Nonlocal formulation of spin Coulomb drag
NASA Astrophysics Data System (ADS)
D'Amico, I.; Ullrich, C. A.
2013-10-01
The spin Coulomb drag (SCD) effect occurs in materials and devices where charged carriers with different spins exchange momentum via Coulomb scattering. This causes frictional forces between spin-dependent currents that lead to intrinsic dissipation, which may limit spintronics applications. A nonlocal formulation of SCD is developed which is valid for strongly inhomogeneous systems such as nanoscale spintronics devices. This nonlocal formulation of SCD is successfully applied to linewidths of intersubband spin plasmons in semiconductor quantum wells, where experiments have shown that the local approximation fails.
Spin-Hall effect and spin-Coulomb drag in doped semiconductors.
Hankiewicz, E M; Vignale, G
2009-06-24
In this review, we describe in detail two important spin-transport phenomena: the extrinsic spin-Hall effect (coming from spin-orbit interactions between electrons and impurities) and the spin-Coulomb drag. The interplay of these two phenomena is analyzed. In particular, we discuss the influence of scattering between electrons with opposite spins on the spin current and the spin accumulation produced by the spin-Hall effect. Future challenges and open questions are briefly discussed.
TOPICAL REVIEW: Spin-Hall effect and spin-Coulomb drag in doped semiconductors
NASA Astrophysics Data System (ADS)
Hankiewicz, E. M.; Vignale, G.
2009-06-01
In this review, we describe in detail two important spin-transport phenomena: the extrinsic spin-Hall effect (coming from spin-orbit interactions between electrons and impurities) and the spin-Coulomb drag. The interplay of these two phenomena is analyzed. In particular, we discuss the influence of scattering between electrons with opposite spins on the spin current and the spin accumulation produced by the spin-Hall effect. Future challenges and open questions are briefly discussed.
NASA Astrophysics Data System (ADS)
Narozhny, B. N.; Levchenko, A.
2016-04-01
Coulomb drag is a transport phenomenon whereby long-range Coulomb interaction between charge carriers in two closely spaced but electrically isolated conductors induces a voltage (or, in a closed circuit, a current) in one of the conductors when an electrical current is passed through the other. The magnitude of the effect depends on the exact nature of the charge carriers and the microscopic, many-body structure of the electronic systems in the two conductors. Drag measurements have become part of the standard toolbox in condensed matter physics that can be used to study fundamental properties of diverse physical systems including semiconductor heterostructures, graphene, quantum wires, quantum dots, and optical cavities.
NASA Astrophysics Data System (ADS)
Fiete, Gregory
2006-03-01
In a one dimensional electron gas at low enough density the magnetic exchange energy J between neighboring electrons is exponentially suppressed relative to the Fermi energy, EF. At finite temperature T, the energy hierarchy J << T << EF can be reached, and we refer to this as the spin incoherent (SI) Luttinger liquid state. By using a model of a fluctuating Wigner solid, we theoretically explore the signatures of spin incoherence in the single particle Green’s function[1], momentum resolved tunneling[2], transport[3], and Coulomb drag[4]. In the SI Green’s function the spin modes of a Luttinger liquid (LL) are thermally washed out leaving only singular behavior from the charge modes. The charge modes are broadened in momentum space by an amount of order kF and the energy dependence of the tunneling density of states qualitatively changes from the low energy suppression of the LL regime to a possible low energy divergence in the SI regime. Such a state may be probed directly in momentum resolved tunneling between parallel quantum wires. Deep in the SI regime, the physics of transport and Coulomb drag can be mapped onto spinless electrons. Various crossovers in temperature and for finite systems connected to Fermi liquid leads are discussed. Both transport and Coulomb drag may exhibit interesting non-monotonic temperature dependence. [1] G. A. Fiete and L. Balents, Phys. Rev. Lett. 93, 226401 (2004). [2] G. A. Fiete, J. Qian, Y. Tserkovnyak, and B. I. Halperin, Phys. Rev. B 72, 045315 (2005). [3] G. A. Fiete, K. Le Hur, and L. Balents, Phys. Rev. B 72, 125416 (2005). [4] G. A. Fiete, K. Le Hur, and L. Balents, Submitted, cond-mat/0511715.
NASA Astrophysics Data System (ADS)
Arakawa, Naoya
2016-06-01
Anomalous Hall effect (AHE) and spin Hall effect (SHE) are fundamental phenomena, and their potential for application is great. However, we understand the interaction effects unsatisfactorily, and should have clarified issues about the roles of the Fermi sea term and Fermi surface term of the conductivity of the intrinsic AHE or SHE of an interacting multiorbital metal and about the effects of spin-Coulomb drag on the intrinsic SHE. Here, we resolve the first issue and provide the first step about the second issue by developing a general formalism in the linear response theory with appropriate approximations and using analytic arguments. The most striking result is that even without impurities, the Fermi surface term, a non-Berry-curvature term, plays dominant roles at high or slightly low temperatures. In particular, this Fermi surface term causes the temperature dependence of the dc anomalous Hall or spin Hall conductivity due to the interaction-induced quasiparticle damping and the correction of the dc spin Hall conductivity due to the spin-Coulomb drag. Those results revise our understanding of the intrinsic AHE and SHE. We also find that the differences between the dc anomalous Hall and longitudinal conductivities arise from the difference in the dominant multiband excitations. This not only explains why the Fermi sea term such as the Berry-curvature term becomes important in clean and low-temperature case only for interband transports, but also provides the useful principles on treating the electron-electron interaction in an interacting multiorbital metal for general formalism of transport coefficients. Several correspondences between our results and experiments are finally discussed.
Coulomb drag in quantum circuits.
Levchenko, Alex; Kamenev, Alex
2008-11-21
We study the drag effect in a system of two electrically isolated quantum point contacts, coupled by Coulomb interactions. Drag current exhibits maxima as a function of quantum point contacts gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the nonlinear regime the drag current is proportional to the shot noise of the driving circuit, suggesting that the Coulomb drag experiments may be a convenient way to measure the quantum shot noise. Remarkably, the transition to the nonlinear regime may occur at driving voltages substantially smaller than the temperature.
Observation of Spin Coulomb Drag in a Two-Dimensional Electron Gas
Weber, C.P.
2011-08-19
An electron propagating through a solid carries spin angular momentum in addition to its mass and charge. Of late there has been considerable interest in developing electronic devices based on the transport of spin, which offer potential advantages in dissipation, size, and speed over charge-based devices. However, these advantages bring with them additional complexity. Because each electron carries a single, fixed value (-e) of charge, the electrical current carried by a gas of electrons is simply proportional to its total momentum. A fundamental consequence is that the charge current is not affected by interactions that conserve total momentum, notably collisions among the electrons themselves. In contrast, the electron's spin along a given spatial direction can take on two values, {+-} {h_bar}/2 (conventionally {up_arrow}, {down_arrow}), so that the spin current and momentum need not be proportional. Although the transport of spin polarization is not protected by momentum conservation, it has been widely assumed that, like the charge current, spin current is unaffected by electron-electron (e-e) interactions. Here we demonstrate experimentally not only that this assumption is invalid, but that over a broad range of temperature and electron density, the flow of spin polarization in a two-dimensional gas of electrons is controlled by the rate of e-e collisions.
Negative Coulomb Drag in Double Bilayer Graphene.
Li, J I A; Taniguchi, T; Watanabe, K; Hone, J; Levchenko, A; Dean, C R
2016-07-22
We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found. PMID:27494491
Negative Coulomb Drag in Double Bilayer Graphene.
Li, J I A; Taniguchi, T; Watanabe, K; Hone, J; Levchenko, A; Dean, C R
2016-07-22
We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found.
Negative Coulomb Drag in Double Bilayer Graphene
NASA Astrophysics Data System (ADS)
Li, J. I. A.; Taniguchi, T.; Watanabe, K.; Hone, J.; Levchenko, A.; Dean, C. R.
2016-07-01
We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found.
Dynamical correlations in Coulomb drag effect
NASA Astrophysics Data System (ADS)
Tanatar, B.; Davoudi, B.; Hu, B. Y.-K.
2003-05-01
Motivated by recent Coulomb drag experiments in pairs of low-density two-dimensional (2D) electron gases, we investigate the influence of correlation effects on the interlayer drag rate as a function of temperature. We use the self-consistent field method to calculate the intra and interlayer local-field factors Gij( q, T) which embody the short-range correlation effects. We calculate the transresistivity using the screened effective interlayer interactions that result from incorporating these local-field factors within various approximation schemes. Our results suggest that dynamic (frequency dependent) correlations play an important role in enhancing the Coulomb drag rate.
Boltzmann-Langevin theory of Coulomb drag
NASA Astrophysics Data System (ADS)
Chen, W.; Andreev, A. V.; Levchenko, A.
2015-06-01
We develop a Boltzmann-Langevin description of the Coulomb drag effect in clean double-layer systems with large interlayer separation d as compared to the average interelectron distance λF. Coulomb drag arises from density fluctuations with spatial scales of order d . At low temperatures, their characteristic frequencies exceed the intralayer equilibration rate of the electron liquid, and Coulomb drag may be treated in the collisionless approximation. As temperature is raised, the electron mean free path becomes short due to electron-electron scattering. This leads to local equilibration of electron liquid, and consequently drag is determined by hydrodynamic density modes. Our theory applies to both the collisionless and the hydrodynamic regimes, and it enables us to describe the crossover between them. We find that drag resistivity exhibits a nonmonotonic temperature dependence with multiple crossovers at distinct energy scales. At the lowest temperatures, Coulomb drag is dominated by the particle-hole continuum, whereas at higher temperatures of the collision-dominated regime it is governed by the plasmon modes. We observe that fast intralayer equilibration mediated by electron-electron collisions ultimately renders a stronger drag effect.
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots.
Keller, A J; Lim, J S; Sánchez, David; López, Rosa; Amasha, S; Katine, J A; Shtrikman, Hadas; Goldhaber-Gordon, D
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots
NASA Astrophysics Data System (ADS)
Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots.
Keller, A J; Lim, J S; Sánchez, David; López, Rosa; Amasha, S; Katine, J A; Shtrikman, Hadas; Goldhaber-Gordon, D
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior. PMID:27541473
Coulombic dragging of molecular assemblies on nanotubes
NASA Astrophysics Data System (ADS)
Kral, Petr; Sint, Kyaw; Wang, Boyang
2009-03-01
We show by molecular dynamics simulations that polar molecules, ions and their assemblies could be Coulombically dragged on the surfaces of single-wall carbon and boron-nitride nanotubes by ionic solutions or individual ions moving inside the nanotubes [1,2]. We also briefly discuss highly selective ionic sieves based on graphene monolayers with nanopores [3]. These phenomena could be applied in molecular delivery, separation and desalination.[3pt] [1] Boyang Wang and Petr Kral, JACS 128, 15984 (2006). [0pt] [2] Boyang Wang and Petr Kral, Phys. Rev. Lett. 101, 046103 (2008). [0pt] [3] Kyaw Sint, Boyang Wang and Petr Kral, JACS, ASAP (2008).
Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.
Kaasbjerg, Kristen; Jauho, Antti-Pekka
2016-05-13
We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.
Hydrodynamic Coulomb drag of strongly correlated electron liquids
NASA Astrophysics Data System (ADS)
Apostolov, S. S.; Levchenko, A.; Andreev, A. V.
2014-03-01
We develop a theory of Coulomb drag in ultraclean double layers with strongly correlated carriers. In the regime where the equilibration length of the electron liquid is shorter than the interlayer spacing the main contribution to the Coulomb drag arises from hydrodynamic density fluctuations. The latter consist of plasmons driven by fluctuating longitudinal stresses, and diffusive modes caused by temperature fluctuations and thermal expansion of the electron liquid. We express the drag resistivity in terms of the kinetic coefficients of the electron fluid. Our results are nonperturbative in interaction strength and do not assume Fermi-liquid behavior of the electron liquid.
Negative Coulomb drag in a one-dimensional wire.
Yamamoto, M; Stopa, M; Tokura, Y; Hirayama, Y; Tarucha, S
2006-07-14
We observed negative Coulomb drag for parallel coupled quantum wires, in which electrons flow in the opposite directions between the wires. This only occurred under the conditions of strong correlation in the wires, that is, low density, high magnetic field, and low temperature, and cannot be addressed by a standard theory of momentum transfer. We propose a Coulomb drag model in which formation of a Wigner crystal state in the drag wire and a particle-like state in the drive wire is taken into account.
``Perfect'' Coulomb Drag in a Bilayer Quantum Hall System
NASA Astrophysics Data System (ADS)
Nandi, D.; Finck, A. D. K.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.
2012-02-01
We report Coulomb drag measurements in Corbino geometry which reveal that equal but oppositely directed electrical currents can freely propagate across the insulating bulk of the bilayer quantized Hall state at νT=1 even when the two 2D layers are electrically isolated and interlayer tunneling has been heavily suppressed by an in-plane magnetic field. This effect, which we dub ``perfect'' Coulomb drag, reflects the transport of charge neutral excitons across the bulk of the 2D system. The equal magnitude of the drive and drag currents is lost at high current and when either the temperature or effective separation between the two 2D layers is increased. In each of these cases, ordinary quasiparticle charge transport across the annulus has grown to dominate over exciton transport.
Ion wake effects on the Coulomb ion drag in complex dusty plasmas
Ki, Dae-Han; Jung, Young-Dae
2010-09-06
The ion wake effects on the Coulomb drag force are investigated in complex dusty plasmas. It is shown that the ion wake effects significantly enhance the Coulomb ion drag force. It is also found that the ion wake effects on the Coulomb drag force increase with an increase in the Debye length. In addition, the ion wake effects on the momentum transfer cross section and Coulomb drag force are found to be increased with increasing thermal Mach number, i.e., decreasing plasma temperature. It is also found that the Coulomb ion drag force would be stronger for smaller dust grains.
Coulomb corrections to the extrinsic spin-Hall effect of a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Hankiewicz, E. M.; Vignale, G.
2006-03-01
We develop the microscopic theory of the extrinsic spin-Hall conductivity of a two-dimensional electron gas, including skew-scattering, side-jump, and Coulomb interaction effects. We find that while the spin-Hall conductivity connected with the side jump is independent of the strength of electron-electron interactions, the skew-scattering term is reduced by the spin-Coulomb drag, so the total spin current and the total spin-Hall conductivity are reduced for typical experimental mobilities. Further, we predict that in paramagnetic systems the spin-Coulomb drag reduces the spin accumulations in two different ways: (i) directly through the reduction of the skew-scattering contribution, and (ii) indirectly through the reduction of the spin diffusion length. Explicit expressions for the various contributions to the spin-Hall conductivity are obtained using an exactly solvable model of the skew scattering.
Spin Drag in Noncondensed Bose Gases
Duine, R. A.; Stoof, H. T. C.
2009-10-23
We show how time-dependent magnetic fields lead to spin motive forces and spin drag in a spinor Bose gas. We propose to observe these effects in a toroidal trap and analyze this particular proposal in some detail. In the linear-response regime we define a transport coefficient that is analogous to the usual drag resistivity in electron bilayer systems. Because of Bose enhancement of atom-atom scattering, this coefficient strongly increases as temperature is lowered. We also investigate the effects of heating.
Coulomb drag and tunneling studies in quantum Hall bilayers
NASA Astrophysics Data System (ADS)
Nandi, Debaleena
The bilayer quantum Hall state at total filling factor νT=1, where the total electron density matches the degeneracy of the lowest Landau level, is a prominent example of Bose-Einstein condensation of excitons. A macroscopically ordered state is realized where an electron in one layer is tightly bound to a "hole" in the other layer. If exciton transport were the only bulk transportmechanism, a current driven in one layer would spontaneously generate a current of equal magnitude and opposite sign in the other layer. The Corbino Coulomb drag measurements presented in this thesis demonstrate precisely this phenomenon. Excitonic superfluidity has been long sought in the νT=1 state. The tunneling between the two electron gas layers exihibit a dc Josephson-like effect. A simple model of an over-damped voltage biased Josephson junction is in reasonable agreement with the observed tunneling I -- V. At small tunneling biases, it exhibits a tunneling "supercurrent". The dissipation is carefully studied in this tunneling "supercurrent" and found to remain small but finite.
Positive and negative Coulomb drag in vertically integrated one-dimensional quantum wires.
Laroche, D; Gervais, G; Lilly, M P; Reno, J L
2011-10-30
Electron interactions in and between wires become increasingly complex and important as circuits are scaled to nanometre sizes, or use reduced-dimensional conductors such as carbon nanotubes, nanowires and gated high-mobility two-dimensional electron systems. This is because the screening of the long-range Coulomb potential of individual carriers is weakened in these systems, which can lead to phenomena such as Coulomb drag, where a current in one wire induces a voltage in a second wire through Coulomb interactions alone. Previous experiments have demonstrated Coulomb electron drag in wires separated by a soft electrostatic barrier of width ≳80 nm (ref. 12), which was interpreted as resulting entirely from momentum transfer. Here, we measure both positive and negative drag between adjacent vertical quantum wires that are separated by ∼15 nm and have independent contacts, which allows their electron densities to be tuned independently. We map out the drag signal versus the number of electron sub-bands occupied in each wire, and interpret the results both in terms of momentum-transfer and charge-fluctuation induced transport models. For wires of significantly different sub-band occupancies, the positive drag effect can be as large as 25%.
Ultranarrow resonance in Coulomb drag between quantum wires at coinciding densities
NASA Astrophysics Data System (ADS)
Dmitriev, A. P.; Gornyi, I. V.; Polyakov, D. G.
2016-08-01
We investigate the influence of the chemical potential mismatch Δ (different electron densities) on Coulomb drag between two parallel ballistic quantum wires. For pair collisions, the drag resistivity ρD(Δ ) shows a peculiar anomaly at Δ =0 with ρD being finite at Δ =0 and vanishing at any nonzero Δ . The "bodyless" resonance in ρD(Δ ) at zero Δ is only broadened by processes of multiparticle scattering. We analyze Coulomb drag for finite Δ in the presence of both two- and three-particle scattering within the kinetic equation framework, focusing on a Fokker-Planck picture of the interaction-induced diffusion in momentum space of the double-wire system. We describe the dependence of ρD on Δ for both weak and strong intrawire equilibration due to three-particle scattering.
Thickness effects on the Coulomb drag rate in double quantum layer systems
NASA Astrophysics Data System (ADS)
Vazifehshenas, T.; Eskourchi, A.
2007-02-01
In this paper, we have investigated the effect of quantum layer thickness on Coulomb drag phenomenon in a double quantum well (DQW) system, in which the electrons momentum can transfer from one layer to another. We have applied the full random phase approximation (RPA) in dynamical dielectric matrix of this coupled two-dimensional electron gas (2DEG) system in order to obtain an improved result for temperature-dependent rate of momentum transfer. We have calculated the drag rate transresistivity for various well thicknesses at low and intermediate temperatures in Fermi-scale and for different electron gas densities. It has been obtained that the Coulomb drag rate increases with increasing the well width when the separation between the wells remains unchanged.
Spin-Drag Hall Effect in a Rotating Bose Mixture
Driel, H. J. van; Duine, R. A.; Stoof, H. T. C.
2010-10-08
We show that in a rotating two-component Bose mixture, the spin drag between the two different spin species shows a Hall effect. This spin-drag Hall effect can be observed experimentally by studying the out-of-phase dipole mode of the mixture. We determine the damping of this mode due to spin drag as a function of temperature. We find that due to Bose stimulation there is a strong enhancement of the damping for temperatures close to the critical temperature for Bose-Einstein condensation.
Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene
NASA Astrophysics Data System (ADS)
Saberi-Pouya, S.; Vazifehshenas, T.; Farmanbar, M.; Salavati-fard, T.
2016-07-01
We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned for other double-layered systems with paraboloidal band structures. Our calculations show the rotation of one layer with respect to another layer can be considered a way of controlling the drag resistivity in such systems. As a result of rotation, the off-diagonal elements of the drag resistivity tensor have non-zero values at any temperature. In addition, we show that the anisotropic drag resistivity is very sensitive to the direction of momentum transfer between two layers due to highly anisotropic inter-layer electron-electron interaction and also the plasmon modes. In particular, the drag anisotropy ratio, {ρyy}/{ρxx} , can reach up to ˜ 3 by changing the temperature. Furthermore, our calculations suggest that including the local field correction in the dielectric function changes the results significantly. Finally, We examine the dependence of drag resistivity and its anisotropy ratio on various parameters like inter-layer separation, electron density, short-range interaction and insulating substrate/spacer.
Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene.
Saberi-Pouya, S; Vazifehshenas, T; Farmanbar, M; Salavati-Fard, T
2016-07-20
We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned for other double-layered systems with paraboloidal band structures. Our calculations show the rotation of one layer with respect to another layer can be considered a way of controlling the drag resistivity in such systems. As a result of rotation, the off-diagonal elements of the drag resistivity tensor have non-zero values at any temperature. In addition, we show that the anisotropic drag resistivity is very sensitive to the direction of momentum transfer between two layers due to highly anisotropic inter-layer electron-electron interaction and also the plasmon modes. In particular, the drag anisotropy ratio, [Formula: see text], can reach up to [Formula: see text]3 by changing the temperature. Furthermore, our calculations suggest that including the local field correction in the dielectric function changes the results significantly. Finally, We examine the dependence of drag resistivity and its anisotropy ratio on various parameters like inter-layer separation, electron density, short-range interaction and insulating substrate/spacer.
Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene
NASA Astrophysics Data System (ADS)
Saberi-Pouya, S.; Vazifehshenas, T.; Farmanbar, M.; Salavati-fard, T.
2016-07-01
We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned for other double-layered systems with paraboloidal band structures. Our calculations show the rotation of one layer with respect to another layer can be considered a way of controlling the drag resistivity in such systems. As a result of rotation, the off-diagonal elements of the drag resistivity tensor have non-zero values at any temperature. In addition, we show that the anisotropic drag resistivity is very sensitive to the direction of momentum transfer between two layers due to highly anisotropic inter-layer electron–electron interaction and also the plasmon modes. In particular, the drag anisotropy ratio, {ρyy}/{ρxx} , can reach up to ∼ 3 by changing the temperature. Furthermore, our calculations suggest that including the local field correction in the dielectric function changes the results significantly. Finally, We examine the dependence of drag resistivity and its anisotropy ratio on various parameters like inter-layer separation, electron density, short-range interaction and insulating substrate/spacer.
Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene.
Saberi-Pouya, S; Vazifehshenas, T; Farmanbar, M; Salavati-Fard, T
2016-07-20
We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned for other double-layered systems with paraboloidal band structures. Our calculations show the rotation of one layer with respect to another layer can be considered a way of controlling the drag resistivity in such systems. As a result of rotation, the off-diagonal elements of the drag resistivity tensor have non-zero values at any temperature. In addition, we show that the anisotropic drag resistivity is very sensitive to the direction of momentum transfer between two layers due to highly anisotropic inter-layer electron-electron interaction and also the plasmon modes. In particular, the drag anisotropy ratio, [Formula: see text], can reach up to [Formula: see text]3 by changing the temperature. Furthermore, our calculations suggest that including the local field correction in the dielectric function changes the results significantly. Finally, We examine the dependence of drag resistivity and its anisotropy ratio on various parameters like inter-layer separation, electron density, short-range interaction and insulating substrate/spacer. PMID:27221580
Anomalous Coulomb Drag in Electron-Hole Bilayers due to the Formation of Excitons.
Efimkin, Dmitry K; Galitski, Victor
2016-01-29
Several recent experiments have reported an anomalous temperature dependence of the Coulomb drag effect in electron-hole bilayers. Motivated by these puzzling data, we study theoretically a low-density electron-hole bilayer, where electrons and holes avoid quantum degeneracy by forming excitons. We describe the ionization-recombination crossover between the electron-hole plasma and exciton gas and calculate both the intralayer and drag resistivity as a function of temperature. The latter exhibits a minimum followed by a sharp upturn at low temperatures, in qualitative agreement with the experimental observations [see, e.g., J. A. Seamons et al., Phys. Rev. Lett. 102, 026804 (2009)]. Importantly, the drag resistivity in the proposed scenario is found to be rather insensitive to a mismatch in electron and hole concentrations, in sharp contrast to the scenario of electron-hole Cooper pairing.
Interplay of Coulomb interaction and spin-orbit coupling
NASA Astrophysics Data System (ADS)
Bünemann, Jörg; Linneweber, Thorben; Löw, Ute; Anders, Frithjof B.; Gebhard, Florian
2016-07-01
We employ the Gutzwiller variational approach to investigate the interplay of Coulomb interaction and spin-orbit coupling in a three-orbital Hubbard model. Already in the paramagnetic phase we find a substantial renormalization of the spin-orbit coupling that enters the effective single-particle Hamiltonian for the quasiparticles. Only close to half band-filling and for sizable Coulomb interaction do we observe clear signatures of Hund's atomic rules for spin, orbital, and total angular momentum. For a finite local Hund's rule exchange interaction we find a ferromagnetically ordered state. The spin-orbit coupling considerably reduces the size of the ordered moment, it generates a small ordered orbital moment, and it induces a magnetic anisotropy. To investigate the magnetic anisotropy energy, we use an external magnetic field that tilts the magnetic moment away from the easy axis (1 ,1 ,1 ) .
Seamons, John Andrew; Lilly, Michael Patrick; Morath, Christian Paul; Reno, John Louis
2010-03-01
A low-temperature upturn of the Coulomb drag resistivity {rho}{sub D} measured in undoped electron-hole bilayer devices, possibly manifesting from formation of a superfluid condensate or density modulated state, was recently observed. Here the effects of perpendicular and parallel magnetic fields on the drag upturn are examined. Measurements of {rho}{sub D} and drive layer resistivity {rho}{sub xx-e} as a function of temperature and magnetic field in two uEHBL devices are presented. In B{sub {perpendicular}}, the drag upturn was enhanced as the field increased up to roughly .2 T, beyond which oscillations in {rho}{sub D} and {rho}{sub xx-e}, reflecting Landau level formation, begin appearing. A small phase offset between those oscillations, which decreased at higher fields and temperatures, was also observed. In B{sub {parallel}}, the drag upturn magnitude diminished as the field increased. Above the upturn regime, both {rho}{sub D} and {rho}{sub xx-e} were enhanced by B{sub {parallel}}, the latter via decreased screening of the uniform background impurities.
1D-1D Coulomb drag in a 6 Million Mobility Bi-layer Heterostructure
NASA Astrophysics Data System (ADS)
Bilodeau, Simon; Laroche, Dominique; Xia, Jian-Sheng; Lilly, Mike; Reno, John; Pfeiffer, Loren; West, Ken; Gervais, Guillaume
We report Coulomb drag measurements in vertically-coupled quantum wires. The wires are fabricated in GaAs/AlGaAs bilayer heterostructures grown from two different MBE chambers: one at Sandia National Laboratories (1.2M mobility), and the other at Princeton University (6M mobility). The previously observed positive and negative drag signals are seen in both types of devices, demonstrating the robustness of the result. However, attempts to determine the temperature dependence of the drag signal in the 1D regime proved challenging in the higher mobility heterostructure (Princeton), in part because of difficulties in aligning the wires within the same transverse subband configuration. Nevertheless, this work, performed at the Microkelvin laboratory of the University of Florida, is an important proof-of-concept for future investigations of the temperature dependence of the 1D-1D drag signal down to a few mK. Such an experiment could confirm the Luttinger charge density wave interlocking predicted to occur in the wires. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.
Topological spin-transfer drag driven by skyrmion diffusion
NASA Astrophysics Data System (ADS)
Ochoa, Héctor; Kim, Se Kwon; Tserkovnyak, Yaroslav
2016-07-01
We study the spin-transfer drag mediated by the Brownian motion of skyrmions. The essential idea is illustrated in a two-terminal geometry, in which a thin film of a magnetic insulator is placed in between two metallic reservoirs. An electric current in one of the terminals pumps topological charge into the magnet via a spin-transfer torque. The charge diffuses over the bulk of the system as stable skyrmion textures. By Onsager's reciprocity, the topological charge leaving the magnet produces an electromotive force in the second terminal. The voltage signal decays algebraically with the separation between contacts, in contrast to the exponential suppression of the spin drag driven by nonprotected excitations like magnons. We show how this topological effect can be used as a tool to characterize the phase diagram of chiral magnets and thin films with interfacial Dzyaloshinskii-Moriya interactions.
Spin drag and spin-charge separation in cold fermi gases.
Polini, Marco; Vignale, Giovanni
2007-06-29
Low-energy spin and charge excitations of one-dimensional interacting fermions are completely decoupled and propagate with different velocities. These modes, however, can decay due to several possible mechanisms. In this Letter we expose a new facet of spin-charge separation: not only the speeds but also the damping rates of spin and charge excitations are different. While the propagation of long-wavelength charge excitations is essentially ballistic, spin propagation is intrinsically damped and diffusive. We suggest that cold Fermi gases trapped inside a tight atomic waveguide offer the opportunity to measure the spin-drag relaxation rate that controls the broadening of a spin packet.
Spin Drag and Spin-Charge Separation in Cold Fermi Gases
Polini, Marco; Vignale, Giovanni
2007-06-29
Low-energy spin and charge excitations of one-dimensional interacting fermions are completely decoupled and propagate with different velocities. These modes, however, can decay due to several possible mechanisms. In this Letter we expose a new facet of spin-charge separation: not only the speeds but also the damping rates of spin and charge excitations are different. While the propagation of long-wavelength charge excitations is essentially ballistic, spin propagation is intrinsically damped and diffusive. We suggest that cold Fermi gases trapped inside a tight atomic waveguide offer the opportunity to measure the spin-drag relaxation rate that controls the broadening of a spin packet.
Spin Drag in an Ultracold Fermi Gas on the Verge of Ferromagnetic Instability
Duine, R. A.; Stoof, H. T. C.; Polini, Marco; Vignale, G.
2010-06-04
Recent experiments [Jo et al., Science 325, 1521 (2009)] have presented evidence of ferromagnetic correlations in a two-component ultracold Fermi gas with strong repulsive interactions. Motivated by these experiments we consider spin drag, i.e., frictional drag due to scattering of particles with opposite spin, in such systems. We show that when the ferromagnetic state is approached from the normal side, the spin drag relaxation rate is strongly enhanced near the critical point. We also determine the temperature dependence of the spin diffusion constant. In a trapped gas the spin drag relaxation rate determines the damping of the spin dipole mode, which therefore provides a precursor signal of the ferromagnetic phase transition that may be used to experimentally determine the proximity to the ferromagnetic phase.
Spin and the Coulomb gap in the half-filled lowest Landau level
NASA Astrophysics Data System (ADS)
Eisenstein, J. P.; Khaire, T.; Nandi, D.; Finck, A. D. K.; Pfeiffer, L. N.; West, K. W.
2016-09-01
The Coulomb gap observed in tunneling between parallel two-dimensional electron systems, each at half-filling of the lowest Landau level, is found to depend sensitively on the presence of an in-plane magnetic field. Especially at low electron density, the width of the Coulomb gap at first increases sharply with in-plane field, but then abruptly levels off. This behavior appears to coincide with the known transition from partial to complete spin polarization of the half-filled lowest Landau level. The tunneling gap therefore opens a window onto the spin configuration of two-dimensional electron systems at high magnetic field.
Interdot Coulomb correlation effects and spin-orbit coupling in two carbon nanotube quantum dots
Wang, Zhen-Hua; Kuang, Xiao-Yu Zhong, Ming-Min; Shao, Peng; Li, Hui
2014-01-28
Transport properties of the two-level Kondo effect involving spin, orbital, and pseudospin degrees of freedom are examined in a parallel carbon nanotube double quantum dot with a sufficient interdot Coulomb interaction and small interdot tunneling. The interdot Coulomb correlation effects are taken into account, and it plays an important role in forming bonding and antibonding states. Attached to ferromagnetic leads, the Kondo effect is observed at the interdot Coulomb blockade region with degeneracy of spin, orbital, and pseudospin degrees of freedom. A crossover from a two-level Kondo state involving the fivefold degeneracy of the double quantum dots to an SU(4) spin-orbit Kondo state and to an SU(2) spin-Kondo effect is demonstrated. At finite magnetic field, the splitting of the spin, orbital, and pseudospin Kondo resonance can be restored. For finite intradot Coulomb interaction U, there is a competition between the single-dot Kondo effect and the antiferromagnetic exchange coupling J{sub AFM}, resulting in the suppression of the Kondo resonance. Moreover, both the J{sub AFM} and the Zeeman interactions compete, leading to need a much higher value of the magnetic field to compensate for the Kondo splitting.
Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure
Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Chen, Hongsheng; Lin, Shisheng
2015-06-15
Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction between 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.
Coulomb energy averaged over the nl{sup N}-atomic states with a definite spin
Kibler, M.; Smirnov, Yu. F.
1995-03-05
A purely group-theoretical approach (for which the symmetric group plays a central role), based upon the use of properties of fractional-parentage coefficients and isoscalar factors, is developed for the derivation of the Coulomb energy averaged over the states, with a definite spin, arising from an atomic configuration nl{sup N}. 15 refs.
Noncollinear drag force in Bose-Einstein condensates with Weyl spin-orbit coupling
NASA Astrophysics Data System (ADS)
Liao, Renyuan; Fialko, Oleksandr; Brand, Joachim; Zülicke, Ulrich
2016-02-01
We consider the motion of a pointlike impurity through a three-dimensional two-component Bose-Einstein condensate subject to Weyl spin-orbit coupling. Using linear-response theory, we calculate the drag force felt by the impurity and the associated anisotropic critical velocity from the spectrum of elementary excitations. The drag force is shown to be generally not collinear with the velocity of the impurity. This unusual behavior is a consequence of condensation into a finite-momentum state due to the spin-orbit coupling.
A critical phase induced by interplay of spin-orbit coupling and Coulomb interaction
NASA Astrophysics Data System (ADS)
Moon, Eun-Gook; Xu, Cenke; Kim, Yong Baek; Balents, Leon
2013-03-01
We study long range Coulomb interaction effect on the Luttinger Hamiltonian in three spatial dimensions, which describes strong spin orbit coupling intrinsically. The Hamiltonian has energy spectrum of inverted band gap semiconductors as in well-known HgTe; only one quadratic band touching point exists at the gamma point in Brillouin zone protected by the cubic and time reversal symmetries. Using controlled renormalization group techniques, we find that long-range Coulomb interaction converts the quadratic band touching state into a non-Fermi liquid (NFL) state, in some ways analogous to the Luttinger liquid state in one dimension. Consequently, all physical quantities become scale invariant and show deviations from non-interacting electrons' properties. Temperature and field dependence of various thermodynamic functions are obtained. Moreover, our ground state can be viewed as a parent state of topological insulators, magnetic metals, and Weyl semi-metals by breaking either cubic symmetry or time-reversal symmetry. The strong Coulomb interaction changes phase boundaries qualitatively and phase diagrams with the Coulomb interaction are provided. Applications to iridium-oxides materials are also discussed.
Random Coulomb antiferromagnets: From diluted spin liquids to Euclidean random matrices
NASA Astrophysics Data System (ADS)
Rehn, J.; Sen, Arnab; Andreanov, A.; Damle, Kedar; Moessner, R.; Scardicchio, A.
2015-08-01
We study a disordered classical Heisenberg magnet with uniformly antiferromagnetic interactions which are frustrated on account of their long-range Coulomb form, i.e., J (r )˜-A lnr in d =2 and J (r )˜A /r in d =3 . This arises naturally as the T →0 limit of the emergent interactions between vacancy-induced degrees of freedom in a class of diluted Coulomb spin liquids (including the classical Heisenberg antiferromagnets in checkerboard, SCGO, and pyrochlore lattices) and presents a novel variant of a disordered long-range spin Hamiltonian. Using detailed analytical and numerical studies we establish that this model exhibits a very broad paramagnetic regime that extends to very large values of A in both d =2 and d =3 . In d =2 , using the lattice-Green-function-based finite-size regularization of the Coulomb potential (which corresponds naturally to the underlying low-temperature limit of the emergent interactions between orphans), we find evidence that freezing into a glassy state occurs only in the limit of strong coupling, A =∞ , while no such transition seems to exist in d =3 . We also demonstrate the presence and importance of screening for such a magnet. We analyze the spectrum of the Euclidean random matrices describing a Gaussian version of this problem and identify a corresponding quantum mechanical scattering problem.
NASA Astrophysics Data System (ADS)
Aasen, David; Lee, Shu-Ping; Karzig, Torsten; Alicea, Jason
2016-10-01
Interfacing s -wave superconductors and quantum spin Hall edges produces time-reversal-invariant topological superconductivity of a type that can not arise in strictly one-dimensional systems. With the aim of establishing sharp fingerprints of this phase, we use renormalization-group methods to extract universal transport characteristics of superconductor/quantum spin Hall heterostructures where the native edge states serve as leads. We determine scaling forms for the conductance through a grounded superconductor and show that the results depend sensitively on the interaction strength in the leads, the size of the superconducting region, and the presence or absence of time-reversal-breaking perturbations. We also study transport across a floating superconducting island isolated by magnetic barriers. Here, we predict e -periodic Coulomb-blockade peaks, as recently observed in nanowire devices [S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162], with the added feature that the island can support fractional charge tunable via the relative orientation of the barrier magnetizations. As an interesting corollary, when the magnetic barriers arise from strong interactions at the edge that spontaneously break time-reversal symmetry, the Coulomb-blockade periodicity changes from e to e /2 . These findings suggest several future experiments that probe unique characteristics of topological superconductivity at the quantum spin Hall edge.
NASA Astrophysics Data System (ADS)
Paulsen, C.; Giblin, S. R.; Lhotel, E.; Prabhakaran, D.; Balakrishnan, G.; Matsuhira, K.; Bramwell, S. T.
2016-07-01
A non-Ohmic current that grows exponentially with the square root of applied electric field is well known from thermionic field emission (the Schottky effect), electrolytes (the second Wien effect) and semiconductors (the Poole-Frenkel effect). It is a universal signature of the attractive Coulomb force between positive and negative electrical charges, which is revealed as the charges are driven in opposite directions by the force of an applied electric field. Here we apply thermal quenches to spin ice to prepare metastable populations of bound pairs of positive and negative emergent magnetic monopoles at millikelvin temperatures. We find that the application of a magnetic field results in a universal exponential-root field growth of magnetic current, thus confirming the microscopic Coulomb force between the magnetic monopole quasiparticles and establishing a magnetic analogue of the Poole-Frenkel effect. At temperatures above 300 mK, gradual restoration of kinetic monopole equilibria causes the non-Ohmic current to smoothly evolve into the high-field Wien effect for magnetic monopoles, as confirmed by comparison to a recent and rigorous theory of the Wien effect in spin ice. Our results extend the universality of the exponential-root field form into magnetism and illustrate the power of emergent particle kinetics to describe far-from-equilibrium response in complex systems.
Complex symmetric root square locus with an application to a spinning drag-free satellite
NASA Technical Reports Server (NTRS)
Tashker, M. G.; Debra, D. B.
1976-01-01
The parameters and relations associated with optimal systems are examined, taking into account a quadratic performance index and a root square locus plot, including the characteristic roots of the optimal system and its adjoint system as a function of the cost function weights. The calculation of the locus is described and the employment of the considered relations in studies of a drag-free satellite is discussed. Attention is given to weights regarding the initial states, questions of rotating integral control, approaches for experimental verification, and the performance of various methods for the reduction of fuel consumption due to center of spin offsets.
Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.
Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva
2016-03-11
The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}. PMID:27015496
Fermi Surface of Sr2 RuO4 : Spin-Orbit and Anisotropic Coulomb Interaction Effects
NASA Astrophysics Data System (ADS)
Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva
2016-03-01
The topology of the Fermi surface of Sr2 RuO4 is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix—responsible for the reshaping of the Fermi surface—sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr2 RuO4 .
NASA Technical Reports Server (NTRS)
Temkin, A.
1984-01-01
Temkin (1982) has derived the ionization threshold law based on a Coulomb-dipole theory of the ionization process. The present investigation is concerned with a reexamination of several aspects of the Coulomb-dipole threshold law. Attention is given to the energy scale of the logarithmic denominator, the spin-asymmetry parameter, and an estimate of alpha and the energy range of validity of the threshold law, taking into account the result of the two-electron photodetachment experiment conducted by Donahue et al. (1984).
NASA Astrophysics Data System (ADS)
Ikot, Akpan N.; Maghsoodi, Elham; Zarrinkamar, Saber; Hassanabadi, Hassan
2013-11-01
The Dirac equation for the combined Mobius square and inversely quadratic Yukawa potentials including a Coulomb-like interaction term has been investigated in the presence of spin and pseudospin symmetries with arbitrary spin-orbit quantum number κ .We have obtained the explicit energy eigenvalues and the corresponding eigenfunctions by the framework of Nikiforov-Uvarov method.
Theoretical study of Coulomb correlations and spin-orbit coupling in SrIrO{sub 3}
Singh, Vijeta Pulikkotil, J. J.
2015-06-24
Given that energy scales associated with crystal field splitting, spin orbit coupling and coulomb correlations in iridates are comparable, hence leading to exotic properties, we investigate the physical properties of orthorhombic SrIrO{sub 3} using density functional theory. Our calculations, however, show that SrIrO{sub 3} is a bad metal with no long range magnetic ordering, unlike its sister compounds Sr{sub 2}IrO{sub 4} and Sr{sub 3}Ir{sub 2}O{sub 7}. Moreover, despite having large band width, it appears conclusive that the larger resistivity in SrIrO{sub 3} is due to spin orbit interactions. Besides, the effects of electron-electron correlations on its electronic structure and magnetic properties are also discussed.
Nonlocal Drag of Magnons in a Ferromagnetic Bilayer.
Liu, Tianyu; Vignale, G; Flatté, Michael E
2016-06-10
Quantized spin waves, or magnons, in a magnetic insulator are assumed to interact weakly with the surroundings, and to flow with little dissipation or drag, producing exceptionally long diffusion lengths and relaxation times. In analogy to Coulomb drag in bilayer two-dimensional electron gases, in which the contribution of the Coulomb interaction to the electric resistivity is studied by measuring the interlayer resistivity (transresistivity), we predict a nonlocal drag of magnons in a ferromagnetic bilayer structure based on semiclassical Boltzmann equations. Nonlocal magnon drag depends on magnetic dipolar interactions between the layers and manifests in the magnon current transresistivity and the magnon thermal transresistivity, whereby a magnon current in one layer induces a chemical potential gradient and/or a temperature gradient in the other layer. The largest drag effect occurs when the magnon current flows parallel to the magnetization; however, for oblique magnon currents a large transverse current of magnons emerges. We examine the effect for practical parameters, and find that the predicted induced temperature gradient is readily observable. PMID:27341254
Nonlocal Drag of Magnons in a Ferromagnetic Bilayer.
Liu, Tianyu; Vignale, G; Flatté, Michael E
2016-06-10
Quantized spin waves, or magnons, in a magnetic insulator are assumed to interact weakly with the surroundings, and to flow with little dissipation or drag, producing exceptionally long diffusion lengths and relaxation times. In analogy to Coulomb drag in bilayer two-dimensional electron gases, in which the contribution of the Coulomb interaction to the electric resistivity is studied by measuring the interlayer resistivity (transresistivity), we predict a nonlocal drag of magnons in a ferromagnetic bilayer structure based on semiclassical Boltzmann equations. Nonlocal magnon drag depends on magnetic dipolar interactions between the layers and manifests in the magnon current transresistivity and the magnon thermal transresistivity, whereby a magnon current in one layer induces a chemical potential gradient and/or a temperature gradient in the other layer. The largest drag effect occurs when the magnon current flows parallel to the magnetization; however, for oblique magnon currents a large transverse current of magnons emerges. We examine the effect for practical parameters, and find that the predicted induced temperature gradient is readily observable.
Nonlocal Drag of Magnons in a Ferromagnetic Bilayer
NASA Astrophysics Data System (ADS)
Liu, Tianyu; Vignale, G.; Flatté, Michael E.
2016-06-01
Quantized spin waves, or magnons, in a magnetic insulator are assumed to interact weakly with the surroundings, and to flow with little dissipation or drag, producing exceptionally long diffusion lengths and relaxation times. In analogy to Coulomb drag in bilayer two-dimensional electron gases, in which the contribution of the Coulomb interaction to the electric resistivity is studied by measuring the interlayer resistivity (transresistivity), we predict a nonlocal drag of magnons in a ferromagnetic bilayer structure based on semiclassical Boltzmann equations. Nonlocal magnon drag depends on magnetic dipolar interactions between the layers and manifests in the magnon current transresistivity and the magnon thermal transresistivity, whereby a magnon current in one layer induces a chemical potential gradient and/or a temperature gradient in the other layer. The largest drag effect occurs when the magnon current flows parallel to the magnetization; however, for oblique magnon currents a large transverse current of magnons emerges. We examine the effect for practical parameters, and find that the predicted induced temperature gradient is readily observable.
NASA Astrophysics Data System (ADS)
Wdowik, U. D.; Piekarz, P.; Legut, D.; Jagło, G.
2016-08-01
Uranium monocarbide, a potential fuel material for the generation IV reactors, is investigated within density functional theory. Its electronic, magnetic, elastic, and phonon properties are analyzed and discussed in terms of spin-orbit interaction and localized versus itinerant behavior of the 5 f electrons. The localization of the 5 f states is tuned by varying the local Coulomb repulsion interaction parameter. We demonstrate that the theoretical electronic structure, elastic constants, phonon dispersions, and their densities of states can reproduce accurately the results of x-ray photoemission and bremsstrahlung isochromat measurements as well as inelastic neutron scattering experiments only when the 5 f states experience the spin-orbit interaction and simultaneously remain partially localized. The partial localization of the 5 f electrons could be represented by a moderate value of the on-site Coulomb interaction parameter of about 2 eV. The results of the present studies indicate that both strong electron correlations and spin-orbit effects are crucial for realistic theoretical description of the ground-state properties of uranium carbide.
Lipparini, Filippo; Gauss, Jürgen
2016-09-13
We present an implementation of the complete active space-self-consistent field (CASSCF) method specifically designed to be used in four-component scalar relativistic calculations based on the spin-free Dirac-Coulomb (SFDC) Hamiltonian. Our implementation takes full advantage of the properties of the SFDC Hamiltonian that allow us to use real algebra and to exploit point-group and spin symmetry to their full extent while including in a rigorous way scalar relativistic effects in the treatment. The SFDC-CASSCF treatment is more expensive than its non-relativistic counterpart only in the orbital optimization step, while exhibiting the same computational cost for the rate-determining full configuration interaction part. The numerical aspects are discussed, and the capabilities of the SFDC-CASSCF methodology are demonstrated through a pilot application. PMID:27464026
ERIC Educational Resources Information Center
Fay, Temple H.
2012-01-01
Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A
2016-02-01
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. PMID:26503739
NASA Astrophysics Data System (ADS)
Valenzuela, Sergio O.
2013-03-01
Thermoelectric effects in spintronics are gathering increasing attention as a means of controlling spin information by using heat flow. Thermal magnons (spin-wave quanta) are expected to play a major role, however, the coupling between electrons and magnons in ferromagnetic metals remains poorly understood. We demonstrate a conceptually new device that enables us to gather information on magnon-electron scattering and magnon-drag effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon drag thermoelectric effects. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. These results demonstrate the feasibility of directly converting magnon dynamics of nanomagnets into an electrical signal and could pave the way to novel thermoelectric devices for energy harvesting. This research was supported by the Spanish Ministerio de Ciencia e Innovación, MICINN (MAT2010-18065) and by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement NANOFUNCTION no 257375.
NASA Astrophysics Data System (ADS)
Meetei, Oinam Nganba
Strong interactions in transition metal oxides can lead to spectacular phenomena like high Tc superconductivity and colossal magnetoresistance which have dominated materials research in the past decades. The goal of this thesis is to examine the interplay of strong correlations with additional degrees of freedom, like spin orbit coupling (SOC), multiple transition metal ions and disorder. We start with a discussion of Mott insulators, with the transition metal in the d4 configuration, where the competition between superexchange interaction and SOC leads to a novel ferromagnetic insulator. In recent years SOC has been at the center stage of condensed matter research because it can produce band insulators in uncorrelated materials with non-trivial topological properties. Here, we focus on the dual role of SOC and strong interactions, naturally realized in 4d/5dd transition metal oxides. We show that in d4 Mott insulators, the local moment can be altered by varying the relative strength of SOC and superexchange, both of which are small parameters compared to the interaction energy scale. In fact, a phase transition from a non-magnetic insulator with J=0 singlets at every site to an orbitally entangled ferromagnetic insulator occurs with decreasing SOC. Our results challenge the commonly held notion that local moments are robust in a Mott insulator. We identify candidate materials and present predictions for Resonant X-ray Scattering (RXS) signatures of the unusual magnetism in d4 Mott insulators. Next we focus on the double perovskite material Sr2 CrOsO6 which is an insulator and has the highest ferromagnetic Tc among all perovskites with a net moment. It presents several puzzles which we address systematically. Its insulating behavior cannot be explained from a band theory point of view or from a naive consideration of Mott physics. Additionally, the net moment at low temperature, M(0)=0.75 μΒ ,is unusual for half-filled bands where anti-ferromagnetism is expected
Spin relaxation in n-type GaAs quantum wells with transient spin grating
NASA Astrophysics Data System (ADS)
Weng, M. Q.; Wu, M. W.; Cui, H. L.
2008-03-01
By solving the kinetic spin Bloch equations, we study the time evolution of the transient spin grating, whose spin polarization periodically varies in real space, confined in (001) GaAs quantum wells. With this study, we can investigate the properties of both the spin transport and the spin relaxation at the same time. The Fourier component of the spin signal double exponentially decays with two decay rates 1/τ+ and 1/τ-. In the high temperature regime, the average of these two rates quadratically varies with the grating wave vector q, i.e., (1/τ++1/τ-)/2=Dsq2+1/τ˜s, with Ds and τ˜s representing the spin diffusion coefficient and the average of the out-of-plane and the in-plane spin relaxation times, respectively. τ± calculated from our theory are in good agreement with the experimental data by Weber et al. [Phys. Rev. Lett. 98, 076604 (2007)]. By comparing Ds with and without the electron-electron Coulomb scattering, we calculate the contribution of Coulomb drag to the spin diffusion coefficient. With the transient spin grating result, we further reveal the relations among different characteristic parameters such as spin diffusion coefficient Ds, spin relaxation time τs, and spin injection length Ls. We show that in the presence of the Dresselhaus and/or Rashba spin-orbit coupling, the widely used relation Ls=√Dsτs is generally inaccurate and can even be very wrong in some special cases. We present an accurate way to extract the steady-state transport characteristic parameters from the transient spin grating signals.
Coulomb Glass: a Mean Field Study
NASA Astrophysics Data System (ADS)
Mandra, Salvatore; Palassini, Matteo
2012-02-01
We study the Coulomb glass model of disordered localized electrons with long-range Coulomb interaction, which describes systems such as disordered insulators, granular metals, amorphous semiconductors, or doped crystalline semiconductors. Long ago Efros and Shklovskii showed that the long-range repulsion induces a soft Coulomb gap in the single particle density of states at low temperatures. Recent works suggested that this gap is associated to a transition to a glass phase, similar to the Almeida-Thouless transition in spin glasses. In this work, we use a mean field approach to characterize several physical properties of the Coulomb glass. In particular, following a seminal work of Bray and Moore, we show that the Edward-Anderson parameter qEA and the spin glass susceptibility χSG are directly related to spectrum distribution of the Hessian matrix around free energy minima. Using this result, we show that no glass transition is associated to the gap formation.
NASA Astrophysics Data System (ADS)
Novello, M.; Bittencourt, E.
2013-05-01
We show that the path of any accelerated body in an arbitrary spacetime geometry g_{μ ν } can be described as a geodesic in a dragged metric hat{q}_{μ ν } that depends only on the background metric and on the motion of the body. Such procedure allows the interpretation of all kinds of non-gravitational force as modifications of the spacetime metric. This method of effective elimination of the forces by changing the metric of the substratum can be understood as a generalization of the d'Alembert principle applied to all relativistic processes.
Backreaction of frame dragging
Herdeiro, Carlos A. R.; Rebelo, Carmen; Warnick, Claude M.
2009-10-15
The backreaction on black holes due to dragging heavy, rather than test, objects is discussed. As a case study, a five-dimensional regular black Saturn system where the central black hole has vanishing intrinsic angular momentum, J{sup BH}=0, is considered. It is shown that there is a correlation between the sign of two response functions. One is interpreted as a moment of inertia of the black ring in the black Saturn system. The other measures the variation of the black ring horizon angular velocity with the central black hole mass, for fixed ring mass and angular momentum. The two different phases defined by these response functions collapse, for small central black hole mass, to the thin and fat ring phases. In the fat phase, the zero area limit of the black Saturn ring has reduced spin j{sup 2}>1, which is related to the behavior of the ring angular velocity. Using the 'gravitomagnetic clock effect', for which a universality property is exhibited, it is shown that frame dragging measured by an asymptotic observer decreases, in both phases, when the central black hole mass increases, for fixed ring mass and angular momentum. A close parallelism between the results for the fat phase and those obtained recently for the double Kerr solution is drawn, considering also a regular black Saturn system with J{sup BH}{ne}0.
Backreaction of frame dragging
NASA Astrophysics Data System (ADS)
Herdeiro, Carlos A. R.; Rebelo, Carmen; Warnick, Claude M.
2009-10-01
The backreaction on black holes due to dragging heavy, rather than test, objects is discussed. As a case study, a five-dimensional regular black Saturn system where the central black hole has vanishing intrinsic angular momentum, JBH=0, is considered. It is shown that there is a correlation between the sign of two response functions. One is interpreted as a moment of inertia of the black ring in the black Saturn system. The other measures the variation of the black ring horizon angular velocity with the central black hole mass, for fixed ring mass and angular momentum. The two different phases defined by these response functions collapse, for small central black hole mass, to the thin and fat ring phases. In the fat phase, the zero area limit of the black Saturn ring has reduced spin j2>1, which is related to the behavior of the ring angular velocity. Using the “gravitomagnetic clock effect,” for which a universality property is exhibited, it is shown that frame dragging measured by an asymptotic observer decreases, in both phases, when the central black hole mass increases, for fixed ring mass and angular momentum. A close parallelism between the results for the fat phase and those obtained recently for the double Kerr solution is drawn, considering also a regular black Saturn system with JBH≠0.
Hood, M.
1986-02-11
A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face. 4 figs.
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Moore, K. J.
1991-01-01
Recent studies on the drag-reducing shapes, structures, and behaviors of swimming and flying animals are reviewed, with an emphasis on potential analogs in vehicle design. Consideration is given to form drag reduction (turbulent flow, vortex generation, mass transfer, and adaptations for body-intersection regions), skin-friction drag reduction (polymers, surfactants, and bubbles as surface 'additives'), reduction of the drag due to lift, drag-reduction studies on porpoises, and drag-reducing animal behavior (e.g., leaping out of the water by porpoises). The need for further research is stressed.
Hood, Michael
1986-01-01
A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face.
ERIC Educational Resources Information Center
Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg
1998-01-01
Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)
Diffusion in Coulomb crystals.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2011-07-01
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous. PMID:21867316
Diffusion in Coulomb crystals.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2011-07-01
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.
Drag of ballistic electrons by an ion beam
Gurevich, V. L.; Muradov, M. I.
2015-12-15
Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.
What is intrinsic and what is extrinsic in the spin Hall effect?
NASA Astrophysics Data System (ADS)
Hankiewicz, Ewelina; Vignale, Giovanni; Flatté, Michael
2006-03-01
Two different forms of the spin Hall effect, intrinsic and extrinsic, have been recently proposed and observed in experiments. The intrinsic effect is caused by spin-orbit coupling in the band structure of the semiconductor and survives in the limit of zero disorder, whereas the extrinsic effect is caused by spin-orbit coupling between Bloch electrons and impurities. We treat both effects on equal footing within the framework of the exact Kubo linear response formalism. We show that the ``side-jump" term, which is usually considered part of the extrinsic spin Hall effect, is really intrinsic, because it is independent of disorder. Furthermore, it is the only non-zero intrinsic contribution to the spin-Hall effect for the linear Rashba (or Dresselhaus) spin-orbit coupling model. On the other hand, the skew scattering term is the only extrinsic contribution to the spin-Hall effect within this model. The proof based on gauge invariance holds at all orders in disorder and electron-electron interactions and to first order in spin-orbit coupling, but does not apply to more complex spin-orbit coupled bands (e.g the Luttinger model). We also study many-body effects and predict that the spin Coulomb drag will reduce the spin Hall conductivity.
NASA Astrophysics Data System (ADS)
Seidlitz, M.; Mücher, D.; Reiter, P.; Bildstein, V.; Blazhev, A.; Bree, N.; Bruyneel, B.; Cederkäll, J.; Clement, E.; Davinson, T.; Van Duppen, P.; Ekström, A.; Finke, F.; Fraile, L. M.; Geibel, K.; Gernhäuser, R.; Hess, H.; Holler, A.; Huyse, M.; Ivanov, O.; Jolie, J.; Kalkühler, M.; Kotthaus, T.; Krücken, R.; Lutter, R.; Piselli, E.; Scheit, H.; Stefanescu, I.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.
2011-06-01
The ground state properties of 31Mg indicate a change of nuclear shape at N = 19 with a deformed Jπ = 1 /2+ intruder state as a ground state, implying that 31Mg is part of the "island of inversion". The collective properties of excited states were the subject of a Coulomb excitation experiment at REX-ISOLDE, CERN, employing a radioactive 31Mg beam. De-excitation γ-rays were detected by the MINIBALL γ-spectrometer in coincidence with scattered particles in a segmented Si-detector. The level scheme of 31Mg was extended. Spin and parity assignment of the 945 keV state yielded 5 /2+ and its de-excitation is dominated by a strong collective M1 transition. Comparison of the transition probabilities of 30,31,32Mg establishes that for the N = 19 magnesium isotope not only the ground state but also excited states are largely dominated by a deformed pf intruder configuration.
ASTROPHYSICS: Neutron Stars Imply Relativity's a Drag.
Schilling, G
2000-09-01
A new finding, based on x-rays from distant neutron stars, could be the first clear evidence of a weird relativistic effect called frame dragging, in which a heavy chunk of spinning matter wrenches the space-time around it like an eggbeater. Using data from NASA's Rossi X-ray Timing Explorer, three astronomers in Amsterdam found circumstantial evidence for frame dragging in the flickering of three neutron stars in binary systems. They announced their results in the 1 September issue of The Astrophysical Journal. PMID:17839511
Kadyrov, A. S.; Bray, I.; Stelbovics, A. T.; Mukhamedzhanov, A. M.
2008-12-05
We formulate scattering theory in the framework of a surface-integral approach utilizing analytically known asymptotic forms of the three-body wave functions. This formulation is valid for both short-range and Coulombic potentials. The post and prior forms of the breakup amplitude are derived without any reference to renormalization procedures.
Geodetic precession or dragging of inertial frames
Ashby, N. ); Shahid-Saless, B. )
1990-08-15
In metric theories of gravity the principle of general covariance allows one to describe phenomena by means of any convenient choice of coordinate system. In this paper it is shown that in an appropriately chosen coordinate system, geodetic precession of a gyroscope orbiting a spherically symmetric, spinning mass can be recast as a Lense-Thirring frame-dragging effect without invoking spatial curvature. The origin of this reference frame moves around the source but the frame axes point in fixed directions. The drag can be interpreted to arise from the orbital angular momentum of the source around the origin of the reference frame. In this reference frame the effects of geodetic precession and Lense-Thirring drag due to intrinsic angular momentum of the source have the same origin, namely, gravitomagnetism.
NASA Astrophysics Data System (ADS)
Yokoyama, Yoshiyuki; Miyazaki, Takeshi; Himeno, Ryutaro
2007-11-01
Using a high-speed video camera, we measured the trajectory and the rotation of a hard baseball thrown by a pitching machine which can launch Gyro-Balls (rifle spinning balls). We determined the drag- and lift- coefficients by analyzing the video images. The measurements were performed in the range of 0.6x10^5
Maj, Radoslaw; Mrowczynski, Stanislaw
2009-09-15
The correlation function of two identical particles - pions or kaons - interacting via Coulomb potential is computed. The particles are emitted from an anisotropic particle's source of finite lifetime. In the case of pions, the effect of halo is taken into account as an additional particle's source of large spatial extension. The relativistic effects are discussed in detail. The Bowler-Sinyukov procedure to remove the Coulomb interaction is carefully tested. In the absence of halo the procedure is shown to work very well even for an extremely anisotropic source. When the halo is taken into account the free correlation function, which is extracted by means of the Bowler-Sinyukov procedure, is distorted at small relative momenta but the source parameters are still correctly reproduced.
NASA Astrophysics Data System (ADS)
Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration
2013-11-01
We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.
NASA Astrophysics Data System (ADS)
Diriken, J.; Stefanescu, I.; Balabanski, D.; Blasi, N.; Blazhev, A.; Bree, N.; Cederkäll, J.; Cocolios, T. E.; Davinson, T.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Georgiev, G.; Gladnishki, K.; Huyse, M.; Ivanov, O. V.; Ivanov, V. S.; Iwanicki, J.; Jolie, J.; Konstantinopoulos, T.; Kröll, Th.; Krücken, R.; Köster, U.; Lagoyannis, A.; Lo Bianco, G.; Maierbeck, P.; Marsh, B. A.; Napiorkowski, P.; Patronis, N.; Pauwels, D.; Reiter, P.; Seliverstov, M.; Sletten, G.; van de Walle, J.; van Duppen, P.; Voulot, D.; Walters, W. B.; Warr, N.; Wenander, F.; Wrzosek, K.
2010-12-01
The B(E2;Ii→If) values for transitions in 3171Ga40 and 3173Ga42 were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of Ga71,73 at the REX-ISOLDE on-line isotope mass separator facility. The emitted γ rays were detected by the MINIBALL γ-detector array, and B(E2;Ii→If) values were obtained from the yields normalized to the known strength of the 2+→0+ transition in the Sn120 target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity toward lower excitation energy when adding neutrons beyond N=40. This supports conclusions from previous studies of the gallium isotopes, which indicated a structural change in this isotopic chain between N=40 and 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2- spin and parity for the ground state, the extracted results revealed evidence for a 1/2-,3/2- doublet near the ground state in 3173Ga42 differing by at most 0.8 keV in energy.
Spin Relaxation and Spin Transport in Graphene
NASA Astrophysics Data System (ADS)
Wu, M. W.
2012-02-01
In this talk we are going to present our theoretical investigations on spin dynamics of graphene under various conditions based on a fully microscopic kinetic-spin-Bloch-equation approach [1]. We manage to nail down the solo spin relaxation mechanism of graphene in measurements from two leading groups, one in US and one in the Netherland. Many novel effects of the electron-electron Coulomb interaction on spin relaxation in graphene are addressed. Our theory can have nice agreement with experimental data.[4pt] [1] M. W. Wu, J. H. Jiang, and M. Q. Weng, ``Spin dynamics in semiconductors,'' Phys. Rep. 493, 61 (2010).
Polonyi, J.
2008-06-15
The contribution of different modes of the Coulomb field to decoherence and to the dynamical breakdown of the time reversal invariance is calculated in the one-loop approximation for nonrelativistic electron gas. The dominant contribution was found to come from the usual collective modes in the plasma, namely, the zero-sound and the plasmon oscillations. The length scale of the quantum-classical transition is found to be close to the Thomas-Fermi screening length. It is argued that the extension of these modes to the whole Fock space yields optimal pointer states.
Frame dragging and superenergy
Herrera, L.; Di Prisco, A.; Carot, J.
2007-08-15
We show that the vorticity appearing in stationary vacuum spacetimes is always related to the existence of a flow of superenergy on the plane orthogonal to the vorticity vector. This result, together with the previously established link between vorticity and superenergy in radiative (Bondi-Sachs) spacetimes, strengthens further the case for this latter quantity as the cause of frame dragging.
NASA Astrophysics Data System (ADS)
Rajagopal, Krishna; Sadofyev, Andrey V.
2015-10-01
We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and
Beck, B. R.; Church, D. A.; Gruber, L.; Holder, J. P.; Schneider, D.; Steiger, J.
1998-10-22
Storage rings and Penning traps are being used to study ions in their highest charge states. Both devices must have the capability for ion cooling in order to perform high precision measurements such as mass spectrometry and laser spectroscopy. This is accomplished in storage rings in a merged beam arrangement where a cold electron beam moves at the speed of the ions. In RETRAP, a Penning trap located at Lawrence Livermore National Laboratory, a sympathetic laser/ion cooling scheme has been implemented. In a first step, singly charged beryllium ions are cooled electronically by a tuned circuit and optically by a laser. Then hot, highly charged ions are merged into the cold Be plasma. By collisions, their kinetic energy is reduced to the temperature of the Be plasma. First experiments indicate that the highly charged ions form a strongly coupled plasma with a Coulomb coupling parameter.
Energies of Screened Coulomb Potentials.
ERIC Educational Resources Information Center
Lai, C. S.
1979-01-01
This article shows that, by applying the Hellman-Feynman theorem alone to screened Coulomb potentials, the first four coefficients in the energy series in powers of the perturbation parameter can be obtained from the unperturbed Coulomb system. (Author/HM)
Quantum Hall Exciton Condensation at Full Spin Polarization
NASA Astrophysics Data System (ADS)
Finck, A. D. K.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.
2010-01-01
Using Coulomb drag as a probe, we explore the excitonic phase transition in quantum Hall bilayers at νT=1 as a function of Zeeman energy EZ. The critical layer separation (d/ℓ)c for exciton condensation initially increases rapidly with EZ, but then reaches a maximum and begins a gentle decline. At high EZ, where both the excitonic phase at small d/ℓ and the compressible phase at large d/ℓ are fully spin polarized, we find that the width of the transition, as a function of d/ℓ, is much larger than at small EZ and persists in the limit of zero temperature. We discuss these results in the context of two models in which the system contains a mixture of the two fluids.
Quantum Hall Exciton Condensation at Full Spin Polarization
NASA Astrophysics Data System (ADS)
Finck, A. D. K.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.
2010-03-01
Using Coulomb drag as a probe, we explore the excitonic phase transition in quantum Hall bilayers at νT=1 as a function of Zeeman energy, EZ. The critical layer separation (d/l)c for exciton condensation initially increases rapidly with EZ, but then reaches a maximum and begins a gentle decline. At high EZ, where both the excitonic phase at small d/l and the compressible phase at large d/l are fully spin polarized, we find that the width of the transition, as a function of d/l, is much larger than at small EZ and persists in the limit of zero temperature. We discuss these results in the context of two models in which the system contains a mixture of the two fluids.
Do spinors give rise to a frame-dragging effect?
Randono, Andrew
2010-01-15
We investigate the effect of the intrinsic spin of a fundamental spinor field on the surrounding spacetime geometry. We show that despite the lack of a rotating stress-energy source (and despite claims to the contrary) the intrinsic spin of a spin-half fermion gives rise to a frame-dragging effect analogous to that of orbital angular momentum, even in Einstein-Hilbert gravity where torsion is constrained to be zero. This resolves a paradox regarding the counter-force needed to restore Newton's third law in the well-known spin-orbit interaction. In addition, the frame-dragging effect gives rise to a long-range gravitationally mediated spin-spin dipole interaction coupling the internal spins of two sources. We argue that despite the weakness of the interaction, the spin-spin interaction will dominate over the ordinary inverse square Newtonian interaction in any process of sufficiently high energy for quantum field theoretical effects to be non-negligible.
NASA Astrophysics Data System (ADS)
DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Hjorth-Jensen, M.; Albers, M.; Bildstein, V.; Blazhev, A.; Darby, I.; Davinson, T.; De Witte, H.; Diriken, J.; Fransen, Ch.; Geibel, K.; Gernhäuser, R.; Görgen, A.; Hess, H.; Heyde, K.; Iwanicki, J.; Lutter, R.; Reiter, P.; Scheck, M.; Seidlitz, M.; Siem, S.; Taprogge, J.; Tveten, G. M.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.
2013-01-01
The radioactive isotope 107In was studied using sub-barrier Coulomb excitation at the REX-ISOLDE facility at CERN. Two γ rays were observed during the experiment, corresponding to the low-lying 11/2+ and 3/2- states. The reduced transition probability of the 11/2+ state was determined with the semiclassical Coulomb excitation code gosia2. The result is discussed in comparison to large-scale shell-model calculations, previous unified-model calculations, and earlier Coulomb excitation measurements in the odd-mass In isotopes.
Ionic Coulomb Blockade in Nanopores
Krems, Matt; Di Ventra, Massimiliano
2014-01-01
Understanding the dynamics of ions in nanopores is essential for applications ranging from single-molecule detection to DNA sequencing. We show both analytically and by means of molecular dynamics simulations that under specific conditions ion-ion interactions in nanopores lead to the phenomenon of ionic Coulomb blockade, namely the build-up of ions inside a nanopore with specific capacitance impeding the flow of additional ions due to Coulomb repulsion. This is the counterpart of electronic Coulomb blockade observed in mesoscopic systems. We discuss the analogies and differences with the electronic case as well as experimental situations in which this phenomenon could be detected. PMID:23307655
Coulomb interactions and fermion condensation
Capstick, S.; Cutkosky, R.E.; Joensen, M.A. ); Wang, K.C. )
1990-08-15
The influence of the Coulomb interaction in states containing massless and flavorless fermion-antifermion pairs is studied, using a continuum formulation within the finite volume {ital S}{sup 3}. Several different forms for the Coulomb interaction are examined, including confining potentials as well as nonconfining potentials. The calculations show that if the interaction is strong enough, the Coulomb interaction leads to condensation of pairs, and that this condensation has a chiral character. The condensation does not depend on whether the interaction is confining. It is found that simplified variational approximations are not accurate enough for an adequate description of the states.
Physical Analysis of the Drag and Magnus Coefficients of the Topspin Tennis Ball
NASA Astrophysics Data System (ADS)
Smith, Elizabeth; Howald, Craig
2007-05-01
We experimentally determined the drag and Magnus coefficients of a topspin tennis ball using video analysis. Three video cameras were used to record the initial spin, projectile motion, and final spin of the ball. From these recordings the initial velocity, initial spin, final spin, horizontal acceleration, vertical acceleration, x position, and y positions of the ball were extracted. The coefficient of drag was calculated to be CD=0.6104 +/-0.06187 and the Magnus coefficient was calculated to be CM=0.6576+/-0.08767. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.P1.14
Sphere Drag and Heat Transfer.
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-20
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
NASA Astrophysics Data System (ADS)
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-01
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-01-01
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body. PMID:26189698
14 CFR Appendix D to Part 23 - Wheel Spin-Up and Spring-Back Loads
Code of Federal Regulations, 2011 CFR
2011-01-01
.... However, the drag component used for design may not be less than the drag load prescribed in § 23.479(b... time until the peak load is reached and under this assumption, the equation determines the drag force..., as stated above, the drag spin-up load need not exceed 0.8 of the maximum vertical loads. (c)...
Transport Through a Coulomb Blockaded Majorana Nanowire
NASA Astrophysics Data System (ADS)
Zazunov, Alex; Egger, Reinhold; Yeyati, Alfredo Levy; Hützen, Roland; Braunecker, Bernd
In one-dimensional (1D) quantum wires with strong spin-orbit coupling and a Zeeman field, a superconducting substrate can induce zero-energy Majorana bound states located near the ends of the wire. We study electronic properties when such a wire is contacted by normal metallic or superconducting electrodes. A special attention is devoted to Coulomb blockade effects. We analyze the "Majorana single-charge transistor" (MSCT), i.e., a floating Majorana wire contacted by normal metallic source and drain contacts, where charging effects are important. We describe Coulomb oscillations in this system and predict that Majorana fermions could be unambiguously detected by the emergence of sideband peaks in the nonlinear differential conductance. We also study a superconducting variant of the MSCT setup with s-wave superconducting (instead of normal-conducting) leads. In the noninteracting case, we derive the exact current-phase relation (CPR) and find π-periodic behavior with negative critical current for weak tunnel couplings. Charging effects then cause the anomalous CPR I(\\varphi ) = Ic\\cos \\varphi, where the parity-sensitive critical current I c provides a signature for Majorana states.
Pepper, W.B.
1984-05-09
A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.
Detection of gravitational frame dragging using orbiting qubits
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco; Salgado, Marcelo
2016-05-01
In this paper we propose information theoretic and interferometric techniques to detect the effect of gravitational frame dragging on orbiting qubits. In particular, we consider the Kerr spacetime geometry and spin-\\tfrac{1}{2} qubits moving in equatorial circular orbits. We ignore the { O }({\\hslash }) order effects due to spin-curvature coupling, which allows us to consider the motion of the spin-\\tfrac{1}{2} particles as Kerr geometry geodesics. We derive analytical expressions for the infinitesimal Wigner rotation and numerical results for their integration across the length of the particle’s trajectory. To this end, we consider the bounds on the finite Wigner rotation imposed by Penrose’s cosmic censorship hypothesis. Finally we propose how the Wigner rotation strictly due to frame dragging could be observed using interferometry and other quantum metrology techniques.
Theoretical solution of profile drag
NASA Technical Reports Server (NTRS)
Pretsch, J
1942-01-01
After a survey of the customary procedures for appraising the profile drag in which pressure drag was discounted and the methods for computing the laminar and turbulent friction flow, the author proposes a method by which the pressure drag can be computed with the aid of the displacement thickness of the frictional layer. The method is restricted to the case where the effects, caused by separation of frictional layer, are small. Then the total profile drag can be expressed solely by quantities derived from the velocity distribution in the frictional layer immediately at the trailing edge.
Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model
NASA Astrophysics Data System (ADS)
Trossman, D. S.; Arbic, B. K.; Garner, S.; Goff, J. A.; Jayne, S. R.; Metzger, E.; Wallcraft, A.
2012-12-01
We examine the impact of a lee wave drag parameterization on an eddying global ocean model. The wave drag parameterization represents the the momentum transfer associated with the generation of lee waves arising from geostrophic flow impinging upon rough topography. It is included in the online model, thus ensuring that abyssal currents and stratification in the simulation are affected by the presence of the wave drag. The model utilized here is the nominally 1/12th degree Hybrid Coordinate Ocean Model (HYCOM) forced by winds and air-sea buoyancy fluxes. An energy budget including the parameterized wave drag, quadratic bottom boundary layer drag, vertical eddy viscosity, and horizontal eddy viscosity is diagnosed during the model runs and compared with the wind power input and buoyancy fluxes. Wave drag and vertical viscosity are the largest of the mechanical energy dissipation rate terms, each more than half of a terawatt when globally integrated. The sum of all four dissipative terms approximately balances the rate of energy put by the winds and buoyancy fluxes into the ocean. An ad hoc global enhancement of the bottom drag at each grid point by a constant factor cannot serve as a perfect substitute for wave drag, particularly where there is little wave drag. Eddy length scales at the surface, sea surface height variance, surface kinetic energy, and positions of intensified jets in the model are compared with those inferred from altimetric observations. Vertical profiles of kinetic energy from the model are compared with mooring observations to investigate whether the model is improved when wave drag is inserted.; The drag and viscosity terms in our energy budget [log_10(W m^-2)]: (a) quadratic bottom boundary layer drag, (b) parameterized internal lee wave drag, (c) vertical viscosity, and (d) "horizontal" viscosity. Shown is an average of inline estimates over one year of the spin-up phase with wave drag.
Energy spectrum of the low-lying gluon excitations in the Coulomb gauge
Szczepaniak, Adam P.; Krupinski, Pawel
2006-06-01
We compute the energy spectrum of low-lying gluonic excitations in the presence of static quark-antiquark sources using Coulomb gauge and the quasiparticle representation. Within the valence sector of the Fock space we reproduce both, the overall normalization and the ordering of the spin-parity multiplets. We discus how the interactions induced by the nonabelian Coulomb kernel are central in to fine structure of the spectrum.
Parachute drag and radial force
Purvis, J.W.
1986-01-01
This paper presents a combination of old and new wind tunnel data in a format which illustrates the effects of inflated diameter, geometric porosity, reefing line length, suspension line length, number of gores, and number of ribbons on parachute drag. A new definition of radial force coefficient is presented, as well as a universal drag curve for flat circular and conical parachutes.
Coulomb explosion of "hot spot"
NASA Astrophysics Data System (ADS)
Oreshkin, V. I.; Oreshkin, E. V.; Chaikovsky, S. A.; Artyomov, A. P.
2016-09-01
The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.
Renormalization in Coulomb gauge QCD
Andrasi, A.; Taylor, John C.
2011-04-15
Research Highlights: > The Hamiltonian in the Coulomb gauge of QCD contains a non-linear Christ-Lee term. > We investigate the UV divergences from higher order graphs. > We find that they cannot be absorbed by renormalization of the Christ-Lee term. - Abstract: In the Coulomb gauge of QCD, the Hamiltonian contains a non-linear Christ-Lee term, which may alternatively be derived from a careful treatment of ambiguous Feynman integrals at 2-loop order. We investigate how and if UV divergences from higher order graphs can be consistently absorbed by renormalization of the Christ-Lee term. We find that they cannot.
Measuring the Effects of Lift and Drag on Projectile Motion
NASA Astrophysics Data System (ADS)
Cross, Rod
2012-02-01
The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms-1 (89.5 mph), it experiences a drag force of about 1.5 N. The gravitational force on the ball 1.42 N. Nevertheless, the trajectory of a baseball pitched without spin is not strongly affected by the drag force. Because the ball is relatively heavy and the flight distance is relatively small (about 60 ft), the drag force reduces the ball speed by only about 10% by the time it reaches the batter. As a result, the time taken for the ball to reach the batter is only about 5% longer than in a vacuum, and the actual trajectory is also very similar.2
Self-burrowing seeds: drag reduction in granular media
NASA Astrophysics Data System (ADS)
Jung, Wonjong; Choi, Sung Mok; Kim, Wonjung; Kim, Ho-Young
2014-11-01
We present the results of a combined experimental and theoretical investigation of drag reduction of self-burrowing seeds in granular media. In response to environmental changes in humidity, the awn (a tail-like appendage of seed) of Pelargonium carnosum exhibits coiling-uncoiling deformation which induces the thrust and rotary motions of the head of the seed against the surface of the soil. Using various sizes of glass beads that mimic the granular soil, we measure the thrust forces required for the seed of Pelargonium carnosum to penetrate into granular media with and without rotation. Our quantitative measurements show that the rotation of the seed remarkably reduces the granular drag as compared to the drag against the non-spinning seed. This leads us to conclude that the hygroscopically active awns of Pelargonium carnosum enables its seed to dig into the relatively coarse granular soils.
Landau-Lifshitz theory of the magnon-drag thermopower
NASA Astrophysics Data System (ADS)
Flebus, B.; Duine, R. A.; Tserkovnyak, Y.
2016-09-01
Metallic ferromagnets subjected to a temperature gradient exhibit a magnonic drag of the electric current. We address this problem by solving a stochastic Landau-Lifshitz equation to calculate the magnon-drag thermopower. The long-wavelength magnetic dynamics result in two contributions to the electromotive force acting on electrons: 1) An adiabatic Berry-phase force related to the solid angle subtended by the magnetic precession and 2) a dissipative correction thereof, which is rooted microscopically in the spin-dephasing scattering. The first contribution results in a net force pushing the electrons towards the hot side, while the second contribution drags electrons towards the cold side, i.e., in the direction of the magnonic drift. The ratio between the two forces is proportional to the ratio between the Gilbert damping coefficient α and the coefficient β parametrizing the dissipative contribution to the electromotive force.
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
NASA Astrophysics Data System (ADS)
Marshall, J. R.
1999-09-01
very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
NASA Technical Reports Server (NTRS)
Marshall, J. R.
1999-01-01
very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion
Coulomb gap at finite temperatures
NASA Astrophysics Data System (ADS)
Sarvestani, Masoud; Schreiber, Michael; Vojta, Thomas
1995-08-01
The Coulomb glass, a model of interacting localized electrons in a random potential, exhibits a soft gap, the Coulomb gap, in the single-particle density of states (DOS) g(ɛ,T) close to the chemical potential μ. In this paper we investigate the Coulomb gap at finite temperatures T by means of a Monte Carlo method. We find that the Coulomb gap fills with increasing temperature. In contrast to previous results the temperature dependence is, however, much stronger than g(μ,T)~TD-1 as predicted analytically. It can be described by power laws with the exponents 1.75+/-0.1 for the two-dimensional model and 2.7+/-0.1 for the three-dimensional model. Nevertheless, the relation g(μ,T)~g(ɛ,T=0) with ||ɛ-μ||=kBT seems to be valid, since energy dependence of the DOS at low temperatures has also been found to follow power laws with these exponents.
Entropic Corrections to Coulomb's Law
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Sheykhi, A.
2012-04-01
Two well-known quantum corrections to the area law have been introduced in the literatures, namely, logarithmic and power-law corrections. Logarithmic corrections, arises from loop quantum gravity due to thermal equilibrium fluctuations and quantum fluctuations, while, power-law correction appears in dealing with the entanglement of quantum fields in and out the horizon. Inspired by Verlinde's argument on the entropic force, and assuming the quantum corrected relation for the entropy, we propose the entropic origin for the Coulomb's law in this note. Also we investigate the Uehling potential as a radiative correction to Coulomb potential in 1-loop order and show that for some value of distance the entropic corrections of the Coulomb's law is compatible with the vacuum-polarization correction in QED. So, we derive modified Coulomb's law as well as the entropy corrected Poisson's equation which governing the evolution of the scalar potential ϕ. Our study further supports the unification of gravity and electromagnetic interactions based on the holographic principle.
DRAG REDUCTION WITH SUPERHYDROPHOBIC RIBLETS
Barbier, Charlotte N; D'Urso, Brian R; Jenner, Elliot
2012-01-01
Samples combining riblets and superhydrophobic surfaces are fabricated at University of Pittsburgh and their drag reduction properties are studied at the Center for Nanophase Materials Sciences (CNMS) in Oak Ridge National Laboratory with a commercial cone-and-plate rheometer. In parallel to the experiments, numerical simulations are performed in order to estimate the slip length at high rotational speed. For each sample, a drag reduction of at least 5% is observed in both laminar and turbulent regime. At low rotational speed, drag reduction up to 30% is observed with a 1 mm deep grooved sample. As the rotational speed increases, a secondary flow develops causing a slight decrease in drag reductions. However, drag reduction above 15% is still observed for the large grooved samples. In the turbulent regime, the 100 microns grooved sample becomes more efficient than the other samples in drag reduction and manages to sustain a drag reduction above 15%. Using the simulations, the slip length of the 100 micron grooved sample is estimated to be slightly above 100 micron in the turbulent regime.
Aerodynamic drag on intermodal railcars
NASA Astrophysics Data System (ADS)
Kinghorn, Philip; Maynes, Daniel
2014-11-01
The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
NASA Technical Reports Server (NTRS)
Marshall, J. R.
1999-01-01
very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
NASA Astrophysics Data System (ADS)
Marshall, J. R.
1999-09-01
very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion
Aerodynamic Drag and Drag Reduction: Energy and Energy Savings (Invited)
NASA Technical Reports Server (NTRS)
Wood, Richard M.
2003-01-01
An assessment of the role of fluid dynamic resistance and/or aerodynamic drag and the relationship to energy use in the United States is presented. Existing data indicates that up to 25% of the total energy consumed in the United States is used to overcome aerodynamic drag, 27% of the total energy used in the United States is consumed by transportation systems, and 60% of the transportation energy or 16% of the total energy consumed in the United States is used to overcome aerodynamic drag in transportation systems. Drag reduction goals of 50% are proposed and discussed which if realized would produce a 7.85% total energy savings. This energy savings correlates to a yearly cost savings in the $30Billion dollar range.
Compression Pylon Reduces Interference Drag
NASA Technical Reports Server (NTRS)
Patterson, James C., Jr.; Carlson, John R.
1989-01-01
New design reduces total drag by 4 percent. Pylon reduces fuselage/wing/pylon/nacelle-channel compressibility losses without creating additional drag associated with other areas of pylon. Minimum cross-sectional area of channel occurs at trailing edge of wing. Velocity of flow in channel always nearly subsonic, reducing compressibility losses associated with supersonic flow. Flow goes past trailing edge before returning to ambient conditions, resulting in no additional drag to aircraft. Designed to compress flow beneath wing by reducing velocity in this channel, thereby reducing shockwave losses and providing increase in wing lift.
Roberts, David C
2008-01-01
The article considers the dramatic phenomenon of seemingly frictionless flow of slow-moving superfluids. Specifically the question of whether an object in a superfluid flow experiences any drag force is addressed. A brief account is given of the history of this problem and it is argued that recent advances in ultracold atomic physics can shed much new light on this problem. The article presents the commonly held notion that sufficiently slow-moving superfluids can flow without drag and also discusses research suggesting that scattering quantum fluctuations might cause drag in a superfluid moving at any speed.
Spin caloritronics in graphene
NASA Astrophysics Data System (ADS)
Frota, H. O.; Ghosh, Angsula
2014-08-01
Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.
Conductance of a proximitized nanowire in the Coulomb blockade regime
NASA Astrophysics Data System (ADS)
van Heck, B.; Lutchyn, R. M.; Glazman, L. I.
2016-06-01
We identify the leading processes of electron transport across finite-length segments of proximitized nanowires and build a quantitative theory of their two-terminal conductance. In the presence of spin-orbit interaction, a nanowire can be tuned across the topological transition point by an applied magnetic field. Due to a finite segment length, electron transport is controlled by the Coulomb blockade. Upon increasing of the field, the shape and magnitude of the Coulomb blockade peaks in the linear conductance are defined, respectively, by Andreev reflection, single-electron tunneling, and resonant tunneling through the Majorana modes emerging after the topological transition. Our theory provides the framework for the analysis of experiments with proximitized nanowires [such as reported in S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162] and identifies the signatures of the topological transition in the two-terminal conductance.
Phase diagram of the Kane-Mele-Coulomb model
NASA Astrophysics Data System (ADS)
Hohenadler, M.; Parisen Toldin, F.; Herbut, I. F.; Assaad, F. F.
2014-08-01
We determine the phase diagram of the Kane-Mele model with a long-range Coulomb interaction using an exact quantum Monte Carlo method. Long-range interactions are expected to play a role in honeycomb materials because the vanishing density of states in the semimetallic weak-coupling phase suppresses screening. According to our results, the Kane-Mele-Coulomb model supports the same phases as the Kane-Mele-Hubbard model. The nonlocal part of the interaction promotes short-range sublattice charge fluctuations, which compete with antiferromagnetic order driven by the onsite repulsion. Consequently, the critical interaction for the magnetic transition is significantly larger than for the purely local Hubbard repulsion. Our numerical data are consistent with SU (2) Gross-Neveu universality for the semimetal to antiferromagnet transition, and with 3D XY universality for the quantum spin Hall to antiferromagnet transition.
Spin-Orbit Twisted Spin Waves: Group Velocity Control
NASA Astrophysics Data System (ADS)
Perez, F.; Baboux, F.; Ullrich, C. A.; D'Amico, I.; Vignale, G.; Karczewski, G.; Wojtowicz, T.
2016-09-01
We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves.
Alignment of dust particles by ion drag forces in subsonic flows
Piel, Alexander
2011-07-15
The role of ion drag forces for the alignment of dust particles is studied for subsonic flows. While alignment by wake-field attraction is a well known mechanism for supersonic flows, it is argued here that ion-scattering forces become more important in subsonic ion flows. A model of non-overlapping collisions is introduced and numerical results are discussed. For typical conditions of dusty plasma experiments, alignment by drag forces is found strong enough to overcome the destabilizing force from Coulomb repulsion between dust particles. It turns out that the major contribution to the horizontal restoring force originates from the transverse momentum transfer, which is usually neglected in ion drag force calculations because of an assumed rotational symmetry of the flow.
Hamiltonian approach to frame dragging
NASA Astrophysics Data System (ADS)
Epstein, Kenneth J.
2008-07-01
A Hamiltonian approach makes the phenomenon of frame dragging apparent “up front” from the appearance of the drag velocity in the Hamiltonian of a test particle in an arbitrary metric. Hamiltonian (1) uses the inhomogeneous force equation (4), which applies to non-geodesic motion as well as to geodesics. The Hamiltonian is not in manifestly covariant form, but is covariant because it is derived from Hamilton’s manifestly covariant scalar action principle. A distinction is made between manifest frame dragging such as that in the Kerr metric, and hidden frame dragging that can be made manifest by a coordinate transformation such as that applied to the Robertson-Walker metric in Sect. 2. In Sect. 3 a zone of repulsive gravity is found in the extreme Kerr metric. Section 4 treats frame dragging in special relativity as a manifestation of the equivalence principle in accelerated frames. It answers a question posed by Bell about how the Lorentz contraction can break a thread connecting two uniformly accelerated rocket ships. In Sect. 5 the form of the Hamiltonian facilitates the definition of gravitomagnetic and gravitoelectric potentials.
Dragging a floating horizontal cylinder
NASA Astrophysics Data System (ADS)
Lee, Duck-Gyu; Kim, Ho-Young
2010-11-01
A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.
Vertical variations of coral reef drag forces
NASA Astrophysics Data System (ADS)
Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri
2016-05-01
Modeling flow in a coral reef requires a closure model that links the local drag force to the local mean velocity. However, the spatial flow variations make it difficult to predict the distribution of the local drag. Here we report on vertical profiles of measured drag and velocity in a laboratory reef that was made of 81 Pocillopora Meandrina colony skeletons, densely arranged along a tilted flume. Two corals were CT-scanned, sliced horizontally, and printed using a 3-D printer. Drag was measured as a function of height above the bottom by connecting the slices to drag sensors. Profiles of velocity were measured in-between the coral branches and above the reef. Measured drag of whole colonies shows an excellent agreement with previous field and laboratory studies; however, these studies never showed how drag varies vertically. The vertical distribution of drag is reported as a function of flow rate and water level. When the water level is the same as the reef height, Reynolds stresses are negligible and the drag force per unit fluid mass is nearly constant. However, when the water depth is larger, Reynolds stress gradients become significant and drag increases with height. An excellent agreement was found between the drag calculated by a momentum budget and the measured drag of the individual printed slices. Finally, we propose a modified formulation of the drag coefficient that includes the normal dispersive stress term and results in reduced variations of the drag coefficient at the cost of introducing an additional coefficient.
NASA Astrophysics Data System (ADS)
Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S.-K.; Turner, John Stewart
2015-10-01
Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015), 10.1017/jfm.2015.126], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers.
Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S-K; Turner, John Stewart
2015-10-01
Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015)], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers.
PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems
NASA Astrophysics Data System (ADS)
Neilson, David; Senatore, Gaetano
2009-05-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas
Homopolar artificial gravity generator based on frame-dragging
NASA Astrophysics Data System (ADS)
Tajmar, M.
2010-05-01
Space exploration is linked in many ways to the generation and challenges of artificial gravity. Space stations and drag-free satellite platforms are used to provide microgravity environments for scientific experiments. On the other hand, microgravity or reduced gravity environments such as on Moon and Mars are known to put limits for long-term human presence. Large centrifuges in space may provide Earth-like gravity environments during long-term travels, however, such technology certainly has its limits to provide similar environments for human outposts on other moons and planets. One can imagine a different technology using a prediction out of Einstein's general relativity theory which is called frame-dragging. In principle, frame-dragging might be used to generate artificial gravitational fields similar to electric fields generated by time-varying or moving magnetic fields. We will show that it is also possible to generate constant artificial gravitational fields that could provide microgravity or artificial gravity environments. Although such technology is possible in principle, the field strengths calculated from Einstein's theory are too small to be useful so far. However, recently detected anomalies around low-temperature spinning matter as well as fly-by anomalies point to possible enhancement mechanisms that might make an artificial gravity generator based on frame-dragging a reality in the future.
An entropic understanding of Coulomb force
NASA Astrophysics Data System (ADS)
Cho, Jin-Ho; Kim, Hyosung
2012-02-01
Exploiting Verlinde's proposal on the entropic understanding of Newton's law, we show that Coulomb force could also be understood as an entropically emergent force (rather than as a fundamental force). We apply Kaluza-Klein idea to Verlinde's formalism to obtain Coulomb interaction in the lower dimensions. The kinematics concerning the Kaluza-Klein momenta separates the interaction due to the momentum flow from the gravitational interaction. The momentum-charge conversion relation results in the precise form of Coulomb interaction.
Interatomic Coulombic decay in nanodroplets
NASA Astrophysics Data System (ADS)
Sisourat, Nicolas
2014-05-01
Interatomic (molecular) Coulombic decay (ICD) is an ultrafast non-radiative electronic decay process for excited atoms or molecules embedded in a chemical environment. Via ICD, the excited system can get rid of the excess energy, which is transferred to one of the neighbors and ionize it. ICD produces two charged particles next to each other and thus leads to Coulomb explosion. Kinetic energy distribution of the ionic fragments gives information on the dynamics of the decay process. From the theoretical point of view general quantum mechanical equations for describing the decay processes and the subsequent fragmentations are known but are only applicable for rather small systems. During the presentation, a semiclassical approach for modeling ICD and the subsequent fragmentations will be presented. This approach involves a classical treatment for the nuclear motion while retaining a quantum description for the electron dynamics. Such approach has low computational costs and can be used to study much larger systems. Comparison of the results from semiclassical and from quantum mechanical calculations will be shown for simple systems, demonstrating the good performance of the semiclassical method. Results on ICD in nanodroplets will finally be reported.
The maximum drag reduction asymptote
NASA Astrophysics Data System (ADS)
Choueiri, George H.; Hof, Bjorn
2015-11-01
Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].
NASA Technical Reports Server (NTRS)
1950-01-01
Technician Durwood Dereng prepares to pull the external-power plug from an E17 drag-research model at Wallops, September 8, 1950. Photograph published in A New Dimension; Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal (page 224) - A NASA publication.
NASA Technical Reports Server (NTRS)
Debra, Daniel B.
1989-01-01
A drag-free satellite cancels the effect of external disturbances. Although the forces may be small, a satellite is disturbed by residual air drag, radiation pressure, micrometeorite impact, and other small forces that act on its surface disturbing its orbit, which is principally determined by the gravity field. In some missions, these small perturbations that make the satellite deviate from its purely gravitational orbit are limiting. An internal unsupported proof mass is shielded by the satellite from the external disturbances. The position of the shield (or the main part of the satellite) is measured with respect to the internal proof mass, and this information is used to actuate a propulsion system which moves the satellite to follow the proof mass. A drag-free control system is illustrated. Since the proof mass is shielded it follows a purely gravitational orbit - as does the satellite following it - hence the name drag-free satellite. The idea was conceived by Lange (1964) and has been applied to many mission studies since. In some cases, it is not necessary to cancel the disturbances, only to measure them so they may be taken into account. In such cases, an accelerometer may be a more suitable solution (for example, using the ONERA Cactus or the Bell Aerosystems MESA).
Numerical investigation of the effect of sphere dimples on the drag crisis and the Magnus effect
NASA Astrophysics Data System (ADS)
Li, Jing; Tsubokura, Makoto; Tsunoda, Masaya
2015-11-01
The present study investigates the flow over a golf ball and a smooth sphere around the critical Reynolds numbers under both stationary and self-spinning conditions by conducting Large-eddy simulations (LES) based on high resolution unstructured grids. For the stationary cases, the present calculation results validate the promotion of the drag crisis at a relatively lower Reynolds number due to the golf ball dimples. It also shows that the golf ball dimples have a limited effect on the time-dependent lateral force development in the subcritical regime, whereas the dimples are beneficial in suppressing the lateral force oscillations in the supercritical regimes. With spin parameter Γ = 0.1, the drag coefficients for the spinning smooth sphere increase slightly in all Reynolds number regimes when compared to the stationary cases, whereas for the spinning golf ball, the drag force decreases in the critical regime and increases in the supercritical regime. For both spinning models, the inverse Magnus effect was reproduced in the critical regime, whereas in the supercritical regime the ordinary Magnus force was generated. Relatively weaker lift forces were also observed in the cases of the spinning golf balls when compared to the spinning smooth spheres.
Drag and propulsive forces in electric sails with negative polarity
NASA Astrophysics Data System (ADS)
Sanchez-Torres, Antonio
2016-02-01
An electric solar sail (E-sail) is a recent propellantless propulsion concept for a direct exploration of the Solar System. An E-sail consists of a set of bare, conductive tethers at high positive/negative bias, prone to extract solar wind momentum by Coulomb deflection of protons. Additionally, a negatively biased E-sail has been proposed as a concept for de-orbiting space debris with drag forces produced in Low Earth Orbit (LEO). The present work focuses on the negative-bias case with a sheath that must be correctly modeled for a flowing plasma ambient. Ion scattering within the sheath and the resulting force are determined for several plasma conditions. Since the plasma flow does reduce the effective range for the ion scattering within the sheath, the resulting force is then reduced. Tethers at very high negative bias should be required for extremely high plasma flow.
Rotary photon drag enhanced by a slow-light medium.
Franke-Arnold, Sonja; Gibson, Graham; Boyd, Robert W; Padgett, Miles J
2011-07-01
Transmission through a spinning window slightly rotates the polarization of the light, typically by a microradian. It has been predicted that the same mechanism should also rotate an image. Because this rotary photon drag has a contribution that is inversely proportional to the group velocity, the image rotation is expected to increase in a slow-light medium. Using a ruby window under conditions for coherent population oscillations, we induced an effective group index of about 1 million. The resulting rotation angle was large enough to be observed by the eye. This result shows that rotary photon drag applies to images as well as polarization. The possibility of switching between different rotation states may offer new opportunities for controlled image coding.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...
Magnon-drag thermopower and Nernst coefficient in Fe, Co, and Ni
NASA Astrophysics Data System (ADS)
Watzman, Sarah J.; Duine, Rembert A.; Tserkovnyak, Yaroslav; Boona, Stephen R.; Jin, Hyungyu; Prakash, Arati; Zheng, Yuanhua; Heremans, Joseph P.
2016-10-01
Magnon drag is shown to dominate the thermopower of elemental Fe from 2 to 80 K and of elemental Co from 150 to 600 K; it is also shown to contribute to the thermopower of elemental Ni from 50 to 500 K. Two theoretical models are presented for magnon-drag thermopower. One is a hydrodynamic theory based purely on nonrelativistic, Galilean, spin-preserving electron-magnon scattering. The second is based on spin-motive forces, where the thermopower results from the electric current pumped by the dynamic magnetization associated with a magnon heat flux. In spite of their very different microscopic origins, the two give similar predictions for pure metals at low temperature, allowing us to semiquantitatively explain the observed thermopower of elemental Fe and Co without adjustable parameters. We also find that magnon drag may contribute to the thermopower of Ni. A spin-mixing model is presented that describes the magnon-drag contribution to the anomalous Nernst effect in Fe, again enabling a semiquantitative match to the experimental data without fitting parameters. Our paper suggests that particle nonconserving processes may play an important role in other types of drag phenomena and also gives a predicative theory for improving metals as thermoelectric materials.
Spin-Orbit Coupling and the Conservation of Angular Momentum
ERIC Educational Resources Information Center
Hnizdo, V.
2012-01-01
In nonrelativistic quantum mechanics, the total (i.e. orbital plus spin) angular momentum of a charged particle with spin that moves in a Coulomb plus spin-orbit-coupling potential is conserved. In a classical nonrelativistic treatment of this problem, in which the Lagrange equations determine the orbital motion and the Thomas equation yields the…
NASA Astrophysics Data System (ADS)
DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Hjorth-Jensen, M.; Albers, M.; Bildstein, V.; Blazhev, A.; Darby, I.; Davinson, T.; De Witte, H.; Diriken, J.; Fransen, Ch.; Geibel, K.; Gernhäuser, R.; Görgen, A.; Hess, H.; Iwanicki, J.; Lutter, R.; Reiter, P.; Scheck, M.; Seidlitz, M.; Siem, S.; Taprogge, J.; Tveten, G. M.; Van de Walle, J.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.
2012-07-01
The radioactive isotope 107Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2+ state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to 100Sn . Similar to the transition probabilities for the 2+ states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d_{5/2} and g_{7/2} single-neutron states.
PREFACE: Strongly Coupled Coulomb Systems
NASA Astrophysics Data System (ADS)
Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.
2006-04-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within
Coulombic contribution and fat center vortex model
Rafibakhsh, Shahnoosh; Deldar, Sedigheh
2007-02-27
The fat (thick) center vortex model is one of the phenomenological models which is fairly successful to interpret the linear potential between static sources. However, the Coulombic part of the potential has not been investigated by the model yet. In an attempt to get the Coulombic contribution and to remove the concavity of the potentials, we are studying different vortex profiles and vortex sizes.
Drag reduction by a linear viscosity profile.
De Angelis, Elisabetta; Casciola, Carlo M; L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Tiberkevich, Vasil
2004-11-01
Drag reduction by polymers in turbulent flows raises an apparent contradiction: the stretching of the polymers must increase the viscosity, so why is the drag reduced? A recent theory proposed that drag reduction, in agreement with experiments, is consistent with the effective viscosity growing linearly with the distance from the wall. With this self-consistent solution the reduction in the Reynolds stress overwhelms the increase in viscous drag. In this Rapid Communication we show, using direct numerical simulations, that a linear viscosity profile indeed reduces the drag in agreement with the theory and in close correspondence with direct simulations of the FENE-P model at the same flow conditions.
The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.
ERIC Educational Resources Information Center
Francisco, E.; And Others
1988-01-01
Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)
Coulomb repulsion in short polypeptides.
Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M
2015-01-01
Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each
Numerical approach to Coulomb gauge QCD
Matevosyan, Hrayr H.; Szczepaniak, Adam P.; Bowman, Patrick O.
2008-07-01
We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wave function using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wave functional.
Crystallization in two-component Coulomb systems.
Bonitz, M; Filinov, V S; Fortov, V E; Levashov, P R; Fehske, H
2005-12-01
The analysis of Coulomb crystallization is extended from one-component to two-component plasmas. Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum crystals. In the latter case, a critical mass ratio of the two charged components is found, which is of the order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spontaneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase diagram of two-component Coulomb crystals is presented and is verified by first-principles computer simulations. PMID:16384315
Quarks in Coulomb gauge perturbation theory
Popovici, C.; Watson, P.; Reinhardt, H.
2009-02-15
Coulomb gauge quantum chromodynamics within the first order functional formalism is considered. The quark contributions to the Dyson-Schwinger equations are derived and one-loop perturbative results for the two-point functions are presented.
Crystallization in two-component Coulomb systems.
Bonitz, M; Filinov, V S; Fortov, V E; Levashov, P R; Fehske, H
2005-12-01
The analysis of Coulomb crystallization is extended from one-component to two-component plasmas. Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum crystals. In the latter case, a critical mass ratio of the two charged components is found, which is of the order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spontaneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase diagram of two-component Coulomb crystals is presented and is verified by first-principles computer simulations.
Riblet drag reduction at flight conditions
NASA Technical Reports Server (NTRS)
Walsh, Michael J.; Sellers, William L., III; Mcginley, Catherine B.
1988-01-01
Paper describes perforated and nonperforated riblet tests on the fuselage of a modified Learjet Model 28/29 twin-engine business jet at Reynolds numbers 1.0-2.75 x 10 to the 6th/ft and Mach numbers 0.3-0.7. Drag reductions of the order of 6 percent at nondimensional wall spacings of 12 were obtained using boundary-layer rakes and direct drag balances. At the measurement locations the Reynolds number based on distance was 1.0-46 x 10 to the 6th. The nondimensional wall spacing for maximum drag reduction was well-predicted by low-speed wind-tunnel data, but the maximum drag reduction was lower. The low drag is tentatively ascribed to various instrumentation difficulties and the flow field on the aircraft. Riblets with 0.010-in. perforations at center spacings of 0.25 in. were found to give the same drag reduction as nonperforated riblets.
Phonon Drag Dislocations at High Pressures
Wolfer, W.G.
1999-10-19
Phonon drag on dislocations is the dominant process which determines the flow stress of metals at elevated temperatures and at very high plastic deformation rates. The dependence of the phonon drag on pressure or density is derived using a Mie-Grueneisen equation of state. The phonon drag is shown to increase nearly linearly with temperature but to decrease with density or pressure. Numerical results are presented for its variation for shock-loaded copper and aluminum. In these cases, density and temperature increase simultaneously, resulting in a more modest net increase in the dislocation drag coefficient. Nevertheless, phonon drag increases by more than an order of magnitude during shock deformations which approach melting. Since the dependencies of elastic moduli and of the phonon drag coefficient on pressure and temperature are fundamentally different, the effect of pressure on the constitutive law for plastic deformation can not simply be accounted for by its effect on the elastic shear modulus.
Drag and drop display & builder
Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab
2007-12-01
The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.
Coulomb Distortion in the Inelastic Regime
Patricia Solvignon, Dave Gaskell, John Arrington
2009-09-01
The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.
Modelling Coulomb Collisions in Anisotropic Plasmas
NASA Astrophysics Data System (ADS)
Hellinger, P.; Travnicek, P. M.
2009-12-01
Collisional transport in anisotropic plasmas is investigated comparing the theoretical transport coefficients (Hellinger and Travnicek, 2009) for anisotropic particles with the results of the corresponding Langevin equation, obtained as a generalization of Manheimer et al. (1997). References: Hellinger, P., and P. M. Travnicek (2009), On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501. Manheimer, W. M., M. Lampe and G. Joyce (1997), Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584.
Magnon-drag and thermomagnetic transport properties of Ca doped YIG
NASA Astrophysics Data System (ADS)
Zheng, Yuanhua; He, Bin; Chen, Xi; Zhou, Jianshi; Shi, Li; Myers, Roberto; Heremans, Joseph
Yttrium-iron garnet (YIG) is an insulating ferromagnet commonly used to study various spin transport phenomena: in conjunction with a Pt film, it generates the well-known spin-Seebeck effect. Because of the close relationship between the spin-Seebeck effect and the magnon-drag charge Seebeck effect, we investigate the thermoelectric transport properties of an electrically conducting bulk YIG crystal doped p-type with Ca. A large and sharp change in the thermopower of Ca:YIG near the Curie temperature has been observed, which is potentially explained by the magnon-drag model. We present the temperature dependence of electrical conductivity, magneto-thermopower, and Hall coefficient of Ca:YIG. Photo-excitation of the carriers from the valence band into the Ca level results in photoconductivity and photo-Seebeck effects as well. Acknowledgement: ARO MURI W911NF-14-1-0016.
An active attitude control system for a drag sail satellite
NASA Astrophysics Data System (ADS)
Steyn, Willem Herman; Jordaan, Hendrik Willem
2016-11-01
The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for
Drag reduction of a hairy disk
NASA Astrophysics Data System (ADS)
Niu, Jun; Hu, David L.
2011-10-01
We investigate experimentally the hydrodynamics of a hairy disk immersed in a two-dimensional flowing soap film. Drag force is measured as a function of hair length, density, and coating area. An optimum combination of these parameters yields a drag reduction of 17%, which confirms previous numerical predictions (15%). Flow visualization indicates the primary mechanism for drag reduction is the bending, adhesion, and reinforcement of hairs trailing the disk, which reduces wake width and traps "dead water." Thus, the use of hairy coatings can substantially reduce an object's drag while negligibly increasing its weight.
Transformance: reading the gospel in drag.
McCune, Jeffrey Q
2004-01-01
Despite the large body of scholarship on drag and its performance of misogyny, mimicry, and masculinity, little attention has been paid to the role of musical genres in Black drag performance and its reception. This essay explores drag performances of gospel music and its relationship with the spectator at the Biology Bar, a Black gay drag site in Chicago. By examining the shift from the club "space" to the church "place," this research locates several possibilities for queer gospel performances. Through the introduction of a theory of transformance, this essay highlights the contradictions, complications, and complexities of the relationship between the Black church and the Black gay community. PMID:15132488
DOE Project on Heavy Vehicle Aerodynamic Drag
McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B
2007-01-04
Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag coefficient of
Hatton, B.M.
1986-12-23
This patent describes a low viscous drag knock sensor comprising: a housing defining an interior air filled chamber therein, the housing being operatively connectable with an internal combustion engine to be vibrated in response to engine knock; a diaphragm mounting member operatively connected with the housing and disposed in the housing chamber; a diaphragm including a central portion, a stiffening rib surrounding the central portion, and an edge portion disposed peripherally around the stiffening rib. The diaphragm central portion is mounted to the diaphragm mounting member, the diaphragm edge portion being supported only by the diaphragm stiffening rib and diaphragm central portion such that the diaphragm edge portion is free to move relative to the housing; the diaphragm peripheral edge portion defining passages there through for reducing drag from air flowing from one side of the diaphragm to another during vibratory displacement thereof, whereby the passages reduce a resonant frequency bandwidth of the diaphragm; and a transducer for providing an electrical output signal which varies with sensed vibratory displacement. The transducer is operatively connected to the diaphragm central portion to produce an output electrical signal which varies with vibratory displacement thereof.
Coulomb impurity scattering in topological insulator thin films
Yin, Gen; Wickramaratne, Darshana; Lake, Roger K.; Zhao, Yuanyuan
2014-07-21
Inter-surface coupling in thin-film topological insulators can reduce the surface state mobility by an order of magnitude in low-temperature transport measurements. The reduction is caused by a reduction in the group velocity and an increased s{sub z} component of the surface-state spin which weakens the selection rule against large-angle scattering. An intersurface potential splits the degenerate bands into a Rashba-like bandstructure. This reduces the intersurface coupling, it largely restores the selection rule against large angle scattering, and the ring-shaped valence band further reduces backscattering by requiring, on average, larger momentum transfer for backscattering events. The effects of temperature, Fermi level, and intersurface potential on the Coulomb impurity scattering limited mobility are analyzed and discussed.
Coulomb and nuclear excitations of narrow resonances in 17Ne
NASA Astrophysics Data System (ADS)
Marganiec, J.; Wamers, F.; Aksouh, F.; Aksyutina, Yu.; Álvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Hoffmann, J.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Nyman, G.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Rodriguez-Tajes, C.; Rossi, D.; Riisager, K.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Typel, S.; Weick, H.; Wiescher, M.; Wimmer, C.
2016-08-01
New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the 15O + p + p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.
Relativistic Aharonov{endash}Bohm{endash}Coulomb problem
Hagen, C.R.; Park, D.K.
1996-10-01
The ((2+1)-dimensional) Aharonov{endash}Bohm effect is analyzed for a spin-1/2 particle in the case that a 1/{ital r} potential is present. Scalar and vector couplings are each considered. It is found that the approach in which the flux tube is given a finite radius that is taken to zero only after a matching of boundary conditions does not give physically meaningful results. Specifically, the operations of taking the limit of zero flux tube radius and the Galilean limit do not commute. Thus there appears to be no satisfactory solution of the relativistic Aharonov{endash}Bohm{endash}Coulomb problem using the finite radius flux tube method. Copyright {copyright} 1996 Academic Press, Inc.
Toy Model of Frame-Dragging Magnetosphere for the M87 Jet
NASA Astrophysics Data System (ADS)
Huang, Lei; Shen, Zhi-Qiang
2014-09-01
We make a toy model for M87 jet to interpret its parabolic structure and acceleration in the apparent speeds, according to observations in milli-arcsecond to arcsecond scales upstream of HST-1. The outermost layer of jet is driven by the frame-dragging effect in the Kerr spacetime with a slowly to moderately-spinning black hole. The corresponding magnetosphere has a foot-point R 0 in the vicinity of event-horizon, and rotating at a frequency ΩF equal to that of the frame-dragging ω( R 0).
Magnetic monopoles in quantum spin ice
NASA Astrophysics Data System (ADS)
Petrova, Olga; Moessner, Roderich; Sondhi, Shivaji
Typical spin ice materials can be modeled using classical Ising spins. The geometric frustration of the pyrochlore lattice causes the spins to satisfy ice rules, whereas a violation of the ice constraint constitutes an excitation. Flipping adjacent spins fractionalizes the excitation into two monopoles. Long range dipolar spin couplings result in Coulombic interactions between charges, while the leading effect of quantum fluctuations is to provide the monopoles with kinetic energy. We study the effect of adding quantum dynamics to spin ice, a well-known classical spin liquid, with a particular view of how to best detect its presence in experiment. For the weakly diluted quantum spin ice, we find a particularly crisp phenomenon, namely, the emergence of hydrogenic excited states in which a magnetic monopole is bound to a vacancy at various distances.
Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals
NASA Astrophysics Data System (ADS)
Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko
2007-04-01
The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine α-helix chains and three-dimensional diamond pieces.
MAGNETIC DRAG ON HOT JUPITER ATMOSPHERIC WINDS
Perna, Rosalba; Menou, Kristen; Rauscher, Emily
2010-08-20
Hot Jupiters, with atmospheric temperatures T {approx}> 1000 K, have residual thermal ionization levels sufficient for the interaction of ions with the planetary magnetic field to result in a sizable magnetic drag on the (neutral) atmospheric winds. We evaluate the magnitude of magnetic drag in a representative three-dimensional atmospheric model of the hot Jupiter HD 209458b and find that it is a plausible mechanism to limit wind speeds in this class of atmospheres. Magnetic drag has a strong geometrical dependence, both meridionally and from the dayside to the nightside (in the upper atmosphere), which could have interesting consequences for the atmospheric flow pattern. By extension, close-in eccentric planets with transiently heated atmospheres will experience time-variable levels of magnetic drag. A robust treatment of magnetic drag in circulation models for hot atmospheres may require iterated solutions to the magnetic induction and Saha equations as the hydrodynamic flow is evolved.
Analog VLSI system for active drag reduction
Gupta, B.; Goodman, R.; Jiang, F.; Tai, Y.C.; Tung, S.; Ho, C.M.
1996-10-01
In today`s cost-conscious air transportation industry, fuel costs are a substantial economic concern. Drag reduction is an important way to reduce costs. Even a 5% reduction in drag translates into estimated savings of millions of dollars in fuel costs. Drawing inspiration from the structure of shark skin, the authors are building a system to reduce drag along a surface. Our analog VLSI system interfaces with microfabricated, constant-temperature shear stress sensors. It detects regions of high shear stress and outputs a control signal to activate a microactuator. We are in the process of verifying the actual drag reduction by controlling microactuators in wind tunnel experiments. We are encouraged that an approach similar to one that biology employs provides a very useful contribution to the problem of drag reduction. 9 refs., 21 figs.
14 CFR 25.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...
14 CFR 25.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...
14 CFR 25.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...
14 CFR 25.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...
14 CFR 25.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...
"Safe" Coulomb excitation of 30Mg.
Niedermaier, O; Scheit, H; Bildstein, V; Boie, H; Fitting, J; von Hahn, R; Köck, F; Lauer, M; Pal, U K; Podlech, H; Repnow, R; Schwalm, D; Alvarez, C; Ames, F; Bollen, G; Emhofer, S; Habs, D; Kester, O; Lutter, R; Rudolph, K; Pasini, M; Thirolf, P G; Wolf, B H; Eberth, J; Gersch, G; Hess, H; Reiter, P; Thelen, O; Warr, N; Weisshaar, D; Aksouh, F; Van den Bergh, P; Van Duppen, P; Huyse, M; Ivanov, O; Mayet, P; Van de Walle, J; Aystö, J; Butler, P A; Cederkäll, J; Delahaye, P; Fynbo, H O U; Fraile, L M; Forstner, O; Franchoo, S; Köster, U; Nilsson, T; Oinonen, M; Sieber, T; Wenander, F; Pantea, M; Richter, A; Schrieder, G; Simon, H; Behrens, T; Gernhäuser, R; Kröll, T; Krücken, R; Münch, M; Davinson, T; Gerl, J; Huber, G; Hurst, A; Iwanicki, J; Jonson, B; Lieb, P; Liljeby, L; Schempp, A; Scherillo, A; Schmidt, P; Walter, G
2005-05-01
We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy of 2.25 MeV/u together with a thin (nat)Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation gamma-ray yields the B(E2;0(+)gs-->2(+)1) value of 30Mg was determined to be 241(31)e2 fm4. Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope 30Mg resides outside the "island of inversion."
Spin and charge dynamics of chromium alloys
Fishman, R.S.; Viswanath, V.S.; Liu, S.H.
1996-07-01
Both the spin- and charge-density waves of Cr alloys are produced by the Coulomb attraction between electrons and holes on nearly nested Fermi surfaces. Driven by quasi-particle transitions, transverse spin- wave and longitudinal phason modes are associated with rotational and translational symmetries of pure Cr and its dilute alloys. At low frequencies, both spin and charge phasons have a nearly linear dispersion with a mode velocity which approaches the spin-wave velocity as T approaches T{sub N} or as the mismatch between the Fermi surfaces increases.
Observation of ionic Coulomb blockade in nanopores
NASA Astrophysics Data System (ADS)
Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra
2016-08-01
Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.
Coulomb sum rule in the quasielastic region
Kim, K. S.; Yu, B. G.; Cheoun, M. K.
2006-12-15
Within a relativistic single particle model, we calculate the Coulomb sum rule of inclusive electron scattering from {sup 40}Ca and {sup 208}Pb in the quasielastic region. Theoretical longitudinal and transverse structure functions are extracted for three-momentum transfers from 300 to 500 MeV/c and compared with the experimental data measured at Bates and Saclay. We find that there is no drastic suppression of the longitudinal structure function and that the Coulomb sum rule depends on the nucleus in our theoretical model.
Coulomb force as an entropic force
Wang Tower
2010-05-15
Motivated by Verlinde's theory of entropic gravity, we give a tentative explanation to the Coulomb's law with an entropic force. When trying to do this, we find the equipartition rule should be extended to charges and the concept of temperature should be reinterpreted. If one accepts the holographic principle as well as our generalizations and reinterpretations, then Coulomb's law, the Poisson equation, and the Maxwell equations can be derived smoothly. Our attempt can be regarded as a new way to unify the electromagnetic force with gravity, from the entropic origin. Possibly some of our postulates are related to the D-brane picture of black hole thermodynamics.
Giant Frictional Drag in Double Bilayer Graphene Heterostructures
NASA Astrophysics Data System (ADS)
Lee, Kayoung; Xue, Jiamin; Dillen, David C.; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel
2016-07-01
We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T ) lower than ˜10 K , we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T , and becomes comparable to the layer resistivity at the lowest T =1.5 K . At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag.
Giant Frictional Drag in Double Bilayer Graphene Heterostructures.
Lee, Kayoung; Xue, Jiamin; Dillen, David C; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel
2016-07-22
We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T) lower than ∼10 K, we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T, and becomes comparable to the layer resistivity at the lowest T=1.5 K. At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag. PMID:27494492
Giant Frictional Drag in Double Bilayer Graphene Heterostructures.
Lee, Kayoung; Xue, Jiamin; Dillen, David C; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel
2016-07-22
We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T) lower than ∼10 K, we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T, and becomes comparable to the layer resistivity at the lowest T=1.5 K. At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag.
Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method
NASA Astrophysics Data System (ADS)
Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko
2010-06-01
We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2015-02-01
We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Valley-spin blockade and spin resonance in carbon nanotubes.
Pei, Fei; Laird, Edward A; Steele, Gary A; Kouwenhoven, Leo P
2012-10-01
The manipulation and readout of spin qubits in quantum dots have been successfully achieved using Pauli blockade, which forbids transitions between spin-triplet and spin-singlet states. Compared with spin qubits realized in III-V materials, group IV materials such as silicon and carbon are attractive for this application because of their low decoherence rates (nuclei with zero spins). However, valley degeneracies in the electronic band structure of these materials combined with Coulomb interactions reduce the energy difference between the blocked and unblocked states, significantly weakening the selection rules for Pauli blockade. Recent demonstrations of spin qubits in silicon devices have required strain and spatial confinement to lift the valley degeneracy. In carbon nanotubes, Pauli blockade can be observed by lifting valley degeneracy through disorder, but this makes the confinement potential difficult to control. To achieve Pauli blockade in low-disorder nanotubes, quantum dots have to be made ultrasmall, which is incompatible with conventional fabrication methods. Here, we exploit the bandgap of low-disorder nanotubes to demonstrate robust Pauli blockade based on both valley and spin selection rules. We use a novel stamping technique to create a bent nanotube, in which single-electron spin resonance is detected using the blockade. Our results indicate the feasibility of valley-spin qubits in carbon nanotubes.
On the Minimum Induced Drag of Wings
NASA Technical Reports Server (NTRS)
Bowers, Albion H.
2011-01-01
Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.
On the Minimum Induced Drag of Wings
NASA Technical Reports Server (NTRS)
Bowers, Albion H.
2010-01-01
Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb
Turbulent drag reduction in nonionic surfactant solutions
NASA Astrophysics Data System (ADS)
Tamano, Shinji; Itoh, Motoyuki; Kato, Katsuo; Yokota, Kazuhiko
2010-05-01
There are only a few studies on the drag-reducing effect of nonionic surfactant solutions which are nontoxic and biodegradable, while many investigations of cationic surfactant solutions have been performed so far. First, the drag-reducing effects of a nonionic surfactant (AROMOX), which mainly consisted of oleyldimethylamineoxide, was investigated by measuring the pressure drop in the pipe flow at solvent Reynolds numbers Re between 1000 and 60 000. Second, we investigated the drag-reducing effect of a nonionic surfactant on the turbulent boundary layer at momentum-thickness Reynolds numbers Reθ from 443 to 814 using two-component laser-Doppler velocimetry and particle image velocimetry systems. At the temperature of nonionic surfactant solutions, T =25 °C, the maximum drag reduction ratio for AROMOX 500 ppm was about 50%, in the boundary layer flow, although the drag reduction ratio was larger than 60% in pipe flow. Turbulence statistics and structures for AROMOX 500 ppm showed the behavior of typical drag-reducing flow such as suppression of turbulence and modification of near-wall vortices, but they were different from those of drag-reducing cationic surfactant solutions, in which bilayered structures of the fluctuating velocity vectors were observed in high activity.
Helicopter hub fairing and pylon interference drag
NASA Technical Reports Server (NTRS)
Graham, D. R.; Sung, D. Y.; Young, L. A.; Louie, A. W.; Stroub, R. H.
1989-01-01
A wind tunnel test was conducted to study the aerodynamics of helicopter hub and pylon fairings. The test was conducted in the 7-by 10 Foot Subsonic Wind Tunnel (Number 2) at Ames Research Center using a 1/5-scale XH-59A fuselage model. The primary focus of the test was on the rotor hub fairing and pylon mutual interference drag. Parametric studies of pylon and hub fairing geometry were also conducted. This report presents the major findings of the test as well as tabulated force and moment data, flow visualization photographs, and graphical presentations of the drag data. The test results indicate that substantial drag reduction can be attained through the use of a cambered hub fairing with circular arc upper surface and flat lower surface. Furthermore, a considerable portion of the overall drag reduction is attributed to the reduction in the hub-on-pylon interference drag. It is also observed that the lower surface curvature of the fairing has a strong influence on the hub fairing and on pylon interference drag. However, the drag reduction benefit that was obtained by using the cambered hub fairing with a flat lower surface was adversely affected by the clearance between the hub fairing and the pylon.
The role of drag in insect hovering.
Wang, Z Jane
2004-11-01
Studies of insect flight have focused on aerodynamic lift, both in quasi-steady and unsteady regimes. This is partly influenced by the choice of hovering motions along a horizontal stroke plane, where aerodynamic drag makes no contribution to the vertical force. In contrast, some of the best hoverers--dragonflies and hoverflies--employ inclined stroke planes, where the drag in the down- and upstrokes does not cancel each other. Here, computation of an idealized dragonfly wing motion shows that a dragonfly uses drag to support about three quarters of its weight. This can explain an anomalous factor of four in previous estimates of dragonfly lift coefficients, where drag was assumed to be small. To investigate force generation and energy cost of hovering flight using different combination of lift and drag, I study a family of wing motion parameterized by the inclined angle of the stroke plane. The lift-to-drag ratio is no longer a measure of efficiency, except in the case of horizontal stroke plane. In addition, because the flow is highly stalled, lift and drag are of comparable magnitude, and the aerodynamic efficiency is roughly the same up to an inclined angle about 60 degrees , which curiously agrees with the angle observed in dragonfly flight. Finally, the lessons from this special family of wing motion suggests a strategy for improving efficiency of normal hovering, and a unifying view of different wing motions employed by insects.
Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit"
NASA Astrophysics Data System (ADS)
Carrillo-Bernal, M. A.; Núñez-Yépez, H. N.; Salas-Brito, A. L.; Solis, Didier A.
2015-02-01
In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1 /√{x2+β2 } to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β =0 ). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.
Matrix Continued Fraction Solution to the Relativistic Spin-0 Feshbach-Villars Equations
NASA Astrophysics Data System (ADS)
Brown, N. C.; Papp, Z.; Woodhouse, R.
2016-03-01
The Feshbach-Villars equations, like the Klein-Gordon equation, are relativistic quantum mechanical equations for spin-0 particles.We write the Feshbach-Villars equations into an integral equation form and solve them by applying the Coulomb-Sturmian potential separable expansion method. We consider boundstate problems in a Coulomb plus short range potential. The corresponding Feshbach-Villars CoulombGreen's operator is represented by a matrix continued fraction.
Spin-Dependent Beats Created by Irradiation of Microwave Field Through a Quantum Dot
NASA Astrophysics Data System (ADS)
Tagani, M. Bagheri; Soleimani, H. Rahimpour
We study spin-dependent transport through a quantum dot with Zeeman split levels coupled to ferromagnetic leads and under influence of microwave irradiation. Current polarization, spin current, spin accumulation and tunneling magnetoresistance are analyzed using nonequilibrium Green's function formalism and rate equations. Spin-dependent beats in spin resolved currents are observed. The effects of magnetic field, temperature and Coulomb interaction on these beats are studied.
Spin regulation in composite spin-filter barrier devices.
Miao, Guo-Xing; Chang, Joonyeon; Assaf, Badih A; Heiman, Donald; Moodera, Jagadeesh S
2014-04-23
Magnetic insulators are known to provide large effective Zeeman fields that are confined at an interface, making them especially powerful in modifying adjacent one- or two-dimensional electronic structures. Utilizing this phenomenon and the other important property of magnetic insulators--spin filtering--here we report the generation and subsequent detection of a large interface field, as large as tens of tesla in EuS/Al/EuS heterostructures with metallic coulomb islands confined within a magnetic insulator barrier. The unique energy profile across this sandwich structure produces spin-assisted charge transfer across the device, generating a spontaneous spin current and voltage. These unique properties can be practical for controlling spin flows in electronic devices and for energy harvesting.
Effective Coulomb logarithm for one component plasma
Khrapak, Sergey A.
2013-05-15
An expression for the effective Coulomb logarithm in one-component-plasma is proposed, which allows to extend the applicability of the classical formula for the self-diffusion coefficient to the strongly coupled regime. The proposed analytical approximation demonstrates reasonable agreement with previous numerical simulation results. Relevance to weakly screened Yukawa systems (and, in particular, complex plasmas) is discussed.
Molecular Dynamics Simulations of Coulomb Explosion
Bringa, E M
2002-05-17
A swift ion creates a track of electronic excitations in the target material. A net repulsion inside the track can cause a ''Coulomb Explosion'', which can lead to damage and sputtering of the material. Here we report results from molecular-dynamics (MD) simulations of Coulomb explosion for a cylindrical track as a function of charge density and neutralization/quenching time, {tau}. Screening by the free electrons is accounted for using a screened Coulomb potential for the interaction among charges. The yield exhibits a prompt component from the track core and a component, which dominates at higher excitation density, from the heated region produced. For the cases studied, the number of atoms ejected per incident ion, i.e. the sputtering yield Y, is quadratic with charge density along the track as suggested by simple models. Y({tau} = 0.2 Debye periods) is nearly 20% of the yield when there is no neutralization ({tau} {yields} {infinity}). The connections between ''Coulomb explosions'', thermal spikes and measurements of electronic sputtering are discussed.
The Pioneer Anomaly as a Coulomb Attraction
NASA Astrophysics Data System (ADS)
Morris, Steven
2016-06-01
The anomalous acceleration of the Pioneer 10 and Pioneer 11 spacecraft can be explained as a Coulomb attraction between the positively-charged Solar System (due to cosmic rays) and the negatively-charged spacecraft (due to alpha-particle emission from the radioisotope thermoelectric generators).
Nonequilibrium dephasing in Coulomb blockaded quantum dots.
Altland, Alexander; Egger, Reinhold
2009-01-16
We present a theory of zero-bias anomalies and dephasing rates for a Coulomb-blockaded quantum dot, driven out of equilibrium by coupling to voltage biased source and drain leads. We interpret our results in terms of the statistics of voltage fluctuations in the system.
Efficient surface reconstruction using generalized coulomb potentials.
Jalba, Andrei C; Roerdink, Jos B T M
2007-01-01
We propose a novel, geometrically adaptive method for surface reconstruction from noisy and sparse point clouds, without orientation information. The method employs a fast convection algorithm to attract the evolving surface towards the data points. The force field in which the surface is convected is based on generalized Coulomb potentials evaluated on an adaptive grid (i.e., an octree) using a fast, hierarchical algorithm. Formulating reconstruction as a convection problem in a velocity field generated by Coulomb potentials offers a number of advantages. Unlike methods which compute the distance from the data set to the implicit surface, which are sensitive to noise due to the very reliance on the distance transform, our method is highly resilient to shot noise since global, generalized Coulomb potentials can be used to disregard the presence of outliers due to noise. Coulomb potentials represent long-range interactions that consider all data points at once, and thus they convey global information which is crucial in the fitting process. Both the spatial and temporal complexities of our spatially-adaptive method are proportional to the size of the reconstructed object, which makes our method compare favorably with respect to previous approaches in terms of speed and flexibility. Experiments with sparse as well as noisy data sets show that the method is capable of delivering crisp and detailed yet smooth surfaces.
Coulomb's Electrical Measurements. Experiment No. 14.
ERIC Educational Resources Information Center
Devons, Samuel
Presented is information related to the life and work of Charles Coulomb as well as detailed notes of his measurements of the distribution of electricity on conductors. The two methods that he used (the large torsion balance, and the timing of "force" oscillations) are described. (SA)
Solution of Coulomb system in momentum space
Lin, D.-H.
2008-02-15
The solution of D-dimensional Coulomb system is solved in momentum space by path integral. From which the topological effect of a magnetic flux in the system is given. It is revealed that the flux effect represented by the two-dimensional field of Aharonov-Bohm covers any space-dimensions.
NASA Astrophysics Data System (ADS)
Hnybida, Jeff
2016-10-01
We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.
A preliminary design of a drag-free satellite and its application to geodesy
NASA Technical Reports Server (NTRS)
Lange, B. O.; Debra, D. B.; Kaula, W. M.
1969-01-01
The design of a drag-free satellite and its application to measuring tidal interaction of the earth and tesseral harmonics are discussed. Principle areas of discussion are: (1) the feasibility of making geophysical measurements which are not possible with conventional satellites, and (2) design of attitude and translation control systems for spinning vehicle and possible coupling of attitude and translation control for gravity stabilized vehicles.
Bubble Drag Reduction Requires Large Bubbles
NASA Astrophysics Data System (ADS)
Verschoof, Ruben A.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef
2016-09-01
In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.
Drag sails for space debris mitigation
NASA Astrophysics Data System (ADS)
Visagie, Lourens; Lappas, Vaios; Erb, Sven
2015-04-01
The prudence for satellites to have a mitigation or deorbiting strategy has been brought about by the ever increasing amount of debris in Earth orbit. Drag augmentation is a potentially passive method for de-orbiting in LEO but its collision risk mitigation efficiency is sometimes underestimated by not taking all the relevant factors into account. This paper shows that using drag augmentation from a deployable drag-sail to de-orbit a satellite in LEO will lead to a reduction in collision risk. In order to support this finding, the models that are needed in order to evaluate the collision risk of a decaying object under drag conditions are presented. A comparison is performed between the simpler Area-Time-Product (ATP) and more precise collision risk analysis, and the effects that are overlooked in the simple ATP calculation are explained.
On the Minimum Induced Drag of Wings
NASA Technical Reports Server (NTRS)
Bowers, Albion H.
2007-01-01
This viewgraph presentation reviews the minimum induced drag of wings. The topics include: 1) The History of Spanload Development of the optimum spanload Winglets and their implications; 2) Horten Sailplanes; and 3) Flight Mechanics & Adverse yaw.
Bubble Drag Reduction Requires Large Bubbles.
Verschoof, Ruben A; van der Veen, Roeland C A; Sun, Chao; Lohse, Detlef
2016-09-01
In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.
Bubble Drag Reduction Requires Large Bubbles.
Verschoof, Ruben A; van der Veen, Roeland C A; Sun, Chao; Lohse, Detlef
2016-09-01
In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process. PMID:27636479
Methods of reducing vehicle aerodynamic drag
Sirenko V.; Rohatgi U.
2012-07-08
A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.
Penetration drag in loosely packed granular materials
NASA Astrophysics Data System (ADS)
Bless, Stephan; Omidvar, Mehdi; Iskander, Magued; New York University Collaboration
2015-03-01
The drag coefficient for penetration of granular materials by conical-nosed penetrators was computed by assuming the particles are non-interacting and rebound elastically off of the advancing penetrator. The solution was C =4 [sin(theta)]**2, where theta is the half angle of the cone. Experiments were conducted in which the drag coefficient was measured over the range 30 to 80 m/s for four types of sand: Ottawa silica sand, crushed quartz glass, coral sand, and aragonite sand. The sands were tested at relative densities of 40 and 80%. The drag coefficients for the low density materials were in excellent agreement with this simple model. The high density material had a drag considerably larger than predicted, presumably because of particle-to-particle interactions.
Comparative study of the bound states of static screened Coulomb and cut-off Coulomb potentials
NASA Astrophysics Data System (ADS)
Singh, David; Varshni, Y. P.
1984-05-01
Accurate eigenvalues (eight to six significant figures) and critical screening parameters are calculated for a two-particle system interacting through (a) a static screened Coulomb potential (SSCP), and (b) a cut-off Coulomb potential (COCP). A comparison of the results shows that as far as bound states are concerned it is not possible to simulate a SSCP by a COCP by a suitable scaling of the screening length.
Atomistically informed solute drag in Al Mg
NASA Astrophysics Data System (ADS)
Zhang, F.; Curtin, W. A.
2008-07-01
Solute drag in solute-strengthened alloys, caused by diffusion of solute atoms around moving dislocations, controls the stress at deformation rates and temperatures useful for plastic forming processes. In the technologically important Al-Mg alloys, the solute drag stresses predicted by classical theories are much larger than experiments, which is resolved in general by eliminating the singularity of the dislocation core via Peierls-Nabarro-type models. Here, the drag stress versus dislocation velocity is computed numerically using a realistic dislocation core structure obtained from an atomistic model to investigate the role of the core and obtain quantitative stresses for comparison with experiment. The model solves a discrete diffusion equation in a reference frame moving with the dislocation, with input solute enthalpies and diffusion activation barriers in the core computed by or estimated from atomistic studies. At low dislocation velocities, the solute drag stress is controlled by bulk solute diffusion because the core diffusion occurs too quickly. In this regime, the drag stress can be obtained using a Peierls-Nabarro model with a core spreading parameter tuned to best match the atomistic models. At intermediate velocities, both bulk and core diffusion can contribute to the drag, leading to a complex stress-velocity relationship showing two peaks in stress. At high velocities, the drag stress is controlled solely by diffusion within and across the core. Like the continuum models, the drag stress is nearly linear in solute concentration. The Orowan relationship is used to connect dislocation velocity to deformation strain rate. Accounting for the dependence of mobile dislocation density on stress, the simulations are in good agreement with experiments on Al-Mg alloys over a range of concentrations and temperatures.
Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua
2016-05-01
A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.
Measurement of drag and its cancellation
NASA Astrophysics Data System (ADS)
DeBra, D. B.; Conklin, J. W.
2011-05-01
The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)—still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.
Bioinspired surfaces for turbulent drag reduction.
Golovin, Kevin B; Gose, James W; Perlin, Marc; Ceccio, Steven L; Tuteja, Anish
2016-08-01
In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.
Bioinspired surfaces for turbulent drag reduction.
Golovin, Kevin B; Gose, James W; Perlin, Marc; Ceccio, Steven L; Tuteja, Anish
2016-08-01
In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354731
Polymer flexibility and turbulent drag reduction.
Gillissen, J J J
2008-10-01
Polymer-induced drag reduction is the phenomenon by which the friction factor of a turbulent flow is reduced by the addition of small amounts of high-molecular-weight linear polymers, which conformation in solution at rest can vary between randomly coiled and rodlike. It is well known that drag reduction is positively correlated to viscous stresses, which are generated by extended polymers. Rodlike polymers always assume this favorable conformation, while randomly coiling chains need to be unraveled by fluid strain rate in order to become effective. The coiling and stretching of flexible polymers in turbulent flow produce an additional elastic component in the polymer stress. The effect of the elastic stresses on drag reduction is unclear. To study this issue, we compare direct numerical simulations of turbulent drag reduction in channel flow using constitutive equations describing solutions of rigid and flexible polymers. When compared at constant phi r2, both simulations predict the same amount of drag reduction. Here phi is the polymer volume fraction and r is the polymer aspect ratio, which for flexible polymers is based on average polymer extension at the channel wall. This demonstrates that polymer elasticity plays a marginal role in the mechanism for drag reduction.
A Study of Ion Drag for Ground and Microgravity Dusty Plasma Experiments
NASA Astrophysics Data System (ADS)
Hall, Taylor; Thomas, Edward
2015-11-01
This presentation presents the results of a recent study of the interaction between charged dust particles and plasma ions through the ion drag force in a dc glow discharge plasma. Measurements of the dust particles motion are carried out using Particle Image Velocimetry (PIV). When an electrostatic perturbation is applied to the dust cloud, the particle motion, in response to the perturbation, is shown to reverse direction as the gas pressure is increased. An analysis of the dust particle motion and background plasma parameters suggests that there is a competition between the ion drag and electric forces on the particles. These forces are calculated for a range of pressures using detailed measurements of the plasma parameters carried out by a single Langmuir probe. The analysis of these measurements suggests that a change in the relative magnitude of the Coulomb collision ion drag compared to the electric force is a probable explanation for the observed reversal of direction of motion as the neutral gas pressure is increased. The application of these results to microgravity studies of dusty plasmas will be discussed. Support provided by NASA-JPL (JPL-RSA 1471384).
Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7
Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard
2012-01-01
In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose–Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb2Ti2O7. Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below TC~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations. PMID:22871811
Polarization of the electron and positron produced in combined Coulomb and strong laser fields
Di Piazza, A.; Mueller, C.; Milstein, A. I.
2010-12-15
The process of e{sup +}e{sup -} production in the superposition of a Coulomb and a strong laser field is considered. The pair production rate integrated over the momentum and summed over the spin projections of one of the particles is derived exactly in the parameters of the laser field and in the Born approximation with respect to the Coulomb field. The case of a monochromatic circularly polarized laser field is considered in detail. A very compact analytical expression of the pair production rate and its dependence on the polarization of one of the created particles is obtained in the quasiclassical approximation for the experimentally relevant case of an undercritical laser field. As a result, the polarization of the created electron (positron) is derived.
Reentry control to a drag vs. energy profile
NASA Astrophysics Data System (ADS)
Roenneke, Axel J.; Markl, Abert
We present trajectory control for a winged re-entry vehicle based on drag versus energy guidance. A linear control law is derived to track the drag reference guaranteeing satisfactory drag error dynamics. For the controller design, the vehicle's motion in the vertical plane is transformed into a drag state space, and the transformed system is linearized along the drag reference. Flight simulation results show that the control system operates effectively while subject to considerable atmospheric variations.
NASA Astrophysics Data System (ADS)
Udagawa, Masafumi
2014-03-01
Spin ice is a prototypical frustrated magnet defined on a pyrochlore lattice. The ground state of spin ice is described by a simple rule called ``ice rule'': out of four spins on a tetrahedron, two spins point inward, while the other two outward. This simple rule is not sufficient to determine the spin configuration uniquely, but it leaves macroscopic degeneracy in the ground state. Despite the macroscopic degeneracy, however, the ground state is not completely disordered, but it exhibits algebraic spatial correlation, which characterizes this state as ``Coulomb phase'' where various exotic properties, such as monopole excitations and unusual magnetic responses are observed. Given the peculiar spatial correlation, it is interesting to ask what happens if itinerant electrons coexist and interact with spin ice. Indeed, this setting is relevant to several metallic Ir pyrochlore oxides, such as Ln2Ir2O7 (Ln=Pr, Nd), where Ir 5d itinerant electrons interact with Ln 4f localized moments. In these compounds, anomalous transport phenomena have been reported, such as non-monotonic magnetic field dependence of Hall conductivity and low-temperature resistivity upturn. To address these issues, we adopt a spin-ice-type Ising Kondo lattice model on a pyrochlore lattice, and solve this model by applying the cluster dynamical mean-field theory and the perturbation expansion in terms of the spin-electron coupling. As a result, we found that (i) the resistivity shows a minimum at a characteristic temperature below which spin ice correlation sets in. Moreover, (ii) the Hall conductivity shows anisotropic and non-monotonic magnetic field dependence due to the scattering from the spatially extended spin scalar chirality incorporated in spin ice manifold. These results give unified understanding to the thermodynamic and transport properties of Ln2Ir2O7 (Ln=Pr, Nd), and give new insights into the role of geometrical frustration in itinerant systems. This work has been done in
Coulomb Bound States of Strongly Interacting Photons
NASA Astrophysics Data System (ADS)
Maghrebi, M. F.; Gullans, M. J.; Bienias, P.; Choi, S.; Martin, I.; Firstenberg, O.; Lukin, M. D.; Büchler, H. P.; Gorshkov, A. V.
2015-09-01
We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasibound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wave function resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.
Coulomb dissociation of {sup 27} P
Beceiro, S.; Cortina-Gil, D.; Suemmerer, K.
2010-04-26
The {sup 26}Al nucleus has a shorter life-time than the Universe showing that the nucleosynthesis of this element might be an ongoing process in stars. The reaction {sup 26}Si(p,gamma){sup 27} P competes with the production of {sup 26}Al. Coulomb dissociation of {sup 27} P is an indirect method to measure that reaction. An experiment was performed at GSI with a {sup 36}Ar primary beam at 500 MeV to measure this reaction.
Backstroke swimming: exploring gender differences in passive drag and instantaneous net drag force.
Formosa, Danielle P; Sayers, Mark Gregory Leigh; Burkett, Brendan
2013-12-01
This study explored and quantified gender differences in passive drag and instantaneous net drag force profile for elite backstroke swimmers (FINA points 938 ± 71). Nine female and ten male backstroke swimmers completed eight maximum speed trials. During the passive drag condition participants were towed at the speed achieved within the maximum effort backstroke swimming trials, while holding a supine stationary streamline position. The remaining trials, swimmers performed their natural swimming stroke, while attached to an assisted towing device. Male participant's passive (P < .001) and mean net drag force (P < .001) were significantly higher compared with female participants. In addition, there were no significant differences by gender between either the minimum or maximum net drag forces produced during the left and right arm strokes. Instantaneous net drag force profiles demonstrated differences within and between individuals and genders. The swimmers who recorded the fastest speed also recorded the smallest difference in net drag force fluctuations. The instantaneous net drag force profile within elite backstroke swimming provides further insight into stroke technique of this sport.
Backstroke swimming: exploring gender differences in passive drag and instantaneous net drag force.
Formosa, Danielle P; Sayers, Mark Gregory Leigh; Burkett, Brendan
2013-12-01
This study explored and quantified gender differences in passive drag and instantaneous net drag force profile for elite backstroke swimmers (FINA points 938 ± 71). Nine female and ten male backstroke swimmers completed eight maximum speed trials. During the passive drag condition participants were towed at the speed achieved within the maximum effort backstroke swimming trials, while holding a supine stationary streamline position. The remaining trials, swimmers performed their natural swimming stroke, while attached to an assisted towing device. Male participant's passive (P < .001) and mean net drag force (P < .001) were significantly higher compared with female participants. In addition, there were no significant differences by gender between either the minimum or maximum net drag forces produced during the left and right arm strokes. Instantaneous net drag force profiles demonstrated differences within and between individuals and genders. The swimmers who recorded the fastest speed also recorded the smallest difference in net drag force fluctuations. The instantaneous net drag force profile within elite backstroke swimming provides further insight into stroke technique of this sport. PMID:23271003
Dynamics of Coulombic and gravitational periodic systems.
Kumar, Pankaj; Miller, Bruce N
2016-04-01
We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology. PMID:27176238
Dynamics of Coulombic and gravitational periodic systems
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Miller, Bruce N.
2016-04-01
We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology.
Frictional drag reduction by bubble injection
NASA Astrophysics Data System (ADS)
Murai, Yuichi
2014-07-01
The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.
Solute drag on perfect and extended dislocations
NASA Astrophysics Data System (ADS)
Sills, R. B.; Cai, W.
2016-04-01
The drag force exerted on a moving dislocation by a field of mobile solutes is studied in the steady state. The drag force is numerically calculated as a function of the dislocation velocity for both perfect and extended dislocations. The sensitivity of the non-dimensionalized force-velocity curve to the various controlling parameters is assessed, and an approximate analytical force-velocity expression is given. A non-dimensional parameter S characterizing the strength of the solute-dislocation interaction, the background solute fraction ?, and the dislocation character angle ?, are found to have the strongest influence on the force-velocity curve. Within the model considered here, a perfect screw dislocation experiences no solute drag, but an extended screw dislocation experiences a non-zero drag force that is about 10 to 30% of the drag on an extended edge dislocation. The solutes can change the spacing between the Shockley partials in both stationary and moving extended dislocations, even when the stacking fault energy remains unaltered. Under certain conditions, the solutes destabilize an extended dislocation by either collapsing it into a perfect dislocation or causing the partials to separate unboundedly. It is proposed that the latter instability may lead to the formation of large faulted areas and deformation twins in low stacking fault energy materials containing solutes, consistent with experimental observations of copper and stainless steel containing hydrogen.
Theoretical and experimental investigation of additive drag
NASA Technical Reports Server (NTRS)
Sibulkin, Merwin
1954-01-01
The significance of additive drag is discussed and equations for determining its approximate value are derived for annular and open-nose inlets. Charts are presented giving values of additive drag coefficient over a range of free-stream Mach numbers for open and for annular-nose inlets with conical flow at the inlet. The effects on additive drag of variable inlet-total-pressure recovery and static pressures on the centerbody are investigated and an analytical method of predicting the variation of pressure on the centerbody with mass-flow ratio is given. Experimental additive-drag values are presented for a series of 20 degree and 25 degree cone half-angle inlets and one open-nose inlet operating at free-stream Mach numbers of 1.8 and 1.6. A comparison with the theoretical values of additive drag shows excellent agreement for the open-nose inlet and moderately good agreement for the annular inlets. (author)
Drag in a resonantly driven polariton fluid
NASA Astrophysics Data System (ADS)
Berceanu, A. C.; Cancellieri, E.; Marchetti, F. M.
2012-06-01
We study the linear response of a coherently driven polariton fluid in the pump-only configuration scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on the defect. When the system is excited near the bottom of the lower polariton dispersion, the sign of the interaction-renormalised pump detuning classifies the collective excitation spectra into three different categories (Ciuti and Carusotto 2005 Phys. Status Solidi b 242 2224): linear for zero, diffusive-like for positive and gapped for negative detuning. We show that both cases of zero and positive detuning share a qualitatively similar crossover of the drag force from the subsonic to the supersonic regime as a function of the fluid velocity, with a critical velocity given by the speed of sound found for the linear regime. In contrast, for gapped spectra, we find that the critical velocity exceeds the speed of sound. In all cases, the residual drag force in the subcritical regime depends on the polariton lifetime only. Also, well below the critical velocity, the drag force varies linearly with the polariton lifetime, in agreement with previous work (Cancellieri et al 2010 Phys. Rev. B 82 224512), where the drag was determined numerically for a finite-size defect.
Drag in a resonantly driven polariton fluid.
Berceanu, A C; Cancellieri, E; Marchetti, F M
2012-06-13
We study the linear response of a coherently driven polariton fluid in the pump-only configuration scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on the defect. When the system is excited near the bottom of the lower polariton dispersion, the sign of the interaction-renormalised pump detuning classifies the collective excitation spectra into three different categories (Ciuti and Carusotto 2005 Phys. Status Solidi b 242 2224): linear for zero, diffusive-like for positive and gapped for negative detuning. We show that both cases of zero and positive detuning share a qualitatively similar crossover of the drag force from the subsonic to the supersonic regime as a function of the fluid velocity, with a critical velocity given by the speed of sound found for the linear regime. In contrast, for gapped spectra, we find that the critical velocity exceeds the speed of sound. In all cases, the residual drag force in the subcritical regime depends on the polariton lifetime only. Also, well below the critical velocity, the drag force varies linearly with the polariton lifetime, in agreement with previous work (Cancellieri et al 2010 Phys. Rev. B 82 224512), where the drag was determined numerically for a finite-size defect.
THE GRAVITATIONAL DRAG FORCE ON AN EXTENDED OBJECT MOVING IN A GAS
Bernal, Cristian G.; Sánchez-Salcedo, F. J.
2013-09-20
Using axisymmetrical numerical simulations, we revisit the gravitational drag felt by a gravitational Plummer sphere with mass M and core radius R{sub s} moving at constant velocity V{sub 0} through a background homogeneous medium of adiabatic gas. Since the potential is non-diverging, there is no gas removal due to accretion. When R{sub s} is larger than the Bondi radius R{sub B} , the perturbation is linear at every point and the drag force is well fitted by the time-dependent Ostriker's formula with r{sub min} = 2.25R{sub s} , where r{sub min} is the minimum impact parameter in the Coulomb logarithm. In the deep nonlinear supersonic regime (R{sub s} << R{sub B} ), the minimum radius is no longer related to R{sub s} but to R{sub B} . We find r{sub min}=3.3M{sup -2.5}R{sub B} for Mach numbers of the perturber between 1.5 and 4, although r{sub min}= 2M{sup -2}R{sub B}=2GM/V{sup 2}{sub 0} also provides a good fit at M>2. As a consequence, the drag force does not depend sensitively on the nonlinearity parameter A, defined as R{sub B} /R{sub s} , for A values larger than a certain critical value A{sub cr}. We show that our generalized Ostriker's formula for the drag force is more accurate than the formula suggested by Kim and Kim.
Track of Right-Wheel Drag (Polar)
NASA Technical Reports Server (NTRS)
2004-01-01
This 360-degree panorama combines several frames taken by the navigation camera on NASA's Mars Exploration Rover Spirit during the rover's 313th martian day (Nov. 19, 2004). The site, labeled Spirit site 93, is in the 'Columbia Hills' inside Gusev Crater. The rover tracks point westward. Spirit had driven eastward, in reverse and dragging its right front wheel, for about 30 meters (100 feet) on the day the picture was taken. Driving backwards while dragging that wheel is a precautionary strategy to extend the usefulness of the wheel for when it is most needed, because it has developed more friction than the other wheels. The right-hand track in this look backwards shows how the dragging disturbed the soil. This view is presented in a polar projection with geometric seam correction.
NASA Technical Reports Server (NTRS)
2004-01-01
This 360-degree panorama combines several frames taken by the navigation camera on NASA's Mars Exploration Rover Spirit during the rover's 313th martian day (Nov. 19, 2004). The site, labeled Spirit site 93, is in the 'Columbia Hills' inside Gusev Crater. The rover tracks point westward. Spirit had driven eastward, in reverse and dragging its right front wheel, for about 30 meters (100 feet) on the day the picture was taken. Driving backwards while dragging that wheel is a precautionary strategy to extend the usefulness of the wheel for when it is most needed, because it has developed more friction than the other wheels. The right-hand track in this look backwards shows how the dragging disturbed the soil. This view is presented in a cylindrical projection with geometric seam correction.
Track of Right-Wheel Drag (Vertical)
NASA Technical Reports Server (NTRS)
2004-01-01
This 360-degree panorama combines several frames taken by the navigation camera on NASA's Mars Exploration Rover Spirit during the rover's 313th martian day (Nov. 19, 2004). The site, labeled Spirit site 93, is in the 'Columbia Hills' inside Gusev Crater. The rover tracks point westward. Spirit had driven eastward, in reverse and dragging its right front wheel, for about 30 meters (100 feet) on the day the picture was taken. Driving backwards while dragging that wheel is a precautionary strategy to extend the usefulness of the wheel for when it is most needed, because it has developed more friction than the other wheels. The right-hand track in this look backwards shows how the dragging disturbed the soil. This view is presented in a vertical projection with geometric seam correction.
Drag Measurements of Porous Plate Acoustic Liners
NASA Technical Reports Server (NTRS)
Wolter, John D.
2005-01-01
This paper presents the results of direct drag measurements on a variety of porous plate acoustic liners. The existing literature describes numerous studies of drag on porous walls with injection or suction, but relatively few of drag on porous plates with neither injection nor suction. Furthermore, the porosity of the porous plate in existing studies is much lower than typically used in acoustic liners. In the present work, the acoustic liners consisted of a perforated face sheet covering a bulk acoustic absorber material. Factors that were varied in the experiment were hole diameter, hole pattern, face sheet thickness, bulk material type, and size of the gap (if any) between the face sheet and the absorber material.
A comprehensive plan for helicopter drag reduction
NASA Technical Reports Server (NTRS)
Williams, R. M.; Montana, P. S.
1975-01-01
Current helicopters have parasite drag levels 6 to 10 times as great as fixed wing aircraft. The commensurate poor cruise efficiency results in a substantial degradation of potential mission capability. The paper traces the origins of helicopter drag and shows that the problem (primarily due to bluff body flow separation) can be solved by the adoption of a comprehensive research and development plan. This plan, known as the Fuselage Design Methodology, comprises both nonaerodynamic and aerodynamic aspects. The aerodynamics are discussed in detail and experimental and analytical programs are described which will lead to a solution of the bluff body problem. Some recent results of work conducted at the Naval Ship Research and Development Center (NSRDC) are presented to illustrate these programs. It is concluded that a 75-per cent reduction of helicopter drag is possible by the full implementation of the Fuselage Design Methodology.
An entropy method for induced drag minimization
NASA Technical Reports Server (NTRS)
Greene, George C.
1989-01-01
A fundamentally new approach to the aircraft minimum induced drag problem is presented. The method, a 'viscous lifting line', is based on the minimum entropy production principle and does not require the planar wake assumption. An approximate, closed form solution is obtained for several wing configurations including a comparison of wing extension, winglets, and in-plane wing sweep, with and without a constraint on wing-root bending moment. Like the classical lifting-line theory, this theory predicts that induced drag is proportional to the square of the lift coefficient and inversely proportioinal to the wing aspect ratio. Unlike the classical theory, it predicts that induced drag is Reynolds number dependent and that the optimum spanwise circulation distribution is non-elliptic.
Drag calculations of wings using Euler methods
NASA Technical Reports Server (NTRS)
Van Dam, C. P.; Chang, I. C.; Vijgen, P. M. H. W.; Nikfetrat, Koorosh
1991-01-01
Several techniques for the calculation of drag using Euler-equation formulations are discussed and compared. Surface-pressure integration (a nearfield technique) as well as two different farfield calculation techniques are described and applied to three-dimensional flow-field solutions for an aspect-ratio-7 wing with attached flow. The present calculations are limited to steady, low-Mach-number flows around three-dimensional configurations in the absence of active systems such as surface blowing/suction and propulsion. Although the main focus of the paper is the calculation of aerodynamic drag, the calculation of aerodynamic lift is also briefly discussed. Three Euler methods are used to obtain the flowfield solutions. The farfield technique based on the evaluation of a wake-integral appears to provide the most consistent and accurate drag predictions.
Blocage de Coulomb dans une boite quantique laterale contenant un faible nombre d'electrons
NASA Astrophysics Data System (ADS)
Gould, Charles
Dans ce travail on utilise une nouvelle geometrie pour augmenter le controle sur le nombre d'electrons contenus dans une boite quantique laterale, et ainsi atteindre un regime de petit nombre d'electrons. Ces echantillons permettent une etude du blocage de Coulomb quand les electrons sont injectes a partir d'un gaz electronique a deux dimensions (2DEG). Les mesures a faible champ magnetique demontrent la grande flexibilite des echantillons et montrent que l'on peut faire varier le nombre d'electrons dans une boite quantique a partir de plus de 40 electrons jusqu'a un seul electron, ce qui est assez courant dans les boites quantiques verticales, mais ce qui n'avait jamais ete reussi dans une boite quantique laterale. Nos resultats montrent egalement que dans les boites quantiques laterales il est possible de determiner le spin du niveau qui participe au transport a l'aide du phenomene de blocage de spin. De plus, dans certaines circonstances il est meme possible de determiner le spin total de la boite quantique, ce qui peut avoir des applications pratiques dans des domaines tels l'informatique quantique. Les mesures dans le regime de renversement de spin a un champ magnetique plus eleve montrent l'importance des correlations electrons---electrons dans ces boites quantiques, qui menent a des depolarisations et a des structures de spins qui ont un effet sur le transport. En particulier, ces correlations menent a l'existence de niveaux excites de basse energie qui causent une dependance anormale de l'amplitude des pics de blocage de Coulomb en fonction de la temperature. Nos experiences demontrent egalement la possibilite d'utiliser ces boites quantiques comme sondes pour etudier les proprietes du bord d'un 2DEG. Une voie de recherche a etre exploree.
Three-body quantum Coulomb problem: Analytic continuation
NASA Astrophysics Data System (ADS)
Turbiner, A. V.; Lopez Vieyra, J. C.; Olivares Pilón, H.
2016-08-01
The second (unphysical) critical charge in the three-body quantum Coulomb system of a nucleus of positive charge Z and mass mp, and two electrons, predicted by Stillinger has been calculated to be equal to ZB∞ = 0.904854 and ZBmp = 0.905138 for infinite and finite (proton) mass mp, respectively. It is shown that in both cases, the ground state energy E(Z) (analytically continued beyond the first critical charge Zc, for which the ionization energy vanishes, to ReZ
Three-body quantum Coulomb problem: Analytic continuation
NASA Astrophysics Data System (ADS)
Turbiner, A. V.; Lopez Vieyra, J. C.; Olivares Pilón, H.
2016-08-01
The second (unphysical) critical charge in the three-body quantum Coulomb system of a nucleus of positive charge Z and mass mp, and two electrons, predicted by Stillinger has been calculated to be equal to ZB∞ = 0.904854 and ZBmp = 0.905138 for infinite and finite (proton) mass mp, respectively. It is shown that in both cases, the ground state energy E(Z) (analytically continued beyond the first critical charge Zc, for which the ionization energy vanishes, to ReZ
Analysis of {alpha}-induced reactions on {sup 151}Eu below the Coulomb barrier
Avrigeanu, V.; Avrigeanu, M.
2011-01-15
Novel measurements of ({alpha},{gamma}) and ({alpha},n) reaction cross sections on the target nucleus {sup 151}Eu, close to the reaction thresholds, support the choice of recently proposed parameters of the {alpha}-particle optical model potential below the Coulomb barrier. A better understanding of the {alpha}-particle optical potential at these energies leads to a statistical model analysis of additional partial cross sections that were measured but not considered within a former model analysis. On this basis we have tentatively assigned a modified J{sup {pi}}=9{sup -} spin and parity to the 22.7-h isomer in {sup 154}Tb.
Derivation of the Biot-Savart law from Coulomb's law and implications for gravity
NASA Astrophysics Data System (ADS)
Zile, Daniel; Overduin, James
2014-03-01
We explore links between classical electromagnetism and general relativity in the low-velocity, weak-field limit. We show that it is possible to derive the Biot-Savart law for magnetism from Coulomb's law for electrostatics by moving to a boosted frame and applying the force transformation law from special relativity. We then apply the same transformation to Newton's law of gravitation, obtaining a gravitational analog of the magnetic field with units of spin. This field turns out to be two-thirds of the geodetic precession predicted by general relativity theory, a prediction that has recently been verified experimentally by the Gravity Probe B satellite.
On Dirac-Coulomb problem in (2+1) dimensional space-time and path integral quantization
Haouat, S.; Chetouani, L.
2012-06-15
The problem of Dirac particle interacting with Coulomb potential in (2+1) dimensions is formulated in the framework of super-symmetric path integrals where the spin degrees of freedom are described by odd Grassmannian variables. The relative propagator is expressed through Cartesian coordinates in a Hamiltonian form by the use of an adequate transformation. The passage to the polar coordinates permitted us to calculate the fixed energy Green's function and to extract bound states and associating wave functions.
Zhang, Hao; Zhang, Guang-Ming; Yu, Lu
2009-04-15
A correct general formula for the spin current through an interacting quantum dot coupled to ferromagnetic leads with magnetization at an arbitrary angle θ is derived within the framework of the Keldysh formalism. Under asymmetric conditions, the spin current component J(z) may change sign for 0<θ<π. It is shown that the spin current and spin tunneling magnetoresistance exhibit different angle dependence in the free and Coulomb blockade regimes. In the latter case, the competition of the spin precession and the spin-valve effect could lead to an anomaly in the angle dependence of the spin current. PMID:21825366
Base passive porosity for vehicle drag reduction
NASA Technical Reports Server (NTRS)
Bauer, Steven X. S. (Inventor); Wood, Richard M. (Inventor)
2003-01-01
A device for controlling drag on a ground vehicle. The device consists of a porous skin or skins mounted on the trailing surface and/or aft portions of the ground vehicle. The porous skin is separated from the vehicle surface by a distance of at least the thickness of the porous skin. Alternately, the trailing surface, sides, and/or top surfaces of the ground vehicle may be porous. The device minimizes the strength of the separation in the base and wake regions of the ground vehicle, thus reducing drag.
Method of reducing drag in aerodynamic systems
NASA Technical Reports Server (NTRS)
Hrach, Frank J. (Inventor)
1993-01-01
In the present method, boundary layer thickening is combined with laminar flow control to reduce drag. An aerodynamic body is accelerated enabling a ram turbine on the body to receive air at velocity V sub 0. The discharge air is directed over an aft portion of the aerodynamic body producing boundary layer thickening. The ram turbine also drives a compressor by applying torque to a shaft connected between the ram turbine and the compressor. The compressor sucks in lower boundary layer air through inlets in the shell of the aircraft producing laminar flow control and reducing drag. The discharge from the compressor is expanded in a nozzle to produce thrust.
Base Passive Porosity for Vehicle Drag Reduction
NASA Technical Reports Server (NTRS)
Bauer, Steven X. S. (Inventor); Wood, Richard M. (Inventor)
2003-01-01
A device for controlling drag on a ground vehicle. The device consists of a porous skin or skins mounted on the trailing surface and/or aft portions of the ground vehicle. The porous skin is separated from the vehicle surface by a distance of at least the thickness of the porous skin. Alternately, the trailing surface, sides, and/or top surfaces of the ground vehicle may be porous. The device minimizes the strength of the separation in the base and wake regions of the ground vehicle, thus reducing drag.
Drag reduction on a patterned superhydrophobic surface.
Truesdell, Richard; Mammoli, Andrea; Vorobieff, Peter; van Swol, Frank; Brinker, C Jeffrey
2006-07-28
We present an experimental study of a low-Reynolds number shear flow between two surfaces, one of which has a regular grooved texture augmented with a superhydrophobic coating. The combination reduces the effective fluid-surface contact area, thereby appreciably decreasing the drag on the surface and effectively changing the macroscopic boundary condition on the surface from no slip to limited slip. We measure the force on the surface and the velocity field in the immediate vicinity on the surface (and thus the wall shear) simultaneously. The latter facilitates a direct assessment of the effective slip length associated with the drag reduction.
An overview of concepts for aircraft drag reductions
NASA Technical Reports Server (NTRS)
Hefner, J. N.; Bushnell, D. M.
1977-01-01
A current overview of aerodynamic drag reduction concepts which have potential for reducing aircraft fuel consumption is presented. The discussion shows where the greatest percentages of aircraft fuel is burned and what areas have the greatest potential for fuel conservation. The paper deals with aerodynamic improvements and touches only briefly on structural and propulsion improvements. Concepts for reducing pressure drag (i.e., roughness, wave, interference, and separation drag), drag due to lift/induced drag, and skin-friction drag at subsonic and supersonic speeds are emphasized.
The Berlin oil channel for drag reduction research
NASA Astrophysics Data System (ADS)
Bechert, D. W.; Hoppe, G.; van der Hoeven, J. G. Th.; Makris, R.
1992-03-01
For drag reduction research an oil channel has been designed and built. It is also well suited for investigations on turbulent flow and in particular on the dynamics of the viscous sublayer near the wall. The thickness of the viscous sublayer ( y += 5) can be varied between 1 and 4 mm. Surfaces with longitudinal ribs (“riblets”), which are known to reduce drag, can have fairly large dimensions. The lateral spacing of the ribs can lie between 3 and 10 mm, as compared to about 0.5 mm spacing for conventional wind tunnels. It has been proved by appropriate tests that the oil channel data are completely equivalent to data from other facilities and with other mean flow geometries. However, the shear stress data from the new oil channel are much more accurate than previous data due to a novel differential shear force balance with an accuracy of ±0.2%. In addition to shear stress measurements, velocity fluctuation measurements can be carried out with hot wire or hot film probes. In order to calibrate these probes, a moving sled permits to emulate the flow velocities with the fluid in the channel at rest. A number of additional innovations contribute to the improvement of the measurements, such as, e.g., (i) novel adjustable turbulators to maintain equilibrium turbulence in the channel, (ii) a “bubble trap” to avoid bubbles in the channel at high flow velocities, (iii) a simple method for the precision calibration of manometers, and (iv) the elimination of (Coulomb) friction in ball bearings. This latter fairly general invention is used for the wheels of the calibration unit of the balance. The channel has a cross section of 25 × 85 cm and is 11 m long. It is filled with about 4.5 metric tons of baby oil (white paraffine oil), which is transparent and odorless like water. The kinematic viscosity of the oil is v = 1.2×10-5 m2/s, and the highest (average) velocity is 1.29 m/s. Thus, the Reynolds number range (calculated with the channel width, 0.25 m) lies between
Exchange effects in Coulomb quantum plasmas: Dispersion of waves in 2D and 3D quantum plasmas
Andreev, Pavel A.
2014-11-15
We describe quantum hydrodynamic equations with the Coulomb exchange interaction for three and two dimensional plasmas. Explicit form of the force densities are derived. We present non-linear Schrödinger equations (NLSEs) for the Coulomb quantum plasmas with the exchange interaction. We show contribution of the exchange interaction in the dispersion of the Langmuir, and ion-acoustic waves. We consider influence of the spin polarization ratio on strength of the Coulomb exchange interaction. This is important since exchange interaction between particles with same spin direction and particles with opposite spin directions are different. At small particle concentrations n{sub 0}≪10{sup 25}cm{sup −3} and small polarization the exchange interaction gives small decrease of the Fermi pressure. With increase of polarization role the exchange interaction becomes more important, so that it can overcome the Fermi pressure. The exchange interaction also decreases contribution of the Langmuir frequency. Ion-acoustic waves do not exist in limit of large polarization since the exchange interaction changes the sign of pressure. At large particle concentrations n{sub 0}≫10{sup 25}cm{sup −3} the Fermi pressure prevails over the exchange interaction for all polarizations. We obtain a similar picture for two dimensional quantum plasmas.
NASA Astrophysics Data System (ADS)
Nakata, Toru; Sato, Kenji; Inaba, Hideo; Horibe, Akihiko; Haruki, Naoto
The drag reduction of a water flow with new drag reducing surfactants (amine oxide type nonionic surfactants, mixtures of amine oxide type nonionic surfactants and betaine type amphoteric surfactants) which were selected as environmentally acceptable drag reducing additives was investigated experimentally. Addition of amine oxide type nonionic surfactants to hot or cold water can reduce flow drag in a turbulent pipe flow. The present research investigated how various ionic components dissolved in water affected this drag reducing effect. It was found that ionic impurities contained in the water affected the pipe flow drag reducing effect by amine oxide type nonionic surfactants. Moreover, it was clarified that the decrease in the pipe flow drag reducing effect was recovered by adding a mixture of amine oxide type nonionic surfactants and betaine type amphoteric surfactant to the water with ionic impurities.
Mathematical structure of relativistic Coulomb integrals
NASA Astrophysics Data System (ADS)
Suslov, Sergei K.
2010-03-01
We show that the diagonal matrix elements
Coulomb Repulsion in Miniature Ion Mobility Spectrometry
Xu, J.; Whitten, W.B.; Ramsey, J.M.
1999-08-08
We have undertaken a study of ion mobility resolution in a miniature ion mobility spectrometer with a drift channel 1.7 mm in diameter and 35 mm in length. The device attained a maximum resolution of 14 in separating ions of NO, O{sub 2}, and methyl iodine. The ions were generated by pulses from a frequency-quadrupled Nd:YAG laser. Broadening due to Coulomb repulsion was modeled theoretically and shown experimentally to have a major effect on the resolution of the miniature device.
Action principle for Coulomb collisions in plasmas
Hirvijoki, Eero
2016-09-14
In this study, an action principle for Coulomb collisions in plasmas is proposed. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth-MacDonald-Judd potentials. Conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles.
Action principle for Coulomb collisions in plasmas
NASA Astrophysics Data System (ADS)
Hirvijoki, Eero
2016-09-01
An action principle for Coulomb collisions in plasmas is proposed. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth-MacDonald-Judd potentials. Conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles.
Spatio-temporal correlations in Coulomb clusters
NASA Astrophysics Data System (ADS)
Ash, Biswarup; Chakrabarti, J.; Ghosal, Amit
2016-05-01
The dynamical responses of Coulomb-interacting particles in two-dimensional nanoclusters are analyzed at different temperatures characterizing their solid- and liquid-like behavior. Depending on the trap symmetry, spatial correlations undergo slow, stretched exponential relaxations at long times, arising from spatially correlated motion in string-like paths. Such results stem from the combined effects of confinement and long-range repulsion, making the systems inherently heterogeneous. While particles in a “solid” flow produce dynamic heterogeneities, motion in “liquid” yields an unusually long tail in the distribution of particle displacements. A phenomenological model captures much of the subtleties of our numerical simulations.
New approach to folding with the Coulomb wave function
Blokhintsev, L. D.; Savin, D. A.; Kadyrov, A. S.; Mukhamedzhanov, A. M.
2015-05-15
Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
A close-up of an experimental drag chute deploying in a cloud of dust behind NASA's B-52 research aircraft just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
A rear view of NASA's B-52 research aircraft deploying an experimental drag chute just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
An experimental drag chute deploys amidst a cloud of dust behind NASA's B-52 research aircraft just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's B-52 research aircraft deploys an experimental drag chute just after landing the runway at the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
An aerial view of NASA's B-52 research aircraft deploying an experimental drag chute just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid
Wingtip-Vortex Turbine Lowers Aircraft Drag
NASA Technical Reports Server (NTRS)
Patterson, J. C. J.
1982-01-01
Turbine captures some of energy lost in aircraft wingtip vortexes. Wing-tip vortex turbine operates in crossflow of the lift-induced vortex; i.e., flow not parallel to the flightpath. Each turbine blade generates a force as a result of angle of attack between blade and nonstreamwise local flow. Turbine converts lost vortex energy to rotational energy and reduces induced drag.
ABM Drag_Pass Report Generator
NASA Technical Reports Server (NTRS)
Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat
2008-01-01
dragREPORT software was developed in parallel with abmREPORT, which is described in the preceding article. Both programs were built on the capabilities created during that process. This tool generates a drag_pass report that summarizes vital information from the MRO aerobreaking drag_pass build process to facilitate both sequence reviews and provide a high-level summarization of the sequence for mission management. The script extracts information from the ENV, SSF, FRF, SCMFmax, and OPTG files, presenting them in a single, easy-to-check report providing the majority of parameters needed for cross check and verification as part of the sequence review process. Prior to dragReport, all the needed information was spread across a number of different files, each in a different format. This software is a Perl script that extracts vital summarization information and build-process details from a number of source files into a single, concise report format used to aid the MPST sequence review process and to provide a high-level summarization of the sequence for mission management reference. This software could be adapted for future aerobraking missions to provide similar reports, review and summarization information.
Photon Drag Effect due to Berry Curvature
NASA Astrophysics Data System (ADS)
Kurosawa, Hiroyuki; Sawada, Kei; Ohno, Seigo
2016-08-01
A theoretical investigation reveals that the photon drag effect (PDE) is induced in a grating slab with deformation by the Berry curvature in phase space. It drifts the momentum of light, and gives asymmetric PDE signals in momentum space. Large PDE signals are observed even near the Γ point. This characteristic agrees well with our theoretical results.
Nanotube Electron Drag in Flowing Liquids.
Král; Shapiro
2001-01-01
We show that electric current can be generated in metallic carbon nanotubes immersed in liquids flowing along them. Molecular layers of the liquid coat the nanotube, slip along its surface, and excite there a phonon wind, which drags free carriers in the tube. The induced electric current should allow building of nanoscale detectors or power cells.
Lift and Drag Measurements of Superhydrophobic Hydrofoils
NASA Astrophysics Data System (ADS)
Sur, Samrat; Kim, Jeong-Hyun; Rothstein, Jonathan
2015-11-01
For several years, superhydrophobic surfaces which are chemically hydrophobic with micron or nanometer scale surface features have been considered for their ability to reduce drag and produce slip in microfluidic devices. More recently it has been demonstrated that superhydrophobic surfaces reduce friction coefficient in turbulent flows as well. In this talk, we will consider that modifying a hydrofoil's surface to make it superhydrophobic has on the resulting lift and drag measurements over a wide range of angles of attack. Experiments are conducted over the range of Reynolds numbers between 10,000
Magnetic Viscous Drag for Friction Labs
ERIC Educational Resources Information Center
Gaffney, Chris; Catching, Adam
2016-01-01
The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…
Photon Drag Effect due to Berry Curvature.
Kurosawa, Hiroyuki; Sawada, Kei; Ohno, Seigo
2016-08-19
A theoretical investigation reveals that the photon drag effect (PDE) is induced in a grating slab with deformation by the Berry curvature in phase space. It drifts the momentum of light, and gives asymmetric PDE signals in momentum space. Large PDE signals are observed even near the Γ point. This characteristic agrees well with our theoretical results. PMID:27588858
Gubser, Steven S.
2006-12-15
The AdS/CFT correspondence and a classical test string approximation are used to calculate the drag force on an external quark moving in a thermal plasma of N=4 super-Yang-Mills theory. This computation is motivated by the phenomenon of jet-quenching in relativistic heavy ion collisions.
Drop tower with no aerodynamic drag
NASA Technical Reports Server (NTRS)
Kendall, J. M., Jr.
1981-01-01
Cooling air accelerated to match velocity of falling object eliminates drag. 3 meter drop tower with suction fan and specific geometry causes air to accelerate downward at 1 g. Although cooling of molten material released from top is slow because surrounding air moves with it, drop remains nearly spherical.
Experiments examining drag in linear droplet packets
NASA Astrophysics Data System (ADS)
Nguyen, Q. V.; Dunn-Rankin, D.
1992-01-01
This paper presents an experimental study of vertically traveling droplet packets, where the droplets in each packet are aligned linearly, one behind another. The paper describes in detail, an experimental apparatus that produces repeatable, linearly aligned, and isolated droplet packets containing 1 6 droplets per packet. The apparatus is suitable for examining aerodynamic interactions between droplets within each packet. This paper demonstrates the performance of the apparatus by examining the drag reduction and collision of droplets traveling in the wake of a lead droplet. Comparison of a calculated single droplet trajectory with the detailed droplet position versus time data for a droplet packet provides the average drag reduction experienced by the trailing droplets due to the aerodynamic wake of the lead droplet. For the conditions of our experiment (4 droplet packet, 145 μm methanol droplets, 10 m/s initial velocity, initial droplet spacing of 5.2 droplet diameters, Reynolds number approx. 80) the average drag on the first trailing droplet was found to be 75% of the drag on the lead droplet.
Green's operator for Hamiltonians with Coulomb plus polynomial potentials
NASA Astrophysics Data System (ADS)
Kelbert, E.; Hyder, A.; Demir, F.; Hlousek, Z. T.; Papp, Z.
2007-07-01
The Hamiltonian of a Coulomb plus polynomial potential in the Coulomb-Sturmian basis has an infinite symmetric band-matrix structure. A band matrix can always be considered as a block-tridiagonal matrix. So, the corresponding Green's operator can be given as a matrix-valued continued fraction. As examples, we calculate Green's operator for the Coulomb plus linear and quadratic confinement potential problems and determine the energy levels.
Transport through a quantum spin Hall antidot as a spectroscopic probe of spin textures
NASA Astrophysics Data System (ADS)
Rod, Alexia; Dolcetto, Giacomo; Rachel, Stephan; Schmidt, Thomas L.
2016-07-01
We investigate electron transport through an antidot embedded in a narrow strip of a two-dimensional topological insulator. We focus on the most generic and experimentally relevant case with broken axial spin symmetry. Spin-nonconservation allows additional scattering processes, which change the transport properties profoundly. We start from an analytical model for noninteracting transport, which we also compare with a numerical tight-binding simulation. We then extend this model by including Coulomb repulsion on the antidot, and we study the transport in the Coulomb-blockade limit. We investigate sequential tunneling and cotunneling regimes, and we find that the current-voltage characteristic allows a spectroscopic measurement of the edge-state spin textures.
Coulomb excitation of radioactive {sup 79}Pb
Lister, C.J.; Blumenthal, D.; Davids, C.N.
1995-08-01
The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.
Distorted Coulomb field of the scattered electron
Thomsen, H. D.; Esberg, J.; Andersen, K. K.; Lund, M. D.; Knudsen, H.; Uggerhoej, U. I.; Sona, P.; Mangiarotti, A.; Ketel, T. J.; Dizdar, A.; Ballestrero, S.; Connell, S. H.
2010-03-01
Experimental results for the radiation emission from ultrarelativistic electrons in targets of 0.03%-5% radiation length is presented. For the thinnest targets, the radiation emission is in accordance with the Bethe-Heitler formulation of bremsstrahlung, the target acting as a single scatterer. In this regime, the radiation intensity is proportional to the thickness. As the thickness increases, the distorted Coulomb field of the electron that is the result of the first scattering events, leads to a suppressed radiation emission per interaction, upon subsequent scattering events. In that case, the radiation intensity becomes proportional to a logarithmic function of the thickness, due to the suppression. Eventually, once the target becomes sufficiently thick, the entire radiation process becomes influenced by multiple scattering and the radiation intensity is again proportional to the thickness, but with a different constant of proportionality. The observed logarithmic thickness dependence of radiation intensity at intermediate values of the thickness can be directly interpreted as a manifestation of the distortion of the electron Coulomb field resulting from a scattering event. The Landau-Pomeranchuk-Migdal effect is explored with high primary energy using materials with low nuclear charge (Z). Also, targets that should give rise to the claimed interference effect in high-energy radiation emission from a structured target of thin foils are investigated.
Effect of Coulomb interaction on multi-electronwave packet dynamics
Shiokawa, T.; Takada, Y.; Konabe, S.; Hatsugai, Y.; Muraguchi, M.; Endoh, T.; Shiraishi, K.
2013-12-04
We have investigated the effect of Coulomb interaction on electron transport in a one-dimensional nanoscale structure using a multi-electron wave packet approach. To study the time evolution, we numerically solve the time-dependent Hartree-Fock equation, finding that the electron wave packet dynamics strongly depends on the Coulomb interaction strength. When the Coulomb interaction is large, each electron wave packet moves separately in the presence of an electric field. With weak Coulomb interaction, however, the electron wave packets overlap, forming and moving as one collective wave packet.
Electronic ground state properties of Coulomb blockaded quantum dots
NASA Astrophysics Data System (ADS)
Patel, Satyadev Rajesh
Conductance through quantum dots at low temperature exhibits random but repeatable fluctuations arising from quantum interference of electrons. The observed fluctuations follow universal statistics arising from the underlying universality of quantum chaos. Random matrix theory (RMT) has provided an accurate description of the observed universal conductance fluctuations (UCF) in "open" quantum dots (device conductance ≥e 2/h). The focus of this thesis is to search for and decipher the underlying origin of similar universal properties in "closed" quantum dots (device conductance ≤e2/ h). A series of experiments is presented on electronic ground state properties measured via conductance measurements in Coulomb blockaded quantum dots. The statistics of Coulomb blockade (CB) peak heights with zero and non-zero magnetic field measured in various devices agree qualitatively with predictions from Random Matrix Theory (RMT). The standard deviation of the peak height fluctuations for non-zero magnetic field is lower than predicted by RMT; the temperature dependence of the standard deviation of the peak height for non-zero magnetic field is also measured. The second experiment summarizes the statistics of CB peak spacings. The peak spacing distribution width is observed to be on the order of the single particle level spacing, Delta, for both zero and non-zero magnetic field. The ratio of the zero field peak spacing distribution width to the non-zero field peak spacing distribution width is ˜1.2; this is good agreement with predictions from spin-resolved RMT predictions. The standard deviation of the non-zero magnetic field peak spacing distribution width shows a T-1/2 dependence in agreement with a thermal averaging model. The final experiment summarizes the measurement of the peak height correlation length versus temperature for various quantum dots. The peak height correlation length versus temperature saturates in small quantum dots, suggesting spectral scrambling
Space Shuttle Orbiter Drag Chute Summary
NASA Technical Reports Server (NTRS)
Lowry, Charles H.
2013-01-01
This paper summarizes the development history and technical highlights of the Space Shuttle Orbiter Drag Chute Program. Data and references are given on the design, development, and testing of the system, plus several interesting operational issues and solutions. The last Shuttle flight was completed in 2011 and all the Orbiters have now become museum pieces. Before all the data from system development and the 86 Orbiter Drag Chute (ODC) operational landings is lost or forgotten, it may be useful to summarize it here and to identify data sources for future reference. Much has been written about various aspects of the program, and this summary has attempted to cite many such references to make available more detailed information. The ODC program was a high-visibility NASA program that afforded the opportunity to thoroughly engineer and test the chute system, far beyond so many of today s tight-budget programs. So the ODC program was extremely informative--it provided a wide scope of information including protective door jettison issues and solutions, wind tunnel data and analyses on chute stability and drag behind a huge and rather blunt forebody, component and system reuse, and chute cleaning methods. Technology and data created have aided several current and past parachute programs, and will continue to do so in the future. The original Orbiter preliminary design included a drag parachute-- it was deleted early to save weight. But after the 1987 Challenger accident and during the program redefinition phase that followed, Astronaut John Young presented a strong case for enhancing landing safety by adding nosegear steering, brake improvements, and reviving the drag chute.
NASA Astrophysics Data System (ADS)
Brooks, Jason W.; Matzner, Richard
2016-07-01
The LARES satellite is a laser-ranged space experiment to contribute to geophysics observation, and to measure the general relativistic Lense-Thirring effect. LARES consists of a solid tungsten alloy sphere, into which 92 fused-silica Cube Corner Reflectors (CCRs) are set in colatitude circles ("rows"). During its first four months in orbit it was observed to undergo an anomalous along-track orbital acceleration of approximately -0.4 pm/s2 (pm: = picometer). The first paper in this series (Eur. Phys. J. Plus 130, 206 (2015) - Paper I) computed the thermally induced along-track "thermal drag" on the LARES satellite during the first 126 days after launch. The results there suggest that the IR absorbance α and emissivity ɛ of the CCRs equal 0.60, a possible value for silica with slight surface contamination subjected to the space environment. Paper I computed an average thermal drag acceleration of -0.36 pm/s2 for a 120-day period starting with the 7th day after launch. The heating and the resultant along-track acceleration depend on the plane of the orbit, the sun position, and in particular on the occurrence of eclipses, all of which are functions of time. Thus we compute the thermal drag for specific days. The satellite is heated from two sources: sunlight and Earth's infrared (IR) radiation. Paper I worked in the fast-spin regime, where CCRs with the same colatitude can be taken to have the same temperature. Further, since all temperature variations (temporal or spatial) were small in this regime, Paper I linearized the Stefan-Boltzmann law and performed a Fourier series analysis. However, the spin rate of the satellite is expected currently ( ≈ day 1500) to be slow, of order ≈ 5 /orbit, so the "fast-spin equal-temperatures in a row" assumption is suspect. In this paper, which considers epochs up to 1580 days after launch, we do not linearize and we use direct numerical integration instead of Fourier methods. In addition to the along-track drag, this code
Visualizing the Weyl Curvature Tensor: Frame-Drag Vortex Lines and Tidal Tendex Lines
NASA Astrophysics Data System (ADS)
Thorne, Kip S.; Chen, Yanbei; Kaplan, Jeffrey D.; Matthews, Keith D.; Nichols, David A.; Scheel, Mark; Zhang, Fan; Zimmerman, Aaron; Lovelace, Geoffrey; Owen, Robert; Brink, Jeandrew
2011-04-01
When one slices spacetime into space plus time, the Weyl curvature tensor gets split into two symmetric, trace-free tensors: its ``electric'' part, which describes tidal forces, and its ``magnetic'' part, which describes differential frame dragging. The electric part is completely characterized by tidal tendex lines (integral curves of its eigenvectors) and their tendicities (eigenvalues); and the magnetic part, by corresponding frame-drag vortex lines and their vorticities. We will discuss the physical meanings of these quantities and their use to visualize spacetime curvature, and we will illustrate them for stationary situations: a spinning body in linearized theory, and a Kerr black hole. This work was supported by NSF grants PHY-0601459, PHY-0653653, PHY-0960291, PHY-0969111, PHY-1005426 and PHY-0956189; NASA grants NNX09AF97G and NNX09AF96G, the Sherman Fairchild and Brinson Foundations, and the David and Barbara Groce Fund.
14 CFR 25.699 - Lift and drag device indicator.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...
14 CFR 25.699 - Lift and drag device indicator.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...
14 CFR 25.697 - Lift and drag devices, controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by...
14 CFR 25.697 - Lift and drag devices, controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by...
14 CFR 25.699 - Lift and drag device indicator.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...
14 CFR 25.699 - Lift and drag device indicator.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...
14 CFR 25.699 - Lift and drag device indicator.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was... actuated after engine power loss, can move the propeller blades toward the feather position to...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was... actuated after engine power loss, can move the propeller blades toward the feather position to...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was... actuated after engine power loss, can move the propeller blades toward the feather position to...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was... actuated after engine power loss, can move the propeller blades toward the feather position to...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane was... actuated after engine power loss, can move the propeller blades toward the feather position to...
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators.
Dou, Xu; Kotov, Valeri N; Uchoa, Bruno
2016-08-24
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators.
Dou, Xu; Kotov, Valeri N; Uchoa, Bruno
2016-01-01
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-08-24
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
NASA Astrophysics Data System (ADS)
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-08-01
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-01-01
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516
Inflight Performance of Cassini Reaction Wheel Bearing Drag in 1997-2013
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Wang, Eric K.
2013-01-01
As the first spacecraft to achieve orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for a first and second extended missions through September 2017. Cassini is a three-axis stabilized spacecraft. It uses reaction wheels to achieve high level of spacecraft pointing stability that is needed during imaging operations of several science instruments. The Cassini flight software makes in-flight estimates of reaction wheel bearing drag torque and made them available to the mission operations team. These telemetry data are being trended for the purpose of monitoring the long-term health of the reaction wheel bearings. Anomalous drag torque signatures observed over the past 15 years are described in this paper. One of these anomalous drag conditions is bearing cage instability that appeared (and disappeared) spontaneously and unpredictably. Cage instability is an uncontrolled vibratory motion of the bearing cage that can produce high-impact forces internal to the bearing that will cause intermittent and erratic torque transients. Characteristics of the observed cage instabilities and other drag torque "spikes" are described in this paper. In day-to-day operations, the reaction wheels' rates must be neither too high nor too low. To protect against operating the wheels in any undesirable conditions (such as prolonged low spin rate operations), a ground software tool named Reaction Wheel Bias Optimization Tool (RBOT) was developed for the management of the wheels. Disciplined and long-term use of this ground software has led to significant reduction in the daily consumption rate of the wheels' low spin rate dwell time. Flight experience on the use of this ground software tool as well as other lessons learned on the management of Cassini reaction wheels is given in this paper.
Geometrical spin symmetry and spin
Pestov, I. B.
2011-07-15
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Elastic Coulomb breakup of 34Na
NASA Astrophysics Data System (ADS)
Singh, G.; Shubhchintak, Chatterjee, R.
2016-08-01
Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our
Innovative Flow Control Concepts for Drag Reduction
NASA Technical Reports Server (NTRS)
Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.
2016-01-01
This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs
Magnon drag thermopower and thermomagnetic properties of single-crystal iron
NASA Astrophysics Data System (ADS)
Watzman, Sarah; Jin, Hyungyu; Heremans, Joseph
2015-03-01
Lucassen et al. demonstrate that magnon drag involves a spin-transfer mechanism closely related to the recently discovered spin-Seebeck effect. This talk will first present results of experiments mapping out the thermopower and magnetothermopower of single-crystal iron and prove that its thermopower is indeed dominated by magnon drag, as suggested by Blatt et al. in 1967. Measurements will then be presented on the magnetic field and temperature dependence of the full thermomagnetic tensor of iron's thermopower in the xxx, xyx, and xyz geometries (the first index gives the direction of the heat flux, the second the measured electric field, the third the applied magnetic field). Results of magneto-thermopower and Nernst coefficients will be reported for single-crystal samples oriented with x =[100]. The Nernst coefficients of elemental iron contain a contribution of a direct spin-transfer mechanism, which should be present in the absence of an interface between a ferromagnet and a normal metal. This mechanism could be put to use in high temperature ferromagnetic metallic thermoelectric alloys. This work is supported by the NSF GRFP under Grant No. DGE-0822215 and the ARO MURI under Grant No. W911NF-14-1-0016.
Drag of Exposed Fittings and Surface Irregularities on Airplane Fuselages
NASA Technical Reports Server (NTRS)
Wood, Donald H
1928-01-01
Measurements of drag were made on fittings taken from a typical fuselage to determine whether the difference between the observed full size fuselage drag and model fuselage drag could be attributed to the effects of fittings and surface irregularities found on the full size fuselage and not on the model. There are wide variations in the drag coefficients for the different fittings. In general those which protrude little from the surface or are well streamlined show very low and almost negligible drag. The measurements show, however, that a large part of the difference between model and full scale test results may be attributed to these fittings.
Ion Coulomb Crystals and Their Applications
NASA Astrophysics Data System (ADS)
Drewsen, Michael
The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged in the past two decades. While this document lacks figures and many specific references, it is the hope, not the text will stimulate the reader to dig deeper into one or more of the discussed subjects, and inspire her/him to think about new potential applications. A fully referenced journal article of essentially the same text can be found in Physica B 460, 105 (2015) [1].
The ghost propagator in Coulomb gauge
Watson, P.; Reinhardt, H.
2011-05-23
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
Ferroelectric instability under screened Coulomb interactions.
Wang, Yong; Liu, Xiaohui; Burton, J D; Jaswal, Sitaram S; Tsymbal, Evgeny Y
2012-12-14
We explore the effect of charge carrier doping on ferroelectricity using density functional calculations and phenomenological modeling. By considering a prototypical ferroelectric material, BaTiO(3), we demonstrate that ferroelectric displacements are sustained up to the critical concentration of 0.11 electron per unit cell volume. This result is consistent with experimental observations and reveals that the ferroelectric phase and conductivity can coexist. Our investigations show that the ferroelectric instability requires only a short-range portion of the Coulomb force with an interaction range of the order of the lattice constant. These results provide a new insight into the origin of ferroelectricity in displacive ferroelectrics and open opportunities for using doped ferroelectrics in novel electronic devices. PMID:23368377
The ghost propagator in Coulomb gauge
NASA Astrophysics Data System (ADS)
Watson, P.; Reinhardt, H.
2011-05-01
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until `forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
Known-to-Unknown Approach to Teach about Coulomb's Law
ERIC Educational Resources Information Center
Thamburaj, P. K.
2007-01-01
Analogies from life experiences help students understand various relationships presented in an introductory chemistry course. Coulomb's law is a complex relationship encountered in introductory general chemistry. A proper understanding of the relationships between the quantities involved in Coulomb's law is necessary in order for students to…
Dynamical effects in the Coulomb expansion following nuclear fragmentation
Chung, K.C.; Donangelo, R.; Schechter, H.
1987-09-01
The effects of the Coulomb expansion on the fragment kinetic energy spectrum for a fragmentating hot nuclear system is investigated. In particular, /sup 12/C-fragment spectra are calculated and compared with those predicted by the uniform expansion approximation. The results indicate that the energy spectra of fragments are quite sensitive to the details of the Coulomb expansion treatment.
Drag Reduction by Polymeric and Nonpolymeric Additives
NASA Astrophysics Data System (ADS)
White, Christopher; Sreenivasan, K. R.
1997-11-01
To investigate the ``self-healing'' property of drag reducing surfactant micelles we have conducted a comparative study between high polymers and surfactants in six turbulent pipe flows (Reynolds numbers between 2000 and 90,000) with varying intensities o f secondary flow. Friction factor values are measured in a straight pipe of 185 diameters; three pipes, each turning through four 90 degree elbows, of lengths 1085 diameters, 875 diameters, and 600 diameters; and a twice-turned coiled pipe, radius of curv ature of 24 diameters and length of 290 diameters. All the flows are gravity driven to prevent degradation effects caused by pump impellers. The large stresses set up by the secondary flows degrade the fragile polymers, thus reducing their effectivness as a drag reducer. The ``self-healing'' of the micelles enables the surfactant to maintain its effectivness. We will present the ``self-healing'' characteristics of the surfactant micelles using the polymer data as the datum.
Kuechemann Carrots for transonic drag reduction.
NASA Astrophysics Data System (ADS)
Bechert, D. W.; Hage, W.; Stanewsky, E.
1999-11-01
Wave drag reduction bodies on the suction side of transonic wings are investigated. Following the original invention by O. Frenzl (1942), subsequently, such bodies have been suggested by Kuechemann and Whitcomb. These devices have been used sucessfully on various TUPOLEV aircraft and on the CONVAIR 990 airliner. New transonic wind tunnel data from an unswept wing with an array of Kuechemann Carrots are presented (airfoil: CAST 10/DOA-2). In a certain parameter range (M= 0.765-0.86) the measurements exhibit a significant reduction of the shock strength on a wing between the Kuechemann Carrots. This entails a dramatic reduction of drag, in a certain Mach number and angular regime up to 50-60%.
How an Elastic Body Reduces its Drag
NASA Astrophysics Data System (ADS)
Alben, Silas; Shelley, Michael; Zhang, Jun
2002-11-01
Recent studies from bio-fluid dynamics have quantified dramatic decreases in fluid drag on flexible organic structures (including tree leaves and underwater plants) as they deform in high-Reynolds-number flows. Our simple experiment considers the role of elastic bending in the steady case. Using a thin glass fiber wetted into a planar soap-film flow, we identify a transition in flow speed beyond which the fluid forces dominate the elastic response, and yield large deformations that greatly reduce drag. We construct a free-streamline model coupling fluid and elastic forces and solve it numerically. Self-similarity emerges on a shrinking length scale, resulting in a transition from the U^2 growth of rigid bodies to a U^4/3 law as the fiber exhibits large deformation. The theory gives a good rationalization of the experimental data in terms of a single non-dimensional parameter.
Ion drag forces and magnetomechanical effect
Nedospasov, A. V. Nenova, N. V.
2010-11-15
Ion flows (ion drag forces) acting on macroscopic-size particles play a significant role in a plasma containing macroparticles. It is shown that ion drag forces can explain the magnetomechanical effect. The formula is derived for determining the dependence of the moment of the magnetomechanical effect on the type and pressure of the gas, tube radius, current, and magnetic field. This formula is in satisfactory agreement with experimental data for discharges in argon and neon with a relatively low magnetization of electron motion. For a high magnetization, the measured values of the moment of the magnetomechanical effect exceed the calculated values, which can be due to the effect of magnetic field nonuniformity and inhomogeneity of the plasma near the solenoid ends.
NASA research on viscous drag reduction
NASA Technical Reports Server (NTRS)
Petersen, R. H.; Maddalon, D. V.
1982-01-01
Current NASA research points toward exciting opportunities for large reductions in viscous drag. Research is underway on natural laminar flow, laminar flow control by suction, and turbulent drag reduction. Preliminary results suggest that a significant amount of natural laminar flow can be achieved on small, straight-wing airplanes. On larger, swept-wing aircraft, laminar flow control by distributed suction is expected to result in significant fuel savings. The area over which laminar flow control is applied depends on tradeoffs involving structural complexity, maintenance, and cost. Several methods of reducing turbulent skin friction by altering the turbulence structure itself have shown promise in exploratory testing. This paper reviews the status of these technologies and indicates the benefits of applying them to future aircraft.
Switchable and Tunable Aerodynamic Drag on Cylinders
NASA Astrophysics Data System (ADS)
Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro
We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.
Switchable and Tunable Aerodynamic Drag on Cylinders
NASA Astrophysics Data System (ADS)
Guttag, Mark; Lopez Jimenez, Francisco; Reis, Pedro
2015-11-01
We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, which are thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.
Hall drag and magnetodrag in graphene.
Song, Justin C W; Levitov, Leonid S
2013-09-20
Massless Dirac fermions in graphene at charge neutrality form a strongly interacting system in which both charged and neutral (energy) modes play an important role. These modes are essentially decoupled in the absence of a magnetic field, but become strongly coupled when the field is applied. We show that this regime is characterized by strong magnetodrag and Hall drag, originating from long-range energy currents and spatial temperature gradients. The energy-driven effects arise in a wide temperature range, and feature an unusually strong dependence on field and carrier density. We argue that this mechanism accounts for the recently observed giant magnetodrag and Hall drag occurring at classically weak fields. PMID:24093284
Aerodynamic drag reduction by vertical splitter plates
NASA Astrophysics Data System (ADS)
Gilliéron, Patrick; Kourta, Azeddine
2010-01-01
The capacity of vertical splitter plates placed at the front or the rear of a simplified car geometry to reduce drag, with and without skew angle, is investigated for Reynolds numbers between 1.0 × 106 and 1.6 × 106. The geometry used is a simplified geometry to represent estate-type vehicles, for the rear section, and MPV-type vehicle. Drag reductions of nearly 28% were obtained for a zero skew angle with splitter plates placed at the front of models of MPV or utility vehicles. The results demonstrate the advantage of adapting the position and orientation of the splitter plates in the presence of a lateral wind. All these results confirm the advantage of this type of solution, and suggest that this expertise should be used in the automotive field to reduce consumption and improve dynamic stability of road vehicles.
Drag reduction by reconfiguration in gorgonians
NASA Astrophysics Data System (ADS)
Derr, Julien; Cornelissen, Annemiek J. M.; Bouchon, Claude; Bouchon, Yolande; Fournier, Jérôme; Moisan, Lionel; Lopez, Pascal Jean; Douady, Stéphane
2015-11-01
Gorgonians are polyp colonies over a flexible branched skeleton. Attached to the coral reefs, they are under the continuous oscillations of the swell. We investigate experimentally the drag, under continuous force traction, of Gorgonia Ventalina, which is particular as its branches are highly reconnected to form a flat net (see fan), perpendicular to the swell, and compare it with another branched species (candelstick). We observe a drag which is linear with speed, indicating a strong reconfiguration, which we also documented by imaging the gorgon shape, and transients showing that the gorgon do not always evolve along quasi-static curves. Depending on the size and shape of the gorgon, we observe different details, from a more rigid small gorgon to a flexible long one. A large gorgon with detached fingers, closing on themselves under the current, presents characteristics surprisingly close to a rigid candlestick one, with not much reconfiguration.
Phonon and magnon heat transport and drag effects
NASA Astrophysics Data System (ADS)
Heremans, Joseph P.
2014-03-01
Thermoelectric generators and coolers constitute today's solid-state energy converters. The two goals in thermoelectrics research are to enhance the thermopower while simultaneously maintaining a high electrical conductivity of the same material, and to minimize its lattice thermal conductivity without affecting its electronic properties. Up to now the lattice thermal conductivity has been minimized by using alloy scattering and, more recently, nanostructuring. In the first part of the talk, a new approach to minimize the lattice thermal conductivity is described that affects phonon scattering much more than electron scattering. This can be done by selecting potential thermoelectric materials that have a very high anharmonicity, because this property governs phonon-phonon interaction probability. Several possible types of chemical bonds will be described that exhibit such high anharmonicity, and particular emphasis will be put on solids with highly-polarizable lone-pair electrons, such as the rock salt I-V-VI2 compounds (e.g. NaSbSe2). The second part of the talk will give an introduction to a completely new class of solid-state thermal energy converters based on spin transport. One configuration for such energy converters is based on the recently discovered spin-Seebeck effect (SSE). This quantity is expressed in the same units as the conventional thermopower, and we have recently shown that it can be of the same order of magnitude. The main advantage of SSE converters is that the problem of optimization is now distributed over two different materials, a ferromagnet in which a flux of magnetization is generated by a thermal gradient, and a normal metal where the flux of magnetization is converted into electrical power. The talk will focus on the basic physics behind the spin-Seebeck effect. Recent developments will then be described based on phonon-drag of spin polarized electrons. This mechanism has made it possible to reach magnitudes of SSE that are comparable
Geodetic precession or dragging of inertial frames
NASA Technical Reports Server (NTRS)
Ashby, Neil; Shahid-Saless, Bahman
1989-01-01
In General Relativity, the Principle of General Covariance allows one to describe phenomena by means of any convenient choice of coordinate system. Here, it is shown that the geodetic precession of a gyroscope orbiting a spherically symmetric, nonrotating mass can be recast as a Lense-Thirring frame-dragging effect, in an appropriately chosen coordinate frame whose origin falls freely along with the gyroscope and whose spatial coordinate axes point in fixed directions.
Viscous drag measurements utilizing microfabricated cantilevers
Oden, P.I.; Chen, G.Y.; Steele, R.A.; Warmack, R.J.; Thundat, T.
1996-06-01
The influence of viscous drag forces on cantilevers is investigated using standard atomic force microscope (AFM) cantilevers. Viscosity effects on several geometrically different cantilevers manifest themselves as variations in resonance frequencies, quality factors, and cantilever response amplitudes. With this novel measurement, a single cantilever can be used to measure viscosities ranging from {eta}=10{sup {minus}2} to 10{sup 2} g/cms. {copyright} {ital 1996 American Institute of Physics.}
Drag force on two disks moving in a granular bed
NASA Astrophysics Data System (ADS)
Kuwabara, A.; Yoshioka, N.; Shimada, T.; Ito, N.
2016-09-01
The drag forces acting on a disk and two disks dragged at constant speeds in a two-dimensional granular bed are measured by an event-driven molecular dynamics simulation. The normal drag force on a disk in case of two disks are dragged in parallel, F2x , is almost the same with the drag force on a disk in case of a single disk is dragged, F1x , when they are apart enough. As the distance between the disks D decreases, F2x increases until it has the maximum at a certain point, D*, and after that it decreases. When D is small enough, whether F2x is larger than F1x or not depends on the ratio of the average radius of the granular prticles to the one of the dragged objects.
Picosecond response of a photon drag detector
Kimmitt, M.F.
1995-12-31
The primary use of photon drag detectors has been with CO{sub 2} lasers at 10{mu}m. Cornmercially-available devices are limited to response times of < 0.5-1ns and voltage responsivities of <0.5{mu}V W{sup -1}. This poster paper will describe the first photon drag detector specifically designed for very fast response. Using the free-election laser FELIX at the FOM Institute in the Netherlands, a rise time of <50ps has been demonstrated, using a 5mm{sup 2} area detector with a responsivity of >1{mu}V W{sup -1} over the wavelength range 10-25{mu}m. The figure shows the clear resolution of the micropulse structure of the laser. The actual width of each pulse is a few picosecoods, with a micropulse spacing of Ins. The advantages or photon drag detectors are room-temperature operation, linear response to intensifies greater than 10{sup 6}MW cm{sup -2} and very high damage threshold. These detectors are cheap to manufacture and, using different semiconductors, can be designed for any wavelength from 1 {mu}m-5mm.
Drag reduction of a heavy vehicle
NASA Astrophysics Data System (ADS)
Ortega, Jason; Salari, Kambiz
2007-11-01
During the 1970's and 1980's, a number of first-generation drag reduction devices were designed to reduce the aerodynamic losses of heavy vehicles (Cooper, 2003). The result of this effort led to the development of a number of devices that improved the aerodynamics of a heavy vehicle tractor. Additionally, a number of second-generation devices were developed for heavy vehicle trailers. Unfortunately, these trailer devices did not enter into the market on a wide-scale basis and, as a result, the modern heavy vehicle trailer largely remains a ``box on wheels'' with minimal aerodynamic consideration taken into its design. The primary obstacle to implementing trailer devices was not their effectiveness in reducing drag, but rather operational, maintenance, and ultimately, economic concerns. However, with rising fuel costs and potentially unstable fuel supplies, there is a renewed objective to further reduce heavy vehicle fuel usage. To accomplish this purpose, the present study investigates the drag reduction capability of a trailer device, which neither reduces the trailer cargo capacity, nor limits access to the trailer doors. RANS simulations are performed on a full-scale tractor-trailer that is traveling at highway conditions with and without the trailer device. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
Aerodynamic drag in cycling: methods of assessment.
Debraux, Pierre; Grappe, Frederic; Manolova, Aneliya V; Bertucci, William
2011-09-01
When cycling on level ground at a speed greater than 14 m/s, aerodynamic drag is the most important resistive force. About 90% of the total mechanical power output is necessary to overcome it. Aerodynamic drag is mainly affected by the effective frontal area which is the product of the projected frontal area and the coefficient of drag. The effective frontal area represents the position of the cyclist on the bicycle and the aerodynamics of the cyclist-bicycle system in this position. In order to optimise performance, estimation of these parameters is necessary. The aim of this study is to describe and comment on the methods used during the last 30 years for the evaluation of the effective frontal area and the projected frontal area in cycling, in both laboratory and actual conditions. Most of the field methods are not expensive and can be realised with few materials, providing valid results in comparison with the reference method in aerodynamics, the wind tunnel. Finally, knowledge of these parameters can be useful in practice or to create theoretical models of cycling performance.
Space Age Swimsuit Reduces Drag, Breaks Records
NASA Technical Reports Server (NTRS)
2008-01-01
A space shuttle and a competitive swimmer have a lot more in common than people might realize: Among other forces, both have to contend with the slowing influence of drag. NASA s Aeronautics Research Mission Directorate focuses primarily on improving flight efficiency and generally on fluid dynamics, especially the forces of pressure and viscous drag, which are the same for bodies moving through air as for bodies moving through water. Viscous drag is the force of friction that slows down a moving object through a substance, like air or water. NASA uses wind tunnels for fluid dynamics research, studying the forces of friction in gasses and liquids. Pressure forces, according to Langley Research Center s Stephen Wilkinson, dictate the optimal shape and performance of an airplane or other aero/hydro-dynamic body. In both high-speed flight and swimming, says Wilkinson, a thin boundary layer of reduced velocity fluid surrounds the moving body; this layer is about 2 centimeters thick for a swimmer.
Drag reduction at a plane wall
NASA Technical Reports Server (NTRS)
Hill, D. C.
1993-01-01
The objective is to determine by analytical means how drag on a plane wall may be modified favorably using a minimal amount of flow information - preferably only information at the wall. What quantities should be measured? How should that information be assimilated in order to arrive at effective control? As a prototypical problem, incompressible, viscous flow, governed by the Navier-Stokes equations, past a plane wall at which the no-slip condition was modified was considered. The streamwise and spanwise velocity components are required to be zero, but the normal component is to be specified according to some control law. The challenge is to choose the wall-normal velocity component based on flow conditions at the wall so that the mean drag is as small as possible. There can be no net mass flux through the wall, and the total available control energy is constrained. A turbulent flow is highly unsteady and has detailed spatial structure. The mean drag on the wall is the integral over the wall of the local shear forces exerted by the fluid, which is then averaged in time; it is a 'macroscopic' property of the flow. It is not obvious how unsteady boundary control is to be applied in order to modify the mean flow most effectively, especially in view of the non- self-adjoint nature of the governing equations. An approximate analytical solution to the suboptimal scheme is pursued.
Correlation function of four spins in the percolation model
NASA Astrophysics Data System (ADS)
Dotsenko, Vladimir S.
2016-10-01
By using the Coulomb gas technics we calculate the four-spin correlation function in the percolation q → 1 limit of the Potts model. It is known that the four-point functions define the actual fusion rules of a particular model. In this respect, we find that fusion of two spins, of dimension Δσ =5/96, produce a new channel, in the 4-point function, which is due to the operator with dimension Δ = 5 / 8.
Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As.
Souma, S; Chen, L; Oszwałdowski, R; Sato, T; Matsukura, F; Dietl, T; Ohno, H; Takahashi, T
2016-01-01
Carrier-induced nature of ferromagnetism in a ferromagnetic semiconductor, (Ga,Mn)As, offers a great opportunity to observe novel spin-related phenomena as well as to demonstrate new functionalities of spintronic devices. Here, we report on low-temperature angle-resolved photoemission studies of the valence band in this model compound. By a direct determination of the distance of the split-off band to the Fermi energy EF we conclude that EF is located within the heavy/light hole band. However, the bands are strongly perturbed by disorder and disorder-induced carrier correlations that lead to the Coulomb gap at EF, which we resolve experimentally in a series of samples, and show that its depth and width enlarge when the Curie temperature decreases. Furthermore, we have detected surprising linear magnetic dichroism in photoemission spectra of the split-off band. By a quantitative theoretical analysis we demonstrate that it arises from the Dresselhaus-type spin-orbit term in zinc-blende crystals. The spectroscopic access to the magnitude of such asymmetric part of spin-orbit coupling is worthwhile, as they account for spin-orbit torque in spintronic devices of ferromagnets without inversion symmetry. PMID:27265402
Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As
Souma, S.; Chen, L.; Oszwałdowski, R.; Sato, T.; Matsukura, F.; Dietl, T.; Ohno, H.; Takahashi, T.
2016-01-01
Carrier-induced nature of ferromagnetism in a ferromagnetic semiconductor, (Ga,Mn)As, offers a great opportunity to observe novel spin-related phenomena as well as to demonstrate new functionalities of spintronic devices. Here, we report on low-temperature angle-resolved photoemission studies of the valence band in this model compound. By a direct determination of the distance of the split-off band to the Fermi energy EF we conclude that EF is located within the heavy/light hole band. However, the bands are strongly perturbed by disorder and disorder-induced carrier correlations that lead to the Coulomb gap at EF, which we resolve experimentally in a series of samples, and show that its depth and width enlarge when the Curie temperature decreases. Furthermore, we have detected surprising linear magnetic dichroism in photoemission spectra of the split-off band. By a quantitative theoretical analysis we demonstrate that it arises from the Dresselhaus-type spin-orbit term in zinc-blende crystals. The spectroscopic access to the magnitude of such asymmetric part of spin-orbit coupling is worthwhile, as they account for spin-orbit torque in spintronic devices of ferromagnets without inversion symmetry. PMID:27265402
Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As
NASA Astrophysics Data System (ADS)
Souma, S.; Chen, L.; Oszwałdowski, R.; Sato, T.; Matsukura, F.; Dietl, T.; Ohno, H.; Takahashi, T.
2016-06-01
Carrier-induced nature of ferromagnetism in a ferromagnetic semiconductor, (Ga,Mn)As, offers a great opportunity to observe novel spin-related phenomena as well as to demonstrate new functionalities of spintronic devices. Here, we report on low-temperature angle-resolved photoemission studies of the valence band in this model compound. By a direct determination of the distance of the split-off band to the Fermi energy EF we conclude that EF is located within the heavy/light hole band. However, the bands are strongly perturbed by disorder and disorder-induced carrier correlations that lead to the Coulomb gap at EF, which we resolve experimentally in a series of samples, and show that its depth and width enlarge when the Curie temperature decreases. Furthermore, we have detected surprising linear magnetic dichroism in photoemission spectra of the split-off band. By a quantitative theoretical analysis we demonstrate that it arises from the Dresselhaus-type spin-orbit term in zinc-blende crystals. The spectroscopic access to the magnitude of such asymmetric part of spin-orbit coupling is worthwhile, as they account for spin-orbit torque in spintronic devices of ferromagnets without inversion symmetry.
Inhomogeneous spin diffusion in traps with cold atoms.
Heiselberg, H
2012-06-15
The spin diffusion and damped oscillations are studied in the collision of two spin polarized clouds of cold atoms with resonant interactions. The strong density dependence of the diffusion coefficient leads to inhomogeneous spin diffusion that changes from central to surface spin flow as the temperature increases. The inhomogeneity and the smaller finite trap size significantly reduce the spin diffusion rate at low temperatures. The resulting spin diffusion rates and spin drag at longer time scales are compatible with measurements at low to high temperatures for resonant attractive interactions but are incompatible with a metastable ferromagnetic phase. This does not exclude that the colliding clouds can evolve into a repulsive initial state which subsequently decays during the bounce and the initial damped oscillations. PMID:23004287
Inhomogeneous spin diffusion in traps with cold atoms.
Heiselberg, H
2012-06-15
The spin diffusion and damped oscillations are studied in the collision of two spin polarized clouds of cold atoms with resonant interactions. The strong density dependence of the diffusion coefficient leads to inhomogeneous spin diffusion that changes from central to surface spin flow as the temperature increases. The inhomogeneity and the smaller finite trap size significantly reduce the spin diffusion rate at low temperatures. The resulting spin diffusion rates and spin drag at longer time scales are compatible with measurements at low to high temperatures for resonant attractive interactions but are incompatible with a metastable ferromagnetic phase. This does not exclude that the colliding clouds can evolve into a repulsive initial state which subsequently decays during the bounce and the initial damped oscillations.
The Direct Measurement of Base Drag for Hypersonic Vehicles
NASA Astrophysics Data System (ADS)
Lv, Zhi-guo; Li, Guo-jun; Jiang, Hua; Zhao, Rong-juan; Wang, Gang; Huang, Jun
A new base drag measurement method has been introduced in this paper. In tradition method, the base drag of the model was measured by the pressure transducer located on the bottom of the model. In this method, the base drag was measured with piezoelectric balance directly. The drag force was measured twice by fixing the model base segment to the model or the balance, the difference between these two measurements is considered as the base drag of the model. The wind tunnel test was carried out in φ0.6m shock tunnel of CARDC with a cone model. The base drag of cone model was measured in the flow field of M(=8.42, Re(l=9.67(106/m with the attack angle of 0(. The results showed that the base drag coefficient of the cone model is 0.0015. It means that the base drag can't be ignored in high precision tests, and it can be measured by piezoelectric balance in shock tunnel. The length of the tail sting affects the axis force test result. In the same attack angle, the base drag of high lift/drag ratio model decreases with the increasing of flow field Mach number.
Evaluation of Skin Friction Drag for Liner Applications in Aircraft
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.
2016-01-01
A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.
Characterizing intra-exciton Coulomb scattering in terahertz excitations
Zybell, S.; Eßer, F.; Helm, M.; Bhattacharyya, J.; Winnerl, S.; Schneider, H.; Schneebeli, L.; Böttge, C. N.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.
2014-11-17
An intense terahertz field is applied to excite semiconductor quantum wells yielding strong non-equilibrium exciton distributions. Even though the relaxation channels involve a complicated quantum kinetics of Coulomb and phonon effects, distinct relaxation signatures of Coulomb scattering are identified within time-resolved photoluminescence by comparing the experiment with a reduced model that contains all relevant microscopic processes. The analysis uncovers a unique time scale for the Coulomb scattering directly from experiments and reveals the influence of phonon relaxation as well as radiative decay.
Positron scattering from hydrogen atom with screened Coulomb potentials
Ghoshal, Arijit; Nayek, Sujay; Kamali, M. Z. M.; Ratnavelu, K.
2014-03-05
Elastic positron-hydrogen collisions with screened Coulomb potentials have been investigated using a second-order distorted wave Born approximation in the momentum space. Two types of potentials have been considered, namely, static screened Coulomb potential and exponential cosine-screened Coulomb potential. Using a simple variationally determined hydrogenic wave function it has been possible to obtain the scattering amplitude in a closed form. A detailed study has been made on the differential and total cross sections in the energy range 20–300 eV.
Characterizing intra-exciton Coulomb scattering in terahertz excitations
NASA Astrophysics Data System (ADS)
Zybell, S.; Bhattacharyya, J.; Winnerl, S.; Eßer, F.; Helm, M.; Schneider, H.; Schneebeli, L.; Böttge, C. N.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.
2014-11-01
An intense terahertz field is applied to excite semiconductor quantum wells yielding strong non-equilibrium exciton distributions. Even though the relaxation channels involve a complicated quantum kinetics of Coulomb and phonon effects, distinct relaxation signatures of Coulomb scattering are identified within time-resolved photoluminescence by comparing the experiment with a reduced model that contains all relevant microscopic processes. The analysis uncovers a unique time scale for the Coulomb scattering directly from experiments and reveals the influence of phonon relaxation as well as radiative decay.
Deep inelastic scattering near the Coulomb barrier
Gehring, J.; Back, B.; Chan, K.
1995-08-01
Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.
Spatio-temporal correlations in Coulomb clusters
NASA Astrophysics Data System (ADS)
Ghosal, Amit; Ash, Biswarup; Chakrabarti, Jaydeb
Dynamical response of Coulomb-particles in nanoclusters are investigated at different temperatures characterizing their solid-like (Wigner molecule) and liquid-like behavior. The density correlations probe spatio-temporal relaxation, uncovering distinct behavior at multiple time scales in these systems. They show a stretched-Gaussian or stretched-exponential spatial decay at long times in circular and irregular traps. Interplay of confinement and long-range nature of interactions yields spatially correlated motion of the particles in string-like paths, leaving the system heterogeneous even at long times. While particles in a `solid' flow producing dynamic heterogeneities, their random motion in `liquid' defies central limit theorem. Distinguishing the two confinements, temperature dependent motional signatures serve as a criterion for the crossover between `solid' and `liquid'. The irregular Wigner molecule turns into a nearly homogeneous liquid over a much wider temperature window compared to the circular case. The temperature dependence of different relaxation time scales builds crucial insights. A phenomenological model, relating the unusual dynamics to the heterogeneous nature of the diffusivities in the system, captures much of the subtleties of our numerical simulations.
Strong Coulomb Coupling in the Todorov Equation
NASA Astrophysics Data System (ADS)
Bawin, M.; Cugnon, J.; Sazdjian, H.
A positronium-like system with strong Coulomb coupling, considered in its pseudoscalar sector, is studied in the framework of relativistic quantum constraint dynamics with the Todorov choice for the potential. Case’s method of self-adjoint extension of singular potentials, which avoids explicit introduction of regularization cut-offs, is adopted. It is found that, as the coupling constant α increases, the bound state spectrum undergoes an abrupt change at the critical value α=αc=1/2. For α>αc, the mass spectrum displays, in addition to the existing states for α<αc, a new set of an infinite number of bound states concentrated in a narrow band starting at mass W=0; all the states have indefinitely oscillating wave functions near the origin. In the limit α→αc from above, the oscillations disappear and the narrow band of low-lying states shrinks to a single massless state with a mass gap with the rest of the spectrum. This state has the required properties to represent a Goldstone boson and to signal spontaneous breakdown of chiral symmetry.
Electron attraction mediated by Coulomb repulsion.
Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S
2016-07-21
One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter. PMID:27443742
Femtosecond Laser-Induced Coulomb Explosion Imaging
NASA Astrophysics Data System (ADS)
Karimi, Reza; Liu, Wing-Ki; Sanderson, Joseph
2016-07-01
We review recent progress in the field of Coulomb imaging using femtosecond laser pulses of variable length, referred to as Femtosecond Multiple Pulse Length Spectroscopy (FEMPULS). This method introduces a multi-dimensional approach to the study of the molecular dynamics of the multiply ionized triatomic molecules: CO2, OCS, and N2O. We describe the experimental setup used and the approaches needed to optimize the multi-particle detection, coincidence technique. The results show the degree of high resolution imaging which can be achieved with few cycle pulses, and how the onset of charge resonance enhanced ionization (CREI) can be observed as pulse length is increased. By coupling pulse length variation with Dalitz and Newton plotting techniques, stepwise processes can be identified for all three molecules, giving insight into the dynamics, particularly on the 3+ state, which has been revealed as the doorway state to CREI. Finally, in the case of OCS, pulse length variation is shown to have the potential as a control mechanism, as it modulates the ratio of stepwise to concerted processes.
Coulomb Collision Algorithms for Particle Codes
NASA Astrophysics Data System (ADS)
Cohen, Bruce
2006-04-01
This paper surveys some of the particle code algorithms used to model Coulomb collisions in fully ionized plasmas, e.g., pair-wise operators such as the Takizuka-Abe^1 scheme and extensions^2, Langevin equation collision operators^3,4, and partially linearized gyrokinetic collisions operators for strongly magnetized plasmas.^5,6,7 Some recent experience is reported.^8 Issues such as physics completeness, accuracy, and comparative algorithm performance are highlighted. 1. T. Takizuka and H. Abe, J. Comput. Phys. 25, 205 (1977). 2. K. Nanbu, Phys. Rev. E 55, 4642 (1997). 3. M.E. Jones, et al., J. Comp. Phys. 123, 169 (1996). 4. W.M. Manheimer, M. Lampe, and G. Joyce, et al., J. Comp. Phys. 138, 565 (1997). 5. X.Q. Xu and M.N. Rosenbluth, Phys. Fluids B 3, 627 (1991). 6. A.M. Dimits and B.I. Cohen, Phys. Rev. E 49, 709 (1994). 7. Z. Lin, W. M. Tang, and W. W. Lee, Phys.Plasmas 2, 2975 (August 1995). 8. B.I. Cohen, et al., ``Effects of ion-ion collisions and inhomogeneity in two-dimensional kinetic ion simulations of stimulated Brillouin backscattering,'' accepted for publication in Phys. Plasmas (2006).
Coulomb gauge ghost Dyson-Schwinger equation
NASA Astrophysics Data System (ADS)
Watson, P.; Reinhardt, H.
2010-12-01
A numerical study of the ghost Dyson-Schwinger equation in Coulomb gauge is performed and solutions for the ghost propagator found. As input, lattice results for the spatial gluon propagator are used. It is shown that in order to solve completely, the equation must be supplemented by a nonperturbative boundary condition (the value of the inverse ghost propagator dressing function at zero momentum), which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until forced to freeze out in the infrared to the value of the boundary condition. The renormalization is shown to be largely independent of the boundary condition. The boundary condition and the pattern of the solutions can be interpreted in terms of the Gribov gauge-fixing ambiguity. The connection to the temporal gluon propagator and the infrared slavery picture of confinement is explored.
Electron attraction mediated by Coulomb repulsion
NASA Astrophysics Data System (ADS)
Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S.
2016-07-01
One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed ‘excitonic’, promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the ‘glue’ that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M.S.; Ricketson, L.F.; Dimits, A.M.; Caflisch, R.E.; Cohen, B.I.
2014-10-01
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε, the computational cost of the method is O(ε{sup −2}) or O(ε{sup −2}(lnε){sup 2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε{sup −3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10{sup −5}. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.
2014-05-29
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods.more » We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.« less
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.
2014-05-29
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε^{–2}) or (ε^{–2}(lnε)^{2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε^{–3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10^{–5}. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
An Experimental Investigation of Helicopter Rotor Hub Fairing Drag Characteristics
NASA Technical Reports Server (NTRS)
Sung, D. Y.; Lance, M. B.; Young, L. A.; Stroub, R. H.
1989-01-01
A study was done in the NASA 14- by 22-Foot Wind Tunnel at Langley Research Center on the parasite drag of different helicopter rotor hub fairings and pylons. Parametric studies of hub-fairing camber and diameter were conducted. The effect of hub fairing/pylon clearance on hub fairing/pylon mutual interference drag was examined in detail. Force and moment data are presented in tabular and graphical forms. The results indicate that hub fairings with a circular-arc upper surface and a flat lower surface yield maximum hub drag reduction; and clearance between the hub fairing and pylon induces high mutual-interference drag and diminishes the drag-reduction benefit obtained using a hub fairing with a flat lower surface. Test data show that symmetrical hub fairings with circular-arc surfaces generate 74 percent more interference drag than do cambered hub fairings with flat lower surfaces, at moderate negative angle of attack.
Drag-compensated, precision-powered hinge system
NASA Technical Reports Server (NTRS)
Jacquemin, G. G.; Rusk, S. J.
1985-01-01
The design of a high precision powered hinge is complicated by the unavoidable presence of parasitic drag torque resulting mainly from friction and transfer of power, signals, and fluids across the hinge. Regardless of the type of drive system selected, it is impossible to completely eliminate all parasitic drag. However, the mechanism described here comes very close to providing a drag free system. All sources of parasitic drag torque are collected on a shaft which is powered by an electric motor independent of the main hinge drive. Under control of a sensor, the electric motor applies a compensating torque equal to that of the parasitic drag torque, allowing the main hinge drive to operate in a practically drag free environment with very high positioning precision.
Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers
NASA Technical Reports Server (NTRS)
Storms, Bruce; Salari, Kambiz; Babb, Alex
2008-01-01
The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.
Drag force parameters of rigid and flexible vegetal elements
NASA Astrophysics Data System (ADS)
Chapman, John A.; Wilson, Bruce N.; Gulliver, John S.
2015-05-01
This paper compares parameters that characterize vegetation flexibility effects on flow resistance and drag. Drag forces have been measured in a flume for simple cylindrical obstructions of the same shape and size but with different flexibility under several flow conditions. This data set is used to fit drag parameters and to relate their value to flexibility through the Cauchy Number. A formulation is presented where the drag coefficient is evaluated as a function of a new calibration velocity parameter which is related to the elastic modulus of the obstruction. While the use of a Vogel exponent and reference velocity provides a similar response, the reference velocity when used is somewhat nebulous and appears to have a critical impact on the parameter and the drag force calculated. The proposed formulation for drag reduction is more consistently estimated for the range of flexibilities in this study.
Reduction in parachute drag due to forebody wake effects
Peterson, C.W.; Johnson, D.W.
1981-01-01
An experiment was conducted to evaluate approximate analytical methods for predicting the reduction in parachute drag due to forebody wake effects. The drag of a 20/sup 0/ conical ribbon parachute was measured at several axial stations behind an ogive-cylinder forebody with and without fins. The same parachute was tested in undisturbed flow (where wake effects were negligible) so that the effects of suspension line length on parachute drag could be separated from the drag losses caused by the turbulent wake. Total head pressure surveys were made across the forebody wake and integrated across the canopy skirt area to determine the effective dynamic pressure acting on the parachute. Experimental results confirmed the validity of the underlying physical model of the parachute/wake interaction: the ratio of parachute drag behind a forebody divided by wake-free parachute drag is equal to the ratio of effective dynamic pressure acting on the parachute divided by freestream dynamic pressure.
Space Shuttle Orbital Drag Parachute Design
NASA Technical Reports Server (NTRS)
Meyerson, Robert E.
2001-01-01
The drag parachute system was added to the Space Shuttle Orbiter's landing deceleration subsystem beginning with flight STS-49 in May 1992. The addition of this subsystem to an existing space vehicle required a detailed set of ground tests and analyses. The aerodynamic design and performance testing of the system consisted of wind tunnel tests, numerical simulations, pilot-in-the-loop simulations, and full-scale testing. This analysis and design resulted in a fully qualified system that is deployed on every flight of the Space Shuttle.
Magnetic Viscous Drag for Friction Labs
NASA Astrophysics Data System (ADS)
Gaffney, Chris; Catching, Adam
2016-09-01
The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet sliding down a conducting ramp, e.g., an aluminum ramp (Fig. 1). The measurements are simple and quite reproducible, and it appears to readily catch the interest of students.
NASA research on viscous drag reduction
NASA Technical Reports Server (NTRS)
Petersen, R. H.; Maddalon, D. V.
1982-01-01
Research on natural laminar flow, laminar flow control by suction, and turbulent drag reduction is discussed. Preliminary results suggest that a significant amount of natural laminar flow can be achieved on small, straight wing airplanes. On larger, swept wing aircraft, laminar flow control by distributed suction is expected to result in significant fuel savings. The area over which laminar flow control is applied depends on tradeoffs involving structural complexity, maintenance, and cost. Several methods of reducing turbulent skin friction by altering the turbulence structure itself have shown promise in exploratory testing. The status of these technologies and the benefits of applying them to future aircraft are reviewed.
Skin friction drag measurements by LDV.
Mazumder, M K; Wanchoo, S; McLeod, P C; Ballard, G S; Mozumdar, S; Caraballo, N
1981-08-15
A laser Doppler velocimeter employing a microscope objective as the receiving lens has been developed for measuring fluid velocity inside the boundary layer flow field with a spatial resolution of 40 microm. The method was applied for direct measurement of aerodynamic skin friction drag from the measured velocity gradient at the wall. Experimental results obtained on skin friction and on velocity components in a turbulent boundary layer on a low speed wind tunnel showed good agreement with previously reported data using conventional instruments such as hot-wire anemometers and Preston tubes. The method thus provides a tool for measurement and control of skin friction on aerodynamic bodies without perturbing the flow field.
Dragging of polarizable nanodroplets by distantly solvated ions.
Wang, Boyang; Král, Petr
2008-07-25
We show by molecular dynamics simulations that ions intercalated in carbon and boron-nitride nanotubes can be solvated at distance in polarizable nanodroplets adsorbed on their surfaces. When the ions are driven in the nanotubes by electric fields, the adsorbed droplets are dragged together with them. We illustrate this phenomenon by dragging assemblies of 20-10,000 water molecules by individual Na+ and Cl- ions. This ion-facilitated dragging could be applied in molecular delivery, separation, and desalination.
Measuring the Drag Force on a Falling Ball
ERIC Educational Resources Information Center
Cross, Rod; Lindsey, Crawford
2014-01-01
The effect of the aerodynamic drag force on an object in flight is well known and has been described in this and other journals many times. At speeds less than about 1 m/s, the drag force on a sphere is proportional to the speed and is given by Stokes' law. At higher speeds, the drag force is proportional to the velocity squared and is…
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zimmerman, Aaron; Nichols, David A.; Chen, Yanbei; Lovelace, Geoffrey; Matthews, Keith D.; Owen, Robert; Thorne, Kip S.
2012-10-01
When one splits spacetime into space plus time, the Weyl curvature tensor (which equals the Riemann tensor in vacuum) splits into two spatial, symmetric, traceless tensors: the tidal field E, which produces tidal forces, and the frame-drag field B, which produces differential frame dragging. In recent papers, we and colleagues have introduced ways to visualize these two fields: tidal tendex lines (integral curves of the three eigenvector fields of E) and their tendicities (eigenvalues of these eigenvector fields); and the corresponding entities for the frame-drag field: frame-drag vortex lines and their vorticities. These entities fully characterize the vacuum Riemann tensor. In this paper, we compute and depict the tendex and vortex lines, and their tendicities and vorticities, outside the horizons of stationary (Schwarzschild and Kerr) black holes; and we introduce and depict the black holes’ horizon tendicity and vorticity (the normal-normal components of E and B on the horizon). For Schwarzschild and Kerr black holes, the horizon tendicity is proportional to the horizon’s intrinsic scalar curvature, and the horizon vorticity is proportional to an extrinsic scalar curvature. We show that, for horizon-penetrating time slices, all these entities (E, B, the tendex lines and vortex lines, the lines’ tendicities and vorticities, and the horizon tendicities and vorticities) are affected only weakly by changes of slicing and changes of spatial coordinates, within those slicing and coordinate choices that are commonly used for black holes. We also explore how the tendex and vortex lines change as the spin of a black hole is increased, and we find, for example, that as a black hole is spun up through a dimensionless spin a/M=3/2, the horizon tendicity at its poles changes sign, and an observer hovering or falling inward there switches from being stretched radially to being squeezed. At this spin, the tendex lines that stick out from the horizon’s poles switch
Advanced Fluid Research On Drag reduction In Turbulence Experiments -AFRODITE-
NASA Astrophysics Data System (ADS)
Fransson, J. H. M.; Fallenius, B. E. G.; Shahinfar, S.; Sattarzadeh, S. S.; Talamelli, A.
2011-12-01
A hot topic in today's debate on global warming is drag reduction in aeronautics. The most beneficial concept for drag reduction is to maintain the major portion of the airfoil laminar. Estimations show that the potential drag reduction can be as much as 15%, which would give a significant reduction of NOx and CO emissions in the atmosphere considering that the number of aircraft take offs, only in the EU, is over 19 million per year. An important element for successful flow control, which can lead to a reduced aerodynamic drag, is enhanced physical understanding of the transition to turbulence process.
Parasite-Drag Measurements of Five Helicopter Rotor Hubs
NASA Technical Reports Server (NTRS)
Churchill, Gary B.; Harrington, Robert D.
1959-01-01
An investigation has been conducted in the Langley full-scale tunnel to determine the parasite drag of five production-type helicopter rotor hubs. Some simple fairing arrangements were attempted in an effort to reduce the hub drag. The results indicate that, within the range of the tests, changes in angle of attack, hub rotational speed, and forward speed generally had only a small effect on the equivalent flat-plate area representing parasite drag. The drag coefficients of the basic hubs, based on projected hub frontal area, increased with hub area and varied from 0.5 to 0.76 for the hubs tested.
Experiences with optimizing airfoil shapes for maximum lift over drag
NASA Technical Reports Server (NTRS)
Doria, Michael L.
1991-01-01
The goal was to find airfoil shapes which maximize the ratio of lift over drag for given flow conditions. For a fixed Mach number, Reynolds number, and angle of attack, the lift and drag depend only on the airfoil shape. This then becomes a problem in optimization: find the shape which leads to a maximum value of lift over drag. The optimization was carried out using a self contained computer code for finding the minimum of a function subject to constraints. To find the lift and drag for each airfoil shape, a flow solution has to be obtained. This was done using a two dimensional Navier-Stokes code.
Drag of the complete configuration aerodynamic considerations, 2
NASA Technical Reports Server (NTRS)
Roskam, J.
1975-01-01
A number of drag items are related to the performance of a complete aircraft configuration. First, the effect of fuselage camber, wing and nacelle incidence are discussed from a viewpoint of design decision making. Second, the effect of overall cruise drag on the design gross and empty weight of the airplane is discussed. Examples show that cruise drag can have a very important influence on total airplane weight. Third, the effects of usable cruise lift-to-drag ratio and wing loading are shown to be important. Finally several research needs relating to design of the complete configuration are reviewed.
Drag kings in the new wave: gender performance and participation.
Surkan, Kim
2002-01-01
In an examination of Midwestern drag king performers and communities that have emerged since the study by Volcano and Halberstam of king cultures in London, New York, and San Francisco, this article considers traditional and alternative ways of "doing drag," both performative and participatory, as a means of interrogating the proximity of a "new wave" of king culture to academic theory. Tracing the evolution of drag king performance in the Twin Cities from the 1996 workshop by Diane Torr to the formation of two distinct king troupes in the late 1990s demonstrates a particular trajectory in kinging that reflects a new consciousness and enactment of gender theory through artistic praxis. Participation plays a key role in breaking down the distance between spectator and performer in venues such as the First International Drag King Extravaganza in Columbus, Ohio, and Melinda Hubman's art installation "Performing Masculinities: Take a Chance on Gender" in Minneapolis. By engaging the "audience" in drag, the Extravaganza "Science Fair" successfully referenced drag kings' shared history with early American freak shows in a clever and critical way. Moving beyond the contest framework of early king shows, new drag king troupes like Minneapolis' Dykes Do Drag are "mixing it up" in an attempt to complicate notions of butch/femme gender roles, sexuality, and drag stereotypes.
Reference values and improvement of aerodynamic drag in professional cyclists.
García-López, Juan; Rodríguez-Marroyo, José Antonio; Juneau, Carl-Etienne; Peleteiro, José; Martínez, Alfredo Córdova; Villa, José Gerardo
2008-02-01
The aims of this study were to measure the aerodynamic drag in professional cyclists, to obtain aerodynamic drag reference values in static and effort positions, to improve the cyclists' aerodynamic drag by modifying their position and cycle equipment, and to evaluate the advantages and disadvantages of these modifications. The study was performed in a wind tunnel with five professional cyclists. Four positions were assessed with a time-trial bike and one position with a standard racing bike. In all positions, aerodynamic drag and kinematic variables were recorded. The drag area for the time-trial bike was 31% higher in the effort than static position, and lower than for the standard racing bike. Changes in the cyclists' position decreased the aerodynamic drag by 14%. The aero-helmet was not favourable for all cyclists. The reliability of aerodynamic drag measures in the wind tunnel was high (r > 0.96, coefficient of variation < 2%). In conclusion, we measured and improved the aerodynamic drag in professional cyclists. Our results were better than those of other researchers who did not assess aerodynamic drag during effort at race pace and who employed different wheels. The efficiency of the aero-helmet, and the validity, reliability, and sensitivity of the wind tunnel and aerodynamic field testing were addressed.
The generalized Coulomb interactions for relativistic scalar bosons
NASA Astrophysics Data System (ADS)
Zarrinkamar, S.; Panahi, H.; Rezaei, M.
2016-07-01
Approximate analytical solutions of Duffin-Kemmer-Petiau (DKP) equation are obtained for the truncated Coulomb, generalized Cornell, Richardson and Song-Lin potentials via the quasi-exact analytical ansatz approach.
Charles Augustin Coulomb and the fundamental law of electrostatics
NASA Astrophysics Data System (ADS)
Falconer, Isobel
2004-10-01
In his famous experiment on the inverse square law of electrostatics, Coulomb neither defined electric charge nor gave reliable measurements of the force-distance relation. Yet the experiment has often been viewed as the basis of the fundamental law of electrostatics. This paper discusses Coulomb's life, showing the context within which he was working, how he arrived at the experiment, and the use he made of it. Physics in France in the late 18th century was undergoing a transformation from a science of holistic observation and explanations to one of universal laws and exact measurement. Coulomb was both a subject of, and an important contributor to, this change, and these two aspects are evident in his approach to the experiment and to the later uptake of his results. The reaction in the rest of Europe was initially less favourable, and the ultimate fame of Coulomb's experiment was dependent on the triumph of French mathematical physics in the 19th century.
Thermodynamic properties of the magnetized Coulomb crystal lattices
NASA Astrophysics Data System (ADS)
Kozhberov, A. A.
2016-08-01
It is thought that Coulomb crystals of ions with hexagonal close-packed lattice may form in the crust of strongly-magnetized neutron stars (magnetars). In this work we are trying to verify this prediction assuming that the direction of the magnetic field corresponds to the minimum of the zero-point energy. We also continue a detailed study of vibration modes and thermodynamic properties of magnetized Coulomb crystals in a wide range of temperatures and magnetic fields. It is demonstrated that the total Helmholtz free energy of the body-centered cubic Coulomb crystal is always lower than that of the Coulomb crystal with hexagonal close-packed or face-centered cubic lattice, which casts doubt on the hypothesis above.
Multifragmentation: Surface and Coulomb instabilities of sheets, bubbles, and donuts
Moretto, L.G.; Tso, Kin; Wozniak, G.J.
1993-08-01
Disks, bubbles, and donuts have been observed in dynamical calculations of heavy ion collisions. These shapes are subject to a variety of surface and Coulomb instabilities. These instabilities are identified and analyzed in terms of their relevance to multifragmentation.
Selectable towline spin chute system
NASA Technical Reports Server (NTRS)
Vairo, Daniel M. (Inventor); Whipple, Raymond D. (Inventor)
1991-01-01
An emergency spin recovery parachute is presented that is housed within a centrally mounted housing on the aft end of an aircraft and connected to a ring fitting within the housing. Two selectively latching shackles connected to separate towlines are openly disposed adjacent the ring fitting. The towlines extend in opposite directions from the housing along the aircraft wing to attachment points adjacent the wing-tips where the other end of each towline is secured. Upon pilot command, one of the open shackles latches to the ring fitting to attach the towline connected thereto, and a second command signal deploys the parachute. Suitable break-away straps secure the towlines to the aircraft surface until the parachute is deployed and the resulting force on the towline attached to the parachute overcomes the straps and permits the towline to extend to the point of attachment to exert sufficient drag on the spinning aircraft to permit the pilot to regain control of the aircraft. To employ the parachute as a drag chute to reduce landing speeds, both shackles and their respective towlines are latched to the ring fitting.
Effects of Increasing Drag on Conjunction Assessment
NASA Technical Reports Server (NTRS)
Frigm, Ryan Clayton; McKinley, David P.
2010-01-01
Conjunction Assessment Risk Analysis relies heavily on the computation of the Probability of Collision (Pc) and the understanding of the sensitivity of this calculation to the position errors as defined by the covariance. In Low Earth Orbit (LEO), covariance is predominantly driven by perturbations due to atmospheric drag. This paper describes the effects of increasing atmospheric drag through Solar Cycle 24 on Pc calculations. The process of determining these effects is found through analyzing solar flux predictions on Energy Dissipation Rate (EDR), historical relationship between EDR and covariance, and the sensitivity of Pc to covariance. It is discovered that while all LEO satellites will be affected by the increase in solar activity, the relative effect is more significant in the LEO regime around 700 kilometers in altitude compared to 400 kilometers. Furthermore, it is shown that higher Pc values can be expected at larger close approach miss distances. Understanding these counter-intuitive results is important to setting Owner/Operator expectations concerning conjunctions as solar maximum approaches.
Drag reduction in fish-like locomotion
NASA Astrophysics Data System (ADS)
Barrett, D. S.; Triantafyllou, M. S.; Yue, D. K. P.; Grosenbaugh, M. A.; Wolfgang, M. J.
1999-08-01
We present experimental force and power measurements demonstrating that the power required to propel an actively swimming, streamlined, fish-like body is significantly smaller than the power needed to tow the body straight and rigid at the same speed U. The data have been obtained through accurate force and motion measurements on a laboratory fish-like robotic mechanism, 1.2 m long, covered with a flexible skin and equipped with a tail fin, at Reynolds numbers up to 106, with turbulence stimulation. The lateral motion of the body is in the form of a travelling wave with wavelength [lambda] and varying amplitude along the length, smoothly increasing from the front to the tail end. A parametric investigation shows sensitivity of drag reduction to the non-dimensional frequency (Strouhal number), amplitude of body oscillation and wavelength [lambda], and angle of attack and phase angle of the tail fin. A necessary condition for drag reduction is that the phase speed of the body wave be greater than the forward speed U. Power estimates using an inviscid numerical scheme compare favourably with the experimental data. The method employs a boundary-integral method for arbitrary flexible body geometry and motions, while the wake shed from the fish-like form is modelled by an evolving desingularized dipole sheet.
Drag Reduction Through Distributed Electric Propulsion
NASA Technical Reports Server (NTRS)
Stoll, Alex M.; Bevirt, JoeBen; Moore, Mark D.; Fredericks, William J.; Borer, Nicholas K.
2014-01-01
One promising application of recent advances in electric aircraft propulsion technologies is a blown wing realized through the placement of a number of electric motors driving individual tractor propellers spaced along each wing. This configuration increases the maximum lift coefficient by providing substantially increased dynamic pressure across the wing at low speeds. This allows for a wing sized near the ideal area for maximum range at cruise conditions, imparting the cruise drag and ride quality benefits of this smaller wing size without decreasing takeoff and landing performance. A reference four-seat general aviation aircraft was chosen as an exemplary application case. Idealized momentum theory relations were derived to investigate tradeoffs in various design variables. Navier-Stokes aeropropulsive simulations were performed with various wing and propeller configurations at takeoff and landing conditions to provide insight into the effect of different wing and propeller designs on the realizable effective maximum lift coefficient. Similar analyses were performed at the cruise condition to ensure that drag targets are attainable. Results indicate that this configuration shows great promise to drastically improve the efficiency of small aircraft.
Diffusion and Coulomb separation of ions in dense matter.
Beznogov, M V; Yakovlev, D G
2013-10-18
We analyze diffusion equations in strongly coupled Coulomb mixtures of ions in dense stellar matter. Strong coupling of ions in the presence of gravitational forces and electric fields (induced by plasma polarization in the presence of gravity) produces a specific diffusion current which can separate ions with the same A/Z (mass to charge number) ratios but different Z. This Coulomb separation of ions can be important for the evolution of white dwarfs and neutron stars. PMID:24182248
A New Hybrid STEP/Coulomb model for Aftershock Forecasting
NASA Astrophysics Data System (ADS)
Steacy, S.; Jimenez, A.; Gerstenberger, M.
2014-12-01
Aftershock forecasting models tend to fall into two classes - purely statistical approaches based on clustering, b-value, and the Omori-Utsu law; and Coulomb rate-state models which relate the forecast increase in rate to the magnitude of the Coulomb stress change. Recently, hybrid models combining physical and statistical forecasts have begun to be developed, for example by Bach and Hainzl (2012) and Steacy et al. (2013). The latter approach combined Coulomb stress patterns with the STEP (short-term earthquake probability) model by redistributing expected rate from areas with decreased stress to regions where the stress had increased. The chosen 'Coulomb Redistribution Parameter' (CRP) was 0.93, based on California earthquakes, which meant that 93% of the total rate was expected to occur where the stress had increased. The model was tested against the Canterbury sequence and the main result was that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. The authors suggested that the major reason for this discrepancy was uncertainty in the slip models and, particularly, in the geometries of the faults involved in each complex major event. Here we develop a variant of the STEP/Coulomb model in which the CRP varies based on the percentage of aftershocks that occur in the positively stressed areas during the forecast learning period. We find that this variant significantly outperforms both STEP and the previous hybrid model in almost all cases, even when the input Coulomb model is quite poor. Our results suggest that this approach might be more useful than Coulomb rate-state when the underlying slip model is not well constrained due to the dependence of that method on the magnitude of the Coulomb stress change.
Aftershock triggering by complete Coulomb stress changes
Kilb, Debi; Gomberg, J.; Bodin, P.
2002-01-01
We examine the correlation between seismicity rate change following the 1992, M7.3, Landers, California, earthquake and characteristics of the complete Coulomb failure stress (CFS) changes (??CFS(t)) that this earthquake generated. At close distances the time-varying "dynamic" portion of the stress change depends on how the rupture develops temporally and spatially and arises from radiated seismic waves and from permanent coseismic fault displacement. The permanent "static" portion (??CFS) depends only on the final coseismic displacement. ??CFS diminishes much more rapidly with distance than the transient, dynamic stress changes. A common interpretation of the strong correlation between ??CFS and aftershocks is that load changes can advance or delay failure. Stress changes may also promote failure by physically altering properties of the fault or its environs. Because it is transient, ??CFS(t) can alter the failure rate only by the latter means. We calculate both ??CFS and the maximum positive value of ??CFS(t) (peak ??CFS(t)) using a reflectivity program. Input parameters are constrained by modeling Landers displacement seismograms. We quantify the correlation between maps of seismicity rate changes and maps of modeled ??CFS and peak ??CFS(t) and find agreement for both models. However, rupture directivity, which does not affect ??CFS, creates larger peak ??CFS(t) values northwest of the main shock. This asymmetry is also observed in seismicity rate changes but not in ??CFS. This result implies that dynamic stress changes are as effective as static stress changes in triggering aftershocks and may trigger earthquakes long after the waves have passed.
Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets.
Gingras, M J P; McClarty, P A
2014-05-01
The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare-earth pyrochlore magnets which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge freedom. Spin ices provide one of very few experimentally realized examples of fractionalization because their elementary excitations can be regarded as magnetic monopoles and, over some temperature range, spin ice materials are best described as liquids of these emergent charges. In the presence of quantum fluctuations, one can obtain, in principle, a quantum spin liquid descended from the classical spin ice state characterized by emergent photon-like excitations. Whereas in classical spin ices the excitations are akin to electrostatic charges with a mutual Coulomb interaction, in the quantum spin liquid these charges interact through a dynamic and emergent electromagnetic field. In this review, we describe the latest developments in the study of such a quantum spin ice, focusing on the spin liquid phenomenology and the kinds of materials where such a phase might be found.
Eslami, L. Faizabadi, E.
2014-05-28
The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.
A fundamental study of drag and an assessment of conventional drag-due-to-lift reduction devices
NASA Technical Reports Server (NTRS)
Yates, J. E.; Donald, C. D.
1986-01-01
The integral conservation laws of fluid mechanics are used to assess the drag efficiency of lifting wings, both CTOL and various out-of-plane configurations. The drag-due-to-lift is separated into two major components: (1) the induced drag-due-to-lift that depends on aspect ratio but is relatively independent of Reynolds number; (2) the form drag-due-to-lift that is independent of aspect ratio but dependent on the details of the wing section design, planform and Reynolds number. For each lifting configuration there is an optimal load distribution that yields the minimum value of drag-due-to-lift. For well designed high aspect ratio CTOL wings the two drag components are independent. With modern design technology CTOL wings can be (and usually are) designed with a drag-due-to-lift efficiency close to unity. Wing tip-devices (winglets, feathers, sails, etc.) can improve drag-due-to-lift efficiency by 10 to 15% if they are designed as an integral part of the wing. As add-on devices they can be detrimental. It is estimated that 25% improvements of wing drag-due-to-lift efficiency can be obtained with joined tip configurations and vertically separated lifting elements without considering additional benefits that might be realized by improved structural efficiency. It is strongly recommended that an integrated aerodynamic/structural approach be taken in the design of (or research on) future out-of-plane configurations.
NASA Astrophysics Data System (ADS)
Sahu, Sivabrata; Rout, G. C.
2016-06-01
We present here a tight-binding model study of generation of magnetism and pseudo-spin polarization in monolayer graphene arising due to substrate, impurity and Coulomb correlation effects. The model Hamiltonian contains the first-, second- and third-nearest-neighbor hopping integrals for π electrons of graphene besides substrate induced gap, impurity interactions and Coulomb correlation of electrons. The Hubbard type Coulomb interactions present in both the sub-lattices A and B are treated within the mean-field approximation. The electronic Green's functions are calculated by using Zubarev's technique and hence the electron occupancies of both sub-lattices are calculated for up and down spins separately. These four temperature dependent occupancies are calculated numerically and self-consistently. Then we have calculated the temperature dependent pseudo-spin polarization, ferromagnetic and anti-ferromagnetic magnetizations. We observe that there exists pseudo-spin polarization for lower Coulomb energy, u < 2.2t1 and pseudo-spin polarization is enhanced with substrate induced gap and impurity effect. For larger Coulomb energy u > 2.5t1, there exists pseudo-spin polarization (p); while ferromagnetic (m) and antiferromagnetic (pm) magnetizations exhibit oscillatory behavior. With increase of the substrate induced gap, the ferromagnetic and antiferromagnetic transition temperatures are enhanced with increase of the substrate induced gap; while polarization (p) is enhanced in magnitude only.
Spin polarization of excitons in organic multiferroic composites
NASA Astrophysics Data System (ADS)
Han, Shixuan; Yang, Liu; Gao, Kun; Xie, Shijie; Qin, Wei; Ren, Shenqiang
2016-06-01
Recently, the discovery of room temperature magnetoelectricity in organic charge transfer complexes has reignited interest in the multiferroic field. The solution processed, large-area and low cost organic semiconductor materials offer new possibilities for the functional all organic multiferroic devices. Here we report the spin polarization of excitons and charge transfer states in organic charge transfer composites by using extended Su-Schrieffer-Heeger model including Coulomb interaction and spin-flip effect. With the consideration of spin polarization, we suggest a possible mechanism for the origin of excited ferromagnetism.
Spin polarization of excitons in organic multiferroic composites
Han, Shixuan; Yang, Liu; Gao, Kun; Xie, Shijie; Qin, Wei; Ren, Shenqiang
2016-01-01
Recently, the discovery of room temperature magnetoelectricity in organic charge transfer complexes has reignited interest in the multiferroic field. The solution processed, large-area and low cost organic semiconductor materials offer new possibilities for the functional all organic multiferroic devices. Here we report the spin polarization of excitons and charge transfer states in organic charge transfer composites by using extended Su-Schrieffer-Heeger model including Coulomb interaction and spin-flip effect. With the consideration of spin polarization, we suggest a possible mechanism for the origin of excited ferromagnetism. PMID:27334680
Theory of intervalley Coulomb interactions in monolayer transition-metal dichalcogenides
NASA Astrophysics Data System (ADS)
Dery, Hanan
2016-08-01
Exciton optical transitions in transition-metal dichalcogenides offer unique opportunities to study rich many-body physics. Recent experiments in monolayer WSe2 and WS2 have shown that, while the low-temperature photoluminescence from neutral excitons and three-body complexes is suppressed in the presence of elevated electron densities or strong photoexcitation, new dominant peaks emerge in the low-energy side of the spectrum. I present a theory that elucidates the nature of these optical transitions showing the role of the intervalley Coulomb interaction. After deriving a compact dynamical form for the Coulomb potential, I calculate the self-energy of electrons due to their interaction with this potential. For electrons in the upper valleys of the spin-split conduction band, the self-energy includes a moderate redshift due to exchange and, most importantly, a correlation-induced virtual state in the band gap. The latter sheds light on the origin of the luminescence in monolayer WSe2 and WS2 in the presence of pronounced many-body interactions.
Ultrafast Coulomb-Induced Intervalley Coupling in Atomically Thin WS2.
Schmidt, Robert; Berghäuser, Gunnar; Schneider, Robert; Selig, Malte; Tonndorf, Philipp; Malić, Ermin; Knorr, Andreas; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf
2016-05-11
Monolayers of semiconducting transition metal dichalcogenides hold the promise for a new paradigm in electronics by exploiting the valley degree of freedom in addition to charge and spin. For MoS2, WS2, and WSe2, valley polarization can be conveniently initialized and read out by circularly polarized light. However, the underlying microscopic processes governing valley polarization in these atomically thin equivalents of graphene are still not fully understood. Here, we present a joint experiment-theory study on the ultrafast time-resolved intervalley dynamics in monolayer WS2. Based on a microscopic theory, we reveal the many-particle mechanisms behind the observed spectral features. We show that Coulomb-induced intervalley coupling explains the immediate and prominent pump-probe signal in the unpumped valley and the seemingly low valley polarization degrees typically observed in pump-probe measurements compared to photoluminescence studies. The gained insights are also applicable to other light-emitting monolayer transition metal dichalcogenides, such as MoS2 and WSe2, where the Coulomb-induced intervalley coupling also determines the initial carrier dynamics. PMID:27086935
Coulomb interaction parameters in bcc iron: an LDA+DMFT study.
Belozerov, A S; Anisimov, V I
2014-09-17
We study the influence of Coulomb interaction parameters on electronic structure and magnetic properties of paramagnetic bcc Fe by means of the local density approximation plus dynamical mean-field theory approach. We consider the local Coulomb interaction in the density-density form as well as in the form with spin rotational invariance approximated by averaging over all directions of the quantization axis. Our results indicate that the magnetic properties of bcc Fe are mainly affected by the Hund's rule coupling J rather than by the Hubbard U. By employing the constrained density functional theory approach in the basis of Wannier functions of spd character, we obtain U = 4 eV and J = 0.9 eV. In spite of the widespread belief that U = 4 eV is too large for bcc Fe, our calculations with the obtained values of U and J result in a satisfactory agreement with the experiment. The correlation effects caused by U are found to be weak even for large U = 6 eV. The agreement between the calculated and experimental Curie temperatures is further improved if J is reduced to 0.8 eV. However, with the decrease of J, the effective local magnetic moment moves further away from the experimental value.
Coulomb interaction parameters in bcc iron: an LDA+DMFT study
NASA Astrophysics Data System (ADS)
Belozerov, A. S.; Anisimov, V. I.
2014-09-01
We study the influence of Coulomb interaction parameters on electronic structure and magnetic properties of paramagnetic bcc Fe by means of the local density approximation plus dynamical mean-field theory approach. We consider the local Coulomb interaction in the density-density form as well as in the form with spin rotational invariance approximated by averaging over all directions of the quantization axis. Our results indicate that the magnetic properties of bcc Fe are mainly affected by the Hund's rule coupling J rather than by the Hubbard U. By employing the constrained density functional theory approach in the basis of Wannier functions of spd character, we obtain U = 4 eV and J = 0.9 eV. In spite of the widespread belief that U = 4 eV is too large for bcc Fe, our calculations with the obtained values of U and J result in a satisfactory agreement with the experiment. The correlation effects caused by U are found to be weak even for large U = 6 eV. The agreement between the calculated and experimental Curie temperatures is further improved if J is reduced to 0.8 eV. However, with the decrease of J, the effective local magnetic moment moves further away from the experimental value.
Observation of magnetic fragmentation in spin ice
NASA Astrophysics Data System (ADS)
Petit, S.; Lhotel, E.; Canals, B.; Ciomaga Hatnean, M.; Ollivier, J.; Mutka, H.; Ressouche, E.; Wildes, A. R.; Lees, M. R.; Balakrishnan, G.
2016-08-01
Fractionalized excitations that emerge from a many-body system have revealed rich physics and concepts, from composite fermions in two-dimensional electron systems, revealed through the fractional quantum Hall effect, to spinons in antiferromagnetic chains and, more recently, fractionalization of Dirac electrons in graphene and magnetic monopoles in spin ice. Even more surprising is the fragmentation of the degrees of freedom themselves, leading to coexisting and a priori independent ground states. This puzzling phenomenon was recently put forward in the context of spin ice, in which the magnetic moment field can fragment, resulting in a dual ground state consisting of a fluctuating spin liquid, a so-called Coulomb phase, on top of a magnetic monopole crystal. Here we show, by means of neutron scattering measurements, that such fragmentation occurs in the spin ice candidate Nd2Zr2O7. We observe the spectacular coexistence of an antiferromagnetic order induced by the monopole crystallization and a fluctuating state with ferromagnetic correlations. Experimentally, this fragmentation manifests itself through the superposition of magnetic Bragg peaks, characteristic of the ordered phase, and a pinch point pattern, characteristic of the Coulomb phase. These results highlight the relevance of the fragmentation concept to describe the physics of systems that are simultaneously ordered and fluctuating.
Spin accumulation assisted by the Aharonov-Bohm-Fano effect of quantum dot structures
2012-01-01
We investigate the spin accumulations of Aharonov-Bohm interferometers with embedded quantum dots by considering spin bias in the leads. It is found that regardless of the interferometer configurations, the spin accumulations are closely determined by their quantum interference features. This is mainly manifested in the dependence of spin accumulations on the threaded magnetic flux and the nonresonant transmission process. Namely, the Aharonov-Bohm-Fano effect is a necessary condition to achieve the spin accumulation in the quantum dot of the resonant channel. Further analysis showed that in the double-dot interferometer, the spin accumulation can be detailedly manipulated. The spin accumulation properties of such structures offer a new scheme of spin manipulation. When the intradot Coulomb interactions are taken into account, we find that the electron interactions are advantageous to the spin accumulation in the resonant channel. PMID:22985404
Existence and consequences of Coulomb pairing of electrons in a solid
Mahajan, S.M.; Thyagaraja, A.
1996-11-01
It is shown from first principles that, in the periodic potential of a crystalline solid, short-range (i.e., screened) binary Coulomb interactions can lead to a two-electron bound state. It is further suggested that these composite bosonic states (charge -2e, and typically spin zero) could mediate an effectively attractive interaction between pairs of conduction electrons close to the Fermi level. This necessarily short range attractive interaction, which is crucially dependent on the band structure of the solid, and is complementary to the phonon-mediated one, may provide a source for the existence and properties of short correlation-length electron pairs (analogous to but distinct from Cooper pairs) needed to understand high temperature superconductivity. Several distinctive and observable characteristics of the proposed pairing scheme are discussed.
A summary of spin-recovery parachute experience on light airplanes
NASA Technical Reports Server (NTRS)
Stough, H. Paul, III
1990-01-01
From 1977 to 1989, the NASA Langley Research Center conducted stall/spin flight tests of variations of four typical light airplanes. Each was equipped with an identical tail-mounted, spin-recovery parachute system. The system was used 29 times to arrest otherwise unrecoverable spins and was used at least twice on each airplane. The 10.5 ft diameter, ring-slot, spin-recovery parachute with 20 ft attachment lines and drag coefficient of .545 provided recovery from spins at angles of attack of 32 to 79 degrees and rotation rates of 122 to 261 degrees per second in less than 3 1/2 turns.
Simplified Models for the Drag Coefficient of a Pitched Baseball
NASA Astrophysics Data System (ADS)
Kagan, David; Nathan, Alan M.
2014-05-01
The classic experiment to measure the drag coefficient involves dropping coffee filters. Wouldn't it be more fun to try something different? In fact, an experiment on the drag force is conducted nearly 4000 times a day during the baseball season and you have free access to this PITCHf/x data!2
Simplified Models for the Drag Coefficient of a Pitched Baseball
ERIC Educational Resources Information Center
Kagan, David; Nathan, Alan M.
2014-01-01
The classic experiment to measure the drag coefficient involves dropping coffee filters. Wouldn't it be more fun to try something different? In fact, an experiment on the drag force is conducted nearly 4000 times a day during the baseball season and you have free access to this PITCHf/x data!
COPE AND DRAG PATTERNS, EACH IS USED AT SEPARATE TIMES ...
COPE AND DRAG PATTERNS, EACH IS USED AT SEPARATE TIMES TO CREATE INDIVIDUAL MOLD. HALVES FOR AN EXHAUST MANIFOLD CASTING SIT IN FRONT OF MATCHPLATE PATTERNS WITH BOTH COPE AND DRAG SIDES AFFIXED TO A SINGLE PLATE, USED TO CREATE BOTH MOLD HALVES AT THE SAME TIME, IN THE BACKGROUND. - Southern Ductile Casting Company, Mold Making, 2217 Carolina Avenue, Bessemer, Jefferson County, AL
Covariance analysis of differential drag-based satellite cluster flight
NASA Astrophysics Data System (ADS)
Ben-Yaacov, Ohad; Ivantsov, Anatoly; Gurfil, Pini
2016-06-01
One possibility for satellite cluster flight is to control relative distances using differential drag. The idea is to increase or decrease the drag acceleration on each satellite by changing its attitude, and use the resulting small differential acceleration as a controller. The most significant advantage of the differential drag concept is that it enables cluster flight without consuming fuel. However, any drag-based control algorithm must cope with significant aerodynamical and mechanical uncertainties. The goal of the current paper is to develop a method for examination of the differential drag-based cluster flight performance in the presence of noise and uncertainties. In particular, the differential drag control law is examined under measurement noise, drag uncertainties, and initial condition-related uncertainties. The method used for uncertainty quantification is the Linear Covariance Analysis, which enables us to propagate the augmented state and filter covariance without propagating the state itself. Validation using a Monte-Carlo simulation is provided. The results show that all uncertainties have relatively small effect on the inter-satellite distance, even in the long term, which validates the robustness of the used differential drag controller.
Magnetoresistance effect of heat generation in a single-molecular spin-valve
NASA Astrophysics Data System (ADS)
Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing
2016-02-01
Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily.
STS-78 Drag Chute Deploy (side view)
NASA Technical Reports Server (NTRS)
1996-01-01
The drag chute pops open as the orbiter Columbia glides down Runway 33 of KSC's Shuttle Landing Facility. Main gear touchdown occurred at 8:36 a.m. EDT, July 7. A mission duration of 16 days, 21 hours and 47 minutes made STS-78 the longest Shuttle flight to date. The STS-78 crew numbered seven: Mission Commander Terence 'Tom' Henricks; Pilot Kevin R. Kregel; Payload Commander Susan J. Helms; Mission Specialists Richard M. Linnehan and Charles E. Brady Jr.; and Payload Specialists Jean-Jacques Favier, representing the French Space Agency (CNES) and Robert Brent Thirsk, of the Canadian Space Agency (CSA). The primary payload of the 78th Shuttle flight was the Life and Microgravity Spacelab (LMS).
STS-78 Drag Chute Deploy (front view)
NASA Technical Reports Server (NTRS)
1996-01-01
The drag chute pops open as the orbiter Columbia glides down Runway 33 of KSC's Shuttle Landing Facility. Main gear touchdown occurred at 8:36 a.m. EDT, July 7. A mission duration of 16 days, 21 hours and 47 minutes made STS-78 the longest Shuttle flight to date. The STS-78 crew numbered seven: Mission Commander Terence 'Tom' Henricks; Pilot Kevin R. Kregel; Payload Commander Susan J. Helms; Mission Specialists Richard M. Linnehan and Charles E. Brady Jr.; and Payload Specialists Jean-Jacques Favier, representing the French Space Agency (CNES) and Robert Brent Thirsk, of the Canadian Space Agency (CSA). The primary payload of the 78th Shuttle flight was the Life and Microgravity Spacelab (LMS).
Cauchy Drag Estimation For Low Earth Orbiters
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Mashiku, Alinda K.
2015-01-01
Recent work on minimum variances estimators based on Cauchy distributions appear relevant to orbital drag estimation. Samples form Cauchy distributions which are part of a class of heavy-tailed distributions, are characterized by long stretches of fairly small variation, punctuated by large variations that are many times larger than could be expected from a Gaussian. Such behavior can occur when solar storms perturb the atmosphere. In this context, the present work describes an embedding of the scalar Idan-Speyer Cauchy Estimator to estimate density corrections, within an Extended Kalman Filter that estimates the state of a low Earth orbiter. In contrast to the baseline Kalman approach, the larger formal errors of the present approach fully and conservatively bound the predictive error distribution, even in the face of unanticipated density disturbances of hundreds of percent.
Drag reduction in turbulent MHD pipe flows
NASA Technical Reports Server (NTRS)
Orlandi, P.
1996-01-01
This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.
BLAZAR FLARES FROM COMPTON DRAGGED SHELLS
Golan, Omri; Levinson, Amir
2015-08-10
We compute the dynamics and emission of dissipative shells that are subject to a strong Compton drag, under simplifying assumptions about the dissipation mechanism. We show that under conditions prevailing in blazars, substantial deceleration is anticipated on sub-parsec and parsec scales in cases of rapid dissipation. Such episodes may be the origin of some of the flaring activity occasionally observed in gamma-ray blazars. The shape of the light curves thereby produced reflects the geometry of the emitting surface if the deceleration is very rapid, or the dynamics of the shell if the deceleration is delayed, or initially more gradual, owing, e.g., to continuous injection of energy and momentum.
Dancing droplets: Contact angle, drag, and confinement
NASA Astrophysics Data System (ADS)
Benusiglio, Adrien; Cira, Nate; Prakash, Manu
2015-11-01
When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.
Dynamics of Kepler problem with linear drag
NASA Astrophysics Data System (ADS)
Margheri, Alessandro; Ortega, Rafael; Rebelo, Carlota
2014-09-01
We study the dynamics of Kepler problem with linear drag. We prove that motions with nonzero angular momentum have no collisions and travel from infinity to the singularity. In the process, the energy takes all real values and the angular velocity becomes unbounded. We also prove that there are two types of linear motions: capture-collision and ejection-collision. The behaviour of solutions at collisions is the same as in the conservative case. Proofs are obtained using the geometric theory of ordinary differential equations and two regularizations for the singularity of Kepler problem equation. The first, already considered in Diacu (Celest Mech Dyn Astron 75:1-15, 1999), is mainly used for the study of the linear motions. The second, the well known Levi-Civita transformation, allows to complete the study of the asymptotic values of the energy and to prove the existence of collision solutions with arbitrary energy.
Boundary-layer control for drag reduction
NASA Technical Reports Server (NTRS)
Harvey, William D.
1988-01-01
Although the number of possible applications of boundary-layer control is large, a discussion is given only of those that have received the most attention recently at NASA Langley Research Center to improve airfoil drag characteristics. This research concerns stabilizing the laminar boundary layer through geometric shaping (natural laminar flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (laminar flow control, LFC) either through discrete slots or a perforated surface. At low Reynolds numbers, a combination of shaping and forced transition has been used to achieve the desired run of laminar flow and control of laminar separation. In the design of both natural laminar flow and laminar flow control airfoils and wings, boundary layer stability codes play an important role. A discussion of some recent stability calculations using both incompressible and compressible codes is given.
The effect of triple-junction drag on grain growth
Gottstein, G.; King, A.H.; Shvindlerman, L.S.
2000-01-24
Current theories of grain growth presume that grain boundary migration is the rate-limiting step, and either explicitly or implicitly assume that triple junctions can always move with sufficient speed to accommodate the changing positions of the grain boundaries. Following from some recent observations of triple-junction drag effects in tricrystals of zinc and in molecular dynamics models, an analytical theory is developed to explore the effects of triple-junction drag upon grain growth, for a two-dimensional solid. The theory is developed in the framework of the Von Neumann-Mullins formulation, and demonstrates that drag effects operating exclusively at the triple junctions result in a retardation of grain growth. The stability of six-sided grains in the isotropic, drag-free case of the Von Neumann-Mullins analysis is successively extended to grains of 6 {+-} N sides, where N increases with the strength of the triple-junction drag.
Collisional effects on nonlinear ion drag force for small grains
Hutchinson, I. H.; Haakonsen, C. B.
2013-08-15
The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.
Wave associated anomalous drag during magnetic field reconnection
Mozer, F. S.; Wilber, M.; Drake, J. F.
2011-10-15
The anomalous drag, D, due to large amplitude plasma waves is used for the first time, in place of {eta}*j, to estimate dissipation at the sub-solar magnetopause and to determine the extent to which this drag accounts for the reconnection electric field. This anomalous drag is determined by measuring correlations of the fluctuations in the electric field and plasma density. Large amplitude electric fields occurred more than 60% of the time in the more than 100 sub-solar, low latitude magnetopause crossings of the THEMIS satellite. They occurred mainly near the magnetospheric separatrix in the form of electrostatic lower hybrid and whistler waves. The anomalous drag at the separatrix was generally <10% of the average reconnection electric field, and it was <1% of the field in the current sheet. Thus, anomalous drag due to waves is not a significant driver of reconnection or of the required dissipation at the sub-solar magnetopause.
Thermal-drag carrier cooling in undoped semiconductors
NASA Astrophysics Data System (ADS)
Huang, Danhong; Apostolova, T.; Alsing, P. M.; Cardimona, D. A.
2005-09-01
An approach for carrier cooling in undoped and contactless semiconductors is proposed by using thermal-drag effects in comparison with other methods, such as direct resonant tunneling, nonresonant thermionic, and junction-tunneling cooling, as well as indirect optothermionic and thermoelectric cooling, of carriers in doped and contacted semiconductors. A four-step microscopic model is proposed for this thermal-drag carrier cooling in undoped semiconductors. Wide-band-gap semiconductors with small lattice specific heat and small exchange specific heat between carriers and phonons are found to achieve the best thermal-drag carrier cooling under near-band-edge interband pumping by a weak field. This indirect carrier cooling is accompanied by the lattice cooling. The carrier temperature is pinned to the lattice temperature due to ultrafast carrier-phonon scattering, and it is dragged down by the reduction of the lattice temperature, i.e., the thermal-drag effects.
Arrays for minimum wave drag of bodies of revolution
NASA Technical Reports Server (NTRS)
Nielsen, J. N.
1985-01-01
The wave drag of two identical Sears-Haack bodies at transonic and supersonic speeds has been determined by using the supersonic area rule. The solution is found for these bodies displaced parallel to each other, both laterally and longitudinally. The results show that the drag of a pair of bodies can be either doubled, or nearly halved, depending upon the lateral and longitudinal spacings of the bodies. The magnitude of this drag is determined by the degree of mutual interference between the bodies. It is shown how reductions in wave drag can be obtained by proper spacing of external bodies. The regions of favorable mutual interference are delineated. It is also shown how to apply the two-body results to many-body arrays. Some remarks are made on applying the results to store-airframe interference and on further aspects of the store-airframe drag problem.
Airflow in Gravity Sewers - Determination of Wastewater Drag Coefficient.
Bentzen, Thomas Ruby; Østertoft, Kristian Kilsgaard; Vollertsen, Jes; Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning
2016-03-01
Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient was found.
A parameterization of the ice-ocean drag coefficient
NASA Astrophysics Data System (ADS)
Lu, Peng; Li, Zhijun; Cheng, Bin; LeppäRanta, Matti
2011-07-01
A parameterization of the ice-ocean drag coefficient (Cw) was developed through partitioning the oceanic drag force into three components: (1) form drag on the floe edge, (2) form drag on the ridge keel, and (3) skin friction on the ice bottom. Through these quantities, Cw was expressed as a function of observable sea ice geometric parameters. Sensitivity studies were carried out to investigate the influence of varying sea ice conditions on Cw. The results revealed that Cw increases first and then decreases with increasing ice concentration (A), similar to the observations of the air-ice drag coefficient, and which is mainly attributed to the nonmonotonic variation of the form drag on the floe edge with ice concentration. Moreover, the form drag on the floe edge is always the dominant component, having a proportion of more than 60% in sea ice with a large aspect ratio (draft/length ≥ 1/100), indicating the necessity of including this term in sea ice dynamic models, particularly for the marginal ice zone (MIZ). The form drag on the ridge keel becomes dominant only when the ridging intensity is extremely high (depth/spacing ≥ 1/20). Additionally, a large value of Cw cannot be caused only by the inclusion of form drag terms but also by large skin friction over rough ice bottoms. Finally, for typical situations in the MIZ with moderate ridging intensity, the parameterization will underestimate Cw by approximately 30% for a rough ice bottom and by over 80% for a smooth ice bottom if no form drags are considered.
Spin-controlled mechanics in nanoelectromechanical systems
NASA Astrophysics Data System (ADS)
Radić, D.
2015-03-01
We consider a dc-electronic tunneling transport through a carbon nanotube suspended between normal-metal source and arbitrarily spin-polarized drain lead in the presence of an external magnetic field. We show that magnetomotive coupling between electrical current through the nanotube and its mechanical vibrations may lead to an electromechanical instability and give an onset of self-excited mechanical vibrations depending on spin polarization of the drain lead and frequency of vibrations. The self-excitation mechanism is based on correlation between the occupancy of quantized Zeeman-split electronic states in the nanotube and the direction of velocity of its mechanical motion. It is an effective gating effect by the presence of electron in the spin state which, through the Coulomb blockade, permits tunneling of electron to the drain predominantly only during a particular phase of mechanical vibration thus coherently changing mechanical momentum and leading into instability if mechanical damping is overcome.
Induced vacuum charge of massless fermions in Coulomb and Aharonov-Bohm potentials in 2+1 dimensions
NASA Astrophysics Data System (ADS)
Mamsurov, I. V.; Khalilov, V. R.
2016-08-01
We study the vacuum polarization of zero-mass charged fermions in Coulomb and Aharonov-Bohm potentials in 2+1 dimensions. For this, we construct the Green's function of the two-dimensional Dirac equation in the considered field configuration and use it to find the density of the induced vacuum charge in so-called subcritical and supercritical regions. The Green's function is represented in regular and singular (in the source) solutions of the Dirac radial equation for a charged fermion in Coulomb and Aharonov-Bohm potentials in 2+1 dimensions and satisfies self-adjoint boundary conditions at the source. In the supercritical region, the Green's function has a discontinuity related to the presence of singularities on the nonphysical sheet of the complex plane of "energy," which are caused by the appearance of an infinite number of quasistationary states with negative energies. Ultimately, this situation represents the neutral vacuum instability. On the boundary of the supercritical region, the induced vacuum charge is independent of the self-adjoint extension. We hope that the obtained results will contribute to a better understanding of important problems in quantum electrodynamics and will also be applicable to the problem of screening the Coulomb impurity due to vacuum polarization in graphene with the effects associated with taking the electron spin into account.
Theory of spin excitations in Fe(110) monolayers
NASA Astrophysics Data System (ADS)
Muniz, R. B.; Mills, D. L.
2002-11-01
We present theoretical studies of short-wavelength spin excitations in ferromagnetic Fe(110) monolayers either adsorbed on a W(110) substrate or free standing. We use an itinerant model of electrons as the basis for our analysis, with nine bands (the five 3d bands and the 4sp complex) included. The bands are described within an empirical tight-binding scheme, and the ferromagnetic ground state is generated from on-site intraatomic Coulomb interactions, described in mean-field theory. The random phase approximation (RPA) is employed to describe the spin excitations through analysis of the wave vector and frequency dependence of the dynamic transverse susceptibility. Several issues are explored. We compare the spin-wave stiffness and other features of the spin-wave spectrum for the free standing film and that adsorbed on the substrate to find substantial quantitative differences with origin in spin-spin interactions mediated by the substrate. We also compare the spin-wave spectrum calculated through use of the RPA, an approximate theory, but a scheme that does not invoke the adiabatic approximation, with results generated within the framework of the adiabatic approach. While the spin-wave exchange stiffnesses produced by the two methods are in agreement, there are substantial differences between excitation spectra at short wavelengths. We argue that effective interspin exchange couplings generated within the framework of the adiabatic approximation fail to provide a description of the spin-wave spectrum in the itinerant ferromagnets, beyond the low-frequency, long-wavelength regime where the spin-wave exchange stiffness suffices to describe the spectrum. We also discuss apparent hybridization gaps in the spin-wave spectrum. We show that in some cases they can be artifact of a poorly converged numerical analysis and, in one instance, on use of an inappropriate form for the intra-atomic Coulomb interaction.
Coulomb versus physical string tension on the lattice
NASA Astrophysics Data System (ADS)
Burgio, Giuseppe; Quandt, Markus; Reinhardt, Hugo; Vogt, Hannes
2015-08-01
From continuum studies it is known that the Coulomb string tension σC gives an upper bound for the physical (Wilson) string tension σW [D. Zwanziger, Phys. Rev. Lett. 90, 102001 (2003)]. How does such a relationship translate to the lattice, however? In this paper we give evidence that on the lattice, while the two string tensions are related at zero temperature, they decouple at finite temperature. More precisely, we show that on the lattice the Coulomb gauge confinement scenario is always tied to the spatial string tension, which is known to survive the deconfinement phase transition and to cause screening effects in the quark-gluon plasma. Our analysis is based on the identification and elimination of center vortices, which allows us to control the physical string tension and study its effect on the Coulomb gauge observables. We also show how alternative definitions of the Coulomb potential may sense the deconfinement transition; however, a true static Coulomb gauge order parameter for the phase transition is still elusive on the lattice.
The determination of drag in front crawl swimming.
Toussaint, Huub M; Roos, Paulien E; Kolmogorov, Sergei
2004-11-01
The measurement of drag while swimming (i.e. active drag) is a controversial issue. Therefore, in a group of six elite swimmers two active drag measurement methods were compared to assess whether both measure the same retarding force during swimming. In method 1 push-off forces are measured directly using the system to measure active drag (MAD-system). In method 2 (the velocity perturbation method, VPM) drag is estimated from the difference in swimming speed when subjects swim twice at maximal effort (assuming equal power output and assuming a quadratic drag-speed relationship): once swimming free, and once swimming with a hydrodynamic body attached that created a known additional resistance. The average drag for the VPM tests (53.2 N) was statistically significant and different from the active drag for the MAD-test (66.9 N), paired Student's t-test: 2.484, 12 DF, p=0.029. A post hoc analysis was performed to assess whether the two methods measure a different phenomenon. Based on the drag speed curve obtained with the MAD-system, the VPM-data were re-examined. For diverging drag determinations the assumption of equal power output of the 'free' trial (swimming free) vs. the towing trial (swimming with hydrodynamic buoy) appeared to be violated. The regression of the relative difference in force (MAD vs. VPM) on the relative difference in power (swimming free vs. swimming with hydrodynamic body) was: %Deltadrag=1.898 x %Deltapower -4.498, r2=0.88. This suggests that the major part of the difference in active drag values is due to a non-equal power output in the 'free' relative towing trial during the VPM-test. The simulation of the violation of the equal power output assumption and the calculation of the effect of an other than quadratic drag-speed relationship corroborated the tentative conclusion that both methods measure essentially the same phenomenon and that active drag differences can be explained by a violation of test assumptions.
Experimental determination of baseball spin and lift.
Alaways, L W; Hubbard, M
2001-05-01
The aim of this study was to develop a new method for the determination of lift on spinning baseballs. Inertial trajectories of (a) ball surface markers during the first metre of flight and (b) the centre of mass trajectory near home-plate were measured in a pitch using high-speed video. A theoretical model was developed, incorporating aerodynamic Magnus-Robins lift, drag and cross forces, which predicts the centre of mass and marker trajectories. Parameters including initial conditions and aerodynamic coefficients were estimated iteratively by minimizing the error between predicted and measured trajectories. We compare the resulting lift coefficients and spin parameter values with those of previous studies. Lift on four-seam pitches can be as much as three times that of two-seam pitches, although this disparity is reduced for spin parameters greater than 0.4.
Imaging quantum Hall Coulomb islands inside a quantum ring
NASA Astrophysics Data System (ADS)
Martins, Frederico; Hackens, Benoit; Faniel, Sebastien; Bayot, Vincent; Pala, Marco; Sellier, Hermann; Huant, Serge; Desplanque, Ludovic; Wallart, Xavier
2011-03-01
In the quantum Hall regime near integer filling factors, electrons are transmitted through edge states confined at the borders of the device. In mesoscopic samples, however, edge states may be sufficiently close to allow electrons to tunnel, or to be transmitted through localized states (``Coulomb islands''). Here, we use the biased tip of a low temperature scanning gate microscope to alter tunneling through quantum Hall Coulomb islands localized inside a quantum ring patterned in an InGaAs/InAlAs heterostructure. Simultaneously, we map the quantum ring resistance and observe different sets of concentric resistance fringes, due to charging/discharging of each Coulomb island. Tuning the magnetic field and the tip voltage, we reveal the rich and complex behaviour of these fringes.
Weak interaction rate Coulomb corrections in big bang nucleosynthesis
Smith, Christel J.; Fuller, George M.
2010-03-15
We have applied a fully relativistic Coulomb wave correction to the weak reactions in the full Kawano/Wagoner big bang nucleosynthesis (BBN) code. We have also added the zero-temperature radiative correction. We find that using this higher accuracy Coulomb correction results in good agreement with previous work, giving only a modest {approx}0.04% increase in helium mass fraction over correction prescriptions applied previously in BBN calculations. We have calculated the effect of these corrections on other light element abundance yields in BBN, and we have studied these yields as functions of electron neutrino lepton number. This has allowed insights into the role of the weak neutron-proton interconversion processes in the setting of the neutron-to-proton ratio during the BBN epoch. We find that the lepton capture processes' contributions to this ratio are only second order in the Coulomb correction.
Nonasymptotic analysis of relativistic electron scattering in the Coulomb field
NASA Astrophysics Data System (ADS)
Feranchuk, I. D.; Skoromnik, O. D.
2010-11-01
It is shown that the conventional Born series for relativistic electron scattering in the Coulomb field cannot be used for calculating the scattering characteristics. The differential cross section at small scattering angles is found on the basis of the Furry-Sommerfeld-Maue solution of the Dirac equation. Propagation of the electron wave packet is considered in order to separate the incident and scattered fluxes. It is shown that the total scattering cross section proves to be finite but depends on the distance r between the scattering center and the observation point. It is also shown that the polarization characteristics of the scattered beam are changed due to the long-range character of the Coulomb potential. The results can be important because Coulomb scattering is often used for normalization of experimental data in high-energy physics.
Characterization of aerodynamic drag force on single particles: Final report
Kale, S.R.
1987-10-01
An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.
Drag reduction in turbulent flows over superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Daniello, Robert J.; Waterhouse, Nicholas E.; Rothstein, Jonathan P.
2009-08-01
In this paper, we demonstrate that periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flow drag reduction, are capable of reducing drag in the turbulent flow regime. Superhydrophobic surfaces contain micro- or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to drag reductions approaching 50%. At a given Reynolds number, drag reduction is found to increase with increasing feature size and spacing, as in laminar flows. No observable drag reduction was noted in the laminar regime, consistent with previous experimental results for the channel geometry considered. The onset of drag reduction occurs at a critical Reynolds number where the viscous sublayer thickness approaches the scale of the superhydrophobic microfeatures and performance is seen to increase with further reduction in viscous sublayer height. These results indicate superhydrophobic surfaces may provide a significant drag reducing mechanism for marine vessels.
Kinematic Pattern of the Drag-Flick: a Case Study
Gómez, María; López de Subijana, Cristina; Antonio, Raquel; Navarro, Enrique
2012-01-01
The drag-flick is more efficient than hits or pushes when a penalty corner situation is in effect in field hockey. Previous research has studied the biomechanical pattern of the drag-flick, trying to find the cues for an optimal performance. On the other hand, some other studies have examined the most effective visual pick-up of relevant information in shots and goalkeeper anticipation. The aim of this study was to analyse the individual differences in the drag-flick pattern in order to provide relevant information for goalkeepers. One female skilled drag-flicker participated in the study. A VICON optoelectronic system (Oxford Metrics, Oxford, UK) was used to capture the drag-flicks with six cameras. The results showed that the main significant differences between right and left shots (p<0.05) in the stick angles, stick minimum angular velocity and front foot-ball distance were when the front foot heel contacted the floor (T1) and at the minimum velocity of the stick, before the dragging action (T3). The findings showed that the most relevant information might be picked up at the ball-and-stick location before the dragging action. PMID:23487429
Interference drag in a simulated wing-fuselage juncture
NASA Technical Reports Server (NTRS)
Kubendran, L. R.; Mcmahon, H.; Hubbartt, J. E.
1984-01-01
The interference drag in a wing fuselage juncture as simulated by a flat plate and a body of constant thickness having a 1.5:1 elliptical leading edge is evaluated experimentally. The experimental measurements consist of mean velocity data taken with a hot wire at a streamwise location corresponding to 16 body widths downstream of the body leading edge. From these data, the interference drag is determined by calculating the total momentum deficit (momentum area) in the juncture and also in the two dimensional turbulent boundary layers on the flat plate and body at locations sufficiently far from the juncture flow effect. The interference drag caused by the juncture drag as measured at this particular streamwise station is -3% of the total drag due to the flat plate and body boundary layers in isolation. If the body is considered to be a wing having a chord and span equal to 16 body widths, the interference drag due to the juncture is only -1% of the frictional drag of one surface of such a wing.
On hydrodynamics of drag and lift of the human arm.
Gardano, Paola; Dabnichki, Peter
2006-01-01
The work presents results on drag and lift measurement conducted in a low speed wind tunnel on a replica of the entire human arm. The selected model positions were identical to those during purely rotational front crawl stroke in quasi-static conditions. A computational fluid dynamics model using Fluent showed close correspondence with the experimental results and confirmed the suitability of low speed wind tunnel for the drag and lift measurement in quasi-static conditions. The obtained profiles of the hydrodynamic forces were similar to the dynamic data presented in an earlier study suggesting that shape drag is a major contributing factor in propulsive force generation. The aim of this study was to underline the importance of the entire arm analysis, the elbow angle and a newly defined angle of attack representing the angle of shoulder rotation. It was found that both the maximum value of the drag force at 160 degrees elbow flexion angle and the momentum generated by it exceed the respective magnitudes for the fully extended arm. The latter is underlined by a prolonged plateau of near maximum drag that was obtained at shoulder angle range of 50-140 degrees suggesting that optimal arm configuration in terms of propulsive force generation requires elbow flexion. Furthermore it was found that drag trend is not consistent with the widely assumed and used sinus wave profile. A gap in the existing experimental research was filled as for the first time the entire arm lift and drag was measured across the entire stroke range.
Variability of bed drag on cohesive beds under wave action
Safak, Ilgar
2016-01-01
Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.
Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers
Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing
2016-01-01
Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics. PMID:26932316
Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers
Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing
2016-03-02
Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon.more » The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Lastly, our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.« less
On rate-state and Coulomb failure models
Gomberg, J.; Beeler, N.; Blanpied, M.
2000-01-01
We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified
Lifetime Measurements and Coulomb Excitation of Light Hg Nuclei
NASA Astrophysics Data System (ADS)
Petts, A.; Butler, P. A.; Grahn, T.; Blazhev, A.; Bree, N.; Bruyneel, B.; Cederkäll, J.; Clement, E.; Cocolios, T. E.; Dewald, A.; Eberth, J.; Fraile, L.; Fransen, C.; Hornillos, M. B. Gómez; Greenlees, P. T.; Görgen, A.; Guttormsen, M.; Hadynska, K.; Helariutta, K.; Herzberg, R.-D.; Huyse, M.; Jenkins, D. G.; Jolie, J.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Knapen, S.; Kröll, T.; Krü; cken, R.; Larsen, A. C.; Leino, M.; Ljungvall, J.; Maierbeck, P.; Marley, P. L.; Melon, B.; Napiorkowski, P. J.; Nyman, M.; Page, R. D.; Pakarinen, J.; Pascovici, G.; Patronis, N.; Peura, P. J.; Piselli, E.; Pissulla, Th.; Rahkila, P.; Reiter, P.; Sarén, J.; Scheck, M.; Scholey, C.; Semchenkov, A.; Siem, S.; Stefanescu, I.; Sorri, J.; Uusitalo, J.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Wadsworth, R.; Warr, N.; Weisshaar, D.; Wenander, F.; Zielinska, M.
2009-01-01
Two complementary experimental programs have taken place to investigate the origin and evolution of shape coexistence in the light mercury region. Recoil Distance Doppler-shift measurements were performed at the University of Jyväskylä utilizing the Köln plunger device in conjunction with the JUROGAM+RITU+GREAT setup. In addition, Coulomb excitation measurements of 184,186,188Hg were performed at REX-ISOLDE using the MINIBALL Ge-detector array. The results of the lifetime measurements of the yrast states up to Iπ = 10+ in 182Hg are reported. Preliminary analysis of the Coulomb excitation data is also discussed.
Convergence of Feynman integrals in Coulomb gauge QCD
Andraši, A.; Taylor, J.C.
2014-12-15
At 2-loop order, Feynman integrals in the Coulomb gauge are divergent over the internal energy variables. Nevertheless, it is known how to calculate the effective action, provided that the external gluon fields are all transverse. We show that, for the two-gluon Greens function as an example, the method can be extended to include longitudinal external fields. The longitudinal Greens functions appear in the BRST identities. As an intermediate step, we use a flow gauge, which interpolates between the Feynman and Coulomb gauges.
Higher-order dynamical effects in Coulomb dissociation
Esbensen, H.; Bertsch, G.F.; Bertulani, C.A.
1995-08-01
Coulomb dissociation is a technique commonly used to extract the dipole response of nuclei far from stability. This technique is applicable if the dissociation is dominated by dipole transitions and if first-order perturbation theory is valid. In order to assess the significance of higher-order processes we solve numerically the time evolution of the wave function for a two-body breakup in the Coulomb field from a high Z target. We applied this method to the breakup reactions: {sup 11}Be {yields} {sup 10}Be + n and {sup 11}Li {yields} +2n. The latter is treated as a two-body breakup, using a di-neutron model.
Lifetime Measurements and Coulomb Excitation of Light Hg Nuclei
Petts, A.; Butler, P. A.; Grahn, T.; Herzberg, R.-D.; Page, R. D.; Pakarinen, J.; Scheck, M.; Blazhev, A.; Bruyneel, B.; Dewald, A.; Eberth, J.; Fransen, C.; Jolie, J.; Melon, B.; Pascovici, G.; Pissulla, Th.; Reiter, P.; Warr, N.; Weisshaar, D.; Bree, N.
2009-01-28
Two complementary experimental programs have taken place to investigate the origin and evolution of shape coexistence in the light mercury region. Recoil Distance Doppler-shift measurements were performed at the University of Jyvaeskylae utilizing the Koeln plunger device in conjunction with the JUROGAM+RITU+GREAT setup. In addition, Coulomb excitation measurements of {sup 184,186,188}Hg were performed at REX-ISOLDE using the MINIBALL Ge-detector array. The results of the lifetime measurements of the yrast states up to I{sup {pi}} = 10{sup +} in {sup 182}Hg are reported. Preliminary analysis of the Coulomb excitation data is also discussed.
Primary Thermometry in the Intermediate Coulomb Blockade Regime
NASA Astrophysics Data System (ADS)
Feshchenko, A. V.; Meschke, M.; Gunnarsson, D.; Prunnila, M.; Roschier, L.; Penttilä, J. S.; Pekola, J. P.
2013-10-01
We investigate Coulomb blockade thermometers (CBT) in an intermediate temperature regime, where measurements with enhanced accuracy are possible due to the increased magnitude of the differential conductance dip. Previous theoretical results show that corrections to the half width and to the depth of the measured conductance dip of a sensor are needed, when leaving the regime of weak Coulomb blockade towards lower temperatures. In the present work, we demonstrate experimentally that the temperature range of a CBT sensor can be extended by employing these corrections without compromising the primary nature or the accuracy of the thermometer.
Mechanical vibrations induced resonant breakdown of the Coulomb blockade
NASA Astrophysics Data System (ADS)
Pogosov, A. G.; Budantsev, M. V.; Shevyrin, A. A.; Plotnikov, A. E.; Bakarov, A. K.; Toropov, A. I.
2011-12-01
Influence of forced mechanical vibrations of a suspended single-electron transistor on electron tunneling through the quantum dot limited by the Coulomb blockade is investigated. It is shown that mechanical oscillations of the quantum dot lead to the Coulomb blockade breakdown, shown in sharp resonant peaks in the transistor conductance dependence on the excitation frequency at values corresponding to the mechanical oscillations eigen modes. The observed effect is presumably connected with oscillations of the mutual electrical capacitances between the quantum dot and surrounding electrodes.
Geometrically-frustrated pseudogap phase of Coulomb liquids
NASA Astrophysics Data System (ADS)
Pramudya, Y.; Terletska, H.; Pankov, S.; Manousakis, E.; Dobrosavljević, V.
2012-06-01
We study a class of models with long-range repulsive interactions of the generalized Coulomb form V(r)∼1/rα. We show that decreasing the interaction exponent in the regime α
Coulomb-damped resonant generators using piezoelectric transduction
NASA Astrophysics Data System (ADS)
Miller, L. M.; Mitcheson, P. D.; Halvorsen, E.; Wright, P. K.
2012-06-01
Switching interface circuits employed with piezoelectric energy harvesters can increase the electrical damping considerably over that achievable with passive rectifiers. We show that a piezoelectric harvester coupled to certain types of switching circuits becomes a Coulomb-damped resonant generator. This allows analysis of such harvester systems within a well-known framework and, subject to practical constraints, allows the optimal electrical damping to be achieved. In the piezoelectric pre-biasing technique, the Coulomb damping is set by a pre-bias voltage whose optimal value is derived as a function of piezoelectric harvester parameters.
Hydrodynamics optimization in butterfly swimming: position, drag coefficient and performance.
Taïar, R; Sagnes, P; Henry, C; Dufour, A B; Rouard, A H
1999-08-01
A kinematic study allowed to define the three most propulsive positions during a butterfly swimming cycle, which were: the end of the external sweep, the end of the internal sweep and the end of thrust. These instantaneous positions were different for the ex-world champion Pankratov when compared to another swimmer. Using manikins and a drag-measuring device, we showed that the end of the internal sweep induced the highest drag values and that Pankratov may reduce energy expenditure by taking up a particular position during the end of the swimming cycle. These results point out the relations between swimming movements, passive drag and swimmers' performance. PMID:10433422
Drag Corrections in High-Speed Wind Tunnels
NASA Technical Reports Server (NTRS)
Ludwieg, H.
1947-01-01
In the vicinity of a body in a wind tunnel the displacement effect of the wake, due to the finite dimensions of the stream, produces a pressure gradient which evokes a change of drag. In incompressible flow this change of drag is so small, in general, that one does not have to take it into account in wind-tunnel measurements; however, in compressible flow it beoomes considerably larger, so that a correction factor is necessary for measured values. Correction factors for a closed tunnel and an open jet with circular cross sections are calculated and compared with the drag - corrections already bown for high-speed tunnnels.
Shock tunnel measurements of hypervelocity blunted cone drag
Porter, L.M.; Paull, A.; Mee, D.J.; Simmons, J.M.
1994-12-01
Presented here are results obtained from an investigation into the effects of nose bluntness on slender cone drag in the hypervelocity flight regime. The results indicate that, for small cone angles, the drag of a blunt cone is reasonably well predicted by the Newtonian sine-square law modified for blunt bodies. This suggests the absence of any real gas effects on the total drag. The effect of nose bluntness at the smaller bluntness ratios is relatively small. This is encouraging for the design of a hypervelocity space plane or a centerbody for an axisymmetric scramjet where a slightly blunted nose is required to reduce stagnation point heating. 7 refs.
Wind tunnel testing of low-drag airfoils
NASA Technical Reports Server (NTRS)
Harvey, W. Donald; Mcghee, R. J.; Harris, C. D.
1986-01-01
Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils.
Surface modification of clutch plates to reduce disengaged drag torque
NASA Astrophysics Data System (ADS)
Aphale, Chinar R.
2005-11-01
Viscous drag torque in disengaged clutches is a significant source of power loss in modern transportation. The main way to reduce this drag torque is to introduce air between the plates when disengaged without reducing the transmission fluid flow eventually needed for reengagement. Six different groove patterns are tested experimentally to determine which have the lowest drag characteristics. Our computations using Fluent showed that the contact angle made by oil with the stationary plate is critical in determining aeration initiation. Experiments coating the stationary plate with an oleophobic substance like Teflon, confirmed these simulations. We will show torque comparisons and visualization through a quartz disk acting as one of the clutch plates.
Drag on intruder in dense granular flows
NASA Astrophysics Data System (ADS)
Zheng, Hu; Bares, Jonathan; Wang, Dong; Behringer, Robert
2015-11-01
We perform an experimental study on an intruder dragged at a constant force in a quasi-statically cyclic-sheared granular medium. A Teflon disk is embedded in a layer of bidisperse photoelastic disks. The granular medium is contained in a horizontal square cell, which can be deformed into a parallelogram with the same area to produce simple shear. We find that the forward motion of the intruder happens at the fragile state during shear reversals, while only reversible affine motion could be found at the Jammed state. There is a burst of non-affine motion for the granular particles at each shear reversal. For a range of packing fractions, the cumulative intruder displacement shows a linear increase proportional to the number of cycles of shear. To explain the behavior of intruder motion, we analyze the coordination number, density, affine and non-affine motion of disk-granular system variations as the shear strain. We acknowledge support from NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.
Moderate lift-to-drag aeroassist
NASA Technical Reports Server (NTRS)
Florence, D. E.; Fischer, G.
1984-01-01
Significant performance benefits are realized via aerodynamic braking and/or aerodynamic maneuvering on return from higher altitude orbits to low Earth orbit. This approach substantially reduces the mission propellant requirements by using the aerodynamic drag, D, to brake the vehicle to near circular velocity and the aerodynamic lift, L, to null out accumulated errors as well as change the orbital inclination to that required for rendezvous with the Space Shuttle Orbiter. Broad concept evaluations were performed and the technology requirements and sensitivities for aeroassisted OTV's over a range of vehicle hypersonic L/D from 0.75 to 1.5 were systematically identified and assessed. The aeroassisted OTV is capable of evolving from an initial delivery only system to one eventually capable of supporting manned roundtrip missions to geosynchronous orbit. Concept screening was conducted on numerous configurations spanning the L/D = 0.75 to 1.5 range, and several with attractive features were identified. Initial payload capability was evaluated for a baseline of delivery to GEO, six hour polar, and Molniya (12 hours x 63.4 deg) orbits with return and recovery of the aeroassist orbit transfer vehicle (AOTV) at LEO. Evolutionary payload requirements that were assessed include a GEO servicing mission (6K up and 2K return) and a manned GEO mission (14K roundtrip).
Balash, Cheslav; Sterling, David; Binns, Jonathan; Thomas, Giles; Bose, Neil
2015-01-01
For prawn trawling systems, drag reduction is a high priority as the trawling process is energy intensive. Large benefits have occurred through the use of multiple-net rigs and thin twine in the netting. An additional positive effect of these successful twine-area reduction strategies is the reduced amount of otter board area required to spread the trawl systems, which leads to further drag reduction. The present work investigated the potential of redirecting the drag-strain within a prawn trawl away from the wings and the otter boards to the centre line of the trawl, where top and bottom tongues have been installed, with an aim to minimise the loading/size of the otter boards required to spread the trawl. In the system containing the new 'W' trawl, the drag redirected to the centre-line tongues is transferred forward through a connected sled and towing wires to the trawler. To establish the extent of drag redirection to the centre-line tongues and the relative drag benefits of the new trawl system, conventional and 'W' trawls of 3.65 m headline length were tested firstly over a range of spread ratios in the flume tank, and subsequently at optimum spread ratio in the field. The developed 'W' trawl effectively directed 64% of netting-drag off the wings and onto the centre tongues, which resulted in drag savings in the field of ∼20% for the associated 'W' trawl/otter-board/sled system compared to the traditional trawl/otter-board arrangement in a single trawl or twin rig configuration. Furthermore, based on previously published data, the new trawl when used in a twin rig system is expected to provide approximately 12% drag reduction compared to quad rig. The twin 'W' trawl system also has benefits over quad rig in that a reduced number of cod-end/By-catch Reduction Device units need to be installed and attended each tow.
Quantum computing with acceptor spins in silicon.
Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie
2016-06-17
The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si. PMID:27171901
Quantum computing with acceptor spins in silicon.
Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie
2016-06-17
The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.
Quantum computing with acceptor spins in silicon
NASA Astrophysics Data System (ADS)
Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie
2016-06-01
The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.
Improving results on transverse double spin asymmetries in the CNI region at STAR
NASA Astrophysics Data System (ADS)
Svirida, D.
2014-01-01
Double spin effects in polarized pp-elastic scattering in the Coulomb nuclear interference (CNI) region are sensitive to small contributions to the nuclear amplitude in addition to Pomeron exchange dominating at high energies. Measurements of double spin asymmetries require external luminosity normalization using collision counts for all spin combinations. Several possible sources of such data from various STAR subsystems were thoroughly analyzed to make the best choice. BBC arrays were found to be free of double spin effects to the level of ˜ 2 × 10-4 thus leading to the systematic uncertainty ˜10-3 in the value of ( A NN + A SS )/2.
Magnetoresistance in the Spin-Orbit Kondo State of Elemental Bismuth
Craco, Luis; Leoni, Stefano
2015-01-01
Materials with strong spin-orbit coupling, which competes with other particle-particle interactions and external perturbations, offer a promising route to explore novel phases of quantum matter. Using LDA + DMFT we reveal the complex interplay between local, multi-orbital Coulomb and spin-orbit interaction in elemental bismuth. Our theory quantifies the role played by collective dynamical fluctuations in the spin-orbit Kondo state. The correlated electronic structure we derive is promising in the sense that it leads to results that might explain why moderate magnetic fields can generate Dirac valleys and directional-selective magnetoresistance responses within spin-orbit Kondo metals. PMID:26358556
BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE ...
BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE MAKES BOTH MOLD HALVES INDIVIDUALLY WHICH ARE LATER ROTATED, ASSEMBLED, AND LOWERED TO POURING CONVEYORS BY ASSISTING MACHINES. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL
Measuring the Drag Force on a Falling Ball
NASA Astrophysics Data System (ADS)
Cross, Rod; Lindsey, Crawford
2014-03-01
The effect of the aerodynamic drag force on an object in flight is well known and has been described in this and other journals many times. At speeds less than about 1 m/s, the drag force on a sphere is proportional to the speed and is given by Stokes' law. At higher speeds, the drag force is proportional to the velocity squared and is usually small compared with the gravitational force if the object mass is large and its speed is low. In order to observe a significant effect, or to measure the terminal velocity, experiments are often conducted with very light objects such as a balloon or coffee filter3 or muffin cup,4 or are conducted in a liquid rather than in air. The effect of the drag force can also be increased by increasing the surface area of the object.
Dynamics of Drag Free Formations in Earth Orbit
NASA Technical Reports Server (NTRS)
Ploen, Scott R.; Scharf, Daniel P.; Hadaegh, Fred. Y.; Acikmese, A. Behcet
2004-01-01
In this paper the translational equations of motion of a formation of n spacecraft in Earth orbit, n(sub f) of which are drag-free spacecraft, are derived in a coordinate-free manner using the balance of linear momentum and direct tensor notation. A drag-free spacecraft consists of a spacecraft bus and a proof mass shielded from external disturbances in an internal cavity. By controlling the spacecraft so that the proof mass remains centered in the cavity, the spacecraft follows a purely gravitational orbit. The results described in this paper provide a first step toward coupling drag-free control technology with formation flying in order to mitigate the effect of differential aerodynamic drag on formation flying missions (e.g., Earth imaging applications) in low Earth orbit.
Drag force and jet propulsion investigation of a swimming squid
NASA Astrophysics Data System (ADS)
Tabatabaei, Mahdi; Bahadır Olcay, Ali; Gokçen, Gökhan; Heperkan, Hasan A.
2015-05-01
In this study, CAD model of a squid was obtained by taking computer tomography images of a real squid. The model later placed into a computational domain to calculate drag force and performance of jet propulsion. The drag study was performed on the CAD model so that drag force subjected to real squid was revealed at squid's different swimming speeds and comparison has been made with other underwater creatures (e.g., a dolphin, sea lion and penguin). The drag coefficient (referenced to total wetted surface area) of squid is 0.0042 at Reynolds number 1.6x106 that is a %4.5 difference from Gentoo penguin. Besides, jet flow of squid was simulated to observe the flow region generated in the 2D domain utilizing dynamic mesh method to mimic the movement of squid's mantle cavity.
Drag conveyors in 1913 head house, Spouts in background feed ...
Drag conveyors in 1913 head house, Spouts in background feed hopper scales and convey grain from hopper scales to storage bins. - Stewart Company Grain Elevator, 16 West Carson Street, Pittsburgh, Allegheny County, PA
The computation of induced drag with nonplanar and deformed wakes
NASA Technical Reports Server (NTRS)
Kroo, Ilan; Smith, Stephen
1991-01-01
The classical calculation of inviscid drag, based on far field flow properties, is reexamined with particular attention to the nonlinear effects of wake roll-up. Based on a detailed look at nonlinear, inviscid flow theory, it is concluded that many of the classical, linear results are more general than might have been expected. Departures from the linear theory are identified and design implications are discussed. Results include the following: Wake deformation has little effect on the induced drag of a single element wing, but introduces first order corrections to the induced drag of a multi-element lifting system. Far field Trefftz-plane analysis may be used to estimate the induced drag of lifting systems, even when wake roll-up is considered, but numerical difficulties arise. The implications of several other approximations made in lifting line theory are evaluated by comparison with more refined analyses.
Computer simulation of grain growth kinetics with solute drag
Fan, D.; Chen, S.P.; Chen, L.
1999-03-01
The effects of solute drag on the grain growth kinetics were studied in two-dimensional (2D) computer simulations by using a diffuse-interface field model. It is shown that, in the low velocity/low driving force regime, the velocity of a grain boundary motion departs from a linear relation with driving force (curvature) with solute drag. The nonlinear relation of migration velocity and driving force comes from the dependence of grain boundary energy and width on the curvature. The growth exponent {ital m} of power growth law for a polycrystalline system is affected by the segregation of solutes to grain boundaries. With the solute drag, the growth exponent {ital m} can take any value between 2 and 3, depending on the ratio of lattice diffusion to grain boundary mobility. The grain size and topological distributions are unaffected by solute drag, which are the same as those in a pure system. {copyright} {ital 1999 Materials Research Society.}
Wall temperature control of low-speed body drag
NASA Technical Reports Server (NTRS)
Lin, J. C.; Ash, R. L.
1986-01-01
The use of thermal means to control drag under turbulent boundary layer conditions is examined. Numerical calculations are presented for both skin friction and (unseparated) pressure drag for turbulent boundary-layer flows over a fuselage-like body with wall heat transfer. In addition, thermal control of separation on a bluff body is investigated. It is shown that a total drag reduction of up to 20 percent can be achieved for wall heating with a wall-to-total-freestream temperature ratio of 2. For streamlined slender bodies, partial wall heating of the forebody can produce almost the same order of total drag reduction as the full body heating case. For bluff bodies, the separation delay from partial wall cooling of the afterbody is approximately the same as for the fully cooled body.
A survey of the turbulent drag reduction using passive devices
NASA Astrophysics Data System (ADS)
Choi, K. S.
1984-07-01
Turbulent skin friction drag reduction using large eddy break-up devices (LEBU) and riblets is reviewed. Drag reductions of turbulent boundary layers are observed from riblets whose height and width range from 10 to 100 and 10 to 200 viscous lengths, respectively; the maximum reduction is obtained from riblets with cusped peaks and semicircular valleys of 15 viscous lengths in height and width. Drag reduction of turbulent boundary layers using riblets is due to the local increase of the effective kinematic viscosity in the buffer layer caused by forcing the fluid to flow across the ridges of riblets. An optimum configuration of LEBU consists of 2 thin flat plates with lengths, heights, and spacing being 1, 0.8, and 5 to 8 boundary layer thicknesses, respectively. Turbulent drag reduction using LEBU is due to the passive and dynamic effect of the momentum deficit region of the wake created by the devices suppressing turbulent energy production.
Possibilities for drag reduction by boundary layer control
NASA Technical Reports Server (NTRS)
Naiman, I.
1946-01-01
The mechanics of laminar boundary layer transition are reviewed. Drag possibilities for boundary layer control are analyzed using assumed conditions of transition Reynolds number, inlet loss, number of slots, blower efficiency, and duct losses. Although the results of such analysis are highly favorable, those obtained by experimental investigations yield conflicting results, showing only small gains, and sometimes losses. Reduction of this data indicates that there is a lower limit to the quantity of air which must be removed at the slot in order to stabilize the laminar flow. The removal of insufficient air permits transition to occur while the removal of excessive amounts of air results in high power costs, with a net drag increases. With the estimated value of flow coefficient and duct losses equal to half the dynamic pressure, drag reductions of 50% may be obtained; with twice this flow coefficient, the drag saving is reduced to 25%.
Drag Force Parameters of Flexible Elements and Vegetation
NASA Astrophysics Data System (ADS)
Chapman, J. A.; Wilson, B. N.; Gulliver, J. S.
2014-12-01
This presentation evaluates parameters that characterize flow resistance and drag resulting from vegetation flexibility. Drag forces have been measured in a flume for simple cylindrical obstructions of the same shape and size but with different flexibility under several flow conditions. This data set is used to fit drag parameters and to relate their value to flexibility, Cauchy Number, and elastic modulus. A formulation is presented where the drag coefficient is evaluated as a function of the relative velocity and the elastic modulus of the obstruction. While a Vogel exponent and reference velocity can be used to provide a similar predicted response, the new formulation provides more insight to the physical behaviour occurring in the element.
Investigation of Drag Coefficient for Rigid Ballute-like Shapes
NASA Astrophysics Data System (ADS)
Carnasciali, Maria-Isabel; Mastromarino, Anthony
2014-11-01
One common method of decelerating an object during atmospheric entry, descent, and landing is the use of parachutes. Another deceleration technology is the ballute - a combination of balloon and parachute. A CFD study was conducted using commercially available software to investigate the flow-field and the coefficient of drag for various rigid ballute-like shapes at varying Reynolds numbers. The impact of size and placement of the burble-fence as well as number, size, and shape of inlets was considered. Recent experimental measurements conducted during NASA's Low-Density Supersonic Decelerator program revealed a much higher coefficient of drag (Cd) for ballutes than previously encountered. Using atmospheric drag to slow down and land reduces the need for heavy fuel and rocket engines and thus, high values of drag are desired. Funding for this work, in part, provided by the CT Space Grant Consortium.
Correlation equation for the marine drag coefficient and wave steepness
NASA Astrophysics Data System (ADS)
Foreman, Richard J.; Emeis, Stefan
2012-09-01
This work questions, starting from dimensional considerations, the generality of the belief that the marine drag coefficient levels off with increasing wind speed. Dimensional analysis shows that the drag coefficient scales with the wave steepness as opposed to a wave-age scaling. A correlation equation is employed here that uses wave steepness scaling at low aspect ratios (inverse wave steepnesses) and a constant drag coefficient at high aspect ratios. Invoked in support of the correlation are measurements sourced from the literature and at the FINO1 platform in the North Sea. The correlation equation is then applied to measurements recorded from buoys during the passage of hurricanes Rita, Katrina (2005) and Ike (2008). Results show that the correlation equation anticipates the expected levelling off in deeper water, but a drag coefficient more consistent with a Charnock type relation is also possible in more shallower water. Some suggestions are made for proceeding with a higher-order analysis than that conducted here.
Drag reduction by polymer additives from turbulent spectra.
Calzetta, Esteban
2010-12-01
We extend the analysis of the friction factor for turbulent pipe flow reported by G. Gioia and P. Chakraborty [Phys. Rev. Lett. 96, 044502 (2006)] to the case where drag is reduced by polymer additives.
Collecting responses through Web page drag and drop.
Britt, M Anne; Gabrys, Gareth
2004-02-01
This article describes how to collect responses from experimental participants using drag and drop on a Web page. In particular, we describe how drag and drop can be used in a text search task in which participants read a text and then locate and categorize certain elements of the text (e.g., to identify the main claim of a persuasive paragraph). Using this technique, participants respond by clicking on a text segment and dragging it to a screen field or icon. We have successfully used this technique in both the argument element identification experiment that we describe here and a tutoring system that we created to teach students to identify source characteristics while reading historical texts (Britt, Perfetti, Van Dyke, & Gabrys, 2000). The implementation described here exploits the capability of recent versions of Microsoft's Internet Explorer Web browser to handle embedded XML documents and drag and drop events.
Development of Drag Reducing Polymer of FDR-SPC
NASA Astrophysics Data System (ADS)
Lee, Inwon; Park, Hyun; Chun, Ho Hwan
2015-11-01
In this study, a novel FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer) is first synthesized in this study. The drag reducing functional radical such as PEGMA (Poly(ethylene) glycol methacrylate) has been utilized to participate in the synthesis process of the SPC. The release mechanism of drag reducing radical is accounted for the hydrolysis reaction between the FDR-SPC and seawater. The types of the baseline SPC monomers, the molecular weight and the mole fraction of PEGMA were varied in the synthesis process. The resulting SPCs were coated to the substrate plates for the subsequent hydrodynamic test for skin friction measurement. A significant reduction in Reynolds stress was observed in a range of specimen, with the maximum drag reduction being 15.9% relative to the smooth surface for PRD3-1.
Constraining the Drag Coefficients of Meteors in Dark Flight
NASA Technical Reports Server (NTRS)
Carter, R. T.; Jandir, P. S.; Kress, M. E.
2011-01-01
Based on data in the aeronautics literature, we have derived functions for the drag coefficients of spheres and cubes as a function of Mach number. Experiments have shown that spheres and cubes exhibit an abrupt factor-of-two decrease in the drag coefficient as the object slows through the transonic regime. Irregularly shaped objects such as meteorites likely exhibit a similar trend. These functions are implemented in an otherwise simple projectile motion model, which is applicable to the non-ablative dark flight of meteors (speeds less than .+3 km/s). We demonstrate how these functions may be used as upper and lower limits on the drag coefficient of meteors whose shape is unknown. A Mach-dependent drag coefficient is potentially important in other planetary and astrophysical situations, for instance, in the core accretion scenario for giant planet formation.
Exchange Coulomb interaction in nanotubes: Dispersion of Langmuir waves
Andreev, P. A. Ivanov, A. Yu.
2015-07-15
The microscopic derivation of the Coulomb exchange interaction for electrons located on the nanotubes is presented. The derivation is based on the many-particle quantum hydrodynamic method. We demonstrate the effect of curvature of the nanocylinders on the force of exchange interaction. We calculate corresponding dispersion dependencies for electron oscillations on the nanotubes.
Accurate Coulomb blockade thermometry up to 60 kelvin.
Meschke, M; Kemppinen, A; Pekola, J P
2016-03-28
We demonstrate experimentally a precise realization of Coulomb blockade thermometry working at temperatures up to 60 K. Advances in nano-fabrication methods using electron beam lithography allow us to fabricate uniform arrays of sufficiently small tunnel junctions to guarantee an overall temperature reading precision of about 1%. PMID:26903107
Coulomb energy of uniformly charged spheroidal shell systems
NASA Astrophysics Data System (ADS)
Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K.; de la Cruz, Monica Olvera
2015-03-01
We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.
Coulomb energy of uniformly charged spheroidal shell systems.
Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera
2015-03-01
We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions. PMID:25871108
Using the Screened Coulomb Potential to Illustrate the Variational Method
ERIC Educational Resources Information Center
Zuniga, Jose; Bastida, Adolfo; Requena, Alberto
2012-01-01
The screened Coulomb potential, or Yukawa potential, is used to illustrate the application of the single and linear variational methods. The trial variational functions are expressed in terms of Slater-type functions, for which the integrals needed to carry out the variational calculations are easily evaluated in closed form. The variational…
Coulomb gauge approach for charmonium meson and hybrid radiative transitions
Gou, Peng; Yepez-Martínez, Tochtli; Szczepaniak, Adam P.
2015-01-22
We consider the lowest order interaction of the Foldy-Wouthuysen QED and QCD Hamiltonian in the Coulomb gauge approach, to describe radiative transitions between conventional and hybrids charmonium mesons. The results are compared to potential quark models and lattices calculations.
Multiple Coulomb ordered strings of ions in a storage ring.
Hasse, R W
2001-04-01
We explain that the anomalous frequency shifts of very close masses obtained in the high precision mass measurement experiments in the ESR storage ring result from the locking of Coulomb interacting strings of ions. Here two concentric strings which run horizontally close to each other are captured into a single string if their thermal clouds overlap and give up their identity.
Hamiltonian flow in Coulomb gauge Yang-Mills theory
Leder, Markus; Reinhardt, Hugo; Pawlowski, Jan M.; Weber, Axel
2011-01-15
We derive a new functional renormalization group equation for Hamiltonian Yang-Mills theory in Coulomb gauge. The flow equations for the static gluon and ghost propagators are solved under the assumption of ghost dominance within different diagrammatic approximations. The results are compared to those obtained in the variational approach and the reliability of the approximations is discussed.
Coulomb Interactions in Hanbury Brown-Twiss Experiments with Electrons
ERIC Educational Resources Information Center
Shen, Kan
2009-01-01
This dissertation examines the effect of Coulomb interactions in Hanbury Brown-Twiss (HBT) type experiments with electrons. HBT experiments deal with intensity interference, which is related to the second-order correlation function of the particle field. This is an extension of the usual amplitude interference experiment, such as Young's…
Interpolating the Coulomb phase of little string theory
Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; Yin, Xi
2015-12-03
We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity onmore » the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.« less
Magnetic control of Coulomb scattering and terahertz transitions among excitons
NASA Astrophysics Data System (ADS)
Bhattacharyya, J.; Zybell, S.; Eßer, F.; Helm, M.; Schneider, H.; Schneebeli, L.; Böttge, C. N.; Breddermann, B.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.
2014-03-01
Time-resolved terahertz quenching studies of the magnetoexcitonic photoluminescence from GaAs/AlGaAs quantum wells are performed. A microscopic theory is developed to analyze the experiments. Detailed experiment-theory comparisons reveal a remarkable magnetic-field controllability of the Coulomb and terahertz interactions in the excitonic system.
Closed Form Expressions for an Integral Involving the Coulomb Potential
NASA Astrophysics Data System (ADS)
Mcisaac, K.; Gottschalk, J. E.; Maslen, E. N.
1986-12-01
Expressions for an integral related to the Coulomb potential are given. The expressions are in terms of logarithms and polynomials or logarithms and sums of Legendre polynomials. Identities relating an infinite sum of Legendre polynomials to a finite sum of Legendre polynomials can be deduced. This expression can be used in the domain to t → 1, z → 1 where quadrature fails.