Nonlocal formulation of spin Coulomb drag
NASA Astrophysics Data System (ADS)
D'Amico, I.; Ullrich, C. A.
2013-10-01
The spin Coulomb drag (SCD) effect occurs in materials and devices where charged carriers with different spins exchange momentum via Coulomb scattering. This causes frictional forces between spin-dependent currents that lead to intrinsic dissipation, which may limit spintronics applications. A nonlocal formulation of SCD is developed which is valid for strongly inhomogeneous systems such as nanoscale spintronics devices. This nonlocal formulation of SCD is successfully applied to linewidths of intersubband spin plasmons in semiconductor quantum wells, where experiments have shown that the local approximation fails.
NASA Astrophysics Data System (ADS)
Narozhny, B. N.; Levchenko, A.
2016-04-01
Coulomb drag is a transport phenomenon whereby long-range Coulomb interaction between charge carriers in two closely spaced but electrically isolated conductors induces a voltage (or, in a closed circuit, a current) in one of the conductors when an electrical current is passed through the other. The magnitude of the effect depends on the exact nature of the charge carriers and the microscopic, many-body structure of the electronic systems in the two conductors. Drag measurements have become part of the standard toolbox in condensed matter physics that can be used to study fundamental properties of diverse physical systems including semiconductor heterostructures, graphene, quantum wires, quantum dots, and optical cavities.
NASA Astrophysics Data System (ADS)
Arakawa, Naoya
2016-06-01
Anomalous Hall effect (AHE) and spin Hall effect (SHE) are fundamental phenomena, and their potential for application is great. However, we understand the interaction effects unsatisfactorily, and should have clarified issues about the roles of the Fermi sea term and Fermi surface term of the conductivity of the intrinsic AHE or SHE of an interacting multiorbital metal and about the effects of spin-Coulomb drag on the intrinsic SHE. Here, we resolve the first issue and provide the first step about the second issue by developing a general formalism in the linear response theory with appropriate approximations and using analytic arguments. The most striking result is that even without impurities, the Fermi surface term, a non-Berry-curvature term, plays dominant roles at high or slightly low temperatures. In particular, this Fermi surface term causes the temperature dependence of the dc anomalous Hall or spin Hall conductivity due to the interaction-induced quasiparticle damping and the correction of the dc spin Hall conductivity due to the spin-Coulomb drag. Those results revise our understanding of the intrinsic AHE and SHE. We also find that the differences between the dc anomalous Hall and longitudinal conductivities arise from the difference in the dominant multiband excitations. This not only explains why the Fermi sea term such as the Berry-curvature term becomes important in clean and low-temperature case only for interband transports, but also provides the useful principles on treating the electron-electron interaction in an interacting multiorbital metal for general formalism of transport coefficients. Several correspondences between our results and experiments are finally discussed.
Coulomb drag in topological insulator films
NASA Astrophysics Data System (ADS)
Liu, Hong; Liu, Weizhe Edward; Culcer, Dimitrie
2016-05-01
We study Coulomb drag between the top and bottom surfaces of topological insulator films. We derive a kinetic equation for the thin-film spin density matrix containing the full spin structure of the two-layer system, and analyze the electron-electron interaction in detail in order to recover all terms responsible for Coulomb drag. Focusing on typical topological insulator systems, with a film thicknesses d up to 6 nm, we obtain numerical and approximate analytical results for the drag resistivity ρD and find that ρD is proportional to T2d-4 na-3/2 np-3/2 at low temperature T and low electron density na,p, with a denoting the active layer and p the passive layer. In addition, we compare ρD with graphene, identifying qualitative and quantitative differences, and we discuss the multi-valley case, ultra thin films and electron-hole layers.
Observation of Spin Coulomb Drag in a Two-Dimensional Electron Gas
Weber, C.P.
2011-08-19
An electron propagating through a solid carries spin angular momentum in addition to its mass and charge. Of late there has been considerable interest in developing electronic devices based on the transport of spin, which offer potential advantages in dissipation, size, and speed over charge-based devices. However, these advantages bring with them additional complexity. Because each electron carries a single, fixed value (-e) of charge, the electrical current carried by a gas of electrons is simply proportional to its total momentum. A fundamental consequence is that the charge current is not affected by interactions that conserve total momentum, notably collisions among the electrons themselves. In contrast, the electron's spin along a given spatial direction can take on two values, {+-} {h_bar}/2 (conventionally {up_arrow}, {down_arrow}), so that the spin current and momentum need not be proportional. Although the transport of spin polarization is not protected by momentum conservation, it has been widely assumed that, like the charge current, spin current is unaffected by electron-electron (e-e) interactions. Here we demonstrate experimentally not only that this assumption is invalid, but that over a broad range of temperature and electron density, the flow of spin polarization in a two-dimensional gas of electrons is controlled by the rate of e-e collisions.
Negative Coulomb Drag in Double Bilayer Graphene.
Li, J I A; Taniguchi, T; Watanabe, K; Hone, J; Levchenko, A; Dean, C R
2016-07-22
We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found. PMID:27494491
Boltzmann-Langevin theory of Coulomb drag
NASA Astrophysics Data System (ADS)
Chen, W.; Andreev, A. V.; Levchenko, A.
2015-06-01
We develop a Boltzmann-Langevin description of the Coulomb drag effect in clean double-layer systems with large interlayer separation d as compared to the average interelectron distance λF. Coulomb drag arises from density fluctuations with spatial scales of order d . At low temperatures, their characteristic frequencies exceed the intralayer equilibration rate of the electron liquid, and Coulomb drag may be treated in the collisionless approximation. As temperature is raised, the electron mean free path becomes short due to electron-electron scattering. This leads to local equilibration of electron liquid, and consequently drag is determined by hydrodynamic density modes. Our theory applies to both the collisionless and the hydrodynamic regimes, and it enables us to describe the crossover between them. We find that drag resistivity exhibits a nonmonotonic temperature dependence with multiple crossovers at distinct energy scales. At the lowest temperatures, Coulomb drag is dominated by the particle-hole continuum, whereas at higher temperatures of the collision-dominated regime it is governed by the plasmon modes. We observe that fast intralayer equilibration mediated by electron-electron collisions ultimately renders a stronger drag effect.
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots
NASA Astrophysics Data System (ADS)
Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.
Supercurrent Drag via the Coulomb Interaction
NASA Astrophysics Data System (ADS)
Duan, Ji-Min; Yip, Sungkit
1996-03-01
We predict a supercurrent drag effect due to the Coulomb interaction between two parallel superconducting wires/layers. In contrast to previously explored frictional drag effect between two semiconducting quantum wells, our nondissipative drag mechanism ( J.-M. Duan and S. K. Yip, Phys. Rev. Lett.70), 3647 (1993). is based on considerations of the free energy of collective charge fluctuations. Our prediction has been confirmed experimentally ( X. Huang et al.), Phys. Rev. Lett.74, 4051 (1995). This mechanism generally exists in other nondissipative systems, such as double-layer quantum Hall syatems ( J.-M. Duan, Europhys. Lett.29), 489 (1995)., or between the two edge channels of a Hall bar, and between one-dimensional Luttinger Liquids.
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots.
Keller, A J; Lim, J S; Sánchez, David; López, Rosa; Amasha, S; Katine, J A; Shtrikman, Hadas; Goldhaber-Gordon, D
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior. PMID:27541473
Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.
Kaasbjerg, Kristen; Jauho, Antti-Pekka
2016-05-13
We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)-a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems. PMID:27232031
Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures
NASA Astrophysics Data System (ADS)
Kaasbjerg, Kristen; Jauho, Antti-Pekka
2016-05-01
We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs)—a bias-driven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach that accounts for higher-order tunneling (cotunneling) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multielectron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters. Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments on Coulomb drag in CQD systems.
Hydrodynamic Coulomb drag of strongly correlated electron liquids
NASA Astrophysics Data System (ADS)
Apostolov, S. S.; Levchenko, A.; Andreev, A. V.
2014-03-01
We develop a theory of Coulomb drag in ultraclean double layers with strongly correlated carriers. In the regime where the equilibration length of the electron liquid is shorter than the interlayer spacing the main contribution to the Coulomb drag arises from hydrodynamic density fluctuations. The latter consist of plasmons driven by fluctuating longitudinal stresses, and diffusive modes caused by temperature fluctuations and thermal expansion of the electron liquid. We express the drag resistivity in terms of the kinetic coefficients of the electron fluid. Our results are nonperturbative in interaction strength and do not assume Fermi-liquid behavior of the electron liquid.
Coulomb drag between one-dimensional electron systems
NASA Astrophysics Data System (ADS)
Muhammad, Mustafa
We have measured Coulomb drag (CD) between two spatially separated and electrically isolated one-dimensional (1D) wires to study the Luttinger liquid (LL) state in 1D systems. We have fabricated dual-wire CD devices with long quantum wires (≥ 1 microm) and short quantum wires (≤ 500 nm) with respect to the thermal lengths. The devices are made from high-mobility (≅10 6cm2/Vs) two-dimensional electron gas (2DEG) in AlGaAs/GaAs heterostructures, using high-resolution e-beam lithography, combined with metal deposition by e-beam evaporation to form surface Schottky gates. Peak in drag voltage occurs when the subband bottoms of the lowest energy subbands of the drive and the drag wires line up with each other and the Fermi level. We have observed drag on 1 microm device at 22 mK temperature which is found to be reminiscent of the drag observed earlier on a 2 microm device. An extensive reanalysis of the drag results obtained on the 2 microm device indicates a power-law temperature dependence of drag for both identical and non-identical wires. Also drag is found to decay exponentially with the mismatch between the wires. These properties indicate the existence of Luttinger liquid (LL) state in the long wire device. We have observed positive and negative drags on short wire devices. The observed temperature dependence of drag resistance, for both positive and negative drags, shows first an increase, followed by a constant plateau and finally a decrease as the temperature is increased. This is in line with the predictions of the Fermi--Luttinger liquid (FLL) forward momentum transfer theory. This is the first experimental observation of 1D Coulomb drag due to forward momentum transfer between wires. A negative drag between same type of carriers (holes or electrons) may conceivably result from forward momentum transfer or forward scattering if the band curvature of the drag wire at or near the Fermi point is negative. Negative band curvature may result from asymmetry
Coulomb drag between one-dimensional electron systems
NASA Astrophysics Data System (ADS)
Muhammad, Mustafa
We have measured Coulomb drag (CD) between two spatially separated and electrically isolated one-dimensional (1D) wires to study the Luttinger liquid (LL) state in 1D systems. We have fabricated dual-wire CD devices with long quantum wires (≥ 1 mum) and short quantum wires (≤ 500 nm) with respect to the thermal lengths. The devices are made from high-mobility (≅106cm2/Vs) two-dimensional electron gas (2DEG) in AlGaAs/GaAs heterostructures, using high-resolution e-beam lithography, combined with metal deposition by e-beam evaporation to form surface Schottky gates. Peak in drag voltage occurs when the subband bottoms of the lowest energy subbands of the drive and the drag wires line up with each other and the Fermi level. We have observed drag on 1 mum device at 22 mK temperature which is found to be reminiscent of the drag observed earlier on a 2 mum device. An extensive reanalysis of the drag results obtained on the 2 mum device indicates a power-law temperature dependence of drag for both identical and non-identical wires. Also drag is found to decay exponentially with the mismatch between the wires. These properties indicate the existence of Luttinger liquid (LL) state in the long wire device. We have observed positive and negative drags on short wire devices. The observed temperature dependence of drag resistance, for both positive and negative drags, shows first an increase, followed by a constant plateau and finally a decrease as the temperature is increased. This is in line with the predictions of the Fermi-Luttinger liquid (FLL) forward momentum transfer theory. This is the first experimental observation of 1D Coulomb drag due to forward momentum transfer between wires. A negative drag between same type of carriers (holes or electrons) may conceivably result from forward momentum transfer or forward scattering if the band curvature of the drag wire at or near the Fermi point is negative. Negative band curvature may result from asymmetry in the wire
``Perfect'' Coulomb Drag in a Bilayer Quantum Hall System
NASA Astrophysics Data System (ADS)
Nandi, D.; Finck, A. D. K.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.
2012-02-01
We report Coulomb drag measurements in Corbino geometry which reveal that equal but oppositely directed electrical currents can freely propagate across the insulating bulk of the bilayer quantized Hall state at νT=1 even when the two 2D layers are electrically isolated and interlayer tunneling has been heavily suppressed by an in-plane magnetic field. This effect, which we dub ``perfect'' Coulomb drag, reflects the transport of charge neutral excitons across the bulk of the 2D system. The equal magnitude of the drive and drag currents is lost at high current and when either the temperature or effective separation between the two 2D layers is increased. In each of these cases, ordinary quasiparticle charge transport across the annulus has grown to dominate over exciton transport.
Exciton Transport and Perfect Coulomb Drag
NASA Astrophysics Data System (ADS)
Nandi, Debaleena
2013-03-01
Exciton condensation is realized in closely-spaced bilayer quantum Hall systems at νT = 1 when the total density in the two 2D electron layers matches the Landau level degeneracy. In this state, electrons in one layer become tightly bound to holes in the other layer, forming a condensate similar to the Cooper pairs in a superconductor. Being charge neutral, these excitons ought to be free to move throughout the bulk of the quantum Hall fluid. One therefore expects that electron current driven in one layer would spontaneously generate a ``hole'' current in the other layer, even in the otherwise insulating bulk of the 2D system. We demonstrate precisely this effect, using a Corbino geometry to defeat edge state transport. Our sample contains two essentially identical two-dimensional electron systems (2DES) in GaAs quantum wells separated by a thin AlGaAs barrier. It is patterned into an annulus with arms protruding from each rim that provide contact to each 2DES separately. A current drag geometry is realized by applying a drive voltage between the outer and inner rim on one 2DES layer while the two rims on the opposite layer are connected together in a closed loop. There is no direct electrical connection between the two layers. At νT = 1 the bulk of the Corbino annulus becomes insulating owing to the quantum Hall gap and net charge transport across the bulk is suppressed. Nevertheless, we find that in the drag geometry appreciable currents do flow in each layer. These currents are almost exactly equal magnitude but, crucially, flow in opposite directions. This phenomenon reflects exciton transport within the νT = 1 condensate, rather than its quasiparticle excitations. We find that quasiparticle transport competes with exciton transport at elevated temperatures, drive levels, and layer separations. This work represents a collaboration with A.D.K. Finck, J.P. Eisenstein, L.N. Pfeiffer and K.W. West. This work is supported by the NSF under grant DMR-1003080.
Ion wake effects on the Coulomb ion drag in complex dusty plasmas
Ki, Dae-Han; Jung, Young-Dae
2010-09-06
The ion wake effects on the Coulomb drag force are investigated in complex dusty plasmas. It is shown that the ion wake effects significantly enhance the Coulomb ion drag force. It is also found that the ion wake effects on the Coulomb drag force increase with an increase in the Debye length. In addition, the ion wake effects on the momentum transfer cross section and Coulomb drag force are found to be increased with increasing thermal Mach number, i.e., decreasing plasma temperature. It is also found that the Coulomb ion drag force would be stronger for smaller dust grains.
CubeSat Measurement and Demonstration of Coulomb Drag Effect for Deorbiting
NASA Astrophysics Data System (ADS)
2013-08-01
Deorbiting satellites by passive or active electrodynamic tether Lorentz force effect is well known. Probably less well known is that a charged conducting tether also interacts with the streaming ionospheric plasma by electrostatic Coulomb drag. Especially for the case of small satellites deorbited by thin tethers, the Coulomb drag effect can be larger than the Lorentz force effect. When a tether is optimised for Coulomb drag, the goal is only to keep it charged. The fact that the charged tether gathers current is then a side effect which can be minimised by using negative voltage and by making the tether very thin. Using negative voltage in most cases implies that one can use the satellite's conducting surface as the other electrode so that no electron or ion emitter is needed on the spacecraft for closing the circuit. Thinness of the tether is a large benefit not only from the mass saving and power consumption minimisation points of view, but also because a sufficiently thin tether (made e.g. four 25-50 micrometre thin aluminium wires) poses nearly no threat to other space assets in the even of an unwanted collision. ESTCube-1 is an Estonian 1U CubeSat which is scheduled for Vega launch in May 2013 to 680 km polar orbit. The payload of ESTCube-1 is a 10 m long Heytether made of 25-50 aluminium wires which can be charged to plus orminus 500 V by onboard voltage sources and electron gun. The mission of ESTCube-1 is to demonstrate deployment of very thin multiline (and thus micrometeoroid tolerant) tether and to measure the Coulomb drag effect on the charged tether by ionospheric plasma ram flow. The Coulomb drag has not been measured before and besides useful for deorbiting the effect can also be used to propel interplanetary spacecraft by the fast moving solar wind plasma stream. The measurement of the micronewton scale force is carried out by turning the voltage on and off in a synchronous way with the satellite's rotation and by measuring the cumulative change
Spin Drag in Noncondensed Bose Gases
Duine, R. A.; Stoof, H. T. C.
2009-10-23
We show how time-dependent magnetic fields lead to spin motive forces and spin drag in a spinor Bose gas. We propose to observe these effects in a toroidal trap and analyze this particular proposal in some detail. In the linear-response regime we define a transport coefficient that is analogous to the usual drag resistivity in electron bilayer systems. Because of Bose enhancement of atom-atom scattering, this coefficient strongly increases as temperature is lowered. We also investigate the effects of heating.
Coulomb drag and tunneling studies in quantum Hall bilayers
NASA Astrophysics Data System (ADS)
Nandi, Debaleena
The bilayer quantum Hall state at total filling factor νT=1, where the total electron density matches the degeneracy of the lowest Landau level, is a prominent example of Bose-Einstein condensation of excitons. A macroscopically ordered state is realized where an electron in one layer is tightly bound to a "hole" in the other layer. If exciton transport were the only bulk transportmechanism, a current driven in one layer would spontaneously generate a current of equal magnitude and opposite sign in the other layer. The Corbino Coulomb drag measurements presented in this thesis demonstrate precisely this phenomenon. Excitonic superfluidity has been long sought in the νT=1 state. The tunneling between the two electron gas layers exihibit a dc Josephson-like effect. A simple model of an over-damped voltage biased Josephson junction is in reasonable agreement with the observed tunneling I -- V. At small tunneling biases, it exhibits a tunneling "supercurrent". The dissipation is carefully studied in this tunneling "supercurrent" and found to remain small but finite.
Coulomb blockade of spin-dependent shuttling
NASA Astrophysics Data System (ADS)
Park, Hee Chul; Kadigrobov, Anatoli M.; Shekhter, Robert I.; Jonson, M.
2013-12-01
We show that nanomechanical shuttling of single electrons may enable qualitatively new functionality if spin-polarized electrons are injected into a nanoelectromechanical single-electron tunneling (NEM-SET) device. This is due to the combined effects of spin-dependent electron tunneling and Coulomb blockade of tunneling, which are phenomena that occur in certain magnetic NEM-SET devices. Two effects are predicted to occur in such structures. The first is a reentrant shuttle instability, by which we mean the sequential appearance, disappearance and again the appearance of a shuttle instability as the driving voltage is increased (or the mechanical dissipation is diminished). The second effect is an enhanced spin polarization of the nanomechanically assisted current flow.
1D Coulomb drag between coupled nanowires formed at oxide interfaces
NASA Astrophysics Data System (ADS)
Tang, Yuhe; Tomczyk, Michelle; Huang, Mengchen; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy
``Coulomb drag'' is a transport phenomenon where Coulomb interaction between two close but electrically isolated conductors induces voltage in one conductor when an electric current is injected in the other conductor. It is a powerful approach to probe electronic correlations. Here we examine 1D electronic correlations in a proximally coupled nanowire system where two parallel nanowires are created with conductive atomic force microscopy at the LaAlO3/SrTiO3 interface. Coulomb drag measurements are made by injecting current into one wire (drive wire) and measuring the induced voltage in the other wire (drag wire). This geometry offers experimental insights into the interplay of electron pairing and superconductivity in reduced dimensions. We gratefully acknowledge financial support from DOE DE-SC0014417 (JL).
Ultranarrow resonance in Coulomb drag between quantum wires at coinciding densities
NASA Astrophysics Data System (ADS)
Dmitriev, A. P.; Gornyi, I. V.; Polyakov, D. G.
2016-08-01
We investigate the influence of the chemical potential mismatch Δ (different electron densities) on Coulomb drag between two parallel ballistic quantum wires. For pair collisions, the drag resistivity ρD(Δ ) shows a peculiar anomaly at Δ =0 with ρD being finite at Δ =0 and vanishing at any nonzero Δ . The "bodyless" resonance in ρD(Δ ) at zero Δ is only broadened by processes of multiparticle scattering. We analyze Coulomb drag for finite Δ in the presence of both two- and three-particle scattering within the kinetic equation framework, focusing on a Fokker-Planck picture of the interaction-induced diffusion in momentum space of the double-wire system. We describe the dependence of ρD on Δ for both weak and strong intrawire equilibration due to three-particle scattering.
Thickness effects on the Coulomb drag rate in double quantum layer systems
NASA Astrophysics Data System (ADS)
Vazifehshenas, T.; Eskourchi, A.
2007-02-01
In this paper, we have investigated the effect of quantum layer thickness on Coulomb drag phenomenon in a double quantum well (DQW) system, in which the electrons momentum can transfer from one layer to another. We have applied the full random phase approximation (RPA) in dynamical dielectric matrix of this coupled two-dimensional electron gas (2DEG) system in order to obtain an improved result for temperature-dependent rate of momentum transfer. We have calculated the drag rate transresistivity for various well thicknesses at low and intermediate temperatures in Fermi-scale and for different electron gas densities. It has been obtained that the Coulomb drag rate increases with increasing the well width when the separation between the wells remains unchanged.
Spin-Drag Hall Effect in a Rotating Bose Mixture
Driel, H. J. van; Duine, R. A.; Stoof, H. T. C.
2010-10-08
We show that in a rotating two-component Bose mixture, the spin drag between the two different spin species shows a Hall effect. This spin-drag Hall effect can be observed experimentally by studying the out-of-phase dipole mode of the mixture. We determine the damping of this mode due to spin drag as a function of temperature. We find that due to Bose stimulation there is a strong enhancement of the damping for temperatures close to the critical temperature for Bose-Einstein condensation.
Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene
NASA Astrophysics Data System (ADS)
Saberi-Pouya, S.; Vazifehshenas, T.; Farmanbar, M.; Salavati-fard, T.
2016-07-01
We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned for other double-layered systems with paraboloidal band structures. Our calculations show the rotation of one layer with respect to another layer can be considered a way of controlling the drag resistivity in such systems. As a result of rotation, the off-diagonal elements of the drag resistivity tensor have non-zero values at any temperature. In addition, we show that the anisotropic drag resistivity is very sensitive to the direction of momentum transfer between two layers due to highly anisotropic inter-layer electron–electron interaction and also the plasmon modes. In particular, the drag anisotropy ratio, {ρyy}/{ρxx} , can reach up to ∼ 3 by changing the temperature. Furthermore, our calculations suggest that including the local field correction in the dielectric function changes the results significantly. Finally, We examine the dependence of drag resistivity and its anisotropy ratio on various parameters like inter-layer separation, electron density, short-range interaction and insulating substrate/spacer.
Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene.
Saberi-Pouya, S; Vazifehshenas, T; Farmanbar, M; Salavati-Fard, T
2016-07-20
We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned for other double-layered systems with paraboloidal band structures. Our calculations show the rotation of one layer with respect to another layer can be considered a way of controlling the drag resistivity in such systems. As a result of rotation, the off-diagonal elements of the drag resistivity tensor have non-zero values at any temperature. In addition, we show that the anisotropic drag resistivity is very sensitive to the direction of momentum transfer between two layers due to highly anisotropic inter-layer electron-electron interaction and also the plasmon modes. In particular, the drag anisotropy ratio, [Formula: see text], can reach up to [Formula: see text]3 by changing the temperature. Furthermore, our calculations suggest that including the local field correction in the dielectric function changes the results significantly. Finally, We examine the dependence of drag resistivity and its anisotropy ratio on various parameters like inter-layer separation, electron density, short-range interaction and insulating substrate/spacer. PMID:27221580
Anomalous Coulomb Drag in Electron-Hole Bilayers due to the Formation of Excitons
NASA Astrophysics Data System (ADS)
Efimkin, Dmitry K.; Galitski, Victor
2016-01-01
Several recent experiments have reported an anomalous temperature dependence of the Coulomb drag effect in electron-hole bilayers. Motivated by these puzzling data, we study theoretically a low-density electron-hole bilayer, where electrons and holes avoid quantum degeneracy by forming excitons. We describe the ionization-recombination crossover between the electron-hole plasma and exciton gas and calculate both the intralayer and drag resistivity as a function of temperature. The latter exhibits a minimum followed by a sharp upturn at low temperatures, in qualitative agreement with the experimental observations [see, e.g., J. A. Seamons et al., Phys. Rev. Lett. 102, 026804 (2009)]. Importantly, the drag resistivity in the proposed scenario is found to be rather insensitive to a mismatch in electron and hole concentrations, in sharp contrast to the scenario of electron-hole Cooper pairing.
Interplay of Coulomb interaction and spin-orbit coupling
NASA Astrophysics Data System (ADS)
Bünemann, Jörg; Linneweber, Thorben; Löw, Ute; Anders, Frithjof B.; Gebhard, Florian
2016-07-01
We employ the Gutzwiller variational approach to investigate the interplay of Coulomb interaction and spin-orbit coupling in a three-orbital Hubbard model. Already in the paramagnetic phase we find a substantial renormalization of the spin-orbit coupling that enters the effective single-particle Hamiltonian for the quasiparticles. Only close to half band-filling and for sizable Coulomb interaction do we observe clear signatures of Hund's atomic rules for spin, orbital, and total angular momentum. For a finite local Hund's rule exchange interaction we find a ferromagnetically ordered state. The spin-orbit coupling considerably reduces the size of the ordered moment, it generates a small ordered orbital moment, and it induces a magnetic anisotropy. To investigate the magnetic anisotropy energy, we use an external magnetic field that tilts the magnetic moment away from the easy axis (1 ,1 ,1 ) .
1D-1D Coulomb drag in a 6 Million Mobility Bi-layer Heterostructure
NASA Astrophysics Data System (ADS)
Bilodeau, Simon; Laroche, Dominique; Xia, Jian-Sheng; Lilly, Mike; Reno, John; Pfeiffer, Loren; West, Ken; Gervais, Guillaume
We report Coulomb drag measurements in vertically-coupled quantum wires. The wires are fabricated in GaAs/AlGaAs bilayer heterostructures grown from two different MBE chambers: one at Sandia National Laboratories (1.2M mobility), and the other at Princeton University (6M mobility). The previously observed positive and negative drag signals are seen in both types of devices, demonstrating the robustness of the result. However, attempts to determine the temperature dependence of the drag signal in the 1D regime proved challenging in the higher mobility heterostructure (Princeton), in part because of difficulties in aligning the wires within the same transverse subband configuration. Nevertheless, this work, performed at the Microkelvin laboratory of the University of Florida, is an important proof-of-concept for future investigations of the temperature dependence of the 1D-1D drag signal down to a few mK. Such an experiment could confirm the Luttinger charge density wave interlocking predicted to occur in the wires. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.
Seamons, John Andrew; Lilly, Michael Patrick; Morath, Christian Paul; Reno, John Louis
2010-03-01
A low-temperature upturn of the Coulomb drag resistivity {rho}{sub D} measured in undoped electron-hole bilayer devices, possibly manifesting from formation of a superfluid condensate or density modulated state, was recently observed. Here the effects of perpendicular and parallel magnetic fields on the drag upturn are examined. Measurements of {rho}{sub D} and drive layer resistivity {rho}{sub xx-e} as a function of temperature and magnetic field in two uEHBL devices are presented. In B{sub {perpendicular}}, the drag upturn was enhanced as the field increased up to roughly .2 T, beyond which oscillations in {rho}{sub D} and {rho}{sub xx-e}, reflecting Landau level formation, begin appearing. A small phase offset between those oscillations, which decreased at higher fields and temperatures, was also observed. In B{sub {parallel}}, the drag upturn magnitude diminished as the field increased. Above the upturn regime, both {rho}{sub D} and {rho}{sub xx-e} were enhanced by B{sub {parallel}}, the latter via decreased screening of the uniform background impurities.
Low temperature transport and Coulomb drag studies of undoped electron-hole bilayers
NASA Astrophysics Data System (ADS)
Morath, Christian Paul
This dissertation describes a series of three experiments focused on low electronic temperature transport and Coulomb drag in GaAs electron-hole bilayers. Electron-hole bilayers are of immense interest for exciton condensation studies since the exciton, predicted to form here, has a comparably light mass. This should lead to condensation at temperatures relatively easily obtained in a 3He-fridge, while the bilayer's device geometry allows for unambiguous detection of condensation effects via Coulomb drag measurements. General transport measurements of each layer are also of interest since an additional source of correlation, via the attractive Coulomb interaction from the nearby layer, is present. These interlayer effects are expected to become more visible as the layer separation is reduced and depend on the densities, relative and total, in each well, as well as the application of an external perpendicular or parallel magnetic field. Exploring these questions, measuring and discussing the results of experiments which probe them, was the main point of this dissertation. The first experiment examined the layer interdependence of transport in an undoped electron-hole bilayer (uEHBL) device with a relatively large 30 nm Al0.9Ga0.1As barrier between the two quantum wells. The results here were consistent with mobility of each layer being only indirectly dependent on the adjacent layer density and dominated by background impurity scattering. A decreasing interlayer separation, estimated via Coulomb drag measurements, was also observed with increased interlayer electric-field. The other two experiments were centered on the possibility of detecting electron-hole pairing and condensation in the bilayer using Coulomb drag measurements. Hints of condensation were observed in previous bilayer drag experiments and the follow-on experiments, described in this dissertation, sought to further elucidate the nature of these initial effects. The main result previously determined
Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures.
Gamucci, A; Spirito, D; Carrega, M; Karmakar, B; Lombardo, A; Bruna, M; Pfeiffer, L N; West, K W; Ferrari, A C; Polini, M; Pellegrini, V
2014-01-01
Vertical heterostructures combining different layered materials offer novel opportunities for applications and fundamental studies. Here we report a new class of heterostructures comprising a single-layer (or bilayer) graphene in close proximity to a quantum well created in GaAs and supporting a high-mobility two-dimensional electron gas. In our devices, graphene is naturally hole-doped, thereby allowing for the investigation of electron-hole interactions. We focus on the Coulomb drag transport measurements, which are sensitive to many-body effects, and find that the Coulomb drag resistivity significantly increases for temperatures <5-10 K. The low-temperature data follow a logarithmic law, therefore displaying a notable departure from the ordinary quadratic temperature dependence expected in a weakly correlated Fermi-liquid. This anomalous behaviour is consistent with the onset of strong interlayer correlations. Our heterostructures represent a new platform for the creation of coherent circuits and topologically protected quantum bits. PMID:25524426
Trapping - A control phenomenon of spinning drag-free satellites.
NASA Technical Reports Server (NTRS)
Powell, J. D.
1971-01-01
A drag-free satellite contains a proof mass in an internal cavity and is controlled in translation so that it never touches the proof mass. The satellite shields the proof mass from external forces thus allowing the proof mass to follow a drag-free orbit. Spinning the satellite is desirable because it attenuates the effect of proof mass disturbing forces and simplifies the attitude control. The design of a translation controller for a spinning drag-free satellite typically includes a deadspace to eliminate chatter. This design feature and the inability to locate precisely the mass center give rise to a phenomenon called trapping that potentially could waste significant amounts of propellant. A theory is developed and experimentally verified that explains the role of these factors and provides insight into the effect of other control parameters.
Topological spin-transfer drag driven by skyrmion diffusion
NASA Astrophysics Data System (ADS)
Ochoa, Héctor; Kim, Se Kwon; Tserkovnyak, Yaroslav
2016-07-01
We study the spin-transfer drag mediated by the Brownian motion of skyrmions. The essential idea is illustrated in a two-terminal geometry, in which a thin film of a magnetic insulator is placed in between two metallic reservoirs. An electric current in one of the terminals pumps topological charge into the magnet via a spin-transfer torque. The charge diffuses over the bulk of the system as stable skyrmion textures. By Onsager's reciprocity, the topological charge leaving the magnet produces an electromotive force in the second terminal. The voltage signal decays algebraically with the separation between contacts, in contrast to the exponential suppression of the spin drag driven by nonprotected excitations like magnons. We show how this topological effect can be used as a tool to characterize the phase diagram of chiral magnets and thin films with interfacial Dzyaloshinskii-Moriya interactions.
Gigantic enhancement of spin Seebeck effect by phonon drag
NASA Astrophysics Data System (ADS)
Adachi, Hiroto; Uchida, Ken-Ichi; Saitoh, Eiji; Ohe, Jun-Ichiro; Takahashi, Saburo; Maekawa, Sadamichi
2011-03-01
We investigate both theoretically and experimentally a gigantic enhancement of the spin Seebeck effect [K. Uchida et al., Nature 455, 778 (2008); C. M. Jaworski et al., Nature Mater. 9, 898 (2010); K. Uchida et al., Nature Mater. 9, 894 (2010)] in a prototypical magnet La Y2 Fe 5 O12 at low temperatures. Our theoretical analysis sheds light on the important role of phonons; the spin Seebeck effect is enormously enhanced by nonequilibrium phonons that drag the low-lying spin excitations. We further argue that this scenario gives a clue to understand the observation of the spin Seebeck effect that is unaccompanied by a global spin current, and predict that the substrate condition affects the observed signal.
Spin Drag in an Ultracold Fermi Gas on the Verge of Ferromagnetic Instability
Duine, R. A.; Stoof, H. T. C.; Polini, Marco; Vignale, G.
2010-06-04
Recent experiments [Jo et al., Science 325, 1521 (2009)] have presented evidence of ferromagnetic correlations in a two-component ultracold Fermi gas with strong repulsive interactions. Motivated by these experiments we consider spin drag, i.e., frictional drag due to scattering of particles with opposite spin, in such systems. We show that when the ferromagnetic state is approached from the normal side, the spin drag relaxation rate is strongly enhanced near the critical point. We also determine the temperature dependence of the spin diffusion constant. In a trapped gas the spin drag relaxation rate determines the damping of the spin dipole mode, which therefore provides a precursor signal of the ferromagnetic phase transition that may be used to experimentally determine the proximity to the ferromagnetic phase.
Two dimensional graphene nanogenerator by coulomb dragging: Moving van der Waals heterostructure
Zhong, Huikai; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Chen, Hongsheng; Lin, Shisheng
2015-06-15
Harvesting energy from environment is the current focus of scientific community. Here, we demonstrate a graphene nanogenerator, which is based on moving van der Waals heterostructure formed between graphene and two dimensional (2D) graphene oxide (GO). This nanogenerator can convert mechanical energy into electricity with a voltage output of around 10 mV. Systematic experiments reveal the generated electricity originates from the coulomb interaction induced momentum transfer between 2D GO and holes in graphene. 2D boron nitride was also demonstrated to be effective in the framework of moving van der Waals heterostructure nanogenerator. This investigation of nanogenerator based on the interaction between 2D macromolecule materials will be important to understand the origin of the flow-induced potential in nanomaterials and may have great potential in practical applications.
Spin blockade and exchange in Coulomb-confined silicon double quantum dots.
Weber, Bent; Tan, Y H Matthias; Mahapatra, Suddhasatta; Watson, Thomas F; Ryu, Hoon; Rahman, Rajib; Hollenberg, Lloyd C L; Klimeck, Gerhard; Simmons, Michelle Y
2014-06-01
Electron spins confined to phosphorus donors in silicon are promising candidates as qubits because of their long coherence times, exceeding seconds in isotopically purified bulk silicon. With the recent demonstrations of initialization, readout and coherent manipulation of individual donor electron spins, the next challenge towards the realization of a Si:P donor-based quantum computer is the demonstration of exchange coupling in two tunnel-coupled phosphorus donors. Spin-to-charge conversion via Pauli spin blockade, an essential ingredient for reading out individual spin states, is challenging in donor-based systems due to the inherently large donor charging energies (∼45 meV), requiring large electric fields (>1 MV m(-1)) to transfer both electron spins onto the same donor. Here, in a carefully characterized double donor-dot device, we directly observe spin blockade of the first few electrons and measure the effective exchange interaction between electron spins in coupled Coulomb-confined systems. PMID:24727686
Interdot Coulomb correlation effects and spin-orbit coupling in two carbon nanotube quantum dots
Wang, Zhen-Hua; Kuang, Xiao-Yu Zhong, Ming-Min; Shao, Peng; Li, Hui
2014-01-28
Transport properties of the two-level Kondo effect involving spin, orbital, and pseudospin degrees of freedom are examined in a parallel carbon nanotube double quantum dot with a sufficient interdot Coulomb interaction and small interdot tunneling. The interdot Coulomb correlation effects are taken into account, and it plays an important role in forming bonding and antibonding states. Attached to ferromagnetic leads, the Kondo effect is observed at the interdot Coulomb blockade region with degeneracy of spin, orbital, and pseudospin degrees of freedom. A crossover from a two-level Kondo state involving the fivefold degeneracy of the double quantum dots to an SU(4) spin-orbit Kondo state and to an SU(2) spin-Kondo effect is demonstrated. At finite magnetic field, the splitting of the spin, orbital, and pseudospin Kondo resonance can be restored. For finite intradot Coulomb interaction U, there is a competition between the single-dot Kondo effect and the antiferromagnetic exchange coupling J{sub AFM}, resulting in the suppression of the Kondo resonance. Moreover, both the J{sub AFM} and the Zeeman interactions compete, leading to need a much higher value of the magnetic field to compensate for the Kondo splitting.
Coulomb energy averaged over the nl{sup N}-atomic states with a definite spin
Kibler, M.; Smirnov, Yu. F.
1995-03-05
A purely group-theoretical approach (for which the symmetric group plays a central role), based upon the use of properties of fractional-parentage coefficients and isoscalar factors, is developed for the derivation of the Coulomb energy averaged over the states, with a definite spin, arising from an atomic configuration nl{sup N}. 15 refs.
Noncollinear drag force in Bose-Einstein condensates with Weyl spin-orbit coupling
NASA Astrophysics Data System (ADS)
Liao, Renyuan; Fialko, Oleksandr; Brand, Joachim; Zülicke, Ulrich
2016-02-01
We consider the motion of a pointlike impurity through a three-dimensional two-component Bose-Einstein condensate subject to Weyl spin-orbit coupling. Using linear-response theory, we calculate the drag force felt by the impurity and the associated anisotropic critical velocity from the spectrum of elementary excitations. The drag force is shown to be generally not collinear with the velocity of the impurity. This unusual behavior is a consequence of condensation into a finite-momentum state due to the spin-orbit coupling.
NASA Technical Reports Server (NTRS)
Parthasarathy, S. P.; Cho, Y. I.; Kwack, E. Y.; Back, L. H.
1986-01-01
Projectiles containing axisymmetric ring cavities constitute aeroacoustic sources. These produce high intensity tones which are used for coding in the SAWE (Simulation of Area Weapons Effects) system. Experimental data obtained in a free jet facility are presented describing the effects of yaw, spin and geometric projectile parameters on sound pressure and drag. In general, the sound pressure decreases with increasing yaw angle whereas the drag increases. Spin tends to increase sound pressure levels because of a reduction in asymmetry of flow. Drag increases at zero yaw approximately as the 1.5 power of sound wavelength. A significant part of the drag increase appears to be due to energy loss by sound radiation.
Coulomb Interaction Effects In Semiconductor Heterostructures With Spin-Orbit Interaction
NASA Astrophysics Data System (ADS)
Capps, Jeremy Patrick
In this thesis we analyze two different situations where the interplay between the spin-orbit coupling (SOI) of the Rashba and Dresselhaus type, linear in the electron momentum, and the Coulomb interaction generates a specific macroscopic phenomenology that can be experimentally observed. In the first problem, we investigate the Friedel oscillations that can be sustained in the presence of the Coulomb repulsion in a two-dimensional lateral superlattice with SOI and analyze the dependence on several system parameters. Then, we are concerned with the properties of a single quantum well in the special regime where the coupling strengths of the Rashba and Dresselhaus interactions are equal. Starting from general total-energy considerations, we demonstrate that the SU(2) spin-rotation symmetry and the resulting persistent helical state (PHS) predicted to occur are not in fact realized; the actual spin order being that of an itinerant antiferromagnet (IAF). We obtain numerical results that describe the temperature evolution of the order parameter in the IAF state and determine the critical temperature of the transition to the paramagnetic order. Transport in this state is modeled by using the solutions of a Boltzmann equation obtained within the relaxation time approximation. Numerical estimates performed for realistic GaAs and InAs samples indicate that at low temperatures, the amplitude of the spin-Seebeck coefficient can be increased by scattering on magnetic impurities.
Random Coulomb antiferromagnets: From diluted spin liquids to Euclidean random matrices
NASA Astrophysics Data System (ADS)
Rehn, J.; Sen, Arnab; Andreanov, A.; Damle, Kedar; Moessner, R.; Scardicchio, A.
2015-08-01
We study a disordered classical Heisenberg magnet with uniformly antiferromagnetic interactions which are frustrated on account of their long-range Coulomb form, i.e., J (r )˜-A lnr in d =2 and J (r )˜A /r in d =3 . This arises naturally as the T →0 limit of the emergent interactions between vacancy-induced degrees of freedom in a class of diluted Coulomb spin liquids (including the classical Heisenberg antiferromagnets in checkerboard, SCGO, and pyrochlore lattices) and presents a novel variant of a disordered long-range spin Hamiltonian. Using detailed analytical and numerical studies we establish that this model exhibits a very broad paramagnetic regime that extends to very large values of A in both d =2 and d =3 . In d =2 , using the lattice-Green-function-based finite-size regularization of the Coulomb potential (which corresponds naturally to the underlying low-temperature limit of the emergent interactions between orphans), we find evidence that freezing into a glassy state occurs only in the limit of strong coupling, A =∞ , while no such transition seems to exist in d =3 . We also demonstrate the presence and importance of screening for such a magnet. We analyze the spectrum of the Euclidean random matrices describing a Gaussian version of this problem and identify a corresponding quantum mechanical scattering problem.
NASA Astrophysics Data System (ADS)
Paulsen, C.; Giblin, S. R.; Lhotel, E.; Prabhakaran, D.; Balakrishnan, G.; Matsuhira, K.; Bramwell, S. T.
2016-07-01
A non-Ohmic current that grows exponentially with the square root of applied electric field is well known from thermionic field emission (the Schottky effect), electrolytes (the second Wien effect) and semiconductors (the Poole-Frenkel effect). It is a universal signature of the attractive Coulomb force between positive and negative electrical charges, which is revealed as the charges are driven in opposite directions by the force of an applied electric field. Here we apply thermal quenches to spin ice to prepare metastable populations of bound pairs of positive and negative emergent magnetic monopoles at millikelvin temperatures. We find that the application of a magnetic field results in a universal exponential-root field growth of magnetic current, thus confirming the microscopic Coulomb force between the magnetic monopole quasiparticles and establishing a magnetic analogue of the Poole-Frenkel effect. At temperatures above 300 mK, gradual restoration of kinetic monopole equilibria causes the non-Ohmic current to smoothly evolve into the high-field Wien effect for magnetic monopoles, as confirmed by comparison to a recent and rigorous theory of the Wien effect in spin ice. Our results extend the universality of the exponential-root field form into magnetism and illustrate the power of emergent particle kinetics to describe far-from-equilibrium response in complex systems.
Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.
Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva
2016-03-11
The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}. PMID:27015496
Charge and spin order in one dimensional systems with long range Coulomb interaction
NASA Astrophysics Data System (ADS)
Belen Valenzuela, M.; Fratini, Simone; Baeriswyl, Dionys
2004-03-01
In this talk I present our results of studying a system of electrons on a one-dimensional lattice, interacting through long range Coulomb forces, by means of a variational technique which is the strong coupling analog of the Gutzwiller approach. For quarter filling we find that the effects of commensurability together with the strength of the interaction give rise to charge ordering as the ground state. When we add the spin degrees of freedom it is found that they are coupled by an antiferromagnetic kinetic exchange J, which turn out to be much smaller than the energy scale governing the charge degrees of freedom. Our results shed new light on the insulating phases of organic quasi-1D compounds where charge ordering sets in at high temperatures and coexists with spin ordering at low temperatures. We also present a phase diagram of interaction versus fillings where we identify three phases: weak charge density waves, Wigner crystal and Generalized Wigner crystal (solution of the Wigner crystal problem with the additional constraint for the electrons of living in the host lattice of the ions). Refs: B. Valenzuela et al. Phys. Rev. B, 68 (2003) 045112, S. Fratini et al. Contribution to the Michael J. Rice Special Issue of "Synthetic Metals" 2003, (cond-mat/0309450).
Electronic structure of FeCr2S4 : Evidence of Coulomb enhanced spin-orbit splitting
NASA Astrophysics Data System (ADS)
Sarkar, Soumyajit; de Raychaudhury, Molly; Dasgupta, I.; Saha-Dasgupta, T.
2009-11-01
The electronic structure of the spinel compound, FeCr2S4 , is studied using density-functional-theory-based calculations. Our calculations provide a microscopic understanding of the origin of the insulating behavior of this compound, which turn out to be driven by Coulomb enhanced spin-orbit coupling operative within the Fe-d manifold. We also investigate the possible role of the structural distortions and compare the calculated optical property data with that of the experimental one.
NASA Astrophysics Data System (ADS)
Kovtun, Oleksiy; Tioukine, Valeri; Surzhykov, Andrey; Yerokhin, Vladimir A.; Cederwall, Bo; Tashenov, Stanislav
2015-12-01
Linear polarization of bremsstrahlung x rays produced in collisions of longitudinally polarized 2.1-MeV electrons with gold atoms was studied using the Compton scattering technique. We observed that the angle of x-ray polarization is strongly correlated with the incoming electron polarization. This correlation reveals the dominance of the spin-orbit interaction in bremsstrahlung and indicates a striking effect of the electron spin on the electron motion in a strong Coulomb field. The results confirm the validity of the theoretical predictions in a computationally challenging energy regime.
NASA Astrophysics Data System (ADS)
Glass, S.; Li, G.; Adler, F.; Aulbach, J.; Fleszar, A.; Thomale, R.; Hanke, W.; Claessen, R.; Schäfer, J.
2015-06-01
Two-dimensional (2D) atom lattices provide model setups with Coulomb correlations that induce competing ground states. Here, SiC emerges as a wide-gap substrate with reduced screening. We report the first artificial high-Z atom lattice on SiC(0001) by Sn adatoms, based on experimental realization and theoretical modeling. Density-functional theory of our triangular structure model closely reproduces the scanning tunneling microscopy. Photoemission data show a deeply gapped state (˜2 eV gap), and, based on our calculations including dynamic mean-field theory, we argue that this reflects a pronounced Mott-insulating scenario. We also find indications that the system is susceptible to antiferromagnetic superstructures. Such artificial lattices on SiC(0001) thus offer a novel platform for coexisting Coulomb correlations and spin-orbit coupling, with bearing for unusual magnetic phases and proposed topological quantum states of matter.
Glass, S; Li, G; Adler, F; Aulbach, J; Fleszar, A; Thomale, R; Hanke, W; Claessen, R; Schäfer, J
2015-06-19
Two-dimensional (2D) atom lattices provide model setups with Coulomb correlations that induce competing ground states. Here, SiC emerges as a wide-gap substrate with reduced screening. We report the first artificial high-Z atom lattice on SiC(0001) by Sn adatoms, based on experimental realization and theoretical modeling. Density-functional theory of our triangular structure model closely reproduces the scanning tunneling microscopy. Photoemission data show a deeply gapped state (∼2 eV gap), and, based on our calculations including dynamic mean-field theory, we argue that this reflects a pronounced Mott-insulating scenario. We also find indications that the system is susceptible to antiferromagnetic superstructures. Such artificial lattices on SiC(0001) thus offer a novel platform for coexisting Coulomb correlations and spin-orbit coupling, with bearing for unusual magnetic phases and proposed topological quantum states of matter. PMID:26197013
Theoretical study of Coulomb correlations and spin-orbit coupling in SrIrO{sub 3}
Singh, Vijeta Pulikkotil, J. J.
2015-06-24
Given that energy scales associated with crystal field splitting, spin orbit coupling and coulomb correlations in iridates are comparable, hence leading to exotic properties, we investigate the physical properties of orthorhombic SrIrO{sub 3} using density functional theory. Our calculations, however, show that SrIrO{sub 3} is a bad metal with no long range magnetic ordering, unlike its sister compounds Sr{sub 2}IrO{sub 4} and Sr{sub 3}Ir{sub 2}O{sub 7}. Moreover, despite having large band width, it appears conclusive that the larger resistivity in SrIrO{sub 3} is due to spin orbit interactions. Besides, the effects of electron-electron correlations on its electronic structure and magnetic properties are also discussed.
NASA Astrophysics Data System (ADS)
Cheng, Lan; Gauss, Jürgen
2011-06-01
We report an analytical scheme for the calculation of first-order electrical properties using the spin-free Dirac-Coulomb (SFDC) Hamiltonian, thereby exploiting the well-developed density-matrix formulations in nonrelativistic coupled-cluster (CC) derivative theory. Orbital relaxation effects are fully accounted for by including the relaxation of the correlated orbitals with respect to orbitals of all types, viz., frozen-core, occupied, virtual, and negative energy state orbitals. To demonstrate the applicability of the presented scheme, we report benchmark calculations for first-order electrical properties of the hydrogen halides, HX with X = F, Cl, Br, I, At, and a first application to the iodo(fluoro)methanes, CHnF3 - nI, n = 0-3. The results obtained from the SFDC calculations are compared to those from nonrelativistic calculations, those obtained via leading-order direct perturbation theory as well as those from full Dirac-Coulomb calculations. It is shown that the full inclusion of spin-free (SF) relativistic effects is necessary to obtain accurate first-order electrical properties in the presence of fifth-row elements. The SFDC scheme is also recommended for applications to systems containing lighter elements because it introduces no extra cost in the rate-determining steps of a CC calculation in comparison to the nonrelativistic case. On the other hand, spin-orbit contributions are generally small for first-order electrical properties of closed-shell molecules and may be handled efficiently by means of perturbation theory.
NASA Astrophysics Data System (ADS)
Sadeghi, Azam; Alaei, Mojtaba; Shahbazi, Farhad; Gingras, Michel J. P.
2015-04-01
FeF3, with its half-filled Fe3 +3 d orbital, hence zero orbital angular momentum and S =5 /2 , is often put forward as a prototypical highly frustrated classical Heisenberg pyrochlore antiferromagnet. By employing ab initio density functional theory, we obtain an effective spin Hamiltonian for this material. This Hamiltonian contains nearest-neighbor antiferromagnetic Heisenberg, biquadratic, and Dzyaloshinskii-Moriya interactions as dominant terms and we use Monte Carlo simulations to investigate the nonzero temperature properties of this minimal model. We find that upon decreasing temperature, the system passes through a Coulomb phase, composed of short-range correlated coplanar states, before transforming into an "all-in/all-out" (AIAO) state via a very weakly first-order transition at a critical temperature Tc≈22 K, in good agreement with the experimental value for a reasonable set of Coulomb interaction U and Hund's coupling JH describing the material. Despite the transition being first order, the AIAO order parameter evolves below Tc with a power-law behavior characterized by a pseudo "critical exponent" β ≈0.18 in accord with experiment. We comment on the origin of this unusual β value.
NASA Astrophysics Data System (ADS)
Sameer, M. Ikhdair; Majid, Hamzavi
2013-09-01
Approximate analytical solutions of the Dirac equation for Tietz—Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin—orbit quantum number κ are obtained within the Pekeris approximation scheme to deal with the spin—orbit coupling terms κ(κ ± 1)r-2. Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov—Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated.
An Exact Separation of the Spin-Free and Spin-Dependent Terms of the Dirac-Coulomb-Breit Hamiltonian
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.
1994-01-01
The Dirac Hamiltonian is transformed by extracting the operator (sigma x p)/2mc from the small component of the wave function and applying it to the operators of the original Hamiltonian. The resultant operators contain products of Paull matrices that can be rearranged to give spin-free and spin-dependent operators. These operators are the ones encountered in the Breit-Pauli Hamiltonian, as well as some of higher order in alpha(sup 2). However, since the transformation of the original Dirac Hamiltonian is exact, the new Hamiltonian can be used in variational calculations, with or without the spin-dependent terms. The new small component functions have the same symmetry properties as the large component. Use of only the spin-free terms of the new Hamiltonian permits the same factorization over spin variables as in nonrelativistic theory, and therefore all the post-Self-Consistent Field (SCF) machinery of nonrelativistic calculations can be applied. However, the single-particle functions are two-component orbitals having a large and small component, and the SCF methods must be modified accordingly. Numerical examples are presented, and comparisons are made with the spin-free second-order Douglas-Kroll transformed Hamiltonian of Hess.
Dispersive measurement of electron spin states in Coulomb-confined silicon double quantum dots
NASA Astrophysics Data System (ADS)
House, Matthew; Kobayashi, Takashi; Weber, Bent; Hile, Sam; Rogge, Sven; Simmons, Michelle
2015-03-01
We use radio frequency reflectometry with a resonant circuit to investigate a double quantum dot device patterned by the placement of phosphorus donors in silicon with scanning tunnelling microscope lithography. The circuit responds to electron tunnelling to and from the quantum dots, the complex admittance of which provides information about the tunnel coupling between the dots and the leads. With four electrons on two dots, the Pauli Exclusion Principle makes tunnelling of one electron between the two dots spin dependent, which we exploit to measure the electronic spin state. We map the ground state transition between singlet and triplet states as a function of electric and magnetic fields, which shows that the exchange energy can be tuned over an order of magnitude (about 10 to 100 μeV) or more in this device. We apply high frequency pulses to induce an excited spin state and observe that the dispersive measurement can detect the excited spin state in addition to the ground state.
Cheng, Lan; Stopkowicz, Stella; Gauss, Jürgen
2013-12-07
A perturbative approach to compute second-order spin-orbit (SO) corrections to a spin-free Dirac-Coulomb Hartree-Fock (SFDC-HF) calculation is suggested. The proposed scheme treats the difference between the DC and SFDC Hamiltonian as perturbation and exploits analytic second-derivative techniques. In addition, a cost-effective scheme for incorporating relativistic effects in high-accuracy calculations is suggested consisting of a SFDC coupled-cluster treatment augmented by perturbative SO corrections obtained at the HF level. Benchmark calculations for the hydrogen halides HX, X = F-At as well as the coinage-metal fluorides CuF, AgF, and AuF demonstrate the accuracy of the proposed perturbative treatment of SO effects on energies and electrical properties in comparison with the more rigorous full DC treatment. Furthermore, we present, as an application of our scheme, results for the electrical properties of AuF and XeAuF.
Nonlocal Drag of Magnons in a Ferromagnetic Bilayer.
Liu, Tianyu; Vignale, G; Flatté, Michael E
2016-06-10
Quantized spin waves, or magnons, in a magnetic insulator are assumed to interact weakly with the surroundings, and to flow with little dissipation or drag, producing exceptionally long diffusion lengths and relaxation times. In analogy to Coulomb drag in bilayer two-dimensional electron gases, in which the contribution of the Coulomb interaction to the electric resistivity is studied by measuring the interlayer resistivity (transresistivity), we predict a nonlocal drag of magnons in a ferromagnetic bilayer structure based on semiclassical Boltzmann equations. Nonlocal magnon drag depends on magnetic dipolar interactions between the layers and manifests in the magnon current transresistivity and the magnon thermal transresistivity, whereby a magnon current in one layer induces a chemical potential gradient and/or a temperature gradient in the other layer. The largest drag effect occurs when the magnon current flows parallel to the magnetization; however, for oblique magnon currents a large transverse current of magnons emerges. We examine the effect for practical parameters, and find that the predicted induced temperature gradient is readily observable. PMID:27341254
Nonlocal Drag of Magnons in a Ferromagnetic Bilayer
NASA Astrophysics Data System (ADS)
Liu, Tianyu; Vignale, G.; Flatté, Michael E.
2016-06-01
Quantized spin waves, or magnons, in a magnetic insulator are assumed to interact weakly with the surroundings, and to flow with little dissipation or drag, producing exceptionally long diffusion lengths and relaxation times. In analogy to Coulomb drag in bilayer two-dimensional electron gases, in which the contribution of the Coulomb interaction to the electric resistivity is studied by measuring the interlayer resistivity (transresistivity), we predict a nonlocal drag of magnons in a ferromagnetic bilayer structure based on semiclassical Boltzmann equations. Nonlocal magnon drag depends on magnetic dipolar interactions between the layers and manifests in the magnon current transresistivity and the magnon thermal transresistivity, whereby a magnon current in one layer induces a chemical potential gradient and/or a temperature gradient in the other layer. The largest drag effect occurs when the magnon current flows parallel to the magnetization; however, for oblique magnon currents a large transverse current of magnons emerges. We examine the effect for practical parameters, and find that the predicted induced temperature gradient is readily observable.
Giant Coulomb blockade magnetoresistance
Zhang, Xiaoguang; Wen, Z. C.; Wei, H. X.; Han, Prof. X. F.
2010-01-01
We show that the Coulomb blockade voltage can be made to depend strongly on the electron spin in a thin magnetic granular layer inserted in the middle of an insulating layer of a tunnel junction. This strong spin dependence is predicted from the spin-dependent inter-granular conductance through any of the following effects within the granular layer, giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), colossal magnetoresistance (CMR), or GMR through a polymer spacer. The resulting Coulomb blockade magnetoresistance (CBMR) ratio can exceed the magnetoresistance ratio of the granular layer itself by orders of magnitude. Unlike other magenetoresistance effects, the CBMR effect does not require magnetic electrodes.
Arp, O.; Block, D.; Klindworth, M.; Piel, A.
2005-12-15
A model for the confinement of the recently discovered Coulomb balls is proposed. These spherical three-dimensional plasma crystals are trapped inside a rf discharge under gravity conditions and show an unusual structural order in complex plasmas. Measurements of the thermophoretic force acting on the trapped dust particles and simulations of the plasma properties of the discharge are presented. The proposed model of confinement considers thermophoretic, ion-drag, and electric field forces, and shows excellent agreement with the observations. The findings suggest that self-confinement does not significantly contribute to the structural properties of Coulomb balls.
NASA Astrophysics Data System (ADS)
Huang, Biqin; Appelbaum, Ian
2010-12-01
Drift-diffusion theory—which fully describes charge transport in semiconductors—is also universally used to model transport of spin-polarized electrons in the presence of longitudinal electric fields. By transforming spin transit time into spin orientation with precession (a technique called the “Larmor clock”) in current-sensing vertical-transport intrinsic Si devices, we show that spin diffusion (and concomitant spin dephasing) can be greatly enhanced with respect to charge diffusion, in direct contrast to predictions of spin Coulomb-drag diffusion suppression.
NASA Astrophysics Data System (ADS)
Wdowik, U. D.; Piekarz, P.; Legut, D.; Jagło, G.
2016-08-01
Uranium monocarbide, a potential fuel material for the generation IV reactors, is investigated within density functional theory. Its electronic, magnetic, elastic, and phonon properties are analyzed and discussed in terms of spin-orbit interaction and localized versus itinerant behavior of the 5 f electrons. The localization of the 5 f states is tuned by varying the local Coulomb repulsion interaction parameter. We demonstrate that the theoretical electronic structure, elastic constants, phonon dispersions, and their densities of states can reproduce accurately the results of x-ray photoemission and bremsstrahlung isochromat measurements as well as inelastic neutron scattering experiments only when the 5 f states experience the spin-orbit interaction and simultaneously remain partially localized. The partial localization of the 5 f electrons could be represented by a moderate value of the on-site Coulomb interaction parameter of about 2 eV. The results of the present studies indicate that both strong electron correlations and spin-orbit effects are crucial for realistic theoretical description of the ground-state properties of uranium carbide.
Lipparini, Filippo; Gauss, Jürgen
2016-09-13
We present an implementation of the complete active space-self-consistent field (CASSCF) method specifically designed to be used in four-component scalar relativistic calculations based on the spin-free Dirac-Coulomb (SFDC) Hamiltonian. Our implementation takes full advantage of the properties of the SFDC Hamiltonian that allow us to use real algebra and to exploit point-group and spin symmetry to their full extent while including in a rigorous way scalar relativistic effects in the treatment. The SFDC-CASSCF treatment is more expensive than its non-relativistic counterpart only in the orbital optimization step, while exhibiting the same computational cost for the rate-determining full configuration interaction part. The numerical aspects are discussed, and the capabilities of the SFDC-CASSCF methodology are demonstrated through a pilot application. PMID:27464026
Simulating Electrophoresis with Discrete Charge and Drag
NASA Astrophysics Data System (ADS)
Mowitz, Aaron J.; Witten, Thomas A.
A charged asymmetric rigid cluster of colloidal particles in saline solution can respond in exotic ways to an electric field: it may spin or move transversely. These distinctive motions arise from the drag force of the neutralizing countercharge surrounding the cluster. Because of this drag, calculating the motion of arbitrary asymmetric objects with nonuniform charge is impractical by conventional methods. Here we present a new method of simulating electrophoresis, in which we replace the continuous object and the surrounding countercharge with discrete point-draggers, called Stokeslets. The balance of forces imposes a linear, self-consistent relation among the drag and Coulomb forces on the Stokeslets, which allows us to easily determine the object's motion via matrix inversion. By explicitly enforcing charge+countercharge neutrality, the simulation recovers the distinctive features of electrophoretic motion to few-percent accuracy using as few as 1000 Stokeslets. In particular, for uniformly charged objects, we observe the characteristic Smoluchowski independence of mobility on object size and shape. We then discuss electrophoretic motion of asymmetric objects, where our simulation method is particularly advantageous. This work is supported by a Grant from the US-Israel Binational Science Foundation.
NASA Astrophysics Data System (ADS)
Valenzuela, Sergio O.
2013-03-01
Thermoelectric effects in spintronics are gathering increasing attention as a means of controlling spin information by using heat flow. Thermal magnons (spin-wave quanta) are expected to play a major role, however, the coupling between electrons and magnons in ferromagnetic metals remains poorly understood. We demonstrate a conceptually new device that enables us to gather information on magnon-electron scattering and magnon-drag effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon drag thermoelectric effects. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. These results demonstrate the feasibility of directly converting magnon dynamics of nanomagnets into an electrical signal and could pave the way to novel thermoelectric devices for energy harvesting. This research was supported by the Spanish Ministerio de Ciencia e Innovación, MICINN (MAT2010-18065) and by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement NANOFUNCTION no 257375.
Observation of Supercurrent Drag between Normal Metal and Superconducting Films
NASA Astrophysics Data System (ADS)
Huang, Xiaokang; Bazàn, Greg; Bernstein, Gary H.
1995-05-01
We experimentally investigate the Coulomb interaction between normal metal (Au /Ti) and superconducting (AlO x) 2D films separated by an insulating \\(Al2O3\\) layer. We report here the observation of supercurrent drag predicted by Duan and Yip [Phys. Rev. Lett. 70, 3647 (1993)]. The drag was observed at temperatures close to Tc, with the ratio of the drag current to the drive current as high as about 1×10-3. Our results are discussed in terms of a model of Coulomb mutual scattering between the normal electrons in the drive wire and the superelectrons in the drag wire.
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A
2016-02-01
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. PMID:26503739
ERIC Educational Resources Information Center
Fay, Temple H.
2012-01-01
Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…
Ciufolini, Ignazio
2007-09-01
The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth. PMID:17805287
Adam P. Szczepaniak; Eric S. Swanson
2000-12-12
Here we will discuss how the nonabelian Coulomb kernel exhibits confinement already at the mean field level. In the heavy quark limit residual interactions between heavy quarks and transverse gluons are spin dependent i.e., relativistic and can be calculated using the Foldy-Wouthuysen transformation. This makes the Coulomb gauge suitable for studying the nonrelativistic limit. Finally it is possible to use standard mean field techniques to define quasiparticle excitations, which, as we discuss below, have similar properties to what is usually assumed about constituent quarks in the light quark sector.
Coulomb Glass: a Mean Field Study
NASA Astrophysics Data System (ADS)
Mandra, Salvatore; Palassini, Matteo
2012-02-01
We study the Coulomb glass model of disordered localized electrons with long-range Coulomb interaction, which describes systems such as disordered insulators, granular metals, amorphous semiconductors, or doped crystalline semiconductors. Long ago Efros and Shklovskii showed that the long-range repulsion induces a soft Coulomb gap in the single particle density of states at low temperatures. Recent works suggested that this gap is associated to a transition to a glass phase, similar to the Almeida-Thouless transition in spin glasses. In this work, we use a mean field approach to characterize several physical properties of the Coulomb glass. In particular, following a seminal work of Bray and Moore, we show that the Edward-Anderson parameter qEA and the spin glass susceptibility χSG are directly related to spectrum distribution of the Hessian matrix around free energy minima. Using this result, we show that no glass transition is associated to the gap formation.
Drift and diffusion of spin and charge density waves in a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Yang, Luyi; Koralek, J. D.; Orenstein, J.; Tibbetts, D. R.; Reno, J. L.; Lilly, M. P.
2011-03-01
We use transient grating spectroscopy (TGS) to study the persistent spin helix (PSH) state and electron-hole density wave (EHDW) in a 2D electron gas in the presence of an in-plane electric field parallel to the wavevector of the PSH or EHDW. By directly measuring the phase, we can measure the PSH and EHDW displacement with 10 nm spatial and sub-picosecond time resolution. We obtain both the spin diffusion and mobility and ambipolar diffusion and mobility from the TGS measurements of PSH and EHDW, respectively. The spin transresistivity extracted from the spin diffusion is in excellent agreement with the RPA theory of spin Coulomb drag (SCD). The spin mobility data indicate that SCD may also play a role in the spin wave drifting process. From the ambipolar diffusion and mobility, we obtain the transresistivity of electrons and holes in the same layer, which is much stronger than is typically seen in the conventional Coulomb drag experiments on coupled quantum wells.
Backreaction of frame dragging
Herdeiro, Carlos A. R.; Rebelo, Carmen; Warnick, Claude M.
2009-10-15
The backreaction on black holes due to dragging heavy, rather than test, objects is discussed. As a case study, a five-dimensional regular black Saturn system where the central black hole has vanishing intrinsic angular momentum, J{sup BH}=0, is considered. It is shown that there is a correlation between the sign of two response functions. One is interpreted as a moment of inertia of the black ring in the black Saturn system. The other measures the variation of the black ring horizon angular velocity with the central black hole mass, for fixed ring mass and angular momentum. The two different phases defined by these response functions collapse, for small central black hole mass, to the thin and fat ring phases. In the fat phase, the zero area limit of the black Saturn ring has reduced spin j{sup 2}>1, which is related to the behavior of the ring angular velocity. Using the 'gravitomagnetic clock effect', for which a universality property is exhibited, it is shown that frame dragging measured by an asymptotic observer decreases, in both phases, when the central black hole mass increases, for fixed ring mass and angular momentum. A close parallelism between the results for the fat phase and those obtained recently for the double Kerr solution is drawn, considering also a regular black Saturn system with J{sup BH}{ne}0.
NASA Technical Reports Server (NTRS)
Conrad, George R.; Robbins, Edward J.
1991-01-01
The evolution of an empirical drag relationship that has stimulated rethinking regarding the physics of balloon drag phenomena is discussed. Combined parasitic drag from all sources in the balloon system are estimated to constitute less than 10 percent of the total system drag. It is shown that the difference between flight-determined drag coefficients and those based on the spherical assumption should be related to the square of the Froude number.
Asteroid orbit evolution due to thermal drag
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
1995-01-01
Thermal drag, a variant of the Yarkovsky effect, may act on small asteroids with sizes from a few meters to a few tens of meters. Yarkovsky thermal drag comes from an asteroid's absorbing sunlight in the visible and reradiating it in the infrared. Since the infrared photons have momentum, by action-reaction, they kick the asteroid when they leave its surface. The reradiation, which is asymmetric in latitude over the asteroid, gives a net force along the asteroid's pole. Due to the asteroid's thermal inertia, averaging this force over one orbital period produces a net drag if the spin axis has a component in the orbital plane. Thermal drag tends to circularize orbits. It can increase or decrease orbital inclinations. An object whose spin axis points in random directions over its lifetime displays little change in orbital inclination. Thermal drag appears to have little to do with the delivery of chondrites from the asteroid belt; the thermal drag timescale (10(exp 8) years for meter-sizzed objects) is long compared with their cosmic ray exposure ages, and aphelia in the asteroid belt are not expected for mature thermal drag orbits. However, Yarkovsky thermal drag may act on the recently discovered near-Earth asteroids, which have radii of 10-30 m. Asteroid 1992 DA, for instance, might have its orbit shrunk by 0.1 AU in 3 x 10(exp 7) years, removing it from an Earth-crossing orbit. The near-Earth asteroids also tend to have small to moderate orbital eccentricities, as expected for highly evolved thermal drag objects. However, the time needed to bring them in from the asteroid belt (about 10(exp 9) years) is long compared with the collisonal and dynamical lifetimes (both about 10(exp 8) years) for Earth-crossing objects, arguing against their emplacement by thermal drag.
Energy-driven drag in Graphene
NASA Astrophysics Data System (ADS)
Song, Justin; Levitov, Leonid
2013-03-01
When solid surfaces slide against each other they experience friction which can be enhanced by inserting molasses between them or reduced by using a lubricant. In the same way, two spatially isolated conducting layers that are placed in close proximity with each other feel friction because the long-ranged Coulomb interaction allows electrons in adjacent layers to ``rub shoulders at a distance.'' Recent measurements of Coulomb drag in Graphene by Gorbachev and co-workers from Manchester (doi:10.1038/nphys2441) have found that it is dramatically enhanced near the Dirac point, in stark contradiction with earlier theories predicting vanishing drag. We argue that a new kind of drag develops when heat transport in the two layers becomes strongly coupled due to efficient energy transfer between the layers. As a result, spatial charge inhomogeneity couples the motion of the electron liquid with heat transport through it, damping motion of electron flow in one layer by heat dissipation in the other. Interestingly, and somewhat paradoxically, this leads to strong drag without momentum transfer between layers. We predict distinct experimental signatures and discuss its magnetic field dependence.
NASA Astrophysics Data System (ADS)
Bushnell, D. M.; Moore, K. J.
Recent studies on the drag-reducing shapes, structures, and behaviors of swimming and flying animals are reviewed, with an emphasis on potential analogs in vehicle design. Consideration is given to form drag reduction (turbulent flow, vortex generation, mass transfer, and adaptations for body-intersection regions), skin-friction drag reduction (polymers, surfactants, and bubbles as surface 'additives'), reduction of the drag due to lift, drag-reduction studies on porpoises, and drag-reducing animal behavior (e.g., leaping out of the water by porpoises). The need for further research is stressed.
Hood, Michael
1986-01-01
A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face.
Hood, M.
1986-02-11
A mounting movable with respect to an adjacent hard face has a projecting drag bit adapted to engage the hard face. The drag bit is disposed for movement relative to the mounting by encounter of the drag bit with the hard face. That relative movement regulates a valve in a water passageway, preferably extending through the drag bit, to play a stream of water in the area of contact of the drag bit and the hard face and to prevent such water play when the drag bit is out of contact with the hard face. 4 figs.
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Moore, K. J.
1991-01-01
Recent studies on the drag-reducing shapes, structures, and behaviors of swimming and flying animals are reviewed, with an emphasis on potential analogs in vehicle design. Consideration is given to form drag reduction (turbulent flow, vortex generation, mass transfer, and adaptations for body-intersection regions), skin-friction drag reduction (polymers, surfactants, and bubbles as surface 'additives'), reduction of the drag due to lift, drag-reduction studies on porpoises, and drag-reducing animal behavior (e.g., leaping out of the water by porpoises). The need for further research is stressed.
Spherical Calogero model with oscillator/Coulomb potential: Classical case
NASA Astrophysics Data System (ADS)
Correa, Francisco; Hakobyan, Tigran; Lechtenfeld, Olaf; Nersessian, Armen
2016-06-01
We construct the Hamiltonians and symmetry generators of Calogero-oscillator and Calogero-Coulomb models on the N -dimensional sphere within the matrix-model reduction approach. Our method also produces the integrable Calogero-Coulomb-Stark model on the sphere and proves the integrability of the spin extensions of all these systems.
Drag of ballistic electrons by an ion beam
Gurevich, V. L.; Muradov, M. I.
2015-12-15
Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.
ERIC Educational Resources Information Center
Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg
1998-01-01
Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)
Diffusion in Coulomb crystals.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2011-07-01
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous. PMID:21867316
NASA Astrophysics Data System (ADS)
Niknam, A.; Rajabi, A. A.; Solaimani, M.
2016-03-01
Solution of the radial Schrodinger equation for the Woods-Saxon potential together with spin-orbit interaction, coulomb and centrifugal terms by using usual Nikiforov-Uvarov (NU) method is not possible. Here, we have presented a new NU procedure with which we are able to solve this Schrodinger equation and any other one-dimensional ones with any shape of the potential profile. For this purpose, we have combined the NU method with numerical fitting schema. The energy eigenvalues and corresponding eigenfunctions for various values of n, l, and j quantum numbers have been obtained. Good agreement with experimental values is also achieved. We have calculated the 1/2+ state energy with more accuracy (our absolute error = 0.023 MeV and Hagen et al. absolute error = 0.0918 MeV), while Hagen et al. have calculated the 5/2+ state energy with higher accuracy (our absolute error = 0.71 MeV and Hagen et al. absolute error = 0.0337 MeV). Our wave functions are in agreement with Kim et al.'s work, too.
NASA Technical Reports Server (NTRS)
Roskam, J.
1975-01-01
A discussion of data of and methods for predicting trim drag is presented. Specifically the following subjects are discussed: (1) economic impact of trim drag; (2) the trim drag problem in propeller driven airplanes and the effect of propeller and nacelle location; (3) theoretical procedures for predicting trim drag; and (4) research needs in the area of trim drag.
ASTROPHYSICS: Neutron Stars Imply Relativity's a Drag.
Schilling, G
2000-09-01
A new finding, based on x-rays from distant neutron stars, could be the first clear evidence of a weird relativistic effect called frame dragging, in which a heavy chunk of spinning matter wrenches the space-time around it like an eggbeater. Using data from NASA's Rossi X-ray Timing Explorer, three astronomers in Amsterdam found circumstantial evidence for frame dragging in the flickering of three neutron stars in binary systems. They announced their results in the 1 September issue of The Astrophysical Journal. PMID:17839511
NASA Astrophysics Data System (ADS)
Mostaza Prieto, David; Graziano, Benjamin P.; Roberts, Peter C. E.
2014-01-01
This paper reviews currently available methods to calculate drag coefficients of spacecraft traveling in low Earth orbits (LEO). Aerodynamic analysis of satellites is necessary to predict the drag force perturbation to their orbital trajectory, which for LEO orbits is the second in magnitude after the gravitational disturbance due to the Earth's oblateness. Historically, accurate determination of the spacecraft drag coefficient (CD) was rarely required. This fact was justified by the low fidelity of upper atmospheric models together with the lack of experimental validation of the theory. Therefore, the calculation effort was a priori not justified. However, advances on the field, such as new atmospheric models of improved precision, have allowed for a better characterization of the drag force. They have also addressed the importance of using physically consistent drag coefficients when performing aerodynamic calculations to improve analysis and validate theories. We review the most common approaches to predict these coefficients.
Some comments on fuselage drag
NASA Technical Reports Server (NTRS)
Roskam, J.
1975-01-01
The following areas relating to fuselage drag are considered: (1) fuselage fineness - ratio and why and how this can be selected during preliminary design; (2) windshield drag; (3) skin roughness; and (4) research needs in the area of fuselage drag.
The drag force on an American football
NASA Astrophysics Data System (ADS)
Watts, Robert G.; Moore, Gary
2003-08-01
We have measured the drag coefficient on an American football oriented so that its major axis is pointed directly into the wind. The football was suspended from the top of a wind tunnel by bicycle spokes attached to small bearings. The results are similar to the drag coefficients reported by Rouse (1946) for the case of an ellipsoid with major diameter/minor diameter similar to the length/diameter for the football. The drag coefficient for a spinning football is slightly lower than that for a nonspinning football. Both are in the range of 0.05-0.06, about half the value assumed by Brancazio (1985), about one-third that reported by Rae and Streit (2002) and far smaller than that reported by Cunningham and Dowell (1976).
NASA Technical Reports Server (NTRS)
Prandtl, L
1924-01-01
The most important part of the resistance or drag of a wing system,the induced drag, can be calculated theoretically, when the distribution of lift on the individual wings is known. The calculation is based upon the assumption that the lift on the wings is distributed along the wing in proportion to the ordinates of a semi-ellipse. Formulas and numerical tables are given for calculating the drag. In this connection, the most favorable arrangements of biplanes and triplanes are discussed and the results are further elucidated by means of numerical examples.
NASA Astrophysics Data System (ADS)
Yokoyama, Yoshiyuki; Miyazaki, Takeshi; Himeno, Ryutaro
2007-11-01
Using a high-speed video camera, we measured the trajectory and the rotation of a hard baseball thrown by a pitching machine which can launch Gyro-Balls (rifle spinning balls). We determined the drag- and lift- coefficients by analyzing the video images. The measurements were performed in the range of 0.6x10^5
NASA Astrophysics Data System (ADS)
Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration
2013-11-01
We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.
Effect of the Pauli principle on photoelectron spin transport in p+ GaAs
NASA Astrophysics Data System (ADS)
Cadiz, F.; Paget, D.; Rowe, A. C. H.; Amand, T.; Barate, P.; Arscott, S.
2015-04-01
In p+ GaAs thin films, the effect of photoelectron degeneracy on spin transport is investigated theoretically and experimentally by imaging the spin polarization profile as a function of distance from a tightly focused light excitation spot. Under degeneracy of the electron gas (high concentration, low temperature), a dip at the center of the polarization profile appears with a polarization maximum at a distance of about 2 μ m from the center. This counterintuitive result reveals that photoelectron diffusion depends on spin, as a direct consequence of the Pauli principle. This causes a concentration dependence of the spin stiffness while the spin dependence of the mobility is found to be weak in doped material. The various effects which can modify spin transport in a degenerate electron gas under local laser excitation are considered. A comparison of the data with a numerical solution of the coupled diffusion equations reveals that ambipolar coupling with holes increases the steady-state photoelectron density at the excitation spot and therefore the amplitude of the degeneracy-induced polarization dip. Thermoelectric currents are predicted to depend on spin under degeneracy (spin Soret currents), but these currents are negligible except at very high excitation power where they play a relatively small role. Coulomb spin drag and band-gap renormalization are negligible due to electrostatic screening by the hole gas.
Kadyrov, A. S.; Bray, I.; Stelbovics, A. T.; Mukhamedzhanov, A. M.
2008-12-05
We formulate scattering theory in the framework of a surface-integral approach utilizing analytically known asymptotic forms of the three-body wave functions. This formulation is valid for both short-range and Coulombic potentials. The post and prior forms of the breakup amplitude are derived without any reference to renormalization procedures.
Strong Coulomb effects in hole-doped Heisenberg chains
NASA Astrophysics Data System (ADS)
Schnack, J.
2005-06-01
Substances such as the “telephone number compound” Sr14Cu24O41 are intrinsically hole-doped. The involved interplay of spin and charge dynamics is a challenge for theory. In this article we propose to describe hole-doped Heisenberg spin rings by means of complete numerical diagonalization of a Heisenberg Hamiltonian that depends parametrically on hole positions and includes the screened Coulomb interaction among the holes. It is demonstrated that key observables like magnetic susceptibility, specific heat, and inelastic neutron scattering cross section depend sensitively on the dielectric constant of the screened Coulomb potential.
Coulomb problem for vector bosons
Kuchiev, M.Yu.; Flambaum, V.V.
2006-05-01
The Coulomb problem for vector bosons W{sup {+-}} incorporates a well-known difficulty; the charge of the boson localized in a close vicinity of the attractive Coulomb center proves to be infinite. The paradox is shown to be resolved by the QED vacuum polarization, which brings in a strong effective repulsion that eradicates the infinite charge of the boson on the Coulomb center. This property allows one to define the Coulomb problem for vector bosons properly.
Remote Spacecraft Attitude Control by Coulomb Charging
NASA Astrophysics Data System (ADS)
Stevenson, Daan
The possibility of inter-spacecraft collisions is a serious concern at Geosynchronous altitudes, where many high-value assets operate in proximity to countless debris objects whose orbits experience no natural means of decay. The ability to rendezvous with these derelict satellites would enable active debris removal by servicing or repositioning missions, but docking procedures are generally inhibited by the large rotational momenta of uncontrolled satellites. Therefore, a contactless means of reducing the rotation rate of objects in the space environment is desired. This dissertation investigates the viability of Coulomb charging to achieve such remote spacecraft attitude control. If a servicing craft imposes absolute electric potentials on a nearby nonspherical debris object, it will impart electrostatic torques that can be used to gradually arrest the object's rotation. In order to simulate the relative motion of charged spacecraft with complex geometries, accurate but rapid knowledge of the Coulomb interactions is required. To this end, a new electrostatic force model called the Multi-Sphere Method (MSM) is developed. All aspects of the Coulomb de-spin concept are extensively analyzed and simulated using a system with simplified geometries and one dimensional rotation. First, appropriate control algorithms are developed to ensure that the nonlinear Coulomb torques arrest the rotation with guaranteed stability. Moreover, the complex interaction of the spacecraft with the plasma environment and charge control beams is modeled to determine what hardware requirements are necessary to achieve the desired electric potential levels. Lastly, the attitude dynamics and feedback control development is validated experimentally using a scaled down terrestrial testbed. High voltage power supplies control the potential on two nearby conductors, a stationary sphere and a freely rotating cylinder. The nonlinear feedback control algorithms developed above are implemented to
NASA Technical Reports Server (NTRS)
Weihs, D.; Katz, J.
1986-01-01
In the present treatment of the calculation of forces on a wing that is suddenly brought into motion at a constant speed, attention is given to the unsteady potential's contribution to the force balance. Total bound vorticity is produced at the initial impulse. The results obtained are independent of wing aspect ratio; as time increases, this effect on the drag force becomes smaller as the vortex emanating from the trailing edge is left behind. The second contributor to induced drag is the spanwise vorticity shedding that results from the spanwise load distribution of three-dimensional wings. This contribution grows with time as the length of the wake grows.
Overview of external Nacelle drag and interference drag
NASA Technical Reports Server (NTRS)
Neal, R. D.
1975-01-01
A historical view of multi-jet engine installations is given that emphasizes integration of the powerplant and the airframe in aircraft design for improved reduction in external nacelle drag and interference drag characteristics.
Frame dragging and superenergy
Herrera, L.; Di Prisco, A.; Carot, J.
2007-08-15
We show that the vorticity appearing in stationary vacuum spacetimes is always related to the existence of a flow of superenergy on the plane orthogonal to the vorticity vector. This result, together with the previously established link between vorticity and superenergy in radiative (Bondi-Sachs) spacetimes, strengthens further the case for this latter quantity as the cause of frame dragging.
NASA Astrophysics Data System (ADS)
Rajagopal, Krishna; Sadofyev, Andrey V.
2015-10-01
We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and
Polonyi, J.
2008-06-15
The contribution of different modes of the Coulomb field to decoherence and to the dynamical breakdown of the time reversal invariance is calculated in the one-loop approximation for nonrelativistic electron gas. The dominant contribution was found to come from the usual collective modes in the plasma, namely, the zero-sound and the plasmon oscillations. The length scale of the quantum-classical transition is found to be close to the Thomas-Fermi screening length. It is argued that the extension of these modes to the whole Fock space yields optimal pointer states.
NASA Astrophysics Data System (ADS)
Drewsen, Michael
2015-03-01
The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged the past two decades. While this document lacks figures, it includes a substantial number of references in which more detailed information can be found. It is the hope that the text will stimulate the reader to dig deeper into one or more of the discussed subjects and inspire her/him to think about new potential applications.
Mass center estimation of a drag-free satellite
NASA Technical Reports Server (NTRS)
Sanz Fernandez De Cordova, S.; Debra, D. B.
1975-01-01
The mass center location of a spinning drag-free satellite can be estimated because there is control required to accelerate the mass center along the axis of spin as long as there is some nutation in the spinning motion. Linear and nonlinear models are compared and observability discussed. Online estimation fails when nutation is damped so an offline mechanization is proposed. A new sensor has been designed to permit greater relative motion than was possible on the drag-free satellite flown in 1972 (JH-1). Experimental laboratory results using a spinning vehicle with the new sensor mounted 30 cm from a spherical air bearing support are presented which confirm earlier simulation results.
NASA Astrophysics Data System (ADS)
Arakawa, Naoya
The spin-Hall effect is a spin-current version of the usual-Hall effect, and its potential for application may be great. For the efficient application utilizing the spin-Hall effect, an understanding of interaction effects may be helpful because the interaction effects sometimes become remarkable in transport phenomena (e.g., fractional-quantum-Hall effect). However, a lot of theoretical studies neglected the interaction effects, and the interaction effects in the spin-Hall effect had been little understood. To improve this situation, I developed a general formalism for the intrinsic spin-Hall effect including the interaction effects and multiband effects by using the linear-response theory with approximations appropriate for an interacting multiorbital metal (see arXiv:1510.03988). In this talk, I explain how the electron-electron interaction modifies the spin-Hall conductivity and show several new and remarkable interactions effects, new mechanisms of the damping dependence and a crossover of the damping dependence in a clean system and a temperature-dependent correction due to the spin-Coulomb drag. I also show guidelines useful for general formulations of other transport phenomena including the interaction effects and multiband effects.
Drag Coefficient of Hexadecane Particles
NASA Astrophysics Data System (ADS)
Nakao, Yoshinobu; Hishida, Makoto; Kajimoto, Sadaaki; Tanaka, Gaku
This paper deals with the drag coefficient of solidified hexadecane particles and their free rising velocity in liquid. The drag coefficient was experimentally investigated in Reynolds number range of about 40-300. The present experimental results are summarized in the following; (1) the drag coefficient of solidified hexadecane particles formed in liquid coolant by direct contact cooling is higher than that of a smooth surface sphere, this high drag coefficient seems to be attributed to the non-smooth surface of the solidified hexadecane particles, (2) experimental correlation for the drag coefficient of the solidified hexadecane particles was proposed, (3 ) the measured rising velocity of the solidified hexadecane particle agrees well with the calculated one, (4) the drag coefficients of hexadecane particles that were made by pouring hexadecane liquid into a solid hollow sphere agreed well with the drag coefficient of smooth surface sphere.
Do spinors give rise to a frame-dragging effect?
Randono, Andrew
2010-01-15
We investigate the effect of the intrinsic spin of a fundamental spinor field on the surrounding spacetime geometry. We show that despite the lack of a rotating stress-energy source (and despite claims to the contrary) the intrinsic spin of a spin-half fermion gives rise to a frame-dragging effect analogous to that of orbital angular momentum, even in Einstein-Hilbert gravity where torsion is constrained to be zero. This resolves a paradox regarding the counter-force needed to restore Newton's third law in the well-known spin-orbit interaction. In addition, the frame-dragging effect gives rise to a long-range gravitationally mediated spin-spin dipole interaction coupling the internal spins of two sources. We argue that despite the weakness of the interaction, the spin-spin interaction will dominate over the ordinary inverse square Newtonian interaction in any process of sufficiently high energy for quantum field theoretical effects to be non-negligible.
Quantum Hall Exciton Condensation at Full Spin Polarization
NASA Astrophysics Data System (ADS)
Finck, A. D. K.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.
2010-03-01
Using Coulomb drag as a probe, we explore the excitonic phase transition in quantum Hall bilayers at νT=1 as a function of Zeeman energy, EZ. The critical layer separation (d/l)c for exciton condensation initially increases rapidly with EZ, but then reaches a maximum and begins a gentle decline. At high EZ, where both the excitonic phase at small d/l and the compressible phase at large d/l are fully spin polarized, we find that the width of the transition, as a function of d/l, is much larger than at small EZ and persists in the limit of zero temperature. We discuss these results in the context of two models in which the system contains a mixture of the two fluids.
Quantum Hall Exciton Condensation at Full Spin Polarization
NASA Astrophysics Data System (ADS)
Finck, A. D. K.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.
2010-01-01
Using Coulomb drag as a probe, we explore the excitonic phase transition in quantum Hall bilayers at νT=1 as a function of Zeeman energy EZ. The critical layer separation (d/ℓ)c for exciton condensation initially increases rapidly with EZ, but then reaches a maximum and begins a gentle decline. At high EZ, where both the excitonic phase at small d/ℓ and the compressible phase at large d/ℓ are fully spin polarized, we find that the width of the transition, as a function of d/ℓ, is much larger than at small EZ and persists in the limit of zero temperature. We discuss these results in the context of two models in which the system contains a mixture of the two fluids.
NASA Astrophysics Data System (ADS)
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-01
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-01-01
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body. PMID:26189698
Pepper, W.B.
1984-05-09
A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.
Detection of gravitational frame dragging using orbiting qubits
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco; Salgado, Marcelo
2016-05-01
In this paper we propose information theoretic and interferometric techniques to detect the effect of gravitational frame dragging on orbiting qubits. In particular, we consider the Kerr spacetime geometry and spin-\\tfrac{1}{2} qubits moving in equatorial circular orbits. We ignore the { O }({\\hslash }) order effects due to spin-curvature coupling, which allows us to consider the motion of the spin-\\tfrac{1}{2} particles as Kerr geometry geodesics. We derive analytical expressions for the infinitesimal Wigner rotation and numerical results for their integration across the length of the particle’s trajectory. To this end, we consider the bounds on the finite Wigner rotation imposed by Penrose’s cosmic censorship hypothesis. Finally we propose how the Wigner rotation strictly due to frame dragging could be observed using interferometry and other quantum metrology techniques.
Coulomb interactions and fermion condensation
Capstick, S.; Cutkosky, R.E.; Joensen, M.A. ); Wang, K.C. )
1990-08-15
The influence of the Coulomb interaction in states containing massless and flavorless fermion-antifermion pairs is studied, using a continuum formulation within the finite volume {ital S}{sup 3}. Several different forms for the Coulomb interaction are examined, including confining potentials as well as nonconfining potentials. The calculations show that if the interaction is strong enough, the Coulomb interaction leads to condensation of pairs, and that this condensation has a chiral character. The condensation does not depend on whether the interaction is confining. It is found that simplified variational approximations are not accurate enough for an adequate description of the states.
Parachute drag and radial force
Purvis, J.W.
1986-01-01
This paper presents a combination of old and new wind tunnel data in a format which illustrates the effects of inflated diameter, geometric porosity, reefing line length, suspension line length, number of gores, and number of ribbons on parachute drag. A new definition of radial force coefficient is presented, as well as a universal drag curve for flat circular and conical parachutes.
Miniature drag force anemometer
NASA Technical Reports Server (NTRS)
Krause, L. N.; Fralick, G. C.
1977-01-01
A miniature drag force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilevered beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like that of a second order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.
NASA Technical Reports Server (NTRS)
Hill, D. Christopher
1994-01-01
previously a description was given of an active control scheme using wall transpiration that leads to a 15% reduction in surface skin friction beneath a turbulent boundary layer, according to direct numerical simulation. In this research brief further details of that scheme and its variants are given together with some suggestions as to how sensor/actuator arrays could be configured to reduce surface drag. The research which is summarized here was performed during the first half of 1994. This research is motivated by the need to understand better how the dynamics of near-wall turbulent flow can be modified so that skin friction is reduced. The reduction of turbulent skin friction is highly desirable in many engineering applications. Experiments and direct numerical simulations have led to an increased understanding of the cycle of turbulence production and transport in the boundary layer and raised awareness of the possibility of disrupting the process with a subsequent reduction in turbulent skin friction. The implementation of active feedback control in a computational setting is a viable approach for the investigation of the modifications to the flow physics that can be achieved. Bewley et al. and Hill describe how ideas from optimal control theory are employed to give 'sub-optimal' drag reduction schemes. The objectives of the work reported here is to investigate in greater detail the assumptions implicit within such schemes and their limitations. It is also our objective to describe how an array of sensors and actuators could be arranged and interconnected to form a 'smart' surface which has low skin friction.
Observation of magnon-mediated electric current drag at room temperature
NASA Astrophysics Data System (ADS)
Wu, H.; Wan, C. H.; Zhang, X.; Yuan, Z. H.; Zhang, Q. T.; Qin, J. Y.; Wei, H. X.; Han, X. F.; Zhang, S.
2016-02-01
Spin-based electronic devices such as magnetic memory and spin logic rely on spin information transport. Conduction electrons, due to their intrinsic spin angular momentum, become an obvious choice for spin information carriers. Here, we experimentally demonstrate that magnons, quasiparticles representing low-energy excitations of ferromagnetic materials, can serve as effective spin information carriers as well. Specifically, we consider two nonmagnetic heavy metals (HMs) that are separated by an electric leak-free ferrimagnetic insulator. When an electric current is applied in one of the HM layers, magnons in the ferrimagnetic insulator are excited and become an effective medium to couple the spin currents in two HMs. As a result, the charge/spin current in one HM layer can drag a charge/spin current in the other HM layer. This work provides a route for spin-based electronic devices where the spin transport is carried by quasiparticles other than electrons.
Self-burrowing seeds: drag reduction in granular media
NASA Astrophysics Data System (ADS)
Jung, Wonjong; Choi, Sung Mok; Kim, Wonjung; Kim, Ho-Young
2014-11-01
We present the results of a combined experimental and theoretical investigation of drag reduction of self-burrowing seeds in granular media. In response to environmental changes in humidity, the awn (a tail-like appendage of seed) of Pelargonium carnosum exhibits coiling-uncoiling deformation which induces the thrust and rotary motions of the head of the seed against the surface of the soil. Using various sizes of glass beads that mimic the granular soil, we measure the thrust forces required for the seed of Pelargonium carnosum to penetrate into granular media with and without rotation. Our quantitative measurements show that the rotation of the seed remarkably reduces the granular drag as compared to the drag against the non-spinning seed. This leads us to conclude that the hygroscopically active awns of Pelargonium carnosum enables its seed to dig into the relatively coarse granular soils.
Measuring the Effects of Lift and Drag on Projectile Motion
NASA Astrophysics Data System (ADS)
Cross, Rod
2012-02-01
The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms-1 (89.5 mph), it experiences a drag force of about 1.5 N. The gravitational force on the ball 1.42 N. Nevertheless, the trajectory of a baseball pitched without spin is not strongly affected by the drag force. Because the ball is relatively heavy and the flight distance is relatively small (about 60 ft), the drag force reduces the ball speed by only about 10% by the time it reaches the batter. As a result, the time taken for the ball to reach the batter is only about 5% longer than in a vacuum, and the actual trajectory is also very similar.2
Modelling LARES temperature distribution and thermal drag
NASA Astrophysics Data System (ADS)
Nguyen, Phuc H.; Matzner, Richard
2015-10-01
The LARES satellite, a laser-ranged space experiment to contribute to geophysics observation, and to measure the general relativistic Lense-Thirring effect, has been observed to undergo an anomalous along-track orbital acceleration of -0.4 pm/s2 (pm : = picometer). This thermal "drag" is not surprising; along-track thermal drag has previously been observed with the related LAGEOS satellites (-3.4 pm/s2). It is hypothesized that the thermal drag is principally due to anisotropic thermal radiation from the satellite's exterior. We report the results of numerical computations of the along-track orbital decay of the LARES satellite during the first 126 days after launch. The results depend to a significant degree on the visual and IR absorbance α and emissivity ɛ of the fused silica Cube Corner Reflectors. We present results for two values of α IR = ɛ IR : 0.82, a standard number for "clean" fused silica; and 0.60, a possible value for silica with slight surface contamination subjected to the space environment. The heating and the resultant along-track acceleration depend on the plane of the orbit, the sun position, and, in particular, on the occurrence of eclipses, all of which are functions of time. Thus we compute the thermal drag for specific days. We compare our model to observational data, available for a 120 day period starting with the 7th day after launch, which shows the average acceleration of -0.4 pm/s2. With our model the average along-track thermal drag over this 120 day period for CCR α IR = ɛ IR = 0.82 was computed to be -0.59 pm/s2. For CCR α IR = ɛ IR = 0.60 we compute -0.36 pm/s2. LARES consists of a solid spherical tungsten sphere, into which the CCRs are set in colatitude circles. Our calculation models the satellite as 93 isothermal elements: the tungsten part, and each of the 92 Cube Corner Reflectors. The satellite is heated from two sources: sunlight and Earth's infrared (IR) radiation. We work in the fast-spin regime, where CCRs with
Aerodynamic drag on intermodal railcars
NASA Astrophysics Data System (ADS)
Kinghorn, Philip; Maynes, Daniel
2014-11-01
The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.
DRAG REDUCTION WITH SUPERHYDROPHOBIC RIBLETS
Barbier, Charlotte N; D'Urso, Brian R; Jenner, Elliot
2012-01-01
Samples combining riblets and superhydrophobic surfaces are fabricated at University of Pittsburgh and their drag reduction properties are studied at the Center for Nanophase Materials Sciences (CNMS) in Oak Ridge National Laboratory with a commercial cone-and-plate rheometer. In parallel to the experiments, numerical simulations are performed in order to estimate the slip length at high rotational speed. For each sample, a drag reduction of at least 5% is observed in both laminar and turbulent regime. At low rotational speed, drag reduction up to 30% is observed with a 1 mm deep grooved sample. As the rotational speed increases, a secondary flow develops causing a slight decrease in drag reductions. However, drag reduction above 15% is still observed for the large grooved samples. In the turbulent regime, the 100 microns grooved sample becomes more efficient than the other samples in drag reduction and manages to sustain a drag reduction above 15%. Using the simulations, the slip length of the 100 micron grooved sample is estimated to be slightly above 100 micron in the turbulent regime.
Aerodynamic Drag and Drag Reduction: Energy and Energy Savings (Invited)
NASA Technical Reports Server (NTRS)
Wood, Richard M.
2003-01-01
An assessment of the role of fluid dynamic resistance and/or aerodynamic drag and the relationship to energy use in the United States is presented. Existing data indicates that up to 25% of the total energy consumed in the United States is used to overcome aerodynamic drag, 27% of the total energy used in the United States is consumed by transportation systems, and 60% of the transportation energy or 16% of the total energy consumed in the United States is used to overcome aerodynamic drag in transportation systems. Drag reduction goals of 50% are proposed and discussed which if realized would produce a 7.85% total energy savings. This energy savings correlates to a yearly cost savings in the $30Billion dollar range.
Roberts, David C
2008-01-01
The article considers the dramatic phenomenon of seemingly frictionless flow of slow-moving superfluids. Specifically the question of whether an object in a superfluid flow experiences any drag force is addressed. A brief account is given of the history of this problem and it is argued that recent advances in ultracold atomic physics can shed much new light on this problem. The article presents the commonly held notion that sufficiently slow-moving superfluids can flow without drag and also discusses research suggesting that scattering quantum fluctuations might cause drag in a superfluid moving at any speed.
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
NASA Astrophysics Data System (ADS)
Marshall, J. R.
1999-09-01
very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
NASA Technical Reports Server (NTRS)
Marshall, J. R.
1999-01-01
very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
NASA Technical Reports Server (NTRS)
Marshall, J. R.
1999-01-01
very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion
Renormalization in Coulomb gauge QCD
NASA Astrophysics Data System (ADS)
Andraši, A.; Taylor, John C.
2011-04-01
In the Coulomb gauge of QCD, the Hamiltonian contains a non-linear Christ-Lee term, which may alternatively be derived from a careful treatment of ambiguous Feynman integrals at 2-loop order. We investigate how and if UV divergences from higher order graphs can be consistently absorbed by renormalization of the Christ-Lee term. We find that they cannot.
Entropic Corrections to Coulomb's Law
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Sheykhi, A.
2012-04-01
Two well-known quantum corrections to the area law have been introduced in the literatures, namely, logarithmic and power-law corrections. Logarithmic corrections, arises from loop quantum gravity due to thermal equilibrium fluctuations and quantum fluctuations, while, power-law correction appears in dealing with the entanglement of quantum fields in and out the horizon. Inspired by Verlinde's argument on the entropic force, and assuming the quantum corrected relation for the entropy, we propose the entropic origin for the Coulomb's law in this note. Also we investigate the Uehling potential as a radiative correction to Coulomb potential in 1-loop order and show that for some value of distance the entropic corrections of the Coulomb's law is compatible with the vacuum-polarization correction in QED. So, we derive modified Coulomb's law as well as the entropy corrected Poisson's equation which governing the evolution of the scalar potential ϕ. Our study further supports the unification of gravity and electromagnetic interactions based on the holographic principle.
Coulomb problem for vector particles : Energy spectrum.
Kuchiev, M. Yu.; Flambaum, V. V.; Physics; Univ. of South Wales
2006-05-31
The Coulomb problem for vector bosons W{+-} incorporates a well-known difficulty; the charge of the boson localized in a close vicinity of the attractive Coulomb center proves to be infinite. The paradox is shown to be resolved by the QED vacuum polarization, which brings in a strong effective repulsion that eradicates the infinite charge of the boson on the Coulomb center. This property allows one to define the Coulomb problem for vector bosons properly.
Coulomb crystallization in classical and quantum systems
NASA Astrophysics Data System (ADS)
Bonitz, Michael
2007-11-01
Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter
Hamiltonian approach to frame dragging
NASA Astrophysics Data System (ADS)
Epstein, Kenneth J.
2008-07-01
A Hamiltonian approach makes the phenomenon of frame dragging apparent “up front” from the appearance of the drag velocity in the Hamiltonian of a test particle in an arbitrary metric. Hamiltonian (1) uses the inhomogeneous force equation (4), which applies to non-geodesic motion as well as to geodesics. The Hamiltonian is not in manifestly covariant form, but is covariant because it is derived from Hamilton’s manifestly covariant scalar action principle. A distinction is made between manifest frame dragging such as that in the Kerr metric, and hidden frame dragging that can be made manifest by a coordinate transformation such as that applied to the Robertson-Walker metric in Sect. 2. In Sect. 3 a zone of repulsive gravity is found in the extreme Kerr metric. Section 4 treats frame dragging in special relativity as a manifestation of the equivalence principle in accelerated frames. It answers a question posed by Bell about how the Lorentz contraction can break a thread connecting two uniformly accelerated rocket ships. In Sect. 5 the form of the Hamiltonian facilitates the definition of gravitomagnetic and gravitoelectric potentials.
Dragging a floating horizontal cylinder
NASA Astrophysics Data System (ADS)
Lee, Duck-Gyu; Kim, Ho-Young
2010-11-01
A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.
Alignment of dust particles by ion drag forces in subsonic flows
Piel, Alexander
2011-07-15
The role of ion drag forces for the alignment of dust particles is studied for subsonic flows. While alignment by wake-field attraction is a well known mechanism for supersonic flows, it is argued here that ion-scattering forces become more important in subsonic ion flows. A model of non-overlapping collisions is introduced and numerical results are discussed. For typical conditions of dusty plasma experiments, alignment by drag forces is found strong enough to overcome the destabilizing force from Coulomb repulsion between dust particles. It turns out that the major contribution to the horizontal restoring force originates from the transverse momentum transfer, which is usually neglected in ion drag force calculations because of an assumed rotational symmetry of the flow.
Conductance of a proximitized nanowire in the Coulomb blockade regime
NASA Astrophysics Data System (ADS)
van Heck, B.; Lutchyn, R. M.; Glazman, L. I.
2016-06-01
We identify the leading processes of electron transport across finite-length segments of proximitized nanowires and build a quantitative theory of their two-terminal conductance. In the presence of spin-orbit interaction, a nanowire can be tuned across the topological transition point by an applied magnetic field. Due to a finite segment length, electron transport is controlled by the Coulomb blockade. Upon increasing of the field, the shape and magnitude of the Coulomb blockade peaks in the linear conductance are defined, respectively, by Andreev reflection, single-electron tunneling, and resonant tunneling through the Majorana modes emerging after the topological transition. Our theory provides the framework for the analysis of experiments with proximitized nanowires [such as reported in S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162] and identifies the signatures of the topological transition in the two-terminal conductance.
Cooling of cryogenic electron bilayers via the Coulomb interaction
NASA Astrophysics Data System (ADS)
Gamble, John King; Friesen, Mark; Joynt, Robert; Coppersmith, S. N.
2011-09-01
Heat dissipation in current-carrying cryogenic nanostructures is problematic because the phonon density of states decreases strongly as energy decreases. We show that the Coulomb interaction can prove a valuable resource for carrier cooling via coupling to a nearby cold electron reservoir. Specifically, we consider the geometry of an electron bilayer in a silicon-based heterostructure and analyze the power transfer. We show that, across a range of temperatures, separations, and sheet densities, the electron-electron interaction dominates the phonon heat-dissipation modes as the main cooling mechanism. Coulomb cooling is most effective at low densities, when phonon cooling is least effective in silicon, making it especially relevant for experiments attempting to perform coherent manipulations of single spins.
Vertical variations of coral reef drag forces
NASA Astrophysics Data System (ADS)
Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri
2016-05-01
Modeling flow in a coral reef requires a closure model that links the local drag force to the local mean velocity. However, the spatial flow variations make it difficult to predict the distribution of the local drag. Here we report on vertical profiles of measured drag and velocity in a laboratory reef that was made of 81 Pocillopora Meandrina colony skeletons, densely arranged along a tilted flume. Two corals were CT-scanned, sliced horizontally, and printed using a 3-D printer. Drag was measured as a function of height above the bottom by connecting the slices to drag sensors. Profiles of velocity were measured in-between the coral branches and above the reef. Measured drag of whole colonies shows an excellent agreement with previous field and laboratory studies; however, these studies never showed how drag varies vertically. The vertical distribution of drag is reported as a function of flow rate and water level. When the water level is the same as the reef height, Reynolds stresses are negligible and the drag force per unit fluid mass is nearly constant. However, when the water depth is larger, Reynolds stress gradients become significant and drag increases with height. An excellent agreement was found between the drag calculated by a momentum budget and the measured drag of the individual printed slices. Finally, we propose a modified formulation of the drag coefficient that includes the normal dispersive stress term and results in reduced variations of the drag coefficient at the cost of introducing an additional coefficient.
NASA Astrophysics Data System (ADS)
Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S.-K.; Turner, John Stewart
2015-10-01
Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015), 10.1017/jfm.2015.126], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers.
Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S-K; Turner, John Stewart
2015-10-01
Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015)], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers. PMID:26565349
Coulomb dissociation of N,2120
NASA Astrophysics Data System (ADS)
Röder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamaño, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkäll, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Datta Pramanik, Ushasi; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhäuser, Roman; Göbel, Kathrin; Golubev, Pavel; Gonzalez Diaz, D.; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G.; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hâkan; Jonson, Björn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knöbel, Ronja; Kröll, Thorsten; Krücken, Reiner; Kurcewicz, J.; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Le Bleis, Tudi; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Mostazo Caro, Magdalena; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S.; Plag, Ralf; Prochazka, A.; Rahaman, Md. Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M. Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; Sanchez del Rio Saez, Jose; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V.; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J.; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G.; Wimmer, Christine; Winfield, J. S.; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai; R3B Collaboration
2016-06-01
Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N,2120 are reported. Relativistic N,2120 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the 19N (n ,γ )20N and 20N (n ,γ ) 21N excitation functions and thermonuclear reaction rates have been determined. The 19 (n ,γ )20N rate is up to a factor of 5 higher at T <1 GK with respect to previous theoretical calculations, leading to a 10% decrease in the predicted fluorine abundance.
NASA Astrophysics Data System (ADS)
Sherr, R.; Fortune, H. T.
1998-10-01
Coulomb energies of the ^18Ne mirrors of the levels of ^18O vary considerably from state to state, an effect understood as arising from their different configurations. All the low-lying positive-parity states in these nuclei can be described in terms of two nucleons coupled to an ^16O core plus a collective component (most probably four-particle two-hole (4p-2h)). We have computed Coulomb energies using one such formulation(Lawson, Serduke and Fortune, Phys. Rev. C 14), 1245 (1976).. Two-particle energies arise from coupling a neutron to single-particle states of ^17O, and a proton to the mirror states of ^17F. For the 4p-2h component, we use the ^14O-^14C mass difference, plus a ph Coulomb term(Sherr and Bertsch, Phys. Rev. C 12), 1671 (1975).. Agreement is perhaps slightly better than another such attempt(Nero, Adelberger and Dietrich, Phys. Rev. C 24), 1864 (1981). using wave functions from Benson and Flowers.
Homopolar artificial gravity generator based on frame-dragging
NASA Astrophysics Data System (ADS)
Tajmar, M.
2010-05-01
Space exploration is linked in many ways to the generation and challenges of artificial gravity. Space stations and drag-free satellite platforms are used to provide microgravity environments for scientific experiments. On the other hand, microgravity or reduced gravity environments such as on Moon and Mars are known to put limits for long-term human presence. Large centrifuges in space may provide Earth-like gravity environments during long-term travels, however, such technology certainly has its limits to provide similar environments for human outposts on other moons and planets. One can imagine a different technology using a prediction out of Einstein's general relativity theory which is called frame-dragging. In principle, frame-dragging might be used to generate artificial gravitational fields similar to electric fields generated by time-varying or moving magnetic fields. We will show that it is also possible to generate constant artificial gravitational fields that could provide microgravity or artificial gravity environments. Although such technology is possible in principle, the field strengths calculated from Einstein's theory are too small to be useful so far. However, recently detected anomalies around low-temperature spinning matter as well as fly-by anomalies point to possible enhancement mechanisms that might make an artificial gravity generator based on frame-dragging a reality in the future.
NASA Technical Reports Server (NTRS)
Debra, Daniel B.
1989-01-01
A drag-free satellite cancels the effect of external disturbances. Although the forces may be small, a satellite is disturbed by residual air drag, radiation pressure, micrometeorite impact, and other small forces that act on its surface disturbing its orbit, which is principally determined by the gravity field. In some missions, these small perturbations that make the satellite deviate from its purely gravitational orbit are limiting. An internal unsupported proof mass is shielded by the satellite from the external disturbances. The position of the shield (or the main part of the satellite) is measured with respect to the internal proof mass, and this information is used to actuate a propulsion system which moves the satellite to follow the proof mass. A drag-free control system is illustrated. Since the proof mass is shielded it follows a purely gravitational orbit - as does the satellite following it - hence the name drag-free satellite. The idea was conceived by Lange (1964) and has been applied to many mission studies since. In some cases, it is not necessary to cancel the disturbances, only to measure them so they may be taken into account. In such cases, an accelerometer may be a more suitable solution (for example, using the ONERA Cactus or the Bell Aerosystems MESA).
The maximum drag reduction asymptote
NASA Astrophysics Data System (ADS)
Choueiri, George H.; Hof, Bjorn
2015-11-01
Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].
OBSTACLE DRAG IN STRATIFIED FLOW
This paper describes an experimental study of the drag of two- and three-dimensional bluff obstacles of various cross-stream shapes when towed through a fluid having a stable, linear density gradient with Brunt-Vaisala frequency, N. rag measurements were made directly using a for...
Symmetry breaking for drag minimization
NASA Astrophysics Data System (ADS)
Roper, Marcus; Squires, Todd M.; Brenner, Michael P.
2005-11-01
For locomotion at high Reynolds numbers drag minimization favors fore-aft asymmetric slender shapes with blunt noses and sharp trailing edges. On the other hand, in an inertialess fluid the drag experienced by a body is independent of whether it travels forward or backward through the fluid, so there is no advantage to having a single preferred swimming direction. In fact numerically determined minimum drag shapes are known to exhibit almost no fore-aft asymmetry even at moderate Re. We show that asymmetry persists, albeit extremely weakly, down to vanishingly small Re, scaling asymptotically as Re^3. The need to minimize drag to maximize speed for a given propulsive capacity gives one possible mechanism for the increasing asymmetry in the body plans seen in nature, as organisms increase in size and swimming speed from bacteria like E-Coli up to pursuit predator fish such as tuna. If it is the dominant mechanism, then this signature scaling will be observed in the shapes of motile micro-organisms.
Drag and propulsive forces in electric sails with negative polarity
NASA Astrophysics Data System (ADS)
Sanchez-Torres, Antonio
2016-02-01
An electric solar sail (E-sail) is a recent propellantless propulsion concept for a direct exploration of the Solar System. An E-sail consists of a set of bare, conductive tethers at high positive/negative bias, prone to extract solar wind momentum by Coulomb deflection of protons. Additionally, a negatively biased E-sail has been proposed as a concept for de-orbiting space debris with drag forces produced in Low Earth Orbit (LEO). The present work focuses on the negative-bias case with a sheath that must be correctly modeled for a flowing plasma ambient. Ion scattering within the sheath and the resulting force are determined for several plasma conditions. Since the plasma flow does reduce the effective range for the ion scattering within the sheath, the resulting force is then reduced. Tethers at very high negative bias should be required for extremely high plasma flow.
Numerical investigation of the effect of sphere dimples on the drag crisis and the Magnus effect
NASA Astrophysics Data System (ADS)
Li, Jing; Tsubokura, Makoto; Tsunoda, Masaya
2015-11-01
The present study investigates the flow over a golf ball and a smooth sphere around the critical Reynolds numbers under both stationary and self-spinning conditions by conducting Large-eddy simulations (LES) based on high resolution unstructured grids. For the stationary cases, the present calculation results validate the promotion of the drag crisis at a relatively lower Reynolds number due to the golf ball dimples. It also shows that the golf ball dimples have a limited effect on the time-dependent lateral force development in the subcritical regime, whereas the dimples are beneficial in suppressing the lateral force oscillations in the supercritical regimes. With spin parameter Γ = 0.1, the drag coefficients for the spinning smooth sphere increase slightly in all Reynolds number regimes when compared to the stationary cases, whereas for the spinning golf ball, the drag force decreases in the critical regime and increases in the supercritical regime. For both spinning models, the inverse Magnus effect was reproduced in the critical regime, whereas in the supercritical regime the ordinary Magnus force was generated. Relatively weaker lift forces were also observed in the cases of the spinning golf balls when compared to the spinning smooth spheres.
Device measures fluid drag on test vehicles
NASA Technical Reports Server (NTRS)
Freeman, R.; Judd, J. H.; Leiss, A.
1965-01-01
Electromechanical drag balance device measures the aerodynamic drag force acting on a vehicle as it moves through the atmosphere and telemeters the data to a remote receiving station. This device is also used for testing the hydrodynamic drag characteristics of underwater vehicles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Drag rope. 31.53 Section 31.53 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.53 Drag rope. If a drag rope is used, the end...
Rotary photon drag enhanced by a slow-light medium.
Franke-Arnold, Sonja; Gibson, Graham; Boyd, Robert W; Padgett, Miles J
2011-07-01
Transmission through a spinning window slightly rotates the polarization of the light, typically by a microradian. It has been predicted that the same mechanism should also rotate an image. Because this rotary photon drag has a contribution that is inversely proportional to the group velocity, the image rotation is expected to increase in a slow-light medium. Using a ruby window under conditions for coherent population oscillations, we induced an effective group index of about 1 million. The resulting rotation angle was large enough to be observed by the eye. This result shows that rotary photon drag applies to images as well as polarization. The possibility of switching between different rotation states may offer new opportunities for controlled image coding. PMID:21719672
Studies of friction drag and pressure drag of airfoils using the Eppler program
NASA Technical Reports Server (NTRS)
Phillips, William H.
1988-01-01
Most previous studies of the drag and two-dimensional airfoils consider only the total drag. The present report gives results of a study of three airfoils, using the Eppler program, to determine the distribution of friction drag along the chord and to obtain relative values of friction drag and pressure drag over a wide range of angle of attack and Reynolds number. The effects of boundary-layer suction in the turbulent region of the boundary layer of two of the airfoils are also investigated. The pressure drag is found to be an important component of the total drag, reaching values of 60 to 80 percent of the total drag near the stall. The use of suction producing a uniform inflow in the turbulent region of the boundary layer results in large increases in maximum lift, and increases the skin-friction drag but reduces or even changes the sign of the pressure drag.
PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems
NASA Astrophysics Data System (ADS)
Neilson, David; Senatore, Gaetano
2009-05-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas
An entropic understanding of Coulomb force
NASA Astrophysics Data System (ADS)
Cho, Jin-Ho; Kim, Hyosung
2012-02-01
Exploiting Verlinde's proposal on the entropic understanding of Newton's law, we show that Coulomb force could also be understood as an entropically emergent force (rather than as a fundamental force). We apply Kaluza-Klein idea to Verlinde's formalism to obtain Coulomb interaction in the lower dimensions. The kinematics concerning the Kaluza-Klein momenta separates the interaction due to the momentum flow from the gravitational interaction. The momentum-charge conversion relation results in the precise form of Coulomb interaction.
NASA Astrophysics Data System (ADS)
Beceiro Novo, S.; Sümmerer, K.; Cortina-Gil, D.; Wimmer, C.; Plag, R.; Alvarez-Pol, H.; Aumann, T.; Behr, K.; Boretzky, K.; Casarejos, E.; Chatillon, A.; Datta-Pramanik, U.; Elekes, Z.; Fulop, Z.; Galaviz, D.; Geissel, H.; Giron, S.; Greife, U.; Hammache, F.; Heil, M.; Hoffman, J.; Johansson, H.; Karagiannis, C.; Kiselev, O.; Kurz, N.; Larsson, K.; Le Bleis, T.; Litvinov, Y.; Mahata, K.; Muentz, C.; Nociforo, C.; Ott, W.; Paschalis, S.; Prokopowicz, W.; Rodriguez-Tajes, C.; Rossi, D.; Simon, H.; Stanoiu, M.; Stroth, J.; Typel, S.; Wagner, A.; Wamers, F.; Weick, H.
2012-09-01
In this work the astrophysical 26Si(p,γ)27P reaction is studied using the Coulomb dissociation technique. We performed a 27P Coulomb Dissociation experiment at GSI, Darmstadt (28 May-5 June 2007) using the ALADIN-LAND setup which allows complete-kinematic studies. A secondary 27P beam at 498 AMeV impinging a 515mg/cm2 Pb target was used. The relative energy of the outgoing system (26Si+p) is measured obtaining the resonant states of the 27P. Preliminary results show four resonant states measured at 0.36±0.07, 0.88±0.09, 1.5±0.2, 2.3±0.3 MeV and evidence of a higher state at around 3.1 MeV. The preliminary total cross section obtained for relative energies between 0 and 3 MeV has been measured and yields 55±7 mb.
Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas
NASA Astrophysics Data System (ADS)
Yang, Luyi
by electron-electron interactions, leading to remarkable resistance to diffusive spreading of the drifting pulse of spin polarization. Finally, we show that spin helices continue propagate at the same speed as the Fermi sea even when the electron drift velocity exceeds the Fermi velocity of 107 cm s-1. We also use this phase-resolved Doppler velocimetry technique to perform the first simultaneous measurements of drift and diffusion of electron-hole packets in the same two-dimensional electron gas. The results that we obtain strongly violate the picture of electron-hole transport that is presented in the classic textbook treatments of ambipolar dynamics. We find that the rates of transport are controlled almost entirely by the intrinsic frictional force exerted between electrons and holes, rather than the interaction of carriers with phonons or impurities. From the experimental data we obtain the first measurement of the "Coulomb drag" friction between electrons and holes coexisting in the same two-dimensional layer. Moreover, we show that the frictional force thus obtained is in quantitative agreement with theoretically predicted values, which follow entirely from electron density, temperature and fundamental constants, i.e. no adjustable parameters. The understanding of ambipolar transport that we have achieved is an essential prerequisite to the design of those spintronic devices in which spin current is carried by the drift of polarized electrons and holes.
NASA Astrophysics Data System (ADS)
Babatunde, J. Falaye; Sameer, M. Ikhdair
2013-06-01
The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric Pöschl—Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary spin—orbit quantum number κ using an approximation scheme to substitute the centrifugal terms κ(κ ± 1)r-2. In view of spin and pseudo-spin (p-spin) symmetries, the relativistic energy eigenvalues and the corresponding two-component wave functions of a particle moving in the field of attractive and repulsive tPT potentials are obtained using the asymptotic iteration method (AIM). We present numerical results in the absence and presence of tensor coupling A and for various values of spin and p-spin constants and quantum numbers n and κ. The non-relativistic limit is also obtained.
Unsafe coulomb excitation of {sup 240-244}Pu.
Wiedenhoever, I.
1998-12-01
The high spin states of {sup 240}Pu and {sup 244}Pu have been investigated with GAMMASPHERE at ATLAS, using Coulomb excitation with a {sup 208}Pb beam at energies above the Coulomb barrier. Data on a transfer channel leading to {sup 242}Pu were obtained as well. In the case of {sup 244}Pu, the yrast band was extended to 34{h_bar}, revealing the completed {pi}i{sub 13/2} alignment, a ''first'' for actinide nuclei. The yrast sequence of {sup 242}Pu was also extended to higher spin and a similar backbend was delineated. In contrast, while the ground state band of {sup 240}Pu was measured up to the highest rotational frequencies ever reported in the actinide region ({approximately} 300 keV), no sign of particle alignment was observed. In this case, several observables such as the large B(E1)/B(E2) branching ratios in the negative parity band, and the vanishing energy staggering between the negative and positive parity bands suggest that the strength of octupole correlations increases with rotational frequency. These stronger correlations may well be responsible for delaying or suppressing the {pi}i{sub 13/2} particle alignment.
Spin-Orbit Coupling and the Conservation of Angular Momentum
ERIC Educational Resources Information Center
Hnizdo, V.
2012-01-01
In nonrelativistic quantum mechanics, the total (i.e. orbital plus spin) angular momentum of a charged particle with spin that moves in a Coulomb plus spin-orbit-coupling potential is conserved. In a classical nonrelativistic treatment of this problem, in which the Lagrange equations determine the orbital motion and the Thomas equation yields the…
Coulombic contribution and fat center vortex model
Rafibakhsh, Shahnoosh; Deldar, Sedigheh
2007-02-27
The fat (thick) center vortex model is one of the phenomenological models which is fairly successful to interpret the linear potential between static sources. However, the Coulombic part of the potential has not been investigated by the model yet. In an attempt to get the Coulombic contribution and to remove the concavity of the potentials, we are studying different vortex profiles and vortex sizes.
Stereoscopic Investigations of 3D Coulomb Balls
Kaeding, Sebastian; Melzer, Andre; Arp, Oliver; Block, Dietmar; Piel, Alexander
2005-10-31
In dusty plasmas particles are arranged due to the influence of external forces and the Coulomb interaction. Recently Arp et al. were able to generate 3D spherical dust clouds, so-called Coulomb balls. Here, we present measurements that reveal the full 3D particle trajectories from stereoscopic imaging.
PREFACE: Strongly Coupled Coulomb Systems
NASA Astrophysics Data System (ADS)
Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.
2006-04-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within
Plane Wave and Coulomb Asymptotics
NASA Astrophysics Data System (ADS)
Mulligan, P. G.; Crothers, D. S. F.
2004-01-01
A simple plane wave solution of the Schrödinger Helmholtz equation is a quantum eigenfunction obeying both energy and linear momentum correspondence principles. Inclusion of the outgoing wave with scattering amplitude f obeys unitarity and the optical theorem. By closely considering the standard asymptotic development of the plane wave, we show that there is a problem with angular momentum when we consider forward scattering at the point of closest approach and at large impact parameter given semiclassically by (l + 1/2)/k where l is the azimuthal quantum number and may be large (J Leech et al, Phys. Rev. Lett. 88 257901 (2002)). The problem is resolved via non-uniform, non-standard analysis involving the Heaviside step function, unifying classical, semiclassical and quantum mechanics, and the treatment is extended to the case of pure Coulomb scattering.
Coulomb blockade with neutral modes.
Kamenev, Alex; Gefen, Yuval
2015-04-17
We study transport through a quantum dot in the fractional quantum Hall regime with filling factors ν=2/3 and ν=5/2, weakly coupled to the leads. We account for both injection of electrons to or from the leads, and quasiparticle rearrangement processes between the edge and the bulk of the quantum dot. The presence of neutral modes introduces topological constraints that modify qualitatively the features of the Coulomb blockade (CB). The periodicity of CB peak spacings doubles and the ratio of spacing between adjacent peaks approaches (in the low temperature and large dot limit) a universal value: 2∶1 for ν=2/3 and 3∶1 for ν=5/2. The corresponding CB diamonds alternate their width in the direction of the bias voltage and allow for the determination of the neutral mode velocity, and of the topological numbers associated with it. PMID:25933323
The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.
ERIC Educational Resources Information Center
Francisco, E.; And Others
1988-01-01
Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)
Whose drag is it anyway? Drag kings and monarchy in the UK.
Willox, Annabelle
2002-01-01
This chapter will show that the term "drag" in drag queen has a different meaning, history and value to the term "drag" in drag king. By exposing this basic, yet fundamental, difference this paper will expose the problems inherent in the assumption of parity between the two forms of drag. An exposition of how camp has been used to comprehend and theorise drag queens will facilitating an understanding of the parasitic interrelationship between camp and drag queen performances, while a critique of "Towards a Butch-Femme Aesthetic," by Sue Ellen Case, will point out the problematic assumptions made about camp when attributed to a cultural location different to the drag queen. By interrogating the historical, cultural and theoretical similarities and differences between drag kings, butches, drag queens and femmes this paper will expose the flawed assumption that camp can be attributed to all of the above without proviso, and hence expose why drag has a fundamentally different contextual meaning for kings and queens. This chapter will conclude by examining the work of both Judith Halberstam and Biddy Martin and the practical examples of drag king and queen performances provided at the UK drag contest held at The Fridge in Brixton, London on 23 June 1999. PMID:12769284
Short, L.W. Jr.; Barr, J.D.
1987-04-28
A drag-type drill bit is described comprising: a bit body having an operating end face; and a multiplicity of superhard cutting elements interlocked to the body. The cutting elements define a multiplicity of cutting areas dispersed over the operating end face of the bit body in a pattern adapted to cause the cutting areas to cut an earth formation to a desired three-dimensional profile as the bit body is rotated, the cutting areas having back rake angles which become more negative with distance from the profile.
Miniature drag-force anemometer
NASA Technical Reports Server (NTRS)
Krause, L. N.; Fralick, G. C.
1981-01-01
A miniature drag force anemometer is described which is capable of measuring unsteady as well as steady state velocity head and flow direction. It consists of a cantilevered beam with strain gages located at the base of the beam as the force measuring element. The dynamics of the beam are like those of lightly damped second order system with a natural frequency as high as 40 kilohertz depending on beam geometry and material. The anemometer is used in both forward and reversed flow. Anemometer characteristics and several designs are presented along with discussions of several applications.
Drag and drop display & builder
Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab
2007-12-01
The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.
Miniature drag-force anemometer
NASA Technical Reports Server (NTRS)
Krause, L. N.; Fralick, G. C.
1981-01-01
A miniature drag-force anemometer is described which is capable of measuring unsteady as well as steady-state velocity head and flow direction. It consists of a cantilevered beam with strain gages located at the base of the beam as the force measuring element. The dynamics of the beam are like those of a lightly damped second-order system with a natural frequency as high as 40 kilohertz depending on beam geometry and material. The anemometer can be used in both forward and reversed flow. Anemometer characteristics and several designs are presented along with discussions of several applications.
Fresnel drag effect in fiber optic gyroscope
NASA Technical Reports Server (NTRS)
Vali, V.; Berg, M. F.; Shorthill, R. W.
1978-01-01
Consideration is given to the development of a low-noise fiber-optic ring interferometer gyroscope. A technique for measuring the Fresnel drag coefficient of optical fibers is described, and the accuracy of the technique is considered. An experiment is performed which allows verification of the Einstein velocity addition theorem to the first nonlinear term. An experimental setup for measuring Fresnel drag is described: it consists of a Sagnac interferometer and a Fresnel drag measurement configuration.
Drag reduction of a hairy disk
NASA Astrophysics Data System (ADS)
Niu, Jun; Hu, David L.
2011-10-01
We investigate experimentally the hydrodynamics of a hairy disk immersed in a two-dimensional flowing soap film. Drag force is measured as a function of hair length, density, and coating area. An optimum combination of these parameters yields a drag reduction of 17%, which confirms previous numerical predictions (15%). Flow visualization indicates the primary mechanism for drag reduction is the bending, adhesion, and reinforcement of hairs trailing the disk, which reduces wake width and traps "dead water." Thus, the use of hairy coatings can substantially reduce an object's drag while negligibly increasing its weight.
Transformance: reading the gospel in drag.
McCune, Jeffrey Q
2004-01-01
Despite the large body of scholarship on drag and its performance of misogyny, mimicry, and masculinity, little attention has been paid to the role of musical genres in Black drag performance and its reception. This essay explores drag performances of gospel music and its relationship with the spectator at the Biology Bar, a Black gay drag site in Chicago. By examining the shift from the club "space" to the church "place," this research locates several possibilities for queer gospel performances. Through the introduction of a theory of transformance, this essay highlights the contradictions, complications, and complexities of the relationship between the Black church and the Black gay community. PMID:15132488
DOE Project on Heavy Vehicle Aerodynamic Drag
McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B
2007-01-04
Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag coefficient of
Nonequilibrium forces between dragged ultrasoft colloids.
Singh, Sunil P; Winkler, Roland G; Gompper, Gerhard
2011-10-01
The dynamical deformation of ultrasoft colloids as well as their dynamic frictional forces are numerically investigated, when one colloid is dragged past another at constant velocity. Hydrodynamic interactions are captured by a particle-based mesoscopic simulation method. At vanishing relative velocity, the equilibrium repulsive force-distance curve is obtained. At large drag velocities, in contrast, we find an apparent attractive force for departing colloids along the dragging direction. The deformation, in the close encounter of colloids, and the energy dissipation are examined as a function of the drag velocity and their separation. PMID:22107322
Coexistence and competition of on-site and intersite Coulomb interactions in Mott-molecular-dimers
NASA Astrophysics Data System (ADS)
Juliano, R. C.; de Arruda, A. S.; Craco, L.
2016-02-01
We reveal the interplay between on-site (U) and intersite (V) Coulomb interactions in the extended two-site Hubbard model. Due to its atomic-like form quantum correlations intrinsic to Mott-molecular-dimers are exactly computed. Our results for physical quantities such as double occupancy and specific heat are consistent with those obtained for the one-band Hubbard model, suggesting that a two-site dimer model is able to capture the essential thermodynamic properties of strongly interacting electron systems. It is noted that intersite Coulomb interactions promote the formation of doublons, which compete with the spin-singlet state induced by the on-site Coulomb repulsion. Our results are expected to be relevant for understanding electronic and thermodynamical properties of interacting electrons in systems with strongly coupled magnetic atoms.
Numerical approach to Coulomb gauge QCD
Matevosyan, Hrayr H.; Szczepaniak, Adam P.; Bowman, Patrick O.
2008-07-01
We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wave function using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wave functional.
Miniature drag-force anemometer
NASA Technical Reports Server (NTRS)
Krause, L. N.; Fralick, G. C.
1977-01-01
A miniature drag-force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilever beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain-gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like those of a second-order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.
Crystallization in two-component Coulomb systems.
Bonitz, M; Filinov, V S; Fortov, V E; Levashov, P R; Fehske, H
2005-12-01
The analysis of Coulomb crystallization is extended from one-component to two-component plasmas. Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum crystals. In the latter case, a critical mass ratio of the two charged components is found, which is of the order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spontaneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase diagram of two-component Coulomb crystals is presented and is verified by first-principles computer simulations. PMID:16384315
Analog VLSI system for active drag reduction
Gupta, B.; Goodman, R.; Jiang, F.; Tai, Y.C.; Tung, S.; Ho, C.M.
1996-10-01
In today`s cost-conscious air transportation industry, fuel costs are a substantial economic concern. Drag reduction is an important way to reduce costs. Even a 5% reduction in drag translates into estimated savings of millions of dollars in fuel costs. Drawing inspiration from the structure of shark skin, the authors are building a system to reduce drag along a surface. Our analog VLSI system interfaces with microfabricated, constant-temperature shear stress sensors. It detects regions of high shear stress and outputs a control signal to activate a microactuator. We are in the process of verifying the actual drag reduction by controlling microactuators in wind tunnel experiments. We are encouraged that an approach similar to one that biology employs provides a very useful contribution to the problem of drag reduction. 9 refs., 21 figs.
MAGNETIC DRAG ON HOT JUPITER ATMOSPHERIC WINDS
Perna, Rosalba; Menou, Kristen; Rauscher, Emily
2010-08-20
Hot Jupiters, with atmospheric temperatures T {approx}> 1000 K, have residual thermal ionization levels sufficient for the interaction of ions with the planetary magnetic field to result in a sizable magnetic drag on the (neutral) atmospheric winds. We evaluate the magnitude of magnetic drag in a representative three-dimensional atmospheric model of the hot Jupiter HD 209458b and find that it is a plausible mechanism to limit wind speeds in this class of atmospheres. Magnetic drag has a strong geometrical dependence, both meridionally and from the dayside to the nightside (in the upper atmosphere), which could have interesting consequences for the atmospheric flow pattern. By extension, close-in eccentric planets with transiently heated atmospheres will experience time-variable levels of magnetic drag. A robust treatment of magnetic drag in circulation models for hot atmospheres may require iterated solutions to the magnetic induction and Saha equations as the hydrodynamic flow is evolved.
Coulomb Distortion in the Inelastic Regime
Patricia Solvignon, Dave Gaskell, John Arrington
2009-09-01
The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.
On the modelling of Coulomb friction
NASA Astrophysics Data System (ADS)
Cull, S. J.; Tucker, R. W.
1999-03-01
This paper analyses two different representations of Coulomb friction in the context of a dynamic simulation of the torsional vibrations of a driven drill-string. A simple model is used to compare the relative merits of a piecewise analytic approach using a discontinuous friction profile to a numerical integration using a smooth nonlinear representation of the Coulomb friction. In both cases the effects of viscous damping on the excitation of torsional relaxation oscillations are exhibited.
Modelling Coulomb Collisions in Anisotropic Plasmas
NASA Astrophysics Data System (ADS)
Hellinger, P.; Travnicek, P. M.
2009-12-01
Collisional transport in anisotropic plasmas is investigated comparing the theoretical transport coefficients (Hellinger and Travnicek, 2009) for anisotropic particles with the results of the corresponding Langevin equation, obtained as a generalization of Manheimer et al. (1997). References: Hellinger, P., and P. M. Travnicek (2009), On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501. Manheimer, W. M., M. Lampe and G. Joyce (1997), Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584.
Off-shell Jost solutions for Coulomb and Coulomb-like interactions in all partial waves
Laha, U.; Bhoi, J.
2013-01-15
By exploiting the theory of ordinary differential equations, with judicious use of boundary conditions, interacting Green's functions and their integral transforms together with certain properties of higher transcendental functions, useful analytical expressions for the off-shell Jost solutions for motion in Coulomb and Coulomb-nuclear potentials are derived in maximal reduced form through different approaches to the problem in the representation space. The exact analytical expressions for the off-shell Jost solutions for Coulomb and Coulomb-like potentials are believed to be useful for the description of the charged particle scattering/reaction processes.
Coulomb and nuclear excitations of narrow resonances in 17Ne
NASA Astrophysics Data System (ADS)
Marganiec, J.; Wamers, F.; Aksouh, F.; Aksyutina, Yu.; Álvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Hoffmann, J.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Nyman, G.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Rodriguez-Tajes, C.; Rossi, D.; Riisager, K.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Typel, S.; Weick, H.; Wiescher, M.; Wimmer, C.
2016-08-01
New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the 15O + p + p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.
Giant Frictional Drag in Double Bilayer Graphene Heterostructures
NASA Astrophysics Data System (ADS)
Lee, Kayoung; Xue, Jiamin; Dillen, David C.; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel
2016-07-01
We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T ) lower than ˜10 K , we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T , and becomes comparable to the layer resistivity at the lowest T =1.5 K . At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag.
Giant Frictional Drag in Double Bilayer Graphene Heterostructures.
Lee, Kayoung; Xue, Jiamin; Dillen, David C; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel
2016-07-22
We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T) lower than ∼10 K, we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T, and becomes comparable to the layer resistivity at the lowest T=1.5 K. At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag. PMID:27494492
On the Minimum Induced Drag of Wings
NASA Technical Reports Server (NTRS)
Bowers, Albion H.
2010-01-01
Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb
On the Minimum Induced Drag of Wings
NASA Technical Reports Server (NTRS)
Bowers, Albion H.
2011-01-01
Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.
Turbulent drag reduction in nonionic surfactant solutions
NASA Astrophysics Data System (ADS)
Tamano, Shinji; Itoh, Motoyuki; Kato, Katsuo; Yokota, Kazuhiko
2010-05-01
There are only a few studies on the drag-reducing effect of nonionic surfactant solutions which are nontoxic and biodegradable, while many investigations of cationic surfactant solutions have been performed so far. First, the drag-reducing effects of a nonionic surfactant (AROMOX), which mainly consisted of oleyldimethylamineoxide, was investigated by measuring the pressure drop in the pipe flow at solvent Reynolds numbers Re between 1000 and 60 000. Second, we investigated the drag-reducing effect of a nonionic surfactant on the turbulent boundary layer at momentum-thickness Reynolds numbers Reθ from 443 to 814 using two-component laser-Doppler velocimetry and particle image velocimetry systems. At the temperature of nonionic surfactant solutions, T =25 °C, the maximum drag reduction ratio for AROMOX 500 ppm was about 50%, in the boundary layer flow, although the drag reduction ratio was larger than 60% in pipe flow. Turbulence statistics and structures for AROMOX 500 ppm showed the behavior of typical drag-reducing flow such as suppression of turbulence and modification of near-wall vortices, but they were different from those of drag-reducing cationic surfactant solutions, in which bilayered structures of the fluctuating velocity vectors were observed in high activity.
Helicopter hub fairing and pylon interference drag
NASA Technical Reports Server (NTRS)
Graham, D. R.; Sung, D. Y.; Young, L. A.; Louie, A. W.; Stroub, R. H.
1989-01-01
A wind tunnel test was conducted to study the aerodynamics of helicopter hub and pylon fairings. The test was conducted in the 7-by 10 Foot Subsonic Wind Tunnel (Number 2) at Ames Research Center using a 1/5-scale XH-59A fuselage model. The primary focus of the test was on the rotor hub fairing and pylon mutual interference drag. Parametric studies of pylon and hub fairing geometry were also conducted. This report presents the major findings of the test as well as tabulated force and moment data, flow visualization photographs, and graphical presentations of the drag data. The test results indicate that substantial drag reduction can be attained through the use of a cambered hub fairing with circular arc upper surface and flat lower surface. Furthermore, a considerable portion of the overall drag reduction is attributed to the reduction in the hub-on-pylon interference drag. It is also observed that the lower surface curvature of the fairing has a strong influence on the hub fairing and on pylon interference drag. However, the drag reduction benefit that was obtained by using the cambered hub fairing with a flat lower surface was adversely affected by the clearance between the hub fairing and the pylon.
Magnetic monopoles in quantum spin ice
NASA Astrophysics Data System (ADS)
Petrova, Olga; Moessner, Roderich; Sondhi, Shivaji
Typical spin ice materials can be modeled using classical Ising spins. The geometric frustration of the pyrochlore lattice causes the spins to satisfy ice rules, whereas a violation of the ice constraint constitutes an excitation. Flipping adjacent spins fractionalizes the excitation into two monopoles. Long range dipolar spin couplings result in Coulombic interactions between charges, while the leading effect of quantum fluctuations is to provide the monopoles with kinetic energy. We study the effect of adding quantum dynamics to spin ice, a well-known classical spin liquid, with a particular view of how to best detect its presence in experiment. For the weakly diluted quantum spin ice, we find a particularly crisp phenomenon, namely, the emergence of hydrogenic excited states in which a magnetic monopole is bound to a vacancy at various distances.
Drag reduction method for gas pipelines
Lowther, F.E.
1990-09-25
This patent describes a method of reducing drag for a gas flowing in a pipeline between a first point and a second point. It comprises: inputting gas at a constant pressure into the pipeline at the first point to establish gas flow in the pipeline between the first and second points; injecting a drag reducer into the gas flow at the first point; monitoring the flowrate of the gas at the second point; and adjusting the injection rate of the drag reducer at the first point until a maximum flowrate of the gas is reached at the second point.
Drag evaluation of the Bellanca Skyrocket II
NASA Technical Reports Server (NTRS)
Gregorek, G. M.; Hoffmann, M. J.; Payne, H. E.; Harris, J. P.
1977-01-01
The Bellanca Skyrocket II, possessor of five world speed records, is a single engine aircraft with high performance that has been attributed to a laminar flow airfoil and an all composite structure. Utilization of composite materials in the Skyrocket II is unique since this selection was made to increase the aerodynamic efficiency of the aircraft. Flight tests are in progress to measure the overall aircraft drag and the wing section drag for comparison with the predicted performance of the Skyrocket. Initial results show the zero lift drag is indeed low, equalling 0.016.
Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals
NASA Astrophysics Data System (ADS)
Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko
2007-04-01
The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine α-helix chains and three-dimensional diamond pieces.
Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals.
Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko
2007-04-14
The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine alpha-helix chains and three-dimensional diamond pieces. PMID:17444700
On the Minimum Induced Drag of Wings
NASA Technical Reports Server (NTRS)
Bowers, Albion H.
2007-01-01
This viewgraph presentation reviews the minimum induced drag of wings. The topics include: 1) The History of Spanload Development of the optimum spanload Winglets and their implications; 2) Horten Sailplanes; and 3) Flight Mechanics & Adverse yaw.
Methods of reducing vehicle aerodynamic drag
Sirenko V.; Rohatgi U.
2012-07-08
A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.
Penetration drag in loosely packed granular materials
NASA Astrophysics Data System (ADS)
Bless, Stephan; Omidvar, Mehdi; Iskander, Magued; New York University Collaboration
2015-03-01
The drag coefficient for penetration of granular materials by conical-nosed penetrators was computed by assuming the particles are non-interacting and rebound elastically off of the advancing penetrator. The solution was C =4 [sin(theta)]**2, where theta is the half angle of the cone. Experiments were conducted in which the drag coefficient was measured over the range 30 to 80 m/s for four types of sand: Ottawa silica sand, crushed quartz glass, coral sand, and aragonite sand. The sands were tested at relative densities of 40 and 80%. The drag coefficients for the low density materials were in excellent agreement with this simple model. The high density material had a drag considerably larger than predicted, presumably because of particle-to-particle interactions.
Drag Reduction Tests on Supersonic Transport Design
NASA Technical Reports Server (NTRS)
1998-01-01
Langley researchers recently completed supersonic tests in the Unitary Plan Wind Tunnel on a nonlinear design for a supersonic transport. Although the drag reduction measured during the tests was not as great as that predicted using computational methods, significant drag reductions were achieved. Future tests will be conducted at a higher Reynolds number, which will be more representative of flight conditions. These tests will be used to identify a supersonic transport configuration that provides maximum drag reduction. Reducing drag decreases operating cost by improving fuel consumption and lowering aircraft weight. As a result, this research has the potential to help make a future high-speed civil transport (HSCT) an affordable means of travel for the flying public.
Integrated lift/drag controller for aircraft
NASA Technical Reports Server (NTRS)
Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)
1974-01-01
A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.
Thermal Casimir drag in fluctuating classical fields
NASA Astrophysics Data System (ADS)
Démery, Vincent; Dean, David S.
2011-07-01
A uniformly moving inclusion which locally suppresses the fluctuations of a classical thermally excited field is shown to experience a drag force that depends on the dynamics of the field. It is shown that in a number of cases the linear friction coefficient is dominated by short distance fluctuations and takes a very simple form. Examples where this drag can occur are for stiff objects, such as proteins, nonspecifically bound to more flexible ones such as polymers and membranes.
The Minimum Induced Drag of Aerofoils
NASA Technical Reports Server (NTRS)
Munk, M. M.
1979-01-01
Equations are derived to demonstrate which distribution of lifting elements result in a minimum amount of aerodynamic drag. The lifting elements were arranged (1) in one line, (2) parallel lying in a transverse plane, and (3) in any direction in a transverse plane. It was shown that the distribution of lift which causes the least drag is reduced to the solution of the problem for systems of airfoils which are situated in a plane perpendicular to the direction of flight.
Photon drag effect in carbon nanotube yarns
NASA Astrophysics Data System (ADS)
Obraztsov, Alexander N.; Lyashenko, Dmitry A.; Fang, Shaoli; Baughman, Ray H.; Obraztsov, Petr A.; Garnov, Sergei V.; Svirko, Yuri P.
2009-06-01
We demonstrate that in graphitic nanocarbon materials, combination of ballistic conductivity and strong electron photon coupling opens a unique opportunity to observe transfer of momentum of the electromagnetic radiation to free carriers. The resulting drag of quasiballistically propagating electrons can be employed, in particular, to visualize the temporal profile, polarization, and propagation direction of the laser pulse. In this letter, we report the giant photon drag effect in yarns made of multiwall carbon nanotubes.
Atomistically informed solute drag in Al Mg
NASA Astrophysics Data System (ADS)
Zhang, F.; Curtin, W. A.
2008-07-01
Solute drag in solute-strengthened alloys, caused by diffusion of solute atoms around moving dislocations, controls the stress at deformation rates and temperatures useful for plastic forming processes. In the technologically important Al-Mg alloys, the solute drag stresses predicted by classical theories are much larger than experiments, which is resolved in general by eliminating the singularity of the dislocation core via Peierls-Nabarro-type models. Here, the drag stress versus dislocation velocity is computed numerically using a realistic dislocation core structure obtained from an atomistic model to investigate the role of the core and obtain quantitative stresses for comparison with experiment. The model solves a discrete diffusion equation in a reference frame moving with the dislocation, with input solute enthalpies and diffusion activation barriers in the core computed by or estimated from atomistic studies. At low dislocation velocities, the solute drag stress is controlled by bulk solute diffusion because the core diffusion occurs too quickly. In this regime, the drag stress can be obtained using a Peierls-Nabarro model with a core spreading parameter tuned to best match the atomistic models. At intermediate velocities, both bulk and core diffusion can contribute to the drag, leading to a complex stress-velocity relationship showing two peaks in stress. At high velocities, the drag stress is controlled solely by diffusion within and across the core. Like the continuum models, the drag stress is nearly linear in solute concentration. The Orowan relationship is used to connect dislocation velocity to deformation strain rate. Accounting for the dependence of mobile dislocation density on stress, the simulations are in good agreement with experiments on Al-Mg alloys over a range of concentrations and temperatures.
NASA Astrophysics Data System (ADS)
Yu, Clare C.; Shtengel, Kirill
2002-03-01
Low frequency 1/f noise is found in Coulomb glasses, among other systems with slow relaxation. It has been recently studied in detail in Si:B in the experimental work of Massey and Lee [1]. They concluded that their findings were inconsistent with the single-particle mechanisms proposed earlier. We show that the observed noise can be produced by charge fluctuations due to electrons hopping between isolated sites and a percolating network at low temperatures [2]. Coulomb interactions are included through the Coulomb gap in the density of states. The low frequency noise spectrum goes as ω^-α with α slightly larger than 1. This result, together with the temperature dependence of α and the noise amplitude are in good agreement with the experiments of Massey and Lee. [1] J. G. Massey and Mark Lee, Phys. Rev. Lett. 79, 3986 (1997). [2] Kirill Shtengel and Clare C. Yu (2001), cond-mat/0111302.
Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua
2016-05-01
A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.
Spin vibronics in interacting nonmagnetic molecular nanojunctions
NASA Astrophysics Data System (ADS)
Weiss, S.; Brüggemann, J.; Thorwart, M.
2015-07-01
We show that in the presence of ferromagnetic electronic reservoirs and spin-dependent tunnel couplings, molecular vibrations in nonmagnetic single molecular transistors induce an effective intramolecular exchange magnetic field. It generates a finite spin accumulation and precession for the electrons confined on the molecular bridge and occurs under (non)equilibrium conditions. The effective exchange magnetic field is calculated here to lowest order in the tunnel coupling for a nonequilibrium transport setup. Coulomb interaction between electrons is taken into account as well as a finite electron-phonon coupling. We show that for realistic physical parameters, an effective spin-phonon coupling emerges. It is induced by quantum many-body interactions, which are either of electron-phonon or Coulomb type. We investigate the precession and accumulation of the confined spins as function of bias and gate voltages as well as their dependence on the angle enclosed by the magnetizations between the left and right reservoir.
Measurement of drag and its cancellation
NASA Astrophysics Data System (ADS)
DeBra, D. B.; Conklin, J. W.
2011-05-01
The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)—still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.
Bioinspired surfaces for turbulent drag reduction.
Golovin, Kevin B; Gose, James W; Perlin, Marc; Ceccio, Steven L; Tuteja, Anish
2016-08-01
In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354731
Experimental drag histories of shocked spherical particles
NASA Astrophysics Data System (ADS)
Prestridge, Katherine; Orlicz, Greg; Martinez, Adam
2015-11-01
The horizontal shock tube (HST) facility at Los Alamos is used to investigate the drag forces on micrometer-sized particles dispersed in air when they are accelerated by a shock. Eight-frame, high-speed particle tracking velocimetry/accelerometry (PTVA) diagnostics are implemented to measure the trajectory of individual particles with high spatial and temporal resolution, and a shadowgraphy system is used to measure the shock position on each image. We present experiments over a range of Reynolds numbers, Mach numbers, particle sizes, and particle densities that explore the drag forces on solid, spherical, non-deforming particles. Experimental drag coefficients are calculated from eight dynamic measurements of particle position versus time, for Mach 1.3 and Mach 1.2 experiments. Experimental results show drag coefficients significantly larger than those predicted by the standard drag model for solid, spherical particles. These results are consistent with measurements made by Rudinger (1970) and Sommerfeld (1985). We will present experimental results and analysis of unsteady drag as a function of particle Reynolds number, Mach number and Stokes number.
A preliminary design of a drag-free satellite and its application to geodesy
NASA Technical Reports Server (NTRS)
Lange, B. O.; Debra, D. B.; Kaula, W. M.
1969-01-01
The design of a drag-free satellite and its application to measuring tidal interaction of the earth and tesseral harmonics are discussed. Principle areas of discussion are: (1) the feasibility of making geophysical measurements which are not possible with conventional satellites, and (2) design of attitude and translation control systems for spinning vehicle and possible coupling of attitude and translation control for gravity stabilized vehicles.
14 CFR 25.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbopropeller-drag limiting systems. 25...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbopropeller-drag limiting systems. 23... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane...
14 CFR 25.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbopropeller-drag limiting systems. 25...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...
14 CFR 25.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbopropeller-drag limiting systems. 25...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...
14 CFR 25.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbopropeller-drag limiting systems. 25...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbopropeller-drag limiting systems. 23... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbopropeller-drag limiting systems. 23... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbopropeller-drag limiting systems. 23... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane...
14 CFR 23.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbopropeller-drag limiting systems. 23... General § 23.937 Turbopropeller-drag limiting systems. (a) Turbopropeller-powered airplane propeller-drag... normal or emergency operation results in propeller drag in excess of that for which the airplane...
14 CFR 25.937 - Turbopropeller-drag limiting systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbopropeller-drag limiting systems. 25...-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed... results in propeller drag in excess of that for which the airplane was designed under § 25.367. Failure...
Coulomb balls in Experiment and Simulation
Block, D.; Arp, O.; Piel, A.; Melzer, A.
2005-10-31
Recently, it was shown that it is possible to confine spherical dust clouds in a plasma. It was found that these dust clouds have a crystalline structure which differs notably from the well known fcc, bcc and hcp order in extended crystalline systems. The experiments show that the particles arrange in nested shells with hexagonal order on individual shells. The high transparency and the rather slow time scales of Coulomb balls allow to observe individual particles with video microscopy techniques and therefore to determine the structural properties of Coulomb balls with high accuracy. This contribution presents a comparison of experimental results and MD-Simulations.
Observation of ionic Coulomb blockade in nanopores
NASA Astrophysics Data System (ADS)
Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra
2016-08-01
Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.
Coulomb force as an entropic force
Wang Tower
2010-05-15
Motivated by Verlinde's theory of entropic gravity, we give a tentative explanation to the Coulomb's law with an entropic force. When trying to do this, we find the equipartition rule should be extended to charges and the concept of temperature should be reinterpreted. If one accepts the holographic principle as well as our generalizations and reinterpretations, then Coulomb's law, the Poisson equation, and the Maxwell equations can be derived smoothly. Our attempt can be regarded as a new way to unify the electromagnetic force with gravity, from the entropic origin. Possibly some of our postulates are related to the D-brane picture of black hole thermodynamics.
Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method
NASA Astrophysics Data System (ADS)
Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko
2010-06-01
We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2015-02-01
We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
A Study of Ion Drag for Ground and Microgravity Dusty Plasma Experiments
NASA Astrophysics Data System (ADS)
Hall, Taylor; Thomas, Edward
2015-11-01
This presentation presents the results of a recent study of the interaction between charged dust particles and plasma ions through the ion drag force in a dc glow discharge plasma. Measurements of the dust particles motion are carried out using Particle Image Velocimetry (PIV). When an electrostatic perturbation is applied to the dust cloud, the particle motion, in response to the perturbation, is shown to reverse direction as the gas pressure is increased. An analysis of the dust particle motion and background plasma parameters suggests that there is a competition between the ion drag and electric forces on the particles. These forces are calculated for a range of pressures using detailed measurements of the plasma parameters carried out by a single Langmuir probe. The analysis of these measurements suggests that a change in the relative magnitude of the Coulomb collision ion drag compared to the electric force is a probable explanation for the observed reversal of direction of motion as the neutral gas pressure is increased. The application of these results to microgravity studies of dusty plasmas will be discussed. Support provided by NASA-JPL (JPL-RSA 1471384).
Superfluid spin transport through easy-plane ferromagnetic insulators.
Takei, So; Tserkovnyak, Yaroslav
2014-06-01
Superfluid spin transport-dissipationless transport of spin-is theoretically studied in a ferromagnetic insulator with easy-plane anisotropy. We consider an open geometry where the spin current is injected into the ferromagnet from one side by a metallic reservoir with a nonequilibrium spin accumulation and ejected into another metallic reservoir located downstream. Spin transport is studied using a combination of magnetoelectric circuit theory, Landau-Lifshitz-Gilbert phenomenology, and microscopic linear-response theory. We discuss how spin superfluidity can be probed in a magnetically mediated negative electron-drag experiment. PMID:24949786
BRST invariance in Coulomb gauge QCD
NASA Astrophysics Data System (ADS)
Andraši, A.; Taylor, J. C.
2015-12-01
In the Coulomb gauge, the Hamiltonian of QCD contains terms of order ħ2, identified by Christ and Lee, which are non-local but instantaneous. The question is addressed how do these terms fit in with BRST invariance. Our discussion is confined to the simplest, O(g4) , example.
Coulombic Effects in Ion Mobility Spectrometry
Tolmachev, Aleksey V.; Clowers, Brian H.; Belov, Mikhail E.; Smith, Richard D.
2009-01-01
Ion mobility spectrometry (IMS) has been increasingly employed in a number of applications. When coupled to mass spectrometry (MS), IMS becomes a powerful analytical tool for separating complex samples and investigating molecular structure. Therefore, improvements in IMS-MS instrumentation, e.g. IMS resolving power and sensitivity, are highly desirable. Implementation of an ion trap for accumulation and pulsed ion injection to IMS based on the ion funnel has provided considerably increased ion currents, and thus a basis for improved sensitivity and measurement throughput. However, large ion populations may manifest Coulombic effects contributing to the spatial dispersion of ions traveling in the IMS drift tube, and reduction in the IMS resolving power. In this study, we present an analysis of Coulombic effects on IMS resolution. Basic relationships have been obtained for the spatial evolution of ion packets due to Coulombic repulsion. The analytical relationships were compared with results of a computer model that simulates IMS operation based on a first principles approach. Initial experimental results reported here are consistent with the computer modeling. A noticeable decrease in the IMS resolving power was observed for ion populations of >10,000 elementary charges. The optimum IMS operation conditions which would minimize the Coulombic effects are discussed. PMID:19438247
The Pioneer Anomaly as a Coulomb Attraction
NASA Astrophysics Data System (ADS)
Morris, Steven
2016-06-01
The anomalous acceleration of the Pioneer 10 and Pioneer 11 spacecraft can be explained as a Coulomb attraction between the positively-charged Solar System (due to cosmic rays) and the negatively-charged spacecraft (due to alpha-particle emission from the radioisotope thermoelectric generators).
Thermodynamic Theory of Spherically Trapped Coulomb Clusters
NASA Astrophysics Data System (ADS)
Wrighton, Jeffrey; Dufty, James; Bonitz, Michael; K"{A}Hlert, Hanno
2009-11-01
The radial density profile of a finite number of identical charged particles confined in a harmonic trap is computed over a wide ranges of temperatures (Coulomb coupling) and particle numbers. At low temperatures these systems form a Coulomb crystal with spherical shell structure which has been observed in ultracold trapped ions and in dusty plasmas. The shell structure is readily reproduced in simulations. However, analytical theories which used a mean field approachfootnotetext[1]C. Henning et al., Phys. Rev. E 74, 056403 (2006) or a local density approximationfootnotetext[2]C. Henning et al., Phys. Rev. E 76, 036404 (2007) have, so far, only been able to reproduce the average density profile. Here we present an approach to Coulomb correlations based on the hypernetted chain approximation with additional bridge diagrams. It is demonstrated that this model reproduces the correct shell structure within a few percent and provides the basis for a thermodynamic theory of Coulomb clusters in the strongly coupled fluid state.footnotetext[3]J. Wrighton, J.W. Dufty, H. K"ahlert and M. Bonitz, J. Phys. A 42, 214052 (2009) and Phys. Rev. E (2009) (to be submitted)
Molecular Dynamics Simulations of Coulomb Explosion
Bringa, E M
2002-05-17
A swift ion creates a track of electronic excitations in the target material. A net repulsion inside the track can cause a ''Coulomb Explosion'', which can lead to damage and sputtering of the material. Here we report results from molecular-dynamics (MD) simulations of Coulomb explosion for a cylindrical track as a function of charge density and neutralization/quenching time, {tau}. Screening by the free electrons is accounted for using a screened Coulomb potential for the interaction among charges. The yield exhibits a prompt component from the track core and a component, which dominates at higher excitation density, from the heated region produced. For the cases studied, the number of atoms ejected per incident ion, i.e. the sputtering yield Y, is quadratic with charge density along the track as suggested by simple models. Y({tau} = 0.2 Debye periods) is nearly 20% of the yield when there is no neutralization ({tau} {yields} {infinity}). The connections between ''Coulomb explosions'', thermal spikes and measurements of electronic sputtering are discussed.
Frictional drag reduction by bubble injection
NASA Astrophysics Data System (ADS)
Murai, Yuichi
2014-07-01
The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.
Theoretical and experimental investigation of additive drag
NASA Technical Reports Server (NTRS)
Sibulkin, Merwin
1954-01-01
The significance of additive drag is discussed and equations for determining its approximate value are derived for annular and open-nose inlets. Charts are presented giving values of additive drag coefficient over a range of free-stream Mach numbers for open and for annular-nose inlets with conical flow at the inlet. The effects on additive drag of variable inlet-total-pressure recovery and static pressures on the centerbody are investigated and an analytical method of predicting the variation of pressure on the centerbody with mass-flow ratio is given. Experimental additive-drag values are presented for a series of 20 degree and 25 degree cone half-angle inlets and one open-nose inlet operating at free-stream Mach numbers of 1.8 and 1.6. A comparison with the theoretical values of additive drag shows excellent agreement for the open-nose inlet and moderately good agreement for the annular inlets. (author)
[Drag-out in metal finishing industries].
Laforest, V; Piatyszek, E; Mojaat, W; Bourgois, J
2005-10-01
Currently, environmental regulations induce industrialists to implement source reduction techniques in order to comply with the prevention principle toward sustainable development. The project PIPSI (PIlotage Propre des Systèmes Industriels/industrial system dean piloting) financing by Rhone-Alps Region is carried out with the aim to contribute to this objective. The study presented in this article concerns the pollution transfer in a metal finishing treatment line in order to minimise the environmental impact obtained notably with the pollution balance. Drag-out and draining phenomena have been particularly studied. Results obtained showed that a 10 seconds of draining reduced drag-out from 65 to 85% in terms of pieces design. Moreover, during the experiments, 5 drag-out levels were identified by medium values from 26 to 1700 ml m(-2). So that, either a piece can be associated to a level or knowing the piece drag-out level, it is possible to evaluate its medium drag-out value. Then the pollution balance will be obtained more easily. PMID:16342539
Solute drag on perfect and extended dislocations
NASA Astrophysics Data System (ADS)
Sills, R. B.; Cai, W.
2016-04-01
The drag force exerted on a moving dislocation by a field of mobile solutes is studied in the steady state. The drag force is numerically calculated as a function of the dislocation velocity for both perfect and extended dislocations. The sensitivity of the non-dimensionalized force-velocity curve to the various controlling parameters is assessed, and an approximate analytical force-velocity expression is given. A non-dimensional parameter S characterizing the strength of the solute-dislocation interaction, the background solute fraction ?, and the dislocation character angle ?, are found to have the strongest influence on the force-velocity curve. Within the model considered here, a perfect screw dislocation experiences no solute drag, but an extended screw dislocation experiences a non-zero drag force that is about 10 to 30% of the drag on an extended edge dislocation. The solutes can change the spacing between the Shockley partials in both stationary and moving extended dislocations, even when the stacking fault energy remains unaltered. Under certain conditions, the solutes destabilize an extended dislocation by either collapsing it into a perfect dislocation or causing the partials to separate unboundedly. It is proposed that the latter instability may lead to the formation of large faulted areas and deformation twins in low stacking fault energy materials containing solutes, consistent with experimental observations of copper and stainless steel containing hydrogen.
Analysis of a fully packed loop model arising in a magnetic Coulomb phase.
Jaubert, L D C; Haque, M; Moessner, R
2011-10-21
The Coulomb phase of spin ice, and indeed the I(c) phase of water ice, naturally realize a fully packed two-color loop model in 3D. We present a detailed analysis of the statistics of these loops: we find loops spanning the system multiple times hosting a finite fraction of all sites while the average loop length remains finite. We contrast the behavior with an analogous 2D model. We connect this body of results to properties of polymers, percolation and insights from Schramm-Loewner evolution processes. We also study another extended degree of freedom, called worms, which appear as "Dirac strings" in spin ice. We discuss implications of these results for the efficiency of numerical cluster algorithms, and address implications for the ordering properties of a broader class of magnetic systems, e.g., with Heisenberg spins, such as CsNiCrF(6) or ZnCr(2)O(4). PMID:22107573
Pressure versus drag effects on crater size
NASA Technical Reports Server (NTRS)
Schmidt, R. M.
1993-01-01
The topic of atmospheric effects on crater formation is very complex because it includes not only pressure effects on excavation, but also drag effects on ejecta placement. Experiments have to be designed very carefully to allow isolation of the two phenomena. Historically, numerous investigators have shown an influence of atmospheric pressure. However, none have identified the scaling that correctly isolates pressure from drag effects. On-going work in explosive cratering has produced scaling paradigms for deeply buried explosive charges where drag effects are negligible. Here it was found that increased pressure caused significant induced strength effects that impeded crater excavation. The effect is more pronounced with increasing burial depth and less pronounced with increased yield.
Drag Measurements of Porous Plate Acoustic Liners
NASA Technical Reports Server (NTRS)
Wolter, John D.
2005-01-01
This paper presents the results of direct drag measurements on a variety of porous plate acoustic liners. The existing literature describes numerous studies of drag on porous walls with injection or suction, but relatively few of drag on porous plates with neither injection nor suction. Furthermore, the porosity of the porous plate in existing studies is much lower than typically used in acoustic liners. In the present work, the acoustic liners consisted of a perforated face sheet covering a bulk acoustic absorber material. Factors that were varied in the experiment were hole diameter, hole pattern, face sheet thickness, bulk material type, and size of the gap (if any) between the face sheet and the absorber material.
A comprehensive plan for helicopter drag reduction
NASA Technical Reports Server (NTRS)
Williams, R. M.; Montana, P. S.
1975-01-01
Current helicopters have parasite drag levels 6 to 10 times as great as fixed wing aircraft. The commensurate poor cruise efficiency results in a substantial degradation of potential mission capability. The paper traces the origins of helicopter drag and shows that the problem (primarily due to bluff body flow separation) can be solved by the adoption of a comprehensive research and development plan. This plan, known as the Fuselage Design Methodology, comprises both nonaerodynamic and aerodynamic aspects. The aerodynamics are discussed in detail and experimental and analytical programs are described which will lead to a solution of the bluff body problem. Some recent results of work conducted at the Naval Ship Research and Development Center (NSRDC) are presented to illustrate these programs. It is concluded that a 75-per cent reduction of helicopter drag is possible by the full implementation of the Fuselage Design Methodology.
An entropy method for induced drag minimization
NASA Technical Reports Server (NTRS)
Greene, George C.
1989-01-01
A fundamentally new approach to the aircraft minimum induced drag problem is presented. The method, a 'viscous lifting line', is based on the minimum entropy production principle and does not require the planar wake assumption. An approximate, closed form solution is obtained for several wing configurations including a comparison of wing extension, winglets, and in-plane wing sweep, with and without a constraint on wing-root bending moment. Like the classical lifting-line theory, this theory predicts that induced drag is proportional to the square of the lift coefficient and inversely proportioinal to the wing aspect ratio. Unlike the classical theory, it predicts that induced drag is Reynolds number dependent and that the optimum spanwise circulation distribution is non-elliptic.
Drag reduction method for gas pipelines
Li, Y.H.
1991-06-04
This paper describes a method for reducing dray on a gas flowing in a gas pipeline. It comprises: injecting a drag reducer into the gas pipeline wherein the drag reducer is selected from a class of chemical compounds which are comprised of molecules having a polar group forming one end thereof which bonds with the inner wall of the pipeline and a non-polar group forming the other end which smoothes the gas-solid interface between the wall and the flowing gas thereby reducing gas turbulence therebetween wherein the drag reducer is a fatty acid amine and wherein the polar group is comprised of an amine and the non-polar group is comprised of a long-chain hydrocarbon.
Drag reducing properties of microalgal exopolymers.
Ramus, J; Kenney, B E; Shaughnessy, E J
1989-01-25
Dilute aqueous solutions of polymers released by marine phytoplankton (microalgae) were shown to effectively reduce drag in capillary pipe flow. Tests were performed in a capillary turbulent flow viscometer which extruded small samples under high pressures. In all, 22 species were screened, and the products of one chlorophyte and four rhodophyte species proved especially effective. The viscoelastic polymers produced by these species delayed the transition from laminar to turbulent flow to significantly higher Re. In general, polymeric regime segments come off the maximum drag reduction asymptote at characteristic retro-onset points, and come to lie approximately parallel to, but displaced upwards from the Prandtl-von Karman line. The delay to transition was shown to be dependent on additive polymer concentration, capillary diameter, and temperature. Ionic concentration, ionic composition, or pH had little effect on drag reducing properties. PMID:18587950
Track of Right-Wheel Drag (Polar)
NASA Technical Reports Server (NTRS)
2004-01-01
This 360-degree panorama combines several frames taken by the navigation camera on NASA's Mars Exploration Rover Spirit during the rover's 313th martian day (Nov. 19, 2004). The site, labeled Spirit site 93, is in the 'Columbia Hills' inside Gusev Crater. The rover tracks point westward. Spirit had driven eastward, in reverse and dragging its right front wheel, for about 30 meters (100 feet) on the day the picture was taken. Driving backwards while dragging that wheel is a precautionary strategy to extend the usefulness of the wheel for when it is most needed, because it has developed more friction than the other wheels. The right-hand track in this look backwards shows how the dragging disturbed the soil. This view is presented in a polar projection with geometric seam correction.
NASA Technical Reports Server (NTRS)
2004-01-01
This 360-degree panorama combines several frames taken by the navigation camera on NASA's Mars Exploration Rover Spirit during the rover's 313th martian day (Nov. 19, 2004). The site, labeled Spirit site 93, is in the 'Columbia Hills' inside Gusev Crater. The rover tracks point westward. Spirit had driven eastward, in reverse and dragging its right front wheel, for about 30 meters (100 feet) on the day the picture was taken. Driving backwards while dragging that wheel is a precautionary strategy to extend the usefulness of the wheel for when it is most needed, because it has developed more friction than the other wheels. The right-hand track in this look backwards shows how the dragging disturbed the soil. This view is presented in a cylindrical projection with geometric seam correction.
Track of Right-Wheel Drag (Vertical)
NASA Technical Reports Server (NTRS)
2004-01-01
This 360-degree panorama combines several frames taken by the navigation camera on NASA's Mars Exploration Rover Spirit during the rover's 313th martian day (Nov. 19, 2004). The site, labeled Spirit site 93, is in the 'Columbia Hills' inside Gusev Crater. The rover tracks point westward. Spirit had driven eastward, in reverse and dragging its right front wheel, for about 30 meters (100 feet) on the day the picture was taken. Driving backwards while dragging that wheel is a precautionary strategy to extend the usefulness of the wheel for when it is most needed, because it has developed more friction than the other wheels. The right-hand track in this look backwards shows how the dragging disturbed the soil. This view is presented in a vertical projection with geometric seam correction.
Drag calculations of wings using Euler methods
NASA Technical Reports Server (NTRS)
Van Dam, C. P.; Chang, I. C.; Vijgen, P. M. H. W.; Nikfetrat, Koorosh
1991-01-01
Several techniques for the calculation of drag using Euler-equation formulations are discussed and compared. Surface-pressure integration (a nearfield technique) as well as two different farfield calculation techniques are described and applied to three-dimensional flow-field solutions for an aspect-ratio-7 wing with attached flow. The present calculations are limited to steady, low-Mach-number flows around three-dimensional configurations in the absence of active systems such as surface blowing/suction and propulsion. Although the main focus of the paper is the calculation of aerodynamic drag, the calculation of aerodynamic lift is also briefly discussed. Three Euler methods are used to obtain the flowfield solutions. The farfield technique based on the evaluation of a wake-integral appears to provide the most consistent and accurate drag predictions.
THE GRAVITATIONAL DRAG FORCE ON AN EXTENDED OBJECT MOVING IN A GAS
Bernal, Cristian G.; Sánchez-Salcedo, F. J.
2013-09-20
Using axisymmetrical numerical simulations, we revisit the gravitational drag felt by a gravitational Plummer sphere with mass M and core radius R{sub s} moving at constant velocity V{sub 0} through a background homogeneous medium of adiabatic gas. Since the potential is non-diverging, there is no gas removal due to accretion. When R{sub s} is larger than the Bondi radius R{sub B} , the perturbation is linear at every point and the drag force is well fitted by the time-dependent Ostriker's formula with r{sub min} = 2.25R{sub s} , where r{sub min} is the minimum impact parameter in the Coulomb logarithm. In the deep nonlinear supersonic regime (R{sub s} << R{sub B} ), the minimum radius is no longer related to R{sub s} but to R{sub B} . We find r{sub min}=3.3M{sup -2.5}R{sub B} for Mach numbers of the perturber between 1.5 and 4, although r{sub min}= 2M{sup -2}R{sub B}=2GM/V{sup 2}{sub 0} also provides a good fit at M>2. As a consequence, the drag force does not depend sensitively on the nonlinearity parameter A, defined as R{sub B} /R{sub s} , for A values larger than a certain critical value A{sub cr}. We show that our generalized Ostriker's formula for the drag force is more accurate than the formula suggested by Kim and Kim.
Vacuum polarization of planar charged fermions with Coulomb and Aharonov-Bohm potentials
NASA Astrophysics Data System (ADS)
Khalilov, V. R.; Mamsurov, I. V.
2016-02-01
Vacuum polarization of charged massless fermions is investigated in the superposition of Coulomb and Aharonov-Bohm (AB) potentials in 2 + 1 dimensions. For this purpose, we construct the Green function of the two-dimensional Dirac equation with Coulomb and AB potentials (via the regular and irregular solutions of the radial Dirac equation) and then calculate the vacuum polarization charge density in the so-called subcritical and supercritical regimes. In the supercritical regime, the Green function has a discontinuity in the complex plane of “energy” due to the singularities on the negative energy axis; these singularities are situated on the unphysical sheet and related to the creation of infinitely many quasistationary fermionic states with negative energies. We expect that our results will be helpful in gaining deeper understanding of the fundamental problem of quantum electrodynamics which can be applied to the problems of charged impurity screening in graphene taking into consideration the electron spin.
On the Aharonov-Casher system subject to a Coulomb-type potential
NASA Astrophysics Data System (ADS)
Barboza, P. M. T.; Bakke, K.
2016-02-01
By considering the confinement of the Aharonov-Casher system to a Coulomb-type potential, we show that the energy levels depends on the Aharonov-Casher geometric phase and obtain the persistent spin currents. Besides, we investigate the influence of the Coulomb-type potential on the Landau-Aharonov-Casher system by showing that bound states solutions to the Schrödinger-Pauli equation can be obtained. We show that the Landau-Aharonov-Casher cyclotron frequency is modified and discuss a quantum characterized by the dependence of the angular frequency on the quantum numbers of the system. As a particular case, we calculate the possible values of the angular frequency associated with the ground state.
Minimum induced drag configurations with jet interaction
NASA Technical Reports Server (NTRS)
Pao, J. L.; Lan, C. E.
1978-01-01
A theoretical method is presented for determining the optimum camber shape and twist distribution for the minimum induced drag in the wing-alone case without prescribing the span loading shape. The same method was applied to find the corresponding minimum induced drag configuration with the upper-surface-blowing jet. Lan's quasi-vortex-lattice method and his wing-jet interaction theory was used. Comparison of the predicted results with another theoretical method shows good agreement for configurations without the flowing jet. More applicable experimental data with blowing jets are needed to establish the accuracy of the theory.
Method of reducing drag in aerodynamic systems
NASA Technical Reports Server (NTRS)
Hrach, Frank J. (Inventor)
1993-01-01
In the present method, boundary layer thickening is combined with laminar flow control to reduce drag. An aerodynamic body is accelerated enabling a ram turbine on the body to receive air at velocity V sub 0. The discharge air is directed over an aft portion of the aerodynamic body producing boundary layer thickening. The ram turbine also drives a compressor by applying torque to a shaft connected between the ram turbine and the compressor. The compressor sucks in lower boundary layer air through inlets in the shell of the aircraft producing laminar flow control and reducing drag. The discharge from the compressor is expanded in a nozzle to produce thrust.
New drag laws for flapping flight
NASA Astrophysics Data System (ADS)
Agre, Natalie; Zhang, Jun; Ristroph, Leif
2014-11-01
Classical aerodynamic theory predicts that a steadily-moving wing experiences fluid forces proportional to the square of its speed. For bird and insect flight, however, there is currently no model for how drag is affected by flapping motions of the wings. By considering simple wings driven to oscillate while progressing through the air, we discover that flapping significantly changes the magnitude of drag and fundamentally alters its scaling with speed. These measurements motivate a new aerodynamic force law that could help to understand the free-flight dynamics, control, and stability of insects and flapping-wing robots.
Drag Prediction and Transition in Hypersonic Flow
NASA Technical Reports Server (NTRS)
Reed, Helen L.; Kimmel, Roger; Schneider, Steven; Arnal, Daniel
1997-01-01
This paper discusses progress on issues such as instability studies, nose-bluntness and angle-of-attack effects, and leading-edge-contamination problems from theoretical, computational, and experimental points of view. Also included is a review of wind-tunnel and flight data, including high-Re flight transition data, the levels of noise in flight and in wind tunnels, and how noise levels can affect parametric trends. A review of work done on drag accounting and the role of viscous drag for hypersonic vehicles is also provided.
Base Passive Porosity for Vehicle Drag Reduction
NASA Technical Reports Server (NTRS)
Bauer, Steven X. S. (Inventor); Wood, Richard M. (Inventor)
2003-01-01
A device for controlling drag on a ground vehicle. The device consists of a porous skin or skins mounted on the trailing surface and/or aft portions of the ground vehicle. The porous skin is separated from the vehicle surface by a distance of at least the thickness of the porous skin. Alternately, the trailing surface, sides, and/or top surfaces of the ground vehicle may be porous. The device minimizes the strength of the separation in the base and wake regions of the ground vehicle, thus reducing drag.
Base passive porosity for vehicle drag reduction
NASA Technical Reports Server (NTRS)
Bauer, Steven X. S. (Inventor); Wood, Richard M. (Inventor)
2003-01-01
A device for controlling drag on a ground vehicle. The device consists of a porous skin or skins mounted on the trailing surface and/or aft portions of the ground vehicle. The porous skin is separated from the vehicle surface by a distance of at least the thickness of the porous skin. Alternately, the trailing surface, sides, and/or top surfaces of the ground vehicle may be porous. The device minimizes the strength of the separation in the base and wake regions of the ground vehicle, thus reducing drag.
NASA Technical Reports Server (NTRS)
Slooff, J. W.
1986-01-01
The Special Course on Aircraft Drag Prediction was sponsored by the AGARD Fluid Dynamics Panel and the von Karman Institute and presented at the von Karman Institute, Rhode-Saint-Genese, Belgium, on 20 to 23 May 1985 and at the NASA Langley Research Center, Hampton, Virginia, USA, 5 to 6 August 1985. The course began with a general review of drag reduction technology. Then the possibility of reduction of skin friction through control of laminar flow and through modification of the structure of the turbulence in the boundary layer were discussed. Methods for predicting and reducing the drag of external stores, of nacelles, of fuselage protuberances, and of fuselage afterbodies were then presented followed by discussion of transonic drag rise. The prediction of viscous and wave drag by a method matching inviscid flow calculations and boundary layer integral calculations, and the reduction of transonic drag through boundary layer control are also discussed. This volume comprises Paper No. 9 Computational Drag Analyses and Minimization: Mission Impossible, which was not included in AGARD Report 723 (main volume).
The Berlin oil channel for drag reduction research
NASA Astrophysics Data System (ADS)
Bechert, D. W.; Hoppe, G.; van der Hoeven, J. G. Th.; Makris, R.
1992-03-01
For drag reduction research an oil channel has been designed and built. It is also well suited for investigations on turbulent flow and in particular on the dynamics of the viscous sublayer near the wall. The thickness of the viscous sublayer ( y += 5) can be varied between 1 and 4 mm. Surfaces with longitudinal ribs (“riblets”), which are known to reduce drag, can have fairly large dimensions. The lateral spacing of the ribs can lie between 3 and 10 mm, as compared to about 0.5 mm spacing for conventional wind tunnels. It has been proved by appropriate tests that the oil channel data are completely equivalent to data from other facilities and with other mean flow geometries. However, the shear stress data from the new oil channel are much more accurate than previous data due to a novel differential shear force balance with an accuracy of ±0.2%. In addition to shear stress measurements, velocity fluctuation measurements can be carried out with hot wire or hot film probes. In order to calibrate these probes, a moving sled permits to emulate the flow velocities with the fluid in the channel at rest. A number of additional innovations contribute to the improvement of the measurements, such as, e.g., (i) novel adjustable turbulators to maintain equilibrium turbulence in the channel, (ii) a “bubble trap” to avoid bubbles in the channel at high flow velocities, (iii) a simple method for the precision calibration of manometers, and (iv) the elimination of (Coulomb) friction in ball bearings. This latter fairly general invention is used for the wheels of the calibration unit of the balance. The channel has a cross section of 25 × 85 cm and is 11 m long. It is filled with about 4.5 metric tons of baby oil (white paraffine oil), which is transparent and odorless like water. The kinematic viscosity of the oil is v = 1.2×10-5 m2/s, and the highest (average) velocity is 1.29 m/s. Thus, the Reynolds number range (calculated with the channel width, 0.25 m) lies between
Feynman rules for Coulomb gauge QCD
Andrasi, A.; Taylor, J.C.
2012-10-15
The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the sub-graph structure of ordinary Feynman graphs. The CL terms do not have a sub-graph structure. We show how to carry out renormalization in the presence of CL terms, by re-expressing these as 'pseudo-Feynman' integrals. We also explain how energy divergences cancel. - Highlights: Black-Right-Pointing-Pointer In Coulomb gauge QCD, we re-express Christ-Lee terms in the Hamiltonian as pseudo-Feynman integrals. Black-Right-Pointing-Pointer This gives a subgraph structure, and allows the ordinary renormalization process. Black-Right-Pointing-Pointer It also leads to cancellation of energy-divergences.
Coulomb crystallization of highly charged ions
NASA Astrophysics Data System (ADS)
Schmöger, L.; Versolato, O. O.; Schwarz, M.; Kohnen, M.; Windberger, A.; Piest, B.; Feuchtenbeiner, S.; Pedregosa-Gutierrez, J.; Leopold, T.; Micke, P.; Hansen, A. K.; Baumann, T. M.; Drewsen, M.; Ullrich, J.; Schmidt, P. O.; López-Urrutia, J. R. Crespo
2015-03-01
Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically 40Ar13+) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be+ ions. We also demonstrate cooling of a single Ar13+ ion by a single Be+ ion—the prerequisite for quantum logic spectroscopy with a potential 10-19 accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy.
NASA Astrophysics Data System (ADS)
Nakata, Toru; Sato, Kenji; Inaba, Hideo; Horibe, Akihiko; Haruki, Naoto
The drag reduction of a water flow with new drag reducing surfactants (amine oxide type nonionic surfactants, mixtures of amine oxide type nonionic surfactants and betaine type amphoteric surfactants) which were selected as environmentally acceptable drag reducing additives was investigated experimentally. Addition of amine oxide type nonionic surfactants to hot or cold water can reduce flow drag in a turbulent pipe flow. The present research investigated how various ionic components dissolved in water affected this drag reducing effect. It was found that ionic impurities contained in the water affected the pipe flow drag reducing effect by amine oxide type nonionic surfactants. Moreover, it was clarified that the decrease in the pipe flow drag reducing effect was recovered by adding a mixture of amine oxide type nonionic surfactants and betaine type amphoteric surfactant to the water with ionic impurities.
Coulomb wave functions in momentum space
Eremenko, V; Upadhyay, N. J.; Thompson, I J; Elster, Charlotte; Nunes, F. M.; Arbanas, Goran; Escher, J.E.; Hlophe, L.
2015-01-01
An algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space is presented. The arguments are the Sommerfeld parameter eta, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p -> q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical bar in the range of 10(-1) to 10, and thus is particularly suited for momentum space calculations of nuclear reactions. Program Summary Program title: libcwfn Catalogue identifier: AEUQ_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 864503 No. of bytes in distributed program, including test data, etc.: 7178021 Distribution format: tar.gz Programming language: Fortran 90, Fortran 77, Python, make (GNU Make dialect), GNU Bash shell interpreter (available as /bin/bash). Computer: Apple Powermac (Intel Xeon), ASUS K53U (AMD E-350 (Dual Core)), DELL Precision T3500 (Intel Xeon), NERSC Carver (Intel Nehalem Quad Core). Operating system: Linux, Windows (using Cygwin). RAM: less than 512 Mbytes Classification: 17.8, 17.13, 17.16. Nature of problem: The calculation of partial wave Coulomb functions with integer land all other arguments real. Solution method: Computing the value of the function using explicit formulae and algorithms. Running time: Less than 10(-3) s. (C) 2014 Elsevier B.V. All rights reserved.
Coulomb wave functions in momentum space
Eremenko, V; Upadhyay, N. J.; Thompson, I J; Elster, Charlotte; Nunes, F. M.; Arbanas, Goran; Escher, J.E.; Hlophe, L.
2015-01-01
An algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space is presented. The arguments are the Sommerfeld parameter eta, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p -> q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical barmore » in the range of 10(-1) to 10, and thus is particularly suited for momentum space calculations of nuclear reactions. Program Summary Program title: libcwfn Catalogue identifier: AEUQ_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 864503 No. of bytes in distributed program, including test data, etc.: 7178021 Distribution format: tar.gz Programming language: Fortran 90, Fortran 77, Python, make (GNU Make dialect), GNU Bash shell interpreter (available as /bin/bash). Computer: Apple Powermac (Intel Xeon), ASUS K53U (AMD E-350 (Dual Core)), DELL Precision T3500 (Intel Xeon), NERSC Carver (Intel Nehalem Quad Core). Operating system: Linux, Windows (using Cygwin). RAM: less than 512 Mbytes Classification: 17.8, 17.13, 17.16. Nature of problem: The calculation of partial wave Coulomb functions with integer land all other arguments real. Solution method: Computing the value of the function using explicit formulae and algorithms. Running time: Less than 10(-3) s. (C) 2014 Elsevier B.V. All rights reserved.« less
Ultrashort pulses in graphene with Coulomb impurities
NASA Astrophysics Data System (ADS)
Konobeeva, N. N.; Belonenko, M. B.
2016-06-01
We have investigated the propagation of an electromagnetic field in graphene with impurities, including the two-dimensional case. The spectrum of electrons for the graphene subsystem is taken from a model that takes into account Coulomb impurities. Based on Maxwell's equations, we have obtained an effective equation for the vector potential of the electromagnetic field. It has been revealed that the pulse shape depends on free parameters.
The scattering of the screened Coulomb potential
NASA Astrophysics Data System (ADS)
Cao, Xin-Wei; Chen, Wen-Li; Li, Yuan-Yuan; Wei, Gao-Feng
2014-08-01
We study the scattering states of the screened Coulomb potential in the nonrelativistic frame. The explicitly calculation formula of phase shift is derived and the normalized radial wave functions of scattering states on the ^{\\prime} k/2\\pi scale^{\\prime} are presented. By studying analytical properties of scattering amplitude the screening effects on bound states are discussed numerically. It is shown that the screening effects increase with increasing screened parameter, especially for large quantum states.
Dynamics of Coulombic and gravitational periodic systems
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Miller, Bruce N.
2016-04-01
We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology.
Dynamics of Coulombic and gravitational periodic systems.
Kumar, Pankaj; Miller, Bruce N
2016-04-01
We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology. PMID:27176238
Linkage Drag: Implication for Plant Breeding
Technology Transfer Automated Retrieval System (TEKTRAN)
Linkage drag is commonly observed in plant breeding, yet the molecular mechanisms controlling this is unclear. The Pi-ta gene, a single copy gene near the centromere region of chromosome 12, confers resistance to races of Magnaporthe oryzae that contain AVR-Pita. The Pi-ta gene in Tetep has been su...
Gubser, Steven S.
2006-12-15
The AdS/CFT correspondence and a classical test string approximation are used to calculate the drag force on an external quark moving in a thermal plasma of N=4 super-Yang-Mills theory. This computation is motivated by the phenomenon of jet-quenching in relativistic heavy ion collisions.
Experiments examining drag in linear droplet packets
NASA Astrophysics Data System (ADS)
Nguyen, Q. V.; Dunn-Rankin, D.
1992-01-01
This paper presents an experimental study of vertically traveling droplet packets, where the droplets in each packet are aligned linearly, one behind another. The paper describes in detail, an experimental apparatus that produces repeatable, linearly aligned, and isolated droplet packets containing 1 6 droplets per packet. The apparatus is suitable for examining aerodynamic interactions between droplets within each packet. This paper demonstrates the performance of the apparatus by examining the drag reduction and collision of droplets traveling in the wake of a lead droplet. Comparison of a calculated single droplet trajectory with the detailed droplet position versus time data for a droplet packet provides the average drag reduction experienced by the trailing droplets due to the aerodynamic wake of the lead droplet. For the conditions of our experiment (4 droplet packet, 145 μm methanol droplets, 10 m/s initial velocity, initial droplet spacing of 5.2 droplet diameters, Reynolds number approx. 80) the average drag on the first trailing droplet was found to be 75% of the drag on the lead droplet.
Photon Drag Effect due to Berry Curvature
NASA Astrophysics Data System (ADS)
Kurosawa, Hiroyuki; Sawada, Kei; Ohno, Seigo
2016-08-01
A theoretical investigation reveals that the photon drag effect (PDE) is induced in a grating slab with deformation by the Berry curvature in phase space. It drifts the momentum of light, and gives asymmetric PDE signals in momentum space. Large PDE signals are observed even near the Γ point. This characteristic agrees well with our theoretical results.
Drag-force regimes in granular impact
NASA Astrophysics Data System (ADS)
Tiwari, Mukesh; Mohan, T. R. Krishna; Sen, Surajit
2014-12-01
We study the penetration dynamics of a projectile incident normally on a substrate comprising of smaller granular particles in three-dimensions using the discrete element method. Scaling of the penetration depth is consistent with experimental observations for small velocity impacts. Our studies are consistent with the observation that the normal or drag force experienced by the penetrating grain obeys the generalized Poncelet law, which has been extensively invoked in understanding the drag force in the recent experimental data. We find that the normal force experienced by the projectile consists of position and kinetic-energy-dependent pieces. Three different penetration regimes are identified in our studies for low-impact velocities. The first two regimes are observed immediately after the impact and in the early penetration stage, respectively, during which the drag force is seen to depend on the kinetic energy. The depth dependence of the drag force becomes significant in the third regime when the projectile is moving slowly and is partially immersed in the substrate. These regimes relate to the different configurations of the bed: the initial loose surface packed state, fluidized bed below the region of impact, and the state after the crater formation commences.
Lift and Drag Measurements of Superhydrophobic Hydrofoils
NASA Astrophysics Data System (ADS)
Sur, Samrat; Kim, Jeong-Hyun; Rothstein, Jonathan
2015-11-01
For several years, superhydrophobic surfaces which are chemically hydrophobic with micron or nanometer scale surface features have been considered for their ability to reduce drag and produce slip in microfluidic devices. More recently it has been demonstrated that superhydrophobic surfaces reduce friction coefficient in turbulent flows as well. In this talk, we will consider that modifying a hydrofoil's surface to make it superhydrophobic has on the resulting lift and drag measurements over a wide range of angles of attack. Experiments are conducted over the range of Reynolds numbers between 10,000
Drag reduction using slippery liquid infused surfaces
NASA Astrophysics Data System (ADS)
Hultmark, Marcus; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang
2013-11-01
A new method for passive drag reduction is introduced. A surface treatment inspired by the Nepenthes pitcher plant, previously developed by Wong et al. (2011), is utilized and its design parameters are studied for increased drag reduction and durability. Nano- and micro-structured surfaces infused with a lubricant allow for mobility within the lubricant itself when the surface is exposed to flow. The mobility causes slip at the fluid-fluid interface, which drastically reduces the viscous friction. These new surfaces are fundamentally different from the more conventional superhydrophobic surfaces previously used in drag reduction studies, which rely on a gas-liquid interface. The main advantage of the liquid infused surfaces over the conventional surfaces is that the lubricant adheres more strongly to the surface, decreasing the risk of failure when exposed to turbulence and other high-shear flows. We have shown that these surfaces can reduce viscous drag up to 20% in both Taylor-Couette flow and in a parallel plate rheometer. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).
Nonlinear drag force in dusty plasmas
Tsytovich, V.N.; De Angelis, U.; Ivlev, A.V.; Morfill, G.E.; Khrapak, S.
2005-11-15
The condition for large angle scattering in ion-grain collisions, which determine the nonlinear part of the ion drag force, coincides with the condition for the grain screening to be nonlinear (e{phi}/T{sub i}>1 where {phi} is the electrostatic grain potential and T{sub i} is the ion mean energy), a condition met in many laboratory experiments. A self-consistent treatment of the nonlinear ion-drag force therefore requires a correct treatment of nonlinear screening. A model to account for the nonlinearity is presented and the drag force calculated, showing that it can be substantially larger than that for linear screening. An important physical feature found in the present investigation is that nonlinear screening corresponds to almost full screening inside a finite radius and that large angle scattering occurs only inside this radius. The nonlinear ion-drag force is found to have a strong dependence on the grain size, ratio of ion to electron temperatures, and ion density.
Drag-force regimes in granular impact.
Tiwari, Mukesh; Mohan, T R Krishna; Sen, Surajit
2014-12-01
We study the penetration dynamics of a projectile incident normally on a substrate comprising of smaller granular particles in three-dimensions using the discrete element method. Scaling of the penetration depth is consistent with experimental observations for small velocity impacts. Our studies are consistent with the observation that the normal or drag force experienced by the penetrating grain obeys the generalized Poncelet law, which has been extensively invoked in understanding the drag force in the recent experimental data. We find that the normal force experienced by the projectile consists of position and kinetic-energy-dependent pieces. Three different penetration regimes are identified in our studies for low-impact velocities. The first two regimes are observed immediately after the impact and in the early penetration stage, respectively, during which the drag force is seen to depend on the kinetic energy. The depth dependence of the drag force becomes significant in the third regime when the projectile is moving slowly and is partially immersed in the substrate. These regimes relate to the different configurations of the bed: the initial loose surface packed state, fluidized bed below the region of impact, and the state after the crater formation commences. PMID:25615080
Photon Drag Effect due to Berry Curvature.
Kurosawa, Hiroyuki; Sawada, Kei; Ohno, Seigo
2016-08-19
A theoretical investigation reveals that the photon drag effect (PDE) is induced in a grating slab with deformation by the Berry curvature in phase space. It drifts the momentum of light, and gives asymmetric PDE signals in momentum space. Large PDE signals are observed even near the Γ point. This characteristic agrees well with our theoretical results. PMID:27588858
On the effect of subgrid drag closures
Benyahia, s.
2009-01-01
The effect of two subgrid drag closures on the flow of air and Geldart group A particles is presented in this study. A subgrid drag model based on fitting simulation data obtained from finely resolved simulations and a drag model based on the energy minimization approach are both used to solve a gas-solids flow in the riser section of a circulating fluidized bed. The numerical results using a coarse computational grid obtained with these subgrid models are compared with those using a standard drag model as well as experimental data obtained in a pilot-scale riser. Numerical predictions using both subgrid models showed higher solids holdup in the riser indicated by the radial solids density and axial pressure drop profiles in the 2D and 3D system geometries considered in this study. These subgrid models are demonstrated to be both needed and useful as large-scale numerical simulations commonly use coarse computational grids that are unable to resolve the smallest heterogeneous structures observed in the fluidization of small particles.
Drop tower with no aerodynamic drag
NASA Technical Reports Server (NTRS)
Kendall, J. M., Jr.
1981-01-01
Cooling air accelerated to match velocity of falling object eliminates drag. 3 meter drop tower with suction fan and specific geometry causes air to accelerate downward at 1 g. Although cooling of molten material released from top is slow because surrounding air moves with it, drop remains nearly spherical.
ABM Drag_Pass Report Generator
NASA Technical Reports Server (NTRS)
Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat
2008-01-01
dragREPORT software was developed in parallel with abmREPORT, which is described in the preceding article. Both programs were built on the capabilities created during that process. This tool generates a drag_pass report that summarizes vital information from the MRO aerobreaking drag_pass build process to facilitate both sequence reviews and provide a high-level summarization of the sequence for mission management. The script extracts information from the ENV, SSF, FRF, SCMFmax, and OPTG files, presenting them in a single, easy-to-check report providing the majority of parameters needed for cross check and verification as part of the sequence review process. Prior to dragReport, all the needed information was spread across a number of different files, each in a different format. This software is a Perl script that extracts vital summarization information and build-process details from a number of source files into a single, concise report format used to aid the MPST sequence review process and to provide a high-level summarization of the sequence for mission management reference. This software could be adapted for future aerobraking missions to provide similar reports, review and summarization information.
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
A close-up of an experimental drag chute deploying in a cloud of dust behind NASA's B-52 research aircraft just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
A rear view of NASA's B-52 research aircraft deploying an experimental drag chute just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
An aerial view of NASA's B-52 research aircraft deploying an experimental drag chute just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
An experimental drag chute deploys amidst a cloud of dust behind NASA's B-52 research aircraft just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's B-52 research aircraft deploys an experimental drag chute just after landing the runway at the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also
Space Shuttle Orbiter Drag Chute Summary
NASA Technical Reports Server (NTRS)
Lowry, Charles H.
2013-01-01
This paper summarizes the development history and technical highlights of the Space Shuttle Orbiter Drag Chute Program. Data and references are given on the design, development, and testing of the system, plus several interesting operational issues and solutions. The last Shuttle flight was completed in 2011 and all the Orbiters have now become museum pieces. Before all the data from system development and the 86 Orbiter Drag Chute (ODC) operational landings is lost or forgotten, it may be useful to summarize it here and to identify data sources for future reference. Much has been written about various aspects of the program, and this summary has attempted to cite many such references to make available more detailed information. The ODC program was a high-visibility NASA program that afforded the opportunity to thoroughly engineer and test the chute system, far beyond so many of today s tight-budget programs. So the ODC program was extremely informative--it provided a wide scope of information including protective door jettison issues and solutions, wind tunnel data and analyses on chute stability and drag behind a huge and rather blunt forebody, component and system reuse, and chute cleaning methods. Technology and data created have aided several current and past parachute programs, and will continue to do so in the future. The original Orbiter preliminary design included a drag parachute-- it was deleted early to save weight. But after the 1987 Challenger accident and during the program redefinition phase that followed, Astronaut John Young presented a strong case for enhancing landing safety by adding nosegear steering, brake improvements, and reviving the drag chute.
14 CFR 25.699 - Lift and drag device indicator.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...
14 CFR 25.699 - Lift and drag device indicator.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...
14 CFR 25.699 - Lift and drag device indicator.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...
14 CFR 25.699 - Lift and drag device indicator.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...
14 CFR 25.699 - Lift and drag device indicator.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Lift and drag device indicator. 25.699....699 Lift and drag device indicator. (a) There must be means to indicate to the pilots the position of each lift or drag device having a separate control in the cockpit to adjust its position. In...
14 CFR 25.697 - Lift and drag devices, controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by...
14 CFR 25.697 - Lift and drag devices, controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by...
14 CFR 25.697 - Lift and drag devices, controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by...
14 CFR 25.697 - Lift and drag devices, controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by...
14 CFR 25.697 - Lift and drag devices, controls.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Lift and drag devices, controls. 25.697....697 Lift and drag devices, controls. (a) Each lift device control must be designed so that the pilots....101(d). Lift and drag devices must maintain the selected positions, except for movement produced by...
Blocage de Coulomb dans une boite quantique laterale contenant un faible nombre d'electrons
NASA Astrophysics Data System (ADS)
Gould, Charles
Dans ce travail on utilise une nouvelle geometrie pour augmenter le controle sur le nombre d'electrons contenus dans une boite quantique laterale, et ainsi atteindre un regime de petit nombre d'electrons. Ces echantillons permettent une etude du blocage de Coulomb quand les electrons sont injectes a partir d'un gaz electronique a deux dimensions (2DEG). Les mesures a faible champ magnetique demontrent la grande flexibilite des echantillons et montrent que l'on peut faire varier le nombre d'electrons dans une boite quantique a partir de plus de 40 electrons jusqu'a un seul electron, ce qui est assez courant dans les boites quantiques verticales, mais ce qui n'avait jamais ete reussi dans une boite quantique laterale. Nos resultats montrent egalement que dans les boites quantiques laterales il est possible de determiner le spin du niveau qui participe au transport a l'aide du phenomene de blocage de spin. De plus, dans certaines circonstances il est meme possible de determiner le spin total de la boite quantique, ce qui peut avoir des applications pratiques dans des domaines tels l'informatique quantique. Les mesures dans le regime de renversement de spin a un champ magnetique plus eleve montrent l'importance des correlations electrons---electrons dans ces boites quantiques, qui menent a des depolarisations et a des structures de spins qui ont un effet sur le transport. En particulier, ces correlations menent a l'existence de niveaux excites de basse energie qui causent une dependance anormale de l'amplitude des pics de blocage de Coulomb en fonction de la temperature. Nos experiences demontrent egalement la possibilite d'utiliser ces boites quantiques comme sondes pour etudier les proprietes du bord d'un 2DEG. Une voie de recherche a etre exploree.
NASA Astrophysics Data System (ADS)
Brooks, Jason W.; Matzner, Richard
2016-07-01
The LARES satellite is a laser-ranged space experiment to contribute to geophysics observation, and to measure the general relativistic Lense-Thirring effect. LARES consists of a solid tungsten alloy sphere, into which 92 fused-silica Cube Corner Reflectors (CCRs) are set in colatitude circles ("rows"). During its first four months in orbit it was observed to undergo an anomalous along-track orbital acceleration of approximately -0.4 pm/s2 (pm: = picometer). The first paper in this series (Eur. Phys. J. Plus 130, 206 (2015) - Paper I) computed the thermally induced along-track "thermal drag" on the LARES satellite during the first 126 days after launch. The results there suggest that the IR absorbance α and emissivity ɛ of the CCRs equal 0.60, a possible value for silica with slight surface contamination subjected to the space environment. Paper I computed an average thermal drag acceleration of -0.36 pm/s2 for a 120-day period starting with the 7th day after launch. The heating and the resultant along-track acceleration depend on the plane of the orbit, the sun position, and in particular on the occurrence of eclipses, all of which are functions of time. Thus we compute the thermal drag for specific days. The satellite is heated from two sources: sunlight and Earth's infrared (IR) radiation. Paper I worked in the fast-spin regime, where CCRs with the same colatitude can be taken to have the same temperature. Further, since all temperature variations (temporal or spatial) were small in this regime, Paper I linearized the Stefan-Boltzmann law and performed a Fourier series analysis. However, the spin rate of the satellite is expected currently ( ≈ day 1500) to be slow, of order ≈ 5 /orbit, so the "fast-spin equal-temperatures in a row" assumption is suspect. In this paper, which considers epochs up to 1580 days after launch, we do not linearize and we use direct numerical integration instead of Fourier methods. In addition to the along-track drag, this code
Analysis of {alpha}-induced reactions on {sup 151}Eu below the Coulomb barrier
Avrigeanu, V.; Avrigeanu, M.
2011-01-15
Novel measurements of ({alpha},{gamma}) and ({alpha},n) reaction cross sections on the target nucleus {sup 151}Eu, close to the reaction thresholds, support the choice of recently proposed parameters of the {alpha}-particle optical model potential below the Coulomb barrier. A better understanding of the {alpha}-particle optical potential at these energies leads to a statistical model analysis of additional partial cross sections that were measured but not considered within a former model analysis. On this basis we have tentatively assigned a modified J{sup {pi}}=9{sup -} spin and parity to the 22.7-h isomer in {sup 154}Tb.
Three-body quantum Coulomb problem: Analytic continuation
NASA Astrophysics Data System (ADS)
Turbiner, A. V.; Lopez Vieyra, J. C.; Olivares Pilón, H.
2016-08-01
The second (unphysical) critical charge in the three-body quantum Coulomb system of a nucleus of positive charge Z and mass mp, and two electrons, predicted by Stillinger has been calculated to be equal to ZB∞ = 0.904854 and ZBmp = 0.905138 for infinite and finite (proton) mass mp, respectively. It is shown that in both cases, the ground state energy E(Z) (analytically continued beyond the first critical charge Zc, for which the ionization energy vanishes, to ReZ
Lester, C.B.
1985-03-11
The first three parts of this series treated the theory and practice of drag reduction using drag reducing agents (DRA's). Those articles considered the fundamentals of the drag reduction phenomenon, the concept of DRA's as liquid loops, and some practical examples of the application of DRA's to multi-station pipeline systems. This concluding article is concerned with the practical aspects of drag reduction, i.e., with the product and the hardware, and with the kind of results that should be expected.
Inflight Performance of Cassini Reaction Wheel Bearing Drag in 1997-2013
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Wang, Eric K.
2013-01-01
As the first spacecraft to achieve orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for a first and second extended missions through September 2017. Cassini is a three-axis stabilized spacecraft. It uses reaction wheels to achieve high level of spacecraft pointing stability that is needed during imaging operations of several science instruments. The Cassini flight software makes in-flight estimates of reaction wheel bearing drag torque and made them available to the mission operations team. These telemetry data are being trended for the purpose of monitoring the long-term health of the reaction wheel bearings. Anomalous drag torque signatures observed over the past 15 years are described in this paper. One of these anomalous drag conditions is bearing cage instability that appeared (and disappeared) spontaneously and unpredictably. Cage instability is an uncontrolled vibratory motion of the bearing cage that can produce high-impact forces internal to the bearing that will cause intermittent and erratic torque transients. Characteristics of the observed cage instabilities and other drag torque "spikes" are described in this paper. In day-to-day operations, the reaction wheels' rates must be neither too high nor too low. To protect against operating the wheels in any undesirable conditions (such as prolonged low spin rate operations), a ground software tool named Reaction Wheel Bias Optimization Tool (RBOT) was developed for the management of the wheels. Disciplined and long-term use of this ground software has led to significant reduction in the daily consumption rate of the wheels' low spin rate dwell time. Flight experience on the use of this ground software tool as well as other lessons learned on the management of Cassini reaction wheels is given in this paper.
Innovative Flow Control Concepts for Drag Reduction
NASA Technical Reports Server (NTRS)
Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.
2016-01-01
This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs
Exchange effects in Coulomb quantum plasmas: Dispersion of waves in 2D and 3D quantum plasmas
Andreev, Pavel A.
2014-11-15
We describe quantum hydrodynamic equations with the Coulomb exchange interaction for three and two dimensional plasmas. Explicit form of the force densities are derived. We present non-linear Schrödinger equations (NLSEs) for the Coulomb quantum plasmas with the exchange interaction. We show contribution of the exchange interaction in the dispersion of the Langmuir, and ion-acoustic waves. We consider influence of the spin polarization ratio on strength of the Coulomb exchange interaction. This is important since exchange interaction between particles with same spin direction and particles with opposite spin directions are different. At small particle concentrations n{sub 0}≪10{sup 25}cm{sup −3} and small polarization the exchange interaction gives small decrease of the Fermi pressure. With increase of polarization role the exchange interaction becomes more important, so that it can overcome the Fermi pressure. The exchange interaction also decreases contribution of the Langmuir frequency. Ion-acoustic waves do not exist in limit of large polarization since the exchange interaction changes the sign of pressure. At large particle concentrations n{sub 0}≫10{sup 25}cm{sup −3} the Fermi pressure prevails over the exchange interaction for all polarizations. We obtain a similar picture for two dimensional quantum plasmas.
Equation of state for magnetized Coulomb plasmas
NASA Astrophysics Data System (ADS)
Potekhin, A. Y.; Chabrier, G.
2013-02-01
We have developed an analytical equation of state (EOS) for magnetized fully-ionized plasmas that cover a wide range of temperatures and densities, from low-density classical plasmas to relativistic, quantum plasma conditions. This EOS directly applies to calculations of structure and evolution of strongly magnetized white dwarfs and neutron stars. We review available analytical and numerical results for thermodynamic functions of the nonmagnetized and magnetized Coulomb gases, liquids, and solids. We propose a new analytical expression for the free energy of solid Coulomb mixtures. Based on recent numerical results, we have constructed analytical approximations for the thermodynamic functions of harmonic Coulomb crystals in quantizing magnetic fields. The analytical description ensures a consistent evaluation of all astrophysically important thermodynamic functions based on the first, second, and mixed derivatives of the free energy. Our numerical code for calculation of thermodynamic functions based on these approximations has been made publicly available. Using this code, we calculate and discuss the effects of electron screening and magnetic quantization on the position of the melting point in a range of densities and magnetic fields relevant to white dwarfs and outer envelopes of neutron stars. We consider also the thermal and mechanical structure of a magnetar envelope and argue that it can have a frozen surface which covers the liquid ocean above the solid crust. The Fortran code that realizes the analytical approximations described in this paper is available at http://www.ioffe.ru/astro/EIP/ and at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A43
Drag reduction characteristics of small amplitude rigid surface waves
NASA Technical Reports Server (NTRS)
Cary, A. M., Jr.; Weinstein, L. M.; Bushnell, D. M.
1980-01-01
The possibility of reducing drag by using rigid, wavy surfaces is investigated both analytically and experimentally. Although pressure drag for rigid sine-wave surfaces can be predicted empirically, viscous drag for even shallow waves was poorly predicted by state-of-the-art turbulent boundary layer calculation procedures. Calculations for the effects of geometric and fluid variables on total wave drag are presented under the philosophy that trends will be nearly correct even though levels are probably incorrect. Experiments by the present authors indicate that a total drag reduction with wavy walls is possible.
Drag of Exposed Fittings and Surface Irregularities on Airplane Fuselages
NASA Technical Reports Server (NTRS)
Wood, Donald H
1928-01-01
Measurements of drag were made on fittings taken from a typical fuselage to determine whether the difference between the observed full size fuselage drag and model fuselage drag could be attributed to the effects of fittings and surface irregularities found on the full size fuselage and not on the model. There are wide variations in the drag coefficients for the different fittings. In general those which protrude little from the surface or are well streamlined show very low and almost negligible drag. The measurements show, however, that a large part of the difference between model and full scale test results may be attributed to these fittings.
Feynman rules for Coulomb gauge QCD
NASA Astrophysics Data System (ADS)
Andraši, A.; Taylor, J. C.
2012-10-01
The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the sub-graph structure of ordinary Feynman graphs. The CL terms do not have a sub-graph structure. We show how to carry out renormalization in the presence of CL terms, by re-expressing these as 'pseudo-Feynman' integrals. We also explain how energy divergences cancel.
Coulomb Repulsion in Miniature Ion Mobility Spectrometry
Xu, J.; Whitten, W.B.; Ramsey, J.M.
1999-08-08
We have undertaken a study of ion mobility resolution in a miniature ion mobility spectrometer with a drift channel 1.7 mm in diameter and 35 mm in length. The device attained a maximum resolution of 14 in separating ions of NO, O{sub 2}, and methyl iodine. The ions were generated by pulses from a frequency-quadrupled Nd:YAG laser. Broadening due to Coulomb repulsion was modeled theoretically and shown experimentally to have a major effect on the resolution of the miniature device.
Coulomb field in a constant electromagnetic background
NASA Astrophysics Data System (ADS)
Adorno, T. C.; Gitman, D. M.; Shabad, A. E.
2016-06-01
Nonlinear Maxwell equations are written up to the third-power deviations from a constant-field background, valid within any local nonlinear electrodynamics including QED with a Euler-Heisenberg (EH) effective Lagrangian. The linear electric response to an imposed static finite-sized charge is found in the vacuum filled by an arbitrary combination of constant and homogeneous electric and magnetic fields. The modified Coulomb field and corrections to the total charge and to the charge density are given in terms of derivatives of the effective Lagrangian with respect to the field invariants. These are specialized for the EH Lagrangian.
Spatio-temporal correlations in Coulomb clusters
NASA Astrophysics Data System (ADS)
Ash, Biswarup; Chakrabarti, J.; Ghosal, Amit
2016-05-01
The dynamical responses of Coulomb-interacting particles in two-dimensional nanoclusters are analyzed at different temperatures characterizing their solid- and liquid-like behavior. Depending on the trap symmetry, spatial correlations undergo slow, stretched exponential relaxations at long times, arising from spatially correlated motion in string-like paths. Such results stem from the combined effects of confinement and long-range repulsion, making the systems inherently heterogeneous. While particles in a “solid” flow produce dynamic heterogeneities, motion in “liquid” yields an unusually long tail in the distribution of particle displacements. A phenomenological model captures much of the subtleties of our numerical simulations.
Coulomb sum rule for {sup 4}He
J. Carlson; J. Jourdan; R. Schiavilla; I. Sick
2002-10-01
We determine the Coulomb sum for {sup 4}He using world data on {sup 4}He(e, e') and compare the results to calculations based on realistic interactions and including two-body components in the nuclear charge operator. We find good agreement between theory and experiment using free-nucleon form factors. The apparent reduction of the in-medium G{sub ep} implied by IA-interpretation of the L/T-ratios measured in {sup 4}He(e,e'p) and {sup 4}He([vec]e, e'p) is not confirmed.
New approach to folding with the Coulomb wave function
Blokhintsev, L. D.; Savin, D. A.; Kadyrov, A. S.; Mukhamedzhanov, A. M.
2015-05-15
Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.
Switchable and Tunable Aerodynamic Drag on Cylinders
NASA Astrophysics Data System (ADS)
Guttag, Mark; Lopez Jimenez, Francisco; Reis, Pedro
2015-11-01
We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, which are thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.
Switchable and Tunable Aerodynamic Drag on Cylinders
NASA Astrophysics Data System (ADS)
Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro
We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.
Drag and lift forces in granular media
NASA Astrophysics Data System (ADS)
Guillard, F.; Forterre, Y.; Pouliquen, O.
2013-09-01
Forces exerted on obstacles moving in granular media are studied. The experiment consists in a horizontal cylinder rotating around the vertical axis in a granular medium. Both drag forces and lift forces experienced by the cylinder are measured. The first striking result is obtained during the first half rotation, before the cylinder crosses its wake. Despite the symmetry of the object, a strong lift force is measured, about 20 times the buoyancy. The scaling of this force is studied experimentally. The second remarkable observation is made after several rotations. The drag force dramatically drops and becomes independent of depth, showing that it no longer scales with the hydrostatic pressure. The rotation of the cylinder induces a structure in the packing, which screens the weight of the grains above
Drag reduction of the Space Shuttle
NASA Technical Reports Server (NTRS)
Ahmed, Anwar; Javed Khan, Mohammad
1991-01-01
Wind-tunnel and water-tunnel experiments are conducted to determine which factors contribute to the base-pressure drag experienced by the Space Shuttle Orbiter. Testing is conducted on a 4.05-percent scale model in the TAMU Water Tunnel and Low Speed Wind Tunnel with passive near-wake flow-modification devices attached in some of the tests. The devices are evaluated on the basis of effectiveness in terms of increasing the base pressure. Base pressures increase when a base cavity is introduced; a smooth cavity increases pressure by 13 percent, and when v-grooves are introduced into the cavity the pressure increases by 19 percent. When the v-groove base cavity is combined with a fairing plate, the total base pressure reaches 25 percent. The experimental results suggest that the base drag of the Space Shuttle Orbiter can be effectively reduced by the use of a base-cavity mechanism.
Kuechemann Carrots for transonic drag reduction.
NASA Astrophysics Data System (ADS)
Bechert, D. W.; Hage, W.; Stanewsky, E.
1999-11-01
Wave drag reduction bodies on the suction side of transonic wings are investigated. Following the original invention by O. Frenzl (1942), subsequently, such bodies have been suggested by Kuechemann and Whitcomb. These devices have been used sucessfully on various TUPOLEV aircraft and on the CONVAIR 990 airliner. New transonic wind tunnel data from an unswept wing with an array of Kuechemann Carrots are presented (airfoil: CAST 10/DOA-2). In a certain parameter range (M= 0.765-0.86) the measurements exhibit a significant reduction of the shock strength on a wing between the Kuechemann Carrots. This entails a dramatic reduction of drag, in a certain Mach number and angular regime up to 50-60%.
Drag reduction by reconfiguration in gorgonians
NASA Astrophysics Data System (ADS)
Derr, Julien; Cornelissen, Annemiek J. M.; Bouchon, Claude; Bouchon, Yolande; Fournier, Jérôme; Moisan, Lionel; Lopez, Pascal Jean; Douady, Stéphane
2015-11-01
Gorgonians are polyp colonies over a flexible branched skeleton. Attached to the coral reefs, they are under the continuous oscillations of the swell. We investigate experimentally the drag, under continuous force traction, of Gorgonia Ventalina, which is particular as its branches are highly reconnected to form a flat net (see fan), perpendicular to the swell, and compare it with another branched species (candelstick). We observe a drag which is linear with speed, indicating a strong reconfiguration, which we also documented by imaging the gorgon shape, and transients showing that the gorgon do not always evolve along quasi-static curves. Depending on the size and shape of the gorgon, we observe different details, from a more rigid small gorgon to a flexible long one. A large gorgon with detached fingers, closing on themselves under the current, presents characteristics surprisingly close to a rigid candlestick one, with not much reconfiguration.
Computational flow predictions for hypersonic drag devices
NASA Technical Reports Server (NTRS)
Tokarcik, Susan A.; Venkatapathy, Ethiraj
1993-01-01
The effectiveness of two types of hypersonic decelerators is examined: mechanically deployable flares and inflatable ballutes. Computational fluid dynamics (CFD) is used to predict the flowfield around a solid rocket motor (SRM) with a deployed decelerator. The computations are performed with an ideal gas solver using an effective specific heat ratio of 1.15. The results from the ideal gas solver are compared to computational results from a thermochemical nonequilibrium solver. The surface pressure coefficient, the drag, and the extend of the compression corner separation zone predicted by the ideal gas solver compare well with those predicted by the nonequilibrium solver. The ideal gas solver is computationally inexpensive and is shown to be well suited for preliminary design studies. The computed solutions are used to determine the size and shape of the decelerator that are required to achieve a drag coefficient of 5. Heat transfer rates to the SRM and the decelerators are predicted to estimate the amount of thermal protection required.
Hybrid approach to the ion drag force
Khrapak, S.A.; Ivlev, A.V.; Zhdanov, S.K.; Morfill, G.E.
2005-04-15
A detailed calculation of the ion drag force acting on a single grain in a collisionless Maxwellian plasma with an arbitrary velocity of the ion flow is carried out. The traditional binary collision approach to the problem is combined with the linear kinetic formalism. It is shown that for a pointlike particle the binary collision approach yields correct results provided that the effective plasma screening length is chosen appropriately. The correct choice follows from the self-consistent kinetic theory. On the other hand, the binary collision approach accounts consistently for the effects of finite grain size and grain charging. Taking these effects into account an expression for the ion drag force is obtained. Calculations are performed for a typical (exemplary) set of complex plasma parameters. The relevance for recent complex plasma experiments is briefly discussed.
Aerodynamic drag reduction by vertical splitter plates
NASA Astrophysics Data System (ADS)
Gilliéron, Patrick; Kourta, Azeddine
2010-01-01
The capacity of vertical splitter plates placed at the front or the rear of a simplified car geometry to reduce drag, with and without skew angle, is investigated for Reynolds numbers between 1.0 × 106 and 1.6 × 106. The geometry used is a simplified geometry to represent estate-type vehicles, for the rear section, and MPV-type vehicle. Drag reductions of nearly 28% were obtained for a zero skew angle with splitter plates placed at the front of models of MPV or utility vehicles. The results demonstrate the advantage of adapting the position and orientation of the splitter plates in the presence of a lateral wind. All these results confirm the advantage of this type of solution, and suggest that this expertise should be used in the automotive field to reduce consumption and improve dynamic stability of road vehicles.
How an Elastic Body Reduces its Drag
NASA Astrophysics Data System (ADS)
Alben, Silas; Shelley, Michael; Zhang, Jun
2002-11-01
Recent studies from bio-fluid dynamics have quantified dramatic decreases in fluid drag on flexible organic structures (including tree leaves and underwater plants) as they deform in high-Reynolds-number flows. Our simple experiment considers the role of elastic bending in the steady case. Using a thin glass fiber wetted into a planar soap-film flow, we identify a transition in flow speed beyond which the fluid forces dominate the elastic response, and yield large deformations that greatly reduce drag. We construct a free-streamline model coupling fluid and elastic forces and solve it numerically. Self-similarity emerges on a shrinking length scale, resulting in a transition from the U^2 growth of rigid bodies to a U^4/3 law as the fiber exhibits large deformation. The theory gives a good rationalization of the experimental data in terms of a single non-dimensional parameter.
Drag Reduction by Polymeric and Nonpolymeric Additives
NASA Astrophysics Data System (ADS)
White, Christopher; Sreenivasan, K. R.
1997-11-01
To investigate the ``self-healing'' property of drag reducing surfactant micelles we have conducted a comparative study between high polymers and surfactants in six turbulent pipe flows (Reynolds numbers between 2000 and 90,000) with varying intensities o f secondary flow. Friction factor values are measured in a straight pipe of 185 diameters; three pipes, each turning through four 90 degree elbows, of lengths 1085 diameters, 875 diameters, and 600 diameters; and a twice-turned coiled pipe, radius of curv ature of 24 diameters and length of 290 diameters. All the flows are gravity driven to prevent degradation effects caused by pump impellers. The large stresses set up by the secondary flows degrade the fragile polymers, thus reducing their effectivness as a drag reducer. The ``self-healing'' of the micelles enables the surfactant to maintain its effectivness. We will present the ``self-healing'' characteristics of the surfactant micelles using the polymer data as the datum.
Axially symmetric shapes with minimum wave drag
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Fuller, Franklyn B
1956-01-01
The external wave drag of bodies of revolution moving at supersonic speeds can be expressed either in terms of the geometry of the body, or in terms of the body-simulating axial source distribution. For purposes of deriving optimum bodies under various given conditions, it is found that the second of the methods mentioned is the more tractable. By use of a quasi-cylindrical theory, that is, the boundary conditions are applied on the surface of a cylinder rather than on the body itself, the variational problems of the optimum bodies having prescribed volume or caliber are solved. The streamline variations of cross-sectional area and drags of the bodies are exhibited, and some numerical results are given.
Ion drag forces and magnetomechanical effect
Nedospasov, A. V. Nenova, N. V.
2010-11-15
Ion flows (ion drag forces) acting on macroscopic-size particles play a significant role in a plasma containing macroparticles. It is shown that ion drag forces can explain the magnetomechanical effect. The formula is derived for determining the dependence of the moment of the magnetomechanical effect on the type and pressure of the gas, tube radius, current, and magnetic field. This formula is in satisfactory agreement with experimental data for discharges in argon and neon with a relatively low magnetization of electron motion. For a high magnetization, the measured values of the moment of the magnetomechanical effect exceed the calculated values, which can be due to the effect of magnetic field nonuniformity and inhomogeneity of the plasma near the solenoid ends.
Delta method, an empirical drag buildup technique
NASA Technical Reports Server (NTRS)
Feagin, R. C.; Morrison, W. D.
1978-01-01
An empirical drag correlation technique was developed from analysis of 19 subsonic and supersonic military aircraft and 15 advanced or supercritical airfoil configurations which can be applied in conceptual and advanced aircraft design activities. The Delta Method may be used for estimating the clean wing drag polar for cruise and maneuver conditions up to buffet onset, and to approximately Mach 2.0. This technique incorporates a unique capability of predicting the off-design performance of advanced or supercritical airfoil sections. The buffet onset limit may also be estimated. The method is applicable to wind tunnel models as well as to full scale configurations. This technique has been converted into a computer code for use on the IBM 360 and CDC 7600 computer facilities at NASA AMES. Results obtained using this method to predict known aircraft characteristics are good and agreement can be obtained within a degree of accuracy judged to be sufficient for the initial processes of preliminary design.
Magnon drag thermopower and thermomagnetic properties of single-crystal iron
NASA Astrophysics Data System (ADS)
Watzman, Sarah; Jin, Hyungyu; Heremans, Joseph
2015-03-01
Lucassen et al. demonstrate that magnon drag involves a spin-transfer mechanism closely related to the recently discovered spin-Seebeck effect. This talk will first present results of experiments mapping out the thermopower and magnetothermopower of single-crystal iron and prove that its thermopower is indeed dominated by magnon drag, as suggested by Blatt et al. in 1967. Measurements will then be presented on the magnetic field and temperature dependence of the full thermomagnetic tensor of iron's thermopower in the xxx, xyx, and xyz geometries (the first index gives the direction of the heat flux, the second the measured electric field, the third the applied magnetic field). Results of magneto-thermopower and Nernst coefficients will be reported for single-crystal samples oriented with x =[100]. The Nernst coefficients of elemental iron contain a contribution of a direct spin-transfer mechanism, which should be present in the absence of an interface between a ferromagnet and a normal metal. This mechanism could be put to use in high temperature ferromagnetic metallic thermoelectric alloys. This work is supported by the NSF GRFP under Grant No. DGE-0822215 and the ARO MURI under Grant No. W911NF-14-1-0016.
Drag balance Cubesat attitude motion effects on in-situ thermosphere density measurements
NASA Astrophysics Data System (ADS)
Felicetti, Leonard; Santoni, Fabio
2014-08-01
The dynamics of Cubesats carrying a drag balance instrument (DBI) for in situ atmosphere density measurements is analyzed. Atmospheric drag force is measured by the displacement of two light plates exposed to the incoming particle flow. This system is well suited for a distributed sensor network in orbit, to get simultaneous in situ local (non orbit averaged) measurements in multiple positions and orbit heights, contributing to the development and validation of global atmosphere models. The implementation of the DBI leads to orbit normal pointing spinning two body system. The use of a spin-magnetic attitude control system is suggested, based only on magnetometer readings, contributing to making the system simple, inexpensive, and reliable. It is shown, by an averaging technique, that this system provides for orbit normal spin axis pointing. The effect of the coupling between the attitude dynamics and the DBI is evaluated, analyzing its frequency content and showing that no frequency components arise, affecting the DBI performance. The analysis is confirmed by Monte Carlo numerical simulation results.
Viscous drag measurements utilizing microfabricated cantilevers
Oden, P.I.; Chen, G.Y.; Steele, R.A.; Warmack, R.J.; Thundat, T.
1996-06-01
The influence of viscous drag forces on cantilevers is investigated using standard atomic force microscope (AFM) cantilevers. Viscosity effects on several geometrically different cantilevers manifest themselves as variations in resonance frequencies, quality factors, and cantilever response amplitudes. With this novel measurement, a single cantilever can be used to measure viscosities ranging from {eta}=10{sup {minus}2} to 10{sup 2} g/cms. {copyright} {ital 1996 American Institute of Physics.}
The Minimum Induced Drag of Aerofoils
NASA Technical Reports Server (NTRS)
Munk, Max M
1923-01-01
This report helps explain the phenomenon of flight. It contains some theorems concerning the arrangement of airplane wings which are of considerable practical interest. In particular, it shows the theoretical reasons for the decrease of drag which accompanies all increase in the aspect ratio or lateral extension of a wing. The efficiency of a given arrangement of wings may be calculated from the formulae derived in this paper.
Geodetic precession or dragging of inertial frames
NASA Technical Reports Server (NTRS)
Ashby, Neil; Shahid-Saless, Bahman
1989-01-01
In General Relativity, the Principle of General Covariance allows one to describe phenomena by means of any convenient choice of coordinate system. Here, it is shown that the geodetic precession of a gyroscope orbiting a spherically symmetric, nonrotating mass can be recast as a Lense-Thirring frame-dragging effect, in an appropriately chosen coordinate frame whose origin falls freely along with the gyroscope and whose spatial coordinate axes point in fixed directions.
Experiments on Structure and Trapping of Coulomb balls
Block, D.; Arp, O.; Piel, A.; Melzer, A.
2006-10-18
This paper gives a survey of recent experiments on Coulomb balls. Starting with typical observations to introduce the Coulomb ball experiment and its diagnostic potential, their structural properties are discussed. Further, the trapping mechanism for the dust is quantified to allow for a systematic comparison of experiment and simulations. Finally, the presented results focus on the question how screening influences the structural properties and how Coulomb balls and other strongly coupled systems are related.
Picosecond response of a photon drag detector
Kimmitt, M.F.
1995-12-31
The primary use of photon drag detectors has been with CO{sub 2} lasers at 10{mu}m. Cornmercially-available devices are limited to response times of < 0.5-1ns and voltage responsivities of <0.5{mu}V W{sup -1}. This poster paper will describe the first photon drag detector specifically designed for very fast response. Using the free-election laser FELIX at the FOM Institute in the Netherlands, a rise time of <50ps has been demonstrated, using a 5mm{sup 2} area detector with a responsivity of >1{mu}V W{sup -1} over the wavelength range 10-25{mu}m. The figure shows the clear resolution of the micropulse structure of the laser. The actual width of each pulse is a few picosecoods, with a micropulse spacing of Ins. The advantages or photon drag detectors are room-temperature operation, linear response to intensifies greater than 10{sup 6}MW cm{sup -2} and very high damage threshold. These detectors are cheap to manufacture and, using different semiconductors, can be designed for any wavelength from 1 {mu}m-5mm.
Drag reduction at a plane wall
NASA Technical Reports Server (NTRS)
Hill, D. C.
1993-01-01
The objective is to determine by analytical means how drag on a plane wall may be modified favorably using a minimal amount of flow information - preferably only information at the wall. What quantities should be measured? How should that information be assimilated in order to arrive at effective control? As a prototypical problem, incompressible, viscous flow, governed by the Navier-Stokes equations, past a plane wall at which the no-slip condition was modified was considered. The streamwise and spanwise velocity components are required to be zero, but the normal component is to be specified according to some control law. The challenge is to choose the wall-normal velocity component based on flow conditions at the wall so that the mean drag is as small as possible. There can be no net mass flux through the wall, and the total available control energy is constrained. A turbulent flow is highly unsteady and has detailed spatial structure. The mean drag on the wall is the integral over the wall of the local shear forces exerted by the fluid, which is then averaged in time; it is a 'macroscopic' property of the flow. It is not obvious how unsteady boundary control is to be applied in order to modify the mean flow most effectively, especially in view of the non- self-adjoint nature of the governing equations. An approximate analytical solution to the suboptimal scheme is pursued.
Drag reduction of a heavy vehicle
NASA Astrophysics Data System (ADS)
Ortega, Jason; Salari, Kambiz
2007-11-01
During the 1970's and 1980's, a number of first-generation drag reduction devices were designed to reduce the aerodynamic losses of heavy vehicles (Cooper, 2003). The result of this effort led to the development of a number of devices that improved the aerodynamics of a heavy vehicle tractor. Additionally, a number of second-generation devices were developed for heavy vehicle trailers. Unfortunately, these trailer devices did not enter into the market on a wide-scale basis and, as a result, the modern heavy vehicle trailer largely remains a ``box on wheels'' with minimal aerodynamic consideration taken into its design. The primary obstacle to implementing trailer devices was not their effectiveness in reducing drag, but rather operational, maintenance, and ultimately, economic concerns. However, with rising fuel costs and potentially unstable fuel supplies, there is a renewed objective to further reduce heavy vehicle fuel usage. To accomplish this purpose, the present study investigates the drag reduction capability of a trailer device, which neither reduces the trailer cargo capacity, nor limits access to the trailer doors. RANS simulations are performed on a full-scale tractor-trailer that is traveling at highway conditions with and without the trailer device. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
Space Age Swimsuit Reduces Drag, Breaks Records
NASA Technical Reports Server (NTRS)
2008-01-01
A space shuttle and a competitive swimmer have a lot more in common than people might realize: Among other forces, both have to contend with the slowing influence of drag. NASA s Aeronautics Research Mission Directorate focuses primarily on improving flight efficiency and generally on fluid dynamics, especially the forces of pressure and viscous drag, which are the same for bodies moving through air as for bodies moving through water. Viscous drag is the force of friction that slows down a moving object through a substance, like air or water. NASA uses wind tunnels for fluid dynamics research, studying the forces of friction in gasses and liquids. Pressure forces, according to Langley Research Center s Stephen Wilkinson, dictate the optimal shape and performance of an airplane or other aero/hydro-dynamic body. In both high-speed flight and swimming, says Wilkinson, a thin boundary layer of reduced velocity fluid surrounds the moving body; this layer is about 2 centimeters thick for a swimmer.
Drag coefficients for winter Antarctic pack ice
NASA Technical Reports Server (NTRS)
Wamser, Christian; Martinson, Douglas G.
1993-01-01
Air-ice and ice-water drag coefficients referenced to 10-m-height winds for winter Antarctic pack ice based on measurements made from R/V Polarstern during the Winter Weddell Sea Project, 1986 (WWSP-86), and from R/V Akademik Fedorov during the Winter Weddell Gyre Study, 1989 (WWGS-89), are presented. The optimal values of the air-ice drag coefficients, made from turbulent flux measurements, are (1.79 +/- 0.06) x 10 exp -3 for WWSP-86 and (1.45 +/- 0.09) x 10 exp -3 for WWGS-89. A single ice-water drag coefficient for both WWSP-86 and WWGS-89, estimated from periods of ice drift throught to represent free-drift conditions, is (1.13 +/- 0.26) x 10 exp -3, and the ice-water turning angle is 18 +/- 18 deg. It is suggested that for a typical Antarctic winter pack ice cover, the ice cover reduces the momentum flux from the atmosphere to the ocean by about 33 percent.
Aerodynamic drag in cycling: methods of assessment.
Debraux, Pierre; Grappe, Frederic; Manolova, Aneliya V; Bertucci, William
2011-09-01
When cycling on level ground at a speed greater than 14 m/s, aerodynamic drag is the most important resistive force. About 90% of the total mechanical power output is necessary to overcome it. Aerodynamic drag is mainly affected by the effective frontal area which is the product of the projected frontal area and the coefficient of drag. The effective frontal area represents the position of the cyclist on the bicycle and the aerodynamics of the cyclist-bicycle system in this position. In order to optimise performance, estimation of these parameters is necessary. The aim of this study is to describe and comment on the methods used during the last 30 years for the evaluation of the effective frontal area and the projected frontal area in cycling, in both laboratory and actual conditions. Most of the field methods are not expensive and can be realised with few materials, providing valid results in comparison with the reference method in aerodynamics, the wind tunnel. Finally, knowledge of these parameters can be useful in practice or to create theoretical models of cycling performance. PMID:21936289
Phonon and magnon heat transport and drag effects
NASA Astrophysics Data System (ADS)
Heremans, Joseph P.
2014-03-01
Thermoelectric generators and coolers constitute today's solid-state energy converters. The two goals in thermoelectrics research are to enhance the thermopower while simultaneously maintaining a high electrical conductivity of the same material, and to minimize its lattice thermal conductivity without affecting its electronic properties. Up to now the lattice thermal conductivity has been minimized by using alloy scattering and, more recently, nanostructuring. In the first part of the talk, a new approach to minimize the lattice thermal conductivity is described that affects phonon scattering much more than electron scattering. This can be done by selecting potential thermoelectric materials that have a very high anharmonicity, because this property governs phonon-phonon interaction probability. Several possible types of chemical bonds will be described that exhibit such high anharmonicity, and particular emphasis will be put on solids with highly-polarizable lone-pair electrons, such as the rock salt I-V-VI2 compounds (e.g. NaSbSe2). The second part of the talk will give an introduction to a completely new class of solid-state thermal energy converters based on spin transport. One configuration for such energy converters is based on the recently discovered spin-Seebeck effect (SSE). This quantity is expressed in the same units as the conventional thermopower, and we have recently shown that it can be of the same order of magnitude. The main advantage of SSE converters is that the problem of optimization is now distributed over two different materials, a ferromagnet in which a flux of magnetization is generated by a thermal gradient, and a normal metal where the flux of magnetization is converted into electrical power. The talk will focus on the basic physics behind the spin-Seebeck effect. Recent developments will then be described based on phonon-drag of spin polarized electrons. This mechanism has made it possible to reach magnitudes of SSE that are comparable
Electronic ground state properties of Coulomb blockaded quantum dots
NASA Astrophysics Data System (ADS)
Patel, Satyadev Rajesh
Conductance through quantum dots at low temperature exhibits random but repeatable fluctuations arising from quantum interference of electrons. The observed fluctuations follow universal statistics arising from the underlying universality of quantum chaos. Random matrix theory (RMT) has provided an accurate description of the observed universal conductance fluctuations (UCF) in "open" quantum dots (device conductance ≥e 2/h). The focus of this thesis is to search for and decipher the underlying origin of similar universal properties in "closed" quantum dots (device conductance ≤e2/ h). A series of experiments is presented on electronic ground state properties measured via conductance measurements in Coulomb blockaded quantum dots. The statistics of Coulomb blockade (CB) peak heights with zero and non-zero magnetic field measured in various devices agree qualitatively with predictions from Random Matrix Theory (RMT). The standard deviation of the peak height fluctuations for non-zero magnetic field is lower than predicted by RMT; the temperature dependence of the standard deviation of the peak height for non-zero magnetic field is also measured. The second experiment summarizes the statistics of CB peak spacings. The peak spacing distribution width is observed to be on the order of the single particle level spacing, Delta, for both zero and non-zero magnetic field. The ratio of the zero field peak spacing distribution width to the non-zero field peak spacing distribution width is ˜1.2; this is good agreement with predictions from spin-resolved RMT predictions. The standard deviation of the non-zero magnetic field peak spacing distribution width shows a T-1/2 dependence in agreement with a thermal averaging model. The final experiment summarizes the measurement of the peak height correlation length versus temperature for various quantum dots. The peak height correlation length versus temperature saturates in small quantum dots, suggesting spectral scrambling
Coulomb excitation of radioactive {sup 79}Pb
Lister, C.J.; Blumenthal, D.; Davids, C.N.
1995-08-01
The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.
Improved Shell models for screened Coulomb balls
NASA Astrophysics Data System (ADS)
Bonitz, M.; Kaehlert, H.; Henning, C.; Baumgartner, H.; Filinov, A.
2006-10-01
Spherical Coulomb crystals in dusty plasmas [1] are well described by an isotropic Yukawa-type pair interaction and an external parabolic confinement as was shown by extensive molecular dynamics simulations [2]. A much simpler description is possible with analytical shell models which have been derived for Yukawas plasmas in [3,4]. Here we analyze improved Yukawa shell models which include correlations along the lines proposed for Coulomb crystals in [5]. The shell configurations are efficiently evaluated using a Monte Carlo procedure. [1] O. Arp, A. Piel and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] M. Bonitz, D. Block, O. Arp, V. Golunychiy, H. Baumgartner, P. Ludwig, A. Piel and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006). [3] H. Totsuji, C. Totsuji, T. Ogawa, and K. Tsuruta, Phys. Rev. E 71, 045401 (2005). [4] C. Henning, M. Bonitz, A. Piel, P. Ludwig, H. Baumgartner, V. Golubnichiy, and D. Block, submitted to Phys. Rev. E [5] W.D. Kraeft and M. Bonitz, J. Phys. Conf. Ser. 35, 94 (2006).
Turbine blade cooling using Coulomb repulsion
NASA Astrophysics Data System (ADS)
Breidenthal, Robert; Colannino, Joseph; Dees, John; Goodson, David; Krichtafovitch, Igor; Prevo, Tracy
2012-11-01
Video photography and thermocouples reveal the effect of an electric field on the flow around a stationary, idealized turbine blade downstream of a combustor. The hot products of combustion naturally include positive ions. When the blade is an electrode and elevated to a positive potential, it tends to attract the free electrons and repel the positive ions. Due to their lower mass, the light electrons are rapidly swept toward the blade, while the positive ions are repelled. As they collide with the neutrals in the hot gas, the positive ions transfer their momentum so that a Coulomb body force is exerted on the hot gas. Cool, compressed air is injected out of the stationary blade near its leading edge to form a layer of film cooling. In contrast to the hot combustion products, the cool air is not ionized. At the interface between the hot gas and the cool air, the Coulomb repulsion force acts on the former but not the latter, analogous to gravity at a stratified interface. An effective Richardson number representing the ratio of potential to kinetic energy characterizes the topography of the interface. When the electric field is turned on, the repulsion of the hot gas from the idealized blade is evident in video recordings and thermocouple measurements.
Interpretation of Coulomb breakup of Ne31 in terms of deformation
NASA Astrophysics Data System (ADS)
Hamamoto, Ikuko
2010-02-01
The recent experimental data on Coulomb breakup of the nucleus Ne31 are interpreted in terms of deformation. The measured large one-neutron removal cross section indicates that the ground state of Ne31 is either an s halo or a p halo. The data can be most easily interpreted as the spin of the ground state being 3/2- coming from either the Nilsson level [3301/2] or the Nilsson level [3213/2] depending on the neutron separation energy Sn. However, the possibility of 1/2+ coming from [2001/2] is not excluded. It is suggested that if the large ambiguity in the measured value of Sn of Ne31, 0.29±1.64 MeV, can be reduced by an order of magnitude, say to be ±100 keV, one may get a clear picture of the spin-parity of the halo ground state.
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-01-01
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators.
Dou, Xu; Kotov, Valeri N; Uchoa, Bruno
2016-01-01
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516
Geometrical spin symmetry and spin
Pestov, I. B.
2011-07-15
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Popescu, Florentin; Sen, Cengiz; Dagotto, Elbio R; Moreo, Adriana
2007-01-01
The crossover between an impurity band (IB) and a valence band (VB) regime as a function of the magnetic impurity concentration in a model for diluted magnetic semiconductors (DMSs) is studied systematically by taking into consideration the Coulomb attraction between the carriers and the magnetic impurities. The density of states and the ferromagnetic transition temperature of a spin-fermion model applied to DMSs are evaluated using dynamical mean-field theory and Monte Carlo (MC) calculations. It is shown that the addition of a square-well-like attractive potential can generate an IB at small enough Mn doping x for values of the p-d exchange J that are not strong enough to generate one by themselves. We observe that the IB merges with the VB when x>=xc where xc is a function of J and the Coulomb strength V. Using MC simulations, we demonstrate that the range of the Coulomb attraction plays an important role. While the on-site attraction, which has been used in previous numerical simulations, effectively renormalizes J for all values of x, an unphysical result, a nearest-neighbor range attraction renormalizes J only at very low dopings, i.e., until the bound holes wave functions start to overlap. Thus, our results indicate that the Coulomb attraction can be neglected to study Mn-doped GaSb, GaAs, and GaP in the relevant doping regimes, but it should be included in the case of Mn-doped GaN, which is expected to be in the IB regime.
Effective single-band models for the high-Tc cuprates. I. Coulomb interactions
NASA Astrophysics Data System (ADS)
Feiner, L. F.; Jefferson, J. H.; Raimondi, R.
1996-04-01
Starting with the three-band extended Hubbard model (or d-p model) widely used to represent the CuO2 planes in the high-Tc cuprates, we make a systematic reduction to an effective single-band model using a previously developed cell-perturbation method. The range of parameters for which this mapping is a good approximation is explored in the full Zaanen-Sawatzky-Allen diagram (copper Coulomb repulsion Ud versus charge-transfer energy ɛ), together with an investigation of the validity of a further mapping to an effective charge-spin (t-J-V) model. The variation of the effective single-band parameters with the parameters of the underlying multi-band model is investigated in detail, and the parameter regime where the model represents the high-Tc cuprates is examined for specific features that might distinguish it from the general case. In particular, we consider the effect of Coulomb repulsions on oxygen (Up) and between copper and oxygen (Vpd). We find that the reduction to an effective single-band model is generally valid for describing the low-energy physics, and that Vpd and Up (unless unrealistically large) actually slightly improve the convergence of the cell-perturbation method. Unlike in the usual single-band Hubbard model, the effective intercell hopping and Coulomb interactions are different for electrons and holes. We find that this asymmetry, which vanishes in the extreme Mott-Hubbard regime (Ud<<ɛ), is quite appreciable in the charge-transfer regime (Ud>~ɛ), particularly for the effective Coulomb interactions. We show that for doped holes (forming Zhang-Rice singlets) on neighboring cells the interaction induced by Vpd can even be attractive due to locally enhanced pd hybridization, while this cannot occur for electrons. The Coulomb interaction induced by Up is always repulsive; in addition Up gives rise to a ferromagnetic spin-spin interaction which opposes antiferromagnetic superexchange. We show that for hole-doped systems this leads to a subtle
Thermospheric density and satellite drag modeling
NASA Astrophysics Data System (ADS)
Mehta, Piyush Mukesh
The United States depends heavily on its space infrastructure for a vast number of commercial and military applications. Space Situational Awareness (SSA) and Threat Assessment require maintaining accurate knowledge of the orbits of resident space objects (RSOs) and the associated uncertainties. Atmospheric drag is the largest source of uncertainty for low-perigee RSOs. The uncertainty stems from inaccurate modeling of neutral atmospheric mass density and inaccurate modeling of the interaction between the atmosphere and the RSO. In order to reduce the uncertainty in drag modeling, both atmospheric density and drag coefficient (CD) models need to be improved. Early atmospheric density models were developed from orbital drag data or observations of a few early compact satellites. To simplify calculations, densities derived from orbit data used a fixed CD value of 2.2 measured in a laboratory using clean surfaces. Measurements from pressure gauges obtained in the early 1990s have confirmed the adsorption of atomic oxygen on satellite surfaces. The varying levels of adsorbed oxygen along with the constantly changing atmospheric conditions cause large variations in CD with altitude and along the orbit of the satellite. Therefore, the use of a fixed CD in early development has resulted in large biases in atmospheric density models. A technique for generating corrections to empirical density models using precision orbit ephemerides (POE) as measurements in an optimal orbit determination process was recently developed. The process generates simultaneous corrections to the atmospheric density and ballistic coefficient (BC) by modeling the corrections as statistical exponentially decaying Gauss-Markov processes. The technique has been successfully implemented in generating density corrections using the CHAMP and GRACE satellites. This work examines the effectiveness, specifically the transfer of density models errors into BC estimates, of the technique using the CHAMP and
Charge and Spin Dynamics of the Hubbard Chains
NASA Technical Reports Server (NTRS)
Park, Youngho; Liang, Shoudan
1999-01-01
We calculate the local correlation functions of charge and spin for the one-chain and two-chain Hubbard model using density matrix renormalization group method and the recursion technique. Keeping only finite number of states we get good accuracy for the low energy excitations. We study the charge and spin gaps, bandwidths and weights of the spectra for various values of the on-site Coulomb interaction U and the electron filling. In the low energy part, the local correlation functions are different for the charge and spin. The bandwidths are proportional to t for the charge and J for the spin respectively.
Reconfiguration parameters for drag of flexible cylindrical elements
NASA Astrophysics Data System (ADS)
John, Chapman; Wilson, Bruce; Gulliver, John
2015-11-01
This presentation compares parameters that characterize reconfiguration effects on flow resistance and drag. The drag forces occurring on flexible bluff bodies are different from the drag occurring on rigid bluff bodies due to reconfiguration. Drag force data, collected using a torque sensor in a flume, for simple cylindrical obstructions of the same shape and size but with different flexibility is used to fit drag parameters. The key parameter evaluated is a reference velocity factor u to account for drag reduction due to reconfiguration, similar to a Vogel exponent. Our equations preserves the traditional exponent of the drag relationship, but places a factor onto the drag coefficient for flexible elements, rather than a Vogel exponent arrangement applied to the flow velocity. Additionally we relate the reference velocity factor u to the modulus of elasticity of the material through the Cauchy Number. The use of a reference velocity factor u in place of a Vogel exponent appears viable to account for how the drag forces are altered by reconfiguration. The proposed formulation for drag reduction is more consistently estimated for the range of flexibilities in this study. Unfortunately, the mechanical properties of vegetation are not often readily available for reconfiguration relationships to the elastic modulus of vegetation to be of immediate practical use.
The Direct Measurement of Base Drag for Hypersonic Vehicles
NASA Astrophysics Data System (ADS)
Lv, Zhi-guo; Li, Guo-jun; Jiang, Hua; Zhao, Rong-juan; Wang, Gang; Huang, Jun
A new base drag measurement method has been introduced in this paper. In tradition method, the base drag of the model was measured by the pressure transducer located on the bottom of the model. In this method, the base drag was measured with piezoelectric balance directly. The drag force was measured twice by fixing the model base segment to the model or the balance, the difference between these two measurements is considered as the base drag of the model. The wind tunnel test was carried out in φ0.6m shock tunnel of CARDC with a cone model. The base drag of cone model was measured in the flow field of M(=8.42, Re(l=9.67(106/m with the attack angle of 0(. The results showed that the base drag coefficient of the cone model is 0.0015. It means that the base drag can't be ignored in high precision tests, and it can be measured by piezoelectric balance in shock tunnel. The length of the tail sting affects the axis force test result. In the same attack angle, the base drag of high lift/drag ratio model decreases with the increasing of flow field Mach number.
Evaluation of Skin Friction Drag for Liner Applications in Aircraft
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.
2016-01-01
A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.
Elastic Coulomb breakup of 34Na
NASA Astrophysics Data System (ADS)
Singh, G.; Shubhchintak, Chatterjee, R.
2016-08-01
Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our
Spherical Calogero model with oscillator/Coulomb potential: Quantum case
NASA Astrophysics Data System (ADS)
Correa, Francisco; Hakobyan, Tigran; Lechtenfeld, Olaf; Nersessian, Armen
2016-06-01
We consider the quantum mechanics of Calogero models in an oscillator or Coulomb potential on the N -dimensional sphere. Their Hamiltonians are obtained by an appropriate Dunkl deformation of the oscillator/Coulomb system on the sphere and its restriction to (Coxeter reflection) symmetric wave functions. By the same method we also find the symmetry generators and compute their algebras.
Known-to-Unknown Approach to Teach about Coulomb's Law
ERIC Educational Resources Information Center
Thamburaj, P. K.
2007-01-01
Analogies from life experiences help students understand various relationships presented in an introductory chemistry course. Coulomb's law is a complex relationship encountered in introductory general chemistry. A proper understanding of the relationships between the quantities involved in Coulomb's law is necessary in order for students to…
Dynamical effects in the Coulomb expansion following nuclear fragmentation
Chung, K.C.; Donangelo, R.; Schechter, H.
1987-09-01
The effects of the Coulomb expansion on the fragment kinetic energy spectrum for a fragmentating hot nuclear system is investigated. In particular, /sup 12/C-fragment spectra are calculated and compared with those predicted by the uniform expansion approximation. The results indicate that the energy spectra of fragments are quite sensitive to the details of the Coulomb expansion treatment.
Coulomb excitation of {sup 189}Os
Seale, W.A.; Botelho, S.; Ribas, R.V.
1993-10-01
The transitional nucleus {sup 189}Os has been studied by Coulomb excitation. Measurements with a Ge(HP) detector were made at 0{degrees}, 55{degrees}, 90{degrees} with beams of {sup 28}Si at 80 and 88 Me {sup 35}Cl at 80 MeV and {sup 16}O at 58 MeV. A total of gamma-ray transitions leading to 23 levels we used in the least-squares code GOSIA to determined reduced matrix elements. A theoretic understanding of this nucleus has been attempt from the point of view of current nuclear mode as they apply to systematics of the 1/2 {sup -}[510] 3/2 -[512], 1/2 [503] levels in this ma region.
Ion Coulomb Crystals and Their Applications
NASA Astrophysics Data System (ADS)
Drewsen, Michael
The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged in the past two decades. While this document lacks figures and many specific references, it is the hope, not the text will stimulate the reader to dig deeper into one or more of the discussed subjects, and inspire her/him to think about new potential applications. A fully referenced journal article of essentially the same text can be found in Physica B 460, 105 (2015) [1].
The ghost propagator in Coulomb gauge
Watson, P.; Reinhardt, H.
2011-05-23
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
Theoretical description of Coulomb balls: Fluid phase
Wrighton, J.; Dufty, J. W.; Kaehlert, H.; Bonitz, M.
2009-12-15
A theoretical description for the radial density profile of a finite number of identical charged particles confined in a harmonic trap is developed for application over a wide range of Coulomb coupling (or, equivalently, temperatures) and particle numbers. A simple mean-field approximation neglecting correlations yields a density profile which is monotonically decreasing with radius for all temperatures, in contrast to molecular dynamics simulations and experiments showing shell structure at lower temperatures. A more complete theoretical description including charge correlations is developed here by an extension of the hypernetted chain approximation, developed for bulk fluids, to the confined charges. The results reproduce all of the qualitative features observed in molecular dynamics simulations and experiments. These predictions are then tested quantitatively by comparison with benchmark Monte Carlo simulations. Quantitative accuracy of the theory is obtained by correcting the hypernetted chain approximation with a representation for the associated bridge functions.
Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit
NASA Astrophysics Data System (ADS)
Gebremedhin, Daniel H.; Weatherford, Charles A.
2014-05-01
An efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step-size choice for each element that is based on a Taylor series expansion. This algorithm is used to solve for the eigenpairs corresponding to the one-dimensional soft Coulomb potential, 1/√x2+β2 , which becomes numerically intractable (because of extreme stiffness) as the softening parameter (β) approaches zero. We are able to maintain near machine accuracy for β as low as β =10-8 using 16-digit precision calculations. Our numerical results provide insight into the controversial one-dimensional hydrogen atom, which is a limiting case of the soft Coulomb problem as β →0.
Microscopic treatment of solute trapping and drag
NASA Astrophysics Data System (ADS)
Humadi, Harith; Hoyt, J. J.; Provatas, Nikolas
2016-01-01
The long wavelength limit of a recent microscopic phase-field crystal (PFC) theory of a binary alloy mixture is used to derive an analytical approximation for the segregation coefficient as a function of the interface velocity, and relate it to the two-point correlation function of the liquid and the thermodynamic properties of solid and liquid phases. Our results offer the first analytical derivation of solute segregation from a microscopic model, and support recent molecular dynamics and numerical PFC simulations. Our results also provide an independent framework, motivated from classical density functional theory, from which to elucidate the fundamental nature of solute drag, which is still highly contested in the literature.
NASA research on viscous drag reduction
NASA Technical Reports Server (NTRS)
Petersen, R. H.; Maddalon, D. V.
1982-01-01
Research on natural laminar flow, laminar flow control by suction, and turbulent drag reduction is discussed. Preliminary results suggest that a significant amount of natural laminar flow can be achieved on small, straight wing airplanes. On larger, swept wing aircraft, laminar flow control by distributed suction is expected to result in significant fuel savings. The area over which laminar flow control is applied depends on tradeoffs involving structural complexity, maintenance, and cost. Several methods of reducing turbulent skin friction by altering the turbulence structure itself have shown promise in exploratory testing. The status of these technologies and the benefits of applying them to future aircraft are reviewed.
Space Shuttle Orbital Drag Parachute Design
NASA Technical Reports Server (NTRS)
Meyerson, Robert E.
2001-01-01
The drag parachute system was added to the Space Shuttle Orbiter's landing deceleration subsystem beginning with flight STS-49 in May 1992. The addition of this subsystem to an existing space vehicle required a detailed set of ground tests and analyses. The aerodynamic design and performance testing of the system consisted of wind tunnel tests, numerical simulations, pilot-in-the-loop simulations, and full-scale testing. This analysis and design resulted in a fully qualified system that is deployed on every flight of the Space Shuttle.
Biomimetic spiroid winglets for lift and drag control
NASA Astrophysics Data System (ADS)
Guerrero, Joel E.; Maestro, Dario; Bottaro, Alessandro
2012-01-01
In aeronautical engineering, drag reduction constitutes a challenge and there is room for improvement and innovative developments. The drag breakdown of a typical transport aircraft shows that the lift-induced drag can amount to as much as 40% of the total drag at cruise conditions and 80-90% of the total drag in take-off configuration. One way of reducing lift-induced drag is by using wingtip devices. By applying biomimetic abstraction of the principle behind a bird's wingtip feathers, we study spiroid wingtips, which look like an extended blended wingtip that bends upward by 360 degrees to form a large rigid ribbon. The numerical investigation of such a wingtip device is described and preliminary indications of its aerodynamic performance are provided.
Drag-compensated, precision-powered hinge system
NASA Technical Reports Server (NTRS)
Jacquemin, G. G.; Rusk, S. J.
1985-01-01
The design of a high precision powered hinge is complicated by the unavoidable presence of parasitic drag torque resulting mainly from friction and transfer of power, signals, and fluids across the hinge. Regardless of the type of drive system selected, it is impossible to completely eliminate all parasitic drag. However, the mechanism described here comes very close to providing a drag free system. All sources of parasitic drag torque are collected on a shaft which is powered by an electric motor independent of the main hinge drive. Under control of a sensor, the electric motor applies a compensating torque equal to that of the parasitic drag torque, allowing the main hinge drive to operate in a practically drag free environment with very high positioning precision.
Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers
NASA Technical Reports Server (NTRS)
Storms, Bruce; Salari, Kambiz; Babb, Alex
2008-01-01
The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.
An Experimental Investigation of Helicopter Rotor Hub Fairing Drag Characteristics
NASA Technical Reports Server (NTRS)
Sung, D. Y.; Lance, M. B.; Young, L. A.; Stroub, R. H.
1989-01-01
A study was done in the NASA 14- by 22-Foot Wind Tunnel at Langley Research Center on the parasite drag of different helicopter rotor hub fairings and pylons. Parametric studies of hub-fairing camber and diameter were conducted. The effect of hub fairing/pylon clearance on hub fairing/pylon mutual interference drag was examined in detail. Force and moment data are presented in tabular and graphical forms. The results indicate that hub fairings with a circular-arc upper surface and a flat lower surface yield maximum hub drag reduction; and clearance between the hub fairing and pylon induces high mutual-interference drag and diminishes the drag-reduction benefit obtained using a hub fairing with a flat lower surface. Test data show that symmetrical hub fairings with circular-arc surfaces generate 74 percent more interference drag than do cambered hub fairings with flat lower surfaces, at moderate negative angle of attack.
Reduction in parachute drag due to forebody wake effects
Peterson, C.W.; Johnson, D.W.
1981-01-01
An experiment was conducted to evaluate approximate analytical methods for predicting the reduction in parachute drag due to forebody wake effects. The drag of a 20/sup 0/ conical ribbon parachute was measured at several axial stations behind an ogive-cylinder forebody with and without fins. The same parachute was tested in undisturbed flow (where wake effects were negligible) so that the effects of suspension line length on parachute drag could be separated from the drag losses caused by the turbulent wake. Total head pressure surveys were made across the forebody wake and integrated across the canopy skirt area to determine the effective dynamic pressure acting on the parachute. Experimental results confirmed the validity of the underlying physical model of the parachute/wake interaction: the ratio of parachute drag behind a forebody divided by wake-free parachute drag is equal to the ratio of effective dynamic pressure acting on the parachute divided by freestream dynamic pressure.
Measuring the Drag Force on a Falling Ball
ERIC Educational Resources Information Center
Cross, Rod; Lindsey, Crawford
2014-01-01
The effect of the aerodynamic drag force on an object in flight is well known and has been described in this and other journals many times. At speeds less than about 1 m/s, the drag force on a sphere is proportional to the speed and is given by Stokes' law. At higher speeds, the drag force is proportional to the velocity squared and is…
Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As.
Souma, S; Chen, L; Oszwałdowski, R; Sato, T; Matsukura, F; Dietl, T; Ohno, H; Takahashi, T
2016-01-01
Carrier-induced nature of ferromagnetism in a ferromagnetic semiconductor, (Ga,Mn)As, offers a great opportunity to observe novel spin-related phenomena as well as to demonstrate new functionalities of spintronic devices. Here, we report on low-temperature angle-resolved photoemission studies of the valence band in this model compound. By a direct determination of the distance of the split-off band to the Fermi energy EF we conclude that EF is located within the heavy/light hole band. However, the bands are strongly perturbed by disorder and disorder-induced carrier correlations that lead to the Coulomb gap at EF, which we resolve experimentally in a series of samples, and show that its depth and width enlarge when the Curie temperature decreases. Furthermore, we have detected surprising linear magnetic dichroism in photoemission spectra of the split-off band. By a quantitative theoretical analysis we demonstrate that it arises from the Dresselhaus-type spin-orbit term in zinc-blende crystals. The spectroscopic access to the magnitude of such asymmetric part of spin-orbit coupling is worthwhile, as they account for spin-orbit torque in spintronic devices of ferromagnets without inversion symmetry. PMID:27265402
Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As
NASA Astrophysics Data System (ADS)
Souma, S.; Chen, L.; Oszwałdowski, R.; Sato, T.; Matsukura, F.; Dietl, T.; Ohno, H.; Takahashi, T.
2016-06-01
Carrier-induced nature of ferromagnetism in a ferromagnetic semiconductor, (Ga,Mn)As, offers a great opportunity to observe novel spin-related phenomena as well as to demonstrate new functionalities of spintronic devices. Here, we report on low-temperature angle-resolved photoemission studies of the valence band in this model compound. By a direct determination of the distance of the split-off band to the Fermi energy EF we conclude that EF is located within the heavy/light hole band. However, the bands are strongly perturbed by disorder and disorder-induced carrier correlations that lead to the Coulomb gap at EF, which we resolve experimentally in a series of samples, and show that its depth and width enlarge when the Curie temperature decreases. Furthermore, we have detected surprising linear magnetic dichroism in photoemission spectra of the split-off band. By a quantitative theoretical analysis we demonstrate that it arises from the Dresselhaus-type spin-orbit term in zinc-blende crystals. The spectroscopic access to the magnitude of such asymmetric part of spin-orbit coupling is worthwhile, as they account for spin-orbit torque in spintronic devices of ferromagnets without inversion symmetry.
Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As
Souma, S.; Chen, L.; Oszwałdowski, R.; Sato, T.; Matsukura, F.; Dietl, T.; Ohno, H.; Takahashi, T.
2016-01-01
Carrier-induced nature of ferromagnetism in a ferromagnetic semiconductor, (Ga,Mn)As, offers a great opportunity to observe novel spin-related phenomena as well as to demonstrate new functionalities of spintronic devices. Here, we report on low-temperature angle-resolved photoemission studies of the valence band in this model compound. By a direct determination of the distance of the split-off band to the Fermi energy EF we conclude that EF is located within the heavy/light hole band. However, the bands are strongly perturbed by disorder and disorder-induced carrier correlations that lead to the Coulomb gap at EF, which we resolve experimentally in a series of samples, and show that its depth and width enlarge when the Curie temperature decreases. Furthermore, we have detected surprising linear magnetic dichroism in photoemission spectra of the split-off band. By a quantitative theoretical analysis we demonstrate that it arises from the Dresselhaus-type spin-orbit term in zinc-blende crystals. The spectroscopic access to the magnitude of such asymmetric part of spin-orbit coupling is worthwhile, as they account for spin-orbit torque in spintronic devices of ferromagnets without inversion symmetry. PMID:27265402
Drag of bodies of revolution in cavitating flow
Oberkampf, W.L.; Wolfe, W.P.
1986-01-01
The present paper describes work in progress concerning fluid dynamics of cavitating flow. The flow field and drag of bodies of revolution at zero angle of attack is predicted for cavity coefficients from fully-wetted flow to sigma = 0. Excellent agreement for drag coefficient is demonstrated between theory and a water tunnel experiment. It is shown that skin friction drag is the dominant drag component for zero cavity coefficient. Excellent agreement is also demonstrated between theory and a high-speed water entry experiment. This agreement corroborates the experimental measurement that the cavity pressure is equal to the water vapor pressure, contrary to low-speed water entry. 14 refs.
Supersonic Wave Drag of Sweptback Tapered Wings at Zero Lift
NASA Technical Reports Server (NTRS)
Margolis, Kenneth
1947-01-01
On the basis of a recently developed theory for sweptback wings at supersonic velocities, equations are derived for the wave drag of sweptback tapered wings with thin symmetrical double-wedge sections at zero lift. Calculations of section wave-drag distributions and wing wave drag are presented for families of tapered plan forms. Distributions of section wave drag along the span of tapered wings are, in general, very similar in shape to those of untapered plan forms. For a given taper ratio and aspect ratio, an appreciable reduction in wing wave-drag coefficient with increased sweepback is noted for the entire range of Mach number considered. For a given sweep and taper ratio, higher aspect ratios reduce the wing wave-drag coefficient at substantially subcritical supersonic Mach numbers. At Mach numbers approaching the critical value, that is, a value equal to the secant of the sweepback angle, the plan forms of low aspect ratio have lower drag coefficients. Calculations for wings of equal root bending stress (and hence different aspect ratio) indicate that tapering the wing reduces the wing wave-drag coefficient at Mach numbers considerably less than the critical value and a decrease of the drag coefficient with taper at Mach numbers near the critical value.
Experiences with optimizing airfoil shapes for maximum lift over drag
NASA Technical Reports Server (NTRS)
Doria, Michael L.
1991-01-01
The goal was to find airfoil shapes which maximize the ratio of lift over drag for given flow conditions. For a fixed Mach number, Reynolds number, and angle of attack, the lift and drag depend only on the airfoil shape. This then becomes a problem in optimization: find the shape which leads to a maximum value of lift over drag. The optimization was carried out using a self contained computer code for finding the minimum of a function subject to constraints. To find the lift and drag for each airfoil shape, a flow solution has to be obtained. This was done using a two dimensional Navier-Stokes code.
Drag kings in the new wave: gender performance and participation.
Surkan, Kim
2002-01-01
In an examination of Midwestern drag king performers and communities that have emerged since the study by Volcano and Halberstam of king cultures in London, New York, and San Francisco, this article considers traditional and alternative ways of "doing drag," both performative and participatory, as a means of interrogating the proximity of a "new wave" of king culture to academic theory. Tracing the evolution of drag king performance in the Twin Cities from the 1996 workshop by Diane Torr to the formation of two distinct king troupes in the late 1990s demonstrates a particular trajectory in kinging that reflects a new consciousness and enactment of gender theory through artistic praxis. Participation plays a key role in breaking down the distance between spectator and performer in venues such as the First International Drag King Extravaganza in Columbus, Ohio, and Melinda Hubman's art installation "Performing Masculinities: Take a Chance on Gender" in Minneapolis. By engaging the "audience" in drag, the Extravaganza "Science Fair" successfully referenced drag kings' shared history with early American freak shows in a clever and critical way. Moving beyond the contest framework of early king shows, new drag king troupes like Minneapolis' Dykes Do Drag are "mixing it up" in an attempt to complicate notions of butch/femme gender roles, sexuality, and drag stereotypes. PMID:12769278
Parasite-Drag Measurements of Five Helicopter Rotor Hubs
NASA Technical Reports Server (NTRS)
Churchill, Gary B.; Harrington, Robert D.
1959-01-01
An investigation has been conducted in the Langley full-scale tunnel to determine the parasite drag of five production-type helicopter rotor hubs. Some simple fairing arrangements were attempted in an effort to reduce the hub drag. The results indicate that, within the range of the tests, changes in angle of attack, hub rotational speed, and forward speed generally had only a small effect on the equivalent flat-plate area representing parasite drag. The drag coefficients of the basic hubs, based on projected hub frontal area, increased with hub area and varied from 0.5 to 0.76 for the hubs tested.
Drag of the complete configuration aerodynamic considerations, 2
NASA Technical Reports Server (NTRS)
Roskam, J.
1975-01-01
A number of drag items are related to the performance of a complete aircraft configuration. First, the effect of fuselage camber, wing and nacelle incidence are discussed from a viewpoint of design decision making. Second, the effect of overall cruise drag on the design gross and empty weight of the airplane is discussed. Examples show that cruise drag can have a very important influence on total airplane weight. Third, the effects of usable cruise lift-to-drag ratio and wing loading are shown to be important. Finally several research needs relating to design of the complete configuration are reviewed.
Computer software improves CT drag and buckling prediction
Wu, J.
1998-12-31
Coiled tubing drag and buckling prediction is very important in coiled tubing operations including drilling, completion and workover. Bit weight, packer load, and well depth penetration can be limited by a severe drag and buckling problem in coiled tubing operations. Enormous drag can be resulted from the buckling of coiled tubing, causing a lockup of coiled tubing in the wellbore. Many factors can affect coiled tubing drag and buckling, including wellbore condition, coiled tubing size, bit weight/packer load, well depth, residual bend, and wellbore pressure. This paper presents a newly developed computer software to help predict coiled tubing drag and buckling. The software`s user-friendly interface makes it easy for field engineers to predict coiled tubing drag and buckling. Three coiled tubing operation categories and several buckling criteria are used in the software to improve coiled tubing drag and buckling prediction. The advanced graphical animation helps visualize the development of coiled tubing drag and buckling in the operation process. The prediction of coiled tubing drag and buckling is improved by using this software to obtain a success in coiled tubing operations.
Reference values and improvement of aerodynamic drag in professional cyclists.
García-López, Juan; Rodríguez-Marroyo, José Antonio; Juneau, Carl-Etienne; Peleteiro, José; Martínez, Alfredo Córdova; Villa, José Gerardo
2008-02-01
The aims of this study were to measure the aerodynamic drag in professional cyclists, to obtain aerodynamic drag reference values in static and effort positions, to improve the cyclists' aerodynamic drag by modifying their position and cycle equipment, and to evaluate the advantages and disadvantages of these modifications. The study was performed in a wind tunnel with five professional cyclists. Four positions were assessed with a time-trial bike and one position with a standard racing bike. In all positions, aerodynamic drag and kinematic variables were recorded. The drag area for the time-trial bike was 31% higher in the effort than static position, and lower than for the standard racing bike. Changes in the cyclists' position decreased the aerodynamic drag by 14%. The aero-helmet was not favourable for all cyclists. The reliability of aerodynamic drag measures in the wind tunnel was high (r > 0.96, coefficient of variation < 2%). In conclusion, we measured and improved the aerodynamic drag in professional cyclists. Our results were better than those of other researchers who did not assess aerodynamic drag during effort at race pace and who employed different wheels. The efficiency of the aero-helmet, and the validity, reliability, and sensitivity of the wind tunnel and aerodynamic field testing were addressed. PMID:17943597
Drag Reduction Through Distributed Electric Propulsion
NASA Technical Reports Server (NTRS)
Stoll, Alex M.; Bevirt, JoeBen; Moore, Mark D.; Fredericks, William J.; Borer, Nicholas K.
2014-01-01
One promising application of recent advances in electric aircraft propulsion technologies is a blown wing realized through the placement of a number of electric motors driving individual tractor propellers spaced along each wing. This configuration increases the maximum lift coefficient by providing substantially increased dynamic pressure across the wing at low speeds. This allows for a wing sized near the ideal area for maximum range at cruise conditions, imparting the cruise drag and ride quality benefits of this smaller wing size without decreasing takeoff and landing performance. A reference four-seat general aviation aircraft was chosen as an exemplary application case. Idealized momentum theory relations were derived to investigate tradeoffs in various design variables. Navier-Stokes aeropropulsive simulations were performed with various wing and propeller configurations at takeoff and landing conditions to provide insight into the effect of different wing and propeller designs on the realizable effective maximum lift coefficient. Similar analyses were performed at the cruise condition to ensure that drag targets are attainable. Results indicate that this configuration shows great promise to drastically improve the efficiency of small aircraft.
Effects of Increasing Drag on Conjunction Assessment
NASA Technical Reports Server (NTRS)
Frigm, Ryan Clayton; McKinley, David P.
2010-01-01
Conjunction Assessment Risk Analysis relies heavily on the computation of the Probability of Collision (Pc) and the understanding of the sensitivity of this calculation to the position errors as defined by the covariance. In Low Earth Orbit (LEO), covariance is predominantly driven by perturbations due to atmospheric drag. This paper describes the effects of increasing atmospheric drag through Solar Cycle 24 on Pc calculations. The process of determining these effects is found through analyzing solar flux predictions on Energy Dissipation Rate (EDR), historical relationship between EDR and covariance, and the sensitivity of Pc to covariance. It is discovered that while all LEO satellites will be affected by the increase in solar activity, the relative effect is more significant in the LEO regime around 700 kilometers in altitude compared to 400 kilometers. Furthermore, it is shown that higher Pc values can be expected at larger close approach miss distances. Understanding these counter-intuitive results is important to setting Owner/Operator expectations concerning conjunctions as solar maximum approaches.
Drag reduction on liquid infused superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Kim, Jeong-Hyun; Rothstein, Jonathan
2014-11-01
The drag reduction on liquid infused superhydrophobic surfaces was measured through a microchannel. The microfluidic device consisted of two halves, a superhydrophobic surface and a microchannel, respectively. The superhydrophobic surface was created from a silicon wafer with ridge patterns 30 to 60 microns in width and spacing generated by a standard photolithography. A low viscosity, immiscible, incompressible silicone oil was filled to the gaps of the superhydrophobic surfaces. Several microchannels varying in size from 100 to 200 microns were fabricated from PDMS with an inlet, outlet and two pressure ports. After flow coating the superhydrophobic surface with a uniform film of oil, the two halves were aligned and clamped together and the pressure drop measured. A systematic study on drag reduction and slip length was performed by varying the viscosity ratio between the water and oil phase between 0 to 50. Several aqueous glycerin solutions with different viscosity were prepared. The slip length, pressure drop, and longevity of the oil phase were studied as a function of surface geometry, capillary number and the dispense volume. NSF CBET-1334962.
Drag Force Anemometer Used in Supersonic Flow
NASA Technical Reports Server (NTRS)
Fralick, Gustave C.
1998-01-01
To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.
Base drag prediction on missile configurations
NASA Technical Reports Server (NTRS)
Moore, F. G.; Hymer, T.; Wilcox, F.
1993-01-01
New wind tunnel data have been taken, and a new empirical model has been developed for predicting base drag on missile configurations. The new wind tunnel data were taken at NASA-Langley in the Unitary Wind Tunnel at Mach numbers from 2.0 to 4.5, angles of attack to 16 deg, fin control deflections up to 20 deg, fin thickness/chord of 0.05 to 0.15, and fin locations from 'flush with the base' to two chord-lengths upstream of the base. The empirical model uses these data along with previous wind tunnel data, estimating base drag as a function of all these variables as well as boat-tail and power-on/power-off effects. The new model yields improved accuracy, compared to wind tunnel data. The new model also is more robust due to inclusion of additional variables. On the other hand, additional wind tunnel data are needed to validate or modify the current empirical model in areas where data are not available.
Satellite Formation Maintenance Using Differential Atmospheric Drag
NASA Astrophysics Data System (ADS)
Bellefeuille, Francis
Satellite formation flying is a very promising field for future space missions as it holds many advantages over the common monolithic satellite. However, in order for the formations to be effective, a formation maintenance scheme is required to overcome perturbations arising from different sources. In this thesis the effect of atmospheric drag on a formation is examined. To do so the Schweighart and Sedwick equations, which describe the motion of a spacecraft, called deputy spacecraft, relative to another spacecraft, referred to as the chief spacecraft, placed in a circular orbit, are modified to account for atmospheric drag. The modified equations keep the effects arising from the oblateness of the Earth, known as the J2 effects, which were included in the model proposed by Schweighart and Sedwick. A similar set of equation is then developed for satellite formations placed in orbits of small eccentricity. A formation maintenance scheme which uses differential atmospheric as a means of control is then introduced. Numerical simulation results showing the evolution of formations through time with and without active control are also provided.
Glassy Spin Dynamics in Buckled Colloidal Crystal
NASA Astrophysics Data System (ADS)
Zhou, Di; Wang, Feng; Han, Yilong
Geometric frustration arises when lattice structure prevents simultaneous minimization of local interaction energies. It leads to highly degenerate ground states and complex behaviors in frustrated magnetic materials. Here we experimentally studied buckled 1.5-layer colloidal NIPA microgel crystals confined between parallel plates. Spheres buckled up and down are analogous to antiferromagnetic Ising spins. These spins on the distorted triangular lattice exhibit glassy dynamics at low temperatures. In particular, a spin only has 13 nearest-neighbor configurations, which enables to reveal the correlation between structures and dynamical heterogeneity. Soft modes also localize at high-energy regions. Further, we compared the colloidal spin system with kinetic constrained models (KCMs) and observed dynamical facilitation behaviors including excitations lines in space-time. Similar structures and glassy dynamics are also observed in our simulation of Coulomb charges on a triangular lattice. The work was supported by Grant RGC-GRF601613.
A fundamental study of drag and an assessment of conventional drag-due-to-lift reduction devices
NASA Technical Reports Server (NTRS)
Yates, J. E.; Donald, C. D.
1986-01-01
The integral conservation laws of fluid mechanics are used to assess the drag efficiency of lifting wings, both CTOL and various out-of-plane configurations. The drag-due-to-lift is separated into two major components: (1) the induced drag-due-to-lift that depends on aspect ratio but is relatively independent of Reynolds number; (2) the form drag-due-to-lift that is independent of aspect ratio but dependent on the details of the wing section design, planform and Reynolds number. For each lifting configuration there is an optimal load distribution that yields the minimum value of drag-due-to-lift. For well designed high aspect ratio CTOL wings the two drag components are independent. With modern design technology CTOL wings can be (and usually are) designed with a drag-due-to-lift efficiency close to unity. Wing tip-devices (winglets, feathers, sails, etc.) can improve drag-due-to-lift efficiency by 10 to 15% if they are designed as an integral part of the wing. As add-on devices they can be detrimental. It is estimated that 25% improvements of wing drag-due-to-lift efficiency can be obtained with joined tip configurations and vertically separated lifting elements without considering additional benefits that might be realized by improved structural efficiency. It is strongly recommended that an integrated aerodynamic/structural approach be taken in the design of (or research on) future out-of-plane configurations.
The effects of radiation drag on radial, relativistic hydromagnetic winds
NASA Technical Reports Server (NTRS)
Li, Zhi-Yun; Begelman, Mitchell C.; Chiueh, Tzihong
1992-01-01
The effects of drag on an idealized relativistic MHD wind of radial geometry are studied. The astrophysical motivation is to understand the effects of radiation drag on the dynamics of a jet or wind passing through the intense radiation field of an accreting compact object. From a critical point analysis, it is found that a slow magnetosonic point can appear in a dragged flow even in the absence of gravitational force, as a result of a balance between the drag force and the combination of thermal pressure and centrifugal forces. As in the undragged case, the Alfven point does not impose any constraints on the flow. Although it is formally possible for a dragged flow to possess more than one fast magnetosonic point, it is shown that this is unlikely in practice. In the limit of a 'cold', centrifugally driven flow, it is shown that the fast magnetosonic point moves to infinite radius, just as in the drag-free case. For a given mass flux, the total energy output carried to infinity, and the final partition between the kinetic energy and the Poynting flux, are the same for the dragged and the drag-free flows. The main effects of radiation drag are to increase the amount of energy and angular momentum extracted from the source and to redistribute the regions where acceleration occurs in the flow. This is accomplished through the storage and release of magnetic energy, as a result of additional winding and compression of the field caused by the action of the drag. For a relativistic wind, the dissipated energy can exceed the final kinetic energy of the flow and may be comparable to the total flow energy (which is dominated by Poynting flux). The energy lost to radiation drag will appear as a Doppler-boosted beam of scattered radiation, which could dominate the background radiation if the flow is well-collimated.
Characterizing intra-exciton Coulomb scattering in terahertz excitations
Zybell, S.; Eßer, F.; Helm, M.; Bhattacharyya, J.; Winnerl, S.; Schneider, H.; Schneebeli, L.; Böttge, C. N.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.
2014-11-17
An intense terahertz field is applied to excite semiconductor quantum wells yielding strong non-equilibrium exciton distributions. Even though the relaxation channels involve a complicated quantum kinetics of Coulomb and phonon effects, distinct relaxation signatures of Coulomb scattering are identified within time-resolved photoluminescence by comparing the experiment with a reduced model that contains all relevant microscopic processes. The analysis uncovers a unique time scale for the Coulomb scattering directly from experiments and reveals the influence of phonon relaxation as well as radiative decay.
Positron scattering from hydrogen atom with screened Coulomb potentials
Ghoshal, Arijit; Nayek, Sujay; Kamali, M. Z. M.; Ratnavelu, K.
2014-03-05
Elastic positron-hydrogen collisions with screened Coulomb potentials have been investigated using a second-order distorted wave Born approximation in the momentum space. Two types of potentials have been considered, namely, static screened Coulomb potential and exponential cosine-screened Coulomb potential. Using a simple variationally determined hydrogenic wave function it has been possible to obtain the scattering amplitude in a closed form. A detailed study has been made on the differential and total cross sections in the energy range 20–300 eV.
Electron attraction mediated by Coulomb repulsion.
Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S
2016-07-21
One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter. PMID:27443742
Accelerated Monte Carlo Methods for Coulomb Collisions
NASA Astrophysics Data System (ADS)
Rosin, Mark; Ricketson, Lee; Dimits, Andris; Caflisch, Russel; Cohen, Bruce
2014-03-01
We present a new highly efficient multi-level Monte Carlo (MLMC) simulation algorithm for Coulomb collisions in a plasma. The scheme, initially developed and used successfully for applications in financial mathematics, is applied here to kinetic plasmas for the first time. The method is based on a Langevin treatment of the Landau-Fokker-Planck equation and has a rich history derived from the works of Einstein and Chandrasekhar. The MLMC scheme successfully reduces the computational cost of achieving an RMS error ɛ in the numerical solution to collisional plasma problems from (ɛ-3) - for the standard state-of-the-art Langevin and binary collision algorithms - to a theoretically optimal (ɛ-2) scaling, when used in conjunction with an underlying Milstein discretization to the Langevin equation. In the test case presented here, the method accelerates simulations by factors of up to 100. We summarize the scheme, present some tricks for improving its efficiency yet further, and discuss the method's range of applicability. Work performed for US DOE by LLNL under contract DE-AC52- 07NA27344 and by UCLA under grant DE-FG02-05ER25710.
Spatio-temporal correlations in Coulomb clusters
NASA Astrophysics Data System (ADS)
Ghosal, Amit; Ash, Biswarup; Chakrabarti, Jaydeb
Dynamical response of Coulomb-particles in nanoclusters are investigated at different temperatures characterizing their solid-like (Wigner molecule) and liquid-like behavior. The density correlations probe spatio-temporal relaxation, uncovering distinct behavior at multiple time scales in these systems. They show a stretched-Gaussian or stretched-exponential spatial decay at long times in circular and irregular traps. Interplay of confinement and long-range nature of interactions yields spatially correlated motion of the particles in string-like paths, leaving the system heterogeneous even at long times. While particles in a `solid' flow producing dynamic heterogeneities, their random motion in `liquid' defies central limit theorem. Distinguishing the two confinements, temperature dependent motional signatures serve as a criterion for the crossover between `solid' and `liquid'. The irregular Wigner molecule turns into a nearly homogeneous liquid over a much wider temperature window compared to the circular case. The temperature dependence of different relaxation time scales builds crucial insights. A phenomenological model, relating the unusual dynamics to the heterogeneous nature of the diffusivities in the system, captures much of the subtleties of our numerical simulations.
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.
2014-05-29
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods.more » We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.« less
Multilevel Monte Carlo simulation of Coulomb collisions
Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.
2014-05-29
We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε^{–2}) or (ε^{–2}(lnε)^{2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε^{–3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10^{–5}. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.
Deep inelastic scattering near the Coulomb barrier
Gehring, J.; Back, B.; Chan, K.
1995-08-01
Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.
Coulomb Collision Algorithms for Particle Codes
NASA Astrophysics Data System (ADS)
Cohen, Bruce
2006-04-01
This paper surveys some of the particle code algorithms used to model Coulomb collisions in fully ionized plasmas, e.g., pair-wise operators such as the Takizuka-Abe^1 scheme and extensions^2, Langevin equation collision operators^3,4, and partially linearized gyrokinetic collisions operators for strongly magnetized plasmas.^5,6,7 Some recent experience is reported.^8 Issues such as physics completeness, accuracy, and comparative algorithm performance are highlighted. 1. T. Takizuka and H. Abe, J. Comput. Phys. 25, 205 (1977). 2. K. Nanbu, Phys. Rev. E 55, 4642 (1997). 3. M.E. Jones, et al., J. Comp. Phys. 123, 169 (1996). 4. W.M. Manheimer, M. Lampe, and G. Joyce, et al., J. Comp. Phys. 138, 565 (1997). 5. X.Q. Xu and M.N. Rosenbluth, Phys. Fluids B 3, 627 (1991). 6. A.M. Dimits and B.I. Cohen, Phys. Rev. E 49, 709 (1994). 7. Z. Lin, W. M. Tang, and W. W. Lee, Phys.Plasmas 2, 2975 (August 1995). 8. B.I. Cohen, et al., ``Effects of ion-ion collisions and inhomogeneity in two-dimensional kinetic ion simulations of stimulated Brillouin backscattering,'' accepted for publication in Phys. Plasmas (2006).
Electron attraction mediated by Coulomb repulsion
NASA Astrophysics Data System (ADS)
Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S.
2016-07-01
One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed ‘excitonic’, promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the ‘glue’ that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.
NASA Astrophysics Data System (ADS)
Gebremedhin, Daniel H.; Weatherford, Charles A.
2015-02-01
This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ (x ) , and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.
Covariance analysis of differential drag-based satellite cluster flight
NASA Astrophysics Data System (ADS)
Ben-Yaacov, Ohad; Ivantsov, Anatoly; Gurfil, Pini
2016-06-01
One possibility for satellite cluster flight is to control relative distances using differential drag. The idea is to increase or decrease the drag acceleration on each satellite by changing its attitude, and use the resulting small differential acceleration as a controller. The most significant advantage of the differential drag concept is that it enables cluster flight without consuming fuel. However, any drag-based control algorithm must cope with significant aerodynamical and mechanical uncertainties. The goal of the current paper is to develop a method for examination of the differential drag-based cluster flight performance in the presence of noise and uncertainties. In particular, the differential drag control law is examined under measurement noise, drag uncertainties, and initial condition-related uncertainties. The method used for uncertainty quantification is the Linear Covariance Analysis, which enables us to propagate the augmented state and filter covariance without propagating the state itself. Validation using a Monte-Carlo simulation is provided. The results show that all uncertainties have relatively small effect on the inter-satellite distance, even in the long term, which validates the robustness of the used differential drag controller.
Simplified Models for the Drag Coefficient of a Pitched Baseball
ERIC Educational Resources Information Center
Kagan, David; Nathan, Alan M.
2014-01-01
The classic experiment to measure the drag coefficient involves dropping coffee filters. Wouldn't it be more fun to try something different? In fact, an experiment on the drag force is conducted nearly 4000 times a day during the baseball season and you have free access to this PITCHf/x data!
Simplified Models for the Drag Coefficient of a Pitched Baseball
NASA Astrophysics Data System (ADS)
Kagan, David; Nathan, Alan M.
2014-05-01
The classic experiment to measure the drag coefficient involves dropping coffee filters. Wouldn't it be more fun to try something different? In fact, an experiment on the drag force is conducted nearly 4000 times a day during the baseball season and you have free access to this PITCHf/x data!2
The economic impact of drag in general aviation
NASA Technical Reports Server (NTRS)
Neal, R. D.
1975-01-01
General aviation aircraft fuel consumption and operating costs are closely linked to drag reduction methods. Improvements in airplane drag are envisioned for new models; their effects will be in the 5 to 10% range. Major improvements in fuel consumption over existing turbofan airplanes will be the combined results of improved aerodynamics plus additional effects from advanced turbofan engine designs.
COPE AND DRAG PATTERNS, EACH IS USED AT SEPARATE TIMES ...
COPE AND DRAG PATTERNS, EACH IS USED AT SEPARATE TIMES TO CREATE INDIVIDUAL MOLD. HALVES FOR AN EXHAUST MANIFOLD CASTING SIT IN FRONT OF MATCHPLATE PATTERNS WITH BOTH COPE AND DRAG SIDES AFFIXED TO A SINGLE PLATE, USED TO CREATE BOTH MOLD HALVES AT THE SAME TIME, IN THE BACKGROUND. - Southern Ductile Casting Company, Mold Making, 2217 Carolina Avenue, Bessemer, Jefferson County, AL
STS-78 Drag Chute Deploy (side view)
NASA Technical Reports Server (NTRS)
1996-01-01
The drag chute pops open as the orbiter Columbia glides down Runway 33 of KSC's Shuttle Landing Facility. Main gear touchdown occurred at 8:36 a.m. EDT, July 7. A mission duration of 16 days, 21 hours and 47 minutes made STS-78 the longest Shuttle flight to date. The STS-78 crew numbered seven: Mission Commander Terence 'Tom' Henricks; Pilot Kevin R. Kregel; Payload Commander Susan J. Helms; Mission Specialists Richard M. Linnehan and Charles E. Brady Jr.; and Payload Specialists Jean-Jacques Favier, representing the French Space Agency (CNES) and Robert Brent Thirsk, of the Canadian Space Agency (CSA). The primary payload of the 78th Shuttle flight was the Life and Microgravity Spacelab (LMS).
STS-78 Drag Chute Deploy (front view)
NASA Technical Reports Server (NTRS)
1996-01-01
The drag chute pops open as the orbiter Columbia glides down Runway 33 of KSC's Shuttle Landing Facility. Main gear touchdown occurred at 8:36 a.m. EDT, July 7. A mission duration of 16 days, 21 hours and 47 minutes made STS-78 the longest Shuttle flight to date. The STS-78 crew numbered seven: Mission Commander Terence 'Tom' Henricks; Pilot Kevin R. Kregel; Payload Commander Susan J. Helms; Mission Specialists Richard M. Linnehan and Charles E. Brady Jr.; and Payload Specialists Jean-Jacques Favier, representing the French Space Agency (CNES) and Robert Brent Thirsk, of the Canadian Space Agency (CSA). The primary payload of the 78th Shuttle flight was the Life and Microgravity Spacelab (LMS).
Microscopic treatment of solute trapping and drag.
Humadi, Harith; Hoyt, J J; Provatas, Nikolas
2016-01-01
The long wavelength limit of a recent microscopic phase-field crystal (PFC) theory of a binary alloy mixture is used to derive an analytical approximation for the segregation coefficient as a function of the interface velocity, and relate it to the two-point correlation function of the liquid and the thermodynamic properties of solid and liquid phases. Our results offer the first analytical derivation of solute segregation from a microscopic model, and support recent molecular dynamics and numerical PFC simulations. Our results also provide an independent framework, motivated from classical density functional theory, from which to elucidate the fundamental nature of solute drag, which is still highly contested in the literature. PMID:26871012
Drag suppression in anomalous chiral media
NASA Astrophysics Data System (ADS)
Sadofyev, Andrey V.; Yin, Yi
2016-06-01
We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a nondissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon—the motion of the heavy impurity is frictionless, in analogy to the case of a superfluid. We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.
Drag reduction in turbulent MHD pipe flows
NASA Technical Reports Server (NTRS)
Orlandi, P.
1996-01-01
This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.
Dancing droplets: Contact angle, drag, and confinement
NASA Astrophysics Data System (ADS)
Benusiglio, Adrien; Cira, Nate; Prakash, Manu
2015-11-01
When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.
Boundary-layer control for drag reduction
NASA Technical Reports Server (NTRS)
Harvey, William D.
1988-01-01
Although the number of possible applications of boundary-layer control is large, a discussion is given only of those that have received the most attention recently at NASA Langley Research Center to improve airfoil drag characteristics. This research concerns stabilizing the laminar boundary layer through geometric shaping (natural laminar flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (laminar flow control, LFC) either through discrete slots or a perforated surface. At low Reynolds numbers, a combination of shaping and forced transition has been used to achieve the desired run of laminar flow and control of laminar separation. In the design of both natural laminar flow and laminar flow control airfoils and wings, boundary layer stability codes play an important role. A discussion of some recent stability calculations using both incompressible and compressible codes is given.
Cauchy Drag Estimation For Low Earth Orbiters
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Mashiku, Alinda K.
2015-01-01
Recent work on minimum variances estimators based on Cauchy distributions appear relevant to orbital drag estimation. Samples form Cauchy distributions which are part of a class of heavy-tailed distributions, are characterized by long stretches of fairly small variation, punctuated by large variations that are many times larger than could be expected from a Gaussian. Such behavior can occur when solar storms perturb the atmosphere. In this context, the present work describes an embedding of the scalar Idan-Speyer Cauchy Estimator to estimate density corrections, within an Extended Kalman Filter that estimates the state of a low Earth orbiter. In contrast to the baseline Kalman approach, the larger formal errors of the present approach fully and conservatively bound the predictive error distribution, even in the face of unanticipated density disturbances of hundreds of percent.
Combined riblet and lebu drag reduction system
NASA Technical Reports Server (NTRS)
Walsh, Michael J. (Inventor); Anders, John B. (Inventor); Hefner, Jerry N. (Inventor)
1987-01-01
The invention is a system of flow control devices which result in reduced skin friction on aerodynamic and hydrodynamic surfaces. The devices cause a breakup of large-scale disturbances in the boundary layer of the flow field. The riblet device acts to reduce disturbances near the boundary layer wall by the use of longitudinal striations forming V-shaped grooves. These grooves are dimensional on the order of the wall vortices and turbulent burst dimensions. The large eddy breakup device is a small strip or airfoil which is suspended in the upper region of the boundary layer. Various physical mechanisms cause a disruption of the large-scale vortices. The combination of the devices of this invention result in a substantial reduction in skin friction drag.
Viscous flow drag reduction by acoustic excitation
NASA Astrophysics Data System (ADS)
Nagel, Robert T.
1986-12-01
An experimental program in which the effectiveness of a single large eddy break up (LEBU) blade is enhanced by proper acoustic excitation is described. Acoustic waves are generated in response to the incident large scale eddies and directed at the blade trailing edge through the test surface floor below the manipulator blade. The acoustic input is phase locked to the incident flow. Control of the acoustic input apparently allows enhancement of the large eddy cancellation process leading to a decrease of skin friction coefficient. Control of this process with acoustic excitation indicates that vortex unwinding is the mechanism for large eddy destruction in the boundary layer. A deeper understanding of this phenomena could lead to better drag reduction technology and further understanding of the physics of the turbulent boundary layer.
Two Fluid Drag Instabilities in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Youdin, A. N.; Goodman, J.
2004-05-01
Planetesimal formation by either the gravitational instability or collisional agglomeration mechanism faces serious obstacles. Controversy exists over whether particle-stirring turbulence, which opposes gravitational collapse, or the inefficiency of sticking, particularly at extreme ratios of kinetic to binding energy, poses the more formidable hurdle. We present results on secular instabilities which concentrate particles in the absence of self-gravity when space densities are well below the Roche limit. This growth in turn could seed more rapid gravitational instabilities. We examine local normal modes of a Keplerian disk in which two fluids, representing gas and uniformly-sized solids, are coupled by a drag force directly proportional to relative velocity (as in Epstein's or Stokes' law). Our 3D model is laminar, contains no vertical stratification, and self-gravity is neglected. We work in the well-coupled limit where the particle stopping time is less than the orbital time. We find two varieties of axisymmetric unstable modes, both of which grow more slowly than the dynamical time. One is an overstable epicyclic oscillation that only grows for large vertical wavenumbers, while the secular mode is robustly unstable over a wide range of radial and vertical wavenumbers. The eigenfunctions exhibit substantial particle density perturbations. Growth rates increase as drag approaches marginal coupling, and also depend on the ratio of particle to gas density. Simpler systems in which motion is 2D, or rotation is ignored, are found to be stable because of the constraints imposed by gas incompressibility. Pending future study of stratified and/or viscous models, growth rates in our idealized model should not be taken literally. We therefore emphasize the physics behind this growth mechanism. AY and JG acknowledge support from NASA Origins grant NAG5-1164.
On boattail bodies of revolution having minimum wave drag
NASA Technical Reports Server (NTRS)
Harder, Keith C; Rennemann, Conrad, Jr
1956-01-01
The problem of determining the shape of slender boattail bodies of revolution for minimum wave drag has been reexamined. It was found that minimum solutions for Ward's slender-body drag equation can exist only for the restricted class of bodies for which the rate of change of cross-sectional area at the base is zero. In order to eliminate this restriction, certain higher order terms must be retained in the drag equation and isoperimetric relations. The minimum problem for the isoperimetric conditions of given length, volume, and base area is treated as an example. According to Ward's drag equation, the resulting body shapes have slightly less drag than those determined by previous investigators.
CME propagation: where does solar wind drag 'take over'?
NASA Astrophysics Data System (ADS)
Subramanian, P.
2013-12-01
Coronal mass ejections (CMEs) from the Sun are known to be acted upon by driving as well as drag forces. They are generally thought to be driven by Lorentz self-forces, while the drag is due to viscous interaction with the ambient solar wind. However, the typical heliocentric distances at which driving forces cease to be dominant (and solar wind drag becomes important) is not obvious for most CMEs. We use a recently developed microphysical model for solar wind viscous drag (Subramanian, Lara and Borgazzi 2012) together with data for driving forces from a well observed set of flux rope CMEs to answer this question. These results are important for building quantitative models for CME propagation, especially for those CMEs which are not fast enough for one to assume that they are acted upon primarily by drag forces.
Collisional effects on nonlinear ion drag force for small grains
Hutchinson, I. H.; Haakonsen, C. B.
2013-08-15
The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.
Wave associated anomalous drag during magnetic field reconnection
Mozer, F. S.; Wilber, M.; Drake, J. F.
2011-10-15
The anomalous drag, D, due to large amplitude plasma waves is used for the first time, in place of {eta}*j, to estimate dissipation at the sub-solar magnetopause and to determine the extent to which this drag accounts for the reconnection electric field. This anomalous drag is determined by measuring correlations of the fluctuations in the electric field and plasma density. Large amplitude electric fields occurred more than 60% of the time in the more than 100 sub-solar, low latitude magnetopause crossings of the THEMIS satellite. They occurred mainly near the magnetospheric separatrix in the form of electrostatic lower hybrid and whistler waves. The anomalous drag at the separatrix was generally <10% of the average reconnection electric field, and it was <1% of the field in the current sheet. Thus, anomalous drag due to waves is not a significant driver of reconnection or of the required dissipation at the sub-solar magnetopause.
Theoretical pressure distribution and wave drags for conical boattails
NASA Technical Reports Server (NTRS)
Jack, John R
1953-01-01
Afterbody pressure distributions and wave drag were calculated using a second-order theory for a variety of conical boattails at zero angle of attack. Results are presented for Mach numbers from 1.5 to 4.5, area ratios from 0.200 to 0.800, and boattail angle from 3 degrees to 11 degrees. The results indicate that for a given boattail angle, the wave drag decreases with increasing Mach number and area ratio. The wave drag, for a constant area ratio, increases with increasing boattail angle. For a specific Mach number, area ratio, and fineness ratio, a comparison of the wave-drag coefficients for conical, tangent-parabolic, and secant-parabolic boattails showed the conical boattail to have the smallest wave drag.
Airflow in Gravity Sewers - Determination of Wastewater Drag Coefficient.
Bentzen, Thomas Ruby; Østertoft, Kristian Kilsgaard; Vollertsen, Jes; Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning
2016-03-01
Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient was found. PMID:26931535
Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers
NASA Astrophysics Data System (ADS)
Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing
2016-03-01
Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin-orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.
Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots
NASA Astrophysics Data System (ADS)
Ardelt, P.-L.; Gawarecki, K.; Müller, K.; Waeber, A. M.; Bechtold, A.; Oberhofer, K.; Daniels, J. M.; Klotz, F.; Bichler, M.; Kuhn, T.; Krenner, H. J.; Machnikowski, P.; Finley, J. J.
2016-02-01
We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k .p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.
Thermodynamic properties of the magnetized Coulomb crystal lattices
NASA Astrophysics Data System (ADS)
Kozhberov, A. A.
2016-08-01
It is thought that Coulomb crystals of ions with hexagonal close-packed lattice may form in the crust of strongly-magnetized neutron stars (magnetars). In this work we are trying to verify this prediction assuming that the direction of the magnetic field corresponds to the minimum of the zero-point energy. We also continue a detailed study of vibration modes and thermodynamic properties of magnetized Coulomb crystals in a wide range of temperatures and magnetic fields. It is demonstrated that the total Helmholtz free energy of the body-centered cubic Coulomb crystal is always lower than that of the Coulomb crystal with hexagonal close-packed or face-centered cubic lattice, which casts doubt on the hypothesis above.
The generalized Coulomb interactions for relativistic scalar bosons
NASA Astrophysics Data System (ADS)
Zarrinkamar, S.; Panahi, H.; Rezaei, M.
2016-07-01
Approximate analytical solutions of Duffin-Kemmer-Petiau (DKP) equation are obtained for the truncated Coulomb, generalized Cornell, Richardson and Song-Lin potentials via the quasi-exact analytical ansatz approach.
Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets.
Gingras, M J P; McClarty, P A
2014-05-01
The spin ice materials, including Ho2Ti2O7 and Dy2Ti2O7, are rare-earth pyrochlore magnets which, at low temperatures, enter a constrained paramagnetic state with an emergent gauge freedom. Spin ices provide one of very few experimentally realized examples of fractionalization because their elementary excitations can be regarded as magnetic monopoles and, over some temperature range, spin ice materials are best described as liquids of these emergent charges. In the presence of quantum fluctuations, one can obtain, in principle, a quantum spin liquid descended from the classical spin ice state characterized by emergent photon-like excitations. Whereas in classical spin ices the excitations are akin to electrostatic charges with a mutual Coulomb interaction, in the quantum spin liquid these charges interact through a dynamic and emergent electromagnetic field. In this review, we describe the latest developments in the study of such a quantum spin ice, focusing on the spin liquid phenomenology and the kinds of materials where such a phase might be found. PMID:24787264
A New Hybrid STEP/Coulomb model for Aftershock Forecasting
NASA Astrophysics Data System (ADS)
Steacy, S.; Jimenez, A.; Gerstenberger, M.
2014-12-01
Aftershock forecasting models tend to fall into two classes - purely statistical approaches based on clustering, b-value, and the Omori-Utsu law; and Coulomb rate-state models which relate the forecast increase in rate to the magnitude of the Coulomb stress change. Recently, hybrid models combining physical and statistical forecasts have begun to be developed, for example by Bach and Hainzl (2012) and Steacy et al. (2013). The latter approach combined Coulomb stress patterns with the STEP (short-term earthquake probability) model by redistributing expected rate from areas with decreased stress to regions where the stress had increased. The chosen 'Coulomb Redistribution Parameter' (CRP) was 0.93, based on California earthquakes, which meant that 93% of the total rate was expected to occur where the stress had increased. The model was tested against the Canterbury sequence and the main result was that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. The authors suggested that the major reason for this discrepancy was uncertainty in the slip models and, particularly, in the geometries of the faults involved in each complex major event. Here we develop a variant of the STEP/Coulomb model in which the CRP varies based on the percentage of aftershocks that occur in the positively stressed areas during the forecast learning period. We find that this variant significantly outperforms both STEP and the previous hybrid model in almost all cases, even when the input Coulomb model is quite poor. Our results suggest that this approach might be more useful than Coulomb rate-state when the underlying slip model is not well constrained due to the dependence of that method on the magnitude of the Coulomb stress change.
Diffusion and Coulomb separation of ions in dense matter.
Beznogov, M V; Yakovlev, D G
2013-10-18
We analyze diffusion equations in strongly coupled Coulomb mixtures of ions in dense stellar matter. Strong coupling of ions in the presence of gravitational forces and electric fields (induced by plasma polarization in the presence of gravity) produces a specific diffusion current which can separate ions with the same A/Z (mass to charge number) ratios but different Z. This Coulomb separation of ions can be important for the evolution of white dwarfs and neutron stars. PMID:24182248
Renormalization in Coulomb-gauge QCD within the Lagrangian formalism
Niegawa, A.
2006-08-15
We study renormalization of Coulomb-gauge QCD within the Lagrangian, second-order, formalism. We derive a Ward identity and the Zinn-Justin equation, and, with the help of the latter, we give a proof of algebraic renormalizability of the theory. Through diagrammatic analysis, we show that, in the strict Coulomb gauge, g{sup 2}D{sup 00} is invariant under renormalization. (D{sup 00} is the time-time component of the gluon propagator.)
Analysis and results of the 104Sn Coulomb excitation experiment
NASA Astrophysics Data System (ADS)
Guastalla, G.; DiJulio, D. D.; Górska, M.; Cederkäll, J.; Boutachkov, P.; Golubev, P.; Pietri, S.; Grawe, H.; Nowacki, F.; Algora, A.; Ameil, F.; Arici, T.; Atac, A.; Bentley, M. A.; Blazhev, A.; Bloor, D.; Brambilla, S.; Braun, N.; Camera, F.; Domingo Pardo, C.; Estrade, A.; Farinon, F.; Gerl, J.; Goel, N.; Grȩbosz, J.; Habermann, T.; Hoischen, R.; Jansson, K.; Jolie, J.; Jungclaus, A.; Kojouharov, I.; Knoebel, R.; Kumar, R.; Kurcewicz, J.; Kurz, N.; Lalović, N.; Merchan, E.; Moschner, K.; Naqvi, F.; Nara Singh, B. S.; Nyberg, J.; Nociforo, C.; Obertelli, A.; Pfützner, M.; Pietralla, N.; Podolyák, Z.; Prochazka, A.; Ralet, D.; Reiter, P.; Rudolph, D.; Schaffner, H.; Schirru, F.; Scruton, L.; Swaleh, T.; Taprogge, J.; Wadsworth, R.; Warr, N.; Weick, H.; Wendt, A.; Wieland, O.; Winfield, J. S.; Wollersheim, H. J.
2014-09-01
The analysis of the Coulomb excitation experiment conducted on 104Sn required a strict selection of the data in order to reduce the large background present in the γ-ray energy spectra and identify the γ-ray peak corresponding to the Coulomb excitation events. As a result the B(E2; 0+ → 2+) value could be extracted, which established the downward trend towards 100Sn and therefore the robustness of the N=Z=50 core against quadrupole excitations.
Diffusion and Coulomb Separation of Ions in Dense Matter
NASA Astrophysics Data System (ADS)
Beznogov, M. V.; Yakovlev, D. G.
2013-10-01
We analyze diffusion equations in strongly coupled Coulomb mixtures of ions in dense stellar matter. Strong coupling of ions in the presence of gravitational forces and electric fields (induced by plasma polarization in the presence of gravity) produces a specific diffusion current which can separate ions with the same A/Z (mass to charge number) ratios but different Z. This Coulomb separation of ions can be important for the evolution of white dwarfs and neutron stars.
Coulomb's Law Modification in Nonlinear and in Noncommutative Electrodynamics
NASA Astrophysics Data System (ADS)
Gaete, Patricio; Schmidt, Iván
We study the lowest-order modifications of the static potential for Born-Infeld electrodynamics and for the θ-expanded version of the noncommutative U(1) gauge theory, within the framework of the gauge-invariant but path-dependent variables formalism. The calculation shows a long-range correction (1/r5-type) to the Coulomb potential in Born-Infeld electrodynamics. However, the Coulomb nature of the potential (to order e2) is preserved in noncommutative electrodynamics.
NASA Astrophysics Data System (ADS)
Sahu, Sivabrata; Rout, G. C.
2016-06-01
We present here a tight-binding model study of generation of magnetism and pseudo-spin polarization in monolayer graphene arising due to substrate, impurity and Coulomb correlation effects. The model Hamiltonian contains the first-, second- and third-nearest-neighbor hopping integrals for π electrons of graphene besides substrate induced gap, impurity interactions and Coulomb correlation of electrons. The Hubbard type Coulomb interactions present in both the sub-lattices A and B are treated within the mean-field approximation. The electronic Green's functions are calculated by using Zubarev's technique and hence the electron occupancies of both sub-lattices are calculated for up and down spins separately. These four temperature dependent occupancies are calculated numerically and self-consistently. Then we have calculated the temperature dependent pseudo-spin polarization, ferromagnetic and anti-ferromagnetic magnetizations. We observe that there exists pseudo-spin polarization for lower Coulomb energy, u < 2.2t1 and pseudo-spin polarization is enhanced with substrate induced gap and impurity effect. For larger Coulomb energy u > 2.5t1, there exists pseudo-spin polarization (p); while ferromagnetic (m) and antiferromagnetic (pm) magnetizations exhibit oscillatory behavior. With increase of the substrate induced gap, the ferromagnetic and antiferromagnetic transition temperatures are enhanced with increase of the substrate induced gap; while polarization (p) is enhanced in magnitude only.
Eslami, L. Faizabadi, E.
2014-05-28
The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.
Spin polarization of excitons in organic multiferroic composites
NASA Astrophysics Data System (ADS)
Han, Shixuan; Yang, Liu; Gao, Kun; Xie, Shijie; Qin, Wei; Ren, Shenqiang
2016-06-01
Recently, the discovery of room temperature magnetoelectricity in organic charge transfer complexes has reignited interest in the multiferroic field. The solution processed, large-area and low cost organic semiconductor materials offer new possibilities for the functional all organic multiferroic devices. Here we report the spin polarization of excitons and charge transfer states in organic charge transfer composites by using extended Su-Schrieffer-Heeger model including Coulomb interaction and spin-flip effect. With the consideration of spin polarization, we suggest a possible mechanism for the origin of excited ferromagnetism.
Spin polarization of excitons in organic multiferroic composites
Han, Shixuan; Yang, Liu; Gao, Kun; Xie, Shijie; Qin, Wei; Ren, Shenqiang
2016-01-01
Recently, the discovery of room temperature magnetoelectricity in organic charge transfer complexes has reignited interest in the multiferroic field. The solution processed, large-area and low cost organic semiconductor materials offer new possibilities for the functional all organic multiferroic devices. Here we report the spin polarization of excitons and charge transfer states in organic charge transfer composites by using extended Su-Schrieffer-Heeger model including Coulomb interaction and spin-flip effect. With the consideration of spin polarization, we suggest a possible mechanism for the origin of excited ferromagnetism. PMID:27334680
Aftershock triggering by complete Coulomb stress changes
Kilb, Debi; Gomberg, J.; Bodin, P.
2002-01-01
We examine the correlation between seismicity rate change following the 1992, M7.3, Landers, California, earthquake and characteristics of the complete Coulomb failure stress (CFS) changes (??CFS(t)) that this earthquake generated. At close distances the time-varying "dynamic" portion of the stress change depends on how the rupture develops temporally and spatially and arises from radiated seismic waves and from permanent coseismic fault displacement. The permanent "static" portion (??CFS) depends only on the final coseismic displacement. ??CFS diminishes much more rapidly with distance than the transient, dynamic stress changes. A common interpretation of the strong correlation between ??CFS and aftershocks is that load changes can advance or delay failure. Stress changes may also promote failure by physically altering properties of the fault or its environs. Because it is transient, ??CFS(t) can alter the failure rate only by the latter means. We calculate both ??CFS and the maximum positive value of ??CFS(t) (peak ??CFS(t)) using a reflectivity program. Input parameters are constrained by modeling Landers displacement seismograms. We quantify the correlation between maps of seismicity rate changes and maps of modeled ??CFS and peak ??CFS(t) and find agreement for both models. However, rupture directivity, which does not affect ??CFS, creates larger peak ??CFS(t) values northwest of the main shock. This asymmetry is also observed in seismicity rate changes but not in ??CFS. This result implies that dynamic stress changes are as effective as static stress changes in triggering aftershocks and may trigger earthquakes long after the waves have passed.
Efros-Shklovskii variable range hopping conductivity without Coulomb gap
NASA Astrophysics Data System (ADS)
Chen, Tianran; Skinner, Brian
In doped semiconductors and Coulomb glasses, in the limit of weak coupling, the electron conductivity primarily proceeds by phonon-assisted tunneling or hopping between different sites through the insulating gaps that separate them. Electron conduction can occur both through nearest-neighbor hopping and through cotunneling of electrons between distant sites via a chain of intermediate virtual states. In the presence of some disorder, the latter mechanism dominates at low temperatures, where the length of the hops grows to optimize the conductivity. This transport mechanism was introduced by Mott, and is called variable range hopping. When the Coulomb interaction between localized electrons is taken into account, it can be shown that at a sufficiently low temperature, variable range hopping conductivity obeys the Efros-Shklovskii (ES) law, which has been observed in a number of amorphous semiconductors and granular metal systems at low temperatures. ES conductivity has been long understood as the result of a soft, Coulomb gap at the Fermi level. However, such a theory overlooks the presence of spatial correlations between site energies and their possible effects on electrical conductivity. In this talk, we show both analytically and numerically that in systems where spatial correlations must be taken into account, ES conductivity may persist far outside the Coulomb gap, in contrast to conventional transport theory for doped semiconductors and Coulomb glasses where ES conductivity only occurs within the Coulomb gap.
Poisson's equation solution of Coulomb integrals in atoms and molecules
NASA Astrophysics Data System (ADS)
Weatherford, Charles A.; Red, Eddie; Joseph, Dwayne; Hoggan, Philip
The integral bottleneck in evaluating molecular energies arises from the two-electron contributions. These are difficult and time-consuming to evaluate, especially over exponential type orbitals, used here to ensure the correct behaviour of atomic orbitals. In this work, it is shown that the two-centre Coulomb integrals involved can be expressed as one-electron kinetic-energy-like integrals. This is accomplished using the fact that the Coulomb operator is a Green's function of the Laplacian. The ensuing integrals may be further simplified by defining Coulomb forms for the one-electron potential satisfying Poisson's equation therein. A sum of overlap integrals with the atomic orbital energy eigenvalue as a factor is then obtained to give the Coulomb energy. The remaining questions of translating orbitals involved in three and four centre integrals and the evaluation of exchange energy are also briefly discussed. The summation coefficients in Coulomb forms are evaluated using the LU decomposition. This algorithm is highly parallel. The Poisson method may be used to calculate Coulomb energy integrals efficiently. For a single processor, gains of CPU time for a given chemical accuracy exceed a factor of 40. This method lends itself to evaluation on a parallel computer.
Fast and accurate Coulomb calculation with Gaussian functions.
Füsti-Molnár, László; Kong, Jing
2005-02-15
Coulomb interaction is one of the major time-consuming components in a density functional theory (DFT) calculation. In the last decade, dramatic progresses have been made to improve the efficiency of Coulomb calculation, including continuous fast multipole method (CFMM) and J-engine method, all developed first inside Q-Chem. The most recent development is the advent of Fourier transform Coulomb method developed by Fusti-Molnar and Pulay, and an improved version of the method has been recently implemented in Q-Chem. It replaces the least efficient part of the previous Coulomb methods with an accurate numerical integration scheme that scales in O(N2) instead of O(N4) with the basis size. The result is a much smaller slope in the linear scaling with respect to the molecular size and we will demonstrate through a series of benchmark calculations that it speeds up the calculation of Coulomb energy by several folds over the efficient existing code, i.e., the combination of CFMM and J-engine, without loss of accuracy. Furthermore, we will show that it is complementary to the latter and together the three methods offer the best performance for Coulomb part of DFT calculations, making the DFT calculations affordable for very large systems involving thousands of basis functions. PMID:15743222
The One-Dimensional Soft-Coulomb Problem and the Hard-Coulomb Limit
NASA Astrophysics Data System (ADS)
Weatherford, Charles; Gebremedhin, Daniel
2014-05-01
A new and efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundary. We also, for the first time, implement an adaptive step size choice for each element that is based on a Taylor series expansion. This algorithm is used to solve for the eigenpairs corresponding to the one-dimensional soft Coulomb potential, 1 /√{x2 +β2 } , which becomes numerically intractable as the softening parameter (β) approaches zero. We are able to maintain near machine accuracy for β as low as β =10-8 using 16 digit precision calculations. Our numerical results provide a new insight into the controversial one dimensional Hydrogen atom which is a limiting case of the soft Coulomb problem as β --> 0 . CAW was supported by the Defense Threat Reduction Agency, and CAW and DG were both supported by the National Nuclear Security Agency.
Observation of magnetic fragmentation in spin ice
NASA Astrophysics Data System (ADS)
Petit, S.; Lhotel, E.; Canals, B.; Ciomaga Hatnean, M.; Ollivier, J.; Mutka, H.; Ressouche, E.; Wildes, A. R.; Lees, M. R.; Balakrishnan, G.
2016-08-01
Fractionalized excitations that emerge from a many-body system have revealed rich physics and concepts, from composite fermions in two-dimensional electron systems, revealed through the fractional quantum Hall effect, to spinons in antiferromagnetic chains and, more recently, fractionalization of Dirac electrons in graphene and magnetic monopoles in spin ice. Even more surprising is the fragmentation of the degrees of freedom themselves, leading to coexisting and a priori independent ground states. This puzzling phenomenon was recently put forward in the context of spin ice, in which the magnetic moment field can fragment, resulting in a dual ground state consisting of a fluctuating spin liquid, a so-called Coulomb phase, on top of a magnetic monopole crystal. Here we show, by means of neutron scattering measurements, that such fragmentation occurs in the spin ice candidate Nd2Zr2O7. We observe the spectacular coexistence of an antiferromagnetic order induced by the monopole crystallization and a fluctuating state with ferromagnetic correlations. Experimentally, this fragmentation manifests itself through the superposition of magnetic Bragg peaks, characteristic of the ordered phase, and a pinch point pattern, characteristic of the Coulomb phase. These results highlight the relevance of the fragmentation concept to describe the physics of systems that are simultaneously ordered and fluctuating.
Spin accumulation assisted by the Aharonov-Bohm-Fano effect of quantum dot structures.
Gong, Wei-Jiang; Han, Yu; Wei, Guo-Zhu; Du, An
2012-01-01
: We investigate the spin accumulations of Aharonov-Bohm interferometers with embedded quantum dots by considering spin bias in the leads. It is found that regardless of the interferometer configurations, the spin accumulations are closely determined by their quantum interference features. This is mainly manifested in the dependence of spin accumulations on the threaded magnetic flux and the nonresonant transmission process. Namely, the Aharonov-Bohm-Fano effect is a necessary condition to achieve the spin accumulation in the quantum dot of the resonant channel. Further analysis showed that in the double-dot interferometer, the spin accumulation can be detailedly manipulated. The spin accumulation properties of such structures offer a new scheme of spin manipulation. When the intradot Coulomb interactions are taken into account, we find that the electron interactions are advantageous to the spin accumulation in the resonant channel. PMID:22985404
Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields
NASA Astrophysics Data System (ADS)
Klaiber, Michael; Yakaboylu, Enderalp; Müller, Carsten; Bauke, Heiko; Paulus, Gerhard G.; Hatsagortsyan, Karen Z.
2014-03-01
Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility.
Spin accumulation assisted by the Aharonov-Bohm-Fano effect of quantum dot structures
2012-01-01
We investigate the spin accumulations of Aharonov-Bohm interferometers with embedded quantum dots by considering spin bias in the leads. It is found that regardless of the interferometer configurations, the spin accumulations are closely determined by their quantum interference features. This is mainly manifested in the dependence of spin accumulations on the threaded magnetic flux and the nonresonant transmission process. Namely, the Aharonov-Bohm-Fano effect is a necessary condition to achieve the spin accumulation in the quantum dot of the resonant channel. Further analysis showed that in the double-dot interferometer, the spin accumulation can be detailedly manipulated. The spin accumulation properties of such structures offer a new scheme of spin manipulation. When the intradot Coulomb interactions are taken into account, we find that the electron interactions are advantageous to the spin accumulation in the resonant channel. PMID:22985404
Theory of intervalley Coulomb interactions in monolayer transition-metal dichalcogenides
NASA Astrophysics Data System (ADS)
Dery, Hanan
2016-08-01
Exciton optical transitions in transition-metal dichalcogenides offer unique opportunities to study rich many-body physics. Recent experiments in monolayer WSe2 and WS2 have shown that, while the low-temperature photoluminescence from neutral excitons and three-body complexes is suppressed in the presence of elevated electron densities or strong photoexcitation, new dominant peaks emerge in the low-energy side of the spectrum. I present a theory that elucidates the nature of these optical transitions showing the role of the intervalley Coulomb interaction. After deriving a compact dynamical form for the Coulomb potential, I calculate the self-energy of electrons due to their interaction with this potential. For electrons in the upper valleys of the spin-split conduction band, the self-energy includes a moderate redshift due to exchange and, most importantly, a correlation-induced virtual state in the band gap. The latter sheds light on the origin of the luminescence in monolayer WSe2 and WS2 in the presence of pronounced many-body interactions.
Ultrafast Coulomb-Induced Intervalley Coupling in Atomically Thin WS2.
Schmidt, Robert; Berghäuser, Gunnar; Schneider, Robert; Selig, Malte; Tonndorf, Philipp; Malić, Ermin; Knorr, Andreas; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf
2016-05-11
Monolayers of semiconducting transition metal dichalcogenides hold the promise for a new paradigm in electronics by exploiting the valley degree of freedom in addition to charge and spin. For MoS2, WS2, and WSe2, valley polarization can be conveniently initialized and read out by circularly polarized light. However, the underlying microscopic processes governing valley polarization in these atomically thin equivalents of graphene are still not fully understood. Here, we present a joint experiment-theory study on the ultrafast time-resolved intervalley dynamics in monolayer WS2. Based on a microscopic theory, we reveal the many-particle mechanisms behind the observed spectral features. We show that Coulomb-induced intervalley coupling explains the immediate and prominent pump-probe signal in the unpumped valley and the seemingly low valley polarization degrees typically observed in pump-probe measurements compared to photoluminescence studies. The gained insights are also applicable to other light-emitting monolayer transition metal dichalcogenides, such as MoS2 and WSe2, where the Coulomb-induced intervalley coupling also determines the initial carrier dynamics. PMID:27086935
Coulomb Blockade in Double Top Gated Si MOS Nano-Structures
NASA Astrophysics Data System (ADS)
Nordberg, Eric; Carroll, Malcolm; Lilly, Mike; Childs, Kent; Tracy, Lisa; Eng, Kevin; Grubbs, Robert; Wendt, Joel; Stevens, Jeff; Eriksson, Mark
2008-03-01
Recent demonstrations of Pauli blockaded transport in Si-based double quantum dots [1,2] have demonstrated that the basic processes involved in spin-to-charge conversion are observable in gated quantum dots in Si. In this work, we will present results on the fabrication and electrical transport properties of novel double top gated Si MOS nano-structures. Potential advantages include: variable 2DEG density, CMOS compatible processes, and relatively small vertical length scales. A silicon foundry was used for initial processing steps and produced MOS structures with a peak mobility of 12000 cm sq/V-s at electron densities of 1e12/cm̂2. Resulting structures, demonstrate Coulomb blockade, and we will discuss the effect of different geometries (vertical top gate spacing, and single and double dot designs) on Coulomb blockade in these Si MOS structures. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. (1) Nakul Shaji et. al. arXiv:0708.0794v1 (2) H. W. Liu et. al. arXiv:0707.3513v1
Interference drag in a simulated wing-fuselage juncture
NASA Technical Reports Server (NTRS)
Kubendran, L. R.; Mcmahon, H.; Hubbartt, J. E.
1984-01-01
The interference drag in a wing fuselage juncture as simulated by a flat plate and a body of constant thickness having a 1.5:1 elliptical leading edge is evaluated experimentally. The experimental measurements consist of mean velocity data taken with a hot wire at a streamwise location corresponding to 16 body widths downstream of the body leading edge. From these data, the interference drag is determined by calculating the total momentum deficit (momentum area) in the juncture and also in the two dimensional turbulent boundary layers on the flat plate and body at locations sufficiently far from the juncture flow effect. The interference drag caused by the juncture drag as measured at this particular streamwise station is -3% of the total drag due to the flat plate and body boundary layers in isolation. If the body is considered to be a wing having a chord and span equal to 16 body widths, the interference drag due to the juncture is only -1% of the frictional drag of one surface of such a wing.
Collisional Effects on Nonlinear Ion Drag Force for Small Grains
NASA Astrophysics Data System (ADS)
Hutchinson, I. H.; Haakonsen, C. B.
2013-10-01
Ion drag force arising from plasma flow past an embedded grain in a plasma is a vital part of dusty plasma dynamics. Ion-neutral collisions are often significant for experimental dusty plasmas. They are here included self-consistently in properly nonlinear comprehensive drag calculations, for the first time. The ion drag on a spherical grain is calculated using particle in cell codes SCEPTIC and COPTIC. Using ion velocity ``drift'' distribution appropriate for flow driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality level. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if nonlinear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided. Partially supported by NSF/DOE Grant DE-FG02-06ER54982 and Science Graduate Fellowship Program DE-AC05-06OR23100.
Variability of bed drag on cohesive beds under wave action
Safak, Ilgar
2016-01-01
Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.
Kinematic Pattern of the Drag-Flick: a Case Study
Gómez, María; López de Subijana, Cristina; Antonio, Raquel; Navarro, Enrique
2012-01-01
The drag-flick is more efficient than hits or pushes when a penalty corner situation is in effect in field hockey. Previous research has studied the biomechanical pattern of the drag-flick, trying to find the cues for an optimal performance. On the other hand, some other studies have examined the most effective visual pick-up of relevant information in shots and goalkeeper anticipation. The aim of this study was to analyse the individual differences in the drag-flick pattern in order to provide relevant information for goalkeepers. One female skilled drag-flicker participated in the study. A VICON optoelectronic system (Oxford Metrics, Oxford, UK) was used to capture the drag-flicks with six cameras. The results showed that the main significant differences between right and left shots (p<0.05) in the stick angles, stick minimum angular velocity and front foot-ball distance were when the front foot heel contacted the floor (T1) and at the minimum velocity of the stick, before the dragging action (T3). The findings showed that the most relevant information might be picked up at the ball-and-stick location before the dragging action. PMID:23487429
Effect of a triathlon wet suit on drag during swimming.
Toussaint, H M; Bruinink, L; Coster, R; De Looze, M; Van Rossem, B; Van Veenen, R; De Groot, G
1989-06-01
The effect of a triathlon wet suit on drag was studied in 12 subjects (eight male, four female) swimming at different velocities (1.10, 1.25 and 1.50 m.s-1). The active drag force was directly measured during front crawl swimming using a system of underwater push off pads instrumented with a force transducer (M.A.D. system: 6). Measurements were made when swimming over the system with and without a wet suit. A 14% reduction in drag (from 48.7 to 41.8 Newtons) is found at a swimming velocity of 1.25 m.s-1, which is a typical swimming speed for triathlon distances. At 1.50 m.s-1 a reduction in drag of 12% was observed, which suggests that the wearing of such a suit might be beneficial in conventional swimming events. The reduction in drag can explain the higher swimming velocities observed in triathletes using a wet suit. The effect of the reduction is probably largely due to an increased buoyancy inducing less frontal resistance. However, since the effect of the suit on the lighter female swimmers was not different from the effect on the heavier male swimmers, a reduction in friction drag and drag coefficient may also be significant. PMID:2733583
Kinematic pattern of the drag-flick: a case study.
Gómez, María; López de Subijana, Cristina; Antonio, Raquel; Navarro, Enrique
2012-12-01
The drag-flick is more efficient than hits or pushes when a penalty corner situation is in effect in field hockey. Previous research has studied the biomechanical pattern of the drag-flick, trying to find the cues for an optimal performance. On the other hand, some other studies have examined the most effective visual pick-up of relevant information in shots and goalkeeper anticipation. The aim of this study was to analyse the individual differences in the drag-flick pattern in order to provide relevant information for goalkeepers. One female skilled drag-flicker participated in the study. A VICON optoelectronic system (Oxford Metrics, Oxford, UK) was used to capture the drag-flicks with six cameras. The results showed that the main significant differences between right and left shots (p<0.05) in the stick angles, stick minimum angular velocity and front foot-ball distance were when the front foot heel contacted the floor (T1) and at the minimum velocity of the stick, before the dragging action (T3). The findings showed that the most relevant information might be picked up at the ball-and-stick location before the dragging action. PMID:23487429
Characterization of aerodynamic drag force on single particles: Final report
Kale, S.R.
1987-10-01
An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.
Existence and consequences of Coulomb pairing of electrons in a solid
Mahajan, S.M.; Thyagaraja, A.
1996-11-01
It is shown from first principles that, in the periodic potential of a crystalline solid, short-range (i.e., screened) binary Coulomb interactions can lead to a two-electron bound state. It is further suggested that these composite bosonic states (charge -2e, and typically spin zero) could mediate an effectively attractive interaction between pairs of conduction electrons close to the Fermi level. This necessarily short range attractive interaction, which is crucially dependent on the band structure of the solid, and is complementary to the phonon-mediated one, may provide a source for the existence and properties of short correlation-length electron pairs (analogous to but distinct from Cooper pairs) needed to understand high temperature superconductivity. Several distinctive and observable characteristics of the proposed pairing scheme are discussed.
Magnetoresistance effect of heat generation in a single-molecular spin-valve
NASA Astrophysics Data System (ADS)
Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing
2016-02-01
Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily.
Surface modification of clutch plates to reduce disengaged drag torque
NASA Astrophysics Data System (ADS)
Aphale, Chinar R.
2005-11-01
Viscous drag torque in disengaged clutches is a significant source of power loss in modern transportation. The main way to reduce this drag torque is to introduce air between the plates when disengaged without reducing the transmission fluid flow eventually needed for reengagement. Six different groove patterns are tested experimentally to determine which have the lowest drag characteristics. Our computations using Fluent showed that the contact angle made by oil with the stationary plate is critical in determining aeration initiation. Experiments coating the stationary plate with an oleophobic substance like Teflon, confirmed these simulations. We will show torque comparisons and visualization through a quartz disk acting as one of the clutch plates.
Ion drag on dust grains in electronegative plasmas
Denysenko, I.; Yu, M.Y.; Stenflo, L.; Azarenkov, N.A.
2005-04-15
The electric and the positive- and negative-ion drag forces on a dust grain in an electronegative complex plasma are investigated. It is shown that the number of locations where the drag forces balance the electric force is considerably larger than that in an electropositive plasma. The balance occurs in the so-called oscillation regime where the electric field oscillates in space. The effect of the negative-ion drag force on the dust grain can be substantial in a certain parameter range.
Three-dimensional viscous drag prediction for rotor blades
NASA Technical Reports Server (NTRS)
Chen, Ching S.
1989-01-01
The state-of-the-art in rotor blade drag prediction involves the use of two-dimensional airfoil tables to calculate the drag force on the blade. One of the most serious problems with the current methods is that they cannot be used for airfoils that have yet to be tested. Most of the drag prediction methods also do not take the Reynolds number or the rotational effects of the blade into account, raising doubts about the accuracy of the results. These problems are addressed with the development of an analytical method which includes the shape of airfoil, the effects of Reynolds number, and the rotational motion of the blade.
Drag reduction obtained by modifying a standard truck
NASA Technical Reports Server (NTRS)
Sheridan, A. E.; Grier, S. J.
1978-01-01
A standard two-axle truck with a box-shaped cargo compartment was tested to determine whether significant reductions in aerodynamic drag could be obtained by modifying the front of the cargo compartment. The coastdown method was used to determine the total drag of the baseline vehicle, which had a square-cornered cargo box, and of several modified configurations. Test velocities ranged from 56.3 to 94.6 kilometers per hour (35 to 60 miles per hour). At 88.5 kilometers per hour (55 miles per hour), the aerodynamic drag reductions obtained with the modified configurations ranged from 8 to 30 percent.
Wind tunnel testing of low-drag airfoils
NASA Technical Reports Server (NTRS)
Harvey, W. Donald; Mcghee, R. J.; Harris, C. D.
1986-01-01
Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils.
Effect of guideway discontinuities on magnetic levitation and drag forces
Rossing, T.D.; Korte, R.; Hull, J.R. )
1991-11-15
Transients in the lift and drag forces on a NdFeB permanent magnet were observed as the magnet passed over various discontinuities in a rotating aluminum disk at velocities of 4 to 25 m/s. For full cuts in the disk, the amplitude of the lift and drag transients and the wave form of the drag transient depend on the width, and the amplitudes are much larger than for partial cuts. The use of a backing plate to join two cut segments is ineffective.
Acoustic effects on profile drag of a laminar flow airfoil
NASA Astrophysics Data System (ADS)
Shearin, John G.; Jones, Michael G.; Baals, Robert A.
1987-09-01
A two-dimensional laminar flow airfoil (NLF-0414) was subjected to high-intensity sound (pure tones and white noise) over a frequency range of 2 to 5 kHz, while immersed in a flow of 240 ft/sec (Rn of 3 million) in a quiet flow facility. Using a wake-rake, wake dynamic pressures were determined and the deficit in momentum was used to calculate a two dimensional drag coefficient. Significant increases in drag were observed when the airfoil was subjected to the high intensity sound at critical sound frequencies. However, the increased drag was not accompanied by movement of the transition location.
Spin-controlled mechanics in nanoelectromechanical systems
NASA Astrophysics Data System (ADS)
Radić, D.
2015-03-01
We consider a dc-electronic tunneling transport through a carbon nanotube suspended between normal-metal source and arbitrarily spin-polarized drain lead in the presence of an external magnetic field. We show that magnetomotive coupling between electrical current through the nanotube and its mechanical vibrations may lead to an electromechanical instability and give an onset of self-excited mechanical vibrations depending on spin polarization of the drain lead and frequency of vibrations. The self-excitation mechanism is based on correlation between the occupancy of quantized Zeeman-split electronic states in the nanotube and the direction of velocity of its mechanical motion. It is an effective gating effect by the presence of electron in the spin state which, through the Coulomb blockade, permits tunneling of electron to the drain predominantly only during a particular phase of mechanical vibration thus coherently changing mechanical momentum and leading into instability if mechanical damping is overcome.
Moderate lift-to-drag aeroassist
NASA Technical Reports Server (NTRS)
Florence, D. E.; Fischer, G.
1984-01-01
Significant performance benefits are realized via aerodynamic braking and/or aerodynamic maneuvering on return from higher altitude orbits to low Earth orbit. This approach substantially reduces the mission propellant requirements by using the aerodynamic drag, D, to brake the vehicle to near circular velocity and the aerodynamic lift, L, to null out accumulated errors as well as change the orbital inclination to that required for rendezvous with the Space Shuttle Orbiter. Broad concept evaluations were performed and the technology requirements and sensitivities for aeroassisted OTV's over a range of vehicle hypersonic L/D from 0.75 to 1.5 were systematically identified and assessed. The aeroassisted OTV is capable of evolving from an initial delivery only system to one eventually capable of supporting manned roundtrip missions to geosynchronous orbit. Concept screening was conducted on numerous configurations spanning the L/D = 0.75 to 1.5 range, and several with attractive features were identified. Initial payload capability was evaluated for a baseline of delivery to GEO, six hour polar, and Molniya (12 hours x 63.4 deg) orbits with return and recovery of the aeroassist orbit transfer vehicle (AOTV) at LEO. Evolutionary payload requirements that were assessed include a GEO servicing mission (6K up and 2K return) and a manned GEO mission (14K roundtrip).
Drag on intruder in dense granular flows
NASA Astrophysics Data System (ADS)
Zheng, Hu; Bares, Jonathan; Wang, Dong; Behringer, Robert
2015-11-01
We perform an experimental study on an intruder dragged at a constant force in a quasi-statically cyclic-sheared granular medium. A Teflon disk is embedded in a layer of bidisperse photoelastic disks. The granular medium is contained in a horizontal square cell, which can be deformed into a parallelogram with the same area to produce simple shear. We find that the forward motion of the intruder happens at the fragile state during shear reversals, while only reversible affine motion could be found at the Jammed state. There is a burst of non-affine motion for the granular particles at each shear reversal. For a range of packing fractions, the cumulative intruder displacement shows a linear increase proportional to the number of cycles of shear. To explain the behavior of intruder motion, we analyze the coordination number, density, affine and non-affine motion of disk-granular system variations as the shear strain. We acknowledge support from NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.
Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers
Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing
2016-03-02
Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon.more » The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Lastly, our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.« less
Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers
Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing
2016-01-01
Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics. PMID:26932316
Balash, Cheslav; Sterling, David; Binns, Jonathan; Thomas, Giles; Bose, Neil
2015-01-01
For prawn trawling systems, drag reduction is a high priority as the trawling process is energy intensive. Large benefits have occurred through the use of multiple-net rigs and thin twine in the netting. An additional positive effect of these successful twine-area reduction strategies is the reduced amount of otter board area required to spread the trawl systems, which leads to further drag reduction. The present work investigated the potential of redirecting the drag-strain within a prawn trawl away from the wings and the otter boards to the centre line of the trawl, where top and bottom tongues have been installed, with an aim to minimise the loading/size of the otter boards required to spread the trawl. In the system containing the new 'W' trawl, the drag redirected to the centre-line tongues is transferred forward through a connected sled and towing wires to the trawler. To establish the extent of drag redirection to the centre-line tongues and the relative drag benefits of the new trawl system, conventional and 'W' trawls of 3.65 m headline length were tested firstly over a range of spread ratios in the flume tank, and subsequently at optimum spread ratio in the field. The developed 'W' trawl effectively directed 64% of netting-drag off the wings and onto the centre tongues, which resulted in drag savings in the field of ∼20% for the associated 'W' trawl/otter-board/sled system compared to the traditional trawl/otter-board arrangement in a single trawl or twin rig configuration. Furthermore, based on previously published data, the new trawl when used in a twin rig system is expected to provide approximately 12% drag reduction compared to quad rig. The twin 'W' trawl system also has benefits over quad rig in that a reduced number of cod-end/By-catch Reduction Device units need to be installed and attended each tow. PMID:25751251
Drag force and jet propulsion investigation of a swimming squid
NASA Astrophysics Data System (ADS)
Tabatabaei, Mahdi; Bahadır Olcay, Ali; Gokçen, Gökhan; Heperkan, Hasan A.
2015-05-01
In this study, CAD model of a squid was obtained by taking computer tomography images of a real squid. The model later placed into a computational domain to calculate drag force and performance of jet propulsion. The drag study was performed on the CAD model so that drag force subjected to real squid was revealed at squid's different swimming speeds and comparison has been made with other underwater creatures (e.g., a dolphin, sea lion and penguin). The drag coefficient (referenced to total wetted surface area) of squid is 0.0042 at Reynolds number 1.6x106 that is a %4.5 difference from Gentoo penguin. Besides, jet flow of squid was simulated to observe the flow region generated in the 2D domain utilizing dynamic mesh method to mimic the movement of squid's mantle cavity.
The computation of induced drag with nonplanar and deformed wakes
NASA Technical Reports Server (NTRS)
Kroo, Ilan; Smith, Stephen
1991-01-01
The classical calculation of inviscid drag, based on far field flow properties, is reexamined with particular attention to the nonlinear effects of wake roll-up. Based on a detailed look at nonlinear, inviscid flow theory, it is concluded that many of the classical, linear results are more general than might have been expected. Departures from the linear theory are identified and design implications are discussed. Results include the following: Wake deformation has little effect on the induced drag of a single element wing, but introduces first order corrections to the induced drag of a multi-element lifting system. Far field Trefftz-plane analysis may be used to estimate the induced drag of lifting systems, even when wake roll-up is considered, but numerical difficulties arise. The implications of several other approximations made in lifting line theory are evaluated by comparison with more refined analyses.
Wall temperature control of low-speed body drag
NASA Technical Reports Server (NTRS)
Lin, J. C.; Ash, R. L.
1986-01-01
The use of thermal means to control drag under turbulent boundary layer conditions is examined. Numerical calculations are presented for both skin friction and (unseparated) pressure drag for turbulent boundary-layer flows over a fuselage-like body with wall heat transfer. In addition, thermal control of separation on a bluff body is investigated. It is shown that a total drag reduction of up to 20 percent can be achieved for wall heating with a wall-to-total-freestream temperature ratio of 2. For streamlined slender bodies, partial wall heating of the forebody can produce almost the same order of total drag reduction as the full body heating case. For bluff bodies, the separation delay from partial wall cooling of the afterbody is approximately the same as for the fully cooled body.
Drag conveyors in 1913 head house, Spouts in background feed ...
Drag conveyors in 1913 head house, Spouts in background feed hopper scales and convey grain from hopper scales to storage bins. - Stewart Company Grain Elevator, 16 West Carson Street, Pittsburgh, Allegheny County, PA
BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE ...
BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE MAKES BOTH MOLD HALVES INDIVIDUALLY WHICH ARE LATER ROTATED, ASSEMBLED, AND LOWERED TO POURING CONVEYORS BY ASSISTING MACHINES. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL
Investigation into the mechanism of polymer thread drag reduction
NASA Astrophysics Data System (ADS)
Smith, Ronald E.; Tiederman, William G.
1990-01-01
The mechanism of drag reduction is investigated that occurs when a long chain, high molecular weight polymer is injected along the centerline of a pipe with a concentration high enough to form a coherent unbroken thread. The objective was to test the hypothesis that drag reduction is caused by the diffusion of polymer molecules from the thread into the near wall region of the pipe. The objective was realized through the measurement of the polymer concentration in the near wall region, the drag reduction and the radial location of the thread. The concentration was measured using a laser induced fluorescence technique where the polymer was marked with fluorescein dye. The experiments were conducted in a 3.18 cm diameter, clear acrylic pipe at Re = 40,000 using a 5000 ppm concentration solution of Separan AP 273 as the injectant. The drag reduction increased from zero at the point of injection to a maximum value about 200 diameters downstream of the injector.
Possibilities for drag reduction by boundary layer control
NASA Technical Reports Server (NTRS)
Naiman, I.
1946-01-01
The mechanics of laminar boundary layer transition are reviewed. Drag possibilities for boundary layer control are analyzed using assumed conditions of transition Reynolds number, inlet loss, number of slots, blower efficiency, and duct losses. Although the results of such analysis are highly favorable, those obtained by experimental investigations yield conflicting results, showing only small gains, and sometimes losses. Reduction of this data indicates that there is a lower limit to the quantity of air which must be removed at the slot in order to stabilize the laminar flow. The removal of insufficient air permits transition to occur while the removal of excessive amounts of air results in high power costs, with a net drag increases. With the estimated value of flow coefficient and duct losses equal to half the dynamic pressure, drag reductions of 50% may be obtained; with twice this flow coefficient, the drag saving is reduced to 25%.
Optimal propellantless rendez-vous using differential drag
NASA Astrophysics Data System (ADS)
Dell`Elce, L.; Kerschen, G.
2015-04-01
Optimization of fuel consumption is a key driver in the design of spacecraft maneuvers. For this reason, growing interest in propellant-free maneuvers is observed in the literature. Because it allows us to turn the often-undesired drag perturbation into a control force for relative motion, differential drag is among the most promising propellantless techniques for low-Earth orbiting satellites. An optimal control approach to the problem of orbital rendez-vous using differential drag is proposed in this paper. Thanks to the scheduling of a reference maneuver by means of a direct transcription, the method is flexible in terms of cost function and can easily account for constraints of various nature. Considerations on the practical realization of differential-drag-based maneuvers are also provided. The developments are illustrated by means of high-fidelity simulations including coupled 6-degree-of-freedom simulations and an advanced aerodynamic model.
Drag reduction of flexible beams in shear flow
NASA Astrophysics Data System (ADS)
Leclercq, Tristan; de Langre, Emmanuel
2015-11-01
Flexible systems bending in steady flows are known to experience a lesser drag compared to their rigid counterpart. This effect can be quantified by the Vogel exponent ν < 0 such that the total drag force on the structure increases as U 2 + ν instead of the classical quadratic drag-velocity relationship. In this work, an analytical expression of the Vogel exponent of cantilever beams in cross-flow is derived by dimensional analysis, in the case of shear flow with vertical self-similarity. Numerical simulations are also performed and show excellent agreement. The results of the self-similar case provides insight regarding the scaling of drag with respect to the magnitude of the flow in more complex situations. The example of reconfiguration in a Blasius boundary layer is discussed.
Slot injection for skin-friction drag reduction
NASA Technical Reports Server (NTRS)
Cary, A. M., Jr.; Bushnell, D. M.; Hefner, J. N.
1977-01-01
A description and analysis of slot injection in low-speed flow, slot injection in high-speed flow, a discussion of aircraft applications, and possibilities for future improvements of slot drag reduction capability are presented.
Correlation equation for the marine drag coefficient and wave steepness
NASA Astrophysics Data System (ADS)
Foreman, Richard J.; Emeis, Stefan
2012-09-01
This work questions, starting from dimensional considerations, the generality of the belief that the marine drag coefficient levels off with increasing wind speed. Dimensional analysis shows that the drag coefficient scales with the wave steepness as opposed to a wave-age scaling. A correlation equation is employed here that uses wave steepness scaling at low aspect ratios (inverse wave steepnesses) and a constant drag coefficient at high aspect ratios. Invoked in support of the correlation are measurements sourced from the literature and at the FINO1 platform in the North Sea. The correlation equation is then applied to measurements recorded from buoys during the passage of hurricanes Rita, Katrina (2005) and Ike (2008). Results show that the correlation equation anticipates the expected levelling off in deeper water, but a drag coefficient more consistent with a Charnock type relation is also possible in more shallower water. Some suggestions are made for proceeding with a higher-order analysis than that conducted here.
Dynamics of Drag Free Formations in Earth Orbit
NASA Technical Reports Server (NTRS)
Ploen, Scott R.; Scharf, Daniel P.; Hadaegh, Fred. Y.; Acikmese, A. Behcet
2004-01-01
In this paper the translational equations of motion of a formation of n spacecraft in Earth orbit, n(sub f) of which are drag-free spacecraft, are derived in a coordinate-free manner using the balance of linear momentum and direct tensor notation. A drag-free spacecraft consists of a spacecraft bus and a proof mass shielded from external disturbances in an internal cavity. By controlling the spacecraft so that the proof mass remains centered in the cavity, the spacecraft follows a purely gravitational orbit. The results described in this paper provide a first step toward coupling drag-free control technology with formation flying in order to mitigate the effect of differential aerodynamic drag on formation flying missions (e.g., Earth imaging applications) in low Earth orbit.