Science.gov

Sample records for spin dependent pick-up

  1. Picking up the pieces.

    PubMed

    Metcalfe, Sarah

    2014-11-01

    The idea of managing patients who have experienced unimaginable horror or suffering can be very daunting. As general practitioners (GPs) we are often the first port of call for people after a significant event or, alternatively, become involved when the patient emerges from the tertiary care system. Part of our role is to help 'pick up the pieces', whether the effects have been predominantly physical, psychological or a combination of both. Sometimes the person before you is fragmented, the pieces so fragile and far flung, that putting them back together seems an impossible task. PMID:25551866

  2. Electrostatic pick-ups for debunched beams

    NASA Astrophysics Data System (ADS)

    Gavrilov, S.; Reinhardt-Nickoulin, P.; Vasilyev, I.

    2014-10-01

    Pick-ups are one of the most widespread non-destructive diagnostics at charged particle accelerators. These detectors, also known as beam position monitors, are generally used for the center-of-mass position measurements of bunched beams. The paper describes the research results for infrequent case of debunched coasting beams operation. Measurement peculiarities and distinctive features of electronics are presented. The results of test bench-based measurements and 3D finite element simulations are discussed.

  3. Ion pick-up near the icy Galilean satellites

    NASA Astrophysics Data System (ADS)

    Volwerk, M.; Khurana, K. K.

    2010-12-01

    The ion pick-up near the icy Galilean satellites is studied using ion cyclotron waves. Using Galileo magnetometer data, we show evidence for the existence of ion cyclotron waves, which are generated by pick-up of freshly ionized particles. Near Europa, in the wake various kinds of ions are detected, which were already predicted to be present on the moon. Upstream of the moon there is evidence for water ion pick-up, which could facilitate the slow down of the plasma flow. Ganymede shows evidence for either water or oxygen pick up on the flanks of the magnetosphere. Callisto shows indication of hydrogen pick-up from its atmosphere.

  4. Pick-up, impact, and peeling

    NASA Astrophysics Data System (ADS)

    Singh, Harmeet; Hanna, James

    We consider a class of problems involving a one-dimensional, inextensible body with a propagating discontinuity (shock) associated with partial contact with a rigid obstacle providing steric, frictional, or adhesive forces. This class includes the pick-up and impact of an axially flowing string or cable, and the peeling of an adhesive tape. The dynamics are derived by applying an action principle to a non-material volume. The resulting boundary conditions provide momentum and energy jump conditions at the shock. These are combined with kinematic conditions on velocities and accelerations to obtain families of steady-state solutions parameterized by the shock velocity and momentum and energy sources. We find relationships between the jump in stress, injection of momentum, and dissipation of energy, which we apply to specific cases, and compare with other results in the literature on chain fountains, falling folded chains, and impulsively loaded cables. Time permitting, we will briefly discuss the possibility of using kinematic conditions and information about accelerating or otherwise unsteady forms of the adjoining bulk solutions to construct an equation of motion of the shock.

  5. Pick-Up Ion Instabilities at Planetary Magnetospheres

    NASA Technical Reports Server (NTRS)

    Strangeway, Robert J.; Sharber, James (Technical Monitor)

    2001-01-01

    wave modes can be drive unstable by the pressure anisotropy associated with the pick up ions. The pick ion velocity is perpendicular to the ambient magnetic field, and is generally much larger than the thermal velocity, at least initially. At its simplest, we found that the ion cyclotron waves are controlled by the parameters of the species in gyro-resonance with the wave. Thus, while the growth rates for the lower mass (higher gyro-frequency) pick-up ions are generally larger, we found that the heavier SO2+ ion cyclotron waves are generally preferred. This is because one of the effects of the wave instability is to diffuse the ions in pitch angle and energy. The lower mass ions therefore consist of both a ring of recently created pick-up ions, and a thermal background. This thermal background quenches the ion cyclotron instability. SO2+ is different, however. Being a molecule, the species can also dissociate. Our analysis suggests that the dissociation acts on a time scale comparable to or faster than the velocity space diffusion time scale. There are consequently no thermal SO2+ ions to quench the instability. We have also investigated the mirror-mode. This mode can at times grow more rapidly than the individual ion cyclotron waves. This is mainly because the mirror-mode can grow off the pressure anisotropy of the individual species with which the waves are in resonance. Lastly, as part of this effort we have begun to investigate the instability for obliquely propagating modes. Galileo observations show that at times the ion cyclotron waves are significantly elliptically polarized, and further the wave vector is at a large angle to the field, significant growth can occur for oblique propagation. Depending on the group velocity of the waves, it is possible that obliquely propagating modes have higher advective growth rate, but this has yet to be determined.

  6. "Micro-robots" pick up a glass bead

    SciTech Connect

    2011-01-01

    "Micro-robots", which are really collections of particles animated by magnetic fields, pick up a glass bead and move it around the screen. Each movement is precisely controlled. The "asters" were designed by Alexey Snezkho and Igor Aronson at Argonne National Laboratory. Video courtesy Nature Materials. Read the full story at http://go.usa.gov/KAT

  7. Strong Seasonal Variation of Martian Pick-up Ions and Reflected Ions

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Hara, Takuya; Lundin, Rickard; Dubinin, Edik; Fedorov, Andrei; Frahm, Rudy; Futaana, Yoshifumi; Holmstrom, Mats; Barabash, Stas

    2015-04-01

    Mars Express (MEX) has operated for more than 10 years in the environment of Mars, providing solar wind ion observations by the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment's ion mass analyzer (IMA). In the region just outside the bow shock of Mars, IMA frequently observes ring-like distributed ions that include both pick-up ions of exospheric origin and reflected solar wind by the bow shock (Yamauchi et al., 2012). Although there are some restrictions imposed when using the IMA measurements, the length and quality of the IMA data is sufficient to statistically diagnose the seasonal and solar cycle variation. According to this long-term observation, the observation probability of the ring-like distributed ions outside the bow shock with certain intensity strongly depends on the season, i.e., the flux of these ions varies by nearly one order of magnitude every two years. A careful examination reveals that the variation of pick-up ions is locked to the distance from the Sun rather than the tilt angle of the rotation axis. This indicates that the planetary scale variation of solar UV has a drastic effect on the formation of the pick-up ions. Solar cycle effects are not distinguishable partly because they are masked by the seasonal effects and partly because MEX and IMA are optimum for such observations due to the instrumental limitations (FOV and energy range) and the lack of the magnetometer experiment on the Mars Express spacecraft

  8. Mixed messages from benthic microbial communities exposed to nanoparticulate and ionic silver: 3D structure picks up nano-specific effects, while EPS and traditional endpoints indicate a concentration-dependent impact of silver ions.

    PubMed

    Kroll, Alexandra; Matzke, Marianne; Rybicki, Marcus; Obert-Rauser, Patrick; Burkart, Corinna; Jurkschat, Kerstin; Verweij, Rudo; Sgier, Linn; Jungmann, Dirk; Backhaus, Thomas; Svendsen, Claus

    2016-03-01

    Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag(+)) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential functions in stream ecosystems are unknown. The effects of exposure of periphyton to 2 and 20 μg/L Ag(+) (AgNO3) and AgNP (polyvinylpyrrolidone stabilised) were investigated in artificial indoor streams. The extracellular polymeric substances (EPS) and 3D biofilm structure, biomass, algae species, Ag concentrations in the water phase and bioassociated Ag were analysed. A strong decrease in total Ag was observed within 4 days. Bioassociated Ag was proportional to dissolved Ag indicating a rate limitation by diffusion across the diffusive boundary layer. Two micrograms per liter of AgNO3 or AgNP did not induce significant effects despite detectable bioassociation of Ag. The 20-μg/L AgNO3 affected green algae and diatom communities, biomass and the ratio of polysaccharides to proteins in EPS. The 20-μg/L AgNO3 and AgNP decreased biofilm volume to about 50 %, while the decrease of biomass was lower in 20 μg/L AgNP samples than the 20-μg/L AgNO3 indicating a compaction of the NP-exposed biofilms. Roughness coefficients were lower in 20 μg/L AgNP-treated samples. The more traditional endpoints (biomass and diversity) indicated silver ion concentration-dependent effects, while the newly introduced parameters (3D structure and EPS) indicated both silver ion concentration-dependent effects and effects related to the silver species applied.

  9. Mixed messages from benthic microbial communities exposed to nanoparticulate and ionic silver: 3D structure picks up nano-specific effects, while EPS and traditional endpoints indicate a concentration-dependent impact of silver ions.

    PubMed

    Kroll, Alexandra; Matzke, Marianne; Rybicki, Marcus; Obert-Rauser, Patrick; Burkart, Corinna; Jurkschat, Kerstin; Verweij, Rudo; Sgier, Linn; Jungmann, Dirk; Backhaus, Thomas; Svendsen, Claus

    2016-03-01

    Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag(+)) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential functions in stream ecosystems are unknown. The effects of exposure of periphyton to 2 and 20 μg/L Ag(+) (AgNO3) and AgNP (polyvinylpyrrolidone stabilised) were investigated in artificial indoor streams. The extracellular polymeric substances (EPS) and 3D biofilm structure, biomass, algae species, Ag concentrations in the water phase and bioassociated Ag were analysed. A strong decrease in total Ag was observed within 4 days. Bioassociated Ag was proportional to dissolved Ag indicating a rate limitation by diffusion across the diffusive boundary layer. Two micrograms per liter of AgNO3 or AgNP did not induce significant effects despite detectable bioassociation of Ag. The 20-μg/L AgNO3 affected green algae and diatom communities, biomass and the ratio of polysaccharides to proteins in EPS. The 20-μg/L AgNO3 and AgNP decreased biofilm volume to about 50 %, while the decrease of biomass was lower in 20 μg/L AgNP samples than the 20-μg/L AgNO3 indicating a compaction of the NP-exposed biofilms. Roughness coefficients were lower in 20 μg/L AgNP-treated samples. The more traditional endpoints (biomass and diversity) indicated silver ion concentration-dependent effects, while the newly introduced parameters (3D structure and EPS) indicated both silver ion concentration-dependent effects and effects related to the silver species applied. PMID:26122573

  10. Collision free pick up and movement of large objects

    SciTech Connect

    Drotning, W.D.; McKee, G.R.

    1998-08-01

    An automated system is described for the sensor-based precision docking and manipulation of large objects. Past work in the remote handling of large nuclear waste containers is extensible to the problems associated with the handling of large objects such as coils of flat steel in industry. Computer vision and ultrasonic proximity sensing as described here are used to control the precision docking of large objects, and swing damped motion control of overhead cranes is used to control the position of the pick up device and suspended payload during movement. Real-time sensor processing and model-based control are used to accurately position payloads.

  11. Cometary pick-up ions observed near Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Hovestadt, D.; Ipavich, F. M.; Scholer, M.; Klecker, B.

    1986-01-01

    The number and energy density of cometary water-group ions observed near Comet Giacobini-Zinner are derived using the rest-frame distribution functions. The data reveal that density profiles of inbound and outbound passes and their shape correlate with pick-up ion production model predictions. The lose rate and production rate of water-group cometary molecules calculated from predicted and measured density profiles are 2 x 10 to the -6th/sec and 2.6 x 10 to the 28th/sec respectively. The shapes of the distribution functions are examined to study the solar wind/cometary ions interaction process.

  12. Embryo production by ovum pick up from live donors.

    PubMed

    Galli, C; Crotti, G; Notari, C; Turini, P; Duchi, R; Lazzari, G

    2001-04-01

    Embryo production by in vitro techniques has increased steadily over the years. For cattle where this technology is more advanced and is applied more, the number of in vitro produced embryos transferred to final recipients was over 30,000 in 1998. An increasing proportion of in vitro produced embryos are coming from oocytes collected from live donors by ultrasound-guided follicular aspiration (ovum pick up, OPU). This procedure allows the repeated production of embryos from live donors of particular value and is a serious alternative to superovulation. Ovum pick up is a very flexible technique. It can be performed twice a week for many weeks without side effects on the donor's reproductive career. The donor can be in almost any physiological status and still be suitable for oocyte recovery. A scanner with a sectorial or convex probe and a vacuum pump are required. Collection is performed with minimal stress to the donor. An average of 8 to 10 oocytes are collected per OPU with an average production of 2 transferable embryos. The laboratory production of embryos from such oocytes does not differ from that of oocytes harvested at slaughter as the results after transfer to final recipients. For other species such as buffalo and horses OPU has been attempted similarly to cattle and data will be presented and reviewed. For small ruminants, laparotomy or laparoscopy seems the only reliable route so far to collect oocytes from live donors.

  13. Electric field by pick-up ions and electrons

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Behar, Etienne; Nilsson, Hans; Holmstrom, Mats

    2016-04-01

    Observations by the Rosetta Plasma Consortium (RPC) showed increasing distortion of the solar wind flow as Rosetta approached the Sun, i.e., as the density of the newly born ions increased. This indicates azimuthal momentum transfer from the solar wind to the newly born ions because they are displaced by the solar wind electric field up to the ion gyroradius this the solar wind velocity, and conservation of the momentum (center of the mass) makes the solar wind to azimuthally shift by "counter action" of these pick-up ion motions. To understand this azimuthal momentum transfer, it is inevitable to model the electric field by the displacement of these pick-up ions and electrons. Although the E×B drift does not make charge separation when the scale size is larger than the ion gyroradius, ions and electrons move in the opposite direction to each other within the short distance up to a gyroradius, and therefore, the charge separation occurs. Thus, the newly-ionized neutrals (ion-electron pairs) create the electric field in the opposite (shielding) direction to the solar wind electric field (like the ionopause of Venus and Mars). However, such a newly induced "shielding" electric field will simultaneously be weakened by the solar wind electrons because the solar wind is also moved by this shielding electric field to reduce it, in the same way as the plasma oscillation (time scale of about 10-4 s). In other words, the solar wind tries to maintain the solar wind electric field as far as the momentum allows. These two opposite effects must be combined when modelling the azimuthal electric field, and resultant ion/electron motions within a gyroradius, like the case for ROSETTA. Furthermore, the effect of the induced electric field by the pick-up ions and electrons will be different when the newly born ions are created as the result of photo-ionization and of the charge exchange because the electron effect is different between them. In the presentation, we model the

  14. Investor Outlook: Gene Therapy Picking up Steam; At a Crossroads.

    PubMed

    Schimmer, Joshua; Breazzano, Steven

    2016-09-01

    The gene therapy field continues to pick up steam with recent successes in a number of different therapeutic indications that highlight the potential for the platform. As the field continues to make progress, a growing data set of long-term safety and efficacy data will continue to define gene therapy's role, determining ultimately how widely it may be used beyond rare, serious diseases with high unmet needs. New technologies often take unanticipated twists and turns as patient exposure accumulates, and gene therapy may be no exception. That said, with many diseases that have no other treatment options beyond gene therapy and that present considerable morbidity and mortality, the field appears poised to withstand some minor and even major bumps in the road should they emerge. PMID:27632771

  15. Comparison of picked-up protons and water group ions upstream of Comet Halley's bow shock

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Coates, A. J.; Neubauer, F. M.

    1990-01-01

    The similarities and differences between the picked-up cometary protons and water-group (WG) ions upstream of the bow shock of Comet Halley are examined using measurements obtained by the ion mass spectrometer and plasma analyzer experiments on board Giotto. It was found that the dependencies of the pitch angle and the energy diffusion rates of the cometary protons and WG ions on the ion densities and on the angle alpha between the interplanetary field and the solar wind velocity vector were very different. This finding could not be explained in terms of presently available theories and models.

  16. Anticipatory Adjustments to Being Picked Up in Infancy

    PubMed Central

    Reddy, Vasudevi; Markova, Gabriela; Wallot, Sebastian

    2013-01-01

    Anticipation of the actions of others is often used as a measure of action understanding in infancy. In contrast to studies of action understanding which set infants up as observers of actions directed elsewhere, in the present study we explored anticipatory postural adjustments made by infants to one of the most common adult actions directed to them – picking them up. We observed infant behavioural changes and recorded their postural shifts on a pressure mat in three phases: (i) a prior Chat phase, (ii) from the onset of Approach of the mother’s arms, and (iii) from the onset of Contact. In Study 1, eighteen 3-month-old infants showed systematic global postural changes during Approach and Contact, but not during Chat. There was an increase in specific adjustments of the arms (widening or raising) and legs (stiffening and extending or tucking up) during Approach and a decrease in thrashing/general movements during Contact. Shifts in postural stability were evident immediately after onset of Approach and more slowly after Contact, with no regular shifts during Chat. In Study 2 we followed ten infants at 2, 3 and 4 months of age. Anticipatory behavioural adjustments during Approach were present at all ages, but with greater differentiation from a prior Chat phase only at 3 and 4 months. Global postural shifts were also more phase differentiated in older infants. Moreover, there was significantly greater gaze to the mother’s hands during Approach at 4 months. Early anticipatory adjustments to being picked up suggest that infants’ awareness of actions directed to the self may occur earlier than of those directed elsewhere, and thus enable infants’ active participation in joint actions from early in life. PMID:23840324

  17. PAL-XFEL cavity beam position monitor pick-up design and beam test

    NASA Astrophysics Data System (ADS)

    Lee, Sojeong; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-01

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  18. Not Just Being Lifted: Infants are Sensitive to Delay During a Pick-Up Routine.

    PubMed

    Fantasia, Valentina; Markova, Gabriela; Fasulo, Alessandra; Costall, Alan; Reddy, Vasudevi

    2015-01-01

    In the present study we observed whether infants show online adjustments to the mother's incipient action by looking at their sensitivity to changes as the pick-up unfolded. Twenty-three 3-month-old infants and their mothers were observed in the lab, where mothers were instructed (1) to pick-up their infants as they usually did (normal pick-up), and then (2) to delay the pick-up for 6 s after placing their hands on the infants' waist (delayed pick-up). In both Normal and Delayed conditions infant's body tension, affective displays and gaze shifts were coded during three phases: Approach, Contact, and Lift. Additionally, a measure of infants' head support in terms of head lag at the beginning and end of Lift was computed. Results showed that during normal pick-up infants tensed up their body during the Approach phase and increased their tension during contact, maintaining it through Lift; their head was also supported and in line with their body during Lift. When the pick-up was delayed, infants also tensed their body during Approach, yet this tension did not increase during the Contact phase and was significantly lower at Lift. Their head support was also lower in the Delayed condition and they shifted their gazes away from their mothers' face more often than in the Normal condition. These results suggest that infants are sensitive to changes of the timing of the pick-up sequence, which in turn may have affected their contribution to the interaction. PMID:26834674

  19. Not Just Being Lifted: Infants are Sensitive to Delay During a Pick-Up Routine

    PubMed Central

    Fantasia, Valentina; Markova, Gabriela; Fasulo, Alessandra; Costall, Alan; Reddy, Vasudevi

    2016-01-01

    In the present study we observed whether infants show online adjustments to the mother’s incipient action by looking at their sensitivity to changes as the pick-up unfolded. Twenty-three 3-month-old infants and their mothers were observed in the lab, where mothers were instructed (1) to pick-up their infants as they usually did (normal pick-up), and then (2) to delay the pick-up for 6 s after placing their hands on the infants’ waist (delayed pick-up). In both Normal and Delayed conditions infant’s body tension, affective displays and gaze shifts were coded during three phases: Approach, Contact, and Lift. Additionally, a measure of infants’ head support in terms of head lag at the beginning and end of Lift was computed. Results showed that during normal pick-up infants tensed up their body during the Approach phase and increased their tension during contact, maintaining it through Lift; their head was also supported and in line with their body during Lift. When the pick-up was delayed, infants also tensed their body during Approach, yet this tension did not increase during the Contact phase and was significantly lower at Lift. Their head support was also lower in the Delayed condition and they shifted their gazes away from their mothers’ face more often than in the Normal condition. These results suggest that infants are sensitive to changes of the timing of the pick-up sequence, which in turn may have affected their contribution to the interaction. PMID:26834674

  20. Seasonal Variation of Martian Pick-up Ions

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Hara, T.; Lundin, R.; Dubinin, E.; Fedorov, A.; Sauvaud, J.-A.; Frahm, R.; Ramstad, R.; Futaana, Y.; Holmstrom, M.; Barabash, S.

