml) phorbol ester) did not affect the sphingomyelinase-induced stimulation of [3H]cholesteryl ester formation. In addition, the sphingosine-induced inhibition of [3H]cholesteryl ester formation was not reversed in the presence of phorbol ester (short-term exposures), suggesting that the effect of sphingosine was not mediated via PKC. In conclusion, we have shown that sphingosine is an inhibitor

  19. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids.

    PubMed

    Kramer, J K; Fellner, V; Dugan, M E; Sauer, F D; Mossoba, M M; Yurawecz, M P

    1997-11-01

    Milk analysis is receiving increased attention. Milk contains conjugated octadecadienoic acids (18:2) purported to be anticarcinogenic, low levels of essential fatty acids, and trans fatty acids that increase when essential fatty acids are increased in dairy rations. Milk and rumen fatty acid methyl esters (FAME) were prepared using several acid- (HCl, BF3, acetyl chloride, H2SO4) or base-catalysts (NaOCH3, tetramethylguanidine, diazomethane), or combinations thereof. All acid-catalyzed procedures resulted in decreased cis/trans (delta 9c,11t-18:2) and increased trans/trans (delta 9t,11t-18:2) conjugated dienes and the production of allylic methoxy artifacts. The methoxy artifacts were identified by gas-liquid chromatography (Gl.C)-mass spectroscopy. The base-catalyzed procedures gave no isomerization of conjugated dienes and no methoxy artifacts, but they did not transesterify N-acyl lipids such as sphingomyelin, and NaOCH3 did not methylate free fatty acids. In addition, reaction with tetramethylguanidine coextracted material with hexane that interfered with the determination of the short-chain FAME by GLC. Acid-catalyzed methylation resulted in the loss of about 12% total conjugated dienes, 42% recovery of the delta 9c,11t-18:2 isomer, a fourfold increase in delta 9t,11t-18:2, and the formation of methoxy artifacts, compared with the base-catalyzed reactions. Total milk FAME showed significant infrared (IR) absorption due to conjugated dienes at 985 and 948 cm-1. The IR determination of total trans content of milk FAME was not fully satisfactory because the 966 cm-1 trans band overlapped with the conjugated diene bands. IR accuracy was limited by the fact that the absorptivity of methyl elaidate, used as calibration standard, was different from those of the other minor trans fatty acids (e.g., dienes) found in milk. In addition, acid-catalyzed reactions produced interfering material that absorbed extensively in the trans IR region. No single method or

  20. Lipid abnormalities in alpha/beta2-syntrophin null mice are independent from ABCA1

    PubMed Central

    Hebel, Tobias; Eisinger, Kristina; Neumeier, Markus; Rein-Fischboeck, Lisa; Pohl, Rebekka; Meier, Elisabeth M.; Boettcher, Alfred; Froehner, Stanley C.; Adams, Marvin E.; Liebisch, Gerhard; Krautbauer, Sabrina; Buechler, Christa

    2015-01-01

    The syntrophins alpha (SNTA) and beta 2 (SNTB2) are molecular adaptor proteins shown to stabilize ABCA1, an essential regulator of HDL cholesterol. Furthermore, SNTB2 is involved in glucose stimulated insulin release. Hyperglycemia and dyslipidemia are characteristic features of the metabolic syndrome, a serious public health problem with rising prevalence. Therefore, it is important to understand the role of the syntrophins herein. Mice deficient for both syntrophins (SNTA/B2−/−) have normal insulin and glucose tolerance, hepatic ABCA1 protein and cholesterol. When challenged with a HFD, wild type and SNTA/B2−/− mice have similar weight gain, adiposity, serum and liver triglycerides. Hepatic ABCA1, serum insulin and insulin sensitivity are normal while glucose tolerance is impaired. Liver cholesterol is reduced, and expression of SREBP2 and HMG-CoA-R is increased in the knockout mice. Scavenger receptor-BI (SR-BI) protein is strongly diminished in the liver of SNTA/B2−/− mice while SR-BI binding protein NHERF1 is not changed and PDZK1 is even induced. Knock-down of SNTA, SNTB2 or both has no effect on hepatocyte SR-BI and PDZK1 proteins. Further, SR-BI levels are not reduced in brown adipose tissue of SNTA/B2−/− mice excluding that syntrophins directly stabilize SR-BI. SR-BI stability is regulated by MAPK and phosphorylated ERK2 is induced in the liver of the knock-out mice. Blockage of ERK activity upregulates hepatocyte SR-BI showing that increased MAPK activity contributes to low SR-BI. Sphingomyelin which is well described to regulate cholesterol metabolism is reduced in the liver and serum of the knock-out mice while the size of serum lipoproteins is not affected. Current data exclude a major function of these syntrophins in ABCA1 activity and insulin release but suggest a role in regulating glucose uptake, ERK and SR-BI levels, and sphingomyelin metabolism in obesity. PMID:25625330

  1. Stimulation, Inhibition, or Stabilization of Na,K-ATPase Caused by Specific Lipid Interactions at Distinct Sites

    PubMed Central

    Habeck, Michael; Haviv, Haim; Katz, Adriana; Kapri-Pardes, Einat; Ayciriex, Sophie; Shevchenko, Andrej; Ogawa, Haruo; Toyoshima, Chikashi; Karlish, Steven J. D.

    2015-01-01

    The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant N