Sample records for spin acceleration effect

  1. The effect of inertia on the Dirac electron, the spin Hall current and the momentum space Berry curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-02-15

    We have studied the spin dependent force and the associated momentum space Berry curvature in an accelerating system. The results are derived by taking into consideration the non-relativistic limit of a generally covariant Dirac equation with an electromagnetic field present, where the methodology of the Foldy-Wouthuysen transformation is applied to achieve the non-relativistic limit. Spin currents appear due to the combined action of the external electric field, the crystal field and the induced inertial electric field via the total effective spin-orbit interaction. In an accelerating frame, the crucial role of momentum space Berry curvature in the spin dynamics has alsomore » been addressed from the perspective of spin Hall conductivity. For time dependent acceleration, the expression for the spin polarization has been derived. - Highlights: Black-Right-Pointing-Pointer We study the effect of acceleration on the Dirac electron in the presence of an electromagnetic field, where the acceleration induces an electric field. Black-Right-Pointing-Pointer Spin currents appear due to the total effective electric field via the total spin-orbit interaction. Black-Right-Pointing-Pointer We derive the expression for the spin dependent force and the spin Hall current, which is zero for a particular acceleration. Black-Right-Pointing-Pointer The role of the momentum space Berry curvature in an accelerating system is discussed. Black-Right-Pointing-Pointer An expression for the spin polarization for time dependent acceleration is derived.« less

  2. Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction

    NASA Astrophysics Data System (ADS)

    Kumar, Punit; Singh, Shiv; Ahmad, Nafees

    2018-05-01

    Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.

  3. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 1; Start-up

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. They are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the first part of the experimental study, i.e. the effects of a centrifugal force on the LHP start-up. Tests were conducted by varying the heat load to the evaporator, sink temperature, magnitude and frequency of centrifugal force, and LHP orientation relative to the direction of the accelerating force. The accelerating force seems to have little effect on the loop start-up in terms of temperature overshoot and superheat at boiling incipience. Changes in these parameters seem to be stochastic with or without centrifugal accelerating forces. The LHP started successfully in all tests.

  4. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 2; Temperature Stability

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kaya, Taril; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. LHP's are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that in stationary tests the LHP operating temperature is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled. Results of this test program indicate that any change in the accelerating force will result in a chance in the LHP operating temperature through its influence on the fluid distribution in the evaporator, condenser and compensation chamber. However, the effect is not universal, rather it is a function of other test conditions. A steady, constant acceleration may result in an increase or decrease of the operating temperature, while a periodic spin will lead to a quasi-steady operating temperature over a sufficient time interval. In addition, an accelerating force may lead to temperature hysteresis and changes in the temperature oscillation. In spite of all these effects, the LHP continued to operate without any problems in all tests.

  5. A feasibility study of developing toroidal tanks for a spinning spacecraft. Part 2: Evaluation of fluid behavior in spinning toroidal tanks

    NASA Technical Reports Server (NTRS)

    Anderson, J. E.

    1974-01-01

    An experimental program was conducted for the purpose of evaluating propellant behavior characteristics in spinning toroidal tanks. The effects of typical mission requirements, and related phenomena upon propellant slosh and settling, and orientation and stability of the ullage were investigated in a subscale model tank under both one-g and low-g acceleration environments. Specific conditions included were axial acceleration, spin rate, spinrate change, and spacecraft wobble, both singly and in combination. Methanol and water in combination with appropriate spin-rates and accelerations of the scale model system were used to simulate the behavior of fluorine, nitrogen tetroxide, monomethylhydrazine, and hydrazine. The experimental results indicate that no major fluid behavior problems would be encountered with the use of toroidal tanks containing any of the four propellants in a proposed spin-stabilized orbiter spacecraft.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Kewisch, J.; Huang, H.

    At RHIC, the spin polarization is preserved with a pair of Siberian snakes on the oppo- site sides in each ring. The polarized proton beam with finite spin tune spread might cross spin resonances multiple times in two cases, one is when beam going through strong spin intrinsic resonances during acceleration, the other is when sweeping spin flipper’ frequency across the spin tune to flip the direction of spin polarization. The consequence is loss of spin polarization in both cases. Therefore, a scheme of min- imizing the spin tune spread by matching the dispersion primes at the two snakes wasmore » introduced based on the fact that the spin tune spread is proportional to the difference of dispersion primes at the two snakes. The scheme was implemented at fixed energies for the spin flipper study and during beam acceleration for better spin polarization transmission efficiency. The effect of minimizing the spin tune spread by matching the dispersion primes was observed and confirmed experimentally. The principle of minimizing the spin tune spread by matching the dispersion primes, the impact on the beam optics, and the effect of a narrower spin tune spread are presented in this report.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai,M.; Ptitsyn, V.; Roser, T.

    To keep the spin tune in the spin depolarizing resonance free region is required for accelerating polarized protons to high energy. In RHIC, two snakes are located at the opposite side of each accelerator. They are configured to yield a spin tune of 1/2. Two pairs of spin rotators are located at either side of two detectors in each ring in RHIC to provide longitudinal polarization for the experiments. Since the spin rotation from vertical to longitudinal is localized between the two rotators, the spin rotators do not change the spin tune. However, due to the imperfection of the orbitsmore » around the snakes and rotators, the spin tune can be shifted. This note presents the impact of the horizontal orbital angle between the two snakes on the spin tune, as well as the effect of the vertical orbital angle between two rotators at either side of the collision point on the spin tune.« less

  8. Radiation reaction for spinning bodies in effective field theory. II. Spin-spin effects

    NASA Astrophysics Data System (ADS)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at quadratic order in the spins to the radiation-reaction acceleration and spin evolution for binary systems, entering at four-and-a-half PN order. Our calculation includes the backreaction from finite-size spin effects, which is presented for the first time. The computation is carried out, from first principles, using the effective field theory framework for spinning extended objects. At this order, nonconservative effects in the spin-spin sector are independent of the spin supplementary conditions. A nontrivial consistency check is performed by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone. We find that, in contrast to the spin-orbit contributions (reported in a companion paper), the radiation reaction affects the evolution of the spin vectors once spin-spin effects are incorporated.

  9. Spin-Mechatronics

    NASA Astrophysics Data System (ADS)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  10. Accurate and efficient spin integration for particle accelerators

    DOE PAGES

    Abell, Dan T.; Meiser, Dominic; Ranjbar, Vahid H.; ...

    2015-02-01

    Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations.We evaluate their performance and accuracy in quantitative detail for individual elements as well as formore » the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.« less

  11. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    NASA Astrophysics Data System (ADS)

    Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider’s lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of “interference peaks”. The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.

  12. Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratenko, A.; Kondratenko, M.; Filatov, Yu. N.

    2017-07-01

    The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider's lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of "interference peaks". The beam polarization dependsmore » on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.« less

  13. Radiation reaction for spinning bodies in effective field theory. I. Spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at linear order in the spin to the radiation-reaction acceleration and spin evolution for binary systems, which enter at fourth PN order. The calculation is carried out, from first principles, using the effective field theory framework for spinning compact objects, in both the Newton-Wigner and covariant spin supplementary conditions. A nontrivial consistency check is performed on our results by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone, up to so-called "Schott terms." We also find that, at this order, the radiation reaction has no net effect on the evolution of the spins. The spin-spin contributions to radiation reaction are reported in a companion paper.

  14. Using piezo-electric material to simulate a vibration environment

    DOEpatents

    Jepsen, Richard A.; Davie, Neil T.; Vangoethem, Douglas J.; Romero, Edward F.

    2010-12-14

    A target object can be vibrated using actuation that exploits the piezo-electric ("PE") property. Under combined conditions of vibration and centrifugal acceleration, a centrifugal load of the target object on PE vibration actuators can be reduced by using a counterweight that offsets the centrifugal loading. Target objects are also subjected to combinations of: spin, vibration, and acceleration; spin and vibration; and spin and acceleration.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ptitsyn, V.; Bai, M.; Roser, T.

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHICmore » Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.« less

  16. Ghosts in the self-accelerating brane universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyama, Kazuya; Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth, PO1 2EG

    2005-12-15

    We study the spectrum of gravitational perturbations about a vacuum de Sitter brane with the induced 4D Einstein-Hilbert term, in a 5D Minkowski spacetime (DGP model). We consider solutions that include a self-accelerating universe, where the accelerating expansion of the universe is realized without introducing a cosmological constant on the brane. The mass of the discrete mode for the spin-2 graviton is calculated for various Hr{sub c}, where H is the Hubble parameter and r{sub c} is the crossover scale determined by the ratio between the 5D Newton constant and the 4D Newton constant. We show that, if we introducemore » a positive cosmological constant on the brane (Hr{sub c}>1), the spin-2 graviton has mass in the range 01/2. In a self-accelerating universe Hr{sub c}=1, the spin-2 graviton has mass m{sup 2}=2H{sup 2}, which coincides with the mass of the brane fluctuation mode. Then there arises a mixing between the brane fluctuation mode and the spin-2 graviton. We argue that this mixing presumably gives a ghost in the self-accelerating universe by continuity across Hr{sub c}=1, although a careful calculation of the effective action is required to verify this rigorously.« less

  17. A separation of antiferromagnetic spin motion modes in the training effect of exchange biased Co/CoO film with in-plane anisotropy

    NASA Astrophysics Data System (ADS)

    Wu, R.; Yun, C.; Ding, S. L.; Wen, X.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L.; Yang, J. B.

    2016-08-01

    The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n-1/2 function. A larger CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.

  18. Effect of a Phonon Bottleneck on Exciton and Spin Generation in Self-Assembled In1 -xGaxAs Quantum Dots

    NASA Astrophysics Data System (ADS)

    Huang, Y. Q.; Buyanova, I. A.; Yang, X. J.; Murayama, A.; Chen, W. M.

    2018-04-01

    We provide direct experimental evidence for the effect of a phonon bottleneck on exciton and spin generation in self-assembled In0.5Ga0.5As quantum dots (QDs). With the aid of tunable laser spectroscopy, we resolve and identify efficient exciton generation channels in the QDs mediated by longitudinal-optical (LO) phonons from an otherwise inhomogeneously broadened QD emission background that suffers from the phonon bottleneck effect in exciton generation. Spin-generation efficiency is found to be enhanced under the LO-assisted excitation condition due to suppressed spin relaxation accompanying accelerated exciton generation. These findings underline the importance of fine-tuning QD energy levels that will benefit potential spin-optoelectronic applications of QDs by reducing spin loss due to the phonon bottleneck.

  19. Accelerated Slice Encoding for Metal Artifact Correction

    PubMed Central

    Hargreaves, Brian A.; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T.; Gold, Garry E.; Brau, Anja C. S.; Pauly, John M.; Pauly, Kim Butts

    2010-01-01

    Purpose To demonstrate accelerated imaging with artifact reduction near metallic implants and different contrast mechanisms. Materials and Methods Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The SNR effects of all reconstructions were quantified in one subject. 10 subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. Results The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. Conclusion SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. PMID:20373445

  20. Accelerated slice encoding for metal artifact correction.

    PubMed

    Hargreaves, Brian A; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T; Gold, Garry E; Brau, Anja C S; Pauly, John M; Pauly, Kim Butts

    2010-04-01

    To demonstrate accelerated imaging with both artifact reduction and different contrast mechanisms near metallic implants. Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The signal-to-noise ratio (SNR) effects of all reconstructions were quantified in one subject. Ten subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging, and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. (c) 2010 Wiley-Liss, Inc.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, A.

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) themore » source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, [pi]-nucleon physics looked attractive, since the determination of spin and parity of possible [pi]p resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy.« less

  2. A separation of antiferromagnetic spin motion modes in the training effect of exchange biased Co/CoO film with in-plane anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS; Yun, C.

    2016-08-07

    The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n{sup −1/2} function. A largermore » CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.« less

  3. Nuclear spin warm up in bulk n -GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Jouault, B.; Korenev, V. L.; Kavokin, K. V.

    2016-08-01

    We show that the spin-lattice relaxation in n -type insulating GaAs is dramatically accelerated at low magnetic fields. The origin of this effect, which cannot be explained in terms of well-known diffusion-limited hyperfine relaxation, is found in the quadrupole relaxation, induced by fluctuating donor charges. Therefore, quadrupole relaxation, which governs low field nuclear spin relaxation in semiconductor quantum dots, but was so far supposed to be harmless to bulk nuclei spins in the absence of optical pumping, can be studied and harnessed in the much simpler model environment of n -GaAs bulk crystal.

  4. A brushless dc spin motor for momentum exchange altitude control

    NASA Technical Reports Server (NTRS)

    Stern, D.; Rosenlieb, J. W.

    1972-01-01

    Brushless dc spin motor is designed to use Hall effect probes as means of revolving rotor position and controlling motor winding currents. This results in 3 to 1 reduction in watt-hours required for wheel acceleration, a 2 to 1 reduction in power to run wheel, and a 10 to 1 reduction in the electronics size and weight.

  5. Acceleration by pulsar winds in binary systems

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Gaisser, T. K.

    1990-01-01

    In the absence of accretion torques, a pulsar in a binary system will spin down due to electromagnetic dipole radiation and the spin-down power will drive a wind of relativistic electron-positron pairs. Winds from pulsars with short periods will prevent any subsequent accretion but may be confined by the companion star atmosphere, wind, or magnetosphere to form a standing shock. The authors investigate the possibility of particle acceleration at such a pulsar wind shock and the production of very high energy (VHE) and ultra high energy (UHE) gamma rays from interactions of accelerated protons in the companion star's wind or atmosphere. They find that in close binaries containing active pulsars, protons will be shock accelerated to a maximum energy dependent on the pulsar spin-down luminosity. If a significant fraction of the spin-down power goes into particle acceleration, these systems should be sources of VHE and possibly UHE gamma rays. The authors discuss the application of the pulsar wind model to binary sources such as Cygnus X-3, as well as the possibility of observing VHE gamma-rays from known binary radio pulsar systems.

  6. Acceleration of polarized protons to 22 GeV/c and the measurement of spin-spin effects in p/sub up-arrow/+p/sub up-arrow/. -->. p+p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khiari, F.Z.; Cameron, P.R.; Court, G.R.

    1989-01-01

    Accelerating polarized protons to 22 GeV/c at the Brookhaven Alternating Gradient Synchro- tron required both extensive hardware modifications and a difficult commissioning process. We had to overcome 45 strong depolarizing resonances to maintain polarization up to 22 GeV/c in this strong-focusing synchrotron. At 18.5 GeV/c we measured the analyzing power A and the spin-spin correlation parameter A/sub n//sub n/ in large- P/sub perpendicular//sup 2/ proton-proton elastic scattering, using the polarized proton beam and a polarized proton target. We also obtained a high-precision measurement of A at P/sub perpendicular//sup 2/ = 0.3 (GeV/c)/sup 2/ at 13.3 GeV/c. At 18.5 GeV/c wemore » found that A/sub n//sub n/ = (-2 +- 16)% at P/sub perpendicular//sup 2/ = 4.7 (GeV/c)/sup 2/, where it was about 60% near 12 GeV at the Argonne Zero Gradient Synchrotron. This sharp change suggests that spin-spin forces may have a strong and unexpected energy dependence at high P/sub perpendicular//sup 2/.« less

  7. Acceleration effects in solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Langhenry, M. T.

    1986-01-01

    The performance variations due to acceleration loads imposed on spinning solid propellant rocket motors are investigated. The four potentially most significant modes of acceleration-induced phenomena are identified from a study of the literature and modeled. The four modes are a mechanical mode which deals with deformations of the propellant and case: a thermodynamic mode which covers acceleration-induced combustion phenomena; a stress mode which covers the stressed propellant's effect on burn rate; and a gas dynamic mode which deals with changes in gas flow in the chamber and through the nozzle. Simplified models of each mode are developed or taken from the literature and are added to an internal ballistics evaluation computer program. The resulting analysis is the first to include all of the modes. In order to do this an original analysis of the mechanical and stress modes was necessary. However, the analysis shows that the stress mode is not important for the circular perforated grains studied. The other effects are shown to have a significant influence on solid rocket motor performance. The magnitude of the different mode effects are such that one may not be ignored over the others as has been done in the past. The results of the analysis are compared to published rocket motor data. The comparisons indicate an erosive burning effect that is a function of spin rate. A qualitative explanation of the erosive effect is presented.

  8. Spin-orbit scattering visualized in quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Kohsaka, Y.; Machida, T.; Iwaya, K.; Kanou, M.; Hanaguri, T.; Sasagawa, T.

    2017-03-01

    In the presence of spin-orbit coupling, electron scattering off impurities depends on both spin and orbital angular momentum of electrons—spin-orbit scattering. Although some transport properties are subject to spin-orbit scattering, experimental techniques directly accessible to this effect are limited. Here we show that a signature of spin-orbit scattering manifests itself in quasiparticle interference (QPI) imaged by spectroscopic-imaging scanning tunneling microscopy. The experimental data of a polar semiconductor BiTeI are well reproduced by numerical simulations with the T -matrix formalism that include not only scalar scattering normally adopted but also spin-orbit scattering stronger than scalar scattering. To accelerate the simulations, we extend the standard efficient method of QPI calculation for momentum-independent scattering to be applicable even for spin-orbit scattering. We further identify a selection rule that makes spin-orbit scattering visible in the QPI pattern. These results demonstrate that spin-orbit scattering can exert predominant influence on QPI patterns and thus suggest that QPI measurement is available to detect spin-orbit scattering.

  9. Spin physics at ELSA

    NASA Astrophysics Data System (ADS)

    Althoff, K. H.

    1989-05-01

    In 1987 the new Bonn stretcher accelerator ELSA came into operation. In this paper a short description of the accelerator and the three experimental facilities PHOENICS, ELAN and SAPHIR is given. The determination of spin observables is one of the main subjects of the experimental program. Some experiments are discussed in more detail.

  10. Testing of a Loop Heat Pipe Subjected to Variable Accelerating Forces

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kaya, Tarik; Rogers, Paul; Hoff, Craig

    2000-01-01

    This paper presents viewgraphs of the functionality of a loop heat pipe that was subjected to variable accelerating forces. The topics include: 1) Summary of LHP (Loop Heat Pipe) Design Parameters; 2) Picture of the LHP; 3) Schematic of Test Setup; 4) Test Configurations; 5) Test Profiles; 6) Overview of Test Results; 7) Start-up; 8) Typical Start-up without Temperature Overshoot; 9) Start-up with a Large Temperature Overshoot; 10) LHP Operation Under Stationary Condition; 11) LHP Operation Under Continuous Acceleration; 12) LHP Operation Under Periodic Acceleration; 13) Effects of Acceleration on Temperature Oscillation and Hysteresis; 14) Temperature Oscillation/Hysteresis vs Spin Rate; and 15) Summary.

  11. The motion and stability of a dual spin satellite during the momentum wheel spin-up maneuver

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Sen, S.

    1972-01-01

    The stability of a dual-spin satellite system during the momentum wheel spin-up maneuver is treated both analytically and numerically. The dual-spin system consists of: a slowly rotating or despun main-body; a momentum wheel (or rotor) which is accelerated by a torque motor to change its initial angular velocity relative to the main part to some high terminal value; and a nutation damper. A closed form solution for the case of a symmetrical satellite indicates that when the nutation damper is physically constrained for movement (i.e. by use of a mechanical clamp) the magnitude of the vector sum of the transverse angular velocity components remains bounded during the wheel spin-up under the influence of a constant motor torque. The analysis is extended to consider such effects as: the motion of the nutation damper during spin-up; a non-uniform motor torque; and the effect of a non-symmetrical mass distribution in the main spacecraft and the rotor. An approximate analytical solution using perturbation techniques is developed for the case of a slightly asymmetric main spacecraft.

  12. Radiation-reaction force on a small charged body to second order

    NASA Astrophysics Data System (ADS)

    Moxon, Jordan; Flanagan, Éanna

    2018-05-01

    In classical electrodynamics, an accelerating charged body emits radiation and experiences a corresponding radiation-reaction force, or self-force. We extend to higher order in the total charge a previous rigorous derivation of the electromagnetic self-force in flat spacetime by Gralla, Harte, and Wald. The method introduced by Gralla, Harte, and Wald computes the self-force from the Maxwell field equations and conservation of stress-energy in a limit where the charge, size, and mass of the body go to zero, and it does not require regularization of a singular self-field. For our higher-order computation, an adjustment of the definition of the mass of the body is necessary to avoid including self-energy from the electromagnetic field sourced by the body in the distant past. We derive the evolution equations for the mass, spin, and center-of-mass position of the body through second order. We derive, for the first time, the second-order acceleration dependence of the evolution of the spin (self-torque), as well as a mixing between the extended body effects and the acceleration-dependent effects on the overall body motion.

  13. Controlling Surface Plasmons Through Covariant Transformation of the Spin-Dependent Geometric Phase Between Curved Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhong, Fan; Li, Jensen; Liu, Hui; Zhu, Shining

    2018-06-01

    General relativity uses curved space-time to describe accelerating frames. The movement of particles in different curved space-times can be regarded as equivalent physical processes based on the covariant transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to mimic accelerating particles in curved space-times. The different curved shapes of structures are used to mimic different accelerating frames. The different geometric phases along the structure are used to mimic different movements in the frame. Using the covariant principle of general relativity, we can obtain equivalent nanostructures based on space-time transformations, such as the Lorentz transformation and conformal transformation. In this way, many covariant structures can be found that produce the same surface plasmon fields when excited by spin photons. A new kind of accelerating beam, the Rindler beam, is obtained based on the Rindler metric in gravity. Very large effective indices can be obtained in such systems based on geometric-phase gradient. This general covariant design method can be extended to many other optical media.

  14. Software package for modeling spin-orbit motion in storage rings

    NASA Astrophysics Data System (ADS)

    Zyuzin, D. V.

    2015-12-01

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.

  15. Spin dynamics in storage rings and linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irwin, J.

    1994-12-01

    The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.

  16. Evaluation of fluid behavior in spinning toroidal tanks

    NASA Technical Reports Server (NTRS)

    Anderson, J. E.; Fester, D. A.; Dugan, D. W.

    1976-01-01

    An experimental study was conducted to evaluate propellant behavior in spinning toroidal tanks that could be used in a retro-propulsion system of an advanced outer-planet Pioneer orbiter. Information on propellant slosh and settling and on ullage orientation and stability was obtained. The effects of axial acceleration, spin rate, spin rate change, and spacecraft wobble, both singly and in combination, were evaluated using a 1/8-scale transparent tank in one-g and low-g environments. Liquid loadings ranged from 5% to 96% full. The impact of a surface tension acquisition device was assessed. Testing simulated the behavior of F2/N2H4 and N2O4/MMH propellants. Results are presented which indicate no major fluid behavior problems would be encountered with any of the four propellants in the toroidal tanks of a spin-stabilized orbiter spacecraft.

  17. Fluid interaction with spinning toroidal tanks

    NASA Technical Reports Server (NTRS)

    Fester, D. A.; Anderson, J. E.

    1977-01-01

    An experimental study was conducted to evaluate propellant behavior in spinning torroidal tanks that could be used in a retropropulsion system of an advanced outer-planet Pioneer orbiter. Information on propellant slosh and settling and on ullage orientation and stability was obtained. The effects of axial acceleration, spin rate, spin-rate change, and spacecraft wobble, both singly and in combination, were evaluated using a one-eighth scale transparent tank in one-g and low-g environments. Liquid loadings ranged from 5% to 96% full. The impact of a surface tension acquisition device was assessed by comparison with bare-tank results. The testing simulated the behavior of the fluorine/hydrazine and nitrogen textroxide/monomethylhydrazine propellants. Results are presented that indicate that no major fluid behavior problems would be encountered with any of the four propellants in the toroidal tanks of a spin-stabilized orbiter spacecraft.

  18. The Rim Inertial Measuring System (RIMS). [to measure angular rate and linear acceleration of a moving vehicle

    NASA Technical Reports Server (NTRS)

    Groom, N. J.

    1979-01-01

    The rim inertial measuring system (RIMS) is introduced and an approach for extracting angular rate and linear acceleration information from a RIMS unit is presented and discussed. The RIMS consists of one or more small annular momentum control devices (AMCDs), mounted in a strapped down configuration, which are used to measure angular rates and linear accelerations of a moving vehicle. An AMCD consists of a spinning rim, a set of noncontacting magnetic bearings for supporting the rim, and a noncontacting electromagnetic spin motor. The approach for extracting angular rate and linear acceleration information is for a single spacecraft mounted RIMS unit.

  19. Slosh dynamics of a spin-stabilized spacecraft comprising off-axis tanks filled partially with liquid propellant

    NASA Technical Reports Server (NTRS)

    Fontenot, L. L.

    1981-01-01

    The fundamental nonlinear equations of motion were derived and the specialized to a steady-state rotation of the vehicle about a given axis of rotation. A thrust about the spin axis was introduced. A perturbation solution was derived which linearizes the problem. The effect of the centrifugal and coriolis accelerations together with vorticity are implicitly taken into consideration in the formulation. A variational formulation of the associated boundary conditions is presented. For practical cases it is shown that the simple classical pendulum representation for slosh is not very appealing for a spinning spacecraft unless severe restrictions are allowed.

  20. Three-dimensional transient flow of spin-up in a filled cylinder with oblique gravity force

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    Three-dimensional transient flow profiles of spin-up in a fully liquid filled cylinder from rest with gravity acceleration at various direction are numerically simulated and studied. Particular interests are concentrated on the development of temporary reverse flow zones and Ekman layer right after the impulsive start of spin-up from rest, and decay before the flow reaching to the solid rotation. Relationship of these flow developments and differences in the Reynolds numbers of the flow and its size selection of grid points concerning the numerical instabilities of flow computations are also discussed. In addition to the gravitational acceleration along the axial direction of the cylindrical container, a series of complicated flow profiles accompanied by three-dimensional transient flows with oblique gravitational acceleration has been studies.

  1. GPU accelerated manifold correction method for spinning compact binaries

    NASA Astrophysics Data System (ADS)

    Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying

    2018-04-01

    The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.

  2. Conditions of Passage and Entrapment of Terrestrial Planets in Spin-Orbit Resonances

    DTIC Science & Technology

    2012-06-10

    A Third moment of inertia C Moment of inertia around spin axis n Mean motion, i.e., 2π/Porb G Gravitational constant, = 66468 m3 kg−1 yr−2 τM Maxwell...0.0000 0.0002 0.0004 rate of rotation n an gu la r ac ce le ra tio n .. yr 2 θ θ θ Figure 1. Rotation acceleration caused by the secular tidal torque...the vicinity of spin- orbit resonances θ̇ = (1 + q/2)n. Figure 1 shows in detail the dependence of the overall angular acceleration θ̈ of the planet

  3. Proceedings of RIKEN BNL Research Center workwhop on RHIC spin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SOFFER,J.

    1999-10-06

    This RHIC Spin Workshop is the 1999 annual meeting of the RHIC Spin Collaboration, and the second to be hosted at Brookhaven and sponsored by the RIKEN BNL Research Center. The previous meetings were at Brookhaven (1998), Marseille (1996), MIT in 1995, Argonne 1994, Tucson in 1991, and the Polarized Collider Workshop at Penn State in 1990. As noted last year, the Center provides a home for combined work on spin by theorists, experimenters, and accelerator physicists. This proceedings, as last year, is a compilation of 1 page summaries and 5 selected transparencies for each speaker. It is designed tomore » be available soon after the workshop is completed. Speakers are welcome to include web or other references for additional material. The RHIC spin program and RHIC are rapidly becoming reality. RHIC has completed its first commissioning run, as described here by Steve Peggs. The first Siberian Snake for spin has been completed and is being installed in RHIC. A new polarized source from KEK and Triumf with over 1 milliampere of polarized H{sup minus} is being installed, described by Anatoli Zelenski. They have had a successful test of a new polarimeter for RHIC, described by Kazu Kurita and Haixin Huang. Spin commissioning is expected next spring (2000), and the first physics run for spin is anticipated for spring 2001. The purpose of the workshop is to get everyone together about once per year and discuss goals of the spin program, progress, problems, and new ideas. They also have many separate regular forums on spin. There are spin discussion sessions every Tuesday, now organized by Naohito Saito and Werner Vogelsang. The spin discussion schedule and copies of presentations are posted on http://riksg01.rhic.bnl.gov/rsc. Speakers and other spinners are encouraged to come to BNL and to lead a discussion on your favorite idea. They also have regular polarimeter and snake meetings on alternate Thursdays, led by Bill McGahern, the lead engineer for the accelerator spin effort (Thomas Roser is the spokesperson). Waldo Mackay, the Project Manager for spin, leads a weekly accelerator meeting on spin issues on Wednesdays. Finally, Phenix, STAR, and the pp2pp Collaboration have regular collaboration meetings including spin, and spin working groups.« less

  4. Feedback control for manipulating magnetization in spin-exchange optical pumping system

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Li, Jun; Jiang, Min; Zhao, Nan; Peng, XinHua

    2018-08-01

    Control of magnetization plays an important role in the scientific and technological field of manipulating spin systems. In this work, we study the problem of manipulating nuclear magnetization in the spin-exchange optical pumping system, including accelerating the recovery of nuclear polarization and fixing it on a specific desired state. A real-time feedback control strategy is exploited here. We have also done some numerical simulations, with the results clearly demonstrating the effectiveness of our method, that the nuclear magnetization is able to be driven towards the equilibrium state at a much faster speed and also can be stabilized to a target state. We expect that our feedback control method can find applications in gyro experiments.

  5. SDSS-IV MaNGA: a distinct mass distribution explored in slow-rotating early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Li, Hongyu; Wang, Jie; Gao, Liang; Li, Ran; Ge, Junqiang; Jing, Yingjie; Pan, Jun; Fernández-Trincado, J. G.; Valenzuela, Octavio; Ortíz, Erik Aquino

    2018-06-01

    We study the radial acceleration relation (RAR) for early-type galaxies (ETGs) in the SDSS MaNGA MPL5 data set. The complete ETG sample show a slightly offset RAR from the relation reported by McGaugh et al. (2016) at the low-acceleration end; we find that the deviation is due to the fact that the slow rotators show a systematically higher acceleration relation than the McGaugh's RAR, while the fast rotators show a consistent acceleration relation to McGaugh's RAR. There is a 1σ significant difference between the acceleration relations of the fast and slow rotators, suggesting that the acceleration relation correlates with the galactic spins, and that the slow rotators may have a different mass distribution compared with fast rotators and late-type galaxies. We suspect that the acceleration relation deviation of slow rotators may be attributed to more galaxy merger events, which would disrupt the original spins and correlated distributions of baryons and dark matter orbits in galaxies.

  6. Dynamics of dust in astrophysical plasma and implications

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem

    2012-06-01

    Dust is a ubiquitous constituent of the interstellar medium, molecular clouds, and circumstellar and protoplanetary disks. Dust emission interferes with observations of cosmic microwave background (CMB) temperature anisotropy and its polarized emission dominates the CMB B-mode polarization that prevents us from getting insight into the inflation epoch of the early universe. In my PhD thesis, I have studied fundamental physical processes of dust dynamics in astrophysical plasma and explored their implications for observations of the CMB, studies of magnetic fields, and formation of planets. I have investigated the spinning dust emission from very small grains (e.g., polycyclic aromatic hydrocarbons) of non-spherical shapes (including spheroid and triaxial ellipsoid shapes) that have grain axes fluctuating around grain angular momentum due to internal thermal fluctuations within the grain. I have proposed an approach based on Fourier transform to find power spectrum of spinning dust emission from grains of arbitrary grain shape. In particular, I have devised a method to find exact grain angular momentum distribution using the Langevin equation. I have explored the effects of transient spin-up by single-ion collisions, transient heating by single UV photons, and compressible turbulence on spinning dust emission. This improved model of spinning dust emission well reproduces observation data by Wilkinson Microwave Anisotropy Probe and allows a reliable separation of Galactic contamination from the CMB. I have identified grain helicity as the major driver for grain alignment via radiative torques (RATs) and suggested an analytical model of RATs based on this concept. Dust polarization predicted by the model has been confirmed by numerous observations, and can be used as a frequency template for the CMB B-mode searches. I have proposed a new type of dust acceleration due to magnetohydrodynamic turbulence through transit time damping for large grains, and quantified a novel acceleration mechanism induced by charge fluctuations for very small grains using Monte Carlo simulations. Grain velocities from these new acceleration mechanisms are necessary for understanding dust coagulation in protoplanetary disks and formations of planets.

  7. The design, development, fabrication and testing of two (2) Non-Spin Platforms, (NSP)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The non spin platform is a means for achieving the very low acceleration requirements for cost effective space processing experiments on research rocket flights. These platforms have a low initial cost, are re-usable and have extremely low refurbishment cost. In order to attain this goal, commercially available components were used and only the necessary quality control standards were imposed. A detailed system description, the very few design problems encountered, the operational procedures (both pre-flight and post-flight), and the maintenance requirements are described.

  8. New Possibilities for Magnetic Control of Chemical and Biochemical Reactions.

    PubMed

    Buchachenko, Anatoly; Lawler, Ronald G

    2017-04-18

    Chemistry is controlled by Coulomb energy; magnetic energy is lower by many orders of magnitude and may be confidently ignored in the energy balance of chemical reactions. The situation becomes less clear, however, when reaction rates are considered. In this case, magnetic perturbations of nearly degenerate energy surface crossings may produce observable, and sometimes even dramatic, effects on reactions rates, product yields, and spectroscopic transitions. A case in point that has been studied for nearly five decades is electron spin-selective chemistry via the intermediacy of radical pairs. Magnetic fields, external (permanent or oscillating) and the internal magnetic fields of magnetic nuclei, have been shown to overcome electron spin selection rules for pairs of reactive paramagnetic intermediates, catalyzing or inhibiting chemical reaction pathways. The accelerating effects of magnetic stimulation may therefore be considered to be magnetic catalysis. This type of catalysis is most commonly observed for reactions of a relatively long-lived radical pair containing two weakly interacting electron spins formed by dissociation of molecules or by electron transfer. The pair may exist in singlet (total electron spin is zero) or triplet (total spin is unity) spin states. In virtually all cases, only the singlet state yields stable reaction products. Magnetic interactions with nuclear spins or applied fields may therefore affect the reactivity of radical pairs by changing the angular momentum of the pairs. Magnetic catalysis, first detected via its effect on spin state populations in nuclear and electron spin resonance, has been shown to function in a great variety of well-characterized reactions of organic free radicals. Considerably less well studied are examples suggesting that the basic mechanism may also explain magnetic effects that stimulate ATP synthesis, eliminating ATP deficiency in cardiac diseases, control cell proliferation, killing cancer cells, and control transcranial magnetic stimulation against cognitive deceases. Magnetic control has also been observed for some processes of importance in materials science and earth and environmental science and may play a role in animal navigation. In this Account, the radical pair mechanism is applied as a consistent explanation for several intriguing new magnetic phenomena. Specific examples include acceleration of solid state reactions of silicon by the magnetic isotope 29 Si, enrichment of 17 O during thermal decomposition of metal carbonates and magnetic effects on crystal plasticity. In each of these cases, the results are consistent with an initial one-electron transfer to generate a radical pair. Similar processes can account for mass-independent fractionation of isotopes of mercury, sulfur, germanium, tin, iron, and uranium in both naturally occurring samples and laboratory experiments. In the area of biochemistry, catalysis by magnetic isotopes has now been reported in several reactions of DNA and high energy phosphate. Possible medical applications of these observations are pointed out.

  9. Experimental test of photonic entanglement in accelerated reference frames

    NASA Astrophysics Data System (ADS)

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert

    2017-05-01

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g--under free-fall as well on a spinning centrifuge--and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.

  10. Experimental test of photonic entanglement in accelerated reference frames.

    PubMed

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C; Ursin, Rupert

    2017-05-10

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g-under free-fall as well on a spinning centrifuge-and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derbenev, Yaroslav S.; Morozov, Vasiliy; Lin, Fanglei

    We present a complete scheme for managing the polarization of ion beams in Jefferson Lab's proposed Medium-energy Electron-Ion Collider (MEIC). It provides preservation of the ion polarization during all stages of beam acceleration and polarization control in the collider's experimental straights. We discuss characteristic features of the spin motion in accelerators with Siberian snakes and in accelerators of figure-8 shape. We propose 3D spin rotators for polarization control in the MEIC ion collider ring. We provide polarization calculations in the collider with the 3D rotator for deuteron and proton beams. The main polarization control features of the figure-8 design aremore » summarized.« less

  12. Episodic Spin-up and Spin-down Torque on Earth

    NASA Astrophysics Data System (ADS)

    Slabinski, Victor J.; Mendonca, Antonio A.

    2018-04-01

    Variations in Earth rotation angle are traditionally expressed by the time difference (ΔT=TT-UT1) between Terrestrial Time (TT) as told by atomic clocks and Universal Time UT1, the time variable used by the Earth-rotation formula. A plot of ΔT versus TT over the past 160 years shows a continuous curve with approximate straight-line segments with different spans of order ~20 years. Removing the tidal and seasonal variations from the data gives these line segments which represent the “decadal variations” in Earth rotation.The slope of a straight-line segment is proportional to the departure of Earth rotation rate from a reference value at the time. The change in slope over the relatively short time between segments indicates an episodic spin-up or spin-down in Earth rotation. The daily combination of VLBI, SLR, and other modern data available since 1973 gives us accurate, daily values of ΔT and the corresponding LOD (Length Of Day) values during these episodes. These allow us to determine the rotational acceleration occurring then.The three largest spin-speed changes found during the VLBI era have the following characteristics:Episode _____________ Duration__ ΔLOD__LOD Rate1983 Dec 30-1984 Jan 28 ... 29 d ...-0.65 ms ..-8.3 ms/y ..........spin-up1989 Mar 15-1989 May 23 ...69 d ....0.68 .......+3.6 ..............spin-down1994 Jan 21-2001 Apr 01 ... 6.5 y ...-2.2 .........-0.36 ..extended spin-upFor the first two episodes listed, we find the acceleration grows from zero (or at least a relatively small value) to its extreme value in ~1 day, stays approximately constant at this value for 29 or 69 days, and then decays back to zero over ~1 day. The acceleration, while it occurs, gives an LOD rate much greater than the 0.02 ms/y rate from tidal friction.The third episode shows that occasionally a several-year-long episode occurs. The acceleration magnitude is smaller but can make a larger total change in LOD (and spin rate). Tidal friction requires >100 y to equal the LOD magnitude change from this episode.We do not know the cause or trigger for the episodes.

  13. Black holes are neither particle accelerators nor dark matter probes.

    PubMed

    McWilliams, Sean T

    2013-01-04

    It has been suggested that maximally spinning black holes can serve as particle accelerators, reaching arbitrarily high center-of-mass energies. Despite several objections regarding the practical achievability of such high energies, and demonstrations past and present that such large energies could never reach a distant observer, interest in this problem has remained substantial. We show that, unfortunately, a maximally spinning black hole can never serve as a probe of high energy collisions, even in principle and despite the correctness of the original diverging energy calculation. Black holes can indeed facilitate dark matter annihilation, but the most energetic photons can carry little more than the rest energy of the dark matter particles to a distant observer, and those photons are actually generated relatively far from the black hole where relativistic effects are negligible. Therefore, any strong gravitational potential could probe dark matter equally well, and an appeal to black holes for facilitating such collisions is unnecessary.

  14. Acceleration control system for semi-active in-car crib with joint application of regular and inverted pendulum mechanisms

    NASA Astrophysics Data System (ADS)

    Kawashima, T.

    2016-09-01

    To reduce the risk of injury to an infant in an in-car crib (or in a child safety bed) collision shock during a car crash, it is necessary to maintain a constant force acting on the crib below a certain allowable value. To realize this objective, we propose a semi-active in-car crib system with the joint application of regular and inverted pendulum mechanisms. The arms of the proposed crib system support the crib like a pendulum while the pendulum system itself is supported like an inverted pendulum by the arms. In addition, the friction torque of each arm is controlled using a brake mechanism that enables the proposed in-car crib to decrease the acceleration of the crib gradually and maintain it around the target value. This system not only reduces the impulsive force but also transfers the force to the infant's back using a spin control system, i.e., the impulse force acts is made to act perpendicularly on the crib. The spin control system was developed in our previous work. This work focuses on the acceleration control system. A semi-active control law with acceleration feedback is introduced, and the effectiveness of the system is demonstrated using numerical simulation and model experiment.

  15. Organosilicon compounds meet subatomic physics: Muon spin resonance.

    PubMed

    West, Robert; Percival, Paul W

    2010-10-21

    Silylenes, germylenes and silenes react with muonium atoms, produced from muons generated at a particle accelerator. The resulting radicals can be studied by muon spin resonance spectroscopy, providing unique information about their structure and reactivity.

  16. Spectral Properties, Generation Order Parameters, and Luminosities for Spin-powered X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhao, Yongheng

    2004-02-01

    We show the spectral properties of 15 spin-powered X-ray pulsars, and the correlation between the average power-law photon index and spin-down rate. Generation order parameters (GOPs) based on polar cap models are introduced to characterize the X-ray pulsars. We calculate three definitions of generation order parameters arising from the different effects of magnetic and electric fields on photon absorption during cascade processes, and study the relations between the GOPs and spectral properties of X-ray pulsars. There exists a possible correlation between the photon index and GOP in our pulsar sample. Furthermore, we present a method stemming from the concept of GOPs to estimate the nonthermal X-ray luminosity for spin-powered pulsars. Then X-ray luminosity is calculated in the context of our polar cap accelerator model, which is consistent with most observed X-ray pulsar data. The ratio between the X-ray luminosity estimated by our method and the pulsar's spin-down power is consistent with the LX~10-3Lsd feature.

  17. Configuration memory in patchwork dynamics for low-dimensional spin glasses

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Middleton, A. Alan

    2017-12-01

    A patchwork method is used to study the dynamics of loss and recovery of an initial configuration in spin glass models in dimensions d =1 and d =2 . The patchwork heuristic is used to accelerate the dynamics to investigate how models might reproduce the remarkable memory effects seen in experiment. Starting from a ground-state configuration computed for one choice of nearest-neighbor spin couplings, the sample is aged up to a given scale under new random couplings, leading to the partial erasure of the original ground state. The couplings are then restored to the original choice and patchwork coarsening is again applied, in order to assess the recovery of the original state. Eventual recovery of the original ground state upon coarsening is seen in two-dimensional Ising spin glasses and one-dimensional clock models, while one-dimensional Ising spin systems neither lose nor gain overlap with the ground state during the recovery stage. The recovery for the two-dimensional Ising spin glasses suggests scaling relations that lead to a recovery length scale that grows as a power of the aging length scale.

  18. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

    PubMed Central

    Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.

    2015-01-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131

  19. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    PubMed

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Spin Tracking of Polarized Protons in the Main Injector at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, M.; Lorenzon, W.; Aldred, C.

    2016-07-01

    The Main Injector (MI) at Fermilab currently produces high-intensity beams of protons at energies of 120 GeV for a variety of physics experiments. Acceleration of polarized protons in the MI would provide opportunities for a rich spin physics program at Fermilab. To achieve polarized proton beams in the Fermilab accelerator complex, shown in Fig.1.1, detailed spin tracking simulations with realistic parameters based on the existing facility are required. This report presents studies at the MI using a single 4-twist Si-berian snake to determine the depolarizing spin resonances for the relevant synchrotrons. Results will be presented first for a perfect MImore » lattice, followed by a lattice that includes the real MI imperfections, such as the measured magnet field errors and quadrupole misalignments. The tolerances of each of these factors in maintaining polariza-tion in the Main Injector will be discussed.« less

  1. Experimental test of photonic entanglement in accelerated reference frames

    PubMed Central

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert

    2017-01-01

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g—under free-fall as well on a spinning centrifuge—and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement. PMID:28489082

  2. Inter-Agency Consultative Group for Space Science (IACG): Handbook of Missions and Payloads

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The ACE spacecraft design is based on the Charge Composition Explorer (CCE) built by Johns Hopkins University (JHU) and the Applied Physics Lab (APL) for the AMPTE program. ACE is designed as a spinning spacecraft with its spin axis aligned to the Earth-Sun axis. The ACE launch weight will be approx. 633 kg, including 105 kg of scientific instruments and 184 kg of propellant. Using a Delta-class expendable launch vehicle, ACE will be launched into an L1 libration point (240 R(sub e)) orbit. Telemetry will be 6.7 kbps average, using tape recorder storage with daily readout to DSN. The experiment power requirement is approximately 76 W nominal and 96 W peak. The prime objective of the ACE mission is: (1) to determine accurate elemental and isotropic abundances including solar matter, local interstellar matter and local galactic matter; (2) to study the origin of elements and evolutionary processing in galactic nucleosynthesis, galactic evolution, origin and evolution of the solar system; (3) to study coronal formation and solar-wind acceleration processes; and (4) to study particle acceleration and transport, including coronal shock acceleration, stochastic flare acceleration, interplanetary shock acceleration, and interstellar acceleration and propagation. To accomplish this objective, ACE will perform comprehensive and coordinated determinations of the elemental and isotopic composition of energetic nuclei accelerated on the Sun, in interplanetary space, and from galactic sources. These observations will span five decades in energy, from solar wind to galactic cosmic ray energies, and will cover the element range from H-1 to Zr-40. Comparison of these samples of matter will be used to study the origin and subsequent evolution of both solar system and galactic material by isolating the effects of fundamental processes that include nucleosynthesis, charged and neutral particle separation, bulk plasma acceleration, and the acceleration of suprathermal and high-energy particles.

  3. Coherent spin transport through a 350 micron thick silicon wafer.

    PubMed

    Huang, Biqin; Monsma, Douwe J; Appelbaum, Ian

    2007-10-26

    We use all-electrical methods to inject, transport, and detect spin-polarized electrons vertically through a 350-micron-thick undoped single-crystal silicon wafer. Spin precession measurements in a perpendicular magnetic field at different accelerating electric fields reveal high spin coherence with at least 13pi precession angles. The magnetic-field spacing of precession extrema are used to determine the injector-to-detector electron transit time. These transit time values are associated with output magnetocurrent changes (from in-plane spin-valve measurements), which are proportional to final spin polarization. Fitting the results to a simple exponential spin-decay model yields a conduction electron spin lifetime (T1) lower bound in silicon of over 500 ns at 60 K.

  4. Photoresist thin-film effects on alignment process capability

    NASA Astrophysics Data System (ADS)

    Flores, Gary E.; Flack, Warren W.

    1993-08-01

    Two photoresists were selected for alignment characterization based on their dissimilar coating properties and observed differences on alignment capability. The materials are Dynachem OFPR-800 and Shipley System 8. Both photoresists were examined on two challenging alignment levels in a submicron CMOS process, a nitride level and a planarized second level metal. An Ultratech Stepper model 1500 which features a darkfield alignment system with a broadband green light for alignment signal detection was used for this project. Initially, statistically designed linear screening experiments were performed to examine six process factors for each photoresist: viscosity, spin acceleration, spin speed, spin time, softbake time, and softbake temperature. Using the results derived from the screening experiments, a more thorough examination of the statistically significant process factors was performed. A full quadratic experimental design was conducted to examine viscosity, spin speed, and spin time coating properties on alignment. This included a characterization of both intra and inter wafer alignment control and alignment process capability. Insight to the different alignment behavior is analyzed in terms of photoresist material properties and the physical nature of the alignment detection system.

  5. Irradiation of an Accretion Disc by a Jet: General Properties and Implications for Spin Measurements of Black Holes

    NASA Technical Reports Server (NTRS)

    T.Dauser; Garcia, J.; Wilms, J.; Boeck, M.; Brenneman, L. W.; Falanga, M.; Fukumura, Keigo; Reynolds, C. S.

    2013-01-01

    X-ray irradiation of the accretion disc leads to strong reflection features, which are then broadened and distorted by relativistic effects. We present a detailed, general relativistic approach to model this irradiation for different geometries of the primary X-ray source. These geometries include the standard point source on the rotational axis as well as more jet-like sources, which are radially elongated and accelerating. Incorporating this code in the RELLINE model for relativistic line emission, the line shape for any configuration can be predicted. We study how different irradiation geometries affect the determination of the spin of the black hole. Broad emission lines are produced only for compact irradiating sources situated close to the black hole. This is the only case where the black hole spin can be unambiguously determined. In all other cases the line shape is narrower, which could either be explained by a low spin or an elongated source. We conclude that for those cases and independent of the quality of the data, no unique solution for the spin exists and therefore only a lower limit of the spin value can be given

  6. Partial spin absorption induced magnetization switching and its voltage-assisted improvement in an asymmetrical all spin logic device at the mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhang, Zhizhong; Wang, Lezhi; Nan, Jiang; Zheng, Zhenyi; Li, Xiang; Wong, Kin; Wang, Yu; Klein, Jacques-Olivier; Khalili Amiri, Pedram; Zhang, Youguang; Wang, Kang L.; Zhao, Weisheng

    2017-07-01

    Beyond memory and storage, future logic applications put forward higher requirements for electronic devices. All spin logic devices (ASLDs) have drawn exceptional interest as they utilize pure spin current instead of charge current, which could promise ultra-low power consumption. However, relatively low efficiencies of spin injection, transport, and detection actually impede high-speed magnetization switching and challenge perspectives of ASLD. In this work, we study partial spin absorption induced magnetization switching in asymmetrical ASLD at the mesoscopic scale, in which the injector and detector have the nano-fabrication compatible device size (>100 nm) and their contact areas are different. The enlarged contact area of the detector is conducive to the spin current absorption, and the contact resistance difference between the injector and the detector can decrease the spin current backflow. Rigorous spin circuit modeling and micromagnetic simulations have been carried out to analyze the electrical and magnetic features. The results show that, at the fabrication-oriented technology scale, the ferromagnetic layer can hardly be switched by geometrically partial spin current absorption. The voltage-controlled magnetic anisotropy (VCMA) effect has been applied on the detector to accelerate the magnetization switching by modulating magnetic anisotropy of the ferromagnetic layer. With a relatively high VCMA coefficient measured experimentally, a voltage of 1.68 V can assist the whole magnetization switching within 2.8 ns. This analysis and improving approach will be of significance for future low-power, high-speed logic applications.

  7. Null result for violation of the equivalence principle with free-fall rotating gyroscopes

    NASA Astrophysics Data System (ADS)

    Luo, J.; Nie, Y. X.; Zhang, Y. Z.; Zhou, Z. B.

    2002-02-01

    The differential acceleration between a rotating mechanical gyroscope and a nonrotating one is directly measured by using a double free-fall interferometer, and no apparent differential acceleration has been observed at the relative level of 2×10-6. It means that the equivalence principle is still valid for rotating extended bodies, i.e., the spin-gravity interaction between the extended bodies has not been observed at this level. Also, to the limit of our experimental sensitivity, there is no observed asymmetrical effect or antigravity of the rotating gyroscopes as reported by Hayasaka et al.

  8. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds

    NASA Astrophysics Data System (ADS)

    Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.

    2015-02-01

    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  9. Bending it like Beckham: how to visually fool the goalkeeper.

    PubMed

    Dessing, Joost C; Craig, Cathy M

    2010-10-06

    As bending free-kicks becomes the norm in modern day soccer, implications for goalkeepers have largely been ignored. Although it has been reported that poor sensitivity to visual acceleration makes it harder for expert goalkeepers to perceptually judge where the curved free-kicks will cross the goal line, it is unknown how this affects the goalkeeper's actual movements. Here, an in-depth analysis of goalkeepers' hand movements in immersive, interactive virtual reality shows that they do not fully account for spin-induced lateral ball acceleration. Hand movements were found to be biased in the direction of initial ball heading, and for curved free-kicks this resulted in biases in a direction opposite to those necessary to save the free-kick. These movement errors result in less time to cover a now greater distance to stop the ball entering the goal. These and other details of the interceptive behaviour are explained using a simple mathematical model which shows how the goalkeeper controls his movements online with respect to the ball's current heading direction. Furthermore our results and model suggest how visual landmarks, such as the goalposts in this instance, may constrain the extent of the movement biases. While it has previously been shown that humans can internalize the effects of gravitational acceleration, these results show that it is much more difficult for goalkeepers to account for spin-induced visual acceleration, which varies from situation to situation. The limited sensitivity of the human visual system for detecting acceleration, suggests that curved free-kicks are an important goal-scoring opportunity in the game of soccer.

  10. Clinical application of Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE) imaging accelerated by simultaneous multi-slice acquisition.

    PubMed

    Schulz, Jenni; P Marques, José; Ter Telgte, Annemieke; van Dorst, Anouk; de Leeuw, Frank-Erik; Meijer, Frederick J A; Norris, David G

    2018-01-01

    As a single-shot sequence with a long train of refocusing pulses, Half-Fourier Acquisition Single-Shot Turbo-Spin-Echo (HASTE) suffers from high power deposition limiting use at high resolutions and high field strengths, particularly if combined with acceleration techniques such as simultaneous multi-slice (SMS) imaging. Using a combination of multiband (MB)-excitation and PINS-refocusing pulses will effectively accelerate the acquisition time while staying within the SAR limitations. In particular, uncooperative and young patients will profit from the speed of the MB-PINS HASTE sequence, as clinical diagnosis can be possible without sedation. Materials and MethodsMB-excitation and PINS-refocusing pulses were incorporated into a HASTE-sequence with blipped CAIPIRINHA and TRAPS including an internal FLASH reference scan for online reconstruction. Whole brain MB-PINS HASTE data were acquired on a Siemens 3T-Prisma system from 10 individuals and compared to a clinical HASTE protocol. ResultsThe proposed MB-PINS HASTE protocol accelerates the acquisition by about a factor 2 compared to the clinical HASTE. The diagnostic image quality proved to be comparable for both sequences for the evaluation of the overall aspect of the brain, the detection of white matter changes and areas of tissue loss, and for the evaluation of the CSF spaces although artifacts were more frequently encountered with MB-PINS HASTE. ConclusionsMB-PINS HASTE enables acquisition of slice accelerated highly T2-weighted images and provides good diagnostic image quality while reducing acquisition time. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Bending It Like Beckham: How to Visually Fool the Goalkeeper

    PubMed Central

    2010-01-01

    Background As bending free-kicks becomes the norm in modern day soccer, implications for goalkeepers have largely been ignored. Although it has been reported that poor sensitivity to visual acceleration makes it harder for expert goalkeepers to perceptually judge where the curved free-kicks will cross the goal line, it is unknown how this affects the goalkeeper's actual movements. Methodology/Principal Findings Here, an in-depth analysis of goalkeepers' hand movements in immersive, interactive virtual reality shows that they do not fully account for spin-induced lateral ball acceleration. Hand movements were found to be biased in the direction of initial ball heading, and for curved free-kicks this resulted in biases in a direction opposite to those necessary to save the free-kick. These movement errors result in less time to cover a now greater distance to stop the ball entering the goal. These and other details of the interceptive behaviour are explained using a simple mathematical model which shows how the goalkeeper controls his movements online with respect to the ball's current heading direction. Furthermore our results and model suggest how visual landmarks, such as the goalposts in this instance, may constrain the extent of the movement biases. Conclusions While it has previously been shown that humans can internalize the effects of gravitational acceleration, these results show that it is much more difficult for goalkeepers to account for spin-induced visual acceleration, which varies from situation to situation. The limited sensitivity of the human visual system for detecting acceleration, suggests that curved free-kicks are an important goal-scoring opportunity in the game of soccer. PMID:20949130

  12. Evidence for maximal acceleration and singularity resolution in covariant loop quantum gravity.

    PubMed

    Rovelli, Carlo; Vidotto, Francesca

    2013-08-30

    A simple argument indicates that covariant loop gravity (spin foam theory) predicts a maximal acceleration and hence forbids the development of curvature singularities. This supports the results obtained for cosmology and black holes using canonical methods.

  13. Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle

    NASA Astrophysics Data System (ADS)

    Antón, M. A.; Carreño, F.; Melle, Sonia; Calderón, Oscar G.; Cabrera-Granado, E.; Singh, Mahi R.

    2013-05-01

    The preparation of quantum states with a defined spin is analyzed in a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle. The quantum dot is described as a four-level atom-like system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A metallic nanoparticle with spheroidal geometry is placed in close proximity to the quantum dot, and its effects are considered in the quasistatic approximation. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions which is accompanied by local-field corrections. This effect translates into a preferential acceleration of some of the optical pathways and therefore into a fast initialization of the QD by excitation with a short optical pulse. The population transfer between the lower levels of the QD and the fidelity is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field, and the Rabi frequency of the driving field. It is also shown that the main effect of the local-field corrections is a lengthening of the time elapsed to reach the steady-state. The hole spin is predicted to be successfully cooled from 5 to 0.04 K at a magnetic field of 4.6 T applied in the Voigt geometry.

  14. Spectral narrowing and spin echo for localized carriers with heavy-tailed L evy distribution of hopping times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Z.; Mkhitaryan, Vagharsh; Raikh, M. E.

    2016-02-02

    We study analytically the free induction decay and the spin echo decay originating from the localized carriers moving between the sites which host random magnetic fields. Due to disorder in the site positions and energies, the on-site residence times, , are widely spread according to the L evy distribution. The power-law tail ∝ τ -1-∝ in the distribution of does not affect the conventional spectral narrowing for α > 2, but leads to a dramatic acceleration of the free induction decay in the domain 2 > α > 1. The next abrupt acceleration of the decay takes place as becomesmore » smaller than 1. In the latter domain the decay does not follow a simple-exponent law. To capture the behavior of the average spin in this domain, we solve the evolution equation for the average spin using the approach different from the conventional approach based on the Laplace transform. Unlike the free induction decay, the tail in the distribution of the residence times leads to the slow decay of the spin echo. The echo is dominated by realizations of the carrier motion for which the number of sites, visited by the carrier, is minimal.« less

  15. Dynamical control of Mn spin-system cooling by photogenerated carriers in a (Zn,Mn)Se/BeTe heterostructure

    NASA Astrophysics Data System (ADS)

    Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.

    2010-08-01

    The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.

  16. Tunable inertia of chiral magnetic domain walls

    PubMed Central

    Torrejon, Jacob; Martinez, Eduardo; Hayashi, Masamitsu

    2016-01-01

    The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall is a topological object that has been observed to follow this behaviour. Here we show that acceleration and deceleration times of chiral Neel walls driven by current are different in a system with low damping and moderate Dzyaloshinskii–Moriya exchange constant. The time needed to accelerate a domain wall with current via the spin Hall torque is much faster than the time it needs to decelerate once the current is turned off. The deceleration time is defined by the Dzyaloshinskii–Moriya exchange constant whereas the acceleration time depends on the spin Hall torque, enabling tunable inertia of chiral domain walls. Such unique feature of chiral domain walls can be utilized to move and position domain walls with lower current, key to the development of storage class memory devices. PMID:27882932

  17. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region Eγ=1.1 -2.3 GeV

    NASA Astrophysics Data System (ADS)

    Zachariou, N.; Ilieva, Y.; Berman, B. L.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.; Adhikari, K. P.; Adikaram, D.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Badui, R. A.; Baltzell, N. A.; Battaglieri, M.; Baturin, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P. T.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeeev, V. I.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-05-01

    The beam-spin asymmetry, Σ , for the reaction γ d →p n has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, θc .m ., between 25∘ and 160∘. These are the first measurements of beam-spin asymmetries at θc .m .=90∘ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than θc .m .=90∘ . The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  18. Lecture Notes on Topics in Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alex W.

    These are lecture notes that cover a selection of topics, some of them under current research, in accelerator physics. I try to derive the results from first principles, although the students are assumed to have an introductory knowledge of the basics. The topics covered are: (1) Panofsky-Wenzel and Planar Wake Theorems; (2) Echo Effect; (3) Crystalline Beam; (4) Fast Ion Instability; (5) Lawson-Woodward Theorem and Laser Acceleration in Free Space; (6) Spin Dynamics and Siberian Snakes; (7) Symplectic Approximation of Maps; (8) Truncated Power Series Algebra; and (9) Lie Algebra Technique for nonlinear Dynamics. The purpose of these lectures ismore » not to elaborate, but to prepare the students so that they can do their own research. Each topic can be read independently of the others.« less

  19. The High Time Resolution Universe Pulsar Survey - XII. Galactic plane acceleration search and the discovery of 60 pulsars

    NASA Astrophysics Data System (ADS)

    Ng, C.; Champion, D. J.; Bailes, M.; Barr, E. D.; Bates, S. D.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; Flynn, C. M. L.; Jameson, A.; Johnston, S.; Keith, M. J.; Kramer, M.; Levin, L.; Petroff, E.; Possenti, A.; Stappers, B. W.; van Straten, W.; Tiburzi, C.; Eatough, R. P.; Lyne, A. G.

    2015-07-01

    We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ≈0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have redetected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1 ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17 ms. In addition, PSR J1244-6359 is a mildly recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09 and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.

  20. Field of first magnetic flux entry and pinning strength of superconductors for rf application measured with muon spin rotation

    NASA Astrophysics Data System (ADS)

    Junginger, T.; Abidi, S. H.; Maffett, R. D.; Buck, T.; Dehn, M. H.; Gheidi, S.; Kiefl, R.; Kolb, P.; Storey, D.; Thoeng, E.; Wasserman, W.; Laxdal, R. E.

    2018-03-01

    The performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry Hentry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μ SR ) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing at 1400 °C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure Hentry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.

  1. Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network.

    PubMed

    Janet, Jon Paul; Chan, Lydia; Kulik, Heather J

    2018-03-01

    Machine learning (ML) has emerged as a powerful complement to simulation for materials discovery by reducing time for evaluation of energies and properties at accuracy competitive with first-principles methods. We use genetic algorithm (GA) optimization to discover unconventional spin-crossover complexes in combination with efficient scoring from an artificial neural network (ANN) that predicts spin-state splitting of inorganic complexes. We explore a compound space of over 5600 candidate materials derived from eight metal/oxidation state combinations and a 32-ligand pool. We introduce a strategy for error-aware ML-driven discovery by limiting how far the GA travels away from the nearest ANN training points while maximizing property (i.e., spin-splitting) fitness, leading to discovery of 80% of the leads from full chemical space enumeration. Over a 51-complex subset, average unsigned errors (4.5 kcal/mol) are close to the ANN's baseline 3 kcal/mol error. By obtaining leads from the trained ANN within seconds rather than days from a DFT-driven GA, this strategy demonstrates the power of ML for accelerating inorganic material discovery.

  2. Large anomalous Hall effect in a non-collinear antiferromagnet Mn3Sn at room temperature

    NASA Astrophysics Data System (ADS)

    Higo, Tomoya; Kiyohara, Naoki; Nakatsuji, Satoru

    Recent development in theoretical and experimental studies have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets. In this talk, we will present experimental results showing that the antiferromagnet Mn3Sn, which has a non-collinear 120-degree spin order, exhibits a large anomalous Hall effect. The magnitude of the Hall conductivity is ~ 20 Ω-1 cm-1 at room temperature and > 100 Ω-1 cm-1 at low temperatures. We found that a main component of the Hall signal, which is nearly independent of a magnetic field and magnetization, can change the sign with the reversal of a small applied field, corresponding to the rotation of the staggered moments of the non-collinear antiferromagnetic spin order which carries a very small net moment of a few of mμB. Supported by PRESTO, JST, and Grants-in-Aid for Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2604) and Scientific Research on Innovative Areas (15H05882 and 15H05883) from JSPS.

  3. Spin Stabilized Impulsively Controlled Missile (SSICM)

    NASA Astrophysics Data System (ADS)

    Crawford, J. I.; Howell, W. M.

    1985-12-01

    This patent is for the Spin Stabilized Impulsively Controlled Missile (SSICM). SSICM is a missile configuration which employs spin stabilization, nutational motion, and impulsive thrusting, and a body mounted passive or semiactive sensor to achieve very small miss distances against a high speed moving target. SSICM does not contain an autopilot, control surfaces, a control actuation system, nor sensor stabilization gimbals. SSICM spins at a rate sufficient to provide frequency separation between body motions and inertial target motion. Its impulsive thrusters provide near instantaneous changes in lateral velocity, whereas conventional missiles require a significant time delay to achieve lateral acceleration.

  4. Accelerated Radiation-Damping for Increased Spin Equilibrium (ARISE)

    PubMed Central

    Huang, Susie Y.; Witzel, Thomas; Wald, Lawrence L.

    2008-01-01

    Control of the longitudinal magnetization in fast gradient echo sequences is an important factor enabling the high efficiency of balanced Steady State Free Precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The Accelerated Radiation damping for Increased Spin Equilibrium (ARISE) method uses an external feedback circuit to strengthen the Radiation Damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T1 relaxation. The method is characterized in gradient echo phantom imaging at 3T as a function of feedback gain, phase, and duration and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10ms) during a refocused interval of a crushed gradient echo sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T2 relaxation has time to occur. Appropriate applications might include improving navigated sequences. Unlike conventional flip-back schemes, the ARISE “flip-back” is generated by the spins themselves, thereby offering a potentially useful building block for enhancing gradient echo sequences. PMID:18956463

  5. Spin dynamics modeling in the AGS based on a stepwise ray-tracing method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutheil, Yann

    The AGS provides a polarized proton beam to RHIC. The beam is accelerated in the AGS from Gγ= 4.5 to Gγ = 45.5 and the polarization transmission is critical to the RHIC spin program. In the recent years, various systems were implemented to improve the AGS polarization transmission. These upgrades include the double partial snakes configuration and the tune jumps system. However, 100% polarization transmission through the AGS acceleration cycle is not yet reached. The current efficiency of the polarization transmission is estimated to be around 85% in typical running conditions. Understanding the sources of depolarization in the AGS ismore » critical to improve the AGS polarized proton performances. The complexity of beam and spin dynamics, which is in part due to the specialized Siberian snake magnets, drove a strong interest for original methods of simulations. For that, the Zgoubi code, capable of direct particle and spin tracking through field maps, was here used to model the AGS. A model of the AGS using the Zgoubi code was developed and interfaced with the current system through a simple command: the AgsFromSnapRampCmd. Interfacing with the machine control system allows for fast modelization using actual machine parameters. Those developments allowed the model to realistically reproduce the optics of the AGS along the acceleration ramp. Additional developments on the Zgoubi code, as well as on post-processing and pre-processing tools, granted long term multiturn beam tracking capabilities: the tracking of realistic beams along the complete AGS acceleration cycle. Beam multiturn tracking simulations in the AGS, using realistic beam and machine parameters, provided a unique insight into the mechanisms behind the evolution of the beam emittance and polarization during the acceleration cycle. Post-processing softwares were developed to allow the representation of the relevant quantities from the Zgoubi simulations data. The Zgoubi simulations proved particularly useful to better understand the polarization losses through horizontal intrinsic spin resonances The Zgoubi model as well as the tools developed were also used for some direct applications. For instance, some beam experiment simulations allowed an accurate estimation of the expected polarization gains from machine changes. In particular, the simulations that involved involved the tune jumps system provided an accurate estimation of polarization gains and the optimum settings that would improve the performance of the AGS.« less

  6. High-spin structures in the 139Pr nucleus

    NASA Astrophysics Data System (ADS)

    Yeoh, E. Y.; Zhu, S. J.; Wang, J. G.; Xiao, Z. G.; Zhang, M.; Yan, W. H.; Wang, R. S.; Xu, Q.; Wu, X. G.; He, C. Y.; Li, G. S.; Zheng, Y.; Li, C. B.; Cao, X. P.; Hu, S. P.; Yao, S. H.; Yu, B. B.

    2012-06-01

    Background: 139Pr is located in a transitional region of neutron number close to the N=82 shell. The study of its high-spin states and collective bands is important for systematically understanding the nuclear structural characteristics in this region.Purpose: To investigate the high-spin levels and to search for oblate bands in 139Pr.Methods: The high-spin states of 139Pr have been studied via the reaction 124Sn(19F,4n) at a beam energy of 80 MeV. The experiment was carried out at the HI-13 Tandem Accelerator at the China Institute of Atomic Energy (CIAE). The data analysis was done by using the γ-γ coincidence method.Results: The level scheme of 139Pr has been expanded with spin up to 45/2ℏ. A total of 39 new levels and 45 new transitions are identified. Four collective band structures at high-spin states have been newly established. From systematic analysis, one of the bands is proposed as a double decoupled band; two bands are proposed as oblate bands with γ˜-60∘; another band is suggested as an oblate-triaxial band with γ˜-90∘. The other characteristics for these bands are discussed.Conclusions: A new level scheme in 139Pr has been established and the collective bands at high spin have been identified. The result shows that the strong oblate shape-driving effect is caused by neutrons at the high-spin states in 139Pr.

  7. Pulsar Polar Cap Heating and Surface Thermal X-ray Emission. 1; Curvature Radiation Pair Fronts

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alexander G.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We investigate the effect of pulsar polar cap (PC) heating produced by positrons returning from the upper pair formation front. Our calculations are based on a self-consistent treatment of the pair dynamics and the effect of electric field screening by the returning positrons. We calculate the resultant X-ray luminosities and discuss the dependence of the PC heating efficiencies on pulsar parameters, such as characteristic spin-down age, spin period, and surface magnetic field strength. In this study we concentrate on the regime where the pairs are produced in a magnetic field by curvature photons emitted by accelerating electrons. Our theoretical results are not in conflict with the available observational x-ray data and suggest that the effect of PC heating should significantly contribute to the thermal x-ray fluxes from middle-aged and old pulsars. The implications for current and future x-ray observations of pulsars are briefly outlined.

  8. The Biomechanics of Cranial Forces During Figure Skating Spinning Elements.

    PubMed

    Wang, David H; Kostyun, Regina O; Solomito, Matthew J

    2015-03-01

    Several facets of figure skating, such as the forces associated with jumping and landing, have been evaluated, but a comprehensive biomechanical understanding of the cranial forces associated with spinning has yet to be explored. The purpose of this case study was to quantify the cranial rotational acceleration forces generated during spinning elements. This case report was an observational, biomechanical analysis of a healthy, senior-level, female figure skating athlete who is part of an on-going study. A triaxial accelerometer recorded the gravitational forces (G) during seven different spinning elements. Our results found that the layback spin generated significant cranial force and these forces were greater than any of the other spin elements recorded. These forces led to physical findings of ruptured capillaries, dizziness, and headaches in our participant.

  9. Resonantly enhanced spin-lattice relaxation of Mn2 + ions in diluted magnetic (Zn,Mn)Se/(Zn,Be)Se quantum wells

    NASA Astrophysics Data System (ADS)

    Debus, J.; Ivanov, V. Yu.; Ryabchenko, S. M.; Yakovlev, D. R.; Maksimov, A. A.; Semenov, Yu. G.; Braukmann, D.; Rautert, J.; Löw, U.; Godlewski, M.; Waag, A.; Bayer, M.

    2016-05-01

    The dynamics of spin-lattice relaxation in the magnetic Mn2 + ion system of (Zn,Mn)Se/(Zn,Be)Se quantum-well structures are studied using optical methods. Pronounced cusps are found in the giant Zeeman shift of the quantum-well exciton photoluminescence at specific magnetic fields below 10 T, when the Mn spin system is heated by photogenerated carriers. The spin-lattice relaxation time of the Mn ions is resonantly accelerated at the cusp magnetic fields. Our theoretical analysis demonstrates that a cusp occurs at a spin-level mixing of single Mn2 + ions and a quick-relaxing cluster of nearest-neighbor Mn ions, which can be described as intrinsic cross-relaxation resonance within the Mn spin system.

  10. The Explanation of the Pauli Exclusion Principle

    NASA Astrophysics Data System (ADS)

    Vasiliev, Victor; Moon, Russell

    2006-11-01

    Using the principles of the Vortex Theory, the construction of the alpha particle, and the theory that the nucleus is constructed out of alpha particles, the explanation of the Pauli Exclusion Principle is explained. If protons and electrons are connected to each other via fourth dimensional vortices, they spin in opposite directions. Since the alpha particle possesses two protons possessing opposite spins, their electrons also possess opposite spins. With a nucleus constructed out of alpha particles, all paired electrons in shells and sub-shells will spin in opposite directions. 1. Victor Vasiliev, Russell Moon. Controversy surrounding the Experiment conducted to prove the Vortex Theory, 2006 8th Annual Meeting of the Northwest Section, May 18-20, 2006, University of Puget Sound, Tacoma, Washington, USA, Abstract C1.00009. 2. Russell Moon. To the Photon Acceleration Effect, 2006 Texas Section APS/AAPT/SPS Joint Spring Meeting, Thursday--Saturday, March 23--25, 2006; San Angelo, Texas, Abstract: POS.00008. 3. Russell Moon, Fabian Calvo, Victor Vasiliev. The Neutral Pentaquark, 2006 APS March Meeting, March 13-17, Baltimore, MD, USA, Session Q1: GENERAL POSTER SESSION, Abstract Q1.00147.

  11. Noncontact bimolecular photoionization followed by radical-ions separation and their geminate recombination assisted by coherent HFI induced spin-conversion.

    PubMed

    Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I

    2008-02-07

    The Hamiltonian description of the spin-conversion induced by a hyperfine interaction (HFI) in photogenerated radical-ion pairs is substituted for the rate (incoherent) description of the same conversion provided by the widely used earlier elementary spin model. The quantum yields of the free ions as well as the singlet and triplet products of geminate recombination are calculated using distant dependent ionization and recombination rates, instead of their contact analogs. Invoking the simplest models of these rates, we demonstrate with the example of a spin-less system that the diffusional acceleration of radical-ion pair recombination at lower viscosity gives way to its diffusional deceleration (Angulo effect), accomplished with a kinetic plateau inherent with the primitive exponential model. Qualitatively the same behavior is found in real systems, assuming both ionization and recombination is carried out by the Marcus electron-transfer rates. Neglecting the Coulomb interaction between solvated ions, the efficiencies of radical-ion pair recombination to the singlet and triplet products are well fitted to the available experimental data. The magnetic field dependence of these yields is specified.

  12. Field of first magnetic flux entry and pinning strength of superconductors for rf application measured with muon spin rotation

    DOE PAGES

    Junginger, Tobias; Abidi, S. H.; Maffett, R. D.; ...

    2018-03-16

    Here, the performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry H entry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μSR) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing atmore » 1400°C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure H entry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.« less

  13. Effect of spin-polarized D-3He fuel on dense plasma focus for space propulsion

    NASA Astrophysics Data System (ADS)

    Mei-Yu Wang, Choi, Chan K.; Mead, Franklin B.

    1992-01-01

    Spin-polarized D-3He fusion fuel is analyzed to study its effect on the dense plasma focus (DPF) device for space propulsion. The Mather-type plasma focus device is adopted because of the ``axial'' acceleration of the current carrying plasma sheath, like a coaxial plasma gun. The D-3He fuel is chosen based on the neutron-lean fusion reactions with high charged-particle fusion products. Impulsive mode of operation is used with multi-thrusters in order to make higher thrust (F)-to-weight (W) ratio with relatively high value of specific impulse (Isp). Both current (I) scalings with I2 and I8/3 are considered for plasma pinch temperature and capacitor mass. For a 30-day Mars mission, with four thrusters, for example, the typical F/W values ranging from 0.5-0.6 to 0.1-0.2 for I2 and I8/3 scalings, respectively, and the Isp values of above 1600 s are obtained. Parametric studies indicate that the spin-polarized D-3He provides increased values of F/W and Isp over conventional D-3He fuel which was due to the increased fusion power and decreased radiation losses for the spin-polarized case.

  14. Effect of the stellar spin history on the tidal evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.

    2012-08-01

    Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.

  15. A SEARCH FOR RAPIDLY SPINNING PULSARS AND FAST TRANSIENTS IN UNIDENTIFIED RADIO SOURCES WITH THE NRAO 43 METER TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Deborah; Crawford, Fronefield; Gilpin, Claire

    2013-04-15

    We have searched 75 unidentified radio sources selected from the NRAO VLA Sky Survey catalog for the presence of rapidly spinning pulsars and short, dispersed radio bursts. The sources are radio bright, have no identifications or optical source coincidences, are more than 5% linearly polarized, and are spatially unresolved in the catalog. If these sources are fast-spinning pulsars (e.g., sub-millisecond pulsars), previous large-scale pulsar surveys may have missed detection due to instrumental and computational limitations, eclipsing effects, or diffractive scintillation. The discovery of a sub-millisecond pulsar would significantly constrain the neutron star equation of state and would have implications formore » models predicting a rapid slowdown of highly recycled X-ray pulsars to millisecond periods from, e.g., accretion disk decoupling. These same sources were previously searched unsuccessfully for pulsations at 610 MHz with the Lovell Telescope at Jodrell Bank. This new search was conducted at a different epoch with a new 800 MHz backend on the NRAO 43 m Telescope at a center frequency of 1200 MHz. Our search was sensitive to sub-millisecond pulsars in highly accelerated binary systems and to short transient pulses. No periodic or transient signals were detected from any of the target sources. We conclude that diffractive scintillation, dispersive smearing, and binary acceleration are unlikely to have prevented detection of the large majority of the sources if they are pulsars, though we cannot rule out eclipsing, nulling or intermittent emission, or radio interference as possible factors for some non-detections. Other (speculative) possibilities for what these sources might include radio-emitting magnetic cataclysmic variables or older pulsars with aligned magnetic and spin axes.« less

  16. Some effects of adverse weather conditions on performance of airplane antiskid braking systems

    NASA Technical Reports Server (NTRS)

    Horne, W. B.; Mccarty, J. L.; Tanner, J. A.

    1976-01-01

    The performance of current antiskid braking systems operating under adverse weather conditions was analyzed in an effort to both identify the causes of locked-wheel skids which sometimes occur when the runway is slippery and to find possible solutions to this operational problem. This analysis was made possible by the quantitative test data provided by recently completed landing research programs using fully instrumented flight test airplanes and was further supported by tests performed at the Langley aircraft landing loads and traction facility. The antiskid system logic for brake control and for both touchdown and locked-wheel protection is described and its response behavior in adverse weather is discussed in detail with the aid of available data. The analysis indicates that the operational performance of the antiskid logic circuits is highly dependent upon wheel spin-up acceleration and can be adversely affected by certain pilot braking inputs when accelerations are low. Normal antiskid performance is assured if the tire-to-runway traction is sufficient to provide high wheel spin-up accelerations or if the system is provided a continuous, accurate ground speed reference. The design of antiskid systems is complicated by the necessity for tradeoffs between tire braking and cornering capabilities, both of which are necessary to provide safe operations in the presence of cross winds, particularly under slippery runway conditions.

  17. Effect of Acceleration Frequency on Spatial Orientation Mechanisms

    DTIC Science & Technology

    2010-09-30

    by aircraft, ground vehicle, and ship motion. Method. With controlled laboratory off-vertical axis rotation (OVAR), gaze reflexes respond to low...finding that vestibular gaze reflexes become altered at the same frequency where OVAR becomes most sickening will have important implications for...the collected data, a revised crossover rate of 0.42 Hz was extrapolated as the most probable spin frequency for inducing gaze reflex changes with the

  18. Numerical studies of the surface tension effect of cryogenic liquid helium

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose of performing scientific observation during the normal spacecraft operation is investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics has been based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers, have been derived.

  19. On the Possibility of Acceleration of Polarized Protons in the Synchrotron Nuclotron

    NASA Astrophysics Data System (ADS)

    Shatunov, Yu. M.; Koop, I. A.; Otboev, A. V.; Mane, S. P.; Shatunov, P. Yu.

    2018-05-01

    One of the main tasks of the NICA project is to produce colliding beams of polarized protons. It is planned to accelerate polarized protons from the source to the maximum energy in the existing proton synchrotron. We consider all depolarizing spin resonances in the Nuclotron and propose methods to overcome them.

  20. Quantum back-action-evading measurement of motion in a negative mass reference frame

    NASA Astrophysics Data System (ADS)

    Møller, Christoffer B.; Thomas, Rodrigo A.; Vasilakis, Georgios; Zeuthen, Emil; Tsaturyan, Yeghishe; Balabas, Mikhail; Jensen, Kasper; Schliesser, Albert; Hammerer, Klemens; Polzik, Eugene S.

    2017-07-01

    Quantum mechanics dictates that a continuous measurement of the position of an object imposes a random quantum back-action (QBA) perturbation on its momentum. This randomness translates with time into position uncertainty, thus leading to the well known uncertainty on the measurement of motion. As a consequence of this randomness, and in accordance with the Heisenberg uncertainty principle, the QBA puts a limitation—the so-called standard quantum limit—on the precision of sensing of position, velocity and acceleration. Here we show that QBA on a macroscopic mechanical oscillator can be evaded if the measurement of motion is conducted in the reference frame of an atomic spin oscillator. The collective quantum measurement on this hybrid system of two distant and disparate oscillators is performed with light. The mechanical oscillator is a vibrational ‘drum’ mode of a millimetre-sized dielectric membrane, and the spin oscillator is an atomic ensemble in a magnetic field. The spin oriented along the field corresponds to an energetically inverted spin population and realizes a negative-effective-mass oscillator, while the opposite orientation corresponds to an oscillator with positive effective mass. The QBA is suppressed by -1.8 decibels in the negative-mass setting and enhanced by 2.4 decibels in the positive-mass case. This hybrid quantum system paves the way to entanglement generation and distant quantum communication between mechanical and spin systems and to sensing of force, motion and gravity beyond the standard quantum limit.

  1. Phospholipid bilayer relaxation dynamics as revealed by the pulsed electron-electron double resonance of spin labels

    NASA Astrophysics Data System (ADS)

    Syryamina, V. N.; Dzuba, S. A.

    2012-10-01

    Electron paramagnetic resonance (EPR) spectroscopy in the form of pulsed electron-electron double resonance (ELDOR) was applied to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers containing lipids that were spin-labeled at different carbon positions along the lipid acyl chain. Pulsed ELDOR detects motionally induced spin flips of nitrogen nuclei in the nitroxide spin labels, which manifests itself as magnetization transfer (MT) in the nitroxide EPR spectrum. The MT effect was observed over a wide temperature range (100-225 K) on a microsecond time scale. In line with a previous study on molecular glasses [N. P. Isaev and S. A. Dzuba, J. Chem. Phys. 135, 094508 (2011), 10.1063/1.3633241], the motions that induce MT effect were suggested to have the same nature as those in dielectric secondary (β) Johari-Goldstein fast relaxation. The results were compared with literature dielectric relaxation data for POPC bilayers, revealing some common features. Molecular motions resulting in MT are faster for deeper spin labels in the membrane interior. The addition of cholesterol to the bilayer suppresses the lipid motions near the steroid nucleus and accelerates the lipid motions beyond the steroid nucleus, in the bilayer interior. This finding was attributed to the lipid acyl chains being more ordered near the steroid nucleus and less ordered in the bilayer interior. The motions are absent in dry lipids, indicating that the motions are determined by intermolecular interactions in the bilayer.

  2. Quantum back-action-evading measurement of motion in a negative mass reference frame.

    PubMed

    Møller, Christoffer B; Thomas, Rodrigo A; Vasilakis, Georgios; Zeuthen, Emil; Tsaturyan, Yeghishe; Balabas, Mikhail; Jensen, Kasper; Schliesser, Albert; Hammerer, Klemens; Polzik, Eugene S

    2017-07-12

    Quantum mechanics dictates that a continuous measurement of the position of an object imposes a random quantum back-action (QBA) perturbation on its momentum. This randomness translates with time into position uncertainty, thus leading to the well known uncertainty on the measurement of motion. As a consequence of this randomness, and in accordance with the Heisenberg uncertainty principle, the QBA puts a limitation-the so-called standard quantum limit-on the precision of sensing of position, velocity and acceleration. Here we show that QBA on a macroscopic mechanical oscillator can be evaded if the measurement of motion is conducted in the reference frame of an atomic spin oscillator. The collective quantum measurement on this hybrid system of two distant and disparate oscillators is performed with light. The mechanical oscillator is a vibrational 'drum' mode of a millimetre-sized dielectric membrane, and the spin oscillator is an atomic ensemble in a magnetic field. The spin oriented along the field corresponds to an energetically inverted spin population and realizes a negative-effective-mass oscillator, while the opposite orientation corresponds to an oscillator with positive effective mass. The QBA is suppressed by -1.8 decibels in the negative-mass setting and enhanced by 2.4 decibels in the positive-mass case. This hybrid quantum system paves the way to entanglement generation and distant quantum communication between mechanical and spin systems and to sensing of force, motion and gravity beyond the standard quantum limit.

  3. Accelerated radiation damping for increased spin equilibrium (ARISE): a new method for controlling the recovery of longitudinal magnetization.

    PubMed

    Huang, Susie Y; Witzel, Thomas; Wald, Lawrence L

    2008-11-01

    Control of the longitudinal magnetization in fast gradient-echo (GRE) sequences is an important factor in enabling the high efficiency of balanced steady-state free precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The accelerated radiation damping for increased spin equilibrium (ARISE) method uses an external feedback circuit to strengthen the radiation damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T(1) relaxation. The method is characterized in GRE phantom imaging at 3T as a function of feedback gain, phase, and duration, and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10 ms) during a refocused interval of a crushed GRE sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T(2) relaxation had time to occur. An appropriate application might be to improve navigated sequences. Unlike conventional flip-back schemes, the ARISE "flip-back" is generated by the spins themselves, thereby offering a potentially useful building block for enhancing GRE sequences.

  4. An Anzatz about Gravity, Cosmology, and the Pioneer Anomaly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murad, Paul

    2010-01-28

    The Pulsar 1913+16 binary system may represent a 'young' binary system where previously it is claimed that the dynamics are due to either a third body or a gravitational vortex. Usually a binary system's trajectory could reside in a single ellipse or circular orbit; the double ellipse implies that the 1913+16 system may be starting to degenerate into a single elliptical trajectory. This could be validated only after a considerably long time period. In a majority of binary star systems, the weights of both stars are claimed by analysis to be the same. It may be feasible that the trajectorymore » of the primary spinning star could demonstrate repulsive gravitational effects where the neutron star's high spin rate induces a repulsive gravitational source term that compensates for inertia. If true, then it provides evidence that angular momentum may be translated into linear momentum as a repulsive source that has propulsion implications. This also suggests mass differences may dictate the neutron star's spin rate as an artifact of a natural gravitational process. Moreover, the reduced matter required by the 'dark' mass hypothesis may not exist but these effects could be due to repulsive gravity residing in rotating celestial bodies.The Pioneer anomaly observed on five different deep-space spacecraft, is the appearance of a constant gravitational force directed toward the sun. Pioneer spacecraft data reveals that a vortex-like magnetic field exists emanating from the sun. The spiral arms of the Sun's magnetic vortex field may be causal to this constant acceleration. This may profoundly provide a possible experimental verification on a cosmic scale of Gertsenshtein's principle relating gravity to electromagnetism. Furthermore, the anomalous acceleration may disappear once the spacecraft passes out into a magnetic spiral furrow, which is something that needs to be observed in the future. Other effects offer an explanation from space-time geometry to the Yarkovsky thermal effects are discussed.« less

  5. Two-component relativistic coupled-cluster methods using mean-field spin-orbit integrals

    NASA Astrophysics Data System (ADS)

    Liu, Junzi; Shen, Yue; Asthana, Ayush; Cheng, Lan

    2018-01-01

    A novel implementation of the two-component spin-orbit (SO) coupled-cluster singles and doubles (CCSD) method and the CCSD augmented with the perturbative inclusion of triple excitations [CCSD(T)] method using mean-field SO integrals is reported. The new formulation of SO-CCSD(T) features an atomic-orbital-based algorithm for the particle-particle ladder term in the CCSD equation, which not only removes the computational bottleneck associated with the large molecular-orbital integral file but also accelerates the evaluation of the particle-particle ladder term by around a factor of 4 by taking advantage of the spin-free nature of the instantaneous electron-electron Coulomb interaction. Benchmark calculations of the SO splittings for the thallium atom and a set of diatomic 2Π radicals as well as of the bond lengths and harmonic frequencies for a set of closed-shell diatomic molecules are presented. The basis-set and core-correlation effects in the calculations of these properties have been carefully analyzed.

  6. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region Eγ=1.1 –2.3 GeV

    DOE PAGES

    Zachariou, N.; Ilieva, Y.; Ivanov, N. Ya.; ...

    2015-05-01

    The beam-spin asymmetry, Σ, for the reaction γd→ΣΣpn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, Θ c.m., between 25° and 160°. These are the first measurements of beam-spin asymmetries at Θ c.m.=90° for photon-beam energies above 1.6 GeV, and the first measurements for angles other than Θ c.m.=90°. The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration inmore » the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.« less

  7. Accelerated Testing Of Photothermal Degradation Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S. L., E-mail: shuch@ist.hokudai.ac.jp; Takayama, J.; Murayama, A.

    Time-resolved optical spin orientation spectroscopy was employed to investigate the temperature-dependent electron spin injection in In{sub 0.1}Ga{sub 0.9}As quantum well (QW) and In{sub 0.5}Ga{sub 0.5}As quantum dots (QDs) tunnel-coupled nanostructures with 4, 6, and 8 nm-thick GaAs barriers. The fast picosecond-ranged spin injection from QW to QD excited states (ES) was observed to speed up with temperature, as induced by pronounced longitudinal-optical (LO)-phonon-involved multiple scattering process, which contributes to a thermally stable and almost fully spin-conserving injection within 5–180 K. The LO-phonon coupling was also found to cause accelerated electron spin relaxation of QD ES at elevated temperature, mainly via hyperfine interactionmore » with random nuclear field.« less

  9. Mass center estimation of a drag-free satellite

    NASA Technical Reports Server (NTRS)

    Sanz Fernandez De Cordova, S.; Debra, D. B.

    1975-01-01

    The mass center location of a spinning drag-free satellite can be estimated because there is control required to accelerate the mass center along the axis of spin as long as there is some nutation in the spinning motion. Linear and nonlinear models are compared and observability discussed. Online estimation fails when nutation is damped so an offline mechanization is proposed. A new sensor has been designed to permit greater relative motion than was possible on the drag-free satellite flown in 1972 (JH-1). Experimental laboratory results using a spinning vehicle with the new sensor mounted 30 cm from a spherical air bearing support are presented which confirm earlier simulation results.

  10. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    NASA Astrophysics Data System (ADS)

    Chang, J. C.; Lockner, D. A.; Reches, Z.

    2012-12-01

    We simulated the slip of a fault-patch during a large earthquake by rapidly loading an experimental, ring-shaped fault with energy stored in a spinning flywheel. The flywheel abruptly delivers a finite amount of energy by spinning the fault-patch that spontaneously dissipates the energy without operator intervention. We conducted 42 experiments on Sierra White granite (SWG) samples, and 24 experiments on Kasota dolomite (KD) samples. Each experiment starts by spinning a 225 kg disk-shaped flywheel to a prescribed angular velocity. We refer to this experiment as an "earthquake-like slip-event" (ELSE). The strength-evolution in ELSE experiments is similar to the strength-evolution proposed for earthquake models and observed in stick-slip experiments. Further, we found that ELSE experiments are similar to earthquakes in at least three ways: (1) slip driven by the release of a finite amount of stored energy; (2) pattern of fault strength evolution; and (3) seismically observed values, such as average slip, peak-velocity and rise-time. By assuming that the measured slip, D, in ELSE experiments is equivalent to the average slip during an earthquake, we found that ELSE experiments (D = 0.003-4.6 m) correspond to earthquakes in moment-magnitude range of Mw = 4-8. In ELSE experiments, the critical-slip-distance, dc, has mean values of 2.7 cm and 1.2 cm for SWG and KD, that are much shorter than the 1-10 m in steady-state classical experiments in rotary shear systems. We attribute these dc values, to ELSE loading in which the fault-patch is abruptly loaded by impact with a spinning flywheel. Under this loading, the friction-velocity relations are strikingly different from those under steady-state loading on the same rock samples with the same shear system (Reches and Lockner, Nature, 2010). We further note that the slip acceleration in ELSE evolves systematically with fault strength and wear-rate, and that the dynamic weakening is restricted to the period of intense acceleration (up to 25 m/s2 during ~0.1 s). Thus, the weakening distance, dc, is reached within the initial acceleration spike. These observations are not unique, and similar weakening-acceleration associations were reported in stick-slip, rotary shear, and impact shear experiments. These studies greatly differ from each other in slip distance, normal stress, acceleration, and slip-velocities with the outstanding commonality of abrupt loading and intense acceleration. We propose that impact loading induces extremely high strain-rates that significantly increase rock brittleness, fracture tendency, and fragmentation. We envision that these processes intensify fault wear as manifested in ELSE experiments by extremely high initial wear-rates. This intense, early wear generates a layer of fine-grain gouge that reduces the fault strength by powder-lubrication. Our analysis indicates that rapid acceleration associated with earthquake rupture accelerates fault weakening and shortens the weakening-distance.

  11. Symplectic orbit and spin tracking code for all-electric storage rings

    NASA Astrophysics Data System (ADS)

    Talman, Richard M.; Talman, John D.

    2015-07-01

    Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring "trap." At the "magic" kinetic energy of 232.792 MeV, proton spins are "frozen," for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10-29e -cm or greater will produce a statistically significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial "symplectification"). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the long times, such as the 1000 s assumed in estimating the achievable EDM precision. This paper documents in detail the theoretical formulation implemented in eteapot. An accompanying paper describes the practical application of the eteapot code in the Universal Accelerator Libraries (ual) environment to "resurrect," or reverse engineer, the "AGS-analog" all-electric ring built at Brookhaven National Laboratory in 1954. Of the (very few) all-electric rings ever commissioned, the AGS-analog ring is the only relativistic one and is the closest to what is needed for measuring proton (or, even more so, electron) EDM's. The companion paper also describes preliminary lattice studies for the planned proton EDM storage rings as well as testing the code for long time orbit and spin tracking.

  12. Spin-Dependent Cross Sections in Pion Produc- tion

    NASA Astrophysics Data System (ADS)

    Pintex Collaboration; von Przewoski, B.; Dzemidzic, M.; Doskow, J.; Meyer, H. O.; Pollock, R. E.; Rinckel, T.; Sperisen, F.; Wolanski, M.; Haeberli, W.; Lorentz, B.; Quin, P.; Rathmann, F.; Schwartz, B.; Wise, T.; Daehnick, W.; Flammang, R.; Tedeschi, D.; Pancella, P. V.

    1997-04-01

    An experiment to measure ΔσL and ΔσT for pion production in pp scattering is in preparation at the Indiana Cooler. Both, pparrowppπ^circ and pparrowpnπ^+ reactions, will be studied. Either two charged particles or the neutron and the proton are detected in the exit channel. The experiment requires the acceleration of longitudinally polarized stored protons. Recently, longitudinally polarized beam has been successfully stored and accelerated to 400 MeV. The experiment uses the Wisconsin/IUCF polarized storage cell target. Upgrades to the experimental setup which has been used previously for a measurement of spin correlation parameters in pp elastic scattering will be discussed. The detector response is studied by means of a Monte Carlo simulation. Expected performance parameters will be presented.

  13. Fission Limit And Surface Disruption Criteria For Asteroids: The Case Of Kleopatra

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi; Scheeres, D. J.

    2012-05-01

    Asteroid structural failure due to a rapid rotation may occur by two fundamentally different ways: by spinning so fast that surface particles are lofted off due to centripetal accelerations overcoming gravitational attractions or through fission of the body. We generalize these failure modes for real asteroid shapes. How a rubble pile asteroid will fail depends on which of these failure criterion occur first if its spin rate is increased due to the YORP effect, impacts, or planetary flybys. The spin rate at which the interior of an arbitrary uniformly rotating body will undergo tension (and conservatively be susceptible to fission) is computed by taking planar cuts through the shape model, computing the mutual gravitational attraction between the two segments, and determining the spin rate at which the centrifugal force between the two components equals the mutual gravitational attraction. The gravitational attraction computation uses an improved version of the algorithm presented in Werner et al. (2005). To determine the interior point that first undergoes tension, we consider this planar cut perpendicular to the axis of minimum moment of inertia at different cross-sections. On the other hand, we define the surface disruption as follows. For an arbitrary body uniformly rotating at a constant spin rate there are at least four synchronous orbits, which represent circular orbits with the same period as the asteroid spin rate. Surface disruption occurs when the body spins fast enough so that at least one of these synchronous orbits touches the asteroid surface. Kleopatra currently spins with a period of 5.38 hours. The spin period for surface disruption is computed to be 3.02 hours, while the spin period for the interior of the asteroid to go into tension is about 4.8 hours. Thus Kleopatra’s internal fission could occur at spin periods longer than when surface disruption occurs.

  14. Kinetic consequences of introducing a proximal selenocysteine ligand into cytochrome P450cam.

    PubMed

    Vandemeulebroucke, An; Aldag, Caroline; Stiebritz, Martin T; Reiher, Markus; Hilvert, Donald

    2015-11-10

    The structural, electronic, and catalytic properties of cytochrome P450cam are subtly altered when the cysteine that coordinates to the heme iron is replaced with a selenocysteine. To map the effects of the sulfur-to-selenium substitution on the individual steps of the catalytic cycle, we conducted a comparative kinetic analysis of the selenoenzyme and its cysteine counterpart. Our results show that the more electron-donating selenolate ligand has only negligible effects on substrate, product, and oxygen binding, electron transfer, catalytic turnover, and coupling efficiency. Off-pathway reduction of oxygen to give superoxide is the only step significantly affected by the mutation. Incorporation of selenium accelerates this uncoupling reaction approximately 50-fold compared to sulfur, but because the second electron transfer step is much faster, the impact on overall catalytic turnover is minimal. Density functional theory calculations with pure and hybrid functionals suggest that superoxide formation is governed by a delicate interplay of spin distribution, spin state, and structural effects. In light of the remarkably similar electronic structures and energies calculated for the sulfur- and selenium-containing enzymes, the ability of the heavier atom to enhance the rate of spin crossover may account for the experimental observations. Because the selenoenzyme closely mimics wild-type P450cam, even at the level of individual steps in the reaction cycle, selenium represents a unique mechanistic probe for analyzing the role of the proximal ligand and spin crossovers in P450 chemistry.

  15. Particle acceleration and production of energetic photons in SN1987A

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, Todor; Harding, Alice

    1987-01-01

    A pulsar wind model for the acceleration of particles in SN1987A is discussed. The expected photon flux is investigated in terms of the spectrum of parent protons and electrons, the nature of the region in which they propagate after acceleration, and the magnetic field and radiation environment which determines the subsequent fate of produced photons. The model is found to produce observable signals if the spin period of the pulsar is 10 ms or less.

  16. Optics measurement and correction during acceleration with beta-squeeze in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Marusic, A.; Minty, M.

    2015-05-03

    In the past, beam optics correction at RHIC has only taken place at injection and at final energy, with interpolation of corrections partially into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats that, if corrected, could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoiding the high-order multipole fields sampled by particles within the bunch. We recently demonstrated successful beam optics corrections during acceleration at RHIC. We verified conclusively the superior control of the beam realized via these corrections

  17. A Model for AR Scorpii: Emission from Relativistic Electrons Trapped by Closed Magnetic Field Lines of Magnetic White Dwarfs

    NASA Astrophysics Data System (ADS)

    Takata, J.; Yang, H.; Cheng, K. S.

    2017-12-01

    AR Scorpii is an intermediate polar binary system composed of a magnetic white dwarf (WD) and an M-type star and shows nonthermal, pulsed, and highly linearly polarized emission. The radio/optical emission modulates with the WD’s spin and shows the double-peak structure in the light curves. In this paper, we discuss a possible scenario for the radiation mechanism of AR Scorpii. The magnetic interaction on the surface of the companion star produces an outflow from the companion star, the heating of the companion star surface, and the acceleration of electrons to a relativistic energy. The accelerated electrons, whose typical Lorentz factor is ∼50–100, from the companion star move along the magnetic field lines toward the WD surface. The electrons injected with the pitch angle of \\sin {θ }p,0> 0.05 are subject to the magnetic mirror effect and are trapped in the closed magnetic field line region. We find that the emission from the first magnetic mirror points mainly contributes to the observed pulsed emission and the formation of the double-peak structure in the light curve. For the inclined rotator, the pulse peak in the calculated light curve shifts the position in the spin phase, and a Fourier analysis exhibits a beat frequency feature, which are consistent with the optical/UV observations. The pulse profile also evolves with the orbital phase owing to the effect of the viewing geometry. The model also interprets the global features of the observed spectral energy distribution in radio to X-ray energy bands. We also discuss the curvature radiation and the inverse-Compton scattering process in the outer gap accelerator of the WD in AR Scorpii and the possibility of the detection by future high-energy missions.

  18. Pulsed field gradients in simulations of one- and two-dimensional NMR spectra.

    PubMed

    Meresi, G H; Cuperlovic, M; Palke, W E; Gerig, J T

    1999-03-01

    A method for the inclusion of the effects of z-axis pulsed field gradients in computer simulations of an arbitrary pulsed NMR experiment with spin (1/2) nuclei is described. Recognizing that the phase acquired by a coherence following the application of a z-axis pulsed field gradient bears a fixed relation to its order and the spatial position of the spins in the sample tube, the sample is regarded as a collection of volume elements, each phase-encoded by a characteristic, spatially dependent precession frequency. The evolution of the sample's density matrix is thus obtained by computing the evolution of the density matrix for each volume element. Following the last gradient pulse, these density matrices are combined to form a composite density matrix which evolves through the rest of the experiment to yield the observable signal. This approach is implemented in a program which includes capabilities for rigorous inclusion of spin relaxation by dipole-dipole, chemical shift anisotropy, and random field mechanisms, plus the effects of arbitrary RF fields. Mathematical procedures for accelerating these calculations are described. The approach is illustrated by simulations of representative one- and two-dimensional NMR experiments. Copyright 1999 Academic Press.

  19. Detection of the YORP effect in asteroid (161989) Cacus

    NASA Astrophysics Data System (ADS)

    Durech, Josef; Vokrouhlicky, David; Pravec, Petr; Hanus, Josef; Kusnirak, Peter; Hornoch, Kamil; Galad, Adrian; Masi, Gianluca

    2016-10-01

    The rotation state of small asteroids is affected by the thermal Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) torque. The directly observable consequence of YORP is the secular change of the asteroid's rotational period in time. We carried out new photometric observations of asteroid (161989) Cacus during its apparitions in 2014-2016. Using the new lightcurves together with archived data going back to 1978, we were able to detect a tiny deviation from the constant-period rotation. This deviation caused an observable shift between the observed lightcurves and those predicted by the best constant-period model. We used the lightcurve inversion method to derive a shape/spin solution that fitted the data at best. We assumed that the rotation rate evolved linearly in time and derived the acceleration of the rotation rate dω/dt = (1.9 +/- 0.3) × 10-8 rad/day2. The accelerating model provides a significantly better fit than the constant-period model. By applying a thermophysical model on WISE thermal infrared data, we estimated the thermal inertia of the surface to Γ = 250-2000 J m-2 s-0.5 K-1 and the volume-equivalent diameter to 0.8-1.2 km (1σ intervals). The value of dω/dt derived from observations is in agreement with the theoretical value computed numerically from the lightcurve inversion shape model and its spin axis orientation. Cacus has become the sixth asteroid with YORP detection. Surprisingly, for all six cases the rotation rate accelerates.

  20. Logic Model Checking of Time-Periodic Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Florian, Mihai; Gamble, Ed; Holzmann, Gerard

    2012-01-01

    In this paper we report on the work we performed to extend the logic model checker SPIN with built-in support for the verification of periodic, real-time embedded software systems, as commonly used in aircraft, automobiles, and spacecraft. We first extended the SPIN verification algorithms to model priority based scheduling policies. Next, we added a library to support the modeling of periodic tasks. This library was used in a recent application of the SPIN model checker to verify the engine control software of an automobile, to study the feasibility of software triggers for unintended acceleration events.

  1. Configuration Manual Polarized Proton Collider at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, I.; Allgower, C.; Bai, M.

    2006-01-01

    In this report we present our design to accelerate and store polarized protons in RHIC, with the level of polarization, luminosity, and control of systematic errors required by the approved RHIC spin physics program. We provide an overview of the physics to be studied using RHIC with polarized proton beams, and a brief description of the accelerator systems required for the project.

  2. Stochastic YORP On Real Asteroid Shapes

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.

    2015-05-01

    Since its theoretical foundation and subsequent observational verification, the YORP effect has been understood to be a fundamental process that controls the evolution of small asteroids in the inner solar system. In particular, the coupling of the YORP and Yarkovsky effects are hypothesized to be largely responsible for the transport of asteroids from the main belt to the inner solar system populations. Furthermore, the YORP effect is thought to lead to rotational fission of small asteroids, which leads to the creation of multiple asteroid systems, contact binary asteroids, and asteroid pairs. However recent studies have called into question the ability of YORP to produce these results. In particular, the high sensitivity of the YORP coefficients to variations in the shape of an asteroid, combined with the possibility of a changing shape due to YORP accelerated spin rates can combine to create a stochastic YORP coefficient which can arrest or change the evolution of a small asteroid's spin state. In this talk, initial results are presented from new simulations which comprehensively model the stochastic YORP process. Shape change is governed by the surface slopes on radar based asteroid shape models, where the highest slope regions change first. The investigation of the modification of YORP coefficients and subsequent spin state evolution as a result of this dynamically influenced shape change is presented and discussed.

  3. Detection of the YORP Effect in Asteroid (3103) Eger

    NASA Astrophysics Data System (ADS)

    Durech, Josef; Vokrouhlicky, D.; Polishook, D.; Krugly, Y. N.; Gaftonyuk, N. M.; Stephens, R. D.; Warner, B. D.; Kaasalainen, M.; Gross, J.; Cooney, W.; Terrel, D.

    2009-09-01

    The rotation state of small bodies of the Solar System is affected by the thermal Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) torque. The directly observable consequence of YORP is the secular change of the asteroid's rotational period in time. We carried out new photometric measurements of asteroid (3103) Eger during its suitable apparitions in 2001-2009. We also used archived data going back to 1987. Using all available photometry covering more than twenty years, we were able to detect a tiny deviation from the constant-period rotation. This deviation caused an observable shift between the observed lightcurves and those predicted by the best constant-period model. We used the lightcurve inversion method to derive a shape/spin solution that fitted the data at best. We assumed that the rotation rate evolved linearly in time and derived the acceleration of Eger's rotation rate dω/dt = (9 +/- 6) x 10-9 rad/d2 (maximum estimated uncertainty). The accelerating model provides a significantly better fit than the constant-period model. The value of dω/dt derived from observations is in agreement with the theoretical value computed numerically from the lightcurve inversion shape model and its spin axis orientation. After the three asteroids for which the YORP effect has already been detected (1862 Apollo, 54509 YORP, and 1620 Geographos), Eger is the fourth one.

  4. Doing More with Less: Cost-effective, Compact Particle Accelerators (489th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trbojevic, Dejan

    2013-10-22

    Replace a 135-ton magnet used for cancer-fighting particle therapies with a magnet that weighs only two tons? Such a swap is becoming possible thanks to new particle accelerator advances being developed by researchers at Brookhaven Lab. With an approach that combines techniques used by synchrotron accelerators with the ability to accept more energy, these new technologies could be used for more than fighting cancer. They could also decrease the lifecycle of byproducts from nuclear power plants and reduce costs for eRHIC—a proposed electron-ion collider for Brookhaven Lab that researchers from around the world would use to explore the glue thatmore » holds together the universe’s most basic building blocks and explore the proton-spin puzzle. During this lecture, Dr. Trbojevic provides an overview of accelerator technologies and techniques—particularly a non-scaling, fixed-focused alternating gradient—to focus particle beams using fewer, smaller magnets. He discusses how these technologies will benefit eRHIC and other applications, including particle therapies being developed to combat cancer.« less

  5. Convection measurement package for space processing sounding rocket flights. [low gravity manufacturing - fluid dynamics

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.

    1975-01-01

    The effects on heated fluids of nonconstant accelerations, rocket vibrations, and spin rates, was studied. A system is discussed which can determine the influence of the convective effects on fluid experiments. The general suitability of sounding rockets for performing these experiments is treated. An analytical investigation of convection in an enclosure which is heated in low gravity is examined. The gravitational body force was taken as a time-varying function using anticipated sounding rocket accelerations, since accelerometer flight data were not available. A computer program was used to calculate the flow rates and heat transfer in fluids with geometries and boundary conditions typical of space processing configurations. Results of the analytical investigation identify the configurations, fluids and boundary values which are most suitable for measuring the convective environment of sounding rockets. A short description of fabricated fluid cells and the convection measurement package is given. Photographs are included.

  6. Accelerated Fast Spin-Echo Magnetic Resonance Imaging of the Heart Using a Self-Calibrated Split-Echo Approach

    PubMed Central

    Klix, Sabrina; Hezel, Fabian; Fuchs, Katharina; Ruff, Jan; Dieringer, Matthias A.; Niendorf, Thoralf

    2014-01-01

    Purpose Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for self-calibrated parallel imaging. Methods For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired simultaneously. SENSE reconstruction was employed. Results The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging. Conclusion SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE. SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging. PMID:24728341

  7. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.

    2018-04-01

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  8. A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment.

    PubMed

    Holley, A T; Broussard, L J; Davis, J L; Hickerson, K; Ito, T M; Liu, C-Y; Lyles, J T M; Makela, M; Mammei, R R; Mendenhall, M P; Morris, C L; Mortensen, R; Pattie, R W; Rios, R; Saunders, A; Young, A R

    2012-07-01

    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ̅ε=0.9985(4).

  9. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers.

    PubMed

    Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A

    2018-04-13

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  10. Symplectic orbit and spin tracking code for all-electric storage rings

    DOE PAGES

    Talman, Richard M.; Talman, John D.

    2015-07-22

    Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring “trap.” At the “magic” kinetic energy of 232.792 MeV, proton spins are “frozen,” for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10 –29e–cm or greater will produce a statisticallymore » significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial “symplectification”). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the long times, such as the 1000 s assumed in estimating the achievable EDM precision. This paper documents in detail the theoretical formulation implemented in eteapot. An accompanying paper describes the practical application of the eteapot code in the Universal Accelerator Libraries (ual) environment to “resurrect,” or reverse engineer, the “AGS-analog” all-electric ring built at Brookhaven National Laboratory in 1954. Of the (very few) all-electric rings ever commissioned, the AGS-analog ring is the only relativistic one and is the closest to what is needed for measuring proton (or, even more so, electron) EDM’s. As a result, the companion paper also describes preliminary lattice studies for the planned proton EDM storage rings as well as testing the code for long time orbit and spin tracking.« less

  11. Measurement of Single and Double Spin Asymmetries in p(e, e' pi(+/-,0))X Semi-Inclusive Deep-Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Jawalkar, Sucheta Shrikant

    Measurements in the late 1980s at CERN revealed that quark spins account for a small fraction of the proton's spin. This so-called spin crisis spurred a number of new experiments to identify the proton's silent spin contributors, namely, the spin of the gluons, which hold the quarks together, and the orbital angular momentum of both quarks and gluons. One such experiment was eg1-dvcs at the Thomas Jefferson National Accelerator Facility in Newport News, Va., which ran in 2009 and collected approximately 19 billion electron triggers for hydrogen. I will present new measurements of the single and double-spin asymmetries ALU, AUL and ALL for pi+, pi - and pi0, measured as a function of Bjorken xB, squared momentum transfer Q2, hadron energy fraction z, and hadron transverse momentum Ph ⊥. These asymmetries, which are convolutions of transverse-momentum-dependent parton distributions and fragmentation functions, correlate with the transverse momentum, and therefore with the orbital motion, of the struck quark.

  12. CERES: An ab initio code dedicated to the calculation of the electronic structure and magnetic properties of lanthanide complexes.

    PubMed

    Calvello, Simone; Piccardo, Matteo; Rao, Shashank Vittal; Soncini, Alessandro

    2018-03-05

    We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin-orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree-Fock (CAHF) algorithm for the determination of 4f quasi-atomic active orbitals common to all multi-electron spin manifolds contributing to the ground spin-orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi-Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem-specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state-of-the-art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres, represents a more time-efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non-perturbative spin-orbit coupling effects. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Density-functional theory simulation of large quantum dots

    NASA Astrophysics Data System (ADS)

    Jiang, Hong; Baranger, Harold U.; Yang, Weitao

    2003-10-01

    Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient method for the simulation of quantum dots using density-function theory is developed; it includes the particle-in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly minimize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional model system and show that numerical studies of large quantum dots with several hundred electrons become computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.

  14. Spin State Equilibria of Asteroids due to YORP Effects

    NASA Astrophysics Data System (ADS)

    Golubov, Oleksiy; Scheeres, Daniel J.; Lipatova, Veronika

    2016-05-01

    Spins of small asteroids are controlled by the Yarkovsky--O'Keefe--Radzievskii--Paddack (YORP) effect. The normal version of this effect has two components: the axial component alters the rotation rate, while the obliquity component alters the obliquity. Under this model the rotation state of an asteroid can be described in a phase plane with the rotation rate along the polar radius and the obliquity as the polar angle. The YORP effect induces a phase flow in this plane, which determines the distribution of asteroid rotation rates and obliquities.We study the properties of this phase flow for several typical cases. Some phase flows have stable attractors, while in others all trajectories go to very small or large rotation rates. In the simplest case of zero thermal inertia approximate analytical solutions to dynamics equations are possible. Including thermal inertia and the Tangential YORP effect makes the possible evolutionary scenarios much more diverse. We study possible evolution paths and classify the most general trends. Also we discuss possible implications for the distribution of asteroid rotation rates and obliquities.A special emphasis is put on asteroid (25143) Itokawa, whose shape model is well determined, but who's measured YORP acceleration does not agree with the predictions of normal YORP. We show that Itokawa's rotational state can be explained by the presence of tangential YORP and that it may be in or close to a stable spin state equilibrium. The implications of such states will be discussed.

  15. Sloshing dynamics on rotating helium dewar tank

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1993-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics were based on the non-inertia frame spacecraft bound coordinate, and solve time dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers were derived. Results were widely published in the open journals.

  16. GRAVITATIONAL MODEL OF HIGH-ENERGY PARTICLES IN A COLLIMATED JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Freitas Pacheco, J. A.; Gariel, J.; Marcilhacy, G.

    2012-11-10

    Observations suggest that relativistic particles play a fundamental role in the dynamics of jets emerging from active galactic nuclei as well as in their interaction with the intracluster medium. However, no general consensus exists concerning the acceleration mechanism of those high-energy particles. A gravitational acceleration mechanism is proposed here in which particles leaving precise regions within the ergosphere of a rotating supermassive black hole (BH) produce a highly collimated flow. These particles follow unbound geodesics which are asymptotically parallel to the spin axis of the BH and are characterized by the energy E, the Carter constant Q, and zero angularmore » momentum of the component L{sub z} . If environmental effects are neglected, the present model predicts the presence of electrons with energies around 9.4 GeV at distances of about 140 kpc from the ergosphere. The present mechanism can also accelerate protons up to the highest energies observed in cosmic rays by the present experiments.« less

  17. The extraction of the spin structure function, g2 (and g1) at low Bjorken x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndukum, Luwani Z.

    2015-08-01

    The Spin Asymmetries of the Nucleon Experiment (SANE) used the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA to investigate the spin structure of the proton. The experiment measured inclusive double polarization electron asymmetries using a polarized electron beam, scattered off a solid polarized ammonia target with target polarization aligned longitudinal and near transverse to the electron beam, allowing the extraction of the spin asymmetries A1 and A2, and spin structure functions g1 and g2. Polarized electrons of energies of 4.7 and 5.9 GeV were used. The scattered electrons were detected by a novel, non-magnetic arraymore » of detectors observing a four-momentum transfer range of 2.5 to 6.5 GeV*V. This document addresses the extraction of the spin asymmetries and spin structure functions, with a focus on spin structure function, g2 (and g1) at low Bjorken x. The spin structure functions were measured as a function of x and W in four Q square bins. A full understanding of the low x region is necessary to get clean results for SANE and extend our understanding of the kinematic region at low x.« less

  18. The spinning disc: studying radial acceleration and its damping process with smartphone acceleration sensors

    NASA Astrophysics Data System (ADS)

    Hochberg, K.; Gröber, S.; Kuhn, J.; Müller, A.

    2014-03-01

    Here, we show the possibility of analysing circular motion and acceleration using the acceleration sensors of smartphones. For instance, the known linear dependence of the radial acceleration on the distance to the centre (a constant angular frequency) can be shown using multiple smartphones attached to a revolving disc. As a second example, the decrease of the radial acceleration and the rotation frequency due to friction can be measured and fitted with a quadratic function, in accordance with theory. Finally, because the disc is not set up exactly horizontal, each smartphone measures a component of the gravitational acceleration that adds to the radial acceleration during one half of the period and subtracts from the radial acceleration during the other half. Hence, every graph shows a small modulation, which can be used to determine the rotation frequency, thus converting a ‘nuisance effect’ into a source of useful information, making additional measurements with stopwatches or the like unnecessary.

  19. Global Landslides on Rapidly Spinning Spheroids

    NASA Astrophysics Data System (ADS)

    Scheeres, Daniel J.; Sanchez, P.

    2013-10-01

    The angle of repose and conditions for global landslides on the surfaces of small, rapidly spinning, spheroidal asteroids are studied. Applying techniques of soil mechanics, we develop a theory for, and examples of, how regolith will fail and flow in this microgravity environment. Our motivation is to develop an understanding of the "top-shaped" class of asteroids based on analytical soil mechanics. Our analysis transforms the entire asteroid surface into a local frame where we can model it as a conventional granular pile with a surface slope, acceleration and height variations as a function of the body's spin rate, shape and density. A general finding is that the lowest point on a rapidly spinning spheroid is at the equator with the effective height of surface material monotonically increasing towards the polar regions, where the height can be larger than the physical radius of the body. We study the failure conditions of both cohesionless and cohesive regolith, and develop specific predictions of the surface profile as a function of the regolith angle of friction and the maximum spin rate experienced by the body. The theory also provides simple guidelines on what the shape may look like, although we do not analyze gravitationally self-consistent evolution of the body shape. The theory is tested with soft-sphere discrete element method granular mechanics simulations to better understand the dynamical aspects of global asteroid landslides. We find significant differences between failure conditions for cohesive and cohesionless regolith. In the case of cohesive regolith, we show that extremely small values of strength (much less than that found in lunar regolith) can stabilize a surface even at very rapid spin rates. Cohesionless surfaces, as expected, fail whenever their surface slopes exceed the angle of friction. Based on our analysis we propose that global landslides and the flow of material towards the equator on spheroidal bodies are precipitated by exogenous effects such as impact induced seismic shaking or torques during planetary flybys.

  20. Dynamics and stability of a tethered centrifuge in low earth orbit

    NASA Technical Reports Server (NTRS)

    Quadrelli, B. M.; Lorenzini, E. C.

    1992-01-01

    The three-dimensional attitude dynamics of a spaceborne tethered centrifuge for artificial gravity experiments in low earth orbit is analyzed using two different methods. First, the tethered centrifuge is modeled as a dumbbell with a straight viscoelastic tether, point tip-masses, and sophisticated environmental models such as nonspherical gravity, thermal perturbations, and a dynamic atmospheric model. The motion of the centrifuge during spin-up, de-spin, and steady-rotation is then simulated. Second, a continuum model of the tether is developed for analyzing the stability of lateral tether oscillations. Results indicate that the maximum fluctuation about the 1-g radial acceleration level is less than 0.001 g; the time required for spin-up and de-spin is less than one orbit; and lateral oscillations are stable for any practical values of the system parameters.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUANG,H.; AHRENS, L.; BAI, M.

    Dual partial snake scheme has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for the Relativistic Heavy Ion Collider (RHIC) spin program. To overcome the residual polarization loss due to horizontal resonances in the Brookhaven Alternating Gradient Synchrotron (AGS), a new string of quadrupoles have been added. The horizontal tune can then be set in the spin tune gap generated by the two partial snakes, such that horizontal resonances can also be avoided. This paper presents the accelerator setup and preliminary results.

  2. Effects of altered gravity on the swimming behaviour of fish

    NASA Astrophysics Data System (ADS)

    Hilbig, R.; Anken, R. H.; Sonntag, G.; Höhne, S.; Henneberg, J.; Kretschmer, N.; Rahmann, H.

    Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness-phenomena (SMS, a kinetosis). It has been argued that SMS during PAFs might not be based on microgravity alone but rather on changing accelerations from 0g to 2g. We test here the hypothesis that PAF-induced kinetosis is based on asymmetric statoliths (i.e., differently weighed statoliths on the right and the left side of the head), with asymmetric inputs to the brain being disclosed at microgravity. Since fish frequently reveal kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), we investigated (1) whether or not kinetotically swimming fish at microgravity would have a pronounced inner ear otolith asymmetry and (2) whether or not slow translational and continuously changing linear (vertical) acceleration on ground induced kinetosis. These latter accelerations were applied using a specially developed parabel-animal-container (PAC) to stimulate the cupular organs. The results suggest that the fish tested on ground can counter changing accelerations successfully without revealing kinetotic swimming patterns. Kinetosis could only be induced by PAFs. This finding suggests that it is indeed microgravity rather than changing accelerations, which induces kinetosis. Moreover, we demonstrate that fish swimming kinetotically during PAFs correlates with a higher otolith asymmetry in comparison to normally behaving animals in PAFs.

  3. Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats

    PubMed Central

    Welsh, Christopher L.; DiBella, Edward V. R.; Hsu, Edward W.

    2015-01-01

    Motion of the heart has complicated in vivo applications of cardiac diffusion MRI and diffusion tensor imaging (DTI), especially in small animals such as rats where ultra-high-performance gradient sets are currently not available. Even with velocity compensation via, for example, bipolar encoding pulses, the variable shot-to-shot residual motion-induced spin phase can still give rise to pronounced artifacts. This study presents diffusion-encoding schemes that are designed to compensate for higher-order motion components, including acceleration and jerk, which also have the desirable practical features of minimal TEs and high achievable b-values. The effectiveness of these schemes was verified numerically on a realistic beating heart phantom, and demonstrated empirically with in vivo cardiac diffusion MRI in rats. Compensation for acceleration, and lower motion components, was found to be both necessary and sufficient for obtaining diffusion-weighted images of acceptable quality and SNR, which yielded the first in vivo cardiac DTI demonstrated in the rat. These findings suggest that compensation for higher order motion, particularly acceleration, can be an effective alternative solution to high-performance gradient hardware for improving in vivo cardiac DTI. PMID:25775486

  4. Virtual Tour of RHIC

    ScienceCinema

    Brookhaven Lab

    2017-12-09

    An animation that follows polarized protons as they travel through the Relativistic Heavy Ion Collider (RHIC) accelerator complex to the experiments. The arrows indicate the direction of each proton's spin. The animation concludes with a fly-by of the RHI

  5. SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators

    DOE PAGES

    Luo, Yun

    2015-08-29

    SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less

  6. SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yun

    2015-06-24

    SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less

  7. Disturbing effects of attitude control maneuvers on the orbital motion of the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1976-01-01

    The position of the spin axis of the Helios A spacecraft has been maintained and updated by a series of attitude control maneuvers, by means of a sequence of unbalanced jet forces which produce an additional disturbed motion of the spacecraft's center of mass. The character of this motion, its magnitude and direction was studied. For practical purposes of the orbit determination of the spacecraft, a computer program is given which shows how the components of the disturbing acceleration in the spacecraft-fixed reference frame can be easily computed.

  8. Program of polarization studies and capabilities of accelerating polarized proton and light nuclear beams at the nuclotron of the joint institute for nuclear research

    NASA Astrophysics Data System (ADS)

    Vokal, S.; Kovalenko, A. D.; Kondratenko, A. M.; Kondratenko, M. A.; Mikhailov, V. A.; Filatov, Yu. N.; Shimanskii, S. S.

    2009-01-01

    A program of polarization studies is presented; this program can enhance our understanding of the constituents from which the spin of hadrons and lightest nuclei is constructed. Beams of polarized lightest nuclei at Nuclotron are required to complete this program. Calculations of linear resonance strengths at Nuclotron, which may result in depolarization effects, are presented. The application of a new method for conserving particle beam polarization at crossing these resonances at Nuclotron is discussed.

  9. Evolutionary Pathways for Asteroid Satellites

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth Andrew

    2015-08-01

    The YORP-induced rotational fission hypothesis is a proposed mechanism for the creation of small asteroid binaries, which make up approximately 1/6-th of the near-Earth asteroid and small Main Belt asteroid populations. The YORP effect is a radiative torque that rotationally accelerates asteroids on timescales of thousands to millions of years. As asteroids rotationally accelerate, centrifugal accelerations on material within the body can match gravitational accelerations holding that material in place. When this occurs, that material goes into orbit. Once in orbit that material coalesces into a companion that undergoes continued dynamical evolution.Observations with radar, photometric and direct imaging techniques reveal a diverse array of small asteroid satellites. These systems can be sorted into a number of morphologies according to size, multiplicity of members, dynamical orbit and spin states, and member shapes. For instance, singly synchronous binaries have short separation distances between the two members, rapidly rotating oblate primary members, and tidally locked prolate secondary members. Other confirmed binary morphologies include doubly synchronous, tight asynchronous and wide asynchronous binaries. Related to these binary morphologies are unbound paired asteroid systems and bi-lobate contact binaries.A critical test for the YORP-induced rotational fission hypothesis is whether the binary asteroids produced evolve to the observed binary and related systems. In this talk I will review how this evolution is believed to occur according to gravitational dynamics, mutual body tides and the binary YORP effect.

  10. Instrumentation for measuring the dynamic pressure on rotating compressor blades

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Lanati, G. A.

    1978-01-01

    To establish the capability for measurement of oscillatory pressure on rotating blades, miniature fast response semiconductor strain gage pressure transducers (2mm x 0.33mm) were mounted in several configurations on thin titanium and steel compressor blades and subjected to pressure cycles from 1 to 310 kPa during static tests and spin tests. Static test conditions included 20 C to 150 C, 0 to 3000 tensile microstrain, -1000 to +1000 bending microstrain and + or - 650G vibration. The spin test conditions included 20 C to 82 C at 0 to 90,000G. Durability was excellent. Pressure transducer sensitivity changed by only a few percent over this range of environmental conditions. Noise signal due to oscillatory acceleration normal to the diaphragm was acceptable (0.33Pa/G). Noise signal due to oscillatory strain was acceptable (0.5 Pa/microstrain) when the transducer was mounted on a 0.05mm rubber pad, with a total buildup of 0.38mm on the measure surface. Back mounting or partial recessing to eliminate buildup, increased the strain effect to 1.2 Pa/microstrain. Flush mounting within the blade to eliminate buildup reduced the strain effect, but required development of a special transducer shape. This transducer was not available in time for spin tests. Unpredictable zero drift + or - 14 kPa ruled out the use of these mounting arrangements for accurate steady-state (D.C.) measurements on rotating blades. The two best configurations fully developed and spin tested were then successfully applied in the NAS3-20606 rotating fan flutter program for quantitative measurement of oscillatory pressure amplitudes.

  11. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS 2 and WS 2

    DOE PAGES

    Yang, Luyi; Sinitsyn, Nikolai A.; Chen, Weibing; ...

    2015-08-03

    The recently discovered monolayer transition metal dichalcogenides (TMDCs) provide a fertile playground to explore new coupled spin–valley physics. Although robust spin and valley degrees of freedom are inferred from polarized photoluminescence (PL) experiments PL timescales are necessarily constrained by short-lived (3–100 ps) electron–hole recombination9, 10. Direct probes of spin/valley polarization dynamics of resident carriers in electron (or hole)-doped TMDCs, which may persist long after recombination ceases, are at an early stage. Here we directly measure the coupled spin–valley dynamics in electron-doped MoS 2 and WS 2 monolayers using optical Kerr spectroscopy, and reveal very long electron spin lifetimes, exceeding 3more » ns at 5 K (2-3 orders of magnitude longer than typical exciton recombination times). In contrast with conventional III–V or II–VI semiconductors, spin relaxation accelerates rapidly in small transverse magnetic fields. Supported by a model of coupled spin–valley dynamics, these results indicate a novel mechanism of itinerant electron spin dephasing in the rapidly fluctuating internal spin–orbit field in TMDCs, driven by fast inter-valley scattering. Additionally, a long-lived spin coherence is observed at lower energies, commensurate with localized states. These studies provide insight into the physics underpinning spin and valley dynamics of resident electrons in atomically thin TMDCs.« less

  12. Gamma rays from pulsar wind shock acceleration

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1990-01-01

    A shock forming in the wind of relativistic electron-positron pairs from a pulsar, as a result of confinement by surrounding material, could convert part of the pulsar spin-down luminosity to high energy particles through first order Fermi acceleration. High energy protons could be produced by this mechanism both in supernova remnants and in binary systems containing pulsars. The pion-decay gamma-rays resulting from interaction of accelerated protons with surrounding target material in such sources might be observable above 70 MeV with EGRET (Energetic Gamma-Ray Experimental Telescope) and above 100 GeV with ground-based detectors. Acceleration of protons and expected gamma-ray fluxes from SN1987A, Cyg X-3 type sources and binary pulsars are discussed.

  13. Spacetime geodesy and the LAGEOS-3 satellite experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W.A.; Chen, Kaiyou; Habib, S.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). LAGEOS-1 is a dense spherical satellite whose tracking accuracy is such as to yield a medium-term inertial reference frame and that is used as an adjunct to more difficult and more data-intensive absolute frame measurements. LAGEOS-3, an identical satellite to be launched into an orbit complementary to that of LAGEOS-1, would experience an equal and opposite classical precession to that of LAGEOS- 1. Besides providing a more accurate real-time measurement of the earth`s length of day and polar wobble,more » this paired-satellite system would provide the first direct measurement of the general relativistic frame-dragging effect. Of the five dominant error sources in this experiment, the largest one involves surface forces on the satellite and their consequent impact on the orbital nodal precession. The surface forces are a function of the spin dynamics of the satellite. We have modeled the spin dynamics of a LAGEOS-type satellite and used this spin model to estimate the impact of the thermal rocketing effect on the LAGEOS-3 experiment. We have also performed an analytic tensor expansion of Synge`s world function to better reveal the nature of the predicted frame-dragging effect. We showed that this effect is not due to the Riemann curvature tensor, but rather is a ``potential effect`` arising from the acceleration of the world lines in the Kerr spacetime geometry.« less

  14. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  15. Communication: Evaluating non-empirical double hybrid functionals for spin-state energetics in transition-metal complexes

    NASA Astrophysics Data System (ADS)

    Wilbraham, Liam; Adamo, Carlo; Ciofini, Ilaria

    2018-01-01

    The computationally assisted, accelerated design of inorganic functional materials often relies on the ability of a given electronic structure method to return the correct electronic ground state of the material in question. Outlining difficulties with current density functionals and wave function-based approaches, we highlight why double hybrid density functionals represent promising candidates for this purpose. In turn, we show that PBE0-DH (and PBE-QIDH) offers a significant improvement over its hybrid parent functional PBE0 [as well as B3LYP* and coupled cluster singles and doubles with perturbative triples (CCSD(T))] when computing spin-state splitting energies, using high-level diffusion Monte Carlo calculations as a reference. We refer to the opposing influence of Hartree-Fock (HF) exchange and MP2, which permits higher levels of HF exchange and a concomitant reduction in electronic density error, as the reason for the improved performance of double-hybrid functionals relative to hybrid functionals. Additionally, using 16 transition metal (Fe and Co) complexes, we show that low-spin states are stabilised by increasing contributions from MP2 within the double hybrid formulation. Furthermore, this stabilisation effect is more prominent for high field strength ligands than low field strength ligands.

  16. Using polarized muons as ultrasensitive spin labels in free radical chemistry

    NASA Astrophysics Data System (ADS)

    McKenzie, Iain; Roduner, Emil

    2009-08-01

    In a chemical sense, the positive muon is a light proton. It is obtained at the ports of accelerators in beams with a spin polarization of 100%, which makes it a highly sensitive probe of matter. The muonium atom is a light hydrogen isotope, nine times lighter than H, with a muon as its nucleus. It reacts the same way as H, and by addition to double bonds it is implemented in free radicals in which the muon serves as a fully polarized spin label. It is reviewed here how the muon can be used to obtain information about muonium and radical reaction rates, radical structure, dynamics, and local environments. It can even tell us what a fragrance molecule does in a shampoo.

  17. Improvement of the polarized neutron interferometer setup demonstrating violation of a Bell-like inequality.

    PubMed

    Geppert, H; Denkmayr, T; Sponar, S; Lemmel, H; Hasegawa, Y

    2014-11-01

    For precise measurements with polarised neutrons high efficient spin-manipulation is required. We developed several neutron optical elements suitable for a new sophisticated setup, i.e., DC spin-turners and Larmor-accelerators which diminish thermal disturbances and depolarisation considerably. The gain in performance is exploited demonstrating violation of a Bell-like inequality for a spin-path entangled single-neutron state. The obtained value of [Formula: see text], which is much higher than previous measurements by neutron interferometry, is [Formula: see text] above the limit of S =2 predicted by contextual hidden variable theories. The new setup is more flexible referring to state preparation and analysis, therefore new, more precise measurements can be carried out.

  18. Balancing Newtonian gravity and spin to create localized structures

    NASA Astrophysics Data System (ADS)

    Bush, Michael; Lindner, John

    2015-03-01

    Using geometry and Newtonian physics, we design localized structures that do not require electromagnetic or other forces to resist implosion or explosion. In two-dimensional Euclidean space, we find an equilibrium configuration of a rotating ring of massive dust whose inward gravity is the centripetal force that spins it. We find similar solutions in three-dimensional Euclidean and hyperbolic spaces, but only in the limit of vanishing mass. Finally, in three-dimensional Euclidean space, we generalize the two-dimensional result by finding an equilibrium configuration of a spherical shell of massive dust that supports itself against gravitational collapse by spinning isoclinically in four dimensions so its three-dimensional acceleration is everywhere inward. These Newtonian ``atoms'' illuminate classical physics and geometry.

  19. Post-accelerator issues at the IsoSpin Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, S.; Nitschke, J.M.

    1994-05-01

    The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) themore » Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.« less

  20. Monitoring oil displacement processes with k-t accelerated spin echo SPI.

    PubMed

    Li, Ming; Xiao, Dan; Romero-Zerón, Laura; Balcom, Bruce J

    2016-03-01

    Magnetic resonance imaging (MRI) is a robust tool to monitor oil displacement processes in porous media. Conventional MRI measurement times can be lengthy, which hinders monitoring time-dependent displacements. Knowledge of the oil and water microscopic distribution is important because their pore scale behavior reflects the oil trapping mechanisms. The oil and water pore scale distribution is reflected in the magnetic resonance T2 signal lifetime distribution. In this work, a pure phase-encoding MRI technique, spin echo SPI (SE-SPI), was employed to monitor oil displacement during water flooding and polymer flooding. A k-t acceleration method, with low-rank matrix completion, was employed to improve the temporal resolution of the SE-SPI MRI measurements. Comparison to conventional SE-SPI T2 mapping measurements revealed that the k-t accelerated measurement was more sensitive and provided higher-quality results. It was demonstrated that the k-t acceleration decreased the average measurement time from 66.7 to 20.3 min in this work. A perfluorinated oil, containing no (1) H, and H2 O brine were employed to distinguish oil and water phases in model flooding experiments. High-quality 1D water saturation profiles were acquired from the k-t accelerated SE-SPI measurements. Spatially and temporally resolved T2 distributions were extracted from the profile data. The shift in the (1) H T2 distribution of water in the pore space to longer lifetimes during water flooding and polymer flooding is consistent with increased water content in the pore space. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. HEAT TRANSFER METHOD

    DOEpatents

    Gambill, W.R.; Greene, N.D.

    1960-08-30

    A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

  2. Prospects for the study of the properties of dense nuclear matter at the NICA heavy-ion complex at JINR (Dubna)

    NASA Astrophysics Data System (ADS)

    Kolesnikov, V. I.

    2017-06-01

    The NICA (Nuclotron-based Ion Collider fAcility) project is aimed in the construction at JINR (Dubna) a modern accelerator complex equipped with three detectors: the MultiPurpose Detector (MPD) and the Spin Physics Detector (SPD) at the NICA collider, as well as a fixed target experiment BM&N which will be use extracted beams from the Nuclotron accelerator. In this report, an overview of the main physics objectives of the NICA heavy-ion program will be given and the recent progress in the NICA construction (both accelerator complex and detectors) will be described.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talman, Richard M.; Talman, John D.

    Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring “trap.” At the “magic” kinetic energy of 232.792 MeV, proton spins are “frozen,” for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10 –29e–cm or greater will produce a statisticallymore » significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial “symplectification”). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the long times, such as the 1000 s assumed in estimating the achievable EDM precision. This paper documents in detail the theoretical formulation implemented in eteapot. An accompanying paper describes the practical application of the eteapot code in the Universal Accelerator Libraries (ual) environment to “resurrect,” or reverse engineer, the “AGS-analog” all-electric ring built at Brookhaven National Laboratory in 1954. Of the (very few) all-electric rings ever commissioned, the AGS-analog ring is the only relativistic one and is the closest to what is needed for measuring proton (or, even more so, electron) EDM’s. As a result, the companion paper also describes preliminary lattice studies for the planned proton EDM storage rings as well as testing the code for long time orbit and spin tracking.« less

  4. Proceedings of the 1993 Particle Accelerator Conference Held in Washington, DC on May 17-20, 1993. Volume 3

    DTIC Science & Technology

    1993-05-20

    mm-mrad 10 mm-md I. INTRODUCTION Higher -order modes (HOMs) of the SR single cell cavityThe 20-MeV linac beam at the Argonne Chemistry are studied by...energy proton storage rings: RHIC and the SSC. I. INTRODUCTION We have proposed to build spin rotators with two k transverse wigglers of many poles...integral of gauge field; beam Is always polarized, the magnetic potential flux line of (4) edot quantization of path integral in sate sae bunch spin are

  5. Current induced domain wall motion and tilting in Pt/Co/Ta structures with perpendicular magnetic anisotropy in the presence of the Dyzaloshinskii–Moriya interaction

    NASA Astrophysics Data System (ADS)

    Yun, Jijun; Li, Dong; Cui, Baoshan; Guo, Xiaobin; Wu, Kai; Zhang, Xu; Wang, Yupei; Mao, Jian; Zuo, Yalu; Xi, Li

    2018-04-01

    Current induced domain wall motion (CIDWM) was studied in Pt/Co/Ta structures with perpendicular magnetic anisotropy and the Dyzaloshinskii–Moriya interaction (DMI) by the spin-orbit torque (SOT). We measured the strength of DMI and SOT efficiency in Pt/Co/Ta with the variation of the thickness of Ta using a current induced hysteresis loop shift method. The results indicate that the DMI stabilizes a chiral Néel-type domain wall (DW), and the DW motion can be driven by the enhanced large SOT generated from Pt and Ta with opposite signs of spin Hall angle in Pt/Co/Ta stacks. The CIDWM velocity, which is 104 times larger than the field driven DW velocity, obeys a creep law, and reaches around tens of meters per second with current density of ~106 A cm‑2. We also found that the Joule heating accompanied with current also accelerates the DW motion. Meanwhile, a domain wall tilting was observed, which increases with current density increasing. These results can be explained by the spin Hall effect generated from both heavy metals Pt and Ta, inherent DMI, and the current accompanying Joule heating effect. Our results could provide some new designing prospects to move multiple DWs by SOT for achieving racetrack memories.

  6. Laboratory Simulation of the Effect of Rocket Thrust on a Precessing Space Vehicle

    NASA Technical Reports Server (NTRS)

    Alvarez, Oscar; Bausley, Henry; Cohen, Sam; Falcon-Martin, Miguel; Furumoto, Gary (Editor); Horio, Asikin; Levitt, David; Walsh, Amy

    1990-01-01

    Ground tests of solid propellant rocket motors have shown that metal-containing propellants produce various amounts of slag (primarily aluminum oxide) which is trapped in the motor case, causing a loss of specific impulse. Although not yet definitely established, the presence of a liquid pool of slag also may contribute to nutational instabilities that have been observed with certain spin-stabilized, upper-stage vehicles. Because of the rocket's axial acceleration, absent in the ground tests, estimates of in-flight slag mass have been very uncertain. Yet such estimates are needed to determine the magnitude of the control authority of the systems required for eliminating the instability. A test rig with an eccentrically mounted hemispherical bowl was designed and built which incorporates a follower force that properly aligns the thrust vector along the axis of spin. A program that computes the motion of a point mass in the spinning and precessing bowl was written. Using various RPMs, friction factors, and initial starting conditions, plots were generated showing the trace of the point mass around the inside of the fuel tank. The apparatus will incorporate future design features such as a variable nutation angle and a film height measuring instrument. Data obtained on the nutational instability characteristics will be used to determine order of magnitude estimates of control authority needed to minimize the sloshing effect.

  7. Numerical studies of surface tensions

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1995-01-01

    Liquid-vapor (bubble) interface disturbances caused by various types of accelerations, including centrifugal, lateral and axial impulses, gravity gradient and g-jitter accelerations associated with spinning and slew motion in microgravity, are reviewed. Understanding of bubble deformations and fluctuations is important in the development of spacecraft orbital and attitude control techniques to secure its normal operation. This review discusses bubble deformations and oscillations driven by various forces in the microgravity environment. The corresponding bubble mass center fluctuations and slosh reaction forces and torques due to bubble deformations are also reviewed.

  8. IEEE Particle Accelerator Conference on Accelerator Science and Technology Held in San Francisco, California on 6-9 May 1991. Volume 2

    DTIC Science & Technology

    1991-05-01

    EXPERIMENTAL RESULT phase on injection parameters are measured and are found to agree well with theory . A. Operating characteristics I. INTRODUCTION ...QV . quad, and for two other currents, one higher and one lower. The slope of the curve drawn through these points, THEORY in a graph of position...here: spin resonance tune. Higher order snake resonances are 1. 7)(8,,=sa)- 0 at an imperfection resonance, K = seen clearly. integer. This means that

  9. Dynamical Evolution and Spin-Orbit Resonances of Potentially Habitable Exoplanets. The Case of GJ 667C

    DTIC Science & Technology

    2014-01-10

    observed trend is consistent with a gravitational acceleration exerted by the inner pair of stars (A and B) in this multiple star system. Our planet...the other hand, the observed trend in the RV of the C component can be caused by its orbital acceleration around the AB pair. 3. LONG-TERM EVOLUTION...polar torque acting on a rotating planet is the sum of the gravitational torque, caused by the triaxial permanent shape and the corresponding quadrupole

  10. Spin structure in high energy processes: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD andmore » polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.« less

  11. Photon mirror acceleration in the quantum regime

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Fedele, R.

    2014-12-01

    Reflection of an electron beam by an intense laser pulse is considered. This is the so-called photon mirror configuration for laser acceleration in vacuum, where the energy of the incident electron beam is nearly double-Doppler shifted due to reflection on the laser pulse front. A wave-electron optical description for electron reflection and resonant backscattering, due to both linear electric field force and quadratic ponderomotive force, is provided beyond the paraxial approximation. This is done by assuming that the single electron of the beam is spin-less and therefore its motion can be described by a quantum scalar field whose spatiotemporal evolution is governed by the Klein-Gordon equation (Klein-Gordon field). Our present model, not only confirms the classical results but also shows the occurrence of purely quantum effects, such as partial reflection of the incident electron beam and enhanced backscattering due to Bragg resonance.

  12. The LARASE Spin Model of the two LAGEOS and LARES satellites

    NASA Astrophysics Data System (ADS)

    Visco, Massimo; Lucchesi, David; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Nobili, Anna Maria; Pardini, Carmen; Peron, Roberto; Pucacco, Giuseppe; Stanga, Ruggero

    2016-04-01

    Satellite Laser Ranging (SLR) represents a very important technique of the observational space geodesy. In fact, Lunar Laser Ranging, Very Long Baseline Interferometry, Global Navigation Satellite Systems, Doppler Orbitography and Radiopositioning Integrated by Satellite, together with SLR constitute the Global Geodetic Observing System (GGOS). In the context of the GGOS activities, improvements in technology and in modeling will produce advances in Geodesy and Geophysics as well as in General Relativity (GR) measurements. Therefore, these important research fields are not independent, but tightly related to each other. The LARASE (LAser RAnged Satellites Experiment) research program has its main objectives in tests and measurements of Einstein's theory of GR via Precise Orbit Determination (POD) of a set of geodetic satellites. In order to reach such goals by means of very precise measurements of a number of relativistic parameters (and, at the same time, to provide a robust and unassailable error budget of the main systematic effects), we are also reviewing previous models and we are developing new models for the main perturbations (both gravitational and non-gravitational) that act on the orbits of the two LAGEOS and on that of LARES satellites. Within this paper we focus on modeling the spin vector of these satellites. The spin knowledge, both in orientation and rate, is of fundamental importance in order to correctly model the thermal effects acting on the surface of these satellites. These are very important non-gravitational perturbations (NGP) that produce long-term effects on the orbit of the cited satellites, especially for the two LAGEOS, and improvements in their modeling will be very useful both in the field of GR measurements and in those of space geodesy and geophysical applications. Indeed, the current RMS value of the range residuals of the LAGEOS satellites, obtained by the Analysis Centers of the International Laser Ranging Service, is at the level of a few cm since 1992, down to a cm or less during the last years. However, because of the incompleteness in current knowledge of dynamical models, empirical accelerations have been heavily employed to obtain such results. In this context, any step forward in the models developed for the NGP will be useful to reduce the use of empirical accelerations; it also represents an essential prerequisite to reach a sub-mm precision in the RMS of the SLR range residuals and the corresponding benefits in Geophysics and Geodesy, regarding e.g. stations coordinates knowledge, Earth's geocenter and reference frame realization. The paper will focus upon the improvements we obtained with respect on previous models of the spin of the two LAGEOS satellites based on averaged equations for the external torques in the rapid-spin approximation, as well as in a new general model that we developed and based on the solution of the full set of Euler equations.

  13. A Kalman Filter for Mass Property and Thrust Identification of the Spin-Stabilized Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Queen, Steven Z.

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories, elliptically orbiting the Earth in a tetrahedron formation. For the operational success of the mission, on-board systems must be able to deliver high-precision orbital adjustment maneuvers. On MMS, this is accomplished using feedback from on-board star sensors in tandem with accelerometers whose measurements are dynamically corrected for errors associated with a spinning platform. In order to determine the required corrections to the measured acceleration, precise estimates of attitude, rate, and mass-properties are necessary. To this end, both an on-board and ground-based Multiplicative Extended Kalman Filter (MEKF) were formulated and implemented in order to estimate the dynamic and quasi-static properties of the spacecraft.

  14. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.

    PubMed

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-08-10

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer.

  15. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle

    PubMed Central

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-01-01

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China’s space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10−12, which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10−9 m/s2/Hz1/2 at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927

  16. Characterization of ferrous-methylthymol blue-polyvinyl alcohol gel dosimeters using nuclear magnetic resonance and optical techniques

    NASA Astrophysics Data System (ADS)

    Rabaeh, Khalid A.; Eyadeh, Molham M.; Hailat, Tariq F.; Aldweri, Feras M.; Alheet, Samer M.; Eid, Rania M.

    2018-07-01

    A new composition of Ferrous sulphate-Metheylthymol blue (MTB)-Polyvinyl alcohol (PVA) dosimeter is introduced in this work and evaluated using nuclear magnetic resonance (NMR) and absorbance spectrophotometry techniques. The Fricke-MTB-PVA dosimeters were irradiated using a medical linear accelerator in a cubic water phantom. The dose response of the dosimeters was investigated using NMR in terms of spin-spin relaxation rate (R2), and ultraviolet and visible regions (UV-Vis) spectrophotometry in terms of absorbance. The dosimeter presents a linear dose response for doses up to 20 Gy with UV-Vis and 40 Gy with NMR method. The sample with 0.1 mM MTB, 5% PVA by weight showed highest dose sensitivity for both techniques. The Fricke-MTB-PVA dosimeter developed in this work has a significant advance over the Fricke-MTB-gelatin system: the NMR sensitivity was remarkably improved; the auto-oxidation rate was seven times lower, and no significant dose rate or photon energy effects were observed.

  17. Whole-brain background-suppressed pCASL MRI with 1D-accelerated 3D RARE Stack-Of-Spirals readout

    PubMed Central

    Vidorreta, Marta; Wang, Ze; Chang, Yulin V.; Wolk, David A.; Fernández-Seara, María A.; Detre, John A.

    2017-01-01

    Arterial Spin Labeled (ASL) perfusion MRI enables non-invasive, quantitative measurements of tissue perfusion, and has a broad range of applications including brain functional imaging. However, ASL suffers from low signal-to-noise ratio (SNR), limiting image resolution. Acquisitions using 3D readouts are optimal for background-suppression of static signals, but can be SAR intensive and typically suffer from through-plane blurring. In this study, we investigated the use of accelerated 3D readouts to obtain whole-brain, high-SNR ASL perfusion maps and reduce SAR deposition. Parallel imaging was implemented along the partition-encoding direction in a pseudo-continuous ASL sequence with background-suppression and 3D RARE Stack-Of-Spirals readout, and its performance was evaluated in three small cohorts. First, both non-accelerated and two-fold accelerated single-shot versions of the sequence were evaluated in healthy volunteers during a motor-photic task, and the performance was compared in terms of temporal SNR, GM-WM contrast, and statistical significance of the detected activation. Secondly, single-shot 1D-accelerated imaging was compared to a two-shot accelerated version to assess benefits of SNR and spatial resolution for applications in which temporal resolution is not paramount. Third, the efficacy of this approach in clinical populations was assessed by applying the single-shot 1D-accelerated version to a larger cohort of elderly volunteers. Accelerated data demonstrated the ability to detect functional activation at the subject level, including cerebellar activity, without loss in the perfusion signal temporal stability and the statistical power of the activations. The use of acceleration also resulted in increased GM-WM contrast, likely due to reduced through-plane partial volume effects, that were further attenuated with the use of two-shot readouts. In a clinical cohort, image quality remained excellent, and expected effects of age and sex on cerebral blood flow could be detected. The sequence is freely available upon request for academic use and could benefit a broad range of cognitive and clinical neuroscience research. PMID:28837640

  18. Creep stability of the proposed AIDA mission target 65803 Didymos: I. Discrete cohesionless granular physics model

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Richardson, Derek C.; Barnouin, Olivier S.; Maurel, Clara; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Benner, Lance A. M.; Naidu, Shantanu P.; Li, Junfeng

    2017-09-01

    As the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, the near-Earth binary asteroid 65803 Didymos represents a special class of binary asteroids, those whose primaries are at risk of rotational disruption. To gain a better understanding of these binary systems and to support the AIDA mission, this paper investigates the creep stability of the Didymos primary by representing it as a cohesionless self-gravitating granular aggregate subject to rotational acceleration. To achieve this goal, a soft-sphere discrete element model (SSDEM) capable of simulating granular systems in quasi-static states is implemented and a quasi-static spin-up procedure is carried out. We devise three critical spin limits for the simulated aggregates to indicate their critical states triggered by reshaping and surface shedding, internal structural deformation, and shear failure, respectively. The failure condition and mode, and shear strength of an aggregate can all be inferred from the three critical spin limits. The effects of arrangement and size distribution of constituent particles, bulk density, spin-up path, and interparticle friction are numerically explored. The results show that the shear strength of a spinning self-gravitating aggregate depends strongly on both its internal configuration and material parameters, while its failure mode and mechanism are mainly affected by its internal configuration. Additionally, this study provides some constraints on the possible physical properties of the Didymos primary based on observational data and proposes a plausible formation mechanism for this binary system. With a bulk density consistent with observational uncertainty and close to the maximum density allowed for the asteroid, the Didymos primary in certain configurations can remain geo-statically stable without requiring cohesion.

  19. On the geometry of the space-time and motion of the spinning bodies

    NASA Astrophysics Data System (ADS)

    Trenčevski, Kostadin

    2013-03-01

    In this paper an alternative theory about space-time is given. First some preliminaries about 3-dimensional time and the reasons for its introduction are presented. Alongside the 3-dimensional space (S) the 3-dimensional space of spatial rotations (SR) is considered independently from the 3-dimensional space. Then it is given a model of the universe, based on the Lie groups of real and complex orthogonal 3 × 3 matrices in this 3+3+3-dimensional space. Special attention is dedicated for introduction and study of the space S × SR, which appears to be isomorphic to SO(3,ℝ) × SO(3,ℝ) or S 3 × S 3. The influence of the gravitational acceleration to the spinning bodies is considered. Some important applications of these results about spinning bodies are given, which naturally lead to violation of Newton's third law in its classical formulation. The precession of the spinning axis is also considered.

  20. Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg

    2015-02-14

    We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.

  1. Slow dynamics in the geometrically frustrated magnet ZnFe2O4: Universal features of aging phenomena in spin glasses

    NASA Astrophysics Data System (ADS)

    Mamiya, H.; Tsujii, N.; Terada, N.; Nimori, S.; Kitazawa, H.; Hoshikawa, A.; Ishigaki, T.

    2014-07-01

    To clarify the universal features of spin glasses, we carefully studied slow dynamics in a geometrically frustrated magnet ZnFe2O4 with slight disorders, regarded as an "unconventional" Heisenberg spin glass, using time-resolved neutron diffractometry and magnetometry. The results indicate that "aging" can be attributed not to growth of the short-range order detected by a diffuse scattering but to aging of a hidden aperiodic correlation, as expected from theories for spin glasses. Concerning aging, peculiar behavior was found; the decay of thermoremanent magnetization is extremely accelerated if the sample is heated/cooled briefly midway through the isothermal slow relaxation. Conversely, magnetization surprisingly increases despite the absence of a magnetic field when the temperature returns after the brief heating/cooling. The behavior can be explained as a destabilization of the aged spin configuration due to the thermal perturbations and subsequent spontaneous restoration of the original spin configuration after the destabilization. Whereas such destabilization and restoration do not occur during freezing into numerous metastable states in a fixed energy landscape, these are possible in an energy landscape with a temperature-sensitive funnel-like structure. These features, consistent with the ghost domain scenario of the droplet picture, are the same as for conventional Heisenberg spin glasses such as dilute magnetic alloys and dilute magnetic semiconductors. In other words, they are universal features in Heisenberg spin glasses including unconventional ones.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, L.W.; Krisch, A.D.

    This report contains papers on the following topics: Kent M Terwilliger; Graduate School at Berkeley and Early Years at Michigan, 1949--1959; Terwilliger and the Group'': A Chronicle of MURA; Reflections on the MURA Years; The Evolution of High Energy Accelerators; Some Frontiers of Accelerator Physics; Reflections on the ZGS: Terwilliger's Contributions; Spark Chambers and Early Experiments; Strong Interaction Experiments at the ZGS; Polarized Beams at the ZGS and the AGS; Terwilliger and Spin Physics; Siberian Snakes and Future Polarized Beams; Washington and High Energy Physics; and Terwilliger in the Department and University. These papers have been cataloged separately. (LSP)

  3. CPP-GMR films with a current-confined-path nano-oxide layer (CCP-NOL)

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Hideaki; Yuasa, Hiromi; Iwasaki, Hitoshi

    2007-03-01

    We investigated the film performance and nanostructure of current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) spin-valve film with a current-confined-path nano-oxide layer (CCP-NOL). By applying ion-assisted oxidation (IAO) for the CCP-NOL formation, we enhanced the MR ratio to 5.4% at a small RA value of 500 mΩ µm2 for conventional Co90Fe10 layers. Furthermore, the use of bcc-Fe50Co50 also increased the MR ratio to 8.2% at a small RA value of 580 mΩ µm2. A modified Valet-Fert model for the CCP-NOL showed that the MR enhancement by the IAO is due to the improvement in resistivity of the CCP, and that by Fe50Co50 is due to a larger spin-dependent interface scattering effect. Analysis by cross-sectional TEM and three-dimensional atom probe confirmed the formation of the CCP-NOL structure. A reliability test for test element devices showed almost no change even under acceleration stress. The CPP-GMR spin-valve film with the CCP-NOL is extendable to future high-density recording heads due to its potential for a higher MR ratio at a small value of RA.

  4. Spin Seebeck effect and thermal spin galvanic effect in Ni80Fe20/p-Si bilayers

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Ravindra G.; Lou, Paul C.; Kumar, Sandeep

    2018-01-01

    The development of spintronics and spin-caloritronics devices needs efficient generation, detection, and manipulation of spin current. The thermal spin current from the spin-Seebeck effect has been reported to be more energy efficient than the electrical spin injection methods. However, spin detection has been the one of the bottlenecks since metals with large spin-orbit coupling is an essential requirement. In this work, we report an efficient thermal generation and interfacial detection of spin current. We measured a spin-Seebeck effect in Ni80Fe20 (25 nm)/p-Si (50 nm) (polycrystalline) bilayers without a heavy metal spin detector. p-Si, having a centrosymmetric crystal structure, has insignificant intrinsic spin-orbit coupling, leading to negligible spin-charge conversion. We report a giant inverse spin-Hall effect, essential for the detection of spin-Seebeck effects, in the Ni80Fe20/p-Si bilayer structure, which originates from Rashba spin orbit coupling due to structure inversion asymmetry at the interface. In addition, the thermal spin pumping in p-Si leads to spin current from p-Si to the Ni80Fe20 layer due to the thermal spin galvanic effect and the spin-Hall effect, causing spin-orbit torques. The thermal spin-orbit torques lead to collapse of magnetic hysteresis of the 25 nm thick Ni80Fe20 layer. The thermal spin-orbit torques can be used for efficient magnetic switching for memory applications. These scientific breakthroughs may give impetus to the silicon spintronics and spin-caloritronics devices.

  5. On the Post-Keplerian Corrections to the Orbital Periods of a Two-body System and Their Application to the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iorio, Lorenzo; Zhang, Fupeng, E-mail: lorenzo.iorio@libero.it, E-mail: zhangfp7@mail.sysu.edu.cn

    We perform detailed numerical analyses of the orbital motion of a test particle around a spinning primary, with the aim of investigating the possibility of using the post-Keplerian (pK) corrections to the orbiter’s periods (draconitic, anomalistic, and sidereal) as a further opportunity to perform new tests of post-Newtonian gravity. As a specific scenario, the S-stars orbiting the massive black hole (MBH) supposedly lurking in Sgr A* at the center of the Galaxy are adopted. We first study the effects of the pK Schwarzchild, Lense–Thirring, and quadrupole moment accelerations experienced by a target star for various possible initial orbital configurations. Itmore » turns out that the results of the numerical simulations are consistent with the analytical ones in the small eccentricity approximation for which almost all the latter ones were derived. For highly elliptical orbits, the sizes of the three pK corrections considered turn out to increase remarkably. The periods of the observed S2 and S0-102 stars as functions of the MBH’s spin axis orientation are considered as well. The pK accelerations lead to corrections of the orbital periods of the order of 1–100 days (Schwarzschild), 0.1–10 hr (Lense–Thirring), and 1–10{sup 3} s (quadrupole) for a target star with a = 300–800 au and e ≈ 0.8, which could be measurable with future facilities.« less

  6. RARE/Turbo Spin Echo Imaging with Simultaneous MultiSlice Wave-CAIPI

    PubMed Central

    Eichner, Cornelius; Bhat, Himanshu; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin

    2014-01-01

    Purpose To enable highly accelerated RARE/Turbo Spin Echo (TSE) imaging using Simultaneous MultiSlice (SMS) Wave-CAIPI acquisition with reduced g-factor penalty. Methods SMS Wave-CAIPI incurs slice shifts across simultaneously excited slices while playing sinusoidal gradient waveforms during the readout of each encoding line. This results in an efficient k-space coverage that spreads aliasing in all three dimensions to fully harness the encoding power of coil sensitivities. The novel MultiPINS radiofrequency (RF) pulses dramatically reduce the power deposition of multiband (MB) refocusing pulse, thus allowing high MB factors within the Specific Absorption Rate (SAR) limit. Results Wave-CAIPI acquisition with MultiPINS permits whole brain coverage with 1 mm isotropic resolution in 70 seconds at effective MB factor 13, with maximum and average g-factor penalties of gmax=1.34 and gavg=1.12, and without √R penalty. With blipped-CAIPI, the g-factor performance was degraded to gmax=3.24 and gavg=1.42; a 2.4-fold increase in gmax relative to Wave-CAIPI. At this MB factor, the SAR of the MultiBand and PINS pulses are 4.2 and 1.9 times that of the MultiPINS pulse, while the peak RF power are 19.4 and 3.9 times higher. Conclusion Combination of the two technologies, Wave-CAIPI and MultiPINS pulse, enables highly accelerated RARE/TSE imaging with low SNR penalty at reduced SAR. PMID:25640187

  7. Acceleration of individual, decimetre-sized aggregates in the lower coma of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Agarwal, Jessica; A'Hearn, M. F.; Vincent, J.-B.; Güttler, C.; Höfner, S.; Sierks, H.; Tubiana, C.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Fornasier, S.; Fulle, M.; Gicquel, A.; Groussin, O.; Gutiérrez, P. J.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Oklay, N.; Shi, X.; Thomas, N.

    2016-11-01

    We present observations of decimetre-sized, likely ice-containing aggregates ejected from a confined region on the surface of comet 67P/Churyumov-Gerasimenko. The images were obtained with the narrow angle camera of the Optical, Spectroscopic, and Infrared Remote Imaging System on board the Rosetta spacecraft in 2016 January when the comet was at 2 au from the Sun outbound from perihelion. We measure the acceleration of individual aggregates through a 2 h image series. Approximately 50 per cent of the aggregates are accelerated away from the nucleus, and 50 per cent towards it, and likewise towards either horizontal direction. The accelerations are up to one order of magnitude stronger than local gravity, and are most simply explained by the combined effect of gas drag accelerating all aggregates upwards, and the recoil force from asymmetric outgassing, either from rotating aggregates with randomly oriented spin axes and sufficient thermal inertia to shift the temperature maximum away from an aggregate's subsolar region, or from aggregates with variable ice content. At least 10 per cent of the aggregates will escape the gravity field of the nucleus and feed the comet's debris trail, while others may fall back to the surface and contribute to the deposits covering parts of the Northern hemisphere. The rocket force plays a crucial role in pushing these aggregates back towards the surface. Our observations show the future back fall material in the process of ejection, and provide the first direct measurement of the acceleration of aggregates in the innermost coma (<2 km) of a comet, where gas drag is still significant.

  8. Finite-size anomalies of the Drude weight: Role of symmetries and ensembles

    NASA Astrophysics Data System (ADS)

    Sánchez, R. J.; Varma, V. K.

    2017-12-01

    We revisit the numerical problem of computing the high temperature spin stiffness, or Drude weight, D of the spin-1 /2 X X Z chain using exact diagonalization to systematically analyze its dependence on system symmetries and ensemble. Within the canonical ensemble and for states with zero total magnetization, we find D vanishes exactly due to spin-inversion symmetry for all but the anisotropies Δ˜M N=cos(π M /N ) with N ,M ∈Z+ coprimes and N >M , provided system sizes L ≥2 N , for which states with different spin-inversion signature become degenerate due to the underlying s l2 loop algebra symmetry. All these loop-algebra degenerate states carry finite currents which we conjecture [based on data from the system sizes and anisotropies Δ˜M N (with N

  9. SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems.

    PubMed

    Gangradey, R; Mishra, J; Mukherjee, S; Panchal, P; Nayak, P; Agarwal, J; Saxena, Y C

    2017-06-01

    Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.

  10. SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems

    NASA Astrophysics Data System (ADS)

    Gangradey, R.; Mishra, J.; Mukherjee, S.; Panchal, P.; Nayak, P.; Agarwal, J.; Saxena, Y. C.

    2017-06-01

    Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.

  11. Phase modulated 2D HSQC-TOCSY for unambiguous assignment of overlapping spin systems

    NASA Astrophysics Data System (ADS)

    Singh, Amrinder; Dubey, Abhinav; Adiga, Satish K.; Atreya, Hanudatta S.

    2018-01-01

    We present a new method that allows one to unambiguously resolve overlapping spin systems often encountered in biomolecular systems such as peptides and proteins or in samples containing a mixture of different molecules such as in metabolomics. We address this problem using the recently proposed phase modulation approach. By evolving the 1H chemical shifts in a conventional two dimensional (2D) HSQC-TOCSY experiment for a fixed delay period, the phase/intensity of set of cross peaks belonging to one spin system are modulated differentially relative to those of its overlapping counterpart, resulting in their discrimination and recognition. The method thus accelerates the process of identification and resonance assignment of individual compounds in complex mixtures. This approach facilitated the assignment of molecules in the embryo culture medium used in human assisted reproductive technology.

  12. Exploring Entrepreneurial Activity at Cape Town and Stellenbosch Universities, South Africa

    ERIC Educational Resources Information Center

    Jafta, Rachel; Uctu, Ramazan

    2013-01-01

    Entrepreneurial activity at universities, especially spin-off formation, has emerged as an important mechanism for accelerating the transfer of technology and knowledge to commercial markets. With some exceptions, such as China, studies on university entrepreneurship have tended to concentrate on the experiences of developed countries. Perhaps…

  13. 3D Compressed Sensing for Highly Accelerated Hyperpolarized 13C MRSI With In Vivo Applications to Transgenic Mouse Models of Cancer

    PubMed Central

    Hu, Simon; Lustig, Michael; Balakrishnan, Asha; Larson, Peder E. Z.; Bok, Robert; Kurhanewicz, John; Nelson, Sarah J.; Goga, Andrei; Pauly, John M.; Vigneron, Daniel B.

    2010-01-01

    High polarization of nuclear spins in liquid state through hyperpolarized technology utilizing dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at a high signal-to-noise ratio. Acquisition time limitations due to T1 decay of the hyperpolarized signal require accelerated imaging methods, such as compressed sensing, for optimal speed and spatial coverage. In this paper, the design and testing of a new echo-planar 13C three-dimensional magnetic resonance spectroscopic imaging (MRSI) compressed sensing sequence is presented. The sequence provides up to a factor of 7.53 in acceleration with minimal reconstruction artifacts. The key to the design is employing x and y gradient blips during a fly-back readout to pseudorandomly undersample kf-kx-ky space. The design was validated in simulations and phantom experiments where the limits of undersampling and the effects of noise on the compressed sensing nonlinear reconstruction were tested. Finally, this new pulse sequence was applied in vivo in preclinical studies involving transgenic prostate cancer and transgenic liver cancer murine models to obtain much higher spatial and temporal resolution than possible with conventional echo-planar spectroscopic imaging methods. PMID:20017160

  14. Radiation effects in materials for optical interferometric devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koumvakalis, N.; Jani, M.G.; Halliburton, L.E.

    The effects of ionizing radiation have been investigated in a series of materials commonly used in optical interferometric devices. Included in the study were three glass-ceramics (Zerodur, Cer-Vit 101, and Cer-Vit 142) and one Faraday-rotator glass (SF-57). Each glass-ceramic was irradiated at room temperature with 1.5-MeV electrons from a Van De Graaff accelerator. Similar irradiations were done on the Faraday-rotator glass at room temperature and 77 K. Optical absorption and electron spin resonance measurements provided a monitor of the radiation-induced point defects in all cases. The spectral characteristics and the production and thermal annealing behavior of these defects are described,more » and their possible effect on the performance of optical devices which incorporate these materials is considered.« less

  15. Effect of hyperfine-induced spin mixing on the defect-enabled spin blockade and spin filtering in GaNAs

    NASA Astrophysics Data System (ADS)

    Puttisong, Y.; Wang, X. J.; Buyanova, I. A.; Chen, W. M.

    2013-03-01

    The effect of hyperfine interaction (HFI) on the recently discovered room-temperature defect-enabled spin-filtering effect in GaNAs alloys is investigated both experimentally and theoretically based on a spin Hamiltonian analysis. We provide direct experimental evidence that the HFI between the electron and nuclear spin of the central Ga atom of the spin-filtering defect, namely, the Gai interstitials, causes strong mixing of the electron spin states of the defect, thereby degrading the efficiency of the spin-filtering effect. We also show that the HFI-induced spin mixing can be suppressed by an application of a longitudinal magnetic field such that the electronic Zeeman interaction overcomes the HFI, leading to well-defined electron spin states beneficial to the spin-filtering effect. The results provide a guideline for further optimization of the defect-engineered spin-filtering effect.

  16. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  17. That gravity thing

    NASA Astrophysics Data System (ADS)

    Jewess, Mike

    2009-05-01

    Your news article "New probe plots Earth's gravity field" (March p11) reports on the European Space Agency's Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) - a satellite that will measure the Earth's gravitational field. It describes the way that g, the acceleration of free fall at the Earth's surface, varies with latitude; this variation is great enough to require adjustment of pendulum clocks between latitudes and also the recalibration of all balances that do not directly compare one mass with a reference mass. The article also notes that the spin of the (effectively fluid) Earth causes it to bulge at the equator, a realization that goes back to Newton's Principia.

  18. Spin Current Noise of the Spin Seebeck Effect and Spin Pumping

    NASA Astrophysics Data System (ADS)

    Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.

    2018-01-01

    We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.

  19. Precise measurements of beam spin asymmetries in semi-inclusive π0 production

    NASA Astrophysics Data System (ADS)

    Aghasyan, M.; Avakian, H.; Rossi, P.; De Sanctis, E.; Hasch, D.; Mirazita, M.; Adikaram, D.; Amaryan, M. J.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Branford, D.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; Deur, A.; Dey, B.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hanretty, C.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Isupov, E. L.; Jawalkar, S. S.; Jenkins, D.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McAndrew, J.; McKinnon, B.; Meyer, C. A.; Micherdzinska, A. M.; Mokeev, V.; Moreno, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2011-10-01

    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sinϕh amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ϕh of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.

  20. Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive π 0 production

    DOE PAGES

    Aghasyan, M.; Avakian, H.; Rossi, P.; ...

    2011-10-01

    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sin Φ h amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle Φ h of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.

  1. Particle accelerators inside spinning black holes.

    PubMed

    Lake, Kayll

    2010-05-28

    On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.

  2. Landau-Zener-Stückelberg Interferometry in Quantum Dots with Fast Rise Times: Evidence for Coherent Phonon Driving.

    PubMed

    Korkusinski, M; Studenikin, S A; Aers, G; Granger, G; Kam, A; Sachrajda, A S

    2017-02-10

    Manipulating qubits via electrical pulses in a piezoelectric material such as GaAs can be expected to generate incidental acoustic phonons. In this Letter we determine theoretically and experimentally the consequences of these phonons for semiconductor spin qubits using Landau-Zener-Stückelberg interferometry. Theoretical calculations predict that phonons in the presence of the spin-orbit interaction produce both phonon-Rabi fringes and accelerated evolution at the singlet-triplet anticrossing. Observed features confirm the influence of these mechanisms. Additionally, evidence is found that the pulsed gates themselves act as phonon cavities increasing the influence of phonons under specific resonant conditions.

  3. Pair Production and Gamma-Ray Emission in the Outer Magnetospheres of Rapidly Spinning Young Pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin; Chen, Kaiyou

    1997-01-01

    Electron-positron pair production and acceleration in the outer magnetosphere may be crucial for a young rapidly spinning canonical pulsar to be a strong Gamma-ray emitter. Collision between curvature radiated GeV photons and soft X-ray photons seems to be the only efficient pair production mechanism. For Crib-like pulsars, the magnetic field near the light cylinder is so strong, such that the synchrotron radiation of secondary pairs will be in the needed X-ray range. However, for majority of the known Gamma-ray pulsars, surface emitted X-rays seem to work as the matches and fuels for a gamma-ray generation fireball in the outer magnetosphere. The needed X-rays could come from thermal emission of a cooling neutron star or could be the heat generated by bombardment of the polar cap by energetic particles generated in the outer magnetosphere. With detection of more Gamma-ray pulsars, it is becoming evident that the neutron star's intrisic geometry (the inclination angle between the rotation and magnetic axes) and observational geometry (the viewing angle with respect to the rotation axis) are crucial to the understanding of varieties of observational properties exhibited by these pulsars. Inclination angles for many known high energy Gamma-ray pulsars appear to be large and the distribution seems to be consistent with random orientation. However, all of them except Geminga are pre-selected from known radio pulsars. The viewing angles are thus limited to be around the respective inclination angles for beamed radio emission, which may induce strong selection effect. The viewing angles as well as the inclination angles of PSR 1509-58 and PSB 0656+14 may be small such that most of the high energy Gamma-rays produced in the outer accelerators may not reach the observer's direction. The observed Gamma-rays below 5 MeV from this pulsar may be synchrotron radiation of secondary electron-positron pairs produced outside the accelerating regions.

  4. Observation of the Spin Nernst Effect in Platinum

    NASA Astrophysics Data System (ADS)

    Goennenwein, Sebastian

    Thermoelectric effects - arising from the interplay between thermal and charge transport phenomena - have been extensively studied and are considered well established. Upon taking into account the spin degree of freedom, however, qualitatively new phenomena arise. A prototype example for these so-called magneto-thermoelectric or spin-caloritronic effects is the spin Seebeck effect, in which a thermal gradient drives a pure spin current. In contrast to their thermoelectric counterparts, not all the spin-caloritronic effects predicted from theory have yet been observed in experiment. One of these `missing' phenomena is the spin Nernst effect, in which a thermal gradient gives rise to a transverse pure spin current. We have observed the spin Nernst effect in yttrium iron garnet/platinum (YIG/Pt) thin film bilayers. Upon applying a thermal gradient within the YIG/Pt bilayer plane, a pure spin current flows in the direction orthogonal to the thermal drive. We detect this spin current as a thermopower voltage, generated via magnetization-orientation dependent spin transfer into the adjacent YIG layer. Our data shows that the spin Nernst and the spin Hall effect in in Pt have different sign, but comparable magnitude, in agreement with first-principles calculations. Financial support via Deutsche Forschungsgemeinschaft Priority Programme SPP 1538 Spin-Caloric Transport is gratefully acknowledged.

  5. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    NASA Astrophysics Data System (ADS)

    Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.

    2017-12-01

    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.

  6. Correlation between vestibular and autonomous function after 6 months of spaceflight: Data of the SPIN and GAZE-SPIN experiments.

    NASA Astrophysics Data System (ADS)

    Wuyts, Floris; Clement, Gilles; Naumov, Ivan; Kornilova, Ludmila; Glukhikh, Dmitriy; Hallgren, Emma; MacDougall, Hamish; Migeotte, Pierre-Francois; Delière, Quentin; Weerts, Aurelie; Moore, Steven; Diedrich, Andre

    In 13 cosmonauts, the vestibulo-autonomic reflex was investigated before and after 6 months duration spaceflight. Cosmonauts were rotated on the mini-centrifuge VVIS, which is installed in Star City. Initially, this mini-centrifuge flew on board of the Neurolab mission (STS-90), and served to generate intermittent artificial gravity during that mission, with apparent very positive effects on the preservation of the orthostatic tolerance upon return to earth in the 4 crew members that were subjected to the rotations in space. The current experiments SPIN and GAZE-SPIN are control experiments to test the hypothesis that intermittent artificial gravity in space can serve as a counter measure against several deleterious effects of microgravity. Additionally, the effect of microgravity on the gaze holding system is studied as well. Cosmonauts from a long duration stay in the International Space Station were tested on the VVIS (1 g centripetal interaural acceleration; consecutive right-ear-out anti-clockwise and left-ear-out clockwise measurement) on 5 different days. Two measurements were scheduled about one month and a half prior to launch and the remaining three immediately after their return from space (typically on R+2, R+4, R+9; R = return day from space). The ocular counter roll (OCR) as a measure of otolith function was measured on before, during and after the rotation in the mini centrifuge, using infrared video goggles. The perception of verticality was monitored using an ultrasound system. Gaze holding was tested before, during and after rotation. After the centrifugation part, the crew was installed on a tilt table, and instrumented with several cardiovascular recording equipment (ECG, continuous blood pressure monitoring, respiratory monitoring), as well as with impedance measurement devices to investigate fluid redistribution throughout the operational tilt test. To measure heart rate variability parameters, imposed breathing periods were included in the test protocol. The subjects were subjected to a passive tilt test of 60 degrees, during 15 minutes. The results show that cosmonauts clearly have a statistically significantly reduced ocular counter rolling during rotation upon return from space, when compared to the pre-flight condition, indicating a reduced sensitivity of the otolith system to gravito intertial acceleration. None of the subjects fainted or even approached presyncope. However, the resistance in the calf, measured with the impedance method, showed a significant increased pooling in the lower limbs. Additionally, this was statistically significantly correlated (p=0.024) with a reduced otolith response, when comparing for each subject the vestibular and autonomic data. This result shows that the vestibulo-autonomic reflex is reduced after 6 months of spaceflight. When compared with Neurolab, the otolith response in the current group of crew members that were not subjected to in-flight centrifugation is significantly reduced, corroborating the hypothesis that in-flight artificial gravity may be of great importance to mitigate the deleterious effects of microgravity. Projects are funded by PRODEX-BELSPO, ESA, IBMP

  7. Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2015-03-13

    Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. Here, we apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We also quantify the spin Hall effects in Ir and W using the conventional bilayer structures, and discuss the self-induced voltage in a single layer of ferromagnetic permalloy.more » Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattawy, M.; Baltzell, N. A.; Dupré, R.

    We report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment uses the 6 GeV electron beam from the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator at Jefferson Lab incident on a pressurized He-4 gaseous target placed in front of the CEBAF Large Acceptance Spectrometer (CLAS). The scattered electron is detected by CLAS and the photon by a dedicated electromagnetic calorimeter at forward angles. To ensure the exclusivity of the process, a specially designed radial time projection chamber is used to detect the recoiling He-4 nuclei.more » We measure beam-spin asymmetries larger than those observed on the free proton in the same kinematic domain. From these, we are able to extract, in a model-independent way, the real and imaginary parts of the only He-4 Compton form factor, HA. This first measurement of coherent deeply virtual Compton scattering on the He-4 nucleus, with a fully exclusive final state via nuclear recoil tagging, leads the way toward 3D imaging of the partonic structure of nuclei.« less

  9. The Nuclotron-based Ion Collider Facility Project. The Physics Programme for the Multi-Purpose Detector

    NASA Astrophysics Data System (ADS)

    Geraksiev, N. S.; MPD Collaboration

    2018-05-01

    The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at the Joint Institute for Nuclear Research (JINR). The general objective of the project is to provide beams for the experimental study of hot and dense strongly interacting QCD matter. The heavy ion programme includes two planned detectors: BM@N (Baryonic Matter at Nuclotron) a fixed target experiment with extracted Nuclotron beams; and MPD (MultiPurpose Detector) a collider mode experiment at NICA. The accelerated particles can range from protons and light nuclei to gold ions. Beam energies will span\\sqrt{s}=12-27 GeV with luminosity L ≥ 1 × 1030 cm‑2s‑1 and \\sqrt{{s}NN}=4-11 GeV and average luminosity L = 1 × 1027cm‑2 s ‑1(for 197Au79+), respectively. A third experiment for spin physics is planned with the SPD (Spin Physics Detector) at the NICA collider in polarized beams mode. A brief overview of the MPD is presented along with several observables in the MPD physics programme.

  10. A movable mass control system to detumble a disabled space vehicle

    NASA Technical Reports Server (NTRS)

    Edwards, T. L.

    1973-01-01

    An internal autonomous control system to either completely detumble a spacecraft or lessen the tumbling motions until the rescue craft arrives is discussed. Such a device would become active upon loss of control. The development of a movable mass control system to convert the tumbling motions of a disabled vehicle into simple spin is presented. A simple spin state would greatly facilitate crew evacuation and final despinning by an external means. The system moves a control mass, according to a selected control law, in the acceleration environment created by the tumbling motion. By moving the mass properly, the rotational kinetic energy of the system may be increased or decreased creating simple spin states about the minimum or maximum moment of inertia axis, respectively. The control system is designed for the latter case due to its associated stability in the presence of perturbing forces.

  11. Design and performance of the spin asymmetries of the nucleon experiment

    NASA Astrophysics Data System (ADS)

    Maxwell, J. D.; Armstrong, W. R.; Choi, S.; Jones, M. K.; Kang, H.; Liyanage, A.; Meziani, Z.-E.; Mulholland, J.; Ndukum, L.; Rondón, O. A.; Ahmidouch, A.; Albayrak, I.; Asaturyan, A.; Ates, O.; Baghdasaryan, H.; Boeglin, W.; Bosted, P.; Brash, E.; Brock, J.; Butuceanu, C.; Bychkov, M.; Carlin, C.; Carter, P.; Chen, C.; Chen, J.-P.; Christy, M. E.; Covrig, S.; Crabb, D.; Danagoulian, S.; Daniel, A.; Davidenko, A. M.; Davis, B.; Day, D.; Deconinck, W.; Deur, A.; Dunne, J.; Dutta, D.; El Fassi, L.; Elaasar, M.; Ellis, C.; Ent, R.; Flay, D.; Frlez, E.; Gaskell, D.; Geagla, O.; German, J.; Gilman, R.; Gogami, T.; Gomez, J.; Goncharenko, Y. M.; Hashimoto, O.; Higinbotham, D. W.; Horn, T.; Huber, G. M.; Jones, M.; Kalantarians, N.; Kang, H. K.; Kawama, D.; Keith, C.; Keppel, C.; Khandaker, M.; Kim, Y.; King, P. M.; Kohl, M.; Kovacs, K.; Kubarovsky, V.; Li, Y.; Liyanage, N.; Luo, W.; Mamyan, V.; Markowitz, P.; Maruta, T.; Meekins, D.; Melnik, Y. M.; Mkrtchyan, A.; Mkrtchyan, H.; Mochalov, V. V.; Monaghan, P.; Narayan, A.; Nakamura, S. N.; Nuruzzaman; Pentchev, L.; Pocanic, D.; Posik, M.; Puckett, A.; Qiu, X.; Reinhold, J.; Riordan, S.; Roche, J.; Sawatzky, B.; Shabestari, M.; Slifer, K.; Smith, G.; Soloviev, L.; Solvignon, P.; Tadevosyan, V.; Tang, L.; Vasiliev, A. N.; Veilleux, M.; Walton, T.; Wesselmann, F.; Wood, S. A.; Yao, H.; Ye, Z.; Zhu, L.

    2018-03-01

    The Spin Asymmetries of the Nucleon Experiment (SANE) performed inclusive, double-polarized electron scattering measurements of the proton at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. A novel detector array observed scattered electrons of four-momentum transfer 2 . 5

  12. Role of high-spin hyperon resonances in the reaction of $$\\gamma p \\to K^+ K^+ \\Xi^-$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Ka Shing Man, Yongseok Oh, K. Nakayama

    The recent data taken by the CLAS Collaboration at the Thomas Jefferson National Accelerator Facility for the reaction ofmore » $$\\gamma p \\to K^+ K^+ \\Xi^-$$ are reanalyzed within a relativistic meson-exchange model of hadronic interactions. The present model is an extension of the one developed in an earlier work by Nakayama, Oh, and Haberzettl [Phys. Rev. C 74, 035205 (2006)]. In particular, the role of the spin-5/2 and -7/2 hyperon resonances, which were not included in the previous model, is investigated in the present study. It is shown that the contribution of the $$\\Sigma(2030)$$ hyperon having spin-7/2 and positive parity has a key role to bring the model predictions into a fair agreement with the measured data for the $$K^+\\Xi^-$$ invariant mass distribution.« less

  13. Role of high-spin hyperon resonances in the reaction of {gamma}p{yields}K{sup +}K{sup +}{Xi}{sup -}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, J. Ka Shing; Oh, Yongseok; Excited Baryon Analysis Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606

    The recent data taken by the CLAS Collaboration at the Thomas Jefferson National Accelerator Facility for the reaction of {gamma}p{yields}K{sup +}K{sup +}{Xi}{sup -} are reanalyzed within a relativistic meson-exchange model of hadronic interactions. The present model is an extension of the one developed in an earlier work by Nakayama, Oh, and Haberzettl [Phys. Rev. C 74, 035205 (2006)]. In particular, the role of the spin-5/2 and -7/2 hyperon resonances, which were not included in the previous model, is investigated in the present study. It is shown that the contribution of the {Sigma}(2030) hyperon having spin-7/2 and positive parity has amore » key role to bring the model predictions into a fair agreement with the measured data for the K{sup +}{Xi}{sup -} invariant mass distribution.« less

  14. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.; Marusic, A.; Minty, M.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximizemore » the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.« less

  15. Acceleration of domain wall movement by photoirradiation in perovskite-type cobaltite

    NASA Astrophysics Data System (ADS)

    Okimoto, Y.; Kurashima, M.; Seko, K.; Ishikawa, T.; Onda, K.; Koshihara, S.; Kyomen, T.; Itoh, M.

    2011-04-01

    Femtosecond reflection spectroscopy was performed on a perovskite-type cobalt oxide, namely, Pr0.5Ca0.5CoO3, that undergoes a photoinduced spin-state transition. After photoirradiation at 30 K, the time profile of the reflectance change shows a broad peak reflecting the propagation of the photodomain (about 60 Co sites per one photon). Analysis of the peak position indicates the sudden increase of the velocity of the propagation with increasing the excitation intensity. Such acceleration with increase in fluence originates from an abrupt sound velocity change driven by a cooperative photoinduced structural transition.

  16. Effects of symmetry and spin configuration on spin-dependent transport properties of iron-phthalocyanine-based devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Li-Ling; School of Science, Hunan University of Technology, Zhuzhou 412007; Yang, Bing-Chu, E-mail: bingchuyang@csu.edu.cn

    2014-07-21

    Spin-dependent transport properties of nanodevices constructed by iron-phthalocyanine (FePc) molecule sandwiched between two zigzag graphene nanoribbon electrodes are studied using first-principles quantum transport calculations. The effects of the symmetry and spin configuration of electrodes have been taken into account. It is found that large magnetoresistance, large spin polarization, dual spin-filtering, and negative differential resistance (NDR) can coexist in these devices. Our results show that 5Z-FePc system presents well conductive ability in both parallel (P) and anti-parallel (AP) configurations. For 6Z-FePc-P system, spin filtering effect and large spin polarization can be found. A dual spin filtering and NDR can also bemore » shown in 6Z-FePc-AP. Our studies indicate that the dual spin filtering effect depends on the orbitals symmetry of the energy bands and spin mismatching of the electrodes. And all the effects would open up possibilities for their applications in spin-valve, spin-filter as well as effective spin diode devices.« less

  17. How to realize a spin-dependent Seebeck diode effect in metallic zigzag γ-graphyne nanoribbons?

    PubMed

    Wu, Dan-Dan; Liu, Qing-Bo; Fu, Hua-Hua; Wu, Ruqian

    2017-11-30

    The spin-dependent Seebeck effect (SDSE) is one of the core topics of spin caloritronics. In the traditional device designs of spin-dependent Seebeck rectifiers and diodes, finite spin-dependent band gaps of materials are required to realize the on-off characteristic in thermal spin currents, and nearly zero charge current should be achieved to reduce energy dissipation. Here, we propose that two ferromagnetic zigzag γ-graphyne nanoribbons (ZγGNRs) without any spin-dependent band gaps around the Fermi level can not only exhibit the SDSE, but also display rectifier and diode effects in thermal spin currents characterized by threshold temperatures, which originates from the compensation effect occurring in spin-dependent transmissions but not from the spin-splitting band gaps in materials. The metallic characteristics of ZγGNRs bring about an advantage that the gate voltage is an effective route to adjust the symmetry of spin-splitting bands to obtain pure thermal spin currents. The results provide a new mechanism to realize spin-Seebeck rectifier and diode effects in 2D materials and expand material candidates towards spin-Seebeck device applications.

  18. Thrust and torque vector characteristics of axially-symmetric E-sail

    NASA Astrophysics Data System (ADS)

    Bassetto, Marco; Mengali, Giovanni; Quarta, Alessandro A.

    2018-05-01

    The Electric Solar Wind Sail is an innovative propulsion system concept that gains propulsive acceleration from the interaction with charged particles released by the Sun. The aim of this paper is to obtain analytical expressions for the thrust and torque vectors of a spinning sail of given shape. Under the only assumption that each tether belongs to a plane containing the spacecraft spin axis, a general analytical relation is found for the thrust and torque vectors as a function of the spacecraft attitude relative to an orbital reference frame. The results are then applied to the noteworthy situation of a Sun-facing sail, that is, when the spacecraft spin axis is aligned with the Sun-spacecraft line, which approximatively coincides with the solar wind direction. In that case, the paper discusses the equilibrium shape of the generic conducting tether as a function of the sail geometry and the spin rate, using both a numerical and an analytical (approximate) approach. As a result, the structural characteristics of the conducting tether are related to the spacecraft geometric parameters.

  19. Electric dipole moment planning with a resurrected BNL Alternating Gradient Synchrotron electron analog ring

    NASA Astrophysics Data System (ADS)

    Talman, Richard M.; Talman, John D.

    2015-07-01

    There has been much recent interest in directly measuring the electric dipole moments (EDM) of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of "frozen spin" particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV "electron analog" ring at Brookhaven National Laboratory in 1954; it can also be referred to as the "AGS analog" ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS) proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through "transition" with the newly invented alternating gradient proton ring design.) By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to "resurrect" the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of "archeological physics" to reconstitute the detailed electron analog lattice design from a 1991 retrospective report by Plotkin as well as unpublished notes of Courant describing machine studies performed in 1954-1955. This paper describes the practical application of the eteapot code and provides sample results, with emphasis on emulating lattice optics in the AGS analog ring for comparison with the historical machine studies and to predict the electron spin evolution they would have measured if they had polarized electrons and electron polarimetry. Of greater present day interest is the performance to be expected for a proton storage ring experiment. To exhibit the eteapot code performance and confirm its symplecticity, results are also given for 30 million turn proton spin tracking in an all-electric lattice that would be appropriate for a present day measurement of the proton EDM. The accompanying paper "Symplectic orbit and spin tracking code for all-electric storage rings" documents in detail the theoretical formulation implemented in eteapot, which is a new module in the Unified Accelerator Libraries (ual) environment.

  20. Spin wave amplification using the spin Hall effect in permalloy/platinum bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladii, O.; Henry, Y.; Bailleul, M.

    2016-05-16

    We investigate the effect of an electrical current on the attenuation length of a 900 nm wavelength spin-wave in a permalloy/Pt bilayer using propagating spin-wave spectroscopy. The modification of the spin-wave relaxation rate is linear in current density, reaching up to 14% for a current density of 2.3 × 10{sup 11} A/m{sup 2} in Pt. This change is attributed to the spin transfer torque induced by the spin Hall effect and corresponds to an effective spin Hall angle of 0.13, which is among the highest values reported so far. The spin Hall effect thus appears as an efficient way of amplifying/attenuating propagating spin waves.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junginger, Tobias; Abidi, S. H.; Maffett, R. D.

    Here, the performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry H entry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μSR) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing atmore » 1400°C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure H entry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.« less

  2. Dragging of inertial frames.

    PubMed

    Ciufolini, Ignazio

    2007-09-06

    The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth.

  3. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    USGS Publications Warehouse

    Chang, Jefferson C.; Lockner, David A.; Reches, Z.

    2012-01-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  4. Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi-Feng; Zhou, Wen-Qian; Hong, Xue-Kun

    2015-01-14

    Ab initio calculations combining density-functional theory and nonequilibrium Green’s function are performed to investigate the effects of either single B atom or single N atom dopant in zigzag-edged graphene nanoribbons (ZGNRs) with the ferromagnetic state on the spin-dependent transport properties and thermospin performances. A spin-up (spin-down) localized state near the Fermi level can be induced by these dopants, resulting in a half-metallic property with 100% negative (positive) spin polarization at the Fermi level due to the destructive quantum interference effects. In addition, the highly spin-polarized electric current in the low bias-voltage regime and single-spin negative differential resistance in the highmore » bias-voltage regime are also observed in these doped ZGNRs. Moreover, the large spin-up (spin-down) Seebeck coefficient and the very weak spin-down (spin-up) Seebeck effect of the B(N)-doped ZGNRs near the Fermi level are simultaneously achieved, indicating that the spin Seebeck effect is comparable to the corresponding charge Seebeck effect.« less

  5. Spin caloric effects in antiferromagnets assisted by an external spin current

    NASA Astrophysics Data System (ADS)

    Gomonay, O.; Yamamoto, Kei; Sinova, Jairo

    2018-07-01

    Searching for novel spin caloric effects in antiferromagnets, we study the properties of thermally activated magnons in the presence of an external spin current and temperature gradient. We predict the spin Peltier effect—generation of a heat flux by spin accumulation—in an antiferromagnetic insulator with cubic or uniaxial magnetic symmetry. This effect is related to the spin-current induced splitting of the relaxation times of the magnons with the opposite spin direction. We show that the Peltier effect can trigger antiferromagnetic domain wall motion with a force whose value grows with the temperature of a sample. At a temperature larger than the energy of the low-frequency magnons, this force is much larger than the force caused by direct spin transfer between the spin current and the domain wall. We also demonstrate that the external spin current can induce the magnon spin Seebeck effect. The corresponding Seebeck coefficient is controlled by the current density. These spin-current assisted caloric effects open new ways for the manipulation of the magnetic states in antiferromagnets.

  6. Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damour, Thibault; Jaranowski, Piotr; Schaefer, Gerhard

    2008-07-15

    Using a recent, novel Hamiltonian formulation of the gravitational interaction of spinning binaries, we extend the effective one body (EOB) description of the dynamics of two spinning black holes to next-to-leading order (NLO) in the spin-orbit interaction. The spin-dependent EOB Hamiltonian is constructed from four main ingredients: (i) a transformation between the 'effective' Hamiltonian and the 'real' one; (ii) a generalized effective Hamilton-Jacobi equation involving higher powers of the momenta; (iii) a Kerr-type effective metric (with Pade-resummed coefficients) which depends on the choice of some basic 'effective spin vector' S{sub eff}, and which is deformed by comparable-mass effects; and (iv)more » an additional effective spin-orbit interaction term involving another spin vector {sigma}. As a first application of the new, NLO spin-dependent EOB Hamiltonian, we compute the binding energy of circular orbits (for parallel spins) as a function of the orbital frequency, and of the spin parameters. We also study the characteristics of the last stable circular orbit: binding energy, orbital frequency, and the corresponding dimensionless spin parameter a{sub LSO}{identical_to}cJ{sub LSO}/(G(H{sub LSO}/c{sup 2}){sup 2}). We find that the inclusion of NLO spin-orbit terms has a significant 'moderating' effect on the dynamical characteristics of the circular orbits for large and parallel spins.« less

  7. Prediction of Spin-Polarization Effects in Quantum Wire Transport

    NASA Astrophysics Data System (ADS)

    Fasol, Gerhard; Sakaki, Hiroyuki

    1994-01-01

    We predict a new effect for transport in quantum wires: spontaneous spin polarization. Most work on transport in mesoscopic devices has assumed a model of non interacting, spin-free electrons. We introduce spin, electron pair scattering and microscopic crystal properties into the design of mesoscopic devices. The new spin polarization effect results from the fact that in a single mode quantum wire, electron and hole bands still have two spin subbands. In general, these two spin subbands are expected to be split even in zero magnetic field. At sufficiently low temperatures the electron pair scattering rates for one spin subband ( e.g., the spin-down) can be much larger than for the other spin subband. This effect can be used for an active spin polarizer device: hot electrons in one subband ( e.g., `spin up') pass with weak pair scattering, while electrons in the opposite subband ( e.g., `spin down'), have high probability of scattering into the `spin-up' subband, resulting in spin polarization of a hot electron beam.

  8. Halbach Effect at the Nanoscale from Chiral Spin Textures.

    PubMed

    Marioni, Miguel A; Penedo, Marcos; Baćani, Mirko; Schwenk, Johannes; Hug, Hans J

    2018-04-11

    Mallinson's idea that some spin textures in planar magnetic structures could produce an enhancement of the magnetic flux on one side of the plane at the expense of the other gave rise to permanent magnet configurations known as Halbach magnet arrays. Applications range from wiggler magnets in particle accelerators and free electron lasers to motors and magnetic levitation trains, but exploiting Halbach arrays in micro- or nanoscale spintronics devices requires solving the problem of fabrication and field metrology below a 100 μm size. In this work, we show that a Halbach configuration of moments can be obtained over areas as small as 1 μm × 1 μm in sputtered thin films with Néel-type domain walls of unique domain wall chirality, and we measure their stray field at a controlled probe-sample distance of 12.0 ± 0.5 nm. Because here chirality is determined by the interfacial Dyzaloshinkii-Moriya interaction, the field attenuation and amplification is an intrinsic property of this film, allowing for flexibility of design based on an appropriate definition of magnetic domains. Skyrmions (<100 nm wide) illustrate the smallest kind of such structures, for which our measurement of stray magnetic fields and mapping of the spin structure shows they funnel the field toward one specific side of the film given by the sign of the Dyzaloshinkii-Moriya interaction parameter D.

  9. Laboratory simulation of the rocket motor thrust as a follower force

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Ground tests of solid propellant rocket motors have shown that metal-containing propellants produce various amounts of slag (primarily aluminum oxide), which is trapped in the motor case causing a loss of specific impulse. Although not yet definitely established, the presence of a liquid pool of slag also may contribute to nutational instabilities that have been observed with certain spin-stabilized, upper-stage vehicles. Because of the rocket's axial acceleration - absent in the ground tests - estimates of in-flight slag mass have been very uncertain. Yet such estimates are needed to determine the magnitude of the control authority of the systems required for eliminating the instability. A test rig with an eccentrically mounted hemispherical bowl was designed and built that incorporates a follower force that properly aligns the thrust vector along the axis of spin. A program that computes the motion of a point mass in the spinning and precessing bowl was written. Using various rpm, friction factors, and initial starting conditions, plots were generated showing the trace of the point mass around the inside of the fuel tank. The apparatus will be used extensively during the 1990 to 1991 academic year and incorporate future design features such as a variable nutation angle and a film height measuring instrument. Data obtained on the nutational instability characteristics will be used to determine order-of-magnitude estimates of control authority needed to minimize the sloshing effect.

  10. Mathematical Model of Bubble Sloshing Dynamics for Cryogenic Liquid Helium in Orbital Spacecraft Dewar Container

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    A generalized mathematical model is investigated of sloshing dynamics for dewar containers, partially filled with a liquid of cryogenic superfluid helium 2, driven by both gravity gradient and jitter accelerations applicable to two types of scientific spacecrafts, which are eligible to carry out spinning motion and/or slew motion to perform scientific observations during normal spacecraft operation. Two examples are given for the Gravity Probe-B (GP-B) with spinning motion, and the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) with slew motion, which are responsible for the sloshing dynamics. Explicit mathematical expressions for the modelling of sloshing dynamics to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics will be based on the noninertial frame spacecraft bound coordinate, and we will solve the time-dependent three-dimensional formulations of partial differential equations subject to initial and boundary conditions. Explicit mathematical expressions of boundary conditions lo cover capillary force effects on the liquid-vapor interface in microgravity environments are also derived. Results of the simulations of the mathematical model are illustrated.

  11. Extrinsic spin Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Rappoport, Tatiana

    The intrinsic spin-orbit coupling in graphene is extremely weak, making it a promising spin conductor for spintronic devices. In addition, many applications also require the generation of spin currents in graphene. Theoretical predictions and recent experimental results suggest one can engineer the spin Hall effect in graphene by greatly enhancing the spin-orbit coupling in the vicinity of an impurity. The extrinsic spin Hall effect then results from the spin-dependent skew scattering of electrons by impurities in the presence of spin-orbit interaction. This effect can be used to efficiently convert charge currents into spin-polarized currents. I will discuss recent experimental results on spin Hall effect in graphene decorated with adatoms and metallic cluster and show that a large spin Hall effect can appear due to skew scattering. While this spin-orbit coupling is small if compared with what it is found in metals, the effect is strongly enhanced in the presence of resonant scattering, giving rise to robust spin Hall angles. I will present our single impurity scattering calculations done with exact partial-wave expansions and complement the analysis with numerical results from a novel real-space implementation of the Kubo formalism for tight-binding Hamiltonians. The author acknowledges the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  12. Spin Hall and Spin Swapping Torques in Diffusive Ferromagnets

    NASA Astrophysics Data System (ADS)

    Pauyac, Christian Ortiz; Chshiev, Mairbek; Manchon, Aurelien; Nikolaev, Sergey A.

    2018-04-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession, and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precession effects displays a complex spatial dependence that can be exploited to generate torques and nucleate or propagate domain walls in centrosymmetric geometries without the use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  13. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical point of view, focusing on well-established and accepted physics. In such a young field, there remains much to be understood and explored, hence some of the future challenges and opportunities of this rapidly evolving area of spintronics are outlined.

  14. Spin Hall effects in metallic antiferromagnets – perspectives for future spin-orbitronics

    DOE PAGES

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...

    2016-03-07

    In this paper, we investigate angular dependent spin-orbit torques from the spin Hall effect in a metallic antiferromagnet using the spin-torque ferromagnetic resonance technique. The large spin Hall effect exists in PtMn, a prototypical CuAu-I-type metallic antiferromagnet. By applying epitaxial growth, we previously reported an appreciable difference in spin-orbit torques for c- and a-axis orientated samples, implying anisotropic effects in magnetically ordered materials. In this work we demonstrate through bipolar-magnetic-field experiments a small but noticeable asymmetric behavior in the spin-transfer-torque that appears as a hysteresis effect. Finally, we also suggest that metallic antiferromagnets may be good candidates for the investigationmore » of various unidirectional effects related to novel spin-orbitronics phenomena.« less

  15. Crewmember in SPACELAB wearing the Acceleration Recording Unit and Collar.

    NASA Image and Video Library

    1993-01-11

    STS058-202-002 (18 Oct.-1 Nov. 1993) --- Astronaut Rhea Seddon, STS-58 payload commander, spins the Spacelab Life Sciences (SLS-2) rotating chair as payload specialist Martin J. Fettman serves as test subject. The two joined five NASA astronauts for fourteen days of medical research aboard the Earth-orbiting space shuttle Columbia. Photo credit: NASA

  16. CHARGED HEAVY MESONS (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leprince-Ringuet, L.

    1960-03-01

    The general properties of heavy mesons and hyperons are reviewed, and the results obtained with cosmic-ray studies at the Pic du Midi are reported. The investigations made with accelerators in the study of mesons are then described. The basic problems posed by heavy mesons and hyperons are reviewed with emphasis on the isotopic spin, strangeness, and parity. (tr-auth)

  17. Direct detection of spin Nernst effect in platinum

    NASA Astrophysics Data System (ADS)

    Bose, A.; Bhuktare, S.; Singh, H.; Dutta, S.; Achanta, V. G.; Tulapurkar, A. A.

    2018-04-01

    Generation of spin current lies at the heart of spintronic research. The spin Hall effect and the spin Seebeck effect have drawn considerable attention in the last few years to create pure spin current by heavy metals and ferromagnets, respectively. In this work, we show the direct evidence of heat current to spin current conversion in non-magnetic Platinum by the spin Nernst effect (SNE) at room temperature. This is the thermal analogue of the spin Hall effect in non-magnets. We have shown that the 8 K/μm thermal gradient in Pt can lead to the generation of pure spin current density of the order of 108 A/m2 by virtue of SNE. This opens up an additional possibility to couple the relativistic spin-orbit interaction with the thermal gradient for spintronic applications.

  18. Enhanced thermo-spin effects in iron-oxide/metal multilayers

    NASA Astrophysics Data System (ADS)

    Ramos, R.; Lucas, I.; Algarabel, P. A.; Morellón, L.; Uchida, K.; Saitoh, E.; Ibarra, M. R.

    2018-06-01

    Since the discovery of the spin Seebeck effect (SSE), much attention has been devoted to the study of the interaction between heat, spin, and charge in magnetic systems. The SSE refers to the generation of a spin current upon the application of a thermal gradient and detected by means of the inverse spin Hall effect. Conversely, the spin Peltier effect (SPE) refers to the generation of a heat current as a result of a spin current induced by the spin Hall effect. Here we report a strong enhancement of both the SSE and SPE in Fe3O4/Pt multilayered thin films at room temperature as a result of an increased thermo-spin conversion efficiency in the multilayers. These results open the possibility to design thin film heterostructures that may boost the application of thermal spin currents in spintronics.

  19. The einstein equivalence principle, intrinsic spin and the invariance of constitutive equations in continuum mechanics

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.

    1988-01-01

    The invariance of constitutive equations in continuum mechanics is examined from a basic theoretical standpoint. It is demonstrated the constitutive equations which are not form invariant under arbitrary translational accelerations of the reference frame are in violation of the Einstein equivalane principle. Furthermore, by making use of an analysis based on statistical mechanics, it is argued that any frame-dependent terms in constitutive equations must arise from the intrinsic spin tensor and are negligible provided that the ratio of microscopic to macroscopic time scales is extremely small. The consistency of these results with existing constitutive theories is discussed in detail along with possible avenues of future research.

  20. Differential cross sections and polarization observables from CLAS K* photoproduction and the search for new N* states

    NASA Astrophysics Data System (ADS)

    Anisovich, A. V.; Hicks, K.; Klempt, E.; Nikonov, V. A.; Sarantsev, A.; Tang, W.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Badui, R. A.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Chetry, T.; Ciullo, G.; Clark, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hanretty, C.; Harrison, N.; Hattawy, M.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Roy, P.; Sabatié, F.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Tian, Ye.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2017-08-01

    The reaction γp →K*+ Λ was measured using the CLAS detector for photon energies between the threshold and 3.9 GeV at the Thomas Jefferson National Accelerator Facility. For the first time, spin-density matrix elements have been extracted for this reaction. Differential cross sections, spin density matrix elements, and the Λ recoil polarization are compared with theoretical predictions using the BnGa partial wave analysis. The main result is the evidence for significant contributions from N (1895) 1 /2- and N (2100) 1 /2+ to the reaction. Branching ratios for decays into K* Λ for these resonances and further resonances are reported.

  1. Robust and Efficient Spin Purification for Determinantal Configuration Interaction.

    PubMed

    Fales, B Scott; Hohenstein, Edward G; Levine, Benjamin G

    2017-09-12

    The limited precision of floating point arithmetic can lead to the qualitative and even catastrophic failure of quantum chemical algorithms, especially when high accuracy solutions are sought. For example, numerical errors accumulated while solving for determinantal configuration interaction wave functions via Davidson diagonalization may lead to spin contamination in the trial subspace. This spin contamination may cause the procedure to converge to roots with undesired ⟨Ŝ 2 ⟩, wasting computer time in the best case and leading to incorrect conclusions in the worst. In hopes of finding a suitable remedy, we investigate five purification schemes for ensuring that the eigenvectors have the desired ⟨Ŝ 2 ⟩. These schemes are based on projection, penalty, and iterative approaches. All of these schemes rely on a direct, graphics processing unit-accelerated algorithm for calculating the S 2 c matrix-vector product. We assess the computational cost and convergence behavior of these methods by application to several benchmark systems and find that the first-order spin penalty method is the optimal choice, though first-order and Löwdin projection approaches also provide fast convergence to the desired spin state. Finally, to demonstrate the utility of these approaches, we computed the lowest several excited states of an open-shell silver cluster (Ag 19 ) using the state-averaged complete active space self-consistent field method, where spin purification was required to ensure spin stability of the CI vector coefficients. Several low-lying states with significant multiply excited character are predicted, suggesting the value of a multireference approach for modeling plasmonic nanomaterials.

  2. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON RHIC SPIN PHYSICS III AND IV, POLARIZED PARTONS AT HIGH Q2 REGION, AUGUST 3, 2000 AT BNL, OCTOBER 14, 2000 AT KYOTO UNIVERSITY.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUNCE, G.; VIGDOR, S.

    2001-03-15

    International workshop on II Polarized Partons at High Q2 region 11 was held at the Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan on October 13-14, 2000, as a satellite of the international conference ''SPIN 2000'' (Osaka, Japan, October 16-21,2000). This workshop was supported by RIKEN (The Institute of Physical and Chemical Research) and by Yukawa Institute. The scientific program was focused on the upcoming polarized collider RHIC. The workshop was also an annual meeting of RHIC Spin Collaboration (RSC). The number of participants was 55, including 28 foreign visitors and 8 foreign-resident Japanese participants, reflecting the international naturemore » of the RHIC spin program. At the workshop there were 25 oral presentations in four sessions, (1) RHIC Spin Commissioning, (2) Polarized Partons, Present and Future, (3) New Ideas on Polarization Phenomena, (4) Strategy for the Coming Spin Running. In (1) the successful polarized proton commissioning and the readiness of the accelerator for the physics program impressed us. In (2) and (3) active discussions were made on the new structure function to be firstly measured at RHIC, and several new theoretical ideas were presented. In session (4) we have established a plan for the beam time requirement toward the first collision of polarized protons. These proceedings include the transparencies presented at the workshop. The discussion on ''Strategy for the Coming Spin Running'' was summarized by the chairman of the session, S. Vigdor and G. Bunce.« less

  3. Moessbauer studies in zinc-manganese ferrites for use in measuring small velocities and accelerations with great precision

    NASA Technical Reports Server (NTRS)

    Escue, W. T.; Gupta, R. G.; Mendiratta, R. G.

    1975-01-01

    Mossbauer spectroscopy was used for a systematic study of the magnetic behavior of manganese and zinc in mixed ferrites. It was observed that Zn2+ has preference to substitute Mn2+ at interstitial sites where the metal ions are tetrahedrally coordinated with four oxygen neighbors. The internal magnetic hyperfine field at the tetrahedral iron site is larger than that at the octahedral site. The relaxation effects were observed to play an important role as the zinc contents were increased, while the spin-correlation time and the magnetic field were observed to decrease in strength. It is concluded that Mossbauer effect data on complex materials, when used in conjunction with other data, can provide useful insight into the origin of the microscopic properties of magnetic materials.

  4. Strong Enhancement of the Spin Hall Effect by Spin Fluctuations near the Curie Point of FexPt1 -x Alloys

    NASA Astrophysics Data System (ADS)

    Ou, Yongxi; Ralph, D. C.; Buhrman, R. A.

    2018-03-01

    Robust spin Hall effects (SHE) have recently been observed in nonmagnetic heavy metal systems with strong spin-orbit interactions. These SHE are either attributed to an intrinsic band-structure effect or to extrinsic spin-dependent scattering from impurities, namely, side jump or skew scattering. Here we report on an extraordinarily strong spin Hall effect, attributable to spin fluctuations, in ferromagnetic FexPt1 -x alloys near their Curie point, tunable with x . This results in a dampinglike spin-orbit torque being exerted on an adjacent ferromagnetic layer that is strongly temperature dependent in this transition region, with a peak value that indicates a lower bound 0.34 ±0.02 for the peak spin Hall ratio within the FePt. We also observe a pronounced peak in the effective spin-mixing conductance of the FM /FePt interface, and determine the spin diffusion length in these FexPt1 -x alloys. These results establish new opportunities for fundamental studies of spin dynamics and transport in ferromagnetic systems with strong spin fluctuations, and a new pathway for efficiently generating strong spin currents for applications.

  5. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study.

    PubMed

    Krutyeva, M; Pasini, S; Monkenbusch, M; Allgaier, J; Maiz, J; Mijangos, C; Hartmann-Azanza, B; Steinhart, M; Jalarvo, N; Richter, D

    2017-05-28

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, the corresponding polymer melt was measured under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where the segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Also the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.

  6. Enhancement of Fenton oxidation for removing organic matter from hypersaline solution by accelerating ferric system with hydroxylamine hydrochloride and benzoquinone.

    PubMed

    Peng, Siwei; Zhang, Weijun; He, Jie; Yang, Xiaofang; Wang, Dongsheng; Zeng, Guisheng

    2016-03-01

    Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions. This study investigated the feasibility of using benzoquinone (BQ) and hydroxylamine hydrochloride (HA) as Fenton enhancers for the removal of glycerin from saline water under ambient temperature by accelerating the ferric system. It was found that organics removal was not obviously affected by chloride ions of low concentration (less than 0.1mol/L), while the mineralization rate was strongly inhibited in the presence of a large amount of chloride ions. In addition, ferric hydrolysis-precipitation was significantly alleviated in the presence of HA and BQ, and HA was more effective in reducing ferric ions into ferrous ions than HA, while the H2O2 decomposition rate was higher in the BQ-Fenton system. Electron spin resonance analysis revealed that OH production was reduced in high salinity conditions, while it was enhanced after the addition of HA and BQ (especially HA). This study provided a possible solution to control and alleviate the inhibitory effect of chloride ions on the Fenton process for organics removal. Copyright © 2015. Published by Elsevier B.V.

  7. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Krutyeva, M.; Pasini, S.; Monkenbusch, M.; Allgaier, J.; Maiz, J.; Mijangos, C.; Hartmann-Azanza, B.; Steinhart, M.; Jalarvo, N.; Richter, D.

    2017-05-01

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, the corresponding polymer melt was measured under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where the segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Also the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.

  8. A Theoretical Approach to Selection of a Biologically Active Substance in Ultra-Low Doses for Effective Action on a Biological System.

    PubMed

    Boldyreva, Liudmila Borisovna

    2018-05-01

     An approach is offered to selecting a biologically active substance (BAS) in ultra-low dose for effective action on a biological system (BS). The technique is based on the assumption that BAS in ultra-low doses exerts action on BS by means of spin supercurrent emerging between the spin structure created by BAS, on the one hand, and the spin structure created by BS, on the other hand. According to modern quantum-mechanical concepts, these spin structures may be virtual particles pairs having precessing spin (that is, be essentially spin vortices in the physical vacuum) and created by the quantum entities that BAS and BS consist of. The action is effective provided there is equality of precession frequencies of spins in these spin structures.  In this work, some methods are considered for determining the precession frequencies of spins in virtual particles pairs: (1) determination of energy levels of quantum entities that BS and BAS consist of; (2) the use of spin-flip effect of the virtual particles pair spin, the effect being initiated by action of magnetic vector potential (the spin-flip effect takes place when the varied frequency of the magnetic vector potential equals the precession frequency of the spin); (3) determining the frequencies of photons effectively acting on BS.  It is shown that the effect of BAS in ultra-low doses on BS can be replaced by the effect of a beam of low-intensity photons, if the frequency of photons equals the precession frequency of spin in spin structures created by BS. Consequently, the color of bodies placed near a biological system is able to exert an effective action on the biological system: that is "color therapy" is possible. It is also supposed that the spin-flip effect may be used not only for determining the precession frequency of spin in spin structures created by BS but also for therapeutic action on biological systems. The Faculty of Homeopathy.

  9. Effect of storage conditions on carbon-centered radicals in soy protein products.

    PubMed

    Boatright, William L; Lei, Qingxin; Shah Jahan, M

    2009-09-09

    Using electron paramagnetic resonance (EPR) spectroscopy, the levels of carbon-centered radicals in retail samples of isolated soy protein (ISP), soy protein concentrate (SPC), and powdered soy milk were estimated to contain from 6.12 x 10(14) to 1.98 x 10(15) spins/g of soy product. Roasted soy nuts contained about 5.70 x 10(15) spins/g. The peak to peak line width of the carbon-centered radicals from soy nuts was about 10 gauss, whereas ISP samples with a similar peak height had a peak to peak line width of about 8 gauss. Retail snack bars containing ISP, SPC, and/or roasted soy nuts with a total protein content of either 13, 21, or 29% contained 5.32 x 10(14), 6.67 x 10(14), and 5.74 x 10(14) spins/g of snack bar, respectively. Levels of carbon-centered radicals in newly prepared samples of ISP were much lower than levels in the retail soy protein products and levels previously reported for commercial ISP and laboratory ISP samples. The levels of radicals in ISP samples increased over a 12-25 week period of storage in the dark at 22 degrees C and exposed to air from about 8.00 x 10(13) spins/g immediately after preparation to 9.95 x 10(14) spins/g of ISP. Storing the ISP samples under nitrogen at 22 degrees C greatly reduced the increase in radical content, whereas storing the ISP in 99.9% oxygen at 40 degrees C accelerated the formation of stable carbon-centered radicals. ISP samples hydrated at either 22 or 92 degrees C, rapidly frozen, and dried lost about 92% of the trapped radicals. The level of carbon-centered radicals in these same ISP samples immediately began to increase during subsequent storage exposed to the air and gradually returned to similar levels obtained before they were hydrated.

  10. Analysis of Hanle-effect signals observed in Si-channel spin accumulation devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamura, Yota, E-mail: takamura@spin.pe.titech.ac.jp; Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552; Akushichi, Taiju

    2014-05-07

    We reexamined curve-fitting analysis for spin-accumulation signals observed in Si-channel spin-accumulation devices, employing widely-used Lorentz functions and a new formula developed from the spin diffusion equation. A Si-channel spin-accumulation device with a high quality ferromagnetic spin injector was fabricated, and its observed spin-accumulation signals were verified. Experimentally obtained Hanle-effect signals for spin accumulation were not able to be fitted by a single Lorentz function and were reproduced by the newly developed formula. Our developed formula can represent spin-accumulation signals and thus analyze Hanle-effect signals.

  11. Hadron Physics at the Charm and Bottom Thresholds and Other Novel QCD Physics Topics at the NICA Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; /SLAC

    The NICA collider project at the Joint Institute for Nuclear Research in Dubna will have the capability of colliding protons, polarized deuterons, and nuclei at an effective nucleon-nucleon center-of mass energy in the range {radical}s{sub NN} = 4 to 11 GeV. I briefly survey a number of novel hadron physics processes which can be investigated at the NICA collider. The topics include the formation of exotic heavy quark resonances near the charm and bottom thresholds, intrinsic strangeness, charm, and bottom phenomena, hidden-color degrees of freedom in nuclei, color transparency, single-spin asymmetries, the RHIC baryon anomaly, and non-universal antishadowing.

  12. Accelerating acquisition strategies for low-frequency conductivity imaging using MREIT

    NASA Astrophysics Data System (ADS)

    Song, Yizhuang; Seo, Jin Keun; Chauhan, Munish; Indahlastari, Aprinda; Ashok Kumar, Neeta; Sadleir, Rosalind

    2018-02-01

    We sought to improve efficiency of magnetic resonance electrical impedance tomography data acquisition so that fast conductivity changes or electric field variations could be monitored. Undersampling of k-space was used to decrease acquisition times in spin-echo-based sequences by a factor of two. Full MREIT data were reconstructed using continuity assumptions and preliminary scans gathered without current. We found that phase data were reconstructed faithfully from undersampled data. Conductivity reconstructions of phantom data were also possible. Therefore, undersampled k-space methods can potentially be used to accelerate MREIT acquisition. This method could be an advantage in imaging real-time conductivity changes with MREIT.

  13. Use of pattern recognition for unaliasing simultaneously acquired slices in simultaneous multislice MR fingerprinting.

    PubMed

    Jiang, Yun; Ma, Dan; Bhat, Himanshu; Ye, Huihui; Cauley, Stephen F; Wald, Lawrence L; Setsompop, Kawin; Griswold, Mark A

    2017-11-01

    The purpose of this study is to accelerate an MR fingerprinting (MRF) acquisition by using a simultaneous multislice method. A multiband radiofrequency (RF) pulse was designed to excite two slices with different flip angles and phases. The signals of two slices were driven to be as orthogonal as possible. The mixed and undersampled MRF signal was matched to two dictionaries to retrieve T 1 and T 2 maps of each slice. Quantitative results from the proposed method were validated with the gold-standard spin echo methods in a phantom. T 1 and T 2 maps of in vivo human brain from two simultaneously acquired slices were also compared to the results of fast imaging with steady-state precession based MRF method (MRF-FISP) with a single-band RF excitation. The phantom results showed that the simultaneous multislice imaging MRF-FISP method quantified the relaxation properties accurately compared to the gold-standard spin echo methods. T 1 and T 2 values of in vivo brain from the proposed method also matched the results from the normal MRF-FISP acquisition. T 1 and T 2 values can be quantified at a multiband acceleration factor of two using our proposed acquisition even in a single-channel receive coil. Further acceleration could be achieved by combining this method with parallel imaging or iterative reconstruction. Magn Reson Med 78:1870-1876, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Extrinsic Rashba spin-orbit coupling effect on silicene spin polarized field effect transistors

    NASA Astrophysics Data System (ADS)

    Pournaghavi, Nezhat; Esmaeilzadeh, Mahdi; Abrishamifar, Adib; Ahmadi, Somaieh

    2017-04-01

    Regarding the spin field effect transistor (spin FET) challenges such as mismatch effect in spin injection and insufficient spin life time, we propose a silicene based device which can be a promising candidate to overcome some of those problems. Using non-equilibrium Green’s function method, we investigate the spin-dependent conductance in a zigzag silicene nanoribbon connected to two magnetized leads which are supposed to be either in parallel or anti-parallel configurations. For both configurations, a controllable spin current can be obtained when the Rashba effect is present; thus, we can have a spin filter device. In addition, for anti-parallel configuration, in the absence of Rashba effect, there is an intrinsic energy gap in the system (OFF-state); while, in the presence of Rashba effect, electrons with flipped spin can pass through the channel and make the ON-state. The current voltage (I-V) characteristics which can be tuned by changing the gate voltage or Rashba strength, are studied. More importantly, reducing the mismatch conductivity as well as energy consumption make the silicene based spin FET more efficient relative to the spin FET based on two-dimensional electron gas proposed by Datta and Das. Also, we show that, at the same conditions, the current and {{I}\\text{on}}/{{I}\\text{off}} ratio of silicene based spin FET are significantly greater than that of the graphene based one.

  15. Software package for modeling spin–orbit motion in storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zyuzin, D. V., E-mail: d.zyuzin@fz-juelich.de

    2015-12-15

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{supmore » 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.« less

  16. Generalized power-spectrum Larmor formula for an extended charged particle embedded in a harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Marengo, Edwin A.; Khodja, Mohamed R.

    2006-09-01

    The nonrelativistic Larmor radiation formula, giving the power radiated by an accelerated charged point particle, is generalized for a spatially extended particle in the context of the classical charged harmonic oscillator. The particle is modeled as a spherically symmetric rigid charge distribution that possesses both translational and spinning degrees of freedom. The power spectrum obtained exhibits a structure that depends on the form factor of the particle, but reduces, in the limit of an infinitesimally small particle and for the charge distributions considered, to Larmor’s familiar result. It is found that for finite-duration small-enough accelerations as well as perpetual uniform accelerations the power spectrum of the spatially extended particle reduces to that of a point particle. It is also found that when the acceleration is violent or the size parameter of the particle is very large compared to the wavelength of the emitted radiation the power spectrum is highly suppressed. Possible applications are discussed.

  17. Compensation Techniques in Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayed, Hisham Kamal

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Twomore » problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.« less

  18. Effects of Olympic-style taekwondo kicks on an instrumented head-form and resultant injury measures.

    PubMed

    Fife, Gabriel P; O'Sullivan, David M; Pieter, Willy; Cook, David P; Kaminski, Thomas W

    2013-12-01

    The objective of this study was to assess the effect of taekwondo kicks and peak foot velocity (FVEL) on resultant head linear acceleration (RLA), head injury criterion (HIC15) and head velocity (HVEL). Each subject (n=12) randomly performed five repetitions of the turning kick (TK), clench axe kick (CA), front leg axe kick, jump back kick (JB) and jump spinning hook kick (JH) at the average standing head height for competitors in their weight division. A Hybrid II Crash Test Dummy head was fitted with a protective taekwondo helmet and instrumented with a triaxial accelerometer and fixed to a height-adjustable frame. Resultant head linear acceleration, HVEL, FVEL data were captured and processed using Qualysis Track Manager. The TK (130.11 ± 51.67 g) produced a higher RLA than the CA (54.95 ± 20.08 g, p<0.001, d=1.84) and a higher HIC15 than the JH (672.74 ± 540.89 vs 300.19 ± 144.35, p<0.001, ES=0.97). There was no difference in HVEL of the TK (4.73 ± 1.67 m/s) and that of the JB (4.43 ± 0.78 m/s; p=0.977, ES<0.01). The TK is of concern because it is the most common technique and cause of concussion in taekwondo. Future studies should aim to understand rotational accelerations of the head.

  19. Spin transport study in a Rashba spin-orbit coupling system

    PubMed Central

    Mei, Fuhong; Zhang, Shan; Tang, Ning; Duan, Junxi; Xu, Fujun; Chen, Yonghai; Ge, Weikun; Shen, Bo

    2014-01-01

    One of the most important topics in spintronics is spin transport. In this work, spin transport properties of two-dimensional electron gas in AlxGa1-xN/GaN heterostructure were studied by helicity-dependent photocurrent measurements at room temperature. Spin-related photocurrent was detected under normal incidence of a circularly polarized laser with a Gaussian distribution. On one hand, spin polarized electrons excited by the laser generate a diffusive spin polarization current, which leads to a vortex charge current as a result of anomalous circular photogalvanic effect. On the other hand, photo-induced spin polarized electrons driven by a longitudinal electric field give rise to a transverse current via anomalous Hall Effect. Both of these effects originated from the Rashba spin-orbit coupling. By analyzing spin-related photocurrent varied with laser position, the contributions of the two effects were differentiated and the ratio of the spin diffusion coefficient to photo-induced anomalous spin Hall mobility Ds/μs = 0.08 V was extracted at room temperature. PMID:24504193

  20. Pulsed laser interactions with space debris: Target shape effects

    DOE PAGES

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.; ...

    2013-05-24

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes.more » We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.« less

  1. Pulsed laser interactions with space debris: Target shape effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes.more » We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.« less

  2. Antiferromagnetic spintronics

    NASA Astrophysics Data System (ADS)

    Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and "magnetization" dynamics, and spin-orbit related phenomena, such as (tunnel) anisotropic magnetoresistance, spin Hall, and inverse spin galvanic effects. Effects related to spin caloritronics, such as the spin Seebeck effect, are linked to the transport of magnons in antiferromagnets. The propagation of spin waves and spin superfluids in antiferromagnets is also covered.

  3. Proposed formation mechanism and active species of hydrogen molecules generated from a novel magnesium-citric acid-hydroxypropyl cellulose coating (MgCC) material

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shigeki; Chikuma, Toshiyuki; Chiba, Kazuyoshi; Tsuchiya, Daisuke; Hirai, Tomomitsu

    2016-02-01

    The presence of acids is known to accelerate the reaction (Mg + 2H2O = Mg(OH)2 + H2). We developed a novel Mg-citric acid coating (MgCC) material produced by milling Mg powder coated with hydroxypropyl cellulose (HPC); because of its H2 generation, this material could be used in antioxidant therapy and antiaging applications. After milling in the presence of citric acid, this material produced H2-rich water upon addition to cooled water. Although the reaction was considered to involve a two-electron transfer from Mg to 2H2O, the role of the acid in H2 generation remains incompletely understood. To clarify the reaction mechanism, we performed studies on the deuterium kinetic isotope effects (KIE) and electron spin resonance (ESR). We observed differences in the concentration ratios, such as H2/D2 > 1 and H2/(H2 + D2 + HD) > 1, involved in H2, D2, and (H2 + D2 + HD) production, and found that adducts with hydrogen atoms (Hrad) were not obtained from the spin-trapping reaction between 5-(2, 2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO) and the MgCC material. The H2, D2, and HD produced from MgCC were identified by using a gas chromatograph connected to a mass spectrometer. The spin-trapping techniques showed that the Hrad adducts formed by the reaction of NaBH4 with CYPMPO could not be observed from reaction of MGCC with CYPMPO in H2O. The data suggest that the rate-controlling step and proposed transition state (TS) exist in the reaction pathway of the O-H bond cleavage and H-H bond formation. A TS of a structure such as [Mg(OH2)2]∗ could be expected in the reaction pathway between Mg and 2H2O by density functional theory calculations. Also, these results show that H2 generation is accelerated in the presence of acids because the activation energy of the TS is significantly smaller than that of H2O.

  4. Reduced Spin Hall Effects from Magnetic Proximity.

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2015-03-26

    We investigate temperature-dependent spin pumping and inverse spin Hall effects in thin Pt and Pd in contact with Permalloy. Our experiments show a decrease of the spin Hall effect with decreasing temperature, which is attributed to a temperature-dependent proximity effect. The spin Hall angle decreases from 0.086 at room temperature to 0.042 at 10 K for Pt and is nearly negligible at 10 K for Pd. By first-principle calculations, we show that the spin Hall conductivity indeed reduces by increasing the proximity-induced spin magnetic moments for both Pt and Pd. This work highlights the important role of proximity-induced magnetic orderingmore » to spin Hall phenomena in Pt and Pd.« less

  5. Inverse spin Hall and spin rectification effects in NiFe/FeMn exchange-biased thin films

    NASA Astrophysics Data System (ADS)

    Garcia, W. J. S.; Seeger, R. L.; da Silva, R. B.; Harres, A.

    2017-11-01

    Materials presenting high spin-orbit coupling are able to convert spin currents in charge currents. The phenomenon, known as inverse spin Hall effect, promises to revolutionize spintronic technology enabling the electrical detection of spin currents. It has been observed in a variety of systems, usually non-magnetic metals. We study the voltage emerging in exchange biased Ta/NiFe/FeMn/Ta thin films near the ferromagnetic resonance. Measured signals are related to both inverse spin Hall and spin rectification effects, and two distinct protocols were employed to separate their contributions.The curve shift due to the exchange bias effect may enable high frequency applications without an external applied magnetic field.

  6. Spin filtering effect generated by the inter-subband spin-orbit coupling in the bilayer nanowire with the quantum point contact

    PubMed Central

    Wójcik, Paweł; Adamowski, Janusz

    2017-01-01

    The spin filtering effect in the bilayer nanowire with quantum point contact is investigated theoretically. We demonstrate the new mechanism of the spin filtering based on the lateral inter-subband spin-orbit coupling, which for the bilayer nanowires has been reported to be strong. The proposed spin filtering effect is explained as the joint effect of the Landau-Zener intersubband transitions caused by the hybridization of states with opposite spin (due to the lateral Rashba SO interaction) and the confinement of carriers in the quantum point contact region. PMID:28358141

  7. Mechanics and Hydrodynamics of Acrobatics and Aquabatics by Whales and Dolphins

    NASA Astrophysics Data System (ADS)

    Fish, Frank

    2017-11-01

    Cetaceans (whales, dolphins) are extremely energetic, fast swimming, and highly maneuverable in both water and air. Behaviors that cross the interface include breaching, porpoising, tail stands, and spin-leaps. The mechanics of breaching and porpoising entails propulsive movements of the caudal flukes to accelerate the animal vertically through the water surface to become airborne. Porpoising is beneficial to reduce the energetic cost of swimming at high speeds. Tail stands have a vertically oriented dolphin with half or more of its body out of the water. Bubble DPIV was used to quantify the propulsive force matching the weight of the animal supported above the water surface. The propulsive movements produced a jet flow and associated vorticity directed downward. Spin-leaps require a rapid vertical ascend from underwater by a rolling dolphin. Out of the water, the spin rate increases due to conservation of angular momentum and an imbalance between driving and resistive torques. The spin rate is associated with the moment of inertia of the animal's morphology. The physics of these high-energy maneuvers have engineering application for understanding ballistic performance across the air/water interface. Funded from ONR-MURI Grant N0001141410533.

  8. Thermally Generated Spin Signals in a Nondegenerate Silicon Spin Valve

    NASA Astrophysics Data System (ADS)

    Yamashita, Naoto; Ando, Yuichiro; Koike, Hayato; Miwa, Shinji; Suzuki, Yoshishige; Shiraishi, Masashi

    2018-05-01

    Thermally generated spin signals are observed in a nondegenerate Si spin valve. The spin-dependent Seebeck effect is used for thermal spin-signal generation. A thermal gradient of about 200 mK at the interface of Fe and Si enables the generation of a spin voltage of 8 μ V at room temperature. A simple expansion of the conventional spin-drift-diffusion model that takes into account the spin-dependent Seebeck effect shows that semiconductor materials are more promising for thermal spin-signal generation comparing than metallic materials, and thus enable efficient heat recycling in semiconductor spin devices.

  9. Proceedings of the Annual Meeting of the Association for Education in Journalism and Mass Communication (79th, Anaheim, CA, August 10-13, 1996). International Communications Division.

    ERIC Educational Resources Information Center

    Association for Education in Journalism and Mass Communication.

    The international communications section of the Proceedings contains the following 14 papers: "Spinning Stories: Latin America and the World Wide Web" (Eliza Tanner); "Private-Enterprise Broadcasting and Accelerating Dependency: Case Studies from Nigeria and Uganda" (Folu Folarin Ogundimu); "The Transitional Media System…

  10. Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements

    PubMed Central

    Zhou, Xinxing; Ling, Xiaohui; Zhang, Zhiyou; Luo, Hailu; Wen, Shuangchun

    2014-01-01

    Photonic spin Hall effect (SHE) manifesting itself as spin-dependent splitting escapes detection in previous photon tunneling experiments due to the fact that the induced beam centroid shift is restricted to a fraction of wavelength. In this work, we report on the first observation of this tiny effect in photon tunneling via weak measurements based on preselection and postselection technique on the spin states. We find that the spin-dependent splitting is even larger than the potential barrier thickness when spin-polarized photons tunneling through a potential barrier. This photonic SHE is attributed to spin-redirection Berry phase which can be described as a consequence of the spin-orbit coupling. These findings provide new insight into photon tunneling effect and thereby offer the possibility of developing spin-based nanophotonic applications. PMID:25487043

  11. Interface-driven spin-torque ferromagnetic resonance by Rashba coupling at the interface between nonmagnetic materials

    DOE PAGES

    Jungfleisch, M. B.; Zhang, W.; Sklenar, J.; ...

    2016-06-20

    The Rashba-Edelstein effect stems from the interaction between the electron's spin and its momentum induced by spin-orbit interaction at an interface or a surface. It was shown that the inverse Rashba-Edelstein effect can be used to convert a spin current into a charge current. Here, we demonstrate the reverse process of a charge-to spin-current conversion at a Bi/Ag Rashba interface. We show that this interface-driven spin current can drive an adjacent ferromagnet to resonance. We employ a spin-torque ferromagnetic resonance excitation/detection scheme which was developed originally for a bulk spin-orbital effect, the spin Hall effect. In our experiment, the directmore » Rashba-Edelstein effect generates an oscillating spin current from an alternating charge current driving the magnetization precession in a neighboring permalloy (Py, Ni 80Fe 20) layer. As a result, electrical detection of the magnetization dynamics is achieved by a rectificationmechanism of the time dependent multilayer resistance arising from the anisotropic magnetoresistance.« less

  12. Spin Hall Effects in Metallic Antiferromagnets

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2014-11-04

    In this paper, we investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn > IrMn > PdMn > FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spinmore » Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Finally, engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.« less

  13. Magneto-Seebeck effect in spin valves

    NASA Astrophysics Data System (ADS)

    Zhang, X. M.; Wan, C. H.; Wu, H.; Tang, P.; Yuan, Z. H.; Zhang, Q. T.; Zhang, X.; Tao, B. S.; Fang, C.; Han, X. F.

    2017-10-01

    The magneto-Seebeck (MS) effect, which is also called magneto-thermo-power, was observed in Co/Cu/Co and NiFe/Cu/Co spin valves. Their Seebeck coefficients in the parallel state were larger than those in the antiparallel state, and the MS ratio defined as (SAP -SP)/SP could reach -9% in our case. The MS effect originated not only from trivial giant magnetoresistance but also from spin current generated due to spin-polarized thermoelectric conductivity of ferromagnetic materials and subsequent modulation of the spin current by different spin configurations in spin valves. A simple Mott two-channel model reproduced a -11% MS effect for the Co/Cu/Co spin valves, qualitatively consistent with our observations. The MS effect could be applied for simultaneously sensing the temperature gradient and the magnetic field and also be possibly applied to determine spin polarization of thermoelectric conductivity and the Seebeck coefficient of ferromagnetic thin films.

  14. Polar-Core Spin Vortex of Quasi-2D Spin-2 Condensate in a Flat-Bottomed Optical Trap

    NASA Astrophysics Data System (ADS)

    Zheng, Gong-Ping; Chang, Gao-Zhan; Li, Pin; Li, Ting

    2017-10-01

    Motivated by the recent experiments realized in a flat-bottomed optical trap [Science 347 (2015) 167; Nat. Commun. 6 (2015) 6162], we study the ground state of polar-core spin vortex of quasi-2D spin-2 condensate in a homogeneous trap plus a weak magnetic field. The exact spatial distribution of local spin is obtained and the vortex core are observed to decrease with the growth of the effective spin-spin interaction. For the larger effective spin-spin interaction, the spatial distribution of spin magnitude in spin-2 condensate we obtained agrees well with that of spin-1 condensate in a homogeneous trap, where a polar-core spin vortex was schematically demonstrated as a fully-magnetized planar spin texture with a zero-spin core. The effective spin-spin interaction is proportional to both the bare spin-spin interaction and the radius of the homogeneous trap, simultaneously. Thus the polar-core spin vortex we obtained can be easily controlled by the radius of the trap. Supported by the National Natural Science Foundation of China under Grant No. 11274095, the Key Scientific Research Project of Henan Province of China under Grant No. 16A140011, and the High Performance Computing Center of Henan Normal University

  15. Spin structure of the neutron ({sup 3}He) and the Bjoerken sum rule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meziani, Z.E.

    1994-12-01

    A first measurement of the longitudinal asymmetry of deep-inelastic scattering of polarized electrons from a polarized {sup 3}He target at energies ranging from 19 to 26 GeV has been performed at the Stanford Linear Accelerator Center (SLAC). The spin-structure function of the neutron g{sub 1}{sup n} has been extracted from the measured asymmetries. The Quark Parton Model (QPM) interpretation of the nucleon spin-structure function is examined in light of the new results. A test of the Ellis-Jaffe sum rule (E-J) on the neutron is performed at high momentum transfer and found to be satisfied. Furthermore, combining the proton results ofmore » the European Muon Collaboration (EMC) and the neutron results of E-142, the Bjoerken sum rule test is carried at high Q{sup 2} where higher order Perturbative Quantum Chromodynamics (PQCD) corrections and higher-twist corrections are smaller. The sum rule is saturated to within one standard deviation.« less

  16. Horndeski theories confront the Gravity Probe B experiment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sajal; Chakraborty, Sumanta

    2018-06-01

    In this work we have investigated various properties of a spinning gyroscope in the context of Horndeski theories. In particular, we have focused on two specific situations—(a) when the gyroscope follows a geodesic trajectory and (b) when it is endowed with an acceleration. In both these cases, besides developing the basic formalism, we have also applied the same to understand the motion of a spinning gyroscope in various static and spherically symmetric spacetimes pertaining to Horndeski theories. Starting with the Schwarzschild de Sitter spacetime as a warm up exercise, we have presented our results for two charged Galileon black holes as well as for a black hole in scalar coupled Einstein-Gauss-Bonnet gravity. In all these cases we have shown that the spinning gyroscope can be used to distinguish black holes from naked singularities. Moreover, using the numerical estimation of the geodetic precession from the Gravity Probe B experiment, we have constrained the gauge/scalar charge of the black holes in these Horndeski theories. Implications are also discussed.

  17. Detection of pure inverse spin-Hall effect induced by spin pumping at various excitation

    NASA Astrophysics Data System (ADS)

    Inoue, H. Y.; Harii, K.; Ando, K.; Sasage, K.; Saitoh, E.

    2007-10-01

    Electric-field generation due to the inverse spin-Hall effect (ISHE) driven by spin pumping was detected and separated experimentally from the extrinsic magnetogalvanic effects in a Ni81Fe19/Pt film. By applying a sample-cavity configuration in which the extrinsic effects are suppressed, the spin pumping using ferromagnetic resonance gives rise to a symmetric spectral shape in the electromotive force spectrum, indicating that the motive force is due entirely to ISHE. This method allows the quantitative analysis of the ISHE and the spin-pumping effect. The microwave-power dependence of the ISHE amplitude is consistent with the prediction of a direct current-spin-pumping scenario.

  18. Spin pumping and inverse spin Hall effects in heavy metal/antiferromagnet/Permalloy trilayers

    NASA Astrophysics Data System (ADS)

    Saglam, Hilal; Zhang, Wei; Jungfleisch, M. Benjamin; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel

    Recent work shows efficient spin transfer via spin waves in insulating antiferromagnets (AFMs), suggesting that AFMs can play a more active role in the manipulation of ferromagnets. We use spin pumping and inverse spin Hall effect experiments on heavy metal (Pt and W)/AFMs/Py (Ni80Fe20) trilayer structures, to examine the possible spin transfer phenomenon in metallic AFMs, i . e . , FeMn and PdMn. Previous work has studied electronic effects of the spin transport in these materials, yielding short spin diffusion length on the order of 1 nm. However, the work did not examine whether besides diffusive spin transport by the conduction electrons, there are additional spin transport contributions from spin wave excitations. We clearly observe spin transport from the Py spin reservoir to the heavy metal layer through the sandwiched AFMs with thicknesses well above the previously measured spin diffusion lengths, indicating that spin transport by spin waves may lead to non-negligible contributions This work was supported by US DOE, OS, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the CNM, which is supported by DOE, OS under Contract No. DE-AC02-06CH11357.

  19. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Lesne, E.; Fu, Yu; Oyarzun, S.; Rojas-Sánchez, J. C.; Vaz, D. C.; Naganuma, H.; Sicoli, G.; Attané, J.-P.; Jamet, M.; Jacquet, E.; George, J.-M.; Barthélémy, A.; Jaffrès, H.; Fert, A.; Bibes, M.; Vila, L.

    2016-12-01

    The spin-orbit interaction couples the electrons’ motion to their spin. As a result, a charge current running through a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronic functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronic hetero- and mesostructures. Here, we make use of an interface-driven spin-orbit coupling mechanism--the Rashba effect--in the oxide two-dimensional electron system (2DES) LaAlO3/SrTiO3 to achieve spin-to-charge conversion with unprecedented efficiency. Through spin pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES and highlight the importance of a long scattering time to achieve efficient spin-to-charge interconversion.

  20. Thermal imaging of spin Peltier effect

    NASA Astrophysics Data System (ADS)

    Daimon, Shunsuke; Iguchi, Ryo; Hioki, Tomosato; Saitoh, Eiji; Uchida, Ken-Ichi

    2016-12-01

    The Peltier effect modulates the temperature of a junction comprising two different conductors in response to charge currents across the junction, which is used in solid-state heat pumps and temperature controllers in electronics. Recently, in spintronics, a spin counterpart of the Peltier effect was observed. The `spin Peltier effect' modulates the temperature of a magnetic junction in response to spin currents. Here we report thermal imaging of the spin Peltier effect; using active thermography technique, we visualize the temperature modulation induced by spin currents injected into a magnetic insulator from an adjacent metal. The thermal images reveal characteristic distribution of spin-current-induced heat sources, resulting in the temperature change confined only in the vicinity of the metal/insulator interface. This finding allows us to estimate the actual magnitude of the temperature modulation induced by the spin Peltier effect, which is more than one order of magnitude greater than previously believed.

  1. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  2. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Inverse spin-valve effect in nanoscale Si-based spin-valve devices

    NASA Astrophysics Data System (ADS)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2017-12-01

    We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.

  4. Spin-Hall effect and emergent antiferromagnetic phase transition in n-Si

    NASA Astrophysics Data System (ADS)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    Spin current experiences minimal dephasing and scattering in Si due to small spin-orbit coupling and spin-lattice interactions is the primary source of spin relaxation. We hypothesize that if the specimen dimension is of the same order as the spin diffusion length then spin polarization will lead to non-equilibrium spin accumulation and emergent phase transition. In n-Si, spin diffusion length has been reported up to 6 μm. The spin accumulation in Si will modify the thermal transport behavior of Si, which can be detected with thermal characterization. In this study, we report observation of spin-Hall effect and emergent antiferromagnetic phase transition behavior using magneto-electro-thermal transport characterization. The freestanding Pd (1 nm)/Ni80Fe20 (75 nm)/MgO (1 nm)/n-Si (2 μm) thin film specimen exhibits a magnetic field dependent thermal transport and spin-Hall magnetoresistance behavior attributed to Rashba effect. An emergent phase transition is discovered using self-heating 3ω method, which shows a diverging behavior at 270 K as a function of temperature similar to a second order phase transition. We propose that spin-Hall effect leads to the spin accumulation and resulting emergent antiferromagnetic phase transition. We propose that the length scale for Rashba effect can be equal to the spin diffusion length and two-dimensional electron gas is not essential for it. The emergent antiferromagnetic phase transition is attributed to the site inversion asymmetry in diamond cubic Si lattice.

  5. Spin effects induced by thermal perturbation in a normal metal/magnetic insulator system

    NASA Astrophysics Data System (ADS)

    Lyapilin, I. I.; Okorokov, M. S.; Ustinov, V. V.

    2015-05-01

    Using one of the methods of quantum nonequilibrium statistical physics, we have investigated the spin transport transverse to the normal metal/ferromagnetic insulator interface in hybrid nanostructures. An approximation of the effective parameters, when each of the interacting subsystems (electron spin, magnon, and phonon) is characterized by its own effective temperature, has been considered. The generalized Bloch equations which describe the spin-wave current propagation in the dielectric have been derived. Finally, two sides of the spin transport "coin" have been revealed: the diffusive nature of the magnon motion and magnon relaxation processes, responsible for the spin pumping, and the spin-torque effect.

  6. Differential cross sections and polarization observables from CLAS K *photoproduction and the search for new N* states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anisovich, A. V.

    The reactionmore » $$\\gamma p \\to K^{*+} \\Lambda$$ was measured using the CLAS detector for photon energies between the threshold and 3.9 GeV at the Thomas Jefferson National Accelerator Facility. For the first time, spin-density matrix elements have been extracted for this reaction. Differential cross sections, spin density matrix elements, and the $$\\Lambda$$ recoil polarization are compared with theoretical predictions using the BnGa partial wave analysis. The main result is the evidence for significant contributions from $N(1895)1/2^-$ and $N(2100)1/2^+$ to the reaction. Branching ratios for decays into $$K^*\\Lambda$$ for these resonances and further resonances are reported.« less

  7. Measurement of beam-spin asymmetries for π+ electroproduction above the baryon resonance region

    NASA Astrophysics Data System (ADS)

    Avakian, H.; Burkert, V. D.; Elouadrhiri, L.; Bianchi, N.; Adams, G.; Afanasev, A.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Armstrong, D. S.; Asavapibhop, B.; Audit, G.; Auger, T.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Ciciani, L.; Cole, P. L.; Coleman, A.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Desanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Eckhause, M.; Egiyan, H.; Egiyan, K. S.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Gaff, S. J.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gordon, C. I. O.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Kelley, J. H.; Kellie, J.; Khandaker, M.; Kim, D. H.; Kim, K. Y.; Kim, K.; Kim, M. S.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kubarovsky, V.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Livingston, K.; Li, Ji; Longhi, A.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Opper, A. K.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, B.; Zhao, J.; Zhou, Z.

    2004-06-01

    We report the first evidence for a nonzero beam-spin azimuthal asymmetry in the electroproduction of positive pions in the deep-inelastic kinematic region. Data for the reaction ep→e'π+X have been obtained using a polarized electron beam of 4.3 GeV with the CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Accelerator Facility. The amplitude of the sin φ modulation increases with the momentum of the pion relative to the virtual photon, z. In the range z=0.5 0.8 the average amplitude is 0.038±0.005±0.003 for a missing mass MX>1.1 GeV and 0.037±0.007±0.004 for MX>1.4 GeV.

  8. NICA project at JINR: status and prospects

    NASA Astrophysics Data System (ADS)

    Kekelidze, V. D.

    2017-06-01

    The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and dense baryonic matter in heavy-ion collisions in the energy range up to 11.0 AGeV . The plan of NICA accelerator block development includes an upgrade of the existing superconducting (SC) synchrotron Nuclotron and construction of the new injection complex, SC Booster, and SC Collider with two interaction points (IP). The heavy-ion collision program will be performed with the fixed target experiment Baryonic Matter at Nuclotron (BM@N) at the beam extracted from the Nuclotron, and with Multi-Purpose Detector (MPD) at the first IP of NICA Collider. Investigation of nucleon spin structure and polarization phenomena is foreseen with the Spin Physics Detector (SPC) at the second IP of the Collider.

  9. Kalman Filter for Mass Property and Thrust Identification (MMS)

    NASA Technical Reports Server (NTRS)

    Queen, Steven

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories, elliptically orbiting the Earth in a tetrahedron formation. For the operational success of the mission, on-board systems must be able to deliver high-precision orbital adjustment maneuvers. On MMS, this is accomplished using feedback from on-board star sensors in tandem with accelerometers whose measurements are dynamically corrected for errors associated with a spinning platform. In order to determine the required corrections to the measured acceleration, precise estimates of attitude, rate, and mass-properties is necessary. To this end, both an on-board and ground-based Multiplicative Extended Kalman Filter (MEKF) were formulated and implemented in order to estimate the dynamic and quasi-static properties of the spacecraft.

  10. Differential cross sections and polarization observables from CLAS K *photoproduction and the search for new N* states

    DOE PAGES

    Anisovich, A. V.

    2017-05-16

    The reactionmore » $$\\gamma p \\to K^{*+} \\Lambda$$ was measured using the CLAS detector for photon energies between the threshold and 3.9 GeV at the Thomas Jefferson National Accelerator Facility. For the first time, spin-density matrix elements have been extracted for this reaction. Differential cross sections, spin density matrix elements, and the $$\\Lambda$$ recoil polarization are compared with theoretical predictions using the BnGa partial wave analysis. The main result is the evidence for significant contributions from $N(1895)1/2^-$ and $N(2100)1/2^+$ to the reaction. Branching ratios for decays into $$K^*\\Lambda$$ for these resonances and further resonances are reported.« less

  11. Intrinsic Spin-Hall Effect in n-Doped Bulk GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    We show that the bulk Dresselhauss (k{sup 3}) spin-orbit coupling term leads to an intrinsic spin-Hall effect in n-doped bulk GaAs, but without the appearance of uniform magnetization. The spin-Hall effect in strained and unstrained bulk GaAs has been recently observed experimentally by Kato et. al. [1]. We show that the experimental result is quantitatively consistent with the intrinsic spin-Hall effect due to the Dresselhauss term, when lifetime broadening is taken into account. On the other hand, extrinsic contribution to the spin-Hall effect is several orders of magnitude smaller than the observed effect.

  12. Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, B. F., E-mail: bfmiao@nju.edu.cn; Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218; Huang, S. Y.

    2016-01-15

    The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE), inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE) may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. It is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from the ANE.

  13. THE ABSENCE OF EX-COMPANIONS IN TYPE Ia SUPERNOVA REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Stefano, R.; Kilic, Mukremin, E-mail: rd@cfa.harvard.edu, E-mail: kilic@ou.edu

    Type Ia supernovae (SNe Ia) play important roles in our study of the expansion and acceleration of the universe, but because we do not know the exact nature or natures of the progenitors, there is a systematic uncertainty that must be resolved if SNe Ia are to become more precise cosmic probes. No progenitor system has ever been identified either in the pre- or post-explosion images of a Ia event. There have been recent claims for and against the detection of ex-companion stars in several SNe Ia remnants. These studies, however, usually ignore the angular momentum gain of the progenitormore » white dwarf (WD), which leads to a spin-up phase and a subsequent spin-down phase before explosion. For spin-down timescales greater than 10{sup 5} years, the donor star could be too dim to detect by the time of explosion. Here we revisit the current limits on ex-companion stars to SNR 0509-67.5, a 400-year-old remnant in the Large Magellanic Cloud. If the effects of possible angular momentum gain on the WD are included, a wide range of single-degenerate progenitor models are allowed for this remnant. We demonstrate that the current absence of evidence for ex-companion stars in this remnant, as well as other SNe Ia remnants, does not necessarily provide the evidence of absence for ex-companions. We discuss potential ways to identify such ex-companion stars through deep imaging observations.« less

  14. Thermally driven spin-Seebeck transport in chiral dsDNA-based molecular devices

    NASA Astrophysics Data System (ADS)

    Nian, L. L.; Zhang, Rong; Tang, F. R.; Tang, Jun; Bai, Long

    2018-03-01

    By employing the nonequilibrium Green's function technique, we study the thermal-induced spin-Seebeck transport through a chiral double-stranded DNA (dsDNA) connected to a normal-metal and a ferromagnetic lead. How the main parameters of the dsDNA-based system influence the spin-Seebeck transport is analyzed at length, and the thermally created charge (spin-related) current displays the rectification effect and the negative differential thermal conductance feature. More importantly, the spin current exhibits the rectification behavior of the spin-Seebeck effect; even the perfect spin-Seebeck effect can be obtained with the null charge current. Thus, the chiral dsDNA-based system can act as a spin(charge)-Seebeck diode, spin(charge)-Seebeck switch, and spin(charge)-Seebeck transistor. Our results provide new ways to design spin caloritronic devices based on dsDNA or other organic molecules.

  15. Peculiarities of magnetic and spin effects in a biradical/stable radical complex (three-spin system). Theory and comparison with experiment.

    PubMed

    Magin, Ilya M; Purtov, Petr A; Kruppa, Alexander I; Leshina, Tatiana V

    2005-08-25

    The field dependencies of biradical recombination probability in the presence of paramagnetic species with spins S(3) = 1 and S(3) = (1)/(2) have been calculated in the framework of the density matrix formalism. To describe the effect of the "third" spin on the spin evolution in biradical, we have also considered the spin exchange interaction between the added spin and one of the paramagnetic biradical centers. A characteristic feature of the calculated field dependencies is the existence of several extrema with positions and magnitudes depending on the signs and values of the exchange integrals in the system. The method proposed can be used to describe the effect of spin catalysis. It is shown that for the system with the third spin S(3) = 1 spin catalysis manifests itself stronger than in the case of spin S(3) = (1)/(2). The dependence of spin catalysis efficiency on the exchange interaction with the third spin has an extremum with position independent of the value of the spin added.

  16. Intrinsic anharmonic effects on the phonon frequencies and effective spin-spin interactions in a quantum simulator made from trapped ions in a linear Paul trap

    NASA Astrophysics Data System (ADS)

    McAneny, M.; Freericks, J. K.

    2014-11-01

    The Coulomb repulsion between ions in a linear Paul trap gives rise to anharmonic terms in the potential energy when expanded about the equilibrium positions. We examine the effect of these anharmonic terms on the accuracy of a quantum simulator made from trapped ions. To be concrete, we consider a linear chain of Yb171+ ions stabilized close to the zigzag transition. We find that for typical experimental temperatures, frequencies change by no more than a factor of 0.01 % due to the anharmonic couplings. Furthermore, shifts in the effective spin-spin interactions (driven by a spin-dependent optical dipole force) are also, in general, less than 0.01 % for detunings to the blue of the transverse center-of-mass frequency. However, detuning the spin interactions near other frequencies can lead to non-negligible anharmonic contributions to the effective spin-spin interactions. We also examine an odd behavior exhibited by the harmonic spin-spin interactions for a range of intermediate detunings, where nearest-neighbor spins with a larger spatial separation on the ion chain interact more strongly than nearest neighbors with a smaller spatial separation.

  17. Spin pumping and inverse Rashba-Edelstein effect in NiFe/Ag/Bi and NiFe/Ag/Sb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei, E-mail: zwei@anl.gov; Jungfleisch, Matthias B.; Jiang, Wanjun

    2015-05-07

    The Rashba effect is an interaction between the spin and the momentum of electrons induced by the spin-orbit coupling in surface or interface states. We measured the inverse Rashba-Edelstein effect via spin pumping in Ag/Bi and Ag/Sb interfaces. The spin current is injected from the ferromagnetic resonance of a NiFe layer towards the Rashba interfaces, where it is further converted into a charge current. Using spin pumping theory, we quantify the conversion parameter of spin to charge current to be 0.11 ± 0.02 nm for Ag/Bi and a factor of ten smaller for Ag/Sb. The relative strength of the effect is in agreementmore » with spectroscopic measurements and first principles calculations. We also vary the interlayer materials to study the voltage output in relation to the change of the effective spin mixing conductance. The spin pumping experiment offers a straight-forward approach of using spin current as an efficient probe for detecting interface Rashba splitting.« less

  18. Dyakonov-Perel Effect on Spin Dephasing in n-Type GaAs

    NASA Technical Reports Server (NTRS)

    Ning, C. Z.; Wu, M. W.

    2003-01-01

    A paper presents a study of the contribution of the Dyakonov-Perel (DP) effect to spin dephasing in electron-donor-doped bulk GaAs in the presence of an applied steady, moderate magnetic field perpendicular to the growth axis of the GaAs crystal. (The DP effect is an electron-wave-vector-dependent spin-state splitting of the conduction band, caused by a spin/orbit interaction in a crystal without an inversion center.) The applicable Bloch equations of kinetics were constructed to include terms accounting for longitudinal optical and acoustic phonon scattering as well as impurity scattering. The contributions of the aforementioned scattering mechanisms to spin-dephasing time in the presence of DP effect were examined by solving the equations numerically. Spin-dephasing time was obtained from the temporal evolution of the incoherently summed spin coherence. Effects of temperature, impurity level, magnetic field, and electron density on spin-dephasing time were investigated. Spin-dephasing time was found to increase with increasing magnetic field. Contrary to predictions of previous simplified treatments of the DP effect, spin-dephasing time was found to increase with temperature in the presence of impurity scattering. These results were found to agree qualitatively with results of recent experiments.

  19. Spin pumping and inverse Rashba-Edelstein effect in NiFe/Ag/Bi and NiFe/Ag/Sb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun

    2015-03-20

    The Rashba effect is an interaction between the spin and the momentum of electrons induced by the spin-orbit coupling in surface or interface states. Here, we measured the inverse Rashba-Edelstein effect via spin pumping in Ag/Bi and Ag/Sb interfaces. The spin current is injected from the ferromagnetic resonance of a NiFe layer towards the Rashba interfaces, where it is further converted into a charge current. While using spin pumping theory, we quantify the conversion parameter of spin to charge current to be 0.11 ± 0.02 nm for Ag/Bi and a factor of ten smaller for Ag/Sb. Furthermore, the relative strengthmore » of the effect is in agreement with spectroscopic measurements and first principles calculations. The spin pumping experiment offers a straight-forward approach of using spin current as an efficient probe for detecting interface Rashba splitting.« less

  20. Effect of quantum tunneling on spin Hall magnetoresistance

    NASA Astrophysics Data System (ADS)

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-01

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  1. Spin valve effect of the interfacial spin accumulation in yttrium iron garnet/platinum bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Lichuan; Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716; Zhang, Dainan

    2014-09-29

    We report the spin valve effect in yttrium iron garnet/platinum (YIG/Pt) bilayers. The spin Hall effect (SHE) generates spin accumulation at the YIG/Pt interface and can be opened/closed by magnetization switching in the electrical insulator YIG. The interfacial spin accumulation was measured in both YIG/Pt and YIG/Cu/Pt structures using a planar Hall configuration. The spin valve effect remained, even after a 2 nm thick Cu layer was inserted between the YIG and Pt layers, which aimed to exclude the induced magnetization at the YIG/Pt interface. The transverse Hall voltage and switching field were dependent on the applied charge current density. Themore » origin of this behavior can be explained by the SHE induced torque exerted on the domain wall, caused by the transfer of the spin angular momentum from the spin-polarized current to the YIG magnetic moment.« less

  2. Spin-orbit proximity effect in graphene

    NASA Astrophysics Data System (ADS)

    Avsar, A.; Tan, J. Y.; Taychatanapat, T.; Balakrishnan, J.; Koon, G. K. W.; Yeo, Y.; Lahiri, J.; Carvalho, A.; Rodin, A. S.; O'Farrell, E. C. T.; Eda, G.; Castro Neto, A. H.; Özyilmaz, B.

    2014-09-01

    The development of spintronics devices relies on efficient generation of spin-polarized currents and their electric-field-controlled manipulation. While observation of exceptionally long spin relaxation lengths makes graphene an intriguing material for spintronics studies, electric field modulation of spin currents is almost impossible due to negligible intrinsic spin-orbit coupling of graphene. In this work, we create an artificial interface between monolayer graphene and few-layer semiconducting tungsten disulphide. In these devices, we observe that graphene acquires spin-orbit coupling up to 17 meV, three orders of magnitude higher than its intrinsic value, without modifying the structure of the graphene. The proximity spin-orbit coupling leads to the spin Hall effect even at room temperature, and opens the door to spin field effect transistors. We show that intrinsic defects in tungsten disulphide play an important role in this proximity effect and that graphene can act as a probe to detect defects in semiconducting surfaces.

  3. Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene

    NASA Astrophysics Data System (ADS)

    Ferreira, Aires; Milletari, Mirco

    Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).

  4. Holonomy Attractor Connecting Spaces of Different Curvature Responsible for ``Anomalies''

    NASA Astrophysics Data System (ADS)

    Binder, Bernd

    2009-03-01

    In this lecture paper we derive Magic Angle Precession (MAP) from first geometric principles. MAP can arise in situations, where precession is multiply related to spin, linearly by time or distance (dynamic phase, rolling, Gauss law) and transcendentally by the holonomy loop path (geometric phase). With linear spin-precession coupling, gyroscopes can be spun up and down to very high frequencies via low frequency holonomy control induced by external accelerations, which provides for extreme coupling strengths or "anomalies" that can be tested by the powerball or gyrotwister device. Geometrically, a gyroscopic manifold with spherical metric is tangentially aligned to a precession wave channel with conic or hyperbolic metric (like the relativistic Thomas precession). Transporting triangular spin/precession vector relations across the tangential boundary of contact with SO(3) Lorentz symmetry, we get extreme vector currents near the attractor fixed points in precession phase space, where spin currents remain intact while crossing the contact boundaries between regions of different curvature signature (-1, 0, +1). The problem can be geometrically solved by considering a curvature invariant triangular condition, which holds on surfaces with different curvature that are in contact and locally parallel. In this case two out of three angles are identical, whereas the third angle is different due to holonomy. If we require that the side length ratio corresponding to these angles are invariant we get a geodesic chaotic attractor, which is a cosine map cos(x)˜Mx in parameter space providing for fixed points, limit cycle bifurcations, and singularities. The situation could be quite natural and common in the context of vector currents in curved spacetime and gauge theories. MAP could even be part of the electromagnetic interaction, where the electric charge is the geometric U(1) precession spin current and gauge potential with magnetic effects given by extra rotations under the SO(3). MAP can be extended to a neural network, where the synaptic connection of the holonomy attractor is just the mathematical condition adjusting and bridging spaces with positive (spherical) and negative (hyperbolic) curvature allowing for lossless/supra spin currents. Another strategy is to look for existing spin/precession anomalies and corresponding nonlinear holonomy conditions at the most fundamental level from the quark level to the cosmic scale. In these sceneries the geodesic attractor could control holonomy and curvature near the fixed points. It was proposed in 2002 that this should happen with electrons in atomic orbits showing a Berry phase part of the Rydberg or Sommerfeld fine structure constant and in 2003 that this effect could be responsible for (in)stabilities in the nuclear range and in superconductors. In 2008 it was shown that the attractor is part of the chaotic mechanical dynamics successfully at work in the Gyro-twister fitness device, and in 2007-2009 that there could be some deep relevance to "anomalies" in many scenarios even on the cosmic scales. Thus, we will point to and discuss some possible future applications that could be utilized for metric engineering: generating artificial holonomy and curvature (DC effect) for propulsion, or forcing holonomy waves (AC effect) in hyperbolic space-time, which are just gravitational waves interesting for communication.

  5. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film.

    PubMed

    Yao, Wei; Wang, Eryin; Huang, Huaqing; Deng, Ke; Yan, Mingzhe; Zhang, Kenan; Miyamoto, Koji; Okuda, Taichi; Li, Linfei; Wang, Yeliang; Gao, Hongjun; Liu, Chaoxing; Duan, Wenhui; Zhou, Shuyun

    2017-01-31

    The generally accepted view that spin polarization in non-magnetic solids is induced by the asymmetry of the global crystal space group has limited the search for spintronics materials mainly to non-centrosymmetric materials. In recent times it has been suggested that spin polarization originates fundamentally from local atomic site asymmetries and therefore centrosymmetric materials may exhibit previously overlooked spin polarizations. Here, by using spin- and angle-resolved photoemission spectroscopy, we report the observation of helical spin texture in monolayer, centrosymmetric and semiconducting PtSe 2 film without the characteristic spin splitting in conventional Rashba effect (R-1). First-principles calculations and effective analytical model analysis suggest local dipole induced Rashba effect (R-2) with spin-layer locking: opposite spins are degenerate in energy, while spatially separated in the top and bottom Se layers. These results not only enrich our understanding of the spin polarization physics but also may find applications in electrically tunable spintronics.

  6. Spin power and efficiency in an Aharnov-Bohm ring with an embedded magnetic impurity quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Guo, Yong, E-mail: guoy66@tsinghua.edu.cn; Collaborative Innovation Center of Quantum Matter, Beijing

    2015-05-11

    Spin thermoelectric effects in an Aharnov-Bohm ring with a magnetic impurity quantum dot (QD) are theoretically investigated by using the nonequilibrium Green's function method. It is found that due to the exchange coupling between the impurity and the electrons in QD, spin output power, and efficiency can be significant and be further modulated by the gate voltage. The spin thermoelectric effect can be modulated effectively by adjusting the Rashba spin-orbit interaction (RSOI) and the magnetic flux. The spin power and efficiency show zigzag oscillations, and thus spin thermoelectric effect can be switched by adjusting the magnetic flux phase factor andmore » RSOI ones. In addition, the spin efficiency can be significantly enhanced by the coexistence of the RSOI and the magnetic flux, and the maximal value of normalized spin efficiency η{sub max}/η{sub C} = 0.35 is obtained. Our results show that such a QD ring device may be used as a manipulative spin thermoelectric generator.« less

  7. Y{sub 3}Fe{sub 5}O{sub 12} spin pumping for quantitative understanding of pure spin transport and spin Hall effect in a broad range of materials (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Chunhui; Wang, Hailong; Hammel, P. Chris

    2015-05-07

    Using Y{sub 3}Fe{sub 5}O{sub 12} (YIG) thin films grown by our sputtering technique, we study dynamic spin transport in nonmagnetic, ferromagnetic, and antiferromagnetic (AF) materials by ferromagnetic resonance spin pumping. From both inverse spin Hall effect and damping enhancement, we determine the spin mixing conductance and spin Hall angle in many metals. Surprisingly, we observe robust spin conduction in AF insulators excited by an adjacent YIG at resonance. This demonstrates that YIG spin pumping is a powerful and versatile tool for understanding spin Hall physics, spin-orbit coupling, and magnetization dynamics in a broad range of materials.

  8. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed Ben Mohamed; Manchon, A.

    2016-07-01

    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ . While the spin Hall effect dominates in the diffusive limit (d ≫λ ), spin swapping dominates in the Knudsen regime (d ≲λ ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

  9. High-pressure phase transitions of Fe 3-xTi xO 4 solid solution up to 60 GPa correlated with electronic spin transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki

    2013-06-12

    The structural phase transition of the titanomagnetite (Fe 3–xTi xO 4) solid solution under pressures up to 60 GPa has been clarified by single-crystal and powder diffraction studies using synchrotron radiation and a diamond-anvil cell. Present Rietveld structure refinements of the solid solution prove that the prefered cation distribution is based on the crystal field preference rather than the magnetic spin ordering in the solid solution. The Ti-rich phases in 0.734 ≤ x ≤1.0 undergo a phase transformation from the cubic spinel of Fd3m to the tetragonal spinel structure of I4 1/amd with c/a < 1.0. The transition is drivenmore » by a Jahn-Teller effect of IVFe 2+ (3d 6) on the tetrahedral site. The c/a < 1 ratio is induced by lifting of the degeneracy of the e orbitals by raising the d x2-y2 orbital below the energy of the d z2 orbital. The distortion characterized by c/a < 1 is more pronounced with increasing Ti content in the Fe 3–xTi xO 4 solid solutions and with increasing pressure. An X-ray emission experiment of Fe 2TiO 4 at high pressures confirms the spin transition of FeKβ from high spin to intermediate spin (IS) state. The high spin (HS)-to-low spin (LS) transition starts at 14 GPa and the IS state gradually increases with compression. The VIFe 2+ in the octahedral site is more prone for the HS-to-LS transition, compared with Fe 2+ in the fourfold- or eightfold-coordinated site. The transition to the orthorhombic post-spinel structure with space group Cmcm has been confirmed in the whole compositional range of Fe 3–xTi xO 4. The transition pressure decreases from 25 GPa (x = 0.0) to 15 GPa (x = 1.0) with increasing Ti content. There are two cation sites in the orthorhombic phase: M1 and M2 sites of eightfold and sixfold coordination, respectively. Fe 2+ and Ti 4+ are disordered on the M2 site. This structural change is accelerated at higher pressures due to the spin transition of Fe 2+ in the octahedral site. This is because the ionic radius of VIFe 2+ becomes 20% shortened by the spin transition. At 53 GPa, the structure transforms to another high-pressure polymorph with Pmma symmetry with the ordered structure of Ti and Fe atoms in the octahedral site. This structure change results from the order-disorder transition.« less

  10. Anomalous current from the covariant Wigner function

    NASA Astrophysics Data System (ADS)

    Prokhorov, George; Teryaev, Oleg

    2018-04-01

    We consider accelerated and rotating media of weakly interacting fermions in local thermodynamic equilibrium on the basis of kinetic approach. Kinetic properties of such media can be described by covariant Wigner function incorporating the relativistic distribution functions of particles with spin. We obtain the formulae for axial current by summation of the terms of all orders of thermal vorticity tensor, chemical potential, both for massive and massless particles. In the massless limit all the terms of fourth and higher orders of vorticity and third order of chemical potential and temperature equal zero. It is shown, that axial current gets a topological component along the 4-acceleration vector. The similarity between different approaches to baryon polarization is established.

  11. Thermoelectric spin voltage in graphene

    NASA Astrophysics Data System (ADS)

    Sierra, Juan F.; Neumann, Ingmar; Cuppens, Jo; Raes, Bart; Costache, Marius V.; Valenzuela, Sergio O.

    2018-02-01

    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents1,2. Amongst the most intriguing phenomena is the spin Seebeck effect3-5, in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect6-8. Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport9-11, energy-dependent carrier mobility and unique density of states12,13. Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current14-17. These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias.

  12. Research of spin-orbit interaction in organic conjugated polymers

    NASA Astrophysics Data System (ADS)

    Li, H.; Zhou, M. Y.; Wu, S. Y.; Liang, X. R.

    2017-06-01

    The effect of spin-orbit interaction on the one-dimensional organic polymer was investigated theoretically. Spin-orbital interaction led to the spatial separation of energy band but did not eliminate spin degeneration, which was different from energy level splitting in the Zeeman Effect. Spin-orbit interaction had little effect on the energy band structure, charge density, and lattice position, etc.; Spin precession was obtained when a polaron was transported along the polymer chain, which theoretically proved that it was feasible to control the spin precession of polaron in organic polymers by the use of external electric field.

  13. Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG

    DOE PAGES

    Miao, B. F.; Huang, S. Y.; Qu, D.; ...

    2016-01-29

    The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE), inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE) may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. Here, it is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from themore » ANE.« less

  14. Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhang, Yang; Felser, Claudia; Yan, Binghai

    2016-09-01

    Since their discovery, topological insulators are expected to be ideal spintronic materials owing to the spin currents carried by surface states with spin-momentum locking. However, the bulk doping problem remains an obstacle that hinders such an application. In this work, we predict that a newly discovered family of topological materials, the Weyl semimetals, exhibits a large intrinsic spin Hall effect that can be utilized to generate and detect spin currents. Our ab initio calculations reveal a large spin Hall conductivity in the TaAs family of Weyl materials. Considering the low charge conductivity of semimetals, Weyl semimetals are believed to present a larger spin Hall angle (the ratio of the spin Hall conductivity over the charge conductivity) than that of conventional spin Hall systems such as the 4 d and 5 d transition metals. The spin Hall effect originates intrinsically from the bulk band structure of Weyl semimetals, which exhibit a large Berry curvature and spin-orbit coupling, so the bulk carrier problem in the topological insulators is naturally avoided. Our work not only paves the way for employing Weyl semimetals in spintronics, but also proposes a new guideline for searching for the spin Hall effect in various topological materials.

  15. Noninvasive detection of nanoparticle clustering by water proton NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taraban, Marc B.; Truong, Huy C.; Ilavsky, Jan

    It is shown that water proton NMR can detect uncontrolled clustering of inert nanoparticles (NPs) formulated as aqueous suspensions. The clustering of NPs causes the compartmentalization of water molecules, leading to accelerated proton spin de-coherence, and hence, much faster water transverse relaxation rates. The results suggest that water proton NMR can be used to noninvasively inspect NP products by commercial end users and researchers.

  16. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  17. Complex eigenvalue analysis of rotating structures

    NASA Technical Reports Server (NTRS)

    Patel, J. S.; Seltzer, S. M.

    1972-01-01

    A FORTRAN subroutine to NASTRAN which constructs coriolis and centripetal acceleration matrices, and a centrifugal load vector due to spin about a selected point or about the mass center of the structure is discussed. The rigid translational degrees of freedom can be removed by using a transformation matrix T and its explicitly given inverse. These matrices are generated in the subroutine and their explicit expressions are given.

  18. Edge-defect induced spin-dependent Seebeck effect and spin figure of merit in graphene nanoribbons.

    PubMed

    Liu, Qing-Bo; Wu, Dan-Dan; Fu, Hua-Hua

    2017-10-11

    By using the first-principle calculations combined with the non-equilibrium Green's function approach, we have studied spin caloritronic properties of graphene nanoribbons (GNRs) with different edge defects. The theoretical results show that the edge-defected GNRs with sawtooth shapes can exhibit spin-dependent currents with opposite flowing directions by applying temperature gradients, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). The edge defects bring about two opposite effects on the thermal spin currents: the enhancement of the symmetry of thermal spin-dependent currents, which contributes to the realization of pure thermal spin currents, and the decreasing of the spin thermoelectric conversion efficiency of the devices. It is fortunate that applying a gate voltage is an efficient route to optimize these two opposite spin thermoelectric properties towards realistic device applications. Moreover, due to the existence of spin-splitting band gaps, the edge-defected GNRs can be designed as spin-dependent Seebeck diodes and rectifiers, indicating that the edge-defected GNRs are potential candidates for room-temperature spin caloritronic devices.

  19. Direct and accelerated parameter mapping using the unscented Kalman filter.

    PubMed

    Zhao, Li; Feng, Xue; Meyer, Craig H

    2016-05-01

    To accelerate parameter mapping using a new paradigm that combines image reconstruction and model regression as a parameter state-tracking problem. In T2 mapping, the T2 map is first encoded in parameter space by multi-TE measurements and then encoded by Fourier transformation with readout/phase encoding gradients. Using a state transition function and a measurement function, the unscented Kalman filter can describe T2 mapping as a dynamic system and directly estimate the T2 map from the k-space data. The proposed method was validated with a numerical brain phantom and volunteer experiments with a multiple-contrast spin echo sequence. Its performance was compared with a conjugate-gradient nonlinear inversion method at undersampling factors of 2 to 8. An accelerated pulse sequence was developed based on this method to achieve prospective undersampling. Compared with the nonlinear inversion reconstruction, the proposed method had higher precision, improved structural similarity and reduced normalized root mean squared error, with acceleration factors up to 8 in numerical phantom and volunteer studies. This work describes a new perspective on parameter mapping by state tracking. The unscented Kalman filter provides a highly accelerated and efficient paradigm for T2 mapping. © 2015 Wiley Periodicals, Inc.

  20. Collisional spin-oriented Sherman function in electron-hole semiconductor plasmas: Landau damping effect

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-04-01

    The influence of Landau damping on the spin-oriented collisional asymmetry is investigated in electron-hole semiconductor plasmas. The analytical expressions of the spin-singlet and the spin-triplet scattering amplitudes as well as the spin-oriented asymmetry Sherman function are obtained as functions of the scattering angle, the Landau parameter, the effective Debye length, and the collision energy. It is found that the Landau damping effect enhances the spin-singlet and spin-triplet scattering amplitudes in the forward and back scattering domains, respectively. It is also found that the Sherman function increases with an increase in the Landau parameter. In addition, the spin-singlet scattering process is found to be dominant rather than the spin-triplet scattering process in the high collision energy domain.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fajardo, E. A.; Zülicke, U.; Winkler, R.

    We discuss the universal spin dynamics in quasi-one-dimensional systems including the real spin in narrow-gap semiconductors like InAs and InSb, the valley pseudospin in staggered single-layer graphene, and the combination of real spin and valley pseudospin characterizing single-layer transition metal dichalcogenides (TMDCs) such as MoS2, WS2, MoS2, and WSe2. All these systems can be described by the same Dirac-like Hamiltonian. Spin-dependent observable effects in one of these systems thus have counterparts in each of the other systems. Effects discussed in more detail include equilibrium spin currents, current-induced spin polarization (Edelstein effect), and spin currents generated via adiabatic spin pumping. Ourmore » work also suggests that a long-debated spin-dependent correction to the position operator in single-band models should be absent.« less

  2. Nano-oxide-layer specular spin valve heads with synthetic pinned layer: Head performance and reliability

    NASA Astrophysics Data System (ADS)

    Hasegawa, N.; Koike, F.; Ikarashi, K.; Ishizone, M.; Kawamura, M.; Nakazawa, Y.; Takahashi, A.; Tomita, H.; Iwasaki, H.; Sahashi, M.

    2002-05-01

    To implement the specular nano-oxide-layer (NOL) spin valve (SV) heads for use in practical applications, it is key to simultaneously achieve a good specular effect of the NOL inserted in the synthetic ferrimagnet pinned layer (i.e., high magnetoresistance MR performance) and a strong pinning field through the NOL. By using CoFe+X as a substance to be subjected to oxidation, we obtained the NOL specular SV films simultaneously achieving a high MR ratio of 17%-18% and a high pinning field of 1100-1500 Oe. Narrow track (0.12 μm) heads were fabricated and they showed a high sensitivity of 10 mV/μm. Several reliability tests were done both at the sheet film level and the actual head level. The oxygen inside NOL was found to be stable up to 350 °C, and pinned layer magnetization canting after orthogonal field annealing was found to be almost the same as today's non-NOL SV films. An electrostatic discharge test and accelerated lifetime test were also performed and NOL specular heads were demonstrated to have almost the same robustness as today's non-NOL heads.

  3. Wind-accelerated orbital evolution in binary systems with giant stars

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Blackman, Eric G.; Nordhaus, Jason; Frank, Adam; Carroll-Nellenback, Jonathan

    2018-01-01

    Using 3D radiation-hydrodynamic simulations and analytic theory, we study the orbital evolution of asymptotic giant branch (AGB) binary systems for various initial orbital separations and mass ratios, and thus different initial accretion modes. The time evolution of binary separations and orbital periods are calculated directly from the averaged mass-loss rate, accretion rate and angular momentum loss rate. We separately consider spin-orbit synchronized and zero-spin AGB cases. We find that the angular momentum carried away by the mass loss together with the mass transfer can effectively shrink the orbit when accretion occurs via wind-Roche lobe overflow. In contrast, the larger fraction of mass lost in Bondi-Hoyle-Lyttleton accreting systems acts to enlarge the orbit. Synchronized binaries tend to experience stronger orbital period decay in close binaries. We also find that orbital period decay is faster when we account for the non-linear evolution of the accretion mode as the binary starts to tighten. This can increase the fraction of binaries that result in common envelope, luminous red novae, Type Ia supernovae and planetary nebulae with tight central binaries. The results also imply that planets in the habitable zone around white dwarfs are unlikely to be found.

  4. Automated calculation of matrix elements and physics motivated observables

    NASA Astrophysics Data System (ADS)

    Was, Z.

    2017-11-01

    The central aspect of my personal scientific activity, has focused on calculations useful for interpretation of High Energy accelerator experimental results, especially in a domain of precision tests of the Standard Model. My activities started in early 80’s, when computer support for algebraic manipulations was in its infancy. But already then it was important for my work. It brought a multitude of benefits, but at the price of some inconvenience for physics intuition. Calculations became more complex, work had to be distributed over teams of researchers and due to automatization, some aspects of the intermediate results became more difficult to identify. In my talk I will not be very exhaustive, I will present examples from my personal research only: (i) calculations of spin effects for the process e + e - → τ + τ - γ at Petra/PEP energies, calculations (with the help of the Grace system of Minami-tateya group) and phenomenology of spin amplitudes for (ii) e + e - → 4f and for (iii) e + e - → νeν¯eγγ processes, (iv) phenomenology of CP-sensitive observables for Higgs boson parity in H → τ + τ -, τ ± → ν2(3)π cascade decays.

  5. Fate of very low-mass secondaries in accreting binaries and the 1.5-ms pulsar

    NASA Technical Reports Server (NTRS)

    Ruderman, M. A.; Shaham, J.

    1983-01-01

    It is shown analytically that the canonical stability postulate for low-mass binaries can be inaccurate when the secondary component mass is less than 0.02 solar mass. The adjustable evolutionary parameter h is demonstrated to have a value (in terms of the mass flow effects) of 2/3, less than which catastrophic instability and tidal disruption of the secondary might occur. The disrupted secondary would be reduced to a remnant significantly smaller in mass than the earth, and not be observable visually. Additionally, close passage by another star could accelerate or initiate the process. The model is applicable to the pulsar binary PSR1937+214, and is noted not to conflict with spin-up theories.

  6. Field of a helical Siberian Snake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luccio, A.

    1995-02-01

    To preserve the spin polarization of a beam of high energy protons in a circular accelerator, magnets with periodic magnetic field, called Siberian Snakes are being used. Recently, it was proposed to build Siberian Snakes with superconducting helical dipoles. In a helical, or twisted dipole, the magnetic field is perpendicular to the axis of the helix and rotates around it as one proceeds along the magnet. In an engineering study of a 4 Tesla helical snake, the coil geometry is derived, by twisting, from the geometry of a cosine superconducting dipole. While waiting for magnetic measurement data on such amore » prototype, an analytical expression for the field of the helice is important, to calculate the particle trajectories and the spin precession in the helix. This model will also allow to determine the optical characteristics of the snake, as an insertion in the lattice of the accelerator. In particular, one can calculate the integrated multipoles through the magnet and the equivalent transfer matrix. An expression for the field in the helix body, i.e., excluding the fringe field was given in a classical paper. An alternate expression can be found by elaborating on the treatment of the field of a transverse wiggler obtained under the rather general conditions that the variables are separable. This expression exactly satisfies Maxwell`s div and curl equations for a stationary field, {del} {center_dot} B = 0, {del} x B = 0. This approach is useful in that it will allow one to use much of the work already done on the problem of inserting wigglers and undulators in the lattice of a circular accelerator.« less

  7. Spintronics: spin accumulation in mesoscopic systems.

    PubMed

    Johnson, Mark

    2002-04-25

    In spintronics, in which use is made of the spin degree of freedom of the electron, issues concerning electrical spin injection and detection of electron spin diffusion are fundamentally important. Jedema et al. describe a magneto-resistance study in which they claim to have observed spin accumulation in a mesoscopic copper wire, but their one-dimensional model ignores two-dimensional spin-diffusion effects, which casts doubt on their analysis. A two-dimensional vector formalism of spin transport is called for to model spin-injection experiments, and the identification of spurious background resistance effects is crucial.

  8. Non-metal spintronics: study of spin-dependent transport in InSb- and InAs-based nanopatterned heterostructures

    NASA Astrophysics Data System (ADS)

    Heremans, J. J.; Chen, Hong; Peters, J. A.; Goel, N.; Chung, S. J.; Santos, M. B.; van Roy, W.; Borghs, G.

    2006-03-01

    Spin-orbit interaction in semiconductor heterostructures can lead to various spin-dependent electronic transport effects without the presence of magnetic materials. Mesoscopic samples were fabricated on InSb/InAlSb and InAs/AlGaSb two-dimensional electron systems, where spin-orbit interaction is strong. In mesoscopic devices, the effects of spin-orbit interaction are not averaged out over the geometry, and lead to observable electronic properties. We experimentally demonstrate spin-split ballistic transport and the creation of fully spin-polarized electron beams using spin-dependent reflection geometries and transverse magnetic focusing geometries. Spin-dependent transport properties in the semiconductor materials are also investigated using antidot lattices. Spin-orbit interaction effects in high-mobility semiconductor devices may be utilized toward the design of novel spintronics implementations. We acknowledge NSF DMR-0094055 (JJH), DMR-0080054, DMR-0209371 (MBS).

  9. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.

  10. Enhancing Spin Filters by Use of Bulk Inversion Asymmetry

    NASA Technical Reports Server (NTRS)

    Ting, David; Cartoixa,Xavier

    2007-01-01

    Theoretical calculations have shown that the degrees of spin polarization in proposed nonmagnetic semiconductor resonant tunneling spin filters could be increased through exploitation of bulk inversion asymmetry (BIA). These enhancements would be effected through suitable orientation of spin collectors (or spin-polarization- inducing lateral electric fields), as described below. Spin filters -- more precisely, sources of spin-polarized electron currents -- have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-transport electronics). The proposed spin filters were to be based on the Rashba effect, which is an energy splitting of what would otherwise be degenerate quantum states, caused by a spinorbit interaction in conjunction with a structural-inversion asymmetry (SIA) in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. In a spin filter, the spin-polarized currents produced by the Rashba effect would be extracted by quantum-mechanical resonant tunneling.

  11. Magnetoresistance effect of heat generation in a single-molecular spin-valve

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing

    2016-02-01

    Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily.

  12. Separating inverse spin Hall voltage and spin rectification voltage by inverting spin injection direction

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxu; Peng, Bin; Han, Fangbin; Wang, Qiuru; Soh, Wee Tee; Ong, Chong Kim; Zhang, Wanli

    2016-03-01

    We develop a method for universally resolving the important issue of separating the inverse spin Hall effect (ISHE) from the spin rectification effect (SRE) signal. This method is based on the consideration that the two effects depend on the spin injection direction: The ISHE is an odd function of the spin injection direction while the SRE is independent on it. Thus, the inversion of the spin injection direction changes the ISHE voltage signal, while the SRE voltage remains. It applies generally to analyzing the different voltage contributions without fitting them to special line shapes. This fast and simple method can be used in a wide frequency range and has the flexibility of sample preparation.

  13. Free-Spinning-Tunnel Investigation to Determine the Effect of Spin-Recovery Rockets and Thrust Simulation on the Recovery Characteristics of a 1/21-Scale Model of the Chance Vought F7U-3 Airplane, TED No. NACA AD 3103

    NASA Technical Reports Server (NTRS)

    Burk, Sanger H., Jr.; Healy, Frederick M.

    1955-01-01

    An investigation of a l/21-scale model of the Chance Vought F7U-3 airplane in the co&at-load- condition has been conducted in the Langley 20-foot free-spinning tunnel, The recovery characteristics of the model were determined by use of spin-recovery rockets for the erect and inverted spinning condition. The rockets were so placed as to provide either a yawing or rolling moment about the model center of gravity. Also included in the investigation were tests to determine the effect of simulated engine thrust on the recovery characteristics of the model. On the basis of model tests, recoveries from erect and inverted spins were satisfactory when a yawing moment of 22,200 foot-pounds (full scale) was provided against the spin by rockets attached to the wing tips; the anti-spin yawing moment was applied for approximately 9 seconds, (full scale). Satisfactory recoveries were obtained from erect spins when a rolling moment of 22,200 foot-pounds (full scale) was provided with the spin (rolls right wing down in right spin). Although the inverted spin was satisfactorily terminated when a rolling moment of equal magnitude was provided, a roll rocket was not considered to be an optimum spin-recovery device to effect recoveries from inverted spins for this airplane because of resulting gyrations during spin recovery. Simulation of engine thrust had no apparent effect on the spin recovery characteristics.

  14. Spin diffusion and torques in disordered antiferromagnets

    NASA Astrophysics Data System (ADS)

    Manchon, Aurelien

    2017-03-01

    We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.

  15. Interface-induced phenomena in magnetism

    DOE PAGES

    Hellman, Frances; Hoffmann, Axel; Tserkovnyak, Yaroslav; ...

    2017-06-05

    Our article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important conceptsmore » include spin accumulation, spin currents, spin transfer torque, and spin pumping. We provide an overview for the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. Our article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.« less

  16. Interface-Induced Phenomena in Magnetism

    PubMed Central

    Hoffmann, Axel; Tserkovnyak, Yaroslav; Beach, Geoffrey S. D.; Fullerton, Eric E.; Leighton, Chris; MacDonald, Allan H.; Ralph, Daniel C.; Arena, Dario A.; Dürr, Hermann A.; Fischer, Peter; Grollier, Julie; Heremans, Joseph P.; Jungwirth, Tomas; Kimel, Alexey V.; Koopmans, Bert; Krivorotov, Ilya N.; May, Steven J.; Petford-Long, Amanda K.; Rondinelli, James M.; Samarth, Nitin; Schuller, Ivan K.; Slavin, Andrei N.; Stiles, Mark D.; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L.

    2017-01-01

    This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes. PMID:28890576

  17. Scaling Behavior of the Spin Pumping Effect in Ferromagnet-Platinum Bilayers

    NASA Astrophysics Data System (ADS)

    Czeschka, F. D.; Dreher, L.; Brandt, M. S.; Weiler, M.; Althammer, M.; Imort, I.-M.; Reiss, G.; Thomas, A.; Schoch, W.; Limmer, W.; Huebl, H.; Gross, R.; Goennenwein, S. T. B.

    2011-07-01

    We systematically measured the dc voltage VISH induced by spin pumping together with the inverse spin Hall effect in ferromagnet-platinum bilayer films. In all our samples, comprising ferromagnetic 3d transition metals, Heusler compounds, ferrite spinel oxides, and magnetic semiconductors, VISH invariably has the same polarity, and scales with the magnetization precession cone angle. These findings, together with the spin mixing conductance derived from the experimental data, quantitatively corroborate the present theoretical understanding of spin pumping in combination with the inverse spin Hall effect.

  18. Longitudinal spin dynamics in nickel fluorosilicate

    NASA Astrophysics Data System (ADS)

    Galkina, E. G.; Ivanov, B. A.; Butrim, V. I.

    2014-07-01

    The presence of single-ion anisotropy leads to the appearance of the effect of quantum spin reduction. As a consequence, purely longitudinal magnetization dynamics arises, which involves coupled oscillations of the mean spin modulus and the quadrupole mean values constructed on spin operators. In nickel fluorosilicate, the effect of quantum spin reduction may be controlled by changing pressure. The study of nonlinear longitudinal spin dynamics and the analysis of possible photomagnetic effects showed that this compound is a convenient model system to implement switching of the magnetization direction by femtosecond laser pulses.

  19. Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots

    NASA Astrophysics Data System (ADS)

    Shang, Ru-Nan; Zhang, Ting; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping

    2018-02-01

    Besides the spin Kondo effect, other degrees of freedom can give rise to the pseudospin Kondo effect. We report a direct observation of the orbital spin Kondo effect in a series-coupled gallium arsenide (GaAs) double quantum dot device where orbital degrees act as pseudospin. Electron occupation in both dots induces a pseudospin Kondo effect. In a region of one net spin impurity, complete spectra with three resonance peaks are observed. Furthermore, we observe a pseudo-Zeeman effect and demonstrate its electrical controllability for the artificial pseudospin in this orbital spin Kondo process via gate voltage control. The fourfold degeneracy point is realized at a specific value supplemented by spin degeneracy, indicating a transition from the SU(2) to the SU(4) Kondo effect.

  20. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study

    DOE PAGES

    Krutyeva, M.; Pasini, S.; Monkenbusch, M.; ...

    2017-02-02

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, we measured the corresponding polymer melt under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where themore » segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Moreover, the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.« less

  1. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

    NASA Astrophysics Data System (ADS)

    Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun

    2018-03-01

    Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.

  2. The effect of symmetry on the U L3 NEXAFS of octahedral coordinated uranium(vi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.

    2017-03-21

    We describe a detailed theoretical analysis of how distortions from ideal cubic or Oh symmetry affect the shape, in particular the width, of the U L3-edge NEXAFS for U(VI) in octahedral coordination. The full-width-half-maximum (FWHM) of the L3-edge white line decreases with increasing distortion from Oh symmetry due to the mixing of symmetry broken t2g and eg components of the excited state U(6d) orbitals. The mixing is allowed because of spin-orbit splitting of the ligand field split 6d orbitals. Especially for higher distortions, it is possible to identify a mixing between one of the t2g and one of the egmore » components, allowed in the double group representation when the spin-orbit interaction is taken into account. This mixing strongly reduces the ligand field splitting, which, in turn, leads to a narrowing of the U L3 white line. However, the effect of this mixing is partially offset by an increase in the covalent anti-bonding character of the highest energy spin-orbit split eg orbital. At higher distortions, mixing overwhelms the increasing anti-bonding character of this orbital which leads to an accelerated decrease in the FWHM with increasing distortion. Additional evidence for the effect of mixing of t2g and eg components is that the FWHM of the white line narrows whether the two axial U-O bond distances shorten or lengthen. Our ab initio theory uses relativistic wavefunctions for cluster models of the structures; empirical or semi-empirical parameters were not used to adjust prediction to experiment. A major advantage is that it provides a transparent approach for determining how the character and extent of the covalent mixing of the relevant U and O orbitals affect the U L3-edge white line.« less

  3. Spin injection and detection via the anomalous spin Hall effect of a ferromagnetic metal

    NASA Astrophysics Data System (ADS)

    Das, K. S.; Schoemaker, W. Y.; van Wees, B. J.; Vera-Marun, I. J.

    2017-12-01

    We report a spin injection and detection mechanism via the anomalous Hall effect in a ferromagnetic metal. The anomalous spin Hall effect (ASHE) refers to the transverse spin current generated within the ferromagnet. We utilize the ASHE and its reciprocal effect to electrically inject and detect magnons in a magnetic insulator (yttrium iron garnet) in a nonlocal geometry. Our experiments reveal that permalloy has a comparable spin injection and detection efficiency to that of platinum, owing to the ASHE. We also demonstrate the tunability of the ASHE via the orientation of the permalloy magnetization, thus creating possibilities for spintronic applications.

  4. Theory of Direct Optical Measurement of Pure Spin Currents in Direct-gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Ren-Bao; Zhu, Bang-Fen

    2010-01-01

    We predict that a pure spin current in a semiconductor may lead to the optical circular birefingence effect without invoking magnetization. This effect may be exploited for a direct, non-destructive measurement of the pure spin current. We derive the effective coupling between a pure spin current and a polarized light beam, and point out that it originates from the inherent spin-orbit coupling in the valence bands, rather than the Rashba or Dresselhaus effects due to inversion asymmetries. The Faraday rotation angle in GaAs is estimated, which indicates that this spin current optical birefringence is experimentally observable.

  5. Analytical theory and possible detection of the ac quantum spin Hall effect

    DOE PAGES

    Deng, W. Y.; Ren, Y. J.; Lin, Z. X.; ...

    2017-07-11

    Here, we develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.

  6. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium: tellurophene and divinyl telluride.

    PubMed

    Rusakov, Yury Yu; Krivdin, Leonid B; Østerstrøm, Freja F; Sauer, Stephan P A; Potapov, Vladimir A; Amosova, Svetlana V

    2013-08-21

    This paper documents the very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for medium sized organotellurium molecules. The (125)Te-(1)H spin-spin coupling constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels, in good agreement with experimental data. A new full-electron basis set, av3z-J, for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations of spin-spin coupling constants involving tellurium was developed. The SOPPA method shows a much better performance compared to DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while conformational averaging is of prime importance in the calculation of (125)Te-(1)H spin-spin couplings. Based on the performed calculations at the SOPPA(CCSD) level, a marked stereospecificity of geminal and vicinal (125)Te-(1)H spin-spin coupling constants originating in the orientational lone pair effect of tellurium has been established, which opens a new guideline in organotellurium stereochemistry.

  7. An electronegativity-induced spin repulsion effect.

    PubMed

    Stirling, Andras; Pasquarello, Alfredo

    2005-09-22

    We present a spin delocalization effect in radical Si-containing systems, featuring a heteroatom of high electronegativity (such as N, O, or Cl) bonded to the unsaturated Si atom. We find that the higher the electronegativity of the heteroatom, the more the localized spin shifts away from the unsaturated Si atom and the heteroatom toward saturated Si neighbors. We demonstrate that this spin repulsion toward saturated Si atoms is induced by the electronegativity difference between the Si atom and the heteroatoms. We present a simple molecular-orbital-based mechanism which fully explains the structural and electronic effects. We contrast the present spin delocalization mechanism with the classical hyperconjugation in organic chemistry. The most important consequences of this spin redistribution are the electron-spin-resonance activity of the saturated Si neighbors and the enhanced stability of the radical centers. We predict a similar effect for Ge radicals and discuss why organic systems based on carbon do not feature such spin repulsion.

  8. Dynamic generation of spin-wave currents in hybrid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyapilin, I. I.; Okorokov, M. S., E-mail: Okorokovmike@gmail.com

    2016-11-15

    Spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure is studied by the nonequilibrium statistical operator method under conditions of the spin Seebeck effect. The effective parameter approach in which each examined subsystem (conduction electrons, magnons, phonons) is characterized by its specific effective temperature is considered. The effect of the resonant (electric dipole) excitation of the spin electronic subsystem of conduction electrons on spin-wave current excitation in a ferromagnetic insulator is considered. The macroscopic equations describing the spin-wave current caused by both resonant excitation of the spin system of conduction electrons and the presence of a nonuniform temperaturemore » field in the ferromagnetic insulator are derived taking into account both the resonance-diffusion propagation of magnons and their relaxation processes. It is shown that spin-wave current excitation is also of resonant nature under the given conditions.« less

  9. Spin-charge coupled dynamics driven by a time-dependent magnetization

    NASA Astrophysics Data System (ADS)

    Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo

    2017-03-01

    The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.

  10. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laczkowski, P.; Rojas-Sánchez, J.-C.; INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble

    2014-04-07

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  11. Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations

    NASA Astrophysics Data System (ADS)

    Liska, M.; Hesp, C.; Tchekhovskoy, A.; Ingram, A.; van der Klis, M.; Markoff, S.

    2018-02-01

    Gas falling into a black hole (BH) from large distances is unaware of BH spin direction, and misalignment between the accretion disc and BH spin is expected to be common. However, the physics of tilted discs (e.g. angular momentum transport and jet formation) is poorly understood. Using our new GPU-accelerated code H-AMR, we performed 3D general relativistic magnetohydrodynamic simulations of tilted thick accretion discs around rapidly spinning BHs, at the highest resolution to date. We explored the limit where disc thermal pressure dominates magnetic pressure, and showed for the first time that, for different magnetic field strengths on the BH, these flows launch magnetized relativistic jets propagating along the rotation axis of the tilted disc (rather than of the BH). If strong large-scale magnetic flux reaches the BH, it bends the inner few gravitational radii of the disc and jets into partial alignment with the BH spin. On longer time-scales, the simulated disc-jet system as a whole undergoes Lense-Thirring precession and approaches alignment, demonstrating for the first time that jets can be used as probes of disc precession. When the disc turbulence is well resolved, our isolated discs spread out, causing both the alignment and precession to slow down.

  12. Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence

    NASA Astrophysics Data System (ADS)

    Zhang, Zuo-Yuan; Wei, DaXiu; Liu, Jin-Ming

    2018-06-01

    The precision of measurements for two incompatible observables in a physical system can be improved with the assistance of quantum memory. In this paper, we investigate the quantum-memory-assisted entropic uncertainty relation for a spin-1 Heisenberg model in the presence of external magnetic fields, the systemic quantum entanglement (characterized by the negativity) is analyzed as contrast. Our results show that for the XY spin chain in thermal equilibrium, the entropic uncertainty can be reduced by reinforcing the coupling between the two particles or decreasing the temperature of the environment. At zero-temperature, the strong magnetic field can result in the growth of the entropic uncertainty. Moreover, in the Ising case, the variation trends of the uncertainty are relied on the choices of anisotropic parameters. Taking the influence of intrinsic decoherence into account, we find that the strong coupling accelerates the inflation of the uncertainty over time, whereas the high magnetic field contributes to its reduction during the temporal evolution. Furthermore, we also verify that the evolution behavior of the entropic uncertainty is roughly anti-correlated with that of the entanglement in the whole dynamical process. Our results could offer new insights into quantum precision measurement for the high spin solid-state systems.

  13. Experimental evidence for 56Ni-core breaking from the low-spin structure of the N=Z nucleus 5829Cu29

    NASA Astrophysics Data System (ADS)

    Lisetskiy, A. F.; Pietralla, N.; Honma, M.; Schmidt, A.; Schneider, I.; Gade, A.; von Brentano, P.; Otsuka, T.; Mizusaki, T.; Brown, B. A.

    2003-09-01

    Low-spin states in the odd-odd N=Z nucleus 58Cu were investigated with the 58Ni(p,nγ)58Cu fusion evaporation reaction at the FN-TANDEM accelerator in Cologne. γγ-coincidences, γγ-angular correlations, and signs of γ-ray polarizations were measured. Seventeen low-spin states below 3.6 MeV and 17 new transitions were observed. Ten multipole mixing ratios and 17 γ-branching ratios were determined for the first time. New detailed spectroscopic information on the 2+2 state, the isobaric analogue state (IAS) of the 2+1,T=1 state of 58Ni, makes 58Cu the heaviest odd-odd N=Z nucleus with known B(E2;2+,T=1→0+,T=1) value. The 4+ state at 2.751 MeV, observed here for the first time, is identified as the IAS of the 4+1,T=1 state in 58Ni. The new data are compared to full pf-shell-model calculations with the GXPF1 residual interaction and to calculations within a pf5/2 configurational space with a residual surface δ interaction. The role of the 56Ni core excitations for the low-spin structure in 58Cu is discussed.

  14. Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion

    NASA Astrophysics Data System (ADS)

    Scheuer, Jochen; Stark, Alexander; Kost, Matthias; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2015-12-01

    Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. The signal to noise ratio of the recovered 2D spectrum is compared to the Fourier transform of randomly subsampled data, where we observe a strong suppression of the noise when the matrix completion algorithm is applied. We show that the peaks in the spectrum can be obtained with only 10% of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank.

  15. Coriolis effect and spin Hall effect of light in an inhomogeneous chiral medium.

    PubMed

    Zhang, Yongliang; Shi, Lina; Xie, Changqing

    2016-07-01

    We theoretically investigate the spin Hall effect of spinning light in an inhomogeneous chiral medium. The Hamiltonian equations of the photon are analytically obtained within eikonal approximation in the noninertial orthogonal frame. Besides the usual spin curvature coupling, the chiral parameter enters the Hamiltonian as a spin-torsion-like interaction. We reveal that both terms have parallel geometric origins as the Coriolis terms of Maxwell's equations in nontrivial frames.

  16. Finite difference method accelerated with sparse solvers for structural analysis of the metal-organic complexes

    NASA Astrophysics Data System (ADS)

    Guda, A. A.; Guda, S. A.; Soldatov, M. A.; Lomachenko, K. A.; Bugaev, A. L.; Lamberti, C.; Gawelda, W.; Bressler, C.; Smolentsev, G.; Soldatov, A. V.; Joly, Y.

    2016-05-01

    Finite difference method (FDM) implemented in the FDMNES software [Phys. Rev. B, 2001, 63, 125120] was revised. Thorough analysis shows, that the calculated diagonal in the FDM matrix consists of about 96% zero elements. Thus a sparse solver would be more suitable for the problem instead of traditional Gaussian elimination for the diagonal neighbourhood. We have tried several iterative sparse solvers and the direct one MUMPS solver with METIS ordering turned out to be the best. Compared to the Gaussian solver present method is up to 40 times faster and allows XANES simulations for complex systems already on personal computers. We show applicability of the software for metal-organic [Fe(bpy)3]2+ complex both for low spin and high spin states populated after laser excitation.

  17. PREFACE: 1st Tensor Polarized Solid Target Workshop

    NASA Astrophysics Data System (ADS)

    2014-10-01

    These are the proceedings of the first Tensor Spin Observables Workshop that was held in March 2014 at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. The conference was convened to study the physics that can be done with the recently approved E12-13-011 polarized target. A tensor polarized target holds the potential of initiating a new generation of tensor spin physics at Jefferson Lab. Experiments which utilize tensor polarized targets can help clarify how nuclear properties arise from partonic degrees of freedom, provide unique insight into short-range correlations and quark angular momentum, and also help pin down the polarization of the quark sea with a future Electron Ion Collider. This three day workshop was focused on tensor spin observables and the associated tensor target development. The workshop goals were to stimulate progress in the theoretical treatment of polarized spin-1 systems, foster the development of new proposals, and to reach a consensus on the optimal polarized target configuration for the tensor spin program. The workshop was sponsored by the University of New Hampshire, the Jefferson Science Associates, Florida International University, and Jefferson Lab. It was organized by Karl Slifer (chair), Patricia Solvignon, and Elena Long of the University of New Hampshire, Douglas Higinbotham and Christopher Keith of Jefferson Lab, and Misak Sargsian of the Florida International University. These proceedings represent the effort put forth by the community to begin exploring the possibilities that a high-luminosity, high-tensor polarized solid target can offer.

  18. Non-Markovian spin-resolved counting statistics and an anomalous relation between autocorrelations and cross correlations in a three-terminal quantum dot

    NASA Astrophysics Data System (ADS)

    Luo, JunYan; Yan, Yiying; Huang, Yixiao; Yu, Li; He, Xiao-Ling; Jiao, HuJun

    2017-01-01

    We investigate the noise correlations of spin and charge currents through an electron spin resonance (ESR)-pumped quantum dot, which is tunnel coupled to three electrodes maintained at an equivalent chemical potential. A recursive scheme is employed with inclusion of the spin degrees of freedom to account for the spin-resolved counting statistics in the presence of non-Markovian effects due to coupling with a dissipative heat bath. For symmetric spin-up and spin-down tunneling rates, an ESR-induced spin flip mechanism generates a pure spin current without an accompanying net charge current. The stochastic tunneling of spin carriers, however, produces universal shot noises of both charge and spin currents, revealing the effective charge and spin units of quasiparticles in transport. In the case of very asymmetric tunneling rates for opposite spins, an anomalous relationship between noise autocorrelations and cross correlations is revealed, where super-Poissonian autocorrelation is observed in spite of a negative cross correlation. Remarkably, with strong dissipation strength, non-Markovian memory effects give rise to a positive cross correlation of the charge current in the absence of a super-Poissonian autocorrelation. These unique noise features may offer essential methods for exploiting internal spin dynamics and various quasiparticle tunneling processes in mesoscopic transport.

  19. Antiferromagnetic spin Seebeck effect.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M.; Zhang, Wei; KC, Amit

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in themore » spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.« less

  20. Antiferromagnetic Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-01

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2 . A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30 nm )/Pt (4 nm) grown by molecular beam epitaxy on a MgF2 (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9 T ) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  1. Hf thickness dependence of spin-orbit torques in Hf/CoFeB/MgO heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramaswamy, Rajagopalan; Qiu, Xuepeng; Dutta, Tanmay

    We have studied the spin-orbit torques in perpendicularly magnetized Hf/CoFeB/MgO system, by systematically varying the thickness of Hf underlayer. We have observed a sign change of effective fields between Hf thicknesses of 1.75 and 2 nm, indicating that competing mechanisms, such as the Rashba and spin Hall effects, contribute to spin-orbit torques in our system. For larger Hf thicknesses (>2 nm), both the components of spin-orbit torques arise predominantly from the bulk spin Hall effect. We have also confirmed these results using spin-orbit torque induced magnetization switching measurements. Our results could be helpful in designing Hf based SOT devices.

  2. One-electron versus electron-electron interaction contributions to the spin-spin coupling mechanism in nuclear magnetic resonance spectroscopy: Analysis of basic electronic effects

    NASA Astrophysics Data System (ADS)

    Gräfenstein, Jürgen; Cremer, Dieter

    2004-12-01

    For the first time, the nuclear magnetic resonance (NMR) spin-spin coupling mechanism is decomposed into one-electron and electron-electron interaction contributions to demonstrate that spin-information transport between different orbitals is not exclusively an electron-exchange phenomenon. This is done using coupled perturbed density-functional theory in conjunction with the recently developed J-OC-PSP [=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization)] method. One-orbital contributions comprise Ramsey response and self-exchange effects and the two-orbital contributions describe first-order delocalization and steric exchange. The two-orbital effects can be characterized as external orbital, echo, and spin transport contributions. A relationship of these electronic effects to zeroth-order orbital theory is demonstrated and their sign and magnitude predicted using simple models and graphical representations of first order orbitals. In the case of methane the two NMR spin-spin coupling constants result from totally different Fermi contact coupling mechanisms. 1J(C,H) is the result of the Ramsey response and the self-exchange of the bond orbital diminished by external first-order delocalization external one-orbital effects whereas 2J(H,H) spin-spin coupling is almost exclusively mitigated by a two-orbital steric exchange effect. From this analysis, a series of prediction can be made how geometrical deformations, electron lone pairs, and substituent effects lead to a change in the values of 1J(C,H) and 2J(H,H), respectively, for hydrocarbons.

  3. An experimental study of the effect of tail configuration on the spinning characteristics of general aviation aircraft. M.S. Thesis; [static wind tunnel force measurements

    NASA Technical Reports Server (NTRS)

    Ballin, M. G.

    1982-01-01

    The feasibility of using static wind tunnel tests to obtain information about spin damping characteristics of an isolated general aviation aircraft tail was investigated. A representative tail section was oriented to the tunnel free streamline at angles simulating an equilibrium spin. A full range of normally encountered spin conditions was employed. Results of parametric studies performed to determine the effect of spin damping on several tail design parameters show satisfactory agreement with NASA rotary balance tests. Wing and body interference effects are present in the NASA studies at steep spin attitudes, but agreement improves with increasing pitch angle and spin rate, suggesting that rotational flow effects are minimal. Vertical position of the horizontal stabilizer is found to be a primary parameter affecting yaw damping, and horizontal tail chordwise position induces a substantial effect on pitching moment.

  4. Biomechanical analysis of the sidearm throwing motion for distance of a flying disc: a comparison of skilled and unskilled ultimate players.

    PubMed

    Sasakawa, Kei; Sakurai, Shinji

    2008-09-01

    Joint angles of the throwing limb were examined from the acceleration phase up until release for the sidearm throwing motion when using a flying disc. 17 individuals (ten skilled, seven unskilled) threw a disc as far as possible ten times. Throwing motions were recorded using three-dimensional high-speed videography. The initial condition of disc release and joint angle kinematics of the upper limb during the throwing motion were obtained. Mean (+/- standard deviation) throwing distance and disc spin rate were significantly greater for skilled throwers (51.4 +/- 6.6 m, 12.9 +/- 1.3 rps) than for unskilled throwers (29.5 +/- 7.6 m, 9.4 +/- 1.3 rps), although there was no significant difference in initial velocity of the disc between the two groups (skilled: 21.7 +/- 1.7m/s; unskilled: 20.7 +/- 2.5m/s). A marked difference in motion of supination/pronation of the forearm before disc release was identified, with the forearm supinated in the final acceleration phase leading up to disc release for the unskilled participants, while the forearm was pronated in the same phase for the skilled participants. These differences in joint kinematics could be related to differences in disc spin rate, and thus led to the substantial differences in throwing distance.

  5. Spin memory effect for compact binaries in the post-Newtonian approximation

    NASA Astrophysics Data System (ADS)

    Nichols, David A.

    2017-04-01

    The spin memory effect is a recently predicted relativistic phenomenon in asymptotically flat spacetimes that become nonradiative infinitely far in the past and future. Between these early and late times, the magnetic-parity part of the time integral of the gravitational-wave strain can undergo a nonzero change; this difference is the spin memory effect. Families of freely falling observers around an isolated source can measure this effect, in principle, and fluxes of angular momentum per unit solid angle (or changes in superspin charges) generate the effect. The spin memory effect had not been computed explicitly for astrophysical sources of gravitational waves, such as compact binaries. In this paper, we compute the spin memory in terms of a set of radiative multipole moments of the gravitational-wave strain. The result of this calculation allows us to establish the following results about the spin memory: (i) We find that the accumulation of the spin memory behaves in a qualitatively different way from that of the displacement memory effect for nonspinning, quasicircular compact binaries in the post-Newtonian approximation: the spin memory undergoes a large secular growth over the duration of the inspiral, whereas for the displacement effect this increase is small. (ii) The rate at which the spin memory grows is equivalent to a nonlinear, but nonoscillatory and nonhereditary effect in the gravitational waveform that had been previously calculated for nonspinning, quasicircular compact binaries. (iii) This rate of buildup of the spin memory could potentially be detected by future gravitational-wave detectors by carefully combining the measured waveforms from hundreds of gravitational-wave detections of compact binaries.

  6. Rotational Spin-up Caused CO2 Outgassing on Comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Graves, Kevin; Hirabayashi, Masatoshi; Richardson, James

    2015-11-01

    The Deep Impact spacecraft’s flyby of comet 103P/Hartley 2 on November 4, 2010 revealed its nucleus to be a small, bilobate, and highly active world [1] [2]. The bulk of this activity is driven by CO2 sublimation, which is enigmatically restricted to the tip of the small lobe [1]. Because Hartley 2's CO2 production responds to the diurnal cycle of the nucleus [1], CO2 ice must be no deeper than a few centimeters below the surface of the small lobe. However the high volatility of CO2 would suggest that its sublimation front should recede deep below the surface, such that diurnal volatile production is dominated by more refractory species such as water ice, as was observed at comet Tempel 1 [3].Here we show that both the near surface CO2 ice and its geographic restriction to the tip of the small lobe suggest that Hartley 2 recently experienced an episode of fast rotation. We use the GRAVMAP code to compute the stability of slopes on the surface of Hartley 2 as a function of spin period. We determine that the surface of the active region of Hartley 2’s small lobe becomes unstable at a rotation period of ~10-12 hours (as opposed to its current spin period of ~ 18 hours [1]), and will flow toward the tip of the lobe, excavating buried CO2 ice and activating CO2-driven activity. However, the rest of the surface of the nucleus is stable at these spin rates, and will therefore not exhibit CO2 activity. We additionally use Finite Element Model (FEM) analysis to demonstrate that the interior of Hartley 2’s nucleus is structurally stable (assuming a cohesive strength of at least 5 Pa) at these spin rates.The uncommonly high angular acceleration of Hartley 2, which has changed the nucleus spin period by two hours in three months [4], suggests that this episode of fast rotation may have existed only a few years or decades ago. Thus, Hartley 2 may provide an excellent case study into the reactivation of quiescent comet nuclei via rotational spin up, as would result from weak homogeneous gas emissions via the SYORP Effect.References: [1] A'Hearn et al. Science 332, 1396 (2011) [2] Thomas et al. Icarus 222, 550 (2013) [3] Feaga et al. Icarus 190, 345 (2007) [4] Samarasinha & Mueller. Ap. J. 775:L10 (2013)

  7. Extrinsic spin Nernst effect from first principles.

    PubMed

    Tauber, Katarina; Gradhand, Martin; Fedorov, Dmitry V; Mertig, Ingrid

    2012-07-13

    We present an ab initio description of the thermal transport phenomenon called the spin Nernst effect. It refers to generation of a spin accumulation or a pure spin current transverse to an applied temperature gradient. This is similar to the intensively studied spin Hall effect described by intrinsic and extrinsic mechanisms due to an applied electric field. Analogously, several contributions are present for the spin Nernst effect. Here we investigate the extrinsic skew scattering mechanism which is dominant in the limit of dilute alloys. Our calculations are based on a fully relativistic Korringa-Kohn-Rostoker method and a solution of the linearized Boltzmann equation. As a first application, we consider a Cu host with Au, Ti, and Bi impurities.

  8. Stardust-NExT, Deep Impact, and the Accelerating Spin of 9P/Tempel 1

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Meech, Karen J.; Chesley, Steven; Pittichova, Jana; Carcich, Brian; Drahus, Michal; Harris, Alan; Gillam, Stephen; Veverka, Joseph; Mastrodemos, Nicholas; hide

    2011-01-01

    The evolution of the spin rate of Comet 9P/Tempel 1 through two perihelion passages (in 2000 and 2005) is determined from 1922 Earth-based observations taken over a period of 13 year as part of a World-Wide observing campaign and from 2888 observations taken over a period of 50 days from the Deep Impact spacecraft. We determine the following sidereal spin rates (periods): 209.023 +/- 0.025deg/dy (41.335 0.005 h) prior to the 2000 perihelion passage, 210.448 +/- 0.016deg/dy (41.055 +/- 0.003 h) for the interval between the 2000 and 2005 perihelion passages, 211.856 +/- 0.030deg/dy (40.783 +/- 0.006 h) from Deep Impact photometry just prior to the 2005 perihelion passage, and 211.625 +/- 0.012deg/dy (40.827 +/- 0.002 h) in the interval 2006-2010 following the 2005 perihelion passage. The period decreased by 16.8 +/- 0.3 min during the 2000 passage and by 13.7 +/- 0.2 min during the 2005 passage suggesting a secular decrease in the net torque. The change in spin rate is asymmetric with respect to perihelion with the maximum net torque being applied on approach to perihelion. The Deep Impact data alone show that the spin rate was increasing at a rate of 0.024 +/- 0.003deg/dy/dy at JD2453530.60510 (i.e., 25.134 dy before impact), which provides independent confirmation of the change seen in the Earth-based observations. The rotational phase of the nucleus at times before and after each perihelion and at the Deep Impact encounter is estimated based on the Thomas et al. (Thomas et al. [2007]. Icarus 187, 4-15) pole and longitude system. The possibility of a 180deg error in the rotational phase is assessed and found to be significant. Analytical and physical modeling of the behavior of the spin rate through of each perihelion is presented and used as a basis to predict the rotational state of the nucleus at the time of the nominal (i.e., prior to February 2010) Stardust-NExT encounter on 2011 February 14 at 20:42. We find that a net torque in the range of 0.3-2.5 x 10(exp 7) kg/sq m/sq s acts on the nucleus during perihelion passage. The spin rate initially slows down on approach to perihelion and then passes through a minimum. It then accelerates rapidly as it passes through perihelion eventually reaching a maximum post-perihelion. It then decreases to a stable value as the nucleus moves away from the Sun. We find that the pole direction is unlikely to precess by more than approx. 1deg per perihelion passage. The trend of the period with time and the fact that the modeled peak torque occurs before perihelion are in agreement with published accounts of trends in water production rate and suggests that widespread H2O out-gassing from the surface is largely responsible for the observed spin-up.

  9. Stardust-NExT, Deep Impact, and the Accelerating Spin of 9P/Tempel One

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Meech, Karen J.; Chesley, Steven; Pittichova, Jana; Carcich, Brian; Drahus, Michal; Harris, Alan; Gillam, Stephen; Veverka, Joseph; A'Hearn, Michael F.; hide

    2011-01-01

    The evolution of the spin rate of comet 9P/Tempel 1 through two perihelion passages (CYs 2000 and 2005) is determined from 1922 Earth-based observations taken over a period of 13y as part of a World-Wide observing campaign and 2888 observations taken over a period of 50d from the Deep Impact spacecraft. We determine the following sidereal spin rates (periods): 209.023 +/- 0.025 degrees /day (41.335 +/- 0.005 h) prior to the 2000 perihelion passage, 210.448 +/- 0.016 degrees/day (41.055 +/- 0.003 h) for the interval between the 2000 and 2005 perihelion passages, 211.856 +/- 0.030 degrees/day (40.783 +/- 0.006 h) from Deep Impact photometry just prior to the 2005 perihelion passage, and 211.625 +/- 0.012 degrees /day (40.827 +/- 0.002 h) in the interval 2006-2010 following the 2005 perihelion passage. The period decreased by 16.8 +/- 0.3 min during the 2000 passage and by 13.7 +/- 0.2 min during the 2005 passage suggesting a secular decrease in the net torque. The change in spin rate is asymmetric with respect to perihelion with the maximum net torque being applied on approach to perihelion. The Deep Impact data alone show that the spin rate was increasing at a rate of 0.024 +/- 0.003 degree/d/d at JD2453530.60510 (i.e., 25.134 d before impact) and provides independent confirmation of the change seen in the Earth-based observations. The rotational phase of the nucleus at times before and after each perihelion and at the Deep Impact encounter is estimated based on the Thomas et al. pole and longitude system. The possibility of a 180 degree error in the rotational phase is assessed and found to be significant. Analytical and physical modeling of the behavior of the spin rate through of each perihelion is presented and used as a basis to predict the rotational state of the nucleus at the time of the nominal (i.e., prior to February 2010) Stardust-NExT encounter on 2011 February 14 20:42. We find that a net torque in the range of 0.3 - 2.5 x 10(exp 7) kg.square m2/square s acts on the nucleus during perihelion passage. The spin rate initially slows down on approach to perihelion and then passes through a minimum. It then accelerates rapidly as it passes through perihelion eventually reaching a maximum post-perihelion. It then decreases to a stable value as the nucleus moves away from the sun. We find that the pole direction is unlikely to precess by more than approximately 1 degree/perihelion passage. The trend of the period with time and the fact that the modeled peak torque that occurs before perihelion is in agreement with published accounts of trends in water production rate and suggests that widespread H2O out-gassing from the surface is largely responsible for the observed spin-up.

  10. Spin-dependent Seebeck Effect, Thermal Colossal Magnetoresistance and Negative Differential Thermoelectric Resistance in Zigzag Silicene Nanoribbon Heterojunciton.

    PubMed

    Fu, Hua-Hua; Wu, Dan-Dan; Zhang, Zu-Quan; Gu, Lei

    2015-05-22

    Spin-dependent Seebeck effect (SDSE) is one of hot topics in spin caloritronics, which examine the relationships between spin and heat transport in materials. Meanwhile, it is still a huge challenge to obtain thermally induced spin current nearly without thermal electron current. Here, we construct a hydrogen-terminated zigzag silicene nanoribbon heterojunction, and find that by applying a temperature difference between the source and the drain, spin-up and spin-down currents are generated and flow in opposite directions with nearly equal magnitudes, indicating that the thermal spin current dominates the carrier transport while the thermal electron current is much suppressed. By modulating the temperature, a pure thermal spin current can be achieved. Moreover, a thermoelectric rectifier and a negative differential thermoelectric resistance can be obtained in the thermal electron current. Through the analysis of the spin-dependent transport characteristics, a phase diagram containing various spin caloritronic phenomena is provided. In addition, a thermal magnetoresistance, which can reach infinity, is also obtained. Our results put forward an effective route to obtain a spin caloritronic material which can be applied in future low-power-consumption technology.

  11. Acceleration of Polarized Protons up to 3.4 GeV/c in the Nuclotron at JINR

    NASA Astrophysics Data System (ADS)

    Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2017-12-01

    To preserve proton polarization in the Nuclotron up to 13.5 GeV/c, it is enough to use a partial solenoid snake with maximal field integral of 25 Tm that allows one to eliminate crossings of the most dangerous intrinsic and integer spin resonances. The insertion of weak field integral is sufficient to preserve the proton polarization up to 3.4 GeV/c. This momentum corresponds to the first intrinsic resonance. To preserve polarization during crossings of five integer spin resonances, it is possible to choose crossing rates that correspond to either the fast or the slow resonance crossings. Another possibility is a deliberate increasing of the resonance strength. To eliminate depolarization during protons injection into the Nuclotron, a scheme of matching of the polarization with a vertical direction is presented. During the run in February-March 2017, the three measurements of the proton polarization at kinetic energies of 0.5 GeV, 1 GeV and 2 GeV were made that allow one to obtain the integer spin resonances strengths.

  12. A threshold gas Cerenkov detector for the spin asymmetries of the nucleon experiment

    DOE PAGES

    Armstrong, Whitney R.; Choi, Seonho; Kaczanowicz, Ed; ...

    2015-09-26

    In this study, we report on the design, construction, commissioning, and performance of a threshold gas Cerenkov counter in an open configuration, which operates in a high luminosity environment and produces a high photo-electron yield. Part of a unique open geometry detector package known as the Big Electron Telescope Array, this Cerenkov counter served to identify scattered electrons and reject produced pions in an inclusive scattering experiment known as the Spin Asymmetries of the Nucleon Experiment E07-003 at the Thomas Jefferson National Accelerator Facility (TJNAF) also known as Jefferson Lab. The experiment consisted of a measurement of double spin asymmetriesmore » A || and A ⊥ of a polarized electron beam impinging on a polarized ammonia target. The Cerenkov counter's performance is characterised by a yield of about 20 photoelectrons per electron or positron track. Thanks to this large number of photoelectrons per track, the Cerenkov counter had enough resolution to identify electron-positron pairs from the conversion of photons resulting mainly from π 0 decays.« less

  13. Electron spin dynamics and optical orientation of Mn2+ ions in GaAs

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.

    2013-04-01

    We present an overview of spin-related phenomena in GaAs doped with low concentration of Mn-acceptors (below 1018 cm-3). We use the combination of different experimental techniques such as spin-flip Raman scattering and time-resolved photoluminescence. This allows to evaluate the time evolution of both electron and Mn spins. We show that optical orientation of Mn ions is possible under application of weak magnetic field, which is required to suppress the manganese spin relaxation. The optically oriented Mn2+ ions maintain the spin and return part of the polarization back to the electron spin system providing a long-lived electron spin memory. This leads to a bunch of spectacular effects such as non-exponential electron spin decay and spin precession in the effective exchange fields.

  14. Spin imbalance effect on the Larkin-Ovchinnikov-Fulde-Ferrel state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshii, Ryosuke; Tsuchiya, Shunji; Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521

    2011-07-01

    We study spin imbalance effects on the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state relevant for superconductors under a strong magnetic field and spin polarized ultracold Fermi gas. We obtain the exact solution for the condensates with arbitrary spin imbalance and the fermion spectrum perturbatively in the presence of small spin imbalance. We also obtain fermion zero mode exactly without perturbation theory.

  15. Numerical relativity simulations of precessing binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Dietrich, Tim; Bernuzzi, Sebastiano; Brügmann, Bernd; Ujevic, Maximiliano; Tichy, Wolfgang

    2018-03-01

    We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes ˜0.1 . They start at a gravitational-wave frequency of ˜392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.

  16. Passive Thermal Control for the Low Density Supersonic Decelerator (LDSD) Test Vehicle Spin Motors Sub-System

    NASA Technical Reports Server (NTRS)

    Redmond, Matthew; Mastropietro, A. J.; Pauken, Michael; Mobley, Brandon

    2014-01-01

    Future missions to Mars will require improved entry, descent, and landing (EDL) technology over the Viking-heritage systems which recently landed the largest payload to date, the 900 kg Mars Science Laboratory. As a result, NASA's Low Density Supersonic Decelerator (LDSD) project is working to advance the state of the art in Mars EDL systems by developing and testing three key technologies which will enable heavier payloads and higher altitude landing sites on the red planet. These technologies consist of a large 33.5 m diameter Supersonic Disk Sail (SSDS) parachute and two different Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class that inflates to a 6 m diameter torus (SIAD-R), and an exploration class that inflates to an 8 m diameter isotensoid (SIADE). All three technologies will be demonstrated on test vehicles at high earth altitudes in order to simulate the Mars EDL environment. Each vehicle will be carried to altitude by a large helium balloon, released, spun up using spin motors to stabilize the vehicle's trajectory, and accelerated to supersonic speeds using a large solid rocket motor. The vehicle will then be spun down using another set of spin motors, and will deploy either the SIAD-R or SIAD-E, followed by the SSDS parachute until the vehicle lands in the ocean. Component level testing and bounding analysis are used to ensure the survival of system components in extreme thermal environments and predict temperatures throughout the flight. This paper presents a general description of the thermal testing, model correlation, and analysis of the spin motor passive thermal control sub-system to maintain spin motor performance, prescribed vehicle trajectory, and structural integrity of the test vehicle. The spin motor subsystem is predicted to meet its requirements with margin.

  17. Interfacial spin-filter assisted spin transfer torque effect in Co/BeO/Co magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Tang, Y.-H.; Chu, F.-C.

    2015-03-01

    The first-principles calculation is employed to demonstrate the spin-selective transport properties and the non-collinear spin-transfer torque (STT) effect in the newly proposed Co/BeO/Co magnetic tunnel junction. The subtle spin-polarized charge transfer solely at O/Co interface gives rise to the interfacial spin-filter (ISF) effect, which can be simulated within the tight binding model to verify the general expression of STT. This allows us to predict the asymmetric bias behavior of non-collinear STT directly via the interplay between the first-principles calculated spin current densities in collinear magnetic configurations. We believe that the ISF effect, introduced by the combination between wurtzite-BeO barrier and the fcc-Co electrode, may open a new and promising route in semiconductor-based spintronics applications.

  18. A UHV compatible source for a highly polarized thermal atomic beam of radioactive 8Li

    NASA Astrophysics Data System (ADS)

    Jänsch, H. J.; Kirchner, G.; Kühlert, O.; Lisowski, M.; Paggel, J. J.; Platzer, R.; Schillinger, R.; Tilsner, H.; Weindel, C.; Winnefeld, H.; Fick, D.

    2000-12-01

    A beam of the radioactive isotope 8Li is prepared at thermal velocities. The nuclei are highly spin polarized by transverse optical pumping of the thermal beam. The installation is ultra-high vacuum (UHV) compatible in a non-UHV accelerator environment. Since the atomic beam is used in a surface science experiment, where contamination must be avoided, special emphasis is given to the vacuum coupling of the accelerator/ 8Li production/surface experimental areas. The atomic beam is produced by stopping the nuclear reaction products and evaporating them again from high-temperature graphite. To enhance the atomic beam, a novel tubular thermalizer is applied. The thermal polarized atomic beam intensity is approximately 5×10 8 atoms/s sr.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.; Ahrens, L. A.; Bai, M.

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is challenging. In a medium energy accelerator, the depolarizing spin resonances are strong enough to cause significant polarization loss but full Siberian snakes cause intolerably large orbit excursions and are also not feasible since straight sections usually are too short. Recently, two helical partial Siberian snakes with double pitch design have been installed in the Brookhaven Alternating Gradient Synchrotron (AGS). With a careful setup of optics at injection and along the energy ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances otherwise encountered during accelerationmore » to maintain a high intensity polarized beam in medium energy synchrotrons. The observation of partial snake resonances of higher than second order will also be described.« less

  20. Spin Seebeck effect and thermoelectric phenomena in superconducting hybrids with magnetic textures or spin-orbit coupling

    PubMed Central

    Bathen, Marianne Etzelmüller; Linder, Jacob

    2017-01-01

    We theoretically consider the spin Seebeck effect, the charge Seebeck coefficient, and the thermoelectric figure of merit in superconducting hybrid structures including either magnetic textures or intrinsic spin-orbit coupling. We demonstrate that large magnitudes for all these quantities are obtainable in Josephson-based systems with either zero or a small externally applied magnetic field. This provides an alternative to the thermoelectric effects generated in high-field (~1 T) superconducting hybrid systems, which were recently experimentally demonstrated. The systems studied contain either conical ferromagnets, spin-active interfaces, or spin-orbit coupling. We present a framework for calculating the linear thermoelectric response for both spin and charge of a system upon applying temperature and voltage gradients based on quasiclassical theory which allows for arbitrary spin-dependent textures and fields to be conveniently incorporated. PMID:28139667

  1. Spin Seebeck effect and thermoelectric phenomena in superconducting hybrids with magnetic textures or spin-orbit coupling.

    PubMed

    Bathen, Marianne Etzelmüller; Linder, Jacob

    2017-01-31

    We theoretically consider the spin Seebeck effect, the charge Seebeck coefficient, and the thermoelectric figure of merit in superconducting hybrid structures including either magnetic textures or intrinsic spin-orbit coupling. We demonstrate that large magnitudes for all these quantities are obtainable in Josephson-based systems with either zero or a small externally applied magnetic field. This provides an alternative to the thermoelectric effects generated in high-field (~1 T) superconducting hybrid systems, which were recently experimentally demonstrated. The systems studied contain either conical ferromagnets, spin-active interfaces, or spin-orbit coupling. We present a framework for calculating the linear thermoelectric response for both spin and charge of a system upon applying temperature and voltage gradients based on quasiclassical theory which allows for arbitrary spin-dependent textures and fields to be conveniently incorporated.

  2. The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Wollan, D. S.

    1974-01-01

    A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.

  3. Analytically calculated post-Keplerian range and range-rate perturbations: the solar Lense-Thirring effect and BepiColombo

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo

    2018-05-01

    We analytically calculate the time series for the perturbations Δ ρ \\left(t\\right), Δ \\dot{ρ }\\left(t\\right) induced by a general disturbing acceleration A on the mutual range ρ and range-rate \\dot{ρ } of two test particles A, B orbiting the same spinning body. We apply it to the general relativistic Lense-Thirring effect, due to the primary's spin S, and the classical perturbation arising from its quadrupole mass moment J2 for arbitrary orbital geometries and orientation of the source's symmetry axis {\\hat{S}}. The Earth-Mercury range and range-rate are nominally affected by the Sun's gravitomagnetic field to the 10 m, 10-3 cm s-1 level, respectively, during the extended phase (2026-2028) of the forthcoming BepiColombo mission to Mercury whose expected tracking accuracy is of the order of ≃0.1 m, 2 × 10-4 cm s-1. The competing signatures due to the solar quadrupole J_2^{\\odot }, if modelled at the σ _{J_2^{\\odot }}˜eq 10^{-9} level of the latest planetary ephemerides INPOP17a, are nearly 10 times smaller than the relativistic gravitomagnetic effects. The position and velocity vectors \\boldsymbol {r}, \\boldsymbol {v} of Mercury and Earth are changed by the solar Lense-Thirring effect by about 10 m, 1.5 m and 10-3 cm s-1, 10-5 cm s-1, respectively, over 2 yr; neglecting such shifts may have an impact on long-term integrations of the inner Solar system dynamics over ˜Gyr time-scales.

  4. Demonstration of an adaptive response to preconditioning Frankliniella occidentalis (Pergande) to sublethal doses of spinosad: a hormetic-dose response.

    PubMed

    Gong, Youhui; Xu, Baoyun; Zhang, Youjun; Gao, Xiwu; Wu, Qingjun

    2015-07-01

    Sublethal doses of some insecticides have been reported to either stimulate or reduce the survival and fecundity of insects. Many sublethal-effect studies have been conducted after exposure of only one generation to sublethal insecticides, and there is little information about the sublethal effects on insects after long-term exposure to sublethal insecticides. In this study, changes in biological characteristics were investigated in spinosad-susceptible (Spin-S) and sublethal-spinosad-treated (Spin-Sub) strains of Frankliniella occidentalis (Pergande) after exposure to their corresponding sublethal concentrations of spinosad. The results showed that for the Spin-S strain, the LC10 concentration of spinosad slightly affected the biotic fitness both in parents and offspring of F. occidentalis. The LC25 concentration of spinosad prolonged the development time, reduced the fecundity, and significantly reduced the intrinsic rate of increase, the net reproductive rate and the finite rate of increase in the Spin-S strain. However, the negative effects were not as pronounced in the offspring (F1 generation) as in the parent generation. For the Spin-Sub strain, the LC10 and LC25 concentrations of spinosad had little negative effect on the development and fecundity, and no significant difference was found between the effects of the LC10 and LC25 treatments on the Spin-Sub strain. The Spin-Sub strain exhibited a shorter developmental time, and larger intrinsic rates of increase and net reproductive rates, compared with the corresponding treatments of the Spin-S strain. These findings combined with our previous studies suggest that the biotic fitness increased in the Spin-Sub strain and the strain became more adaptable to sublethal doses of spinosad, compared with the Spin-S strain. Physiological and biochemical adaptation may contribute to these changes after long treatment times at sublethal doses.

  5. Adding Liquid Payloads Effects to the 6-DOF Trajectory of Spinning Projectiles

    DTIC Science & Technology

    2010-03-01

    Adding Liquid Payloads Effects to the 6-DOF Trajectory of Spinning Projectiles by Gene R. Cooper ARL-TR-5118 March 2010...Liquid Payloads Effects to the 6-DOF Trajectory of Spinning Projectiles Gene R. Cooper Weapons and Materials Research Directorate, ARL...September 2007 4. TITLE AND SUBTITLE Adding Liquid Payloads Effects to the 6-DOF Trajectory of Spinning Projectiles 5a. CONTRACT NUMBER 5b. GRANT

  6. Unique spin-polarized transmission effects in a QD ring structure

    NASA Astrophysics Data System (ADS)

    Hedin, Eric; Joe, Yong

    2010-10-01

    Spintronics is an emerging field in which the spin of the electron is used for switching purposes and to communicate information. In order to obtain spin-polarized electron transmission, the Zeeman effect is employed to produce spin-split energy states in quantum dots which are embedded in the arms of a mesoscopic Aharonov-Bohm (AB) ring heterostructure. The Zeeman splitting of the QD energy levels can be induced by a parallel magnetic field, or by a perpendicular field which also produces AB-effects. The combination of these effects on the transmission resonances of the structure is studied analytically and several parameter regimes are identified which produce a high degree of spin-polarized output. Contour and line plots of the weighted spin polarization as a function of electron energy and magnetic field are presented to visualize the degree of spin-polarization. Taking advantage of these unique parameter regimes shows the potential promise of such devices for producing spin-polarized currents.

  7. Measurement of the top quark pair production cross-section in dimuon final states in proton-antiproton collisions at 1.96 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konrath, Jens Peter

    2008-10-24

    Particle physics deals with the fundamental building blocks of matter and their interactions. The vast number of subatomic particles can be reduced to twelve fundamental fermions, which interact by the exchange of spin-1 particles as described in the Standard Model (SM) of particle physics. The SM provides the best description of the subatomic world to date, despite the fact it does not include gravitation. Following the relation Λ = h/p, where h is Planck's constant, for the examination of physics at subatomic scales with size Λ probes with high momenta p are necessary. These high energies are accessible through particlemore » colliders. Here, particles are accelerated and brought to collision at interaction points at which detectors are installed to record these particle collisions. Until the anticipated start-up of the Large Hadron Collider at CERN, the Tevatron collider at Fermilab near Chicago is the highest energy collider operating in the world, colliding protons and anti-protons at a center-of-mass energy of √s = 1.96 TeV. Its two interaction points are covered by the multi purpose particle detectors D0 and CDF. During the first data-taking period, known as Run I, the Tevatron operated at a center-of-mass energy of 1.8 TeV. This run period lasted from 1992 to 1996. During this period, the long-predicted top quark was discovered. From 1996 and 2001, the accelerator was upgraded to deliver higher instantaneous luminosities at its current center-of-mass energy. At the same time, the experiments were upgraded to take full advantage of the upgraded accelerator complex. The Tevatron is currently the only accelerator in the world with a sufficient energy to produce top quarks. Studying top quark production, decay and properties is an important part of the D0 and CDF physics programs. Because of its large mass, the top quark is a unique probe of the Standard Model, and an interesting environment to search for new physics. In this thesis, a measurement of the production cross-section of top quark pairs decaying to two muons is presented. In addition, a Monte Carlo study of the top quark spin correlation measurement was carried out. This thesis is laid out as follows: chapter two gives a short overview over the Standard Model of particle physics and the theoretical aspects of unpolarized and polarized top quark production and decay, chapter three describes the accelerator complex and the D0 experiment whose data is used in this analysis. The Reconstruction of events recorded with the D0 detector is explained in chapter four and the data and Monte Carlo samples used are presented in chapter five. Finally, the cross-section measurement is described in chapter six and the Monte Carlo study of top quark spin correlations in chapter seven.« less

  8. Tunable spin splitting and spin lifetime in polar WSTe monolayer

    NASA Astrophysics Data System (ADS)

    Adhib Ulil Absor, Moh.; Kotaka, Hiroki; Ishii, Fumiyuki; Saito, Mineo

    2018-04-01

    The established spin splitting with out-of-plane Zeeman spin polarizations in the monolayer (ML) of transition metal dichalcogenides (TMDs) is dictated by inversion symmetry breaking together with mirror symmetry in the surface plane. Here, by density functional theory calculations, we find that mirror symmetry breaking in the polar WSTe ML leads to large spin splitting exhibiting in-plane Rashba spin polarizations. We also find that the interplay between the out-of-plane Zeeman- and in-plane Rashba spin-polarized states sensitively affects the spin lifetime, which can be effectively controlled by in-plane strain. In addition, the tunability of spin splitting using an external electric field is also demonstrated. Our study clarifies that the use of in-plane strain and an external electric field is effective for tuning the spin splitting and spin lifetime of the polar WSTe ML; thus, it is useful for designing spintronic devices.

  9. PREFACE: SPIN2010 - Preface for Conference Proceedings

    NASA Astrophysics Data System (ADS)

    Ströher, Hans; Rathmann, Frank

    2011-03-01

    SPIN2010, the 19th International Spin Physics Symposium, took place between 27 September and 2 October, 2010 on the campus of Forschungszentrum Jülich GmbH (FZJ) in Jülich, Germany. The scientific program of this Symposium included many topics related to spin phenomena in particle and nuclear physics as well as those in related fields. The International Spin Physics Symposium series has combined the High Energy Spin Symposia and the Nuclear Polarization Conferences since 2000. The most recent two Symposia were held in Virginia, USA (October 2008) and in Kyoto, Japan (October 2006). The meeting was opened by the chairman of the Board of Management of Jülich Forschungszentrum, Professor Achim Bachem, who cordially welcomed the participants from all over the world and gave a brief introduction to the Center and the research conducted there. The scientific program consisted of plenary sessions and parallel sessions and included the following topics: Fundamental symmetries and spin Spin structure of hadrons Spin physics beyond the Standard Model Spin in hadronic reactions Spin physics with photons and leptons Spin physics in nuclear reactions and nuclei Acceleration, storage, and polarimetry of polarized beams Polarized ion and lepton sources and targets Future facilities and experiments Medical and technological applications of spin physics The 6-day symposium had about 300 participants. In total 35 plenary talks (including 3 summaries of other spin physics meetings) and 163 contributed talks were given. The contents of many of these can be found in the present contributions, arranged according to the above topics and the time sequence. In addition, a public lecture on "Drall in der Quantenwelt", presented by H O Meyer (Bloomington) was received very well. Participants had the option to visit the Cooler synchrotron COSY at the Nuclear Physics Institute (IKP) and the 9.4 T MRT-PET hybrid scanner at the Institute of Neuroscience and Medicine (INM), two unique facilities at FZJ, and many made the most of the opportunity. We gratefully acknowledge the financial support from Brookhaven National Laboratory (BNL, USA), Forschungszentrum Jülich (FZJ), the International Union of Pure And Applied Physics (IUPAP), Thomas Jefferson Laboratory (JLab, USA), Helmholtz Institute Mainz (HIM, Germany) and the Virtual Institute on Spin and Strong QCD (VI-QCD) of the Helmholtz Association (HGF). We would also like to thank the local people from IKP and other institutions of FZJ for their contributions and help - without them we would not have been able to organize this great meeting. The current proceedings comprise written contributions of many of the presentations during SPIN2010; however, due to the recent incident in Japan, a number of our colleagues from there were unfortunately not able to deliver their write-ups in due time. This volume was edited by Ralf Gebel, Christoph Hanhart, Andro Kacharava, Andreas Lehrach, Bernd Lorentz, Nikolai N Nikolaev, Andreas Nogga, Frank Rathmann, and Hans Ströher. The next symposium - SPIN2012 - will be held at the Joint Institute for Nuclear Research (JINR) in Dubna (Russia) in 2012. We are looking forward to meeting you there. Important conference-related links: SPIN2010 Web-site: https://www.congressa.de/SPIN2010/ Article in CERN Courier: http://cerncourier.com/cws/article/cern/45451 Spin Physics Committee: http://www.spin-community.org Jülich, April 2011 - Hans Ströher, Frank Rathmann (Chairs SPIN2010) Conference photograph

  10. Spin-independent transparency of pure spin current at normal/ferromagnetic metal interface

    NASA Astrophysics Data System (ADS)

    Hao, Runrun; Zhong, Hai; Kang, Yun; Tian, Yufei; Yan, Shishen; Liu, Guolei; Han, Guangbing; Yu, Shuyun; Mei, Liangmo; Kang, Shishou

    2018-03-01

    The spin transparency at the normal/ferromagnetic metal (NM/FM) interface was studied in Pt/YIG/Cu/FM multilayers. The spin current generated by the spin Hall effect (SHE) in Pt flows into Cu/FM due to magnetic insulator YIG blocking charge current and transmitting spin current via the magnon current. Therefore, the nonlocal voltage induced by an inverse spin Hall effect (ISHE) in FM can be detected. With the magnetization of FM parallel or antiparallel to the spin polarization of pure spin currents ({{\\boldsymbol{σ }}}sc}), the spin-independent nonlocal voltage is induced. This indicates that the spin transparency at the Cu/FM interface is spin-independent, which demonstrates that the influence of spin-dependent electrochemical potential due to spin accumulation on the interfacial spin transparency is negligible. Furthermore, a larger spin Hall angle of Fe20Ni80 (Py) than that of Ni is obtained from the nonlocal voltage measurements. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11627805), the 111 Project, China (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.

  11. Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves

    PubMed Central

    Liang, Shiheng; Geng, Rugang; Yang, Baishun; Zhao, Wenbo; Chandra Subedi, Ram; Li, Xiaoguang; Han, Xiufeng; Nguyen, Tho Duc

    2016-01-01

    We investigated curvature-enhanced spin-orbit coupling (SOC) and spinterface effect in carbon-based organic spin valves (OSVs) using buckyball C60 and C70 molecules. Since the naturally abundant 12C has spinless nuclear, the materials have negligible hyperfine interaction (HFI) and the same intrinsic SOC, but different curvature SOC due to their distinct curvatures. We fitted the thickness dependence of magnetoresistance (MR) in OSVs at various temperatures using the modified Jullière equation. We found that the spin diffusion length in the C70 film is above 120 nm, clearly longer than that in C60 film at all temperatures. The effective SOC ratio of the C70 film to the C60 film was estimated to be about 0.8. This was confirmed by the magneto-electroluminescence (MEL) measurement in fullerene-based light emitting diodes (LED). Next, the effective spin polarization in C70-based OSVs is smaller than that in C60-based OSVs implying that they have different spinterface effect. First principle calculation study shows that the spin polarization of the dz2 orbital electrons of Co atoms contacted with C60 is larger causing better effective spin polarization at the interface. PMID:26786047

  12. Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves

    NASA Astrophysics Data System (ADS)

    Liang, Shiheng; Geng, Rugang; Yang, Baishun; Zhao, Wenbo; Chandra Subedi, Ram; Li, Xiaoguang; Han, Xiufeng; Nguyen, Tho Duc

    2016-01-01

    We investigated curvature-enhanced spin-orbit coupling (SOC) and spinterface effect in carbon-based organic spin valves (OSVs) using buckyball C60 and C70 molecules. Since the naturally abundant 12C has spinless nuclear, the materials have negligible hyperfine interaction (HFI) and the same intrinsic SOC, but different curvature SOC due to their distinct curvatures. We fitted the thickness dependence of magnetoresistance (MR) in OSVs at various temperatures using the modified Jullière equation. We found that the spin diffusion length in the C70 film is above 120 nm, clearly longer than that in C60 film at all temperatures. The effective SOC ratio of the C70 film to the C60 film was estimated to be about 0.8. This was confirmed by the magneto-electroluminescence (MEL) measurement in fullerene-based light emitting diodes (LED). Next, the effective spin polarization in C70-based OSVs is smaller than that in C60-based OSVs implying that they have different spinterface effect. First principle calculation study shows that the spin polarization of the dz2 orbital electrons of Co atoms contacted with C60 is larger causing better effective spin polarization at the interface.

  13. Evidence for phonon skew scattering in the spin Hall effect of platinum

    NASA Astrophysics Data System (ADS)

    Karnad, G. V.; Gorini, C.; Lee, K.; Schulz, T.; Lo Conte, R.; Wells, A. W. J.; Han, D.-S.; Shahbazi, K.; Kim, J.-S.; Moore, T. A.; Swagten, H. J. M.; Eckern, U.; Raimondi, R.; Kläui, M.

    2018-03-01

    We measure and analyze the effective spin Hall angle of platinum in the low-residual resistivity regime by second-harmonic measurements of the spin-orbit torques for a multilayer of Pt |Co | AlOx . An angular-dependent study of the torques allows us to extract the effective spin Hall angle responsible for the damping-like torque in the system. We observe a strikingly nonmonotonic and reproducible temperature dependence of the torques. This behavior is compatible with recent theoretical predictions which include both intrinsic and extrinsic (impurities and phonons) contributions to the spin Hall effect at finite temperatures.

  14. Spin caloritronics, origin and outlook

    NASA Astrophysics Data System (ADS)

    Yu, Haiming; Brechet, Sylvain D.; Ansermet, Jean-Philippe

    2017-03-01

    Spin caloritronics refers to research efforts in spintronics when a heat current plays a role. In this review, we start out by reviewing the predictions that can be drawn from the thermodynamics of irreversible processes. This serves as a conceptual framework in which to analyze the interplay of charge, spin and heat transport. This formalism predicts tensorial relations between vectorial quantities such as currents and gradients of chemical potentials or of temperature. Transverse effects such as the Nernst or Hall effects are predicted on the basis that these tensors can include an anti-symmetric contribution, which can be written with a vectorial cross-product. The local symmetry of the system may determine the direction of the vector defining such transverse effects, such as the surface of an isotropic medium. By including magnetization as state field in the thermodynamic description, spin currents appear naturally from the continuity equation for the magnetization, and dissipative spin torques are derived, which are charge-driven or heat-driven. Thermodynamics does not give the strength of these effects, but may provide relationships between them. Based on this framework, the review proceeds by showing how these effects have been observed in various systems. Spintronics has become a vast field of research, and the experiments highlighted in this review pertain only to heat effects on transport and magnetization dynamics, such as magneto-thermoelectric power, or the spin-dependence of the Seebeck effect, the spin-dependence of the Peltier effect, the spin Seebeck effect, the magnetic Seebeck effect, or the Nernst effect. The review concludes by pointing out predicted effects that are yet to be verified experimentally, and in what novel materials the standard thermal spin effects could be investigated.

  15. Magneto-optical studies of quantum dots

    NASA Astrophysics Data System (ADS)

    Russ, Andreas Hans

    Significant effort in condensed matter physics has recently been devoted to the field of "spintronics" which seeks to utilize the spin degree of freedom of electrons. Unlike conventional electronics that rely on the electron charge, devices exploiting their spin have the potential to yield new and novel technological applications, including spin transistors, spin filters, and spin-based memory devices. Any such application has the following essential requirements: 1) Efficient electrical injection of spin-polarized carriers; 2) Long spin lifetimes; 3) Ability to control and manipulate electron spins; 4) Effective detection of spin-polarized carriers. Recent work has demonstrated efficient electrical injection from ferromagnetic contacts such as Fe and MnAs, utilizing a spin-Light Emitting Diode (spin-LED) as a method of detection. Semiconductor quantum dots (QDs) are attractive candidates for satisfying requirements 2 and 3 as their zero dimensionality significantly suppresses many spin-flip mechanisms leading to long spin coherence times, as well as enabling the localization and manipulation of a controlled number of electrons and holes. This thesis is composed of three projects that are all based on the optical properties of QD structures including: I) Intershell exchange between spin-polarized electrons occupying adjacent shells in InAs QDs; II) Spin-polarized multiexitons in InAs QDs in the presence of spin-orbit interactions; III) The optical Aharonov-Bohm effect in AlxGa1-xAs/AlyGa1-yAs quantum wells (QWs). In the following we introduce some of the basic optical properties of quantum dots, describe the main tool (spin-LED) employed in this thesis to inject and detect spins in these QDs, and conclude with the optical Aharonov-Bohm effect (OAB) in type-II QDs.

  16. Widespread spin polarization effects in photoemission from topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations ofmore » photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.« less

  17. Design of one-kilometer-long antenna sticks and support structure for a geosynchronous satellite

    NASA Astrophysics Data System (ADS)

    Freeman, Janet Elizabeth

    This study develops a preliminary structural design for three one-kilometer-long antenna sticks and an antenna support structure for a geosynchronous earth-imaging satellite. On each of the antenna sticks is mounted a linear array of over 16,000 antenna elements. The antenna sticks are parallel to each other, and are spaced 1 km apart so that they form the corners of an imaginary triangular tube. This tube is spinning about its long axis. Antenna performance requires that the position of each antenna element be known to an accuracy of 0.5 cm, and that the spacecraft's spin axis be parallel to the earth's spin axis within one degree. Assuming that the position of each joint on each antenna stick is known, the antenna sticks are designed as beams under a uniformly distributed acceleration (due to spacecraft spin) to meet the displacement accuracy requirements for the antenna elements. Both a thin-walled round tube and a three-longeron double-laced truss are considered for the antenna stick structure. A spacecraft spinrate is chosen by considering the effects of environmental torques on the precession of a simplified spacecraft. A preliminary truss-like support structure configuration is chosen, and analyzed in quasi-static equilibrium with control thrusters firing to estimate the axial loads in the structural members. The compressive loads found by this analysis are used to design the support structure members to be buckling-critical three-longeron double-laced truss columns. Some tension-only members consisting of Kevlar cord are included in the design to eliminate the need for bulkier members. The lateral vibration modes of the individual structural members are found by conventional analysis -- the fundamental frequencies are as low as 0.0066 Hz. Finite element dynamic analyses of the structure in free vibration confirm that simplified models of the structure and members can be used to determine the structural modes and natural frequencies for design purposes.

  18. Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, M.; Kuhn, S. E.; Adhikari, K. P.

    The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground statemore » (due to the D-state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering. Furthermore, we measured the beam-target double-spin asymmetry (A ||) for quasielastic electron scattering off the deuteron at several beam energies (1.6–1.7, 2.5, 4.2, and 5.6–5.8GeV), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality Q 2 (0.13–3.17(GeV/c) 2), missing momentum (p m=0.0–0.5GeV/c), and the angle between the (inferred) spectator neutron and the momentum transfer direction (θ nq). We compare our results with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to medium missing momenta (p m≤0.25GeV/c), including the change of the asymmetry due to the contribution of the deuteron D state at higher momenta. At the highest missing momenta, our data clearly agree better with the calculations including FSI. Final-state interactions seem to play a lesser role for polarization observables in deuteron two-body electrodisintegration than for absolute cross sections. Our data, while limited in statistical power, indicate that PWIA models work reasonably well to understand the asymmetries at lower missing momenta. In turn, this information can be used to extract the product of beam and target polarization (P bP t) from quasielastic electron-deuteron scattering, which is useful for measurements of spin observables in electron-neutron inelastic scattering. But, at the highest missing (neutron) momenta, FSI effects become important and must be accounted for.« less

  19. Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS

    DOE PAGES

    Mayer, M.; Kuhn, S. E.; Adhikari, K. P.; ...

    2017-02-24

    The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground statemore » (due to the D-state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering. Furthermore, we measured the beam-target double-spin asymmetry (A ||) for quasielastic electron scattering off the deuteron at several beam energies (1.6–1.7, 2.5, 4.2, and 5.6–5.8GeV), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality Q 2 (0.13–3.17(GeV/c) 2), missing momentum (p m=0.0–0.5GeV/c), and the angle between the (inferred) spectator neutron and the momentum transfer direction (θ nq). We compare our results with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to medium missing momenta (p m≤0.25GeV/c), including the change of the asymmetry due to the contribution of the deuteron D state at higher momenta. At the highest missing momenta, our data clearly agree better with the calculations including FSI. Final-state interactions seem to play a lesser role for polarization observables in deuteron two-body electrodisintegration than for absolute cross sections. Our data, while limited in statistical power, indicate that PWIA models work reasonably well to understand the asymmetries at lower missing momenta. In turn, this information can be used to extract the product of beam and target polarization (P bP t) from quasielastic electron-deuteron scattering, which is useful for measurements of spin observables in electron-neutron inelastic scattering. But, at the highest missing (neutron) momenta, FSI effects become important and must be accounted for.« less

  20. Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Kuhn, S. E.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Keith, C.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; McKinnon, B.; Meekins, D.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Net, L. A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Sabatié, F.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2017-02-01

    Background: The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. Purpose: The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground state (due to the D -state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering. Method: We measured the beam-target double-spin asymmetry (A||) for quasielastic electron scattering off the deuteron at several beam energies (1.6 -1.7 , 2.5, 4.2, and 5.6 -5.8 GeV ), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality Q2(0.13 -3.17 (GeV/c ) 2) , missing momentum (pm=0.0 -0.5 GeV /c ), and the angle between the (inferred) spectator neutron and the momentum transfer direction (θn q). Results: The results are compared with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to medium missing momenta (pm≤0.25 GeV /c ), including the change of the asymmetry due to the contribution of the deuteron D state at higher momenta. At the highest missing momenta, our data clearly agree better with the calculations including FSI. Conclusions: Final-state interactions seem to play a lesser role for polarization observables in deuteron two-body electrodisintegration than for absolute cross sections. Our data, while limited in statistical power, indicate that PWIA models work reasonably well to understand the asymmetries at lower missing momenta. In turn, this information can be used to extract the product of beam and target polarization (PbPt ) from quasielastic electron-deuteron scattering, which is useful for measurements of spin observables in electron-neutron inelastic scattering. However, at the highest missing (neutron) momenta, FSI effects become important and must be accounted for.

  1. Spin-Hall effect in the scattering of structured light from plasmonic nanowire.

    PubMed

    Sharma, Deepak K; Kumar, Vijay; Vasista, Adarsh B; Chaubey, Shailendra K; Kumar, G V Pavan

    2018-06-01

    Spin-orbit interactions are subwavelength phenomena that can potentially lead to numerous device-related applications in nanophotonics. Here, we report the spin-Hall effect in the forward scattering of Hermite-Gaussian (HG) and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the spin-Hall effect for a HG beam compared to a Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition, the nodal line of the HG beam acts as the marker for the spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the spin flow component of the Poynting vector associated with the circular polarization is responsible for the spin-Hall effect and its enhancement.

  2. Spin-Hall effect in the scattering of structured light from plasmonic nanowire

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak K.; Kumar, Vijay; Vasista, Adarsh B.; Chaubey, Shailendra K.; Kumar, G. V. Pavan

    2018-06-01

    Spin-orbit interactions are subwavelength phenomena which can potentially lead to numerous device related applications in nanophotonics. Here, we report Spin-Hall effect in the forward scattering of Hermite-Gaussian and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the Spin-Hall effect for Hermite-Gaussian beam as compared to Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition to it, nodal line of HG beam acts as the marker for the Spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the Spin flow component of Poynting vector associated with the circular polarization is responsible for the Spin-Hall effect and its enhancement.

  3. Quasiparticle-mediated spin Hall effect in a superconductor.

    PubMed

    Wakamura, T; Akaike, H; Omori, Y; Niimi, Y; Takahashi, S; Fujimaki, A; Maekawa, S; Otani, Y

    2015-07-01

    In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin-charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles.

  4. Thickness dependence and the role of spin transfer torque in nonlinear giant magnetoresistance of permalloy dual spin valves

    NASA Astrophysics Data System (ADS)

    Banerjee, N.; Aziz, A.; Ali, M.; Robinson, J. W. A.; Hickey, B. J.; Blamire, M. G.

    2010-12-01

    The recent discovery of nonlinear current-dependent magnetoresistance in dual spin valve devices [A. Aziz, O. P. Wessely, M. Ali, D. M. Edwards, C. H. Marrows, B. J. Hickey, and M. G. Blamire, Phys. Rev. Lett. 103, 237203 (2009)10.1103/PhysRevLett.103.237203] opens up the possibility for distinct physics which extends the standard model of giant magnetoresistance. When the outer ferromagnetic layers of a dual spin valve are antiparallel, the resulting accumulation of spin in the middle ferromagnetic layer strongly modifies its bulk and interfacial spin asymmetry and resistance. Here, we report experimental evidence of the role of bulk spin accumulation in this nonlinear effect and show that interfacial spin accumulation alone cannot account for the observed dependence of the effect on the thickness of the middle ferromagnetic layer. It is also shown that spin torque acting on the middle ferromagnetic layer combined with the nonlinear effect might be useful in understanding the dynamical features associated with the nonlinear behavior.

  5. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams

    NASA Astrophysics Data System (ADS)

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Zhao, Jianlin

    2018-05-01

    We report on the catalystlike effect of orbital angular momentum (OAM) on local spin-state conversion within the tightly focused radially polarized beams associated with optical spin-orbit interaction. It is theoretically demonstrated that the incident OAM can lead to a conversion of purely transverse spin state to a three-dimensional spin state on the focal plane. This conversion can be conveniently manipulated by altering the sign and value of the OAM. By comparing the total OAM and spin angular momentum (SAM) on the incident plane to those on the focal plane, it is indicated that the incident OAM have no participation in the angular momentum intertransfer, and just play a role as a catalyst of local SAM conversion. Such an effect of OAM sheds new light on the optical spin-orbit interaction in tight-focusing processes. The resultant three-dimensional spin states may provide more degrees of freedom in optical manipulation and spin-dependent directive coupling.

  6. Modulation of spin dynamics via voltage control of spin-lattice coupling in multiferroics

    DOE PAGES

    Zhu, Mingmin; Zhou, Ziyao; Peng, Bin; ...

    2017-02-03

    Our work aims at magnonics manipulation by the magnetoelectric coupling effect and is motivated by the most recent progresses in both magnonics (spin dynamics) and multiferroics fields. Here, voltage control of magnonics, particularly the surface spin waves, is achieved in La 0.7Sr 0.3MnO 3/0.7Pb(Mg 1/3Nb 2/3)O 3-0.3PbTiO 3 multiferroic heterostructures. With the electron spin resonance method, a large 135 Oe shift of surface spin wave resonance (≈7 times greater than conventional voltage-induced ferromagnetic resonance shift of 20 Oe) is determined. A model of the spin-lattice coupling effect, i.e., varying exchange stiffness due to voltage-induced anisotropic lattice changes, has been establishedmore » to explain experiment results with good agreement. In addition, an “on” and “off” spin wave state switch near the critical angle upon applying a voltage is created. The modulation of spin dynamics by spin-lattice coupling effect provides a platform for realizing energy-efficient, tunable magnonics devices.« less

  7. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).

    PubMed

    Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David

    2018-06-01

    Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.

  8. Spin Seebeck devices using local on-chip heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M.; Fradin, Frank Y.; Hoffman, Jason

    2015-05-07

    A micro-patterned spin Seebeck device is fabricated using an on-chip heater. Current is driven through a Au heater layer electrically isolated from a bilayer consisting of Fe3O4 (insulating ferrimagnet) and a spin detector layer. It is shown that through this method it is possible to measure the longitudinal spin Seebeck effect (SSE) for small area magnetic devices, equivalent to traditional macroscopic SSE experiments. Using a lock-in detection technique, it is possible to more sensitively characterize both the SSE and the anomalous Nernst effect (ANE), as well as the inverse spin Hall effect in various spin detector materials. By using themore » spin detector layer as a thermometer, we can obtain a value for the temperature gradient across the device. These results are well matched to values obtained through electromagnetic/thermal modeling of the device structure and with large area spin Seebeck measurements.« less

  9. Spin Seebeck devices using local on-chip heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M., E-mail: swu@anl.gov; Fradin, Frank Y.; Hoffman, Jason

    2015-05-07

    A micro-patterned spin Seebeck device is fabricated using an on-chip heater. Current is driven through a Au heater layer electrically isolated from a bilayer consisting of Fe{sub 3}O{sub 4} (insulating ferrimagnet) and a spin detector layer. It is shown that through this method it is possible to measure the longitudinal spin Seebeck effect (SSE) for small area magnetic devices, equivalent to traditional macroscopic SSE experiments. Using a lock-in detection technique, it is possible to more sensitively characterize both the SSE and the anomalous Nernst effect (ANE), as well as the inverse spin Hall effect in various spin detector materials. Bymore » using the spin detector layer as a thermometer, we can obtain a value for the temperature gradient across the device. These results are well matched to values obtained through electromagnetic/thermal modeling of the device structure and with large area spin Seebeck measurements.« less

  10. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    PubMed Central

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  11. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  12. Magnetic and optical bistability in tetrairon(III) single molecule magnets functionalized with azobenzene groups.

    PubMed

    Prasad, Thazhe Kootteri; Poneti, Giordano; Sorace, Lorenzo; Rodriguez-Douton, Maria Jesus; Barra, Anne-Laure; Neugebauer, Petr; Costantino, Luca; Sessoli, Roberta; Cornia, Andrea

    2012-07-21

    Tetrairon(III) complexes known as "ferric stars" have been functionalized with azobenzene groups to investigate the effect of light-induced trans-cis isomerization on single-molecule magnet (SMM) behaviour. According to DC magnetic data and EPR spectroscopy, clusters dispersed in polystyrene (4% w/w) exhibit the same spin (S = 5) and magnetic anisotropy as bulk samples. Ligand photoisomerization, achieved by irradiation at 365 nm, has no detectable influence on static magnetic properties. However, it induces a small but significant acceleration of magnetic relaxation as probed by AC susceptometry. The pristine behaviour can be almost quantitatively recovered by irradiation with white light. Our studies demonstrate that magnetic and optical bistability can be made to coexist in SMM materials, which are of current interest in molecular spintronics.

  13. Magnon Hall effect without Dzyaloshinskii-Moriya interaction.

    PubMed

    Owerre, S A

    2017-01-25

    Topological magnon bands and magnon Hall effect in insulating collinear ferromagnets are induced by the Dzyaloshinskii-Moriya interaction (DMI) even at zero magnetic field. In the geometrically frustrated star lattice, a coplanar/noncollinear [Formula: see text] magnetic ordering may be present due to spin frustration. This magnetic structure, however, does not exhibit topological magnon effects even with DMI in contrast to collinear ferromagnets. We show that a magnetic field applied perpendicular to the star plane induces a non-coplanar spin configuration with nonzero spin scalar chirality, which provides topological effects without the need of DMI. The non-coplanar spin texture originates from the topology of the spin configurations and does not need the presence of DMI or magnetic ordering, which suggests that this phenomenon may be present in the chiral spin liquid phases of frustrated magnetic systems. We propose that these anomalous topological magnon effects can be accessible in polymeric iron (III) acetate-a star-lattice antiferromagnet with both spin frustration and long-range magnetic ordering.

  14. Deficiency of the bulk spin Hall effect model for spin-orbit torques in magnetic-insulator/heavy-metal heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Junxue; Yu, Guoqiang; Tang, Chi; Liu, Yizhou; Shi, Zhong; Liu, Yawen; Navabi, Aryan; Aldosary, Mohammed; Shao, Qiming; Wang, Kang L.; Lake, Roger; Shi, Jing

    2017-06-01

    Electrical currents in a magnetic-insulator/heavy-metal heterostructure can induce two simultaneous effects, namely, spin Hall magnetoresistance (SMR) on the heavy-metal side and spin-orbit torques (SOTs) on the magnetic-insulator side. Within the framework of a pure spin current model based on the bulk spin Hall effect (SHE), the ratio of the spin Hall-induced anomalous Hall effect (SH-AHE) to SMR should be equal to the ratio of the fieldlike torque (FLT) to the dampinglike torque (DLT). We perform a quantitative study of SMR, SH-AHE, and SOTs in a series of thulium iron garnet/platinum or T m3F e5O12/Pt heterostructures with different T m3F e5O12 thicknesses, where T m3F e5O12 is a ferrimagnetic insulator with perpendicular magnetic anisotropy. We find the ratio between the measured effective fields of FLT and DLT is at least two times larger than the ratio of the SH-AHE to SMR. In addition, the bulk SHE model grossly underestimates the spin-torque efficiency of FLT. Our results reveal deficiencies of the bulk SHE model and also address the importance of interfacial effects such as the Rashba and magnetic proximity effects in magnetic-insulator/heavy-metal heterostructures.

  15. Modelling magnetic anisotropy of single-chain magnets in |d/J| ≥ 1 regime

    NASA Astrophysics Data System (ADS)

    Haldar, Sumit; Raghunathan, Rajamani; Sutter, Jean-Pascal; Ramasesha, S.

    2017-11-01

    Single-molecule magnets (SMMs) with single-ion anisotropies comparable to exchange interactions J between spins have recently been synthesised. Here, we provide theoretical insights into the magnetism of such systems. We study spin chains with site-spins, s = 1, 3/2 and 2 and strength of on-site anisotropy comparable to the exchange constants between the spins. We find that large on-site anisotropies lead to crossing of the states with different MS values in the same spin manifold to which they belong in the absence of anisotropy. When on-site anisotropy is increased further, we also find that the MS states of the higher energy spin states descend below the MS states of the ground spin manifold. Giant spin in this limit is no longer conserved and describing the axial and rhombic anisotropies of the molecule, DM and EM, respectively, is not possible. However, the giant spin of the low-lying large MS states is very nearly an integer and, using this spin value, it is possible to construct an effective spin-Hamiltonian and compute the molecular magnetic anisotropy constants DM and EM. We report effect of finite sizes, rotations of site anisotropies and chain dimerisation on the effective anisotropy of the spin chains.

  16. Spin-tunnel investigation of a 1/15-scale model of an Australian trainer airplane

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.; Whipple, Raymond D.; White, William L.

    1987-01-01

    An investigation was conducted in the Langley Spin Tunnel of the spin and spin-recovery characteristics of a 1/15-scale model of an Australian trainer airplane. The invesigation included erect and inverted spins; configuration variables such as a long tail, fuselage strakes, 20 deg. elevator cutouts, and rudder modifications; and determination of the parachute size for emergency spin recovery. Also included in the investigation were wing leading-edge modifications to evaluate Reynolds number effects. Results indicate that the basic configuration will spin erect at an angle of attack of about 63 deg. at about 2 to 2.3 seconds per turn. Recovery from this spin was unsatisfactory by rudder reversal or by rudder reversal and ailerons deflected to full with the spin. The elevators had a pronounced effect on the recovery characteristics. The elevators-down position was very adverse to recoveries, whereas the elevators-up position provided favorable recovery effects. Moving the vertical tail aft (producing a long tail configuration) improved the spin characteristics, but the recoveries were still considered marginal. An extension to the basic rudder chord and length made a significant improvement in the spin and recovery characteristics. Satisfactory recoveries were obtained by deflecting the rudder to full against the spin and the elevators and ailerons to neutral.

  17. Effects of discontinuous drooped wing leading-edge modifications on the spinning characteristics of a low-wing general aviation airplane

    NASA Technical Reports Server (NTRS)

    Dicarlo, D. J.; Stough, H. P., III; Patton, J. M., Jr.

    1980-01-01

    Wind tunnel and flight tests were conducted to determine the effects of several discontinuous drooped wing leading-edge configurations on the spinning characteristics of a light, single-engine, low-wing research airplane. Particular emphasis was placed on the identification of modifications which would improve the spinning characteristics. The spanwise length of a discontinuous outboard droop was varied and several additional inboard segments were added to determine the influence of such leading-edge configurations on the spin behavior. Results of the study indicated that the use of only the discontinuous outboard droop, over a specific spanwise area, was most effective towards improving spin and spin recovery characteristics, whereas the segmented configurations having both inboard and outboard droop exhibited a tendency to enter a flat spin.

  18. Spin supercurrent and effect of quantum phase transition in the two-dimensional XY model

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2018-04-01

    We have verified the influence of quantum phase transition on spin transport in the spin-1 two-dimensional XY model on the square lattice, with easy plane, single ion and exchange anisotropy. We analyze the effect of the phase transition from the Néel phase to the paramagnetic phase on the AC spin conductivity. Our results show a bit influence of the quantum phase transition on the conductivity. We also obtain a conventional spin transport for ω > 0 and an ideal spin transport in the limit of DC conductivity and therefore, a superfluid spin transport for the DC current in this limit. We have made the diagrammatic expansion for the Green-function with objective to include the effect exciton-exciton scattering on the results.

  19. On Dynamics of Spinning Structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Ibrahim, A.

    2012-01-01

    This paper provides details of developments pertaining to vibration analysis of gyroscopic systems, that involves a finite element structural discretization followed by the solution of the resulting matrix eigenvalue problem by a progressive, accelerated simultaneous iteration technique. Thus Coriolis, centrifugal and geometrical stiffness matrices are derived for shell and line elements, followed by the eigensolution details as well as solution of representative problems that demonstrates the efficacy of the currently developed numerical procedures and tools.

  20. Polarization Facilities at COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eversheim, Dieter

    2008-02-06

    The cooler synchrotron COSY at the Forschungszentrum Juelich, Germany has been equipped with all necessary tools to accelerate polarized protons and deuterons to their maximum energy. For the EDDA and ANKE experiments two atomic beam targets for polarized protons and deuterons have been installed in the COSY-ring. Tests of the RF Spin-Flipper have been very successful. Externally polarization experiments are carried out by the TOF spectrometer. The performance of the relevant components and experiments is discussed.

  1. Polarization Facilities at COSY

    NASA Astrophysics Data System (ADS)

    Eversheim, Dieter

    2008-02-01

    The cooler synchrotron COSY at the Forschungszentrum Jülich, Germany has been equipped with all necessary tools to accelerate polarized protons and deuterons to their maximum energy. For the EDDA and ANKE experiments two atomic beam targets for polarized protons and deuterons have been installed in the COSY-ring. Tests of the RF Spin-Flipper have been very successful. Externally polarization experiments are carried out by the TOF spectrometer. The performance of the relevant components and experiments is discussed.

  2. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  3. Spin-dependent Peltier effect in 3D topological insulators

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard

    2013-03-01

    The Peltier effect represents the heat carrying capacity of a certain material when current passes through it. When two materials with different Peltier coefficients are placed together, the Peltier effect causes heat to flow either towards or away from the interface between them. This work utilizes the spin-polarized property of 3D topological insulator (TI) surface states to describe the transport of heat through the spin-up and spin-down channels. It has been observed that the spin channels are able to carry heat independently of each other. Spin currents can therefore be employed to supply or extract heat from an interface between materials with spin-dependent Peltier coefficients. The device is composed of a thin film of Bi2Se3 sandwiched between two layers of Bi2Te3. The thin film of Bi2Se3serves both as a normal and topological insulator. It is a normal insulator when its surfaces overlap to produce a finite band-gap. Using an external gate, Bi2Se3 film can be again tuned in to a TI. Sufficiently thick Bi2Te3 always retain TI behavior. Spin-dependent Peltier coefficients are obtained and the spin Nernst effect in TIs is shown by controlling the temperature gradient to convert charge current to spin current.

  4. A study of environmental effects on galaxy spin using MaNGA data

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Chung, Haeun

    2018-06-01

    We investigate environmental effects on galaxy spin using the recent public data of Mapping Nearby Galaxies at APO (MaNGA) integral field spectroscopic survey containing ˜2800 galaxies. We measure the spin parameter of 1830 galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and obtain their large-scale (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environmental parameters for 1529 and 1767 galaxies, respectively. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at log (M*/M⊙) ≳ 10, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.

  5. The Role of Linear Acceleration in Visual-Vestibular Interactions and Implications in Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Correia, Manning J.; Luke, Brian L.; McGrath, Braden J.; Clark, John B.; Rupert, Angus H.

    1996-01-01

    While considerable attention has been given to visual-vestibular interaction (VVI) during angular motion of the head as might occur during an aircraft spin, much less attention has been given to VVI during linear motion of the head. Such interaction might occur, for example, while viewing a stationary or moving display during vertical take-off and landing operations Research into linear VVI, particularly during prolonged periods of linear acceleration, has been hampered by the unavailability of a programmable translator capable of large excursions We collaborated with Otis Elevator Co. and used their research tower and elevator, whose motion could be digitally programmed, to vertically translate human subjects over a distance of 92.3 meters with a peak linear acceleration of 2 meters/sec(exp 2) During pulsatile or sinusoidal translation, the subjects viewed moving stripes (optokinetic stimulus) or a fixed point source (light emitting diode, led, display), respectively and it was generally found that. The direction of linear acceleration relative to the cardinal head axes and the direction of the slow component of optokinetic nystagmus (OKN) determined the extent of VVI during concomitant stripe motion and linear acceleration. Acceleration along the z head axis (A(sub z)) produced the largest VVI, particularly when the slow component of OKN was in the same direction as eye movements produced by the linear acceleration and Eye movements produced by linear acceleration are suppressed by viewing a fixed target at frequencies below 10 Hz But, above this frequency the suppression produced by VVI is removed. Finally, as demonstrated in non-human primates, vergence of the eyes appears to modulate the vertical eye movement response to linear acceleration in humans.

  6. Matrix methods applied to engineering rigid body mechanics

    NASA Astrophysics Data System (ADS)

    Crouch, T.

    The purpose of this book is to present the solution of a range of rigorous body mechanics problems using a matrix formulation of vector algebra. Essential theory concerning kinematics and dynamics is formulated in terms of matrix algebra. The solution of kinematics and dynamics problems is discussed, taking into account the velocity and acceleration of a point moving in a circular path, the velocity and acceleration determination for a linkage, the angular velocity and angular acceleration of a roller in a taper-roller thrust race, Euler's theroem on the motion of rigid bodies, an automotive differential, a rotating epicyclic, the motion of a high speed rotor mounted in gimbals, and the vibration of a spinning projectile. Attention is given to the activity of a force, the work done by a conservative force, the work and potential in a conservative system, the equilibrium of a mechanism, bearing forces due to rotor misalignment, and the frequency of vibrations of a constrained rod.

  7. A Study of Airplane Maneuvers with Special Reference to Angular Velocities

    NASA Technical Reports Server (NTRS)

    Reid, J E

    1923-01-01

    This investigation was undertaken by the National Advisory Committee for Aeronautics for the purpose of increasing our knowledge on the behavior of the airplane during various maneuvers and to obtain values of the maximum angular velocities and accelerations in flight. The method consisted in flying a JN4H airplane through various maneuvers while records were being taken of the control position, the air speed, the angular velocity and the acceleration along the Z axis. The results showed that the maximum angular velocity about the X axis of radians per second in a barrel roll. The maximum angular acceleration about the X axis of -2.10 radians per (second) to the 2nd power occurred in a spin, while the maximum about the Y axis was 1.40 radians per (second) to the 2nd power when pulling suddenly out of a dive. These results have direct application to the design of airplane parts, such as propeller shaft and instruments.

  8. Pulsar wind model for the spin-down behavior of intermittent pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L.; Tong, H.; Yan, W. M.

    Intermittent pulsars are part-time radio pulsars. They have higher slow down rates in the on state (radio-loud) than in the off state (radio-quiet). This gives evidence that particle wind may play an important role in pulsar spindown. The effect of particle acceleration is included in modeling the rotational energy loss rate of the neutron star. Applying the pulsar wind model to the three intermittent pulsars (PSR B1931+24, PSR J1841–0500, and PSR J1832+0029) allows their magnetic fields and inclination angles to be calculated simultaneously. The theoretical braking indices of intermittent pulsars are also given. In the pulsar wind model, the densitymore » of the particle wind can always be the Goldreich-Julian density. This may ensure that different on states of intermittent pulsars are stable. The duty cycle of particle wind can be determined from timing observations. It is consistent with the duty cycle of the on state. Inclination angle and braking index observations of intermittent pulsars may help to test different models of particle acceleration. At present, the inverse Compton scattering induced space charge limited flow with field saturation model can be ruled out.« less

  9. Pulsar Wind Model for the Spin-down Behavior of Intermittent Pulsars

    NASA Astrophysics Data System (ADS)

    Li, L.; Tong, H.; Yan, W. M.; Yuan, J. P.; Xu, R. X.; Wang, N.

    2014-06-01

    Intermittent pulsars are part-time radio pulsars. They have higher slow down rates in the on state (radio-loud) than in the off state (radio-quiet). This gives evidence that particle wind may play an important role in pulsar spindown. The effect of particle acceleration is included in modeling the rotational energy loss rate of the neutron star. Applying the pulsar wind model to the three intermittent pulsars (PSR B1931+24, PSR J1841-0500, and PSR J1832+0029) allows their magnetic fields and inclination angles to be calculated simultaneously. The theoretical braking indices of intermittent pulsars are also given. In the pulsar wind model, the density of the particle wind can always be the Goldreich-Julian density. This may ensure that different on states of intermittent pulsars are stable. The duty cycle of particle wind can be determined from timing observations. It is consistent with the duty cycle of the on state. Inclination angle and braking index observations of intermittent pulsars may help to test different models of particle acceleration. At present, the inverse Compton scattering induced space charge limited flow with field saturation model can be ruled out.

  10. Spin decoherence of InAs surface electrons by transition metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Soghomonian, V.; Heremans, J. J.

    2018-04-01

    Spin interactions between a two-dimensional electron system at the InAs surface and transition metal ions, Fe3 +, Co2 +, and Ni2 +, deposited on the InAs surface, are probed by antilocalization measurements. The spin-dependent quantum interference phenomena underlying the quantum transport phenomenon of antilocalization render the technique sensitive to the spin states of the transition metal ions on the surface. The experiments yield data on the magnitude and temperature dependence of the electrons' inelastic scattering rates, spin-orbit scattering rates, and magnetic spin-flip rates as influenced by Fe3 +, Co2 +, and Ni2 +. A high magnetic spin-flip rate is shown to mask the effects of spin-orbit interaction, while the spin-flip rate is shown to scale with the effective magnetic moment of the surface species. The spin-flip rates and their dependence on temperature yield information about the spin states of the transition metal ions at the surface, and in the case of Co2 + suggest either a spin transition or formation of a spin-glass system.

  11. Beam and spin dynamics in the fast ramping storage ring ELSA: Concepts and measures to increase beam energy, current and polarization

    NASA Astrophysics Data System (ADS)

    Hillert, Wolfgang; Balling, Andreas; Boldt, Oliver; Dieckmann, Andreas; Eberhardt, Maren; Frommberger, Frank; Heiliger, Dominik; Heurich, Nikolas; Koop, Rebecca; Klarner, Fabian; Preisner, Oliver; Proft, Dennis; Pusch, Thorsten; Roth, André; Sauerland, Dennis; Schedler, Manuel; Schmidt, Jan Felix; Switka, Michael; Thiry, Jens-Peter; Wittschen, Jürgen; Zander, Sven

    2017-01-01

    The electron accelerator facility ELSA has been operated for almost 30 years serving nuclear physics experiments investigating the sub-nuclear structure of matter. Within the 12 years funding period of the collaborative research center SFB/TR 16, linearly and circularly polarized photon beams with energies up to more than 3 GeV were successfully delivered to photoproduction experiments. In order to fulfill the increasing demands on beam polarization and intensity, a comprehensive research and upgrade program has been carried out. Beam and spin dynamics have been studied theoretically and experimentally, and sophisticated new devices have been developed and installed. The improvements led to a significant increase of the available beam polarization and intensity. A further increase of beam energy seems feasible with the implementation of superconducting cavities.

  12. Baseline scheme for polarization preservation and control in the MEIC ion complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derbenev, Yaroslav S.; Lin, Fanglei; Morozov, Vasiliy

    2015-09-01

    The scheme for preservation and control of the ion polarization in the Medium-energy Electron-Ion Collider (MEIC) has been under active development in recent years. The figure-8 configuration of the ion rings provides a unique capability to control the polarization of any ion species including deuterons by means of "weak" solenoids rotating the particle spins by small angles. Insertion of "weak" solenoids into the magnetic lattices of the booster and collider rings solves the problem of polarization preservation during acceleration of the ion beam. Universal 3D spin rotators designed on the basis of "weak" solenoids allow one to obtain any polarizationmore » orientation at an interaction point of MEIC. This paper presents the baseline scheme for polarization preservation and control in the MEIC ion complex.« less

  13. Experimental Aspects of Polarization Optimized Experiments (POE) for Magic Angle Spinning Solid-State NMR of Microcrystalline and Membrane-Bound Proteins.

    PubMed

    Gopinath, T; Veglia, Gianluigi

    2018-01-01

    Conventional NMR pulse sequences record one spectrum per experiment, while spending most of the time waiting for the spin system to return to the equilibrium. As a result, a full set of multidimensional NMR experiments for biological macromolecules may take up to several months to complete. Here, we present a practical guide for setting up a new class of MAS solid-state NMR experiments (POE or polarization optimized experiments) that enable the simultaneous acquisition of multiple spectra of proteins, accelerating data acquisition. POE exploit the long-lived 15 N polarization of isotopically labeled proteins and enable one to obtain up to eight spectra, by concatenating classical NMR pulse sequences. This new strategy propels data throughput of solid-state NMR spectroscopy of fibers, microcrystalline preparations, as well as membrane proteins.

  14. Automatic spacecraft detumbling by internal mass motion

    NASA Technical Reports Server (NTRS)

    Edwards, T. L.; Kaplan, M. H.

    1974-01-01

    In the operation of future manned space vehicles, there will always be a finite probability that an accident will occur which results in uncontrolled tumbling of a craft. Hard docking by a manned rescue vehicle is not acceptable because of the hazardous environment to which rescue crewmen would be exposed and excessive maneuvering accelerations during docking operations. A movable-mass control concept, which is activated upon initiation of tumbling and is autonomous, can convert tumbling motion into simple spin. The complete equations of motion for an asymmetric rigid spacecraft containing a movable mass are presented, and appropriate control law and system parameters are selected to minimize kinetic energy, resulting in simple spin about the major principal axis. Simulations indicate that for a large space station experiencing a collision, which results in tumbling, a 1% movable mass is capable of stabilizing motion in 2 hr.

  15. Boson-mediated quantum spin simulators in transverse fields: X Y model and spin-boson entanglement

    NASA Astrophysics Data System (ADS)

    Wall, Michael L.; Safavi-Naini, Arghavan; Rey, Ana Maria

    2017-01-01

    The coupling of spins to long-wavelength bosonic modes is a prominent means to engineer long-range spin-spin interactions, and has been realized in a variety of platforms, such as atoms in optical cavities and trapped ions. To date, much of the experimental focus has been on the realization of long-range Ising models, but generalizations to other spin models are highly desirable. In this work, we explore a previously unappreciated connection between the realization of an X Y model by off-resonant driving of a single sideband of boson excitation (i.e., a single-beam Mølmer-Sørensen scheme) and a boson-mediated Ising simulator in the presence of a transverse field. In particular, we show that these two schemes have the same effective Hamiltonian in suitably defined rotating frames, and analyze the emergent effective X Y spin model through a truncated Magnus series and numerical simulations. In addition to X Y spin-spin interactions that can be nonperturbatively renormalized from the naive Ising spin-spin coupling constants, we find an effective transverse field that is dependent on the thermal energy of the bosons, as well as other spin-boson couplings that cause spin-boson entanglement not to vanish at any time. In the case of a boson-mediated Ising simulator with transverse field, we discuss the crossover from transverse field Ising-like to X Y -like spin behavior as a function of field strength.

  16. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    NASA Astrophysics Data System (ADS)

    Mandal, Sumit; Saha, Shyamal K.

    2014-10-01

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing ID/IG ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest ID/IG, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  17. Transmutation of skyrmions to half-solitons driven by the nonlinear optical spin Hall effect.

    PubMed

    Flayac, H; Solnyshkov, D D; Shelykh, I A; Malpuech, G

    2013-01-04

    We show that the spin domains, generated in the linear optical spin Hall effect by the analog of spin-orbit interaction for exciton polaritons, are associated with the formation of a Skyrmion lattice. In the nonlinear regime, the spin anisotropy of the polariton-polariton interactions results in a spatial compression of the domains and in a transmutation of the Skyrmions into oblique half-solitons. This phase transition is associated with both the focusing of the spin currents and the emergence of a strongly anisotropic emission pattern.

  18. Electrical detection of magnetization dynamics via spin rectification effects

    NASA Astrophysics Data System (ADS)

    Harder, Michael; Gui, Yongsheng; Hu, Can-Ming

    2016-11-01

    The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.

  19. Spin Hall effect and Landau spectrum of Dirac electrons in bismuth

    NASA Astrophysics Data System (ADS)

    Fuseya, Yuki

    2015-03-01

    Bismuth has played an important role in solid-state physics. Many key phenomena were first discovered in bismuth, such as diamagnetism, Seebeck, Nernst, Shubnikov-de Haas, and de Haas-van Alphen effects. These phenomena result from particular electronic states of bismuth. The strong spin-orbit interaction (~ 1.5eV) causes strong spin-dependent interband couplings resulting in an anomalous spin magnetic moment. We investigate the spin Hall effect and the angular dependent Landau spectrum of bismuth paying special attention to the effect of the anomalous spin magnetic moment. It is shown that the spin Hall insulator is possible and there is a fundamental relationship between the spin Hall conductivity and orbital diamagnetism in the insulating state of the Dirac electrons. Based on this theoretical finding, the magnitude of spin Hall conductivity is estimated for bismuth by that of orbital susceptibility. The magnitude of spin Hall conductivity turns out to be as large as 104Ω-1 cm-1, which is about 100 times larger than that of Pt. It is also shown that the ratio of the Zeeman splitting to the cyclotron energy, which reflects the effect of crystalline spin-orbit interaction, for holes at the T-point can be larger than 1.0 (the maximum of previous theories) and exhibit strong angular dependence, which gives a possible solution to the long-standing mystery of holes at the T-point. In collaboration with Masao Ogata, Hidetoshi Fukuyama, Zengwei Zhu, Benoît Fauqué, Woun Kang, and Kamran Behnia. Supported by JSPS (KAKENHI 24244053, 25870231, and 13428660).

  20. Proposed new test of spin effects in general relativity.

    PubMed

    O'Connell, R F

    2004-08-20

    The recent discovery of a double-pulsar PSR J0737-3039A/B provides an opportunity of unequivocally observing, for the first time, spin effects in general relativity. Existing efforts involve detection of the precession of the spinning body itself. However, for a close binary system, spin effects on the orbit may also be discernible. Not only do they add to the advance of the periastron (by an amount which is small compared to the conventional contribution) but they also give rise to a precession of the orbit about the spin direction. The measurement of such an effect would also give information on the moment of inertia of pulsars.

  1. Photonic spin Hall effect enabled refractive index sensor using weak measurements.

    PubMed

    Zhou, Xinxing; Sheng, Lijuan; Ling, Xiaohui

    2018-01-19

    In this work, we theoretically propose an optical biosensor (consists of a BK7 glass, a metal film, and a graphene sheet) based on photonic spin Hall effect (SHE). We establish a quantitative relationship between the spin-dependent shift in photonic SHE and the refractive index of sensing medium. It is found that, by considering the surface plasmon resonance effect, the refractive index variations owing to the adsorption of biomolecules in sensing medium can effectively change the spin-dependent displacements. Remarkably, using the weak measurement method, this tiny spin-dependent shifts can be detected with a desirable accuracy so that the corresponding biomolecules concentration can be determined.

  2. Polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a flat-bottomed optical trap with a weak magnetic field

    NASA Astrophysics Data System (ADS)

    Zheng, Gong-Ping; Li, Pin; Li, Ting; Xue, Ya-Jie

    2018-02-01

    Motivated by the recent experiments realized in a flat-bottomed optical trap (Navon et al., 2015; Chomaz et al., 2015), we study the ground state of polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a finite-size homogeneous trap with a weak magnetic field. The exact spatial distribution of local spin is obtained with a variational method. Unlike the fully-magnetized planar spin texture with a zero-spin core, which was schematically demonstrated in previous studies for the ideal polar-core spin vortex in a homogeneous trap with infinitely large boundary, some plateaus and two-cores structure emerge in the distribution curves of spin magnitude in the polar-core spin vortex we obtained for the larger effective spin-dependent interaction. More importantly, the spin values of the plateaus are not 1 as expected in the fully-magnetized spin texture, except for the sufficiently large spin-dependent interaction and the weak-magnetic-field limit. We attribute the decrease of spin value to the effect of finite size of the system. The spin values of the plateaus can be controlled by the quadratic Zeeman energy q of the weak magnetic field, which decreases with the increase of q.

  3. Detection of single electron spin resonance in a double quantum dota)

    NASA Astrophysics Data System (ADS)

    Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.

    2007-04-01

    Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.

  4. Spin-dependent electron many-body effects in GaAs

    NASA Astrophysics Data System (ADS)

    Nemec, P.; Kerachian, Y.; van Driel, H. M.; Smirl, Arthur L.

    2005-12-01

    Time- and polarization-resolved differential transmission measurements employing same and oppositely circularly polarized 150fs optical pulses are used to investigate spin characteristics of conduction band electrons in bulk GaAs at 295K . Electrons and holes with densities in the 2×1016cm-3-1018cm-3 range are generated and probed with pulses whose center wavelength is between 865 and 775nm . The transmissivity results can be explained in terms of the spin sensitivity of both phase-space filling and many-body effects (band-gap renormalization and screening of the Coulomb enhancement factor). For excitation and probing at 865nm , just above the band-gap edge, the transmissivity changes mainly reflect spin-dependent phase-space filling which is dominated by the electron Fermi factors. However, for 775nm probing, the influence of many-body effects on the induced transmission change are comparable with those from reduced phase space filling, exposing the spin dependence of the many-body effects. If one does not take account of these spin-dependent effects one can misinterpret both the magnitude and time evolution of the electron spin polarization. For suitable measurements we find that the electron spin relaxation time is 130ps .

  5. Modulating effect of new potential antimelanomic agents, spin-labeled triazenes and nitrosoureas on the DOPA-oxidase activity of tyrosinase.

    PubMed

    Gadjeva, V; Zheleva, A; Raikova, E

    1999-07-01

    The modulating effect of newly synthesized alkylating spin labeled triazene and spin labeled nitrosourea derivatives on the DOPA-oxidase activity of mushroom tyrosinase has been investigated by Bumett's spectrophotometric method (Burnett et al., 1967). All spin labeled triazenes have exhibited activating effect on DOPA-oxidase activity of tyrosinase, whereas clinically used triazene (DTIC), which does not contain nitroxide moiety, have showed inhibiting effect. At the same experimental conditions the spin labeled aminoacid nitrosoureas have showed dual effect - activating, in the beginning of the enzyme reaction and inhibiting later on. It is deduced that the activating effect of the spin labeled compounds is due to the nitroxide moiety and the inhibiting effect of all compounds depends on their half-life time. This study might contribute to make more clear the mechanism of action of the new compounds and on the other hand would come in quite useful as a preliminary prognosis for their antimelanomic activity.

  6. Effect of asymmetric interface on charge and spin transport across two dimensional electron gas with Dresselhaus spin-orbit coupling/ferromagnet junction

    NASA Astrophysics Data System (ADS)

    Srisongmuang, B.; Pasanai, K.

    2018-04-01

    We theoretically studied the effect of interfacial scattering on the transport of charge and spin across the junction of a two-dimensional electron gas with Dresselhaus spin-orbit coupling and ferromagnetic material junction, via the conductance (G) and the spin-polarization of the conductance spectra (P) using the scattering method. At the interface, not only were the effects of spin-conserving (Z0) and spin-flip scattering (Zf) considered, but also the interfacial Rashba spin-orbit coupling scattering (ZRSOC) , which was caused by the asymmetry of the interface, was taken into account, and all of them were modeled by the delta potential. It was found that G was suppressed with increasing Z0 , as expected. Interestingly, a particular value of Zf can cause G and P to reach a maximum value. In particular, ZRSOC plays a crucial role to reduce G and P in the metallic limit, but its influence on the tunneling limit was quite weak. On the other hand, the effect of ZRSOC was diminished in the tunneling limit of the magnetic junction.

  7. Understanding asteroid collisional history through experimental and numerical studies

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Ryan, Eileen V.; Weidenschilling, S. J.

    1991-01-01

    Asteroids can lose angular momentum due to so called splash effect, the analog to the drain effect for cratering impacts. Numerical code with the splash effect incorporated was applied to study the simultaneous evolution of asteroid sized and spins. Results are presented on the spin changes of asteroids due to various physical effects that are incorporated in the described model. The goal was to understand the interplay between the evolution of sizes and spins over a wide and plausible range of model parameters. A single starting population was used both for size distribution and the spin distribution of asteroids and the changes in the spins were calculated over solar system history for different model parameters. It is shown that there is a strong coupling between the size and spin evolution, that the observed relative spindown of asteroids approximately 100 km diameter is likely to be the result of the angular momentum splash effect.

  8. Understanding asteroid collisional history through experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Davis, Donald R.; Ryan, Eileen V.; Weidenschilling, S. J.

    1991-06-01

    Asteroids can lose angular momentum due to so called splash effect, the analog to the drain effect for cratering impacts. Numerical code with the splash effect incorporated was applied to study the simultaneous evolution of asteroid sized and spins. Results are presented on the spin changes of asteroids due to various physical effects that are incorporated in the described model. The goal was to understand the interplay between the evolution of sizes and spins over a wide and plausible range of model parameters. A single starting population was used both for size distribution and the spin distribution of asteroids and the changes in the spins were calculated over solar system history for different model parameters. It is shown that there is a strong coupling between the size and spin evolution, that the observed relative spindown of asteroids approximately 100 km diameter is likely to be the result of the angular momentum splash effect.

  9. Thermal spin current generation and spin transport in Pt/magnetic-insulator/Py heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tzu; Safranski, Christopher; Krivorotov, Ilya; Sun, Jonathan

    Magnetic insulators can transmit spin current via magnon propagation while blocking charge current. Furthermore, under Joule heating, magnon flow as a result of the spin Seeback effect can generate additional spin current. Incorporating magnetic insulators in a spin-orbit torque magnetoresistive memory device can potentially yield high switching efficiencies. Here we report the DC magneto-transport studies of these two effects in Pt/magnetic-insulator/Py heterostructures, using ferrimagnetic CoFexOy (CFO) and antiferromagnet NiO as the model magnetic insulators. We observe the presence and absence of the inverse spin-Hall signals from the thermal spin current in Pt/CFO/Py and Pt/NiO/Py structures. These results are consistent with our spin-torque FMR linewidths in comparison. We will also report investigations into the magnetic field-angle dependence of these observations.

  10. Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Offidani, Manuel; Milletarı, Mirco; Raimondi, Roberto; Ferreira, Aires

    2017-11-01

    When graphene is placed on a monolayer of semiconducting transition metal dichalcogenide (TMD) its band structure develops rich spin textures due to proximity spin-orbital effects with interfacial breaking of inversion symmetry. In this work, we show that the characteristic spin winding of low-energy states in graphene on a TMD monolayer enables current-driven spin polarization, a phenomenon known as the inverse spin galvanic effect (ISGE). By introducing a proper figure of merit, we quantify the efficiency of charge-to-spin conversion and show it is close to unity when the Fermi level approaches the spin minority band. Remarkably, at high electronic density, even though subbands with opposite spin helicities are occupied, the efficiency decays only algebraically. The giant ISGE predicted for graphene on TMD monolayers is robust against disorder and remains large at room temperature.

  11. The Enhancement of spin Hall torque efficiency and Reduction of Gilbert damping in spin Hall metal/normal metal/ferromagnetic trilayers

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hai; Pai, Chi-Feng; Ralph, Daniel C.; Buhrman, Robert A.

    2015-03-01

    The spin Hall effect (SHE) in ferromagnet/heavy metal bilayer structures has been demonstrated to be a powerful means for producing pure spin currents and for exerting spin-orbit damping-like and field-like torques on the ferromagnetic layer. Large spin Hall (SH) angles have been reported for Pt, beta-Ta and beta-W films and have been utilized to achieve magnetic switching of in-plane and out-of-plane magnetized nanomagnets, spin torque auto-oscillators, and the control of high velocity domain wall motion. For many of the proposed applications of the SHE it is also important to achieve an effective Gilbert damping parameter that is as low as possible. In general the spin orbit torques and the effective damping are predicted to depend directly on the spin-mixing conductance of the SH metal/ferromagnet interface. This opens up the possibility of tuning these properties with the insertion of a very thin layer of another metal between the SH metal and the ferromagnet. Here we will report on experiments with such trilayer structures in which we have observed both a large enhancement of the spin Hall torque efficiency and a significant reduction in the effective Gilbert damping. Our results indicate that there is considerable opportunity to optimize the effectiveness and energy efficiency of the damping-like torque through engineering of such trilayer structures. Supported in part by NSF and Samsung Electronics Corporation.

  12. Antisymmetric Spin-Orbit Coupling in a d-p Model on a Zigzag Chain

    DOE PAGES

    Sugita, Yusuke; Hayami, Satoru; Motome, Yukitoshi

    2015-12-29

    In this paper, we theoretically investigate how an antisymmetric spin-orbit coupling emerges in electrons moving on lattice structures which are centrosymmetric but break the spatial inversion symme- try at atomic positions. We construct an effective d-p model on the simplest lattice structure, a zigzag chain of edge-sharing octahedra, with taking into account the crystalline electric field, the spin-orbit coupling, and on-site and inter-site d-p hybridizations. We show that an effective antisymmetric spin-orbit coupling arises in the sublattice-dependent form, which results in a hidden spin polarization in the band structure. Finally, we explicitly derive the effective antisymmetric spin-orbit coupling for dmore » electrons, which not only explains the hidden spin polarization but also indicates how to enhance it.« less

  13. Antisymmetric Spin-Orbit Coupling in a d-p Model on a Zigzag Chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugita, Yusuke; Hayami, Satoru; Motome, Yukitoshi

    In this paper, we theoretically investigate how an antisymmetric spin-orbit coupling emerges in electrons moving on lattice structures which are centrosymmetric but break the spatial inversion symme- try at atomic positions. We construct an effective d-p model on the simplest lattice structure, a zigzag chain of edge-sharing octahedra, with taking into account the crystalline electric field, the spin-orbit coupling, and on-site and inter-site d-p hybridizations. We show that an effective antisymmetric spin-orbit coupling arises in the sublattice-dependent form, which results in a hidden spin polarization in the band structure. Finally, we explicitly derive the effective antisymmetric spin-orbit coupling for dmore » electrons, which not only explains the hidden spin polarization but also indicates how to enhance it.« less

  14. Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect

    DOE PAGES

    Wu, Stephen M.; Hoffman, Jason; Pearson, John E.; ...

    2014-09-05

    In this paper, the longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe 3O 4 with the ferromagnetic metal Co 0.2Fe 0.6B 0.2 (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe 3O 4 into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between themore » two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. Finally, these experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.« less

  15. Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M., E-mail: swu@anl.gov; Hoffman, Jason; Pearson, John E.

    2014-09-01

    The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe{sub 3}O{sub 4} with the ferromagnetic metal Co{sub 0.2}Fe{sub 0.6}B{sub 0.2} (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe{sub 3}O{sub 4} into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, itmore » is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.« less

  16. Characterizing Resting-State Brain Function Using Arterial Spin Labeling

    PubMed Central

    Jann, Kay; Wang, Danny J.J.

    2015-01-01

    Abstract Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function. PMID:26106930

  17. Generation and detection of dissipationless spin current in a MgO/Si bilayer

    NASA Astrophysics Data System (ADS)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    Spintronics is an analogue to electronics where the spin of the electron rather than its charge is functionally controlled for devices. The generation and detection of spin current without ferromagnetic or exotic/scarce materials are two of the biggest challenges for spintronics devices. In this study, we report a solution to the two problems of spin current generation and detection in Si. Using non-local measurement, we experimentally demonstrate the generation of helical dissipationless spin current using the spin-Hall effect. Contrary to the theoretical prediction, we observe the spin-Hall effect in both n-doped and p-doped Si. The helical spin current is attributed to the site-inversion asymmetry of the diamond cubic lattice of Si and structure inversion asymmetry in a MgO/Si bilayer. The spin to charge conversion in Si is insignificant due to weak spin-orbit coupling. For the efficient detection of spin current, we report spin to charge conversion at the MgO (1 nm)/Si (2 µm) (p-doped and n-doped) thin film interface due to Rashba spin-orbit coupling. We detected the spin current at a distance of  >100 µm, which is an order of magnitude larger than the longest spin diffusion length measured using spin injection techniques. The existence of spin current in Si is verified from the coercivity reduction in a Co/Pd multilayer due to spin-orbit torque generated by spin current from Si.

  18. Nuclear spin dependence of time reversal invariance violating effects in neutron scattering

    NASA Astrophysics Data System (ADS)

    Gudkov, Vladimir; Shimizu, Hirohiko M.

    2018-06-01

    The spin structure of parity violating and time reversal invariance violating effects in neutron scattering is discussed. The explicit relations between these effects are presented in terms of functions nuclear spins and neutron partial widths of p -wave resonances.

  19. Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Dai; State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433; Li, Yufan

    2015-05-25

    The spin Seebeck effect (SSE) and Anomalous Nernst effect (ANE) have been observed in Co/Cu/YIG (yttrium iron garnet) multi-layer structure, where the ferromagnetic insulator YIG acts as the pure spin injector and the ferromagnetic metal Co layer acts as the spin current detector. With the insertion of 5 nm Cu layer, the two ferromagnetic layers are decoupled, thus allowing unambiguous separation of the SSE and ANE contributions under the same experimental conditions in the same sample.

  20. Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Dai; Li, Yufan; Qu, D.

    2015-05-25

    The spin Seebeck effect (SSE) and Anomalous Nernst effect (ANE) have been observed in Co/Cu/YIG (yttrium iron garnet) multi-layer structure, where the ferromagnetic insulator YIG acts as the pure spin injector and the ferromagnetic metal Co layer acts as the spin current detector. With the insertion of 5 nm Cu layer, the two ferromagnetic layers are decoupled, thus allowing unambiguous separation of the SSE and ANE contributions under the same experimental conditions in the same sample.

  1. Spin transport in lateral structures with semiconducting channel

    NASA Astrophysics Data System (ADS)

    Zainuddin, Abu Naser

    Spintronics is an emerging field of electronics with the potential to be used in future integrated circuits. Spintronic devices are already making their mark in storage technologies in recent times and there are proposals for using spintronic effects in logic technologies as well. So far, major improvement in spintronic effects, for example, the `spin-valve' effect, is being achieved in metals or insulators as channel materials. But not much progress is made in semiconductors owing to the difficulty in injecting spins into them, which has only very recently been overcome with the combined efforts of many research groups around the world. The key motivations for semiconductor spintronics are their ease in integration with the existing semiconductor technology along with the gate controllability. At present semiconductor based spintronic devices are mostly lateral and are showing a very poor performance compared to their metal or insulator based vertical counterparts. The objective of this thesis is to analyze these devices based on spin-transport models and simulations. At first a lateral spin-valve device is modeled with the spin-diffusion equation based semiclassical approach. Identifying the important issues regarding the device performance, a compact circuit equivalent model is presented which would help to improve the device design. It is found that the regions outside the current path also have a significant influence on the device performance under certain conditions, which is ordinarily neglected when only charge transport is considered. Next, a modified spin-valve structure is studied where the spin signal is controlled with a gate in between the injecting and detecting contacts. The gate is used to modulate the rashba spin-orbit coupling of the channel which, in turn, modulates the spin-valve signal. The idea of gate controlled spin manipulation was originally proposed by Datta and Das back in 1990 and is called 'Datta-Das' effect. In this thesis, we have extended the model described in the original proposal to include the influence of channel dimensions on the nature of electron flow and the contact dimensions on the magnitude and phase of the spin-valve signal. In order to capture the spin-orbit effect a non-equilibrium Green's function (NEGF) based quantum transport model for spin-valve device have been developed which is also explained with simple theoretical treatment based on stationary phase approximation. The model is also compared against a recent experiment that demonstrated such gate modulated spin-valve effect. This thesis also evaluates the possibility of gate controlled magnetization reversal or spin-torque effect as a means to validate this, so called, 'Datta-Das' effect on a more solid footing. Finally, the scope for utilizing topological insulator material in semiconductor spintronics is discussed as a possible future work for this thesis.

  2. Physics and application of persistent spin helix state in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Kohda, Makoto; Salis, Gian

    2017-07-01

    In order to utilize the spin degree of freedom in semiconductors, control of spin states and transfer of the spin information are fundamental requirements for future spintronic devices and quantum computing. Spin orbit (SO) interaction generates an effective magnetic field for moving electrons and enables spin generation, spin manipulation and spin detection without using external magnetic field and magnetic materials. However, spin relaxation also takes place due to a momentum dependent SO-induced effective magnetic field. As a result, SO interaction is considered to be a double-edged sword facilitating spin control but preventing spin transport over long distances. The persistent spin helix (PSH) state solves this problem since uniaxial alignment of the SO field with SU(2) symmetry enables the suppression of spin relaxation while spin precession can still be controlled. Consequently, understanding the PSH becomes an important step towards future spintronic technologies for classical and quantum applications. Here, we review recent progress of PSH in semiconductor heterostructures and its device application. Fundamental physics of SO interaction and the conditions of a PSH state in semiconductor heterostructures are discussed. We introduce experimental techniques to observe a PSH and explain both optical and electrical measurements for detecting a long spin relaxation time and the formation of a helical spin texture. After emphasizing the bulk Dresselhaus SO coefficient γ, the application of PSH states for spin transistors and logic circuits are discussed.

  3. Nonlinear spin current generation in noncentrosymmetric spin-orbit coupled systems

    NASA Astrophysics Data System (ADS)

    Hamamoto, Keita; Ezawa, Motohiko; Kim, Kun Woo; Morimoto, Takahiro; Nagaosa, Naoto

    2017-06-01

    Spin current plays a central role in spintronics. In particular, finding more efficient ways to generate spin current has been an important issue and has been studied actively. For example, representative methods of spin-current generation include spin-polarized current injections from ferromagnetic metals, the spin Hall effect, and the spin battery. Here, we theoretically propose a mechanism of spin-current generation based on nonlinear phenomena. By using Boltzmann transport theory, we show that a simple application of the electric field E induces spin current proportional to E2 in noncentrosymmetric spin-orbit coupled systems. We demonstrate that the nonlinear spin current of the proposed mechanism is supported in the surface state of three-dimensional topological insulators and two-dimensional semiconductors with the Rashba and/or Dresselhaus interaction. In the latter case, the angular dependence of the nonlinear spin current can be manipulated by the direction of the electric field and by the ratio of the Rashba and Dresselhaus interactions. We find that the magnitude of the spin current largely exceeds those in the previous methods for a reasonable magnitude of the electric field. Furthermore, we show that application of ac electric fields (e.g., terahertz light) leads to the rectifying effect of the spin current, where dc spin current is generated. These findings will pave a route to manipulate the spin current in noncentrosymmetric crystals.

  4. Effect of capping layer on spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Sun, Chi; Siu, Zhuo Bin; Tan, Seng Ghee; Yang, Hyunsoo; Jalil, Mansoor B. A.

    2018-04-01

    In order to enhance the magnitude of spin-orbit torque (SOT), considerable experimental works have been devoted to studying the thickness dependence of the different layers in multilayers consisting of heavy metal (HM), ferromagnet (FM), and capping layers. Here, we present a theoretical model based on the spin-drift-diffusion formalism to investigate the effect of the capping layer properties such as its thickness on the SOT observed in experiments. It is found that the spin Hall-induced SOT can be significantly enhanced by incorporating a capping layer with an opposite spin Hall angle to that of the HM layer. The spin Hall torque can be maximized by tuning the capping layer thickness. However, in the absence of the spin Hall effect (SHE) in the capping layer, the torque decreases monotonically with the capping layer thickness. Conversely, the spin Hall torque is found to decrease monotonically with the FM layer thickness, irrespective of the presence or absence of the SHE in the capping layer. All these trends are in correspondence with experimental observations. Finally, our model suggests that capping layers with a long spin diffusion length and high resistivity would also enhance the spin Hall torque.

  5. Theory of in-plane current induced spin torque in metal/ferromagnet bilayers

    NASA Astrophysics Data System (ADS)

    Sakanashi, Kohei; Sigrist, Manfred; Chen, Wei

    2018-05-01

    Using a semiclassical approach that simultaneously incorporates the spin Hall effect (SHE), spin diffusion, quantum well states, and interface spin–orbit coupling (SOC), we address the interplay of these mechanisms as the origin of the spin–orbit torque (SOT) induced by in-plane currents, as observed in the normal metal/ferromagnetic metal bilayer thin films. Focusing on the bilayers with a ferromagnet much thinner than its spin diffusion length, such as Pt/Co with  ∼10 nm thickness, our approach addresses simultaneously the two contributions to the SOT, namely the spin-transfer torque (SHE-STT) due to SHE-induced spin injection, and the inverse spin Galvanic effect spin–orbit torque (ISGE-SOT) due to SOC-induced spin accumulation. The SOC produces an effective magnetic field at the interface, hence it modifies the angular momentum conservation expected for the SHE-STT. The SHE-induced spin voltage and the interface spin current are mutually dependent and, hence, are solved in a self-consistent manner. The result suggests that the SHE-STT and ISGE-SOT are of the same order of magnitude, and the spin transport mediated by the quantum well states may be an important mechanism for the experimentally observed rapid variation of the SOT with respect to the thickness of the ferromagnet.

  6. Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.

    PubMed

    Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto

    2017-08-23

    The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.

  7. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haidar, S. M., E-mail: haidar@imr.tohoku.ac.jp; Iguchi, R.; Yagmur, A.

    We have investigated dc voltage generation induced by ferromagnetic resonance in a Co{sub 75}Fe{sub 25}/Pt film. In order to reduce rectification effects of anisotropic magnetoresistance and the planar Hall effect, which may be observed simultaneously with the inverse spin Hall effect, we selected Co{sub 75}Fe{sub 25} with extremely small anisotropic magnetoresistance as a spin injector. Using the difference in the spectral shape of voltage and in the angle dependence of in-plane magnetization among the effects, we demonstrated that the generated dc voltage is governed by the inverse spin Hall effect induced by spin pumping.

  9. Coalescence of two spinning black holes: An effective one-body approach

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    2001-12-01

    We generalize to the case of spinning black holes a recently introduced ``effective one-body'' approach to the general relativistic dynamics of binary systems. We show how to approximately map the conservative part of the third post-Newtonian (3PN) dynamics of two spinning black holes of masses m1, m2 and spins S1, S2 onto the dynamics of a non-spinning particle of mass μ≡m1m2/(m1+m2) in a certain effective metric geffμν(xλM,ν,a) which can be viewed either as a spin deformation [with the deformation parameter a≡Seff/M] of the recently constructed 3PN effective metric geffμν(xλM,ν), or as a ν deformation [with the comparable-mass deformation parameter ν≡m1m2/(m1+m2)2] of a Kerr metric of mass M≡m1+m2 and (effective) spin Seff≡[1+3m2/(4m1)]S1+[1+3m1/(4m2)]S2. The combination of the effective one-body approach, and of a Padé definition of the crucial effective radial functions, is shown to define a dynamics with much improved post-Newtonian convergence properties, even for black hole separations of the order of 6 GM/c2. The complete (conservative) phase-space evolution equations of binary spinning black hole systems are written down and their exact and approximate first integrals are discussed. This leads to the approximate existence of a two-parameter family of ``spherical orbits'' (with constant radius), and of a corresponding one-parameter family of ``last stable spherical orbits'' (LSSO). These orbits are of special interest for forthcoming LIGO-VIRGO-GEO gravitational wave observations. The binding energy and total angular momentum of LSSO's are studied in some detail. It is argued that for most (but not all) of the parameter space of two spinning holes the approximate (leading-order) effective one-body approach introduced here gives a reliable analytical tool for describing the dynamics of the last orbits before coalescence. This tool predicts, in a quantitative way, how certain spin orientations increase the binding energy of the LSSO. This leads to a detection bias, in LIGO-VIRGO-GEO observations, favoring spinning black hole systems, and makes it urgent to complete the conservative effective one-body dynamics given here by adding (resummed) radiation reaction effects, and by constructing gravitational waveform templates that include spin effects. Finally, our approach predicts that the spin of the final hole formed by the coalescence of two arbitrarily spinning holes never approaches extremality.

  10. Radial carpet beams: A class of nondiffracting, accelerating, and self-healing beams

    NASA Astrophysics Data System (ADS)

    Rasouli, Saifollah; Khazaei, Ali Mohammad; Hebri, Davud

    2018-03-01

    Self-accelerating shape-invariant beams are attracting major attention, presenting applications in many areas such as laser manipulation and patterning, light-sheet microscopy, and plasma channels. Moreover, optical lattices are offering many applications, including quantum computation, quantum phase transition, spin-exchange interaction, and realization of magnetic fields. We report observation of a class of accelerating and self-healing beams which covers the features required by all the aforementioned applications. These beams are accelerating, shape invariant, and self-healing for more than several tens of meters, have numerous phase anomalies and unprecedented patterns, and can be feasibly tuned. Diffraction of a plane wave from radial phase gratings generates such beams, and due to their beauty and structural complexity we have called them "carpet" beams. By tuning the value of phase variations over the grating, the resulting carpet patterns are converted into two-dimensional optical lattices with polar symmetry. Furthermore, the number of spokes in the radial grating, phase variation amplitude, and wavelength of the impinging light beam can also be adjusted to obtain additional features. We believe that radial carpet beams and lattices might find more applications in optical micromanipulation, optical lithography, super-resolution imaging, lighting design, optical communication through atmosphere, etc.

  11. Assessment of bilayer silicene to probe as quantum spin and valley Hall effect

    NASA Astrophysics Data System (ADS)

    Rehman, Majeed Ur; Qiao, Zhenhua

    2018-02-01

    Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.

  12. Comparing an accelerated 3D fast spin-echo sequence (CS-SPACE) for knee 3-T magnetic resonance imaging with traditional 3D fast spin-echo (SPACE) and routine 2D sequences.

    PubMed

    Altahawi, Faysal F; Blount, Kevin J; Morley, Nicholas P; Raithel, Esther; Omar, Imran M

    2017-01-01

    To compare a faster, new, high-resolution accelerated 3D-fast-spin-echo (3D-FSE) acquisition sequence (CS-SPACE) to traditional 2D and high-resolution 3D sequences for knee 3-T magnetic resonance imaging (MRI). Twenty patients received knee MRIs that included routine 2D (T1, PD ± FS, T2-FS; 0.5 × 0.5 × 3 mm 3 ; ∼10 min), traditional 3D FSE (SPACE-PD-FS; 0.5 × 0.5 × 0.5 mm 3 ; ∼7.5 min), and accelerated 3D-FSE prototype (CS-SPACE-PD-FS; 0.5 × 0.5 × 0.5 mm 3 ; ∼5 min) acquisitions on a 3-T MRI system (Siemens MAGNETOM Skyra). Three musculoskeletal radiologists (MSKRs) prospectively and independently reviewed the studies with graded surveys comparing image and diagnostic quality. Tissue-specific signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were also compared. MSKR-perceived diagnostic quality of cartilage was significantly higher for CS-SPACE than for SPACE and 2D sequences (p < 0.001). Assessment of diagnostic quality of menisci and synovial fluid was higher for CS-SPACE than for SPACE (p < 0.001). CS-SPACE was not significantly different from SPACE but had lower assessments than 2D sequences for evaluation of bones, ligaments, muscles, and fat (p ≤ 0.004). 3D sequences had higher spatial resolution, but lower overall assessed contrast (p < 0.001). Overall image quality from CS-SPACE was assessed as higher than SPACE (p = 0.007), but lower than 2D sequences (p < 0.001). Compared to SPACE, CS-SPACE had higher fluid SNR and CNR against all other tissues (all p < 0.001). The CS-SPACE prototype allows for faster isotropic acquisitions of knee MRIs over currently used protocols. High fluid-to-cartilage CNR and higher spatial resolution over routine 2D sequences may present a valuable role for CS-SPACE in the evaluation of cartilage and menisci.

  13. Non-perturbative calculation of orbital and spin effects in molecules subject to non-uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Sen, Sangita; Tellgren, Erik I.

    2018-05-01

    External non-uniform magnetic fields acting on molecules induce non-collinear spin densities and spin-symmetry breaking. This necessitates a general two-component Pauli spinor representation. In this paper, we report the implementation of a general Hartree-Fock method, without any spin constraints, for non-perturbative calculations with finite non-uniform fields. London atomic orbitals are used to ensure faster basis convergence as well as invariance under constant gauge shifts of the magnetic vector potential. The implementation has been applied to investigate the joint orbital and spin response to a field gradient—quantified through the anapole moments—of a set of small molecules. The relative contributions of orbital and spin-Zeeman interaction terms have been studied both theoretically and computationally. Spin effects are stronger and show a general paramagnetic behavior for closed shell molecules while orbital effects can have either direction. Basis set convergence and size effects of anapole susceptibility tensors have been reported. The relation of the mixed anapole susceptibility tensor to chirality is also demonstrated.

  14. Coriolis effect in optics: unified geometric phase and spin-Hall effect.

    PubMed

    Bliokh, Konstantin Y; Gorodetski, Yuri; Kleiner, Vladimir; Hasman, Erez

    2008-07-18

    We examine the spin-orbit coupling effects that appear when a wave carrying intrinsic angular momentum interacts with a medium. The Berry phase is shown to be a manifestation of the Coriolis effect in a noninertial reference frame attached to the wave. In the most general case, when both the direction of propagation and the state of the wave are varied, the phase is given by a simple expression that unifies the spin redirection Berry phase and the Pancharatnam-Berry phase. The theory is supported by the experiment demonstrating the spin-orbit coupling of electromagnetic waves via a surface plasmon nanostructure. The measurements verify the unified geometric phase, demonstrated by the observed polarization-dependent shift (spin-Hall effect) of the waves.

  15. Modulated spin orbit torque in a Pt/Co/Pt/YIG multilayer by nonequilibrium proximity effect

    NASA Astrophysics Data System (ADS)

    Liu, Q. B.; Meng, K. K.; Cai, Y. Z.; Qian, X. H.; Wu, Y. C.; Zheng, S. Q.; Jiang, Y.

    2018-01-01

    We have compared the spin orbit torque (SOT) induced magnetization switching in Pt/Co/Pt/Y3Fe5O12 (YIG) and Pt/Co/Pt/SiO2 multilayers. The critical switching current in Pt/Co/Pt/YIG is almost half of that in Pt/Co/Pt/SiO2. Through harmonic measurements, we demonstrated the enhancement of the effective spin Hall angle in Pt/Co/Pt/YIG. The increased efficiency of SOT is ascribed to the nonequilibrium proximity effect at the Pt/YIG interface, which suppresses the spin current reflection and enhances the effective spin accumulation at the Co/Pt interface. Our method can effectively reduce the switching current density and provide another way to modulate SOT.

  16. Time-domain detection of current controlled magnetization damping in Pt/Ni{sub 81}Fe{sub 19} bilayer and determination of Pt spin Hall angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, A.; Haldar, A.; Sinha, J.

    2014-09-15

    The effect of spin torque from the spin Hall effect in Pt/Ni{sub 81}Fe{sub 19} rectangular bilayer film was investigated using time-resolved magneto-optical Kerr microscopy. Current flow through the stack resulted in a linear variation of effective damping up to ±7%, attributed to spin current injection from the Pt into the Ni{sub 81}Fe{sub 19}. The spin Hall angle of Pt was estimated as 0.11 ± 0.03. The modulation of the damping depended on the angle between the current and the bias magnetic field. These results demonstrate the importance of optical detection of precessional magnetization dynamics for studying spin transfer torque due to spinmore » Hall effect.« less

  17. Free-Spinning-Tunnel Investigation of a 0.034-Scale Model of the Production Version of the Chance Vought F7U-3 Airplane, TED No. NACA AD 3103

    NASA Technical Reports Server (NTRS)

    Klinar, Walter J.; Healy, Frederick M.

    1955-01-01

    An investigation of a 0.034-scale model of the production version of the Chance Vought F7U-3 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The inverted and erect spin and recovery characteristics of the model were determined for the combat loading with the model in the clean condition and the effect of extending slats was investigated. A brief investigation of pilot ejection was also performed. The results indicate that the inverted spin-recovery characteristics of the airplane will be satisfactory by full rudder reversal. If the rudders can only be neutralized because of high pedal forces in the inverted spins, satisfactory recovery will be obtained if the auxiliary rudders can be moved to neutral or against the spin provided the stick is held full forward. Optimum control technique for satisfactory recovery from erect spins will be full rudder reversal in conjunction with aileron movement to full with the spin (stick right in a right spin). Extension of the slats will have a slightly adverse effect on recoveries from (1 inverted spins but will have a favorable effect on recoveries from erect spins. The results of brief tests indicate that if a pilot is ejected during a spin while a spin-recovery parachute is extended and fully inflated, he will probably clear the tail parachute.

  18. The enhanced spin-polarized transport behaviors through cobalt benzene-porphyrin-benzene molecular junctions: the effect of functional groups

    NASA Astrophysics Data System (ADS)

    Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei

    2017-05-01

    The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green’s function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.

  19. Speeding up NMR by in Situ Photo-Induced Reversible Acceleration of T1 -Relaxation (PIRAT).

    PubMed

    Stadler, Eduard; Dommaschk, Marcel; Frühwirt, Philipp; Herges, Rainer; Gescheidt, Georg

    2018-03-05

    Increasing the signal-to-noise ratio is one of the major goals in the field of NMR spectroscopy. In this proof of concept, we accelerate relaxation during an NMR pulse sequence using photo-generated paramagnetic states of an inert sensitizer. For the follow-up acquisition period, the system is converted to a diamagnetic state. The reversibility of the photo-induced switching allows extensive repetition required for multidimensional NMR. We thus eliminate the obstacle of line-broadening by the presence of paramagnetic species. In this contribution, we show how cycling of synchronized light/pulse sequences leads to an enhanced efficiency in multidimensional NMR. Our approach utilizes a molecular spin switch reversibly altering between a paramagnetic and diamagnetic state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB6

    PubMed Central

    Song, Qi; Mi, Jian; Zhao, Dan; Su, Tang; Yuan, Wei; Xing, Wenyu; Chen, Yangyang; Wang, Tianyu; Wu, Tao; Chen, Xian Hui; Xie, X. C.; Zhang, Chi; Shi, Jing; Han, Wei

    2016-01-01

    There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observe the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Furthermore, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6. PMID:27834378

  1. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB 6

    DOE PAGES

    Song, Qi; Mi, Jian; Zhao, Dan; ...

    2016-11-11

    There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observemore » the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB 6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Moreover, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6.« less

  2. Relativistic effects on the bonding and properties of the hydrides of platinum

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1993-01-01

    The ground state of PtH2 and several low-lying states of PtH(+) and PtH have been studied at the all-electron self-consistent-field level of theory to examine the importance of relativistic effects. The results of calculations based on Dirac-Hartree-Fock theory, nonrelativistic theory, and the spin-free no-pair relativistic approximation of Hess are compared to separate the effects of the spin-free terms and the spin-orbit terms of the Hamiltonian on the relativistic corrections to the molecular properties. Comparison is also made between first-order perturbation theory including the one-electron spin-free terms and the method of Hess to determine the size of effects beyond first order. It is found that the spin-orbit interaction significantly affects the properties and energetics of these molecules because of the participation of the Pt 5d orbitals in the bonding, and that effects beyond first order in perturbation theory are large. Any treatment of Pt compounds will have to include both the spin-free and spin-orbit interactions for an accurate description.

  3. Magnetoelectric Effect in a Spin-State Transition System

    NASA Astrophysics Data System (ADS)

    Naka, Makoto; Mizoguchi, Eriko; Nasu, Joji; Ishihara, Sumio

    2018-06-01

    Magnetic, dielectric, and magnetoelectric properties in a spin-state transition system are examined, motivated by the recent discovery of multiferroic behavior in a cobalt oxide. We construct an effective model Hamiltonian on the basis of the two-orbital Hubbard model, in which the spin-state degrees of freedom in magnetic ions couple with ferroelectric-type lattice distortions. A phase transition occurs from the high-temperature low-spin phase to the low-temperature high-spin ferroelectric phase with an accompanying increase in spin entropy. The calculated results are consistent with the experimental pressure-temperature phase diagram. We predict the magnetic-field induced electric polarization in the low-spin paraelectric phase near the ferroelectric phase boundary.

  4. Effect of inertia properties on attitude stability of nonrigid spin-stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Lang, W. E.; Young, J. P.

    1974-01-01

    The phenomenon of energy dissipation in spinning spacecraft is discussed with particular reference to its dependence on spacecraft inertia properties. Specific dissipation mechanisms are identified. The effect of external environmental factors on spin stability is also discussed. Generalized curves are presented relating system stability to the principal inertia ratio for various forms of energy dissipation. Dual-spin systems and the effect of lateral inertia asymmetry are also reviewed.

  5. TMRG studies on spin alignment in molecule-based ferrimagnetics [rapid communication

    NASA Astrophysics Data System (ADS)

    Liu, Q. M.; Yao, K. L.; Liu, Z. L.

    2005-05-01

    A physical picture of spin alignment in organic molecule-based ferrimagnets is presented from studying the thermal effective magnetic moment of the sublattice by use of the transfer matrix renormalization group. We conclude that the classical antiparallel spin alignment is not the most stable state. The three-spin system tends to parallel alignment when the exchange interaction between the biradical and the monoradical molecules is much weaker than that within the biradical, which can result in the decrease of the effective magnetic moment upon lowering the temperature. More importantly, we give the theoretical evidence that even the antiparallel spin alignment in the biradical monoradical alternating chain does not necessarily lead to ferrimagnetic spin ordering due to the formation of the spin singlet pairs, which suppresses the ferrimagnetic spin alignment.

  6. Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light.

    PubMed

    Quinteiro, G F; Tamborenea, P I; Berakdar, J

    2011-12-19

    We theoretically investigate the effect that twisted light has on the orbital and spin dynamics of electrons in quantum rings possessing sizable Rashba spin-orbit interaction. The system Hamiltonian for such a strongly inhomogeneous light field exhibits terms which induce both spin-conserving and spin-flip processes. We analyze the dynamics in terms of the perturbation introduced by a weak light field on the Rasha electronic states, and describe the effects that the orbital angular momentum as well as the inhomogeneous character of the beam have on the orbital and the spin dynamics.

  7. Optical pumping of electron and nuclear spin in a negatively-charged quantum dot

    NASA Astrophysics Data System (ADS)

    Bracker, Allan; Gershoni, David; Korenev, Vladimir

    2005-03-01

    We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.

  8. Nuclear spin nanomagnet in an optically excited quantum dot.

    PubMed

    Korenev, V L

    2007-12-21

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins-the nuclear spin nanomagnet.

  9. Antiferromagnetic domain wall as spin wave polarizer

    NASA Astrophysics Data System (ADS)

    Lan, Jin; Yu, Weichao; Xiao, Jiang

    Spin waves are collective excitations of local magnetizations that can effectively propagate information even in magnetic insulators. In antiferromagnet, spin waves are endowed with additional polarization freedom. Here we propose that the antiferromagnetic domain wall can act as a spin wave polarizer, which perfectly passes one linearly polarized spin wave while substantially reflects the perpendicular one. We show that the polarizing effect lies in the suppression of one linear polarization inside domain wall, in close analogy to the wire-grid optical polarizer. Our finding opens up new possibilities in magnonic processing by harnessing spin wave polarization in antiferromagnet.

  10. Effect of electron spin-spin interaction on level crossings and spin flips in a spin-triplet system

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Hu, Fang-Qi; Wu, Ning; Zhao, Qing

    2017-12-01

    We study level crossings and spin flips in a system consisting of a spin-1 (an electron spin triplet) coupled to a nuclear spin of arbitrary size K , in the presence of a uniform magnetic field and the electron spin-spin interaction within the triplet. Through an analytical diagonalization based on the SU (3 ) Lie algebra, we find that the electron spin-spin interaction not only removes the curious degeneracy which appears in the absence of the interaction, but also produces some level anticrossings (LACs) for strong interactions. The real-time dynamics of the system shows that periodic spin flips occur at the LACs for arbitrary K , which might provide an option for nuclear or electron spin polarization.

  11. Resonant spin Hall effect in two dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Shen, Shun-Qing

    2005-03-01

    Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169

  12. Hyperfine interaction and its effects on spin dynamics in organic solids

    NASA Astrophysics Data System (ADS)

    Yu, Z. G.; Ding, Feizhi; Wang, Haobin

    2013-05-01

    Hyperfine interaction (HFI) and spin-orbit coupling are two major sources that affect electron spin dynamics. Here we present a systematic study of the HFI and its role in organic spintronic applications. For electron spin dynamics in disordered π-conjugated organics, the HFI can be characterized by an effective magnetic field whose modular square is a weighted sum of contact and dipolar contributions. We determine the effective HFI fields of some common π-conjugated organics studied in the literature via first-principles calculations. Most of them are found to be less than 2 mT. While the H atoms are the major source of the HFI in organics containing only the C and H atoms, many organics contain other nuclear spins, such as Al and N in tris-(8-hydroxyquinoline) aluminum, that contribute to the total HFI. Consequently, the deuteration effect on the HFI in the latter may be much weaker than in the former. The HFI gives rise to multiple resonance peaks in electron spin resonance. In disordered organic solids, these individual resonances are unresolved, leading to a broad peak whose width is proportional to the effective HFI field. As electrons hop among adjacent organic molecules, they experience a randomly varying local HFI field, inducing electron spin relaxation and diffusion. This is analyzed rigorously based on master equations. Electron spin relaxation undergoes a crossover along the ratio between the electron hopping rate η¯ and the Larmor frequency Ω of the HFI field. The spin relaxation rate increases (decreases) with η¯ when η¯≪Ω (η¯≫Ω). A coherent beating of electron spin at Ω is possible when the external field is small compared to the HFI. In this regime, the magnetic field is found to enhance the spin relaxation.

  13. Perspective: Interface generation of spin-orbit torques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.

    We present that most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show howmore » ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions.« less

  14. Perspective: Interface generation of spin-orbit torques

    DOE PAGES

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...

    2016-11-14

    We present that most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show howmore » ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions.« less

  15. Complex Terahertz and Direct Current Inverse Spin Hall Effect in YIG/Cu1-xIrx Bilayers Across a Wide Concentration Range.

    PubMed

    Cramer, Joel; Seifert, Tom; Kronenberg, Alexander; Fuhrmann, Felix; Jakob, Gerhard; Jourdan, Martin; Kampfrath, Tobias; Kläui, Mathias

    2018-02-14

    We measure the inverse spin Hall effect of Cu 1-x Ir x thin films on yttrium iron garnet over a wide range of Ir concentrations (0.05 ⩽ x ⩽ 0.7). Spin currents are triggered through the spin Seebeck effect, either by a continuous (dc) temperature gradient or by ultrafast optical heating of the metal layer. The spin Hall current is detected by electrical contacts or measurement of the emitted terahertz radiation. With both approaches, we reveal the same Ir concentration dependence that follows a novel complex, nonmonotonous behavior as compared to previous studies. For small Ir concentrations a signal minimum is observed, whereas a pronounced maximum appears near the equiatomic composition. We identify this behavior as originating from the interplay of different spin Hall mechanisms as well as a concentration-dependent variation of the integrated spin current density in Cu 1-x Ir x . The coinciding results obtained for dc and ultrafast stimuli provide further support that the spin Seebeck effect extends to terahertz frequencies, thus enabling a transfer of established spintronic measurement schemes into the terahertz regime. Our findings also show that the studied material allows for efficient spin-to-charge conversion even on ultrafast time scales.

  16. Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys using Laboratory-Based Accelerated Corrosion and Electro-Chemical Methods

    DTIC Science & Technology

    2014-07-01

    corrosion studies (16). A schematic of the SWAP process and example of the powder produced is included in figure 4. This alloy contains amounts of Al ...advanced powder -based alloy and ZAXE1711 (both from Japan) were produced using a Spinning Water Atomization Process (SWAP) to yield powder particles with...and ZAXE1711 Mg alloy powders and (b) morphology of coarse Mg alloy powder prepared by SWAP

  17. Centrifugal lyophobic separator

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Bruce, R. A. (Inventor)

    1974-01-01

    A centrifugal separator is described using a lyophobic filter for removing liquid particles from a mixed stream of gas and liquid under various negative or positive external acceleration conditions as well as zero g or weightless conditions. Rotating the lyophobic filter and inclining the filter to the entering flow improves the lyophobic properties of the filter, provides gross separation of larger liquid particles, and prevents prolonged contact of liquid droplets with the spinning filter which might change the filter properties or block the filter.

  18. Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

    NASA Astrophysics Data System (ADS)

    Koop, Cornelie; Wessel, Stefan

    2017-10-01

    We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.

  19. Thermoelastic enhancement of the magnonic spin Seebeck effect in thin films and bulk samples

    NASA Astrophysics Data System (ADS)

    Chotorlishvili, L.; Wang, X.-G.; Toklikishvili, Z.; Berakdar, J.

    2018-04-01

    A nonuniform temperature profile may generate a pure spin current in magnetic films, as observed, for instance, in the spin Seebeck effect. In addition, thermally induced elastic deformations may set in that could affect the spin current. A self-consistent theory of the magnonic spin Seebeck effect including thermally activated magnetoelastic effects is presented, and analytical expressions for the thermally activated deformation tensor and dispersion relations for coupled magnetoelastic modes are obtained. We derive analytical results for bulk (three-dimensional) systems and thin magnetic (two-dimensional) films. We observe that the displacement vector and the deformation tensor in bulk systems decay asymptotically as u ˜1 /R2 and ɛ ˜1 /R3 , respectively, while the decays in thin magnetic films proceed slower, following u ˜1 /R and ɛ ˜1 /R2 . The dispersion relations evidence a strong anisotropy in the magnetic excitations. We observe that a thermoelastic steady-state deformation may lead to both an enchantment and a reduction of the gap in the magnonic spectrum. The reduction of the gap increases the number of magnons contributing to the spin Seebeck effect and offers new possibilities for the thermoelastic control of the spin Seebeck effect.

  20. Spin current and second harmonic generation in non-collinear magnetic systems: the hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Karashtin, E. A.; Fraerman, A. A.

    2018-04-01

    We report a theoretical study of the second harmonic generation in a noncollinearly magnetized conductive medium with equilibrium spin current. The hydrodynamic model is used to unravel the mechanism of a novel effect of the double frequency signal generation that is attributed to the spin current. According to our calculations, this second harmonic response appears due to the ‘non-adiabatic’ spin polarization of the conduction electrons induced by the oscillations in the non-uniform magnetization forced by the electric field of the electromagnetic wave. Together with the linear velocity response this leads to the generation of the double frequency spin current. This spin current is converted to the electric current via the inverse spin Hall effect, and the double-frequency electric current emits the second harmonic radiation. Possible experiment for detection of the new second harmonic effect is proposed.

Top