    2015-10-01

    Statistics of Mars Express (MEX) ion mass analyser(IMA) data shows that ion production from exospheric hydrogen depends more on the Sun-Mars distance than the solar cycle phase or winter-summer hemispheric difference. This indicates that the EUV is not the only driver of the production of cold, exospheric-origin ions, and that the extension of the exosphere is strongly influenced by total irradiance that carries the majority of the solar energy to the Martian atmosphere.

  1. OBSERVATIONS OF ISOTROPIC INTERSTELLAR PICK-UP IONS AT 11 AND 17 AU FROM NEW HORIZONS

    SciTech Connect

    Randol, B. M.; McComas, D. J.; Elliott, H. A.; Gosling, J. T.; Schwadron, N. A.

    2012-08-10

    We report new observations by the Solar Wind Around Pluto (SWAP) instrument on the New Horizons spacecraft of an energy-per-charge (E/q) spectrum of interstellar pick-up ions (PUIs) from an unprecedented heliocentric distance of 17 AU. This E/q spectrum is fit well by an isotropic PUI distribution function combined with the detailed response of the SWAP instrument. In contrast to earlier work, we are also able to fit an isotropic PUI model to an E/q spectrum measured by SWAP at 11.3 AU by explicitly including two additional effects. These are (1) the E/q-dependent geometric factor of SWAP, which increases with decreasing E/q owing to effects associated with the post-acceleration of particles exiting the electrostatic analyzer portion of the instrument; and (2) a solar wind distribution, the model spectrum of which contributes significantly to the low-E/q part of the overall model owing, presumably, to secondary particles produced within the instrument.

  2. Skills and offensive tactics used in pick-up basketball games.

    PubMed

    Wang, Jianyu; Liu, Wenhao; Moffit, Jeffrey

    2009-10-01

    The purpose of this study was to describe skills and offensive tactics frequently used in pick-up basketball games. 65 participants were recruited from public basketball courts. An observational instrument was developed to analyze the performances of pick-up games. Participants' performances were videotaped and coded. Results indicated that the passing skills most frequently observed in the games were chest pass, overhead pass, and bounce pass. For dribbling, crossover dribble and change-of-pace dribble were frequently observed. Jump shot, set shot, and layup were also frequently used. The offensive tactics frequently used included drive, cut, and set screen. The study may be beneficial for helping young people prepare to play pick-up basketball games.

  3. Skills and offensive tactics used in pick-up basketball games.

    PubMed

    Wang, Jianyu; Liu, Wenhao; Moffit, Jeffrey

    2009-10-01

    The purpose of this study was to describe skills and offensive tactics frequently used in pick-up basketball games. 65 participants were recruited from public basketball courts. An observational instrument was developed to analyze the performances of pick-up games. Participants' performances were videotaped and coded. Results indicated that the passing skills most frequently observed in the games were chest pass, overhead pass, and bounce pass. For dribbling, crossover dribble and change-of-pace dribble were frequently observed. Jump shot, set shot, and layup were also frequently used. The offensive tactics frequently used included drive, cut, and set screen. The study may be beneficial for helping young people prepare to play pick-up basketball games. PMID:20038001

  4. Lytle S. Adams, DDS (1883-1970): Nonstop Airmail Pick-up inventor.

    PubMed

    Christen, Arden G; Christen, Joan A

    2005-11-01

    Between 1923 and 1940, a restless, optimistic, self-styled, inventor, Lytle S. Adams, DDS (1883-1970) was tirelessly working to develop a nonstop, airmail delivery and pick-up system. He believed that his invention would enable air postal services to serve those smaller, more isolated communities that would otherwise be bypassed due to economic and operational reasons. For 17 years, Adams vigorously promoted his pick-up system in both public and private arenas, and he even obtained congressional support for his ideas. However, he was unable to arrange for long-term, hardheaded financial and engineering support. Consequently, the once promising Adams Nonstop Airmail Pick-up System had only temporary and limited success. His endeavor, like others which came before and after, initially appeared to be a sound idea in search of inspired realization.

  5. What Skills and Tactics Are Needed to Play Adult Pick-Up Basketball Games?

    ERIC Educational Resources Information Center

    Wang, Jianyu; Liu, Wenhao; Moffit, Jeffrey

    2010-01-01

    The purpose of this study was to examine skill levels and performance patterns of regular players of pick-up basketball games. By a survey, 65 participants were identified as regular players and participated in the study. An observational instrument used to analyze game performance of the participants was developed and both content and construct…

  6. Pick-up ion pressure gradients modulating the solar wind dynamics

    NASA Technical Reports Server (NTRS)

    Fahr, Hans J.; Fichtner, Horst

    1995-01-01

    Neutral interstellar atoms penetrate deeply into the inner heliosphere before they become ionized by various processes. As ions they are picked-up by the frozen-in magnetic fields and are convected outwards with the solar wind plasma. Thereby the primary plasma flow is mass, momentum, and energy-loaded. The dynamics of the distant multi-constituent solar wind is, however, not solely determined by these loading processes, but is also affected by the wave-mediated pick-up ion pressure gradients derivable from the pick-up ion distribution function. The action of the radial components of these pressures essentially counter balances the decelerating effect of the solar wind momentum loading, diminishing strongly the deceleration of the distant solar wind. Furthermore the latitudinal components of the pick-up ion pressures induce latitudinal forces acting on the multiconstituent solar plasma outflow and inducing nonradial bulk flow components. The enforced nonradial outflow geometry on the upwind hemisphere may partly be responsible for the magnetic flux deficit which was claimed since several years in the PIONEER-10 magnetic flux data.

  7. 41 CFR 102-41.230 - May SASPs pick up or store donated drug paraphernalia in their distribution centers?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false May SASPs pick up or store donated drug paraphernalia in their distribution centers? 102-41.230 Section 102-41.230 Public... SASPs pick up or store donated drug paraphernalia in their distribution centers? No, you must...

  8. 41 CFR 102-41.230 - May SASPs pick up or store donated drug paraphernalia in their distribution centers?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false May SASPs pick up or store donated drug paraphernalia in their distribution centers? 102-41.230 Section 102-41.230 Public... SASPs pick up or store donated drug paraphernalia in their distribution centers? No, you must...

  9. 41 CFR 102-41.230 - May SASPs pick up or store donated drug paraphernalia in their distribution centers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false May SASPs pick up or store donated drug paraphernalia in their distribution centers? 102-41.230 Section 102-41.230 Public... SASPs pick up or store donated drug paraphernalia in their distribution centers? No, you must...

  10. 41 CFR 102-41.230 - May SASPs pick up or store donated drug paraphernalia in their distribution centers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false May SASPs pick up or store donated drug paraphernalia in their distribution centers? 102-41.230 Section 102-41.230 Public... SASPs pick up or store donated drug paraphernalia in their distribution centers? No, you must...

  11. 41 CFR 102-41.230 - May SASPs pick up or store donated drug paraphernalia in their distribution centers?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false May SASPs pick up or store donated drug paraphernalia in their distribution centers? 102-41.230 Section 102-41.230 Public... SASPs pick up or store donated drug paraphernalia in their distribution centers? No, you must...

  12. Origin of the O(+) pick-up ions in the hehiosphere

    NASA Technical Reports Server (NTRS)

    Geiss, J.; Gloeckler, G.; Mall, U.

    1994-01-01

    The main sources for the ions in the interplanetary medium are the solar wind and the interstellar gas intruding into the heliosphere. Other sources, i.e. comets and planets can, however, contribute significantly locally. We present approximate expressions for deriving fluxes of pick-up ions originating from local neutral gas sources. Since the Io-torus is thought to be a relatively strong emitter of fast atoms, particular O and S, we used the O(+) data obtained by SWICS-Ulysses as a function of distance from Jupiter, both in and out-off the ecliptic plane in order to recognize a possible contribution of the Ionian source to the measured O(+). We find that - except for a very limited zone near the Jovian magnetosphere - the contribution of the Io-torus to the O(+) fluxes is minor, thus confirming our previous results on the pick-up H(+), He(+), N(+), O(+), and Ne(+) fluxes of interstellar origin.

  13. A fast and sensitive resonant Schottky pick-up for heavy ion storage rings

    NASA Astrophysics Data System (ADS)

    Nolden, F.; Hülsmann, P.; Litvinov, Yu. A.; Moritz, P.; Peschke, C.; Petri, P.; Sanjari, M. S.; Steck, M.; Weick, H.; Wu, J. X.; Zang, Y. D.; Zhang, S. H.; Zhao, T. C.

    2011-12-01

    A resonant pick-up for the detection of heavy ion Schottky noise was built into the ESR storage ring at GSI. A similar device will be installed at the cooler storage ring CSRe at IMP. Its purpose is a significant enhancement of the signal to noise ratio of Schottky spectra. A particular application of the new system is the measurement of circulating single ions. The resonator is based on a pillbox design. It is operated at air pressure, and is electromagnetically coupled to the vacuum tube of the storage ring via a cylinder-shaped ceramic gap. The resonant frequency can be changed by inserting plunger pistons. The resonator can easily be decoupled from the storage ring, if high beam impedances become a problem. The article describes the construction, electromagnetic properties of the pick-up as well as first experiments with heavy ion beams.

  14. Late information pick-up is preferred in basketball jump shooting.

    PubMed

    de Oliveira, Rita Ferraz; Oudejans, Raôul R D; Beek, Peter J

    2006-09-01

    In this study we examined the timing of optical information pick-up in basketball jump shooting using an intermittent viewing technique. We expected shooters to prefer to look at the basket as late as possible under the shooting style used. Seven experts with a high shooting style and five experts with a low shooting style took 50 jump shots while wearing liquid-crystal glasses that opened and closed at pre-set intervals. In principle, under this constraint, the participants could control when they saw the basket by actively modulating the timing of their movements. Analyses of the phasing of the movements relative to the events defined on the glasses revealed that low-style shooters preferred to see the basket just before the ball passed their line of sight, whereas high-style shooters tended to view the basket from underneath the ball after it passed their line of sight. Thus, most shooters preferred to pick up optical information as late as possible given the adopted shooting style. We conclude that, in dynamic far aiming tasks such as basketball jump shooting, late pick-up of optical information is critical for the successful guidance of movements.

  15. Sealed vacuum canister and method for pick-up and containment of material

    DOEpatents

    Stoutenburgh, R.R.

    1996-02-13

    A vacuum canister is described including a housing with a sealed vacuum chamber having a predetermined vacuum pressure therein and a valve having a first port for fluid communication with the vacuum chamber and a second port for receiving at least one of a fluid and a particulate material. The valve is operable between a first position to seal the vacuum chamber and retain the predetermined vacuum within the vacuum chamber, and a second position to access the vacuum chamber to permit vacuum fluid flow through the valve from the second port into the vacuum chamber. The vacuum canister, in the operation to pick up material with the valve in the second position, when the second port is located adjacent at least one of a fluid and a particulate material, is effective to displace through the valve at least one of a fluid and a particulate material into the housing. The vacuum canister is desirably suitable for picking up and containing hazardous material such as radioactive material, in which the vacuum canister includes a protective layer of lead having a predetermined thickness that is effective to shield radiation emitted from the radioactive material contained within the housing. Advantageously, the vacuum canister includes a vacuum means for establishing a predetermined vacuum pressure within the vacuum chamber. 6 figs.

  16. Sealed vacuum canister and method for pick-up and containment of material

    DOEpatents

    Stoutenburgh, Roger R.

    1996-01-01

    A vacuum canister including a housing with a sealed vacuum chamber having a predetermined vacuum pressure therein and a valve having a first port for fluid communication with the vacuum chamber and a second port for receiving at least one of a fluid and a particulate material. The valve is operable between a first position to seal the vacuum chamber and retain the predetermined vacuum within the vacuum chamber, and a second position to access the vacuum chamber to permit vacuum fluid flow through the valve from the second port into the vacuum chamber. In operation of the vacuum canister to pick up material with the valve in the second position, when the second port is located adjacent at least one of a fluid and a particulate material, is effective to displace through the valve at least one of a fluid and a particulate material into the housing. The vacuum canister is desirably suitable for picking up and containing hazardous material such as radioactive material, in which the vacuum canister includes a protective layer of lead having a predetermined thickness that is effective to shield radiation emitted from the radioactive material contained within the housing. Advantageously, the vacuum canister includes a vacuum means for establishing a predetermined vacuum pressure within the vacuum chamber.

  17. A contactless methodology of picking up micro-particles from rigid surfaces by acoustic radiation force.

    PubMed

    Jia, Kun; Yang, Keji; Fan, Zongwei; Ju, Bing-Feng

    2012-01-01

    Controlled movement and pick up of small object from a rigid surface is a primary challenge in many applications. In this paper, a contactless methodology of picking up micro-particles within deionized water from rigid surfaces by acoustic radiation force is presented. In order to achieve this, an acoustic radiation force was generated by 1.75 MHz transducers. A custom built setup facilitates the optimization of the sound field by varying the parameters such as sound source size and source position. The three-dimensional pressure distributions are measured and its relative sound field is also characterized accordingly. The standing wave field has been formed and it is mainly composed of two obliquely incident plane waves and their reflectors. We demonstrated the gripping and positioning of silica beads, SiO(2), and aluminum micro-particles of 100 μm to 500 μm in size with this method using acoustic radiation force. The acoustic radiation force generated is well controlled, contactless, and in the tens of nano-Newton range which allowed us to manipulate relative big micro objects such as MEMS components as well as moving objects such as living cells. The proposed method provided an alternative form of contactless operating environment with scalable dimensions suitable for the manipulating of small objects. This permits high-throughput processing and reduction in time required for MEMS assembling, cell biomechanics, and biotechnology applications.

  18. A contactless methodology of picking up micro-particles from rigid surfaces by acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Yang, Keji; Fan, Zongwei; Ju, Bing-Feng

    2012-01-01

    Controlled movement and pick up of small object from a rigid surface is a primary challenge in many applications. In this paper, a contactless methodology of picking up micro-particles within deionized water from rigid surfaces by acoustic radiation force is presented. In order to achieve this, an acoustic radiation force was generated by 1.75 MHz transducers. A custom built setup facilitates the optimization of the sound field by varying the parameters such as sound source size and source position. The three-dimensional pressure distributions are measured and its relative sound field is also characterized accordingly. The standing wave field has been formed and it is mainly composed of two obliquely incident plane waves and their reflectors. We demonstrated the gripping and positioning of silica beads, SiO2, and aluminum micro-particles of 100 μm to 500 μm in size with this method using acoustic radiation force. The acoustic radiation force generated is well controlled, contactless, and in the tens of nano-Newton range which allowed us to manipulate relative big micro objects such as MEMS components as well as moving objects such as living cells. The proposed method provided an alternative form of contactless operating environment with scalable dimensions suitable for the manipulating of small objects. This permits high-throughput processing and reduction in time required for MEMS assembling, cell biomechanics, and biotechnology applications.

  19. Loss of Water from Saturn's E-Ring Through Ion Pick-Up

    NASA Technical Reports Server (NTRS)

    Leisner, J. S.; Russell, C. T.; Dougherty, M. K.; Blanco-Cano, X.; Smith, E. J.; Tsurutani, B. T.

    2005-01-01

    One of the possible loss processes for Saturn s E-ring is ionization followed by acceleration by the electric field associated with the corotating magnetized plasma. It is possible to determine if this process is occurring by detecting electromagnetic waves at the gyrofrequency of water group ions. If the energy the particle gains in this pick-up process is sufficiently great, the picked up ions will generate ion cyclotron waves. Pioneer 11 and Voyager 1 both observed intervals of such waves associated with water group ions during their passes through Saturn s E-ring. Presently the magnetometer onboard the Cassini spacecraft is also seeing water group ion cyclotron oscillations. The Cassini data allow the spatial and temporal behavior of the waves to be mapped in ways not possible during the previous flybys. Analyses of these waves allow us to study the rate of mass loading and its latitudinal and local time variation. In conjunction with previous data, we can then determine the variation as the inclination of the ring to the Sun changes, in accordance with Saturn's seasons. These waves may be the clue to how Saturn powers its magnetosphere as the newly born ions could be the driver for the radial motion of the plasma and to how the E-ring may play the equivalent role to that of Io in the jovian magnetosphere.

  20. Seasonal variation of Martian pick-up ions: Evidence of breathing exosphere

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Hara, T.; Lundin, R.; Dubinin, E.; Fedorov, A.; Sauvaud, J.-A.; Frahm, R. A.; Ramstad, R.; Futaana, Y.; Holmstrom, M.; Barabash, S.

    2015-12-01

    The Mars Express (MEX) Ion Mass Analyser (IMA) found that the detection rate of the ring-like distribution of protons in the solar wind outside of the bow shock to be quite different between Mars orbital summer (around perihelion) and orbital winter (around aphelion) for four Martian years, while the north-south asymmetry is much smaller than the perihelion-aphelion difference. Further analyses using eight years of MEX/IMA solar wind data between 2005 and 2012 has revealed that the detection frequency of the pick-up ions originating from newly ionized exospheric hydrogen with certain flux strongly correlates with the Sun-Mars distance, which changes approximately every two years. Variation due to the solar cycle phase is not distinguishable partly because this effect is masked by the seasonal variation under the MEX capability of plasma measurements. This finding indicates that the variation in solar UV has a major effect on the formation of the pick-up ions, but this is not the only controlling factor.

  1. 41 CFR 102-36.135 - How much time do we have to pick up excess personal property that has been approved for transfer?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to pick up excess personal property that has been approved for transfer? 102-36.135 Section 102-36... pick up excess personal property that has been approved for transfer? Normally, you have 15 calendar days from the date of GSA allocation to pick up the excess personal property for transfer, and you...

  2. Titan's atmospheric sputtering and neutral torus produced by magnetospheric and pick-up ions

    NASA Astrophysics Data System (ADS)

    Michael, M.; Smith, H. T.; Johnson, R. E.; Shematovich, V.; Leblanc, F.; Ledvina, S.; Luhmann, J. H.

    As Titan does not possess an intrinsic magnetic field, Kronian magnetospheric ions can penetrate Titan's exobase as can locally produced pick-up ions (e.g. Shematovich et al. 2003). This can cause atmospheric loss and heating of the exobase region. Penetration by slowed and deflected magnetospheric ions and by the pick-up ions is described here using a 3-D Monte Carlo model (Michael et al. 2004). The incident ions can lead to the production of fast neutrals that collide with other atmospheric neutrals producing the ejection of both atomic and molecular nitrogen and heating. The recently calculated dissociation cross sections of N2 are used in the present model (Tully and Johnson 2002). The incident flux of slowed magnetospheric N+ ions and pick-up C2H5+ ions is estimated from the work of Brecht et al. (2000). These ions, which have energies less than 1.2 keV, were shown to be more efficient in ejecting material from Titan's atmosphere than the non-deflected co-rotating ions used earlier (Lammer et al. 1993). The loss rates are comparable or larger than those produced by photo-dissociation. Exobse heating rates are given and the loss rates of N and N2 are then used as a source of nitrogen for the Titan neutral torus. If atmospheric sputtering is important this torus will contain both atomic and molecular nitrogen and, therefore, will provide a distributed source of both atomic and molecular nitrogen ions that will be readily detected by Cassini (Smith et al. 2004) Acknowledgment: This work is supported by NASA's Planetary Atmospheres Program and by the CAPS-Cassini Instrument. Brecht, S.H., J.G. Luhmann, and D.J. Larson, J. Geophys. Res., 105, 13119, 2000. Lammer, H., and S.J. Bauer,. Planet. Space Sci., 41, 657, 1993. Shematovich, V.I.,et al, J. Geophys. Res., 108, 5086, 10.1029/2003JE002096, 2003. Michael, M. et al., submitted, Icarus, 2004. Smith, H.T., et al., Titan Aeronomy Workshop, Paris, January 7-9, 2004. Tully, C., R.E. Johnson, J. Chem. Phys. 117, 6556

  3. Pick up and remove particles by water droplet using dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao

    2014-11-01

    Particle removal is a crucial concern for many engineering processes, such as, glass cleaning and substrate cleaning, where the removal of nanoparticles is a great challenge. In order to clean the surface without causing any mechanical damage to it, we use water droplets to pick up and remove the nanoparticles. Dissipative particle dynamics simulation is used to model the interaction between the water droplet and nanoparticles, as well as the solid substrate surface. The hydrophilic nanoparticles are successfully cleaned up by water droplet, and the detailed motion of these particles together with droplet is also captured. The results show that the water droplet can be used as an efficient tool for removal of nanoparticles from a surface.

  4. On the inlet vortex system. [preventing jet engine damage caused by debris pick-up

    NASA Technical Reports Server (NTRS)

    Bissinger, N. C.; Braun, G. W.

    1974-01-01

    The flow field of a jet engine with an inlet vortex, which can pick up heavy debris from the ground and damage the engine, was simulated in a small water tunnel by means of the hydrogen bubble technique. It was found that the known engine inlet vortex is accompained by a vortex system, consisting of two inlet vortices (the ground based and the trailing one), secondary vortices, and ground vortices. Simulation of the ground effect by an inlet image proved that the inlet vortex feeds on free stream vorticity and can exist without the presence of a ground boundary layer. The structural form of the inlet vortex system was explained by a simple potential flow model, which showed the number, location, and the importance of the stagnation points. A retractable horizontal screen or an up-tilt of the engine is suggested as countermeasure against debris ingestion.

  5. Comparison of picked-up protons and water group ions upstream of comet Halley's bow shock

    SciTech Connect

    Neugebauer, M. ); Coates, A.J. ); Neubauer, F.M. )

    1990-11-01

    Data are presented on the properties of picked-up cometary protons and water group (WG) ions observed upstream of the bow shock of comet Halley by the ion mass spectrometer and Johnstone plasma analyzer experiments on the Giotto spacecraft. The number of WG ions exceeded the number of cometary protons at cometocentric distances r < 1.3 {times} 10{sup 6} km, while the WG mass density exceeded the proton mass density when r < 6 {times} 10{sup 6} km. The small scale variations of proton and WG densities were well correlated, which argues against the expanding halo model which has been used to explain the quasi-periodicity of energetic particles observed by VEGA and Giotto. Two parameters are used to describe the pitch angle distributions of the picked-up ions: a 10% width, which is the full angular width at 10% of the maximum of the pitch angle distribution, and a mean width. The cometocentric distance profiles of both parameters exhibited a great deal of scatter, and both parameters showed a steeper average radial gradient for WG ions than for protons. The 10% widths of WG ions were consistent with less than 10:1 anisotropies for r < 2.5 {times} 10{sup 6} km, but the proton anisotropy did not drop below 10:1 until the spacecraft entered the foreshock region at r = 1.4 {times} 10{sup 6} km. After subtraction of the variation in field direction, the mean width of the proton pitch angle distribution was nearly independent of distance everywhere outside the shock. The WG mean width, on the other hand, increased with increasing WG density and with increasing angle {alpha} between the interplanetary field and the solar wind velocity vector. No increase in shell radii, due to either adiabatic compression or first-order Fermi acceleration, could be discerned for either ion species until the spacecraft was very close to the bow shock.

  6. Escape of Nitrogen from Titan's atmosphere driven by magnetospheric and pick-up ions

    NASA Astrophysics Data System (ADS)

    Michael, M.; Liu, M.; Johnson, R. E.; Luhmann, J. G.; Shematovich, V. I.

    2003-05-01

    The nitrogen rich atmosphere of Titan is a significant source of the neutrals in Saturn's magnetosphere. As Titan does not posses an intrinsic magnetic field, energetic Kronian magnetospheric ions penetrate Titan's atmospheric exobase as can local pick-up ions (e.g. Shematovich et al. 2003). Penetration by energetic ions is described here using a 3-D Monte Carlo model. The incident ions can lead directly or indirectly to the production of fast neutrals that collide with other atmospheric neutrals. This leads to dissociation and the ejection of both atomic and molecular nitrogen. The recently calculated dissociation cross sections of N2 are used in the present model (Tully and Johnson 2002). The incident flux of slowed magentospheric N+ ions and pick-up C2H_5+ ions is estimated from the work of Brecht et al. (2000). These ions of energy less than 1.2 keV are shown to be more efficient in ejecting material from Titan's atmosphere than the higher energy corotating ions described in early estimates (Lammer et al. 1998). This incident flux of ions are used in the model and the results are used as a source of nitrogen for the Saturnian plasma torus. Acknowledgment: This work is supported by NASA:s Planetary Atmospheres Program. References Brecht, S.H., J.G. Luhmann, and D.J. Larson, J. Geophys. Res., 105, 13119, 2000. Lammer, H. W. Stumptner, and S.J. Bauer, Planet. Space Sci., 46, 1207, 1998. Shematovich, V.I., R.E. Johnson, M. Michael and J.G. Luhmann, J. Geophys. Res., in press, 2003. Tully, C., R.E. Johnson, J. Chem. Phys. 117, 6556-6561, 2002.

  7. Endocrinological profile and follicular development in cyclic ewes subjected to repeated ovum pick-up.

    PubMed

    Valasi, I; Theodosiadou, E; Fthenakis, G C; Papanikolaou, T; Deligiannis, C; Kalogiannis, D; Chadio, S; Amiridis, G S

    2013-05-01

    Blood concentrations of progesterone, FSH and oestradiol in Karagouniko ewes subjected to laparoscopic ovum pick-up (OPU) at specific stages of induced oestrous cycle, were measured. Twenty-four cyclic ewes were randomly allocated into four equal groups (A, B, C and D). Oestrus was synchronized with progestagen intravaginal sponges and detected by teaser rams (oestrus: day 0). In group A, during the induced oestrous cycle, OPU was performed on days 4, 9 and 14 (sessions A1, A2 and A3, respectively). In group B and group D, OPU was performed once, on day 9 and 14, respectively. In group C (controls), endoscopic observation of follicular population was performed three times, as in group A. Starting at sponge removal, progesterone was measured in blood samples collected on 22 daily occasions and oestradiol in samples collected on 27 occasions collected at various time-points starting 2h before to 24h after OPU. Follicular populations did not differ among A1, A2, A3 or between C1, C2, C3 and A1, A2, A3 or A1, B, D, respectively. Oocytes of better quality (category '1' or '2') were collected at A3 session compared with A1 (P<0.05). Progesterone concentration and oestrous cycle length did not differ among groups. Decreased oestradiol concentrations followed by FSH increase were recorded 3-5h after OPU. The results confirm the regulatory role of oestradiol on FSH secretion. The quality of collected oocytes was improved in subsequent pick-up sessions in the oestrous cycle. Moreover, OPU at specific stages of the luteal phase of the cycle, even when applied repeatedly, do not affect the normal oestrous cycle length of ewes.

  8. Generalized Jeans' Escape of Pick-Up Ions in Quasi-Linear Relaxation

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2011-01-01

    Jeans escape is a well-validated formulation of upper atmospheric escape that we have generalized to estimate plasma escape from ionospheres. It involves the computation of the parts of particle velocity space that are unbound by the gravitational potential at the exobase, followed by a calculation of the flux carried by such unbound particles as they escape from the potential well. To generalize this approach for ions, we superposed an electrostatic ambipolar potential and a centrifugal potential, for motions across and along a divergent magnetic field. We then considered how the presence of superthermal electrons, produced by precipitating auroral primary electrons, controls the ambipolar potential. We also showed that the centrifugal potential plays a small role in controlling the mass escape flux from the terrestrial ionosphere. We then applied the transverse ion velocity distribution produced when ions, picked up by supersonic (i.e., auroral) ionospheric convection, relax via quasi-linear diffusion, as estimated for cometary comas [1]. The results provide a theoretical basis for observed ion escape response to electromagnetic and kinetic energy sources. They also suggest that super-sonic but sub-Alfvenic flow, with ion pick-up, is a unique and important regime of ion-neutral coupling, in which plasma wave-particle interactions are driven by ion-neutral collisions at densities for which the collision frequency falls near or below the gyro-frequency. As another possible illustration of this process, the heliopause ribbon discovered by the IBEX mission involves interactions between the solar wind ions and the interstellar neutral gas, in a regime that may be analogous [2].

  9. Batting with occluded vision: an in situ examination of the information pick-up and interceptive skills of high- and low-skilled cricket batsmen.

    PubMed

    Müller, Sean; Abernethy, Bruce

    2006-12-01

    The capability of cricket batsmen of different skill levels to pick-up information from the pre-release movement pattern of the bowler, from pre-bounce ball flight, and from post-bounce ball flight was examined experimentally. Six highly skilled and six low-skilled cricket batsmen batted against three different leg-spin bowlers while wearing liquid crystal spectacles. The spectacles permitted the specific information available to the batsmen on each trial to be manipulated such that vision was either: (i) occluded at a point prior to the point of ball release (thereby only allowing vision of advance information from the bowler's delivery action); (ii) occluded at a point prior to the point of ball bounce (thereby permitting the additional vision of pre-bounce ball flight); or (iii) not occluded (thereby permitting the additional vision of post-bounce ball flight information). Measurement was made on each trial of both the accuracy of the definitive (forward-backward) foot movements made by the batsmen and their success (or otherwise) in making bat-ball contact. The analyses revealed a superior capability of the more skilled players to make use of earlier (pre-bounce) ball flight information to guide successful bat-ball interception, thus mirroring the greater use of prospective information pick-up by skilled performers observed in other aspects of batting and in other time-constrained performance domains.

  10. Influence of applied magnetic field strength and frequency response of pick-up coil on the magnetic barkhausen noise profile

    NASA Astrophysics Data System (ADS)

    Vashista, M.; Moorthy, V.

    2013-11-01

    The influence of applied magnetic field strength and frequency response of the pick-up coil on the shape of Magnetic Barkhausen Noise (MBN) profile have been studied. The low frequency MBN measurements have been carried out using 5 different MBN pick-up coils at two different ranges of applied magnetic field strengths on quenched and tempered (QT) and case-carburised and tempered (CT) 18CrNiMo7 steel bar samples. The MBN pick-up coils have been designed to obtain different frequency response such that the peak frequency response varies from ˜4 kHz to ˜32 kHz and the amplitude of low frequency signals decreases gradually. At lower applied magnetic field strength of ±14,000 A/m, all the pick-up coils produced a single peak MBN profile for both QT and CT sample. However, at higher applied magnetic field strength of ±22,000 A/m, the MBN profile showed two peaks for both QT and CT samples for pick-up coils with peak frequency response up to ˜17 kHz. Also, there is systematic reduction in peak 2 for QT sample and asymmetric reduction in the heights of peak 1 and peak 2 for CT sample with increase in peak frequency response of the pick-up coils. The decreasing sensitivity of pick-up coils with increasing peak frequency response to MBN signal generation is indicated by the gradual reduction in width of MBN profile and height of peak 2 in the QT sample. The drastic reduction in peak 1 as compared to peak 2 in the CT sample shows the effect of decreasing low frequency response of the pick-up coils on lowering skin-depth of MBN signal detection. This study clearly suggests that it is essential to optimise both maximum applied magnetic field strength and frequency response of the MBN pick-up coil for maximising the shape of the MBN profile for appropriate correlation with the magnetisation process and hence the material properties.

  11. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-06-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle (SC) from 2002 to 2013 to verify if SC-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection speed of PUIs. We found that the ionization losses have a noticeable effect on the derivation of the ISN inflow longitude based on the Gaussian fit to the crescent and cone peak locations. We conclude that the non-zero radial velocity of the ISN flow and the energy range of the PUI distribution function that is accumulated are of importance for a precise reproduction of the PUI count rate along the Earth orbit. However, the temporal and latitudinal variations of the ionization in the heliosphere, and particularly their variation on the SC time-scale, may significantly modify the shape of PUI cone and crescent and also their peak positions from year to year and thus bias by a few degrees the derived longitude of the ISN gas inflow direction.

  12. Integral dependent spin couplings in CI calculations

    NASA Technical Reports Server (NTRS)

    Iberle, K.; Davidson, E. R.

    1982-01-01

    Although the number of ways to combine Slater determinants to form spin eigenfunctions increases rapidly with the number of open shells, most of these spin couplings will make only a small contribution to a given state, provided the spin coupling is chosen judiciously. The technique of limiting calculations to the interacting subspace pioneered by Bunge (1970) was employed by Munch and Davidson (1975) to the vanadium atom. The use of an interacting space looses its advantage in more complex cases. However, the problem can always be reduced to only one interacting spin coupling by making the coefficients integral dependent. The present investigation is concerned with the performance of integral dependent interacting couplings, taking into account the results of three test calculations.

  13. On the stability of pick-up ion ring distributions in the outer heliosheath

    SciTech Connect

    Summerlin, Errol J.; Viñas, Adolfo F.; Moore, Thomas E.; Christian, Eric R.; Cooper, John F. E-mail: adolfo.figueroa-vinas-1@nasa.gov E-mail: eric.r.christian@nasa.gov

    2014-10-01

    The 'secondary energetic neutral atom (ENA)' hypothesis for the ribbon feature observed by the Interstellar Boundary Explorer (IBEX) posits that the neutral component of the solar wind continues beyond the heliopause and charge exchanges with interstellar ions in the Outer Heliosheath (OHS). This creates pick-up ions that gyrate about the draped interstellar magnetic field (ISMF) lines at pitch angles near 90° on the locus where the ISMF lies tangential to the heliopause and perpendicular to the heliocentric radial direction. This location closely coincides with the location of the ribbon feature according to the prevailing inferences of the ISMF orientation and draping. The locally gyrating ions undergo additional charge exchange and escape as free-flying neutral atoms, many of which travel back toward the inner solar system and are imaged by IBEX as a ribbon tracing out the locus described above. For this mechanism to succeed, the pick-up ions must diffuse in pitch angle slowly enough to permit secondary charge exchange before their pitch angle distribution substantially broadens away from 90°. Previous work using linear Vlasov dispersion analysis of parallel propagating waves has suggested that the ring distribution in the OHS is highly unstable, which, if true, would make the secondary ENA hypothesis incapable of rendering the observed ribbon. In this paper, we extend this earlier work to more realistic ring distribution functions. We find that, at the low densities necessary to produce the observed IBEX ribbon via the secondary ENA hypothesis, growth rates are highly sensitive to the temperature of the beam and that even very modest temperatures of the ring beam corresponding to beam widths of <1° are sufficient to damp the self-generated waves associated with the ring beam. Thus, at least from the perspective of linear Vlasov dispersion analysis of parallel propagating waves, there is no reason to expect that the ring distributions necessary to produce the

  14. Mars atmospheric loss and isotopic fractionation by pick-up-ion sputtering and photochemical escape

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.; Pepin, R. O.; Johnson, R. E.; Fox, J. L.

    1994-01-01

    We examine the effects of loss of constituents of the Martian atmosphere due to sputtering by solar-wind pick-up ions and photochemical escape during the last 3.8 billion years. Sputtering is capable of efficiently removing species from the upper atmosphere to space, including the light noble gases; nitrogen and oxygen are removed by both sputtering ad photochemical processes. Due to diffusive separation (by mass) above the homopause, removal from the top of the atmosphere will fractionate the isotopes of each species, with the lighter isotope being preferentially lost. This allows current measurements of the isotopic ratios to be used as a measure of the atmospheric evolution as integrated over geologic time. For carbon and oxygen, isotopic fractionation is buffered by exchange of atmospheric species with non-atmospheric reservoirs of CO2 and H2O. This allows us to determine the size of the non-atmospheric reservoirs which are capable of mixing with the atmosphere; these reservoirs can be CO2 absorbed in the regolith and/or H2O in the polar ice caps. Such an exchangeable reservoir is required in order to keep the fractionation of the atmospheric gases as low as is observed.

  15. Effect of donor age on the developmental competence of bovine oocytes retrieved by ovum pick up.

    PubMed

    Su, L; Yang, S; He, X; Li, X; Ma, J; Wang, Y; Presicce, G A; Ji, W

    2012-04-01

    To study the effect of donor age on oocyte developmental competence and steroid profiles, the crossbred cow (Murray Grey × Brahman) in Yunnan province of China were selected and divided into three groups according to its age. The three groups were young cows (n = 12; 12 months old), middle-aged cows (n = 15; parity: ≤3 calvings; age: 7-8 years old) and old cows (n = 10; parity: ≥8 calvings; age: ≥15 years old). Cumulus-oocyte complexes (COCs) were collected by 10 consecutive ovum pick up (OPU) sessions with a 4-day interval between each session, followed by in vitro maturation, fertilization and embryo development. Results showed that cleavage rates (CR) and blastocyst rates (BR) were higher in the young cows than those in the middle-aged and old cows (p < 0.05). CR and BR from COCs of the first and the fourth OPU sessions were lower than those from other sessions in the young cows and the middle-aged cows (p < 0.05), whereas the similar phenomenon was not observed in the old cows. Plasma concentrations of oestradiol were higher, and plasma concentrations of progesterone were lower before and during OPU sessions in the young cows compared with those in the same period in the middle-aged cows or the old cows (p < 0.01). In conclusion, donor age of oocytes could affect developmental competence of oocytes recovered by OPU through the action of steroid hormonal balance on follicle development.

  16. The velocity distributions of cometary protons picked up by the solar wind

    NASA Astrophysics Data System (ADS)

    Neugebauer, M.; Lazarus, A. J.; Balsiger, H.; Fuselier, S. A.; Neubauer, F. M.; Rosenbauer, H.

    1989-05-01

    Velocity space distributions of picked up cometary protons were measured by the ion mass spectrometer on the Giotto spacecraft upstream of the Halley bow shock. Large pitch angle anisotropies were observed at all distances greater than 1.2 x 10 to the 6th km from the comet. As expected, pitch angle diffusion was much more rapid than energy diffusion. When the field was quasi-parallel to the solar wind velocity vector, it was possible to discern the effect of pitch angle scattering by sunward propagating, field-aligned hydromagnetic waves, but there is evidence for other scattering modes as well. For quasi-perpendicular geometries, the pitch angle distribution was very asymmetric with phase space density peaks near pitch angles of 180 deg. It is suggested that the asymmetric pitch angle distribution may be caused by global rather than local wave-particle interactions. Just outside the shock, the pitch angle distribution was nearly isotropic and the radius of the pickup shell increased significantly.

  17. Pico Lantern: a pick-up projector for augmented reality in laparoscopic surgery.

    PubMed

    Edgcumbe, Philip; Pratt, Philip; Yang, Guang-Zhong; Nguan, Chris; Rohling, Rob

    2014-01-01

    The Pico Lantern is proposed as a new tool for guidance in laparoscopic surgery. Its miniaturized design allows it to be picked up by a laparoscopic tool during surgery and tracked directly by the endoscope. By using laser projection, different patterns and annotations can be projected onto the tissue surface. The first explored application is surface reconstruction. The absolute error for surface reconstruction using stereo endoscopy and untracked Pico Lantern for a plane, cylinder and ex vivo kidney is 2.0 mm, 3.0 mm and 5.6 mm respectively. The absolute error using a mono endoscope and a tracked Pico Lantern for the same plane, cylinder and kidney is 0.8mm, 0.3mm and 1.5mm respectively. The results show the benefit of the wider baseline produced by tracking the Pico Lantern. Pulsatile motion of a human carotid artery is also detected in vivo. Future work will be done on the integration into standard and robot-assisted laparoscopic surgery.

  18. INTERSTELLAR PICK-UP IONS OBSERVED BETWEEN 11 AND 22 AU BY NEW HORIZONS

    SciTech Connect

    Randol, B. M.; McComas, D. J.; Schwadron, N. A.

    2013-05-10

    We report new observations by the Solar Wind Around Pluto instrument on the New Horizons spacecraft, which measures energy per charge (E/q) spectra of solar wind and interstellar pick-up ions (PUIs) between 11 AU and 22 AU from the Sun. The data provide an unprecedented look at PUIs as there have been very few measurements of PUIs beyond 10 AU. We analyzed the PUI part of the spectra by comparing them to the classic Vasyliunas and Siscoe PUI model. Our analysis indicates that PUIs are usually well-described by this distribution. We derive parameters relevant to PUI studies, such as the ionization rate normalized to 1 AU. Our result for the average ionization rate between 11 and 12 AU agrees with an independently derived average value found during the same time. Later, we find a general increase in the ionization rate, which is consistent with the increase in solar activity. We also calculate the PUI thermal pressure, which appears to be roughly consistent with previous results. Through fitting of the solar wind proton peaks in our spectra, we derive solar wind thermal pressures. Based on our analysis, we predict a ratio of PUI thermal pressure to solar wind thermal pressure just inside the termination shock to be between 100 and >1000.

  19. 77 FR 36017 - Regulatory Guide 7.3, Procedures for Picking Up and Receiving Packages of Radioactive Material

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... contamination and radiation exposures from improperly packaged radioactive material. Since these requirements... COMMISSION Regulatory Guide 7.3, Procedures for Picking Up and Receiving Packages of Radioactive Material... Receiving Packages of Radioactive Material.'' The guide is being withdrawn because it is obsolete and...

  20. 77 FR 40385 - Withdrawal of Regulatory Guide 7.3; Procedures for Picking Up and Receiving Packages of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... Radioactive Material AGENCY: Nuclear Regulatory Commission. ACTION: Notice of withdrawal; correction. SUMMARY: This document is correcting the document published in the Federal Register on June 15, 2012 (77 FR... Commission) is withdrawing RG 7.3, ``Procedures for Picking Up and Receiving Packages of Radioactive...

  1. Ovum pick-up in dairy heifers: does it affect animal well-being?

    PubMed

    Petyim, S; Båge, R; Madej, A; Larsson, B

    2007-12-01

    The aim of the present study was to assess the effects of the ovum pick-up (OPU) technique on animal well-being. Eight dairy heifers were subjected to 4 months of twice-weekly OPU. The physiological response to OPU was recorded in four heifers at two sessions, at the beginning (time 1) and at the end (time 2) of the 4-month period. Heart rates were measured and blood was analysed for cortisol, vasopressin and PG-metabolite before, during (every 5 and 2(1/2) min), and after the OPU sessions. Reactions to each subprocedure of OPU ('restraint', 'epidural', 'device in' and 'puncture') were closely observed. In all heifers, reactions to the OPU procedures were also noted throughout the experimental period, and changes in routine behaviour, oestrous behaviour, body temperature, or other clinical traits were recorded. Subsequent to the experiment, the ovaries and tails were carefully inspected. At time 1, there was an insignificant increase in heart rate and cortisol throughout the OPU procedure. At time 2, these two parameters increased significantly, but both parameters declined to pre-OPU levels 10 min after completion of the procedure. No significant changes were seen in vasopressin or PG-metabolite at time 1 and time 2. Behaviourally, the heifers showed the strongest response to epidural anaesthesia, with a tendency for more intense response during the late 4-month sessions. The response to 'device in' and 'puncture' varied among individuals independently of time. There were no changes in the routine or oestrous behaviour throughout the experiment and no signs of clinical disorders. No major pathological changes were macroscopically seen in the ovaries and tails subsequent to the 4 months of OPU. In conclusion, the heifers showed a response to OPU, mostly to administration of epidural anaesthesia. However, we demonstrated that epidural anaesthesia can be administered in a way causing less discomfort.

  2. Oocyte recovery by ovum pick up and embryo production in river buffaloes (Bubalus bubalis).

    PubMed

    Manjunatha, B M; Ravindra, J P; Gupta, P S P; Devaraj, M; Nandi, S

    2008-08-01

    Ovum pick up (OPU) was conducted twice a week for 12 weeks in six cycling, non-descriptive (local breed), Indian buffaloes to study the efficiency of OPU on recovery of oocytes for embryo production. OPU was performed using an ultrasound equipment with a 5-MHz transvaginal transducer, a single-lumen, 18-gauge, 55-cm-long needle and a constant vacuum pressure of 110 mmHg. The number and size of follicles were determined before puncture. The recovered oocytes were graded, washed, matured for 24 h and then fertilized with frozen-thawed semen, followed by embryo culture on the oviductal monolayer. The mean number of follicles observed per animal per session did not differ between animals or between puncture sessions. A mean number of 3.62 +/- 0.32 mm follicles were observed, 2.90 +/- 0.15 mm follicles were punctured and 1.21 +/- 0.07 oocytes were recovered per animal per session, with an average recovery rate of 42%. Of the total oocytes recovered, 64% were suitable for in vitro embryo production (grade A + B) whereas 36% were classified to be of grades C + D. A mean number of 0.25 +/- 0.2 transferable embryos was produced in vitro per buffalo per session with a transferable embryo production rate of 32%. In conclusion, this study demonstrated that twice-a-week OPU could be applied repeatedly, without any adverse effects on the follicular growth and oocyte recovery and that recovered oocytes could be used for in vitro embryo production in buffaloes.

  3. Pick-up ion trajectories in a comet model. Master's thesis

    SciTech Connect

    Kimmel, C.D.

    1986-01-01

    In-situ measurements at Comets Giacobini Zinner and Halley reveal the presence of energetic cometary ions accelerated to energies at times over 100 keV. This study investigates how the underlying large-scale magnetic field and velocity structure of an idealized comet, as represented by an MHD simulation, leads to the acceleration of these particles. Single-particle trajectories were computed using the results from Fedder and coworkers MHD simulation of comets for the background magnetic and convection electric fields. For the author's numerical model, it is assumed that the particles are not scattered by fluctuations in the field and plasma. In this scatter-free limit, the trajectories of initially cold cometary ions which accelerated due to the large-scale convection electric field are more widely dispersed in the plane of the interplanetary magnetic field than in the orthogonal plane. Ions created closets to the nucleus focus into the tail current sheet, while those ions created in the outer coma diverge from the tail axis in response to gradient and curvature drifts. Those ions initially formed close to the nucleus have a lower energy, forming the cold plasma sheet, while the ions created in the outer coma have greater energy and populate the hot wings that extend far from the tail axis. The results suggest that the distinctive double-peaked time series seen in the observations of energetic pick-up ions arises from control of the particle trajectory by the large-scale plasma and field structure of the comet.

  4. Nonstationary dynamics of the heliospheric termination shock in presence of pick up ions: PIC simulations

    NASA Astrophysics Data System (ADS)

    Yang, Zhongwei; Lembege, Bertrand; Lu, Quanming

    2014-05-01

    The nonstationary dynamic of the heliospheric termination shock in presence of pick up ions (PUI) is analyzed with the help of a one-dimensional PIC (particle-in-cell) simulation code. This work is initially stimulated by Voyager 2 data which evidenced the nonstationary behavior of the termination shock (TS) [Burlaga et al., 2008]. Recent hybrid and PIC simulation [Wu et al., 2010; Scholer and Matsukyio, 2011] have clarified the strong contribution of PUI in the global energy partition at the TS. Present work focusses on the nonstationary behavior of the shock front in presence of PUI (with different percentages) and its impact on the global energy partition (between protons and PUI) in the downstream region. Solar wind (SW) protons and PUI are described respectively as Maxwellian and a shell distributions. Present results (i) evidence that the TS front is still nonstationary (selfreformation of the shock front driven by the accumulation of SW ions) even in presence of 25% of PUI and even for a moderate supercritical Ma regime, (ii) confirm in average that 15% and 85% of the upstream SW energy is respectively transferred to protons and to PUI in the downstream region for a shock profile at a given time, (iii) analyzes the energy partition between reflected (R) and directly transmitted (DT) ions separately for SWI and PUI, and (iv) quantifies the impact of the nonstationarity of the shock front on local ion distribution. Moreover, present results show also quantitatively how the energy partition may vary between the SW protons and PUI in the heliosheath because of the front selfreformation. These results provide quantitative inputs on the strongly turbulent state (both in space and in time) of the heliosheath before it interacts with the heliopause.

  5. Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape

    NASA Astrophysics Data System (ADS)

    Curry, Shannon M.; Luhmann, Janet; Ma, Yingjuan; Liemohn, Michael; Dong, Chuanfei; Hara, Takuya

    2015-09-01

    Without the shielding of a substantial intrinsic dipole magnetic field, the atmospheres of Mars and Venus are particularly susceptible to similar atmospheric ion energization and scavenging processes. However, each planet has different attributes and external conditions controlling its high altitude planetary ion spatial and energy distributions. This paper describes analogous test particle simulations in background MHD fields that allow us to compare the properties and fates, precipitation or escape, of the mainly O+ atmospheric pick-up ions at Mars and Venus. The goal is to illustrate how atmospheric and planetary scales affect the upper atmospheres and space environments of our terrestrial planet neighbors. The results show the expected convection electric field-related hemispheric asymmetries in both precipitation and escape, where the degree of asymmetry at each planet is determined by the planetary scale and local interplanetary field strength. At Venus, the kinetic treatment of O+ reveals a strong nightside source of precipitation while Mars' crustal fields complicate the simple asymmetry in ion precipitation and drive a dayside source of precipitation. The pickup O+ escape pattern at both Venus and Mars exhibits low energy tailward escape, but Mars exhibits a prominent, high energy 'polar plume' feature in the hemisphere of the upward convection electric field while the Venus ion wake shows only a modest poleward concentration. The overall escape is larger at Venus than Mars (2.1 ×1025 and 4.3 ×1024 at solar maximum, respectively), but the efficiency (likelihood) of O+ escaping is 2-3 times higher at Mars. The consequences of these comparisons for pickup ion related atmospheric energy deposition, loss rates, and detection on spacecraft including PVO, VEX, MEX and MAVEN are considered. In particular, both O+ precipitation and escape show electric field controlled asymmetries that grow with energy, while the O+ fluxes and energy spectra at selected spatial

  6. Long term effect of Ovum Pick-up in buffalo species.

    PubMed

    Neglia, Gianluca; Gasparrini, Bianca; Vecchio, Domenico; Boccia, Lucia; Varricchio, Ettore; Di Palo, Rossella; Zicarelli, Luigi; Campanile, Giuseppe

    2011-02-01

    The aim of this study was to evaluate the effect of an Ovum Pick-up (OPU) treatment carried out for 9 months in buffalo (Bubalus bubalis) species. Eight pluriparous non-lactating buffalo cows underwent OPU for 9 months. Recovered cumulus enclosed oocytes (COCs) were classified and COCs suitable for in vitro embryo production (IVEP) were in vitro matured (IVM), fertilized (IVF) and cultured (IVC) to the blastocyst (Bl) stage. Animals were monitored for a total period of 270 days, but at the summer solstice, follicular turnover decreased and at the 68-day of the trial, we decided to increase the OPU sampling interval from 3-4 to 7 days. It was therefore possible to distinguish two phases: a first phase (18 sessions), during which OPU was carried out twice weekly and a second phase (16 sessions) during which OPU sessions were performed weekly. This reduction did not modify the percentage of good quality COCs, while the incidence of grade D COCs decreased (P<0.01). Furthermore, embryo production was higher in the second phase, either if embryos were calculated on the total recovered COCs (8.3% vs. 21.4%; P<0.01) and on grade A+B COCs (13.0% vs. 32.1%; P<0.01), that supposedly should have given similar blastocyst yield. During the total period of the trial it was possible to distinguish a first period of 6 months (34 sessions) characterized by blastocyst production (0.36 blastocyst/buffalo/session), followed by an unproductive period of 3 months (12 sessions), during which embryos were not produced. During the first 6 months a higher (P<0.01) number of follicles (5.06 vs. 3.71), small follicles (3.38 vs. 2.07), total COCs (2.58 vs. 1.56) and good quality (A+B) COCs (1.51 vs. 0.94) per subject/session were recorded compared to the last 3 months. No Blastocyst were produced during the second period, even if the percentage of grade A+B COCs was similar to that recorded during the first period. In conclusion, buffalo cows submitted to repeated OPU sampling for a 9-month

  7. Maturation competence of swamp buffalo oocytes obtained by ovum pick-up and from slaughterhouse ovaries.

    PubMed

    Yindee, M; Techakumphu, M; Lohachit, C; Sirivaidyapong, S; Na-Chiangmai, A; Roelen, B A J; Colenbrander, B

    2011-10-01

    This study was designed with the final goal of improving in vitro embryo production in the Thai swamp buffalo (Bubalus bubalis carabensis). Oocytes were collected by ovum pick-up (OPU) from six non-lactating multiparous swamp buffalo twice per week for 10 consecutive sessions followed by once-weekly collection for 10 consecutive sessions without hormone stimulation. In addition, oocytes were collected from slaughterhouse ovaries that were classified as follows: ovaries from non-pregnant cows with a visible corpus luteum (NPCL); pregnant cows with a corpus luteum (P); and non-pregnant cows without a corpus luteum (NP). Follicles in each group of ovaries were categorized as small (2-4 mm), medium-sized (5-8 mm) or large follicles (≥ 9 mm). The quality of the oocytes was assessed by their capacity to undergo in vitro maturation. The total number of observed follicles per session (all sizes combined) was larger in the once-weekly OPU group compared with the twice-weekly OPU group. In particular, the numbers of small and large follicles were higher in the once-weekly OPU group (5.2 ± 0.7 and 0.9 ± 0.2, respectively) than in the twice-weekly OPU group (3.9 ± 0.5 and 0.5 ± 0.1). The number of medium-sized follicles did not differ between the groups. The percentages of oocytes with an abnormal spindle morphology were not different between oocytes from the twice-weekly (30.0%) and the once-weekly (28.6%) OPU groups. A higher percentage of oocytes obtained in vitro (49.5%) exhibited nuclear abnormalities compared with those obtained in vivo (≤34.8%) after in vitro maturation. In conclusion, oocytes can be successfully collected by OPU in the swamp buffalo, without hormonal pretreatment, and per week more good-quality oocytes can be collected by twice-weekly OPU. In addition, oocytes collected from slaughterhouse ovaries can be used with the reproductive status of the cow having no influence on the maturation competence of oocytes.

  8. In vivo embryo production in cows superovulated 1 or 2 days after ovum pick-up.

    PubMed

    Surjus, Ricardo S; Prata, Alexandre B; Borsato, Marta; Mattos, Fernanda C S Z; Martins da Silveira, Mariana C; Mourão, Gerson B; Pires, Alexandre V; Wiltbank, Milo C; Sartori, Roberto

    2014-01-01

    The present study evaluated superovulatory responses and in vivo embryo production in cows treated with FSH starting 1 or 2 days after ovum pick-up (OPU). Thirty-three non-lactating Nelore cows were subjected to aspiration of all follicles ≥3mm for OPU. After OPU, cows were randomly divided into two groups in which the follicle superstimulatory treatments with FSH started 1 or 2 days after OPU (Groups D1 and D2, respectively). Data are presented as the least squares mean±s.e.m. The number of follicles ≥3mm before OPU was similar between groups (~34); however, cows in Group D2 had more follicles ≥3mm on the first day of FSH (15.2±2.3 vs 7.6±1.7; P=0.04) and a higher ratio of the number of follicles at first FSH/number of follicles before OPU (0.41±0.04 vs 0.24±0.02; P=0.01). In addition, Group D2 cows had a greater superovulatory response than did cows in Group D1 (18.9±2.8 vs 9.1±1.9 corpora lutea, respectively; P<0.03). However, there was no difference in the total number of recovered ova and embryos from cows in Groups D2 and D1 (5.1±1.4 vs 4.9±1.3, respectively; P>0.10). Nevertheless Group D2 cows had more freezable embryos than Group D1 cows (3.2±1.1 vs 1.3±0.5, respectively; P<0.05). Cows from Group D2 had a much higher proportion (P<0.001) of follicles ≥8mm compared with follicles ≥6mm and <8mm at the time of the last treatment with FSH. In conclusion, to obtain a greater production of viable embryos in superovulated cows after OPU, it is recommended to wait at least 2 days before starting FSH treatment.

  9. 41 CFR 102-37.60 - How much time does a transferee have to pick up or remove surplus property from holding agency...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How much time does a transferee have to pick up or remove surplus property from holding agency premises? 102-37.60 Section 102-37... Provisions Donation Overview § 102-37.60 How much time does a transferee have to pick up or remove...

  10. Type-I superconductor pick-up coil in superconducting quantum interference device-based ultra-low field nuclear magnetic resonance

    SciTech Connect

    Hwang, Seong-min Kim, Kiwoong; Kyu Yu, Kwon; Lee, Seong-Joo; Hyun Shim, Jeong; Körber, Rainer; Burghoff, Martin

    2014-02-10

    In ultra-low field nuclear magnetic resonance (ULF-NMR) with strong prepolarization field (B{sub p}), type-II superconducting pick-up coils may be vulnerable to flux pinning from the strong B{sub p}. Pick-up coils made of NbTi, Nb, and Pb were evaluated in terms of acquired NMR signal quality. The type-II pick-up coils showed degraded signals above 61 mT maximum exposure, while the Pb pick-up coil exhibited no such degradation. Furthermore, a negative counter pulse following a strong B{sub p} was shown to follow magnetic hysteresis loop to unpin the trapped flux in the type-II pick-up coil and restore the NMR signal.

  11. Spin-dependent terahertz oscillator based on hybrid graphene superlattices

    SciTech Connect

    Díaz, E.; Miralles, K.; Domínguez-Adame, F.; Gaul, C.

    2014-09-08

    We theoretically study the occurrence of Bloch oscillations in biased hybrid graphene systems with spin-dependent superlattices. The spin-dependent potential is realized by a set of ferromagnetic insulator strips deposited on top of a gapped graphene nanoribbon, which induce a proximity exchange splitting of the electronic states in the graphene monolayer. We numerically solve the Dirac equation and study Bloch oscillations in the lowest conduction band of the spin-dependent superlattice. While the Bloch frequency is the same for both spins, we find the Bloch amplitude to be spin dependent. This difference results in a spin-polarized ac electric current in the THz range.

  12. The spin dependent odderon in the diquark model

    NASA Astrophysics Data System (ADS)

    Szymanowski, Lech; Zhou, Jian

    2016-09-01

    In this short note, we report a di-quark model calculation for the spin dependent odderon and demonstrate that the asymmetrical color source distribution in the transverse plane of a transversely polarized hadron plays an essential role in yielding the spin dependent odderon. This calculation confirms the earlier finding that the spin dependent odderon is closely related to the parton orbital angular momentum.

  13. Experiments dependent on neutron spin transitions

    NASA Astrophysics Data System (ADS)

    Ramsey, Norman F.

    2000-05-01

    Experiments dependent on neutron spin orientation transitions which give fundamental physics information are described. The magnetic moment of the neutron has been measured to be 1.91304275(45) nuclear magnetons by separated oscillatory fields resonant reorientations of the spins of neutrons in a beam passing through a magnetic field. In similar resonance experiments with ultracold neutrons trapped in a bottle, the neutron electric dipole moment has been shown to be less than 9×10 -26 e cm. Neutrons `dressed' with many radiofrequency quanta have been studied. The Berry phases of neutrons that have passed through a helical magnetic field or an oscillatory magnetic field have been observed. In neutron interactions, experiments with condensed matter, small changes in neutron velocities have been measured by changes in the neutron precessions in magnetic fields before and after the interaction. Parity non-conserving spin rotations of neutrons passing through various materials have been observed and measured and new experiments with H 2 and He are in progress.

  14. Cometary kilometric radio waves and plasma waves correlated with ion pick-up effect at Comet Halley

    NASA Technical Reports Server (NTRS)

    Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.

    1985-01-01

    Bow-shock movements at Comet Halley are inferred from the discrete spectra of the cometary kilometric radiation (30-195 kHz); the observed emissions can be interpreted as being generated and propagating from the moving shock. The shock motion is possibly associated with the time variation of the solar wind and cometary outgassing. It is concluded that these plasma wave phenomena are manifestations of ion pick-up processes, which occur even in a remote region 7 million to 10 million km from the cometary nucleus.

  15. Cometary kilometric radio waves and plasma waves correlated with ion pick-up effect at Comet Halley

    NASA Astrophysics Data System (ADS)

    Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.

    Bow-shock movements at Comet Halley are inferred from the discrete spectra of the cometary kilometric radiation (30-195 kHz); the observed emissions can be interpreted as being generated and propagating from the moving shock. The shock motion is possibly associated with the time variation of the solar wind and cometary outgassing. It is concluded that these plasma wave phenomena are manifestations of ion pick-up processes, which occur even in a remote region 7 million to 10 million km from the cometary nucleus.

  16. 41 CFR 102-37.60 - How much time does a transferee have to pick up or remove surplus property from holding agency...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 37-DONATION OF SURPLUS PERSONAL PROPERTY General Provisions Donation Overview § 102-37.60 How much time does a transferee have to pick up or remove...

  17. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm

    NASA Astrophysics Data System (ADS)

    Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Markevicius, Augustinas; Solà, Jordi

    2016-02-01

    Modern-day factory assembly lines often feature robots that pick up, reposition and connect components in a programmed manner. The idea of manipulating molecular fragments in a similar way has to date only been explored using biological building blocks (specifically DNA). Here, we report on a wholly artificial small-molecule robotic arm capable of selectively transporting a molecular cargo in either direction between two spatially distinct, chemically similar, sites on a molecular platform. The arm picks up/releases a 3-mercaptopropanehydrazide cargo by formation/breakage of a disulfide bond, while dynamic hydrazone chemistry controls the cargo binding to the platform. Transport is controlled by selectively inducing conformational and configurational changes within an embedded hydrazone rotary switch that steers the robotic arm. In a three-stage operation, 79-85% of 3-mercaptopropanehydrazide molecules are transported in either (chosen) direction between the two platform sites, without the cargo at any time fully dissociating from the machine nor exchanging with other molecules in the bulk.

  18. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm.

    PubMed

    Kassem, Salma; Lee, Alan T L; Leigh, David A; Markevicius, Augustinas; Solà, Jordi

    2016-02-01

    Modern-day factory assembly lines often feature robots that pick up, reposition and connect components in a programmed manner. The idea of manipulating molecular fragments in a similar way has to date only been explored using biological building blocks (specifically DNA). Here, we report on a wholly artificial small-molecule robotic arm capable of selectively transporting a molecular cargo in either direction between two spatially distinct, chemically similar, sites on a molecular platform. The arm picks up/releases a 3-mercaptopropanehydrazide cargo by formation/breakage of a disulfide bond, while dynamic hydrazone chemistry controls the cargo binding to the platform. Transport is controlled by selectively inducing conformational and configurational changes within an embedded hydrazone rotary switch that steers the robotic arm. In a three-stage operation, 79-85% of 3-mercaptopropanehydrazide molecules are transported in either (chosen) direction between the two platform sites, without the cargo at any time fully dissociating from the machine nor exchanging with other molecules in the bulk.

  19. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect

    SciTech Connect

    Ling, Xiaohui; Yi, Xunong; Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun; Luo, Hailu

    2014-10-13

    We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.

  20. Field dependent spin transport of anisotropic Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2016-04-01

    We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters.

  1. Unveiling the photonic spin Hall effect with asymmetric spin-dependent splitting.

    PubMed

    Zhou, Xinxing; Ling, Xiaohui

    2016-02-01

    The photonic spin Hall effect (SHE) manifests itself as the spin-dependent splitting of light beam. Usually, it shows a symmetric spin-dependent splitting, i.e., the left- and right-handed circularly polarized components are equally separated in position and intensity for linear polarization incidence. In this paper, we theoretically propose an asymmetric spin-dependent splitting at an air-glass interface under the illumination of elliptical polarization beam and experimentally demonstrate it with the weak measurement method. The left- and right-handed circularly polarized components show expectedly unequal intensity distributions and unexpectedly different spin-dependent shifts. Remarkably, the asymmetric spin-dependent splitting can be modulated by adjusting the handedness of incident polarization. The inherent physics behind this interesting phenomenon is attributed to the additional spatial Imbert-Fedorov shift. These findings offer us potential methods for developing new spin-based nanophotonic applications. PMID:26906868

  2. Spin-dependent manipulating of vector beams by tailoring polarization

    PubMed Central

    Zhou, Junxiao; Zhang, Wenshuai; Liu, Yachao; Ke, Yougang; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2016-01-01

    We examine the spin-dependent manipulating of vector beams by tailoring the inhomogeneous polarization. The spin-dependent manipulating is attributed to the spin-dependent phase gradient in vector beams, which can be regarded as the intrinsic feature of inhomogeneous polarization. The desired polarization can be obtained by establishing the relationship between the local orientation of polarization and the local orientation of the optical axis of waveplate. We demonstrate that the spin-dependent manipulating with arbitrary intensity patterns can be achieved by tailoring the inhomogeneous polarization. PMID:27677400

  3. On the temperature dependence of spin pumping in ferromagnet-topological insulator-ferromagnet spin valves

    NASA Astrophysics Data System (ADS)

    Baker, A. A.; Figueroa, A. I.; van der Laan, G.; Hesjedal, T.

    Topological insulators (TIs) have a large potential for spintronic devices owing to their spin-polarized, counter-propagating surface states. Recently, we have investigated spin pumping in a ferromagnet-TI-ferromagnet structure at room temperature. Here, we present the temperature-dependent measurement of spin pumping down to 10 K, which shows no variation with temperature.

  4. Pumped Spin-Current in Single Quantum Dot with Spin-Dependent Electron Temperature

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Wang, Song; Du, Xiaohong

    2016-09-01

    Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.

  5. A non-dominated sorting genetic algorithm for a bi-objective pick-up and delivery problem

    NASA Astrophysics Data System (ADS)

    Velasco, N.; Dejax, P.; Guéret, C.; Prins, C.

    2012-03-01

    Some companies must transport their personnel within facilities. This is especially the case for oil companies that use helicopters to transport engineers, technicians and assistant personnel from platform to platform. This operation has the potential to become expensive if the transportation routes are not correctly planned and provide a bad quality of service. Here this issue is modelled as a pick-up and delivery problem where a set of transportation requests should be scheduled in routes, minimizing the total transportation cost while the most urgent requests are satisfied by priority. To solve the problem, a method based on a Non-dominated Sorting Genetic Algorithm (NSGA-II) is proposed. This algorithm is tested on both randomly generated and real instances provided by a petroleum company. The results show that the proposed algorithm improves the best-known solutions.

  6. Chirality dependent spin polarization of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Jiang, Wanrun; Wang, Bo; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin

    2016-02-01

    The spin polarization of carbon nanotubes (CNTs) offers a tunable building block for spintronic devices and is also crucial for realizing carbon-based electronics. However, the effect of chiral CNTs is still unclear. In this paper, we use the density functional theory (DFT) method to investigate the spin polarization of a series of typical finite-length chiral CNTs (9, m). The results show that the spin density of chiral CNTs (9, m) decreases gradually with the increase in m and vanishes altogether when m is larger than or equal to 6. The armchair edge units on both ends of the (9, m) CNTs exhibit a clear inhibition of spin polarization, allowing control of the spin density of (9, m) CNTs by adjusting the number of armchair edge units on the tube end. Furthermore, analysis of the orbitals shows that the spin of the ground state for (9, m) CNTs mainly comes from the contributions of the frontier molecular orbitals (MOs), and the energy gap decreases gradually with the spin density for chiral CNTs. Our work further develops the study of the spin polarization of CNTs and provides a strategy for controlling the spin polarization of functional molecular devices through chiral vector adjustment.

  7. Temperature dependent spin transport properties of platinum inferred from spin Hall magnetoresistance measurements

    SciTech Connect

    Meyer, Sibylle Althammer, Matthias; Geprägs, Stephan; Opel, Matthias; Goennenwein, Sebastian T. B.; Gross, Rudolf

    2014-06-16

    We study the temperature dependence of the spin Hall magnetoresistance (SMR) in yttrium iron garnet/platinum hybrid structures via magnetization orientation dependent magnetoresistance measurements. Our experiments show a decrease of the SMR magnitude with decreasing temperature. Using the sensitivity of the SMR to the spin transport properties of the normal metal, we interpret our data in terms of a decrease of the spin Hall angle in platinum from 0.11 at room temperature to 0.075 at 10 K, while the spin diffusion length and the spin mixing conductance of the ferrimagnetic insulator/normal metal interface remain almost constant.

  8. In vitro oocyte maturation, fertilization and culture after ovum pick-up in an endangered gazelle (Gazella dama mhorr).

    PubMed

    Berlinguer, F; González, R; Succu, S; del Olmo, A; Garde, J J; Espeso, G; Gomendio, M; Ledda, S; Roldan, E R S

    2008-02-01

    The recovery of immature oocytes followed by in vitro maturation, fertilization and culture (IVMFC) allows the rescue of biological material of great genetic value for the establishment of genetic resource banks of endangered species. Studies exist on sperm cryopreservation of endangered Mohor gazelle (Gazella dama mhorr), but no work has been carried out yet on oocyte collection, fertilization and culture in this or related species. The purpose of this study was to develop a protocol for ovarian stimulation for the recovery of oocytes and subsequent IVMFC in the Mohor gazelle using frozen-thawed spermatozoa. Ovum pick-up was performed after ovarian stimulation with a total dose of 5.28 mg of ovine FSH. A total of 35 oocytes were recovered from 56 punctured follicles (62%) (N=6 females). Out of 29 cumulus-oocyte complexes matured in vitro, 3% were found at germinal vesicle stage, 7% at metaphase I, 21% were degenerated, and 69% advanced to metaphase II. Fertilization and cleavage rates of matured oocytes were 40 and 30%, respectively. Embryos cleaved in vitro up to the 6-8 cell stage but none progressed to the blastocyst stage, suggesting the existence of a developmental block and the need to improve culture conditions. Although more studies are needed to improve hormonal stimulation and oocyte harvesting, as well as IVMFC conditions, this study demonstrates for the first time the feasibility of in vitro fertilization with frozen-thawed semen of in vitro matured oocytes collected by ovum pick-up from FSH-stimulated endangered gazelles.

  9. In vitro oocyte maturation, fertilization and culture after ovum pick-up in an endangered gazelle (Gazella dama mhorr).

    PubMed

    Berlinguer, F; González, R; Succu, S; del Olmo, A; Garde, J J; Espeso, G; Gomendio, M; Ledda, S; Roldan, E R S

    2008-02-01

    The recovery of immature oocytes followed by in vitro maturation, fertilization and culture (IVMFC) allows the rescue of biological material of great genetic value for the establishment of genetic resource banks of endangered species. Studies exist on sperm cryopreservation of endangered Mohor gazelle (Gazella dama mhorr), but no work has been carried out yet on oocyte collection, fertilization and culture in this or related species. The purpose of this study was to develop a protocol for ovarian stimulation for the recovery of oocytes and subsequent IVMFC in the Mohor gazelle using frozen-thawed spermatozoa. Ovum pick-up was performed after ovarian stimulation with a total dose of 5.28 mg of ovine FSH. A total of 35 oocytes were recovered from 56 punctured follicles (62%) (N=6 females). Out of 29 cumulus-oocyte complexes matured in vitro, 3% were found at germinal vesicle stage, 7% at metaphase I, 21% were degenerated, and 69% advanced to metaphase II. Fertilization and cleavage rates of matured oocytes were 40 and 30%, respectively. Embryos cleaved in vitro up to the 6-8 cell stage but none progressed to the blastocyst stage, suggesting the existence of a developmental block and the need to improve culture conditions. Although more studies are needed to improve hormonal stimulation and oocyte harvesting, as well as IVMFC conditions, this study demonstrates for the first time the feasibility of in vitro fertilization with frozen-thawed semen of in vitro matured oocytes collected by ovum pick-up from FSH-stimulated endangered gazelles. PMID:18022681

  10. Search for exotic spin-dependent interactions with a spin-exchange relaxation-free magnetometer

    NASA Astrophysics Data System (ADS)

    Chu, P.-H.; Kim, Y. J.; Savukov, I.

    2016-08-01

    We propose a novel experimental approach to explore exotic spin-dependent interactions using a spin-exchange relaxation-free (SERF) magnetometer, the most sensitive noncryogenic magnetic-field sensor. This approach studies the interactions between optically polarized electron spins located inside a vapor cell of the SERF magnetometer and unpolarized or polarized particles of external solid-state objects. The coupling of spin-dependent interactions to the polarized electron spins of the magnetometer induces the tilt of the electron spins, which can be detected with high sensitivity by a probe laser beam similarly as an external magnetic field. We estimate that by moving unpolarized or polarized objects next to the SERF Rb vapor cell, the experimental limit to the spin-dependent interactions can be significantly improved over existing experiments, and new limits on the coupling strengths can be set in the interaction range below 10-2 m .

  11. Spin-dependent recombination and hyperfine interaction at deep defects

    NASA Astrophysics Data System (ADS)

    Ivchenko, E. L.; Bakaleinikov, L. A.; Kalevich, V. K.

    2015-05-01

    We present a theoretical study of optical electron-spin orientation and spin-dependent Shockley-Read-Hall recombination in the longitudinal magnetic field, taking into account the hyperfine coupling between the bound-electron spin and the nuclear spin of a deep paramagnetic center. The master rate equations for the coupled system are extended to describe the nuclear spin relaxation by using two distinct relaxation times, τn 1 and τn 2, respectively, for defect states with one and two (singlet) bound electrons. The general theory is developed for an arbitrary value of the nuclear spin I . The magnetic-field and excitation-power dependencies of the electron and nuclear spin polarizations are calculated for the value of I =1 /2 . In this particular case the nuclear effects can be taken into account by a simple replacement of the bound-electron spin relaxation time by an effective time dependent on free-electron and hole densities and free-electron spin polarization. The role of nuclear spin relaxation is visualized by isolines of the electron spin polarization on a two-dimensional graph with the axes log2(τn 1) and log2(τn 2) .

  12. Spin-dependent diffraction of evanescent waves by subwavelength gratings.

    PubMed

    Wu, Kedi; Wang, Guo Ping

    2015-08-15

    We present a way to observe the spin-to-orbital conversion phenomenon. A spinning evanescent wave can be asymmetrically transformed into propagation waves through one certain diffraction order by a periodical subwavelength grating. By detecting diffraction field distribution behind the grating, we observed spin-dependent diffraction patterns. Furthermore, replacing the periodical grating by a Fibonacci grating, we can simultaneously observe multiple order diffractions of a spin evanescent wave. In this case, the multiple diffraction beams can interfere with each other behind the quasi-periodical grating to form asymmetric interference patterns. Our work provides another way toward the realization of spin-to-orbital conversion of light. PMID:26274640

  13. Using geoelectrons to search for velocity-dependent spin-spin interactions.

    PubMed

    Hunter, L R; Ang, D G

    2014-03-01

    We use the recently developed model of the electron spins within Earth to investigate all of the six possible long-range velocity-dependent spin-spin interactions associated with the exchange of an ultralight (mz'<10(-10) eV) or massless intermediate vector boson. Several laboratory experiments have established upper limits on the energy associated with various fermion-spin orientations relative to Earth. We combine the results from three of these experiments with the geoelectron-spin model to obtain bounds on the velocity-dependent interactions that couple electron spin to the spins of electrons, neutrons, and protons. Five of the six possible potentials investigated were previously unbounded. In the long-range limit we have improved the bound on the sixth potential by 30 orders of magnitude. PMID:24655243

  14. Angular dependent study on ferromagnetic resonance and spin excitations by spin rectification

    SciTech Connect

    Zhang, Yichao; Fan, Xiaolong Zhao, Xiaobing; Rao, Jinwei; Zhou, Hengan; Guo, Dangwei; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2015-01-14

    We report angular dependent spin rectification spectra which are applied to studying spin excitations in single permalloy stripe. Based on planar Hall effect, those spin excitations generate special resonant dc Hall voltages, which have been characterized as functions of the amplitude and direction of applied magnetic field. Through high angular resolution 2D mappings, the evolutions of different spin excitation can be directly presented, and the dynamic magnetic parameters such as the gyromagnetic ratio, effective exchange field, as well as the quantized numbers of standing spin waves can be accurately determined through fitting the angular evolution of each resonance.

  15. Normal calves produced after transfer of embryos cultured in a chemically defined medium supplemented with epidermal growth factor and insulin-like growth factor I following ovum pick up and in vitro fertilization in Japanese black cows.

    PubMed

    Sakagami, Nobutada; Umeki, Hidenobu; Nishino, Osamu; Uchiyama, Hiroko; Ichikawa, Kyoko; Takeshita, Kazuhisa; Kaneko, Etsushi; Akiyama, Kiyoshi; Kobayashi, Shuji; Tamada, Hiromichi

    2012-01-01

    The objective of this study was to examine whether high concentrations of epidermal growth factor (EGF) and/or insulin-like growth factor I (IGF-I) would have a beneficial effect on bovine embryo development in vitro and to obtain normal calves by using an ovum pick up method and embryo culture in a chemically defined medium. When compared with controls, EGF (100 or 200 ng/ml) or IGF-I (50 or 100 ng/ml) significantly increased the rate of embryos that developed into blastocysts during an 8-day culture after the in vitro fertilization of oocytes obtained from ovaries from a slaughterhouse. IGF-I induced a dose-dependent increase in cell number in both the inner cell mass and the trophectoderm, whereas EGF stimulated proliferation only in the inner cell mass. A combination of EGF (100 ng/ml) and IGF-I (50 ng/ml) produced an additive effect, and embryos developed into blastocysts at a comparatively high rate (27.9%) compared with controls (12.0%). A similar rate of development was achieved using a combination of EGF and IGF-I in the culture of embryos following ovum pick up by ultrasound-guided transvaginal follicular aspiration and in vitro fertilization, and 5 blastocysts that developed after the culture were transferred into uteri; two embryos implanted, and normal calves were born. These results suggest that the combined use of EGF and IGF-I makes bovine embryo culture in a chemically defined medium a practical and useful procedure for producing blastocysts, and its application to embryo culture following ovum pick up and in vitro fertilization could be useful for producing normal calves.

  16. Tunable Spin-Dependent Properties of Zigzag Silicene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Le, Nam B.; Huan, Tran Doan; Woods, Lilia M.

    2014-06-01

    Silicene zigzag nanoribbons are studied using ab initio simulation methods. We find novel structure-property relations influenced by several factors, such as the magnitude of the width, spin polarization, spin-orbit coupling, and extended topological defects. It is obtained that while defect-free silicene nanoribbons experience antiferromagnetic-ferromagnetic transition as a function of the width, all defective nanoribbons are ferromagnets. At the same time, the spin-orbit coupling role is significant as it leads to spin-dependent energy gaps in the electronic structure. The origin of edged spin polarization is also studied in terms of the balance between the exchange correlation and kinetic energy contributions. The uncovered unique spin-dependent properties may be useful for the application of silicene nanoribbons in spintronic applications.

  17. Embodied intersubjective engagement in mother–infant tactile communication: a cross-cultural study of Japanese and Scottish mother–infant behaviors during infant pick-up

    PubMed Central

    Negayama, Koichi; Delafield-Butt, Jonathan T.; Momose, Keiko; Ishijima, Konomi; Kawahara, Noriko; Lux, Erin J.; Murphy, Andrew; Kaliarntas, Konstantinos

    2015-01-01

    This study examines the early development of cultural differences in a simple, embodied, and intersubjective engagement between mothers putting down, picking up, and carrying their infants between Japan and Scotland. Eleven Japanese and ten Scottish mothers with their 6- and then 9-month-old infants participated. Video and motion analyses were employed to measure motor patterns of the mothers’ approach to their infants, as well as their infants’ collaborative responses during put-down, pick-up, and carry phases. Japanese and Scottish mothers approached their infants with different styles and their infants responded differently to the short duration of separation during the trial. A greeting-like behavior of the arms and hands was prevalent in the Scottish mothers’ approach, but not in the Japanese mothers’ approach. Japanese mothers typically kneeled before making the final reach to pick-up their children, giving a closer, apparently gentler final approach of the torso than Scottish mothers, who bent at the waist with larger movements of the torso. Measures of the gap closure between the mothers’ hands to their infants’ heads revealed variably longer duration and distance gap closures with greater velocity by the Scottish mothers than by the Japanese mothers. Further, the sequence of Japanese mothers’ body actions on approach, contact, pick-up, and hold was more coordinated at 6 months than at 9 months. Scottish mothers were generally more variable on approach. Measures of infant participation and expressivity indicate more active participation in the negotiation during the separation and pick-up phases by Scottish infants. Thus, this paper demonstrates a culturally different onset of development of joint attention in pick-up. These differences reflect cultures of everyday interaction. PMID:25774139

  18. Spin-dependent Electron Correlations of a System with Broken Spin Symmetry

    NASA Astrophysics Data System (ADS)

    Yi, K. S.; Kim, J. I.; Kim, J. S.

    2001-04-01

    The spin-dependent local field corrections Gσ, σ'/ (q, ω) of a spin-polarized electron gas(SPEG) are examined within a genralized RPA. Numerical results of Gσ, σ/ (q, 0) for both the majority and minority spin electrons of SPEG show a complicated but interesting behavior as one varies the spin polarization ζ of the SPEG. A pronounced maximum in Gσ, σ/ (q, 0) is observed and the location of the peaks are found to depend strongly on the values of ζ. We also show some numerical results of the mixed susceptibilities χem and χme, which are finite and not identical in SPEG.

  19. Diffraction-dependent spin splitting in spin Hall effect of light on reflection.

    PubMed

    Qiu, Xiaodong; Xie, Linguo; Qiu, Jiangdong; Zhang, Zhiyou; Du, Jinglei; Gao, Fuhua

    2015-07-27

    We report on a diffraction-dependent spin splitting of the paraxial Gaussian light beams on reflection theoretically and experimentally. In the case of horizontal incident polarization, the spin splitting is proportional to the diffraction length of light beams near the Brewster angle. However, the spin splitting is nearly independent with the diffraction length for the vertical incident polarization. By means of the angular spectrum theory, we find that the diffraction-dependent spin splitting is attributed to the first order expansion term of the reflection coefficients with respect to the transverse wave-vector which is closely related to the diffraction length.

  20. Ovum pick up and in vitro embryo production in cows superstimulated with an individually adapted superstimulation protocol.

    PubMed

    De Roover, R; Genicot, G; Leonard, S; Bols, P; Dessy, F

    2005-03-01

    The aim of this experiment was to apply an ovarian superstimulation protocol prior to ovum pick up (OPU), tailored to the individual donor response, to evaluate its advantages and disadvantages in terms of follicle numbers and diameters, the numbers of retrieved oocytes and day 7 cultured blastocysts. Ten adult non-lactating dairy cows were superstimulated with pFSH and subjected to ovum pick up-in vitro fertilisation (OPU-IVF) 6 times at 2-week intervals. On day 0 of each 2-week period, all follicles >8mm were ablated and an ear implant (Crestar, Intervet, Belgium) was inserted. On day 2, 48 h after follicle ablation the animals were administered six equal doses of pFSH, divided into morning and evening doses for 3 days. On day 7, 48 h following the last pFSH injection, follicle diameters were measured by ultrasound and all follicles were subjected to OPU. All cumulus-oocyte complexes (COC), regardless of their quality, were subjected to in vitro maturation-in vitro fertilisation-in vitro culture (IVM-IVF-IVC). The total dose of pFSH prior to the first OPU session was 300 microg per animal. During the following OPU sessions, the total pFSH dose was either kept unchanged, increased or reduced (+/-50 microg), according to the percentage of follicles of more than 11 mm in diameter, present in the previous session of that particular donor. The mean number of punctured follicles per session was 11.9 +/- 7.7 (mean +/- S.D.), with 16% of follicles exceeding 11 mm. These follicles yielded a mean of 5.6 +/- 4.1 cumulus oocyte complexes (COC), 32% of which had >/=3 layers of cumulus cells (quality 1 and 2). The recovery rate was 47%. Finally, all COC were subjected to IVM-IVF-IVC, which resulted in a mean of 2.0 +/- 2.3 blastocysts on day 7 postinsemination. The subtle changes in pFSH dose influenced the sizes but not the numbers of follicles, the latter parameter was influenced by the individual donor and the OPU session.

  1. Picking up the Options.

    ERIC Educational Resources Information Center

    Howe, Harold, II

    This book contains 23 addresses delivered by Harold Howe, II, during two of his years as United States Commissioner on Education. The speeches contain recurrent theses, but each address is unique in its emphasis and development. Howe's basic theme is the urgent necessity to provide true equality of educational opportunity for all children.…

  2. Safety Picks up "STEAM"

    ERIC Educational Resources Information Center

    Roy, Ken

    2016-01-01

    This column shares safety information for the classroom. STEAM subjects--science, technology, engineering, art, and mathematics--are essential for fostering students' 21st-century skills. STEAM promotes critical-thinking skills, including analysis, assessment, categorization, classification, interpretation, justification, and prediction, and are…

  3. Picking Up the Pieces

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2005-01-01

    A school devastated by Hurricane Katrina, which struck southeastern Louisiana on August 29, reopens--but for teachers, the real work is just beginning. First, there was the storm. Roofing was ripped off some of the beige, block like buildings that make up Bonnabel High's nondescript campus nestled in a suburban neighborhood near the New Orleans…

  4. STEM Picks Up Speed

    ERIC Educational Resources Information Center

    Demski, Jennifer

    2009-01-01

    Algebra, geometry, earth science, physics--these require patience and perseverance to master. That kind of academic stamina is hard to advertise to kids nurtured on the instant engagement and gratification of modern digital technology. And there's little hope they'll be sustained by an intrinsic interest in math and science; they have to be shown…

  5. Manipulating the spin-dependent splitting by geometric Doppler effect.

    PubMed

    Liu, Yachao; Ke, Yougang; Zhou, Junxiao; Luo, Hailu; Wen, Shuangchun

    2015-06-29

    We report the manipulation of spin-dependent splitting by geometric Doppler effect based on dielectric metasurfaces. The extrapolation of rotational Doppler effect from temporal to spatial coordinate gives the phase change when the local optical axes of dielectric metasurfaces are rotating in space. Therefore, the continuous variation of local optical axes in a certain direction will introduce a phase gradient in the same direction at the beam cross section. This is additive to the phase gradient appeared when breaking the rotational symmetry of linearly polarized cylindrical vector beams, which leads to the deflections of different spin components of light, i.e., photonic spin Hall effect. Hence, it is possible to manipulate the spin-dependent splitting by introducing the geometric Doppler effect. Theoretically and experimentally, we show that the magnitude and orientation of the spin-dependent splitting are both tunable when changing the spatial rotation rate of local optical axes and incident polarization.

  6. Manipulating the spin-dependent splitting by geometric Doppler effect.

    PubMed

    Liu, Yachao; Ke, Yougang; Zhou, Junxiao; Luo, Hailu; Wen, Shuangchun

    2015-06-29

    We report the manipulation of spin-dependent splitting by geometric Doppler effect based on dielectric metasurfaces. The extrapolation of rotational Doppler effect from temporal to spatial coordinate gives the phase change when the local optical axes of dielectric metasurfaces are rotating in space. Therefore, the continuous variation of local optical axes in a certain direction will introduce a phase gradient in the same direction at the beam cross section. This is additive to the phase gradient appeared when breaking the rotational symmetry of linearly polarized cylindrical vector beams, which leads to the deflections of different spin components of light, i.e., photonic spin Hall effect. Hence, it is possible to manipulate the spin-dependent splitting by introducing the geometric Doppler effect. Theoretically and experimentally, we show that the magnitude and orientation of the spin-dependent splitting are both tunable when changing the spatial rotation rate of local optical axes and incident polarization. PMID:26191680

  7. Spin-dependent inelastic collisions in spin-2 Bose-Einstein condensates

    SciTech Connect

    Tojo, Satoshi; Hayashi, Taro; Tanabe, Tatsuyoshi; Hirano, Takuya; Kawaguchi, Yuki; Saito, Hiroki; Ueda, Masahito

    2009-10-15

    We studied spin-dependent two-body inelastic collisions in F=2 {sup 87}Rb Bose-Einstein condensates both experimentally and theoretically. The {sup 87}Rb condensates were confined in an optical trap and selectively prepared in various spin states in the F=2 manifold at a magnetic field of 3.0 G. The measured atom loss rates depend on the spin states of colliding atoms. We measured two fundamental loss coefficients for two-body inelastic collisions with total spins of 0 and 2. The loss coefficients determine the loss rates of all the spin pairs. The experimental results for mixtures of all spin combinations are in good agreement with numerical solutions of the Gross-Pitaevskii equations that include the effect of a magnetic field gradient.

  8. Observation of a large spin-dependent transport length in organic spin valves at room temperature.

    PubMed

    Zhang, Xianmin; Mizukami, Shigemi; Kubota, Takahide; Ma, Qinli; Oogane, Mikihiko; Naganuma, Hiroshi; Ando, Yasuo; Miyazaki, Terunobu

    2013-01-01

    The integration of organic semiconductors and magnetism has been a fascinating topic for fundamental scientific research and future applications in electronics, because organic semiconductors are expected to possess a large spin-dependent transport length based on weak spin-orbit coupling and weak hyperfine interaction. However, to date, this length has typically been limited to several nanometres at room temperature, and a large length has only been observed at low temperatures. Here we report on a novel organic spin valve device using C(60) as the spacer layer. A magnetoresistance ratio of over 5% was observed at room temperature, which is one of the highest magnetoresistance ratios ever reported. Most importantly, a large spin-dependent transport length of approximately 110 nm was experimentally observed for the C(60) layer at room temperature. These results provide insights for further understanding spin transport in organic semiconductors and may strongly advance the development of spin-based organic devices. PMID:23340432

  9. PICK-UP IONS IN THE OUTER HELIOSHEATH: A POSSIBLE MECHANISM FOR THE INTERSTELLAR BOUNDARY EXplorer RIBBON

    SciTech Connect

    Heerikhuisen, J.; Pogorelov, N. V.; Zank, G. P.; Crew, G. B.; Schwadron, N. A.; Frisch, P. C.; Funsten, H. O.; Janzen, P. H.; Reisenfeld, D. B.; McComas, D. J.

    2010-01-10

    First data from NASA's Interstellar Boundary EXplorer (IBEX) mission show a striking 'ribbon' feature of enhanced energetic neutral atom (ENA) emission. The enhancement in flux is between 2 and 3 times greater than adjacent regions of the sky. Yet the spectral index of ENAs appears to be the same both inside and outside the ribbon. While the ribbon itself was not predicted by any models of the heliospheric interface, its geometry appears to be related to the predicted interstellar magnetic field (ISMF) outside the heliopause (HP). In this Letter, we examine a process of ENA emission from the outer heliosheath, based on a source population of non-isotropic pick-up ions that themselves originate as ENAs from inside the HP. We find that our simplistic approach yields a ribbon of enhanced ENA fluxes as viewed from the inner heliosphere with a spatial location and ENA flux similar to the IBEX measurements, with the provision that the ions retain a partial shell distribution long enough for the ions to be neutralized. As a corollary, our idealized simulation of this mechanism suggests that ISMF is likely oriented close to the center of the observed ribbon.

  10. Phenotypic correlations between ovum pick-up in vitro production traits and pregnancy rates in Zebu cows.

    PubMed

    Vega, W H O; Quirino, C R; Serapião, R V; Oliveira, C S; Pacheco, A

    2015-07-03

    The growth of the Gyr breed in Brazil in terms of genetic gain for milk, along with conditions for market, has led to the use of ovum pick-up in vitro production (OPU-IVP) as a leader in biotechnology for the multiplication of genetic material. The aim of this study was to investigate phenotypic correlations between OPU-IVP-linked characteristics and pregnancy rates registered in an embryo transfer program using Gyr cows as oocyte donors. Data collected from 211 OPU sessions and 298 embryo transfers during the years 2012 and 2013 were analyzed and statistical analysis was performed. Estimates of simple Pearson correlations were calculated for NVcoc and PVcoc (number and proportion of viable cumulus-oocyte complexes, respectively); NcleavD4 and PcleavD4 (number and proportion of cleaved embryos on day 4 of culture, respectively); NTembD7 and PTembD7 (number and proportion of transferable embryos on day 7 of culture, respectively); NPrD30 and PPrD30 (number and proportion of pregnancies 30 days after transfer, respectively); and NPrD60 and PPrD60 (number and proportion of pregnancies 60 days after transfer, respectively). Moderate to moderately high correlations were found for all numerical characteristics, suggesting these as the most suitable parameters for selection of oocyte donors in Gyr programs. NVcoc is proposed as a selection trait due to positive correlations with percentage traits and pregnancy rates 30 and 60 days after transfer.

  11. Effects of repetition, interval between treatments and season on the results from laparoscopic ovum pick-up in goats.

    PubMed

    Pierson, J; Wang, B; Neveu, N; Sneek, L; Côté, F; Karatzas, C N; Baldassarre, H

    2004-01-01

    The present study was conducted to evaluate the follicular response and oocyte yield following repeated gonadotrophin stimulation and laparoscopic aspiration in goats and to assess the effects of the time interval between procedures and season. A total of 98 adult goats were subjected to laparoscopic ovum pick-up (LOPU) five consecutive times in a transgenic production programme. Oestrus was synchronised by means of intravaginal sponges inserted for 10 days coupled with 125 microg cloprostenol 36 h before sponge removal and LOPU, and follicular development was stimulated with 80 mg follicle stimulating hormone and 300 IU equine chorionic gonadotrophin administered 36 h before LOPU. No difference was detected in the response for LOPUs 1, 2, 3 and 4. Although a small decrease in response was detected at LOPU 5 (P < 0.05), the numbers of follicles aspirated and oocytes recovered were not different from those at LOPU 1 and LOPUs 1 and 4, respectively. With respect to time interval between LOPU and season, all intervals and seasons produced acceptable responses, with no difference in follicles aspirated and oocytes recovered between intervals and seasons. These results indicate that LOPU may be repeated up to five times in goats at different intervals and in different seasons with little or no important change in overall response.

  12. Prepubertal propagation of transgenic cloned goats by laparoscopic ovum pick-up and in vitro embryo production.

    PubMed

    Baldassarre, H; Wang, B; Pierson, J; Neveu, N; Sneek, L; Lapointe, J; Cote, F; Kafidi, N; Keefer, C L; Lazaris, A; Karatzas, C N

    2004-01-01

    The use of laparoscopic ovum pick-up (LOPU) followed by in vitro embryo production was evaluated in the early propagation of cloned goats. Ten kinder goats produced by somatic cell nuclear transfer technology were used as oocyte donors. Half of the donor animals were subjected to LOPU at 2-3 months of age (prior to induction of lactation), whereas the other five goats were subjected to LOPU at 6-7 months of age (following induction to lactation). They were stimulated with 80 mg NIH-FSH-P1 (Folltropin, Vetrepharm, Canada) together with 300 IU eCG (Novormon, Vetrepharm, Canada) administered intramuscularly 36 h prior to LOPU. The number of follicles aspirated and oocytes recovered was higher in the younger group of donors (57 +/- 7 and 41 +/- 4 vs. 28 +/- 2 and 25.8 +/- 2, p < 0.05), however, oocytes from animals in the late prepubertal age showed higher developmental capacity resulting in higher transferable embryo yield (81.4% vs. 67.8%, p < 0.01), pregnancy rate (80% vs. 40%, p < 0.05) and total kids born (27 vs. 15, p < 0.01). In conclusion, LOPU in combination with in vitro embryo production techniques is an efficient method for the early propagation of valuable goats produced by somatic cell nuclear transfer.

  13. The variability of ovum pick-up response and in vitro embryo production from monozygotic twin cows.

    PubMed

    Machado, Sergio Abreu; Reichenbach, Horst-Dieter; Weppert, Myriam; Wolf, Eckhard; Gonçalves, Paulo Bayard Dias

    2006-02-01

    Oocytes were recovered by ovum pick up (OPU) from nine pairs of monozygotic twin German Simmental cows. The hypothesis was that there is less variability between identical twins versus among non-related individuals in the variation in the recovery of oocytes by OPU and in the efficiency of in vitro embryo production. Estrous cycles were synchronized with two doses of cloprostenol, 11 days apart. Beginning 3-4 days after synchronized estrus, OPU was done twice weekly (every 3 or 4 days; total of 11 sessions). The influence of repeated OPU on estrous cyclicity was established by estrus detection, plasma progesterone concentrations, and ovarian ultrasonography. There were no differences among days of collection for the number and quality of cumulus oocyte-complexes (COCs), and rates of cleavage and blastocyst formation. A total of 1,661 COCs, including 657 (39.6%) good-quality COCs, were recovered. From 1,457 (87.7%) cultured COCs, 827 zygotes cleaved and 314 blastocysts were produced on Day 7. The total number of COCs and the blastocyst rates varied among pairs of monozygotic twins; within pairs, only slight differences were observed. In conclusion, recovery of COCs and production of embryos had substantially less variation within pairs of monozygotic twins than among non-related cattle.

  14. Pico Lantern: Surface reconstruction and augmented reality in laparoscopic surgery using a pick-up laser projector.

    PubMed

    Edgcumbe, Philip; Pratt, Philip; Yang, Guang-Zhong; Nguan, Christopher; Rohling, Robert

    2015-10-01

    The Pico Lantern is a miniature projector developed for structured light surface reconstruction, augmented reality and guidance in laparoscopic surgery. During surgery it will be dropped into the patient and picked up by a laparoscopic tool. While inside the patient it projects a known coded pattern and images onto the surface of the tissue. The Pico Lantern is visually tracked in the laparoscope's field of view for the purpose of stereo triangulation between it and the laparoscope. In this paper, the first application is surface reconstruction. Using a stereo laparoscope and an untracked Pico Lantern, the absolute error for surface reconstruction for a plane, cylinder and ex vivo kidney, is 2.0 mm, 3.0 mm and 5.6 mm, respectively. Using a mono laparoscope and a tracked Pico Lantern for the same plane, cylinder and kidney the absolute error is 1.4 mm, 1.5 mm and 1.5 mm, respectively. These results confirm the benefit of the wider baseline produced by tracking the Pico Lantern. Virtual viewpoint images are generated from the kidney surface data and an in vivo proof-of-concept porcine trial is reported. Surface reconstruction of the neck of a volunteer shows that the pulsatile motion of the tissue overlying a major blood vessel can be detected and displayed in vivo. Future work will integrate the Pico Lantern into standard and robot-assisted laparoscopic surgery.

  15. Pico Lantern: Surface reconstruction and augmented reality in laparoscopic surgery using a pick-up laser projector.

    PubMed

    Edgcumbe, Philip; Pratt, Philip; Yang, Guang-Zhong; Nguan, Christopher; Rohling, Robert

    2015-10-01

    The Pico Lantern is a miniature projector developed for structured light surface reconstruction, augmented reality and guidance in laparoscopic surgery. During surgery it will be dropped into the patient and picked up by a laparoscopic tool. While inside the patient it projects a known coded pattern and images onto the surface of the tissue. The Pico Lantern is visually tracked in the laparoscope's field of view for the purpose of stereo triangulation between it and the laparoscope. In this paper, the first application is surface reconstruction. Using a stereo laparoscope and an untracked Pico Lantern, the absolute error for surface reconstruction for a plane, cylinder and ex vivo kidney, is 2.0 mm, 3.0 mm and 5.6 mm, respectively. Using a mono laparoscope and a tracked Pico Lantern for the same plane, cylinder and kidney the absolute error is 1.4 mm, 1.5 mm and 1.5 mm, respectively. These results confirm the benefit of the wider baseline produced by tracking the Pico Lantern. Virtual viewpoint images are generated from the kidney surface data and an in vivo proof-of-concept porcine trial is reported. Surface reconstruction of the neck of a volunteer shows that the pulsatile motion of the tissue overlying a major blood vessel can be detected and displayed in vivo. Future work will integrate the Pico Lantern into standard and robot-assisted laparoscopic surgery. PMID:26024818

  16. Angular dependent study on spin transport in magnetic semiconductor heterostructures with Dresselhaus spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Mirzanian, S. M.; Shokri, A. A.; Mikaili Agah, K.; Elahi, S. M.

    2015-09-01

    We investigate theoretically the effects of Dresselhaus spin-orbit coupling (DSOC) on the spin-dependent current and shot noise through II-VI diluted magnetic semiconductor/nonmagnetic semiconductor (DMS/NMS) barrier structures. The calculation of transmission probability is based on an effective mass quantum-mechanical approach in the presence of an external magnetic field applied along the growth direction of the junction and also applied voltage. We also study the dependence of spin-dependent properties on external magnetic field and relative angle between the magnetizations of two DMS layers in CdTe/CdMnTe heterostructures by including the DSOC effect. The results show that the DSOC has great different influence on transport properties of electrons with spin up and spin down in the considered system and this aspect may be utilized in designing new spintronics devices.

  17. Strain-modulation of spin-dependent transport in graphene

    SciTech Connect

    Cao, Zhen-Zhou Hou, Jin; Cheng, Yan-Fu; Li, Guan-Qiang

    2014-10-27

    We investigate strain modulation of the spin-dependent electron transport in a graphene junction using the transfer matrix method. As an analogy to optics, we define the modulation depth in the electron optics domain. Additionally, we discuss the transport properties and show that the modulation depth and the conductance depend on the spin-orbit coupling strength, the strain magnitude, the width of the strained area, and the energy of the incident electron. The conductances of the spin-down and spin-up electrons have opposite and symmetrical variations, which results in the analogous features of their modulation depths. The maximum conditions for both the modulation depth and the electron spin upset rate are also analyzed.

  18. Moments of nucleon spin-dependent generalized parton distributions

    SciTech Connect

    Wolfram Schroers; Richard Brower; Patrick Dreher; Robert Edwards; George Fleming; P. Hagler; Urs Heller; Thomas Lippert; John Negele; Andrew Pochinsky; Dru Renner; David Richards; Klaus Schilling

    2004-03-01

    We present a lattice measurement of the first two moments of the spin-dependent GPD H-tilde(x,xi,t). From these we obtain the axial coupling constant and the second moment of the spin-dependent forward parton distribution. The measurements are done in full QCD using Wilson fermions. In addition, we also present results from a first exploratory study of full QCD using Asqtad sea and domain-wall valence fermions.

  19. Anomalous organic magnetoresistance from competing carrier-spin-dependent interactions with localized electronic and nuclear spins

    NASA Astrophysics Data System (ADS)

    Flatté, Michael E.

    Transport of carriers through disordered electronic energy landscapes occurs via hopping or tunneling through various sites, and can enhance the effects of carrier spin dynamics on the transport. When incoherent hopping preserves the spin orientation of carriers, the magnetic-field-dependent correlations between pairs of spins influence the charge conductivity of the material. Examples of these phenomena have been identified in hopping transport in organic semiconductors and colloidal quantum dots, as well as tunneling through oxide barriers in complex oxide devices, among other materials. The resulting room-temperature magnetic field effects on the conductivity or electroluminescence require external fields of only a few milliTesla. These magnetic field effects can be dramatically modified by changes in the local spin environment. Recent theoretical and experimental work has identified a regime for low-field magnetoresistance in organic semiconductors in which the spin-relaxing effects of localized nuclear spins and electronic spins interfere1. The regime is studied experimentally by the controlled addition of localized electronic spins, through the addition of a stable free radical (galvinoxyl) to a material (MEH-PPV) that exhibits substantial room-temperature magnetoresistance (20 initially suppressed by the doping, as the localized electronic spin mixes one of the two spins whose correlation controls the transport. At intermediate doping, when one spin is fully decohered but the other is not, there is a regime where the magnetoresistance is insensitive to the doping level. For much greater doping concentrations the magnetoresistance is fully suppressed as both spins that control the charge conductivity of the material are mixed. The behavior is described within a theoretical model describing the effect of carrier spin dynamics on the current. Generalizations to amorphous and other disordered crystalline semiconductors will also be described. This work was

  20. Picking up the pieces”—Meanings of receiving home nursing care when being old and living with advanced cancer in a rural area

    PubMed Central

    Devik, Siri Andreassen; Hellzen, Ove; Enmarker, Ingela

    2015-01-01

    Rural home nursing care is a neglected area in the research of palliative care offered to older cancer patients. Because access to specialized services is hampered by long distances and fragmented infrastructure, palliative care is often provided through standard home nursing services and delivered by general district nurses. This study aimed to illuminate the lived experience and to interpret the meaning of receiving home nursing care when being old and living with advanced cancer in a rural area in Norway. Narrative interviews were conducted with nine older persons, and a phenomenological hermeneutic approach was used to interpret the meaning of the lived experience. The analysis revealed three themes, each with subthemes: being content with what one gets, falling into place, and losing one's place. The phrase picking up the pieces was found useful to sum up the meaning of this lived experience. The three respective themes refer to how the pieces symbolize the remaining parts of life or available services in their environment, and how the older persons may see themselves as pieces or bricks in a puzzle. A strong place attachment (physical insideness, social insideness, and autobiographical insideness) is demonstrated by the informants in this study and suggests that the rural context may provide an advantageous healthcare environment. Its potential to be a source of comfort, security, and identity concurs with cancer patients’ strong desire for being seen as unique persons. The study shows that district nurses play an essential role in the provision of palliative care for older rural patients. However, the therapeutic value of being in one's familiar landscape seems to depend on how homecare nurses manage to locate it and use it in a more or less person-centred manner. Communication skills and attentiveness to psychosocial aspects of patient care stand out as important attributes for nursing in this context. PMID:26362533

  1. Catalytic Propulsion and Magnetic Steering of Soft, Patchy Microcapsules: Ability to Pick-Up and Drop-Off Microscale Cargo.

    PubMed

    Lu, Annie Xi; Liu, Yijing; Oh, Hyuntaek; Gargava, Ankit; Kendall, Eric; Nie, Zhihong; DeVoe, Don L; Raghavan, Srinivasa R

    2016-06-22

    We describe the creation of polymeric microcapsules that can exhibit autonomous motion along defined trajectories. The capsules are made by cross-linking aqueous microdroplets of the biopolymer chitosan using glutaraldehyde. A coflow microfluidic tubing device is used to generate chitosan droplets containing nanoparticles (NPs) with an iron (Fe) core and a platinum (Pt) shell. The droplets are then incubated in a Petri dish with the cross-linking solution, and an external magnet is placed below the Petri dish to pull the NPs together as a collective "patch" on one end of each droplet. This results in cross-linked capsules (∼150 μm in diameter) with an anisotropic (patchy) structure. When these capsules are placed in a solution of H2O2, the Pt shell of the NPs catalyzes the decomposition of H2O2 into O2 gas, which is ejected from the patchy end in the form of bubbles. As a result, the capsules (which are termed micromotors) move in a direction opposite to the bubbles. Furthermore, the micromotors can be steered along specific paths by an external magnet (the magnetic response arises due to the Fe in the core of the NPs). A given micromotor can thus be directed to meet with and adhere to an inert capsule, i.e., a model cargo. Adhesion occurs due to the soft nature of the two structures. Once the cargo is picked up, the micromotor-cargo pair can be moved along a specific path to a destination, whereupon the cargo can be released from the micromotor. We believe these soft micromotors offer significant benefits over their existing hard counterparts because of their biocompatibility, biodegradability, and ability to encapsulate a variety of payloads. PMID:27295420

  2. Ovarian follicular dynamics, follicle deviation, and oocyte yield in Gyr breed (Bos indicus) cows undergoing repeated ovum pick-up.

    PubMed

    Viana, J H M; Palhao, M P; Siqueira, L G B; Fonseca, J F; Camargo, L S A

    2010-04-15

    The objective of this study was to evaluate ovarian follicular dynamics during intervals between successive ovum pick-up (OPU) and determine its effects on the number and quality of recovered cumulus-oocyte complexes (COCs) in Zebu cows (Bos indicus). Pluriparous nonlactating Gyr cows (Bos indicus; n=10) underwent four consecutive OPU sessions at 96-h intervals. The dynamics of ovarian follicular growth between OPU sessions was monitored by twice-daily ultrasonographic examinations. A single dominant follicle (DF) or two codominant (CDF) follicles (>9mm) were present in 63.3% (19 of 30) of intervals studied, with follicle deviation beginning when the future dominant follicle (F1) achieved a diameter of 6.2+/-0.3mm. The phenomenon of codominance was observed in four (13.3%) of the inter-OPU intervals. The remaining intervals (36.6%, 11 of 30) were characterized by a greater follicular population, lower rate of follicular growth, and a smaller diameter F1 (P<0.0001). There was a tendency (P=0.08) toward an increase in the number of recovered COCs when dominant follicles were not present (NDF). The quality of COCs was not affected by the presence of a single dominant follicle, but codominant follicles resulted in recovery of a lower proportion of viable embryos (40.0%, 62.1%, and 63.6%; P<0.05) and higher proportions of degenerate COCs (56.0%, 30.3%, and 28.6%; P<0.05) for CDF, NDF, and DF respectively. We concluded that, in Zebu cows, (a) repeated follicle aspirations altered ovarian follicular dynamics, perhaps by increasing follicular growth rate; (b) follicular dominance could be established in cows undergoing twice-a-week OPU; and (c) the presence of a dominant follicle during short inter-OPU intervals may not affect COC quality, except when a codominant follicle was present.

  3. Ovum pick-up and in vitro embryo production (OPU-IVEP) in Mediterranean Italian buffalo performed in different seasons.

    PubMed

    Di Francesco, Serena; Novoa, Maria Virginia Suarez; Vecchio, Domenico; Neglia, Gianluca; Boccia, Lucia; Campanile, Giuseppe; Zicarelli, Luigi; Gasparrini, Bianca

    2012-01-01

    This study was designed to evaluate the effect of season on in vivo oocyte recovery and embryo production in Mediterranean Italian buffalo (Bubalus bubalis). For this purpose repeated transvaginal ultrasound-guided ovum pick up (OPU) was conducted twice a week throughout autumn, mid-winter (transitional period) and spring-summer. The number and size of follicles was determined before puncture. The recovered oocytes were first classified in morphological categories and then used for in vitro embryo production (IVEP) according to standard procedures. The mean number of total follicles observed per session did not differ among the three periods we examined (on average 4.6). Although season did not considerably affect the number of oocytes recovered (on average 2.3/buffalo/session), the number of degenerated and abnormally expanded oocytes increased during autumn. Furthermore, the percentage of abnormally expanded oocytes significantly increased during autumn (6.1%) compared with both the transitional period and spring-summer (1.9 and 2.3%, respectively). Interestingly, the embryo output we recorded at day 7, in terms of tight morulae-blastocysts was higher in autumn (30.9%) compared to the other two periods (13.3% and 10.3%, respectively, in spring-summer and in the transitional period; P<0.01). The results of this trial demonstrated that the morphological features of the oocytes did not vary substantially among the considered periods, with the exception of degenerated and abnormally expanded oocytes. On the other hand, the oocyte developmental competence improved in autumn compared to spring-summer and the transitional period. This datum reflects buffalo reproductive pattern expressed in vivo at Italian latitudes.

  4. In vitro embryo production in buffalo (Bubalus bubalis) using sexed sperm and oocytes from ovum pick up.

    PubMed

    Liang, X W; Lu, Y Q; Chen, M T; Zhang, X F; Lu, S S; Zhang, M; Pang, C Y; Huang, F X; Lu, K H

    2008-04-15

    The objective was to explore the use of sexed sperm and OPU-derived oocytes in an IVP system to produce sex-preselected bubaline embryos. Oocytes were recovered from 20 fertile Murrah and Nili-Ravi buffalo cows by repeated (twice weekly) ultrasound-guided transvaginal ovum pick up (OPU), or by aspiration of abbatoir-derived bubaline ovaries, and subjected to IVF, using frozen-thawed sexed or unsexed bubaline semen. On average, 4.6 oocytes were retrieved per buffalo per session (70.9% were Grades A or B). Following IVF with sexed sperm, oocytes derived from OPU had similar developmental competence as those from abattoir-derived ovaries, in terms of cleavage rate (57.6 vs. 50.4%, P=0.357) and blastocyst development rate (16.0 vs. 23.9%, P=0.237). Furthermore, using frozen-thawed sexed versus unsexed semen did not affect rates of cleavage (50.5 vs. 50.9%, P=0.978) or blastocyst development (15.3 vs. 19.1%, P=0.291) after IVF using OPU-derived oocytes. Of the embryos produced in an OPU-IVP system, 9 of 34 sexed fresh embryos (26.5%) and 5 of 43 sexed frozen embryos (11.6%) transferred to recipients established pregnancies, whereas 7 of 26 unsexed fresh embryos (26.9%) and 6 out of 39 unsexed frozen embryos (15.4%) transferred to recipients established pregnancies. Eleven sex-preselected buffalo calves (10 females and one male) and 10 sexed buffalo calves (six females and four males) were born following embryo transfer. In the present study, OPU, sperm sexing technology, IVP, and embryo transfer, were used to produce sex-preselected buffalo calves. This study provided proof of concept for further research and wider field application of these technologies in buffalo.

  5. Catalytic Propulsion and Magnetic Steering of Soft, Patchy Microcapsules: Ability to Pick-Up and Drop-Off Microscale Cargo.

    PubMed

    Lu, Annie Xi; Liu, Yijing; Oh, Hyuntaek; Gargava, Ankit; Kendall, Eric; Nie, Zhihong; DeVoe, Don L; Raghavan, Srinivasa R

    2016-06-22

    We describe the creation of polymeric microcapsules that can exhibit autonomous motion along defined trajectories. The capsules are made by cross-linking aqueous microdroplets of the biopolymer chitosan using glutaraldehyde. A coflow microfluidic tubing device is used to generate chitosan droplets containing nanoparticles (NPs) with an iron (Fe) core and a platinum (Pt) shell. The droplets are then incubated in a Petri dish with the cross-linking solution, and an external magnet is placed below the Petri dish to pull the NPs together as a collective "patch" on one end of each droplet. This results in cross-linked capsules (∼150 μm in diameter) with an anisotropic (patchy) structure. When these capsules are placed in a solution of H2O2, the Pt shell of the NPs catalyzes the decomposition of H2O2 into O2 gas, which is ejected from the patchy end in the form of bubbles. As a result, the capsules (which are termed micromotors) move in a direction opposite to the bubbles. Furthermore, the micromotors can be steered along specific paths by an external magnet (the magnetic response arises due to the Fe in the core of the NPs). A given micromotor can thus be directed to meet with and adhere to an inert capsule, i.e., a model cargo. Adhesion occurs due to the soft nature of the two structures. Once the cargo is picked up, the micromotor-cargo pair can be moved along a specific path to a destination, whereupon the cargo can be released from the micromotor. We believe these soft micromotors offer significant benefits over their existing hard counterparts because of their biocompatibility, biodegradability, and ability to encapsulate a variety of payloads.

  6. Ovum pick-up and in vitro embryo production (OPU-IVEP) in Mediterranean Italian buffalo performed in different seasons.

    PubMed

    Di Francesco, Serena; Novoa, Maria Virginia Suarez; Vecchio, Domenico; Neglia, Gianluca; Boccia, Lucia; Campanile, Giuseppe; Zicarelli, Luigi; Gasparrini, Bianca

    2012-01-01

    This study was designed to evaluate the effect of season on in vivo oocyte recovery and embryo production in Mediterranean Italian buffalo (Bubalus bubalis). For this purpose repeated transvaginal ultrasound-guided ovum pick up (OPU) was conducted twice a week throughout autumn, mid-winter (transitional period) and spring-summer. The number and size of follicles was determined before puncture. The recovered oocytes were first classified in morphological categories and then used for in vitro embryo production (IVEP) according to standard procedures. The mean number of total follicles observed per session did not differ among the three periods we examined (on average 4.6). Although season did not considerably affect the number of oocytes recovered (on average 2.3/buffalo/session), the number of degenerated and abnormally expanded oocytes increased during autumn. Furthermore, the percentage of abnormally expanded oocytes significantly increased during autumn (6.1%) compared with both the transitional period and spring-summer (1.9 and 2.3%, respectively). Interestingly, the embryo output we recorded at day 7, in terms of tight morulae-blastocysts was higher in autumn (30.9%) compared to the other two periods (13.3% and 10.3%, respectively, in spring-summer and in the transitional period; P<0.01). The results of this trial demonstrated that the morphological features of the oocytes did not vary substantially among the considered periods, with the exception of degenerated and abnormally expanded oocytes. On the other hand, the oocyte developmental competence improved in autumn compared to spring-summer and the transitional period. This datum reflects buffalo reproductive pattern expressed in vivo at Italian latitudes. PMID:21872310

  7. Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves

    NASA Astrophysics Data System (ADS)

    Dejene, F. K.; Flipse, J.; Bauer, G. E. W.; van Wees, B. J.

    2013-10-01

    Since the discovery of the giant magnetoresistance effect the intrinsic angular momentum of the electron has opened up new spin-based device concepts. Our present understanding of the coupled transport of charge, spin and heat relies on the two-channel model for spin-up and spin-down electrons having equal temperatures. Here we report the observation of different (effective) temperatures for the spin-up and spin-down electrons in a nanopillar spin valve subject to a heat current. By three-dimensional finite element modelling of our devices for varying thickness of the non-magnetic layer, spin heat accumulations (the difference of the spin temperatures) of 120mK and 350mK are extracted at room temperature and 77K, respectively, which is of the order of 10% of the total temperature bias over the nanopillar. This technique uniquely allows the study of inelastic spin scattering at low energies and elevated temperatures, which is not possible by spectroscopic methods.

  8. Chirality-Dependent Transmission of Spin Waves through Domain Walls

    NASA Astrophysics Data System (ADS)

    Buijnsters, F. J.; Ferreiros, Y.; Fasolino, A.; Katsnelson, M. I.

    2016-04-01

    Spin-wave technology (magnonics) has the potential to further reduce the size and energy consumption of information-processing devices. In the submicrometer regime (exchange spin waves), topological defects such as domain walls may constitute active elements to manipulate spin waves and perform logic operations. We predict that spin waves that pass through a domain wall in an ultrathin perpendicular-anisotropy film experience a phase shift that depends on the orientation of the domain wall (chirality). The effect, which is absent in bulk materials, originates from the interfacial Dzyaloshinskii-Moriya interaction and can be interpreted as a geometric phase. We demonstrate analytically and by means of micromagnetic simulations that the phase shift is strong enough to switch between constructive and destructive interference. The two chirality states of the domain wall may serve as a memory bit or spin-wave switch in magnonic devices.

  9. Spin-Dependent Dissociative Excitation in a Laser Pumped Afterglow.

    NASA Astrophysics Data System (ADS)

    Bohler, Christopher Lee

    The energy and spin dependence of dissociating collisions between two types of noble gas metastable atoms and cadmium dihalide molecules have been studied in a flowing afterglow apparatus. The fluorescence spectra obtained in the range of 3000-7600 A which result from the Ar( ^{3}P_2) + CdX_2 interactions indicate a dominant dissociative excitation production mechanism. On the other hand, for the He(2^3S _1) + CdX_2 collisions, there appears to be competition between dissociative excitation and other "dark" channels. The emission spectra are further used to narrow the uncertainty in the currently accepted values for the dissociation energy of the CdX _2 molecules. The Wigner spin rule (conservation of total electronic spin) was verified for these processes as shown by the dominance of final state triplet production as compared to the virtual absence of singlet spin state production. In an attempt to further study the spin dependence of the dissociative excitation process, transfer of the longitudinal component of the electronic spin from oriented He(2 ^3S_1) atoms to Cd(6 ^3S_1) atoms was monitored. These data showed a null result for the transfor of the spin component, but were limited by a 3% systematic error of the apparatus. The spin dependent measurements rely on the ability to spin-polarize the He(2^3S _1) atoms by laser optical pumping methods. Four laser materials which exhibit promising characteristics for this procedure have been studied, and the results are presented for Nd^{3+}:YAP, La_{rm 1-x}Nd _{rm x}MgAl_ {11}O_{19}, Nd^{3+}:LiNbO _3, and Nd^{3+} :Silicate fibers.

  10. Spin-dependent structure functions for the proton and neutron

    NASA Astrophysics Data System (ADS)

    Schäfer, Andreas

    1988-07-01

    We present a phenomenological model for the spin-dependent structure functions g1(x) of the proton and neutron. The model is an extension of the one proposed by Carlitz and Kaur. We use improved unpolarized structure functions and include effects due to the mass difference between up and down quark and due to the mass difference between spin 1/2 and 3/2 baryons. Our results for the proton agree with the data.

  11. Spin-Dependent Electron Transport Through a Three-Terminal Mesoscopic Spin-Orbit Coupled Systems

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghui; Xiao, Xianbo; Chen, Yuguang

    2013-03-01

    We studied theoretically the spin-dependent electron transport properties of a three-terminal nanostructure proposed by Xiao and Chen [J. Appl. Phys.1, 108 (2010)]. The spin-resolved recursive Green's function method is used to calculate the three-terminal spin-polarization. We focus on the influence both of the structural parameters and Rashba spin-orbit coupling (SOC) strength in the investigated system. It is shown that the spin-polarization is still a reasonable value for being observable in experiment with small Rashba SOC strength and longer length of the wide region in the investigated system. The underlying physics is revealed to originate from the effect of SOC-induced effective magnetic field at the structure-induced Fano resonance. This length of the middle wide region in three-terminal nanostructure can be more easily fabricated experimentally.

  12. Developmental competence of different quality bovine oocytes retrieved through ovum pick-up following in vitro maturation and fertilization.

    PubMed

    Saini, N; Singh, M K; Shah, S M; Singh, K P; Kaushik, R; Manik, R S; Singla, S K; Palta, P; Chauhan, M S

    2015-12-01

    In the present study, oocytes retrieved from cross bred Karan Fries cows by ovum pick-up technique were graded into Group 1 and Group 2, based on the morphological appearance of the individual cumulus-oocyte complexes (COCs). To analyze whether the developmental potential of the COCs bears a relation to morphological appearance, relative expression of a panel of genes associated with; (a) cumulus-oocyte interaction (Cx43, Cx37, GDF9 and BMP15), (b) fertilization (ZP2 and ZP3), (c) embryonic development (HSF1, ZAR1 and bFGF) and (d) apoptosis and survival (BAX, BID and BCL-XL, MCL-1, respectively) was studied at two stages: germinal vesicle (GV) stage and after in vitro maturation. The competence was further corroborated by evaluating the embryonic progression of the presumed zygotes obtained from fertilization of the graded COCs. The gene expression profile and development rate in pooled A and B grade (Group 1) COCs and pooled C and D grade (Group 2) COCs were determined and compared according to the original grades. The results of the study demonstrated that the morphologically characterized Group 2 COCs showed significantly (P<0.05) lower expression for most of the genes related to cumulus-oocyte interplay, fertilization and embryonic development, both at GV stage as well as after maturation. Group 1 COCs also showed greater expression of anti-apoptotic genes (BCL-XL and MCL1) both at GV stage and after maturation, while pro-apoptotic genes (BAX and BID) showed significantly (P<0.05) elevated expression in poor quality COCs at both the stages. The cleavage rate in Group 1 COCs was significantly higher than that of Group 2 (74.46±7.06 v. 31.57±5.32%). The development of the presumed zygotes in Group 2 oocytes proceeded up to 8- to 16-cell stages only, while in Group 1 it progressed up to morulae (35.38±7.11%) and blastocyst stages (9.70±3.15%), indicating their better developmental potential.

  13. Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift.

    PubMed

    Liu, Sheng; Li, Peng; Zhang, Yi; Gan, Xuetao; Wang, Meirong; Zhao, Jianlin

    2016-01-01

    Spin Hall effect of light, which is normally explored as a transverse spin-dependent separation of a light beam, has attracted enormous research interests. However, it seems there is no indication for the existence of the longitudinal spin separation of light. In this paper, we propose and experimentally realize the spin separation along the propagation direction by modulating the Pancharatnam-Berry (PB) phase. Due to the spin-dependent divergence and convergence determined by the PB phase, a focused Gaussian beam could split into two opposite spin states, and focuses at different distances, representing the longitudinal spin separation. By combining this longitudinal spin separation with the transverse one, we experimentally achieve the controllable spin-dependent focal shift in three dimensional space. This work provides new insight on steering the spin photons, and is expected to explore novel applications of optical trapping, manipulating, and micromachining with higher degree of freedom. PMID:26882995

  14. Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift

    PubMed Central

    Liu, Sheng; Li, Peng; Zhang, Yi; Gan, Xuetao; Wang, Meirong; Zhao, Jianlin

    2016-01-01

    Spin Hall effect of light, which is normally explored as a transverse spin-dependent separation of a light beam, has attracted enormous research interests. However, it seems there is no indication for the existence of the longitudinal spin separation of light. In this paper, we propose and experimentally realize the spin separation along the propagation direction by modulating the Pancharatnam-Berry (PB) phase. Due to the spin-dependent divergence and convergence determined by the PB phase, a focused Gaussian beam could split into two opposite spin states, and focuses at different distances, representing the longitudinal spin separation. By combining this longitudinal spin separation with the transverse one, we experimentally achieve the controllable spin-dependent focal shift in three dimensional space. This work provides new insight on steering the spin photons, and is expected to explore novel applications of optical trapping, manipulating, and micromachining with higher degree of freedom. PMID:26882995

  15. Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves.

    PubMed

    Wong, P K Johnny; Zhang, Wen; Wu, Jing; Will, Iain G; Xu, Yongbing; Xia, Ke; Holmes, Stuart N; Farrer, Ian; Beere, Harvey E; Ritchie, Dave A

    2016-07-19

    The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET.

  16. Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves

    PubMed Central

    Wong, P. K. Johnny; Zhang, Wen; Wu, Jing; Will, Iain G.; Xu, Yongbing; Xia, Ke; Holmes, Stuart N.; Farrer, Ian; Beere, Harvey E.; Ritchie, Dave A.

    2016-01-01

    The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET. PMID:27432047

  17. Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves

    NASA Astrophysics Data System (ADS)

    Wong, P. K. Johnny; Zhang, Wen; Wu, Jing; Will, Iain G.; Xu, Yongbing; Xia, Ke; Holmes, Stuart N.; Farrer, Ian; Beere, Harvey E.; Ritchie, Dave A.

    2016-07-01

    The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET.

  18. Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves.

    PubMed

    Wong, P K Johnny; Zhang, Wen; Wu, Jing; Will, Iain G; Xu, Yongbing; Xia, Ke; Holmes, Stuart N; Farrer, Ian; Beere, Harvey E; Ritchie, Dave A

    2016-01-01

    The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias- and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET. PMID:27432047

  19. Valley-dependent spin polarization and long-lived electron spins in germanium

    SciTech Connect

    Giorgioni, Anna Vitiello, Elisa; Grilli, Emanuele; Guzzi, Mario; Pezzoli, Fabio

    2014-10-13

    Spin orientation and relaxation of conduction band electrons in bulk Ge are addressed by studying the steady-state circular polarization of the indirect gap photoluminescence (PL) at low temperatures. This provides a direct experimental proof of recently predicted spin-dependent selection rules for phonon-mediated optical transitions in Ge. In addition, we observe valley-dependent circularly polarized emission, and map the concomitant redistribution of electron spins within the multi-valley conduction band of Ge by gaining simultaneous access to the circular dichroism of light emitted across the direct and the indirect gap transitions. Finally, the lifetime of L-valley electrons is measured by means of decay curves of the indirect gap PL emission, yielding spin relaxation times in the order of hundreds of ns.

  20. Spin tune dependence on closed orbit in RHIC

    SciTech Connect

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-05-23

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  1. Cassini CAPS and INMS Detection of Water Group Pick-Up Ions Near the Orbits of Saturn's Icy Moons Enceladus, Dione and Rhea

    NASA Astrophysics Data System (ADS)

    Tokar, R. L.; Bagenal, F.; Crary, F. J.; Omidi, N.; Paty, C. S.; Perry, M. E.; Thomsen, M. F.; Waite, J. H.; Wilson, R. J.

    2013-12-01

    In this study water group pick up ions near the orbits of Saturn's moons Enceladus, Dione, and Rhea are studied for all Cassini plasma spectrometer (CAPS) data since orbit insertion with comparisons made to Cassini ion and neutral mass spectrometer (INMS) observations in ion mode. In addition, in-situ CAPS pick-up ion phase space measurements during Cassini's Enceladus close encounters are compared with hybrid and multi-fluid simulations. The icy surfaces of Enceladus, Dione and Rhea, along with Enceladus' south polar plumes (~90% water vapor with a smaller admixture of CO2, CO, N2, and CH4), are sources of neutral H2O vapor. In the case of Enceladus, due to the plumes, the region of dense vapor is large whereas in the case of Dione and Rhea only a smaller exosphere near the surfaces exists. The dense bulk plasma in Saturn's inner magnetosphere (electrons, protons, water group ions) nearly co-rotates with Saturn near the orbits of these moons with speeds ~40 to 60 km/s while the neutral gas, both near the moons and in extended tori, moves at the slower gravitational orbital speeds. This relative speed leads to a characteristic 'pick-up' velocity space signature for these ions near their source region (before assimilation into the core ion population) and since arriving at Saturn CAPS has detected O+, OH+, H2O+ and H3O+ with these fresh 'pick-up' signatures. In addition, previous studies have shown that the Cassini INMS detected H3O+ near Enceladus with similar phase space density and simultaneous with the CAPS observations. These studies are extended, using the full CAPS/INMS data sets and the highest fidelity simulations.

  2. A Regge Model for Nucleon-Nucleon Spin Dependent Amplitudes

    SciTech Connect

    William P. Ford, Jay Van Orden

    2013-01-01

    There are currently no models readily available that provide nucleon-nucleon spin dependent scattering amplitudes at high energies (s {ge} 6 GeV{sup 2}). This work aims to provide a model for calculating these high energy scattering amplitudes. The foundation of the model is Regge theory since it allows for a relativistic description and full spin dependence. We present our parameterization of the amplitudes, and show comparisons of our solutions to the data set we have collected. Overall the model works as intended, and provides an adequate description of the scattering amplitudes.

  3. Spin-dependent charge carrier recombination in PCBM

    NASA Astrophysics Data System (ADS)

    Morishita, Hiroki; Baker, William; Waters, David; Baarda, Rachel; Lupton, John; Boehme, Christoph; Utah Spin Electronics Group Collaboration; Lupton Group Collaboration

    2013-03-01

    We present room temperature pulsed electrically detected magnetic resonance (pEDMR) measurements on [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) (electron acceptor) thin film unipolar and bipolar devices. Our study aimed at identifying the dominating spin-dependent transport and recombination processes therein. Experimentally, the devices were operated under a constant positive bias, and the resultant transient current response was then monitored after the application of a short resonant microwave pulse excitation. The measurements did not reveal any observable signal for unipolar electron devices which suggests that spin-dependent transport mechanisms are not dominant in PCBM. However, under bipolar injection, at least two pronounced spin-dependent signals were detected whose magnitudes increased as the devices degraded upon exposure to air. Electrical detection of spin-Rabi beat oscillation revealed that one of these two signals is due to weakly coupled pairs of spins with s =1/2. We therefore attribute this signal to electron-hole recombination. This observation shows that while PCBM is a poor hole conductor, hole injection can be significant.

  4. Spin-dependent electron transport in nanoscale samples

    NASA Astrophysics Data System (ADS)

    Wei, Yaguang

    In this thesis, we describe the research in which we use metallic nanoparticles to explore spin-dependent electron transport at nanometer scale. Nanoscale samples were fabricated by using a state of the art electron beam lithography and shadow evaporation technique. We have investigated spin relaxation and decoherence in metallic grains as a function of bias voltage and magnetic field at low temperatures (down to ˜30mK). At low temperatures, the discrete energy levels within a metallic nanoparticle provides a new means to study the physics of the spin-polarized electron tunneling. We describe measurements of spin-polarized tunneling via discrete energy levels of single Aluminum grain. Spin polarized current saturates quickly as a function of bias voltage, which demonstrates that the ground state and the lowest excited states carry spin polarized current. The ratio of electron-spin relaxation time (T1) to the electron-phonon relaxation rate is in quantitative agreement with the Elliot-Yafet scaling, an evidence that spin-relaxation in Al grains is driven by the spin-orbit interaction. The spin-relaxation time of the low-lying excited states is T1 ≈ 0.7 mus and 0.1 mus in two samples, showing that electron spin in a metallic grain could be a potential candidate for quantum information research. We also present measurements of mesoscopic resistance fluctuations in cobalt nanoparticles at low temperature and study how the fluctuations with bias voltage, bias fingerprints, respond to magnetization-reversal processes. Bias fingerprints rearrange when domains are nucleated or annihilated. The domain wall causes an electron wave function-phase shift of ˜5 pi. The phase shift is not caused by the Aharonov-Bohm effect; we explain how it arises from the mistracking effect, where electron spins lag in orientation with respect to the moments inside the domain wall. The dephasing length at low temperatures is only 30 nm, which is attributed to the large magnetocrystalline

  5. Crystalline Direction Dependence of Spin Precession Angle and Its Application to Complementary Spin Logic Devices.

    PubMed

    Park, Youn Ho; Kim, Hyung-Jun; Chang, Joonyeon; Choi, Heon-Jin; Koo, Hyun Cheol

    2015-10-01

    In a semiconductor channel, spin-orbit interaction is divided into two terms, Rashba and Dresselhaus effects, which are key phenomena for modulating spin precession angles. The direction of Rashba field is always perpendicular to the wavevector but that of Dresselhaus field depends on the crystal orientation. Based on the individual Rashba and Dresselhaus strengths, we calculate spin precession angles for various crystal orientations in an InAs quantum well structure. When the channel length is 1 μm, the precession angle is 550° for the [110] direction and 460° for the [1-10] direction, respectively. Using the two spin transistors with different crystal directions, which play roles of n- and p-type transistors in conventional charge transistors, we propose a complementary logic device. PMID:26726362

  6. Spin-dependent thermoelectric effects in graphene-based spin valves.

    PubMed

    Zeng, Minggang; Huang, Wen; Liang, Gengchiau

    2013-01-01

    Using first-principles calculations combined with non-equilibrium Green's function (NEGF), we investigate spin-dependent thermoelectric effects in a spin valve which consists of zigzag graphene nanoribbon (ZGNR) electrodes with different magnetic configurations. We find that electron transport properties in the ZGNR-based spin valve are strongly dependent on the magnetic configurations. As a result, with a temperature bias, thermally-induced currents can be controlled by switching the magnetic configurations, indicating a thermal magnetoresistance (MR) effect. Moreover, based on the linear response assumption, our study shows that the remarkably different Seebeck coefficients in the various magnetic configurations lead to a very large and controllable magneto Seebeck ratio. In addition, we evaluate thermoelectric properties, such as the power factor, electron thermal conductance and figure of merit (ZT), of the ZGNR-based spin valve. Our results indicate that the power factor and the electron thermal conductance are strongly related to the transmission gap and electron-hole symmetry of the transmission spectrum. Moreover, the value of ZT can reach 0.15 at room temperature without considering phonon scattering. In addition, we investigate the thermally-controlled magnetic distributions in the ZGNR-based spin valve and find that the magnetic distribution, especially the local magnetic moment around the Ni atom, is strongly related to the thermal bias. The very large, multi-valued and controllable thermal magnetoresistance and Seebeck effects indicate the strong potential of ZGNR-based spin valves for extremely low-power consuming spin caloritronics applications. The thermally-controlled magnetic moment in the ZGNR-based spin valve indicates its possible applications for information storage. PMID:23151965

  7. 3He Spin-Dependent Cross Sections and Sum Rules

    SciTech Connect

    Slifer, Karl; Amaryan, Moscov; Amaryan, Moskov; Auerbach, Leonard; Averett, Todd; Berthot, J.; Bertin, Pierre; Bertozzi, William; Black, Tim; Brash, Edward; Brown, D.; Burtin, Etienne; Calarco, John; Cates, Gordon; Chai, Zhengwei; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Ciofi, Claudio; Cisbani, Evaristo; De Jager, Cornelis; Deur, Alexandre; DiSalvo, R.; Dieterich, Sonja; Djawotho, Pibero; Finn, John; Fissum, Kevin; Fonvieille, Helene; Frullani, Salvatore; Gao, Haiyan; Gao, Juncai; Garibaldi, Franco; Gasparian, Ashot; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Glashausser, Charles; Glockle, W.; Golak, J.; Goldberg, Emma; Gomez, Javier; Gorbenko, Viktor; Hansen, Jens-Ole; Hersman, F.; Holmes, Richard; Huber, Garth; Hughes, Emlyn; Humensky, Thomas; Incerti, Sebastien; Iodice, Mauro; Jensen, S.; Jiang, Xiaodong; Jones, C.; Jones, G.; Jones, Mark; Jutier, Christophe; Kamada, H.; Ketikyan, Armen; Kominis, Ioannis; Korsch, Wolfgang; Kramer, Kevin; Kumar, Krishna; Kumbartzki, Gerfried; Kuss, Michael; Lakuriqi, Enkeleida; Laveissiere, Geraud; LeRose, John; Liang, Meihua; Liyanage, Nilanga; Lolos, George; Malov, Sergey; Marroncle, Jacques; McCormick, Kathy; McKeown, Robert; Meziani, Zein-Eddine; Michaels, Robert; Mitchell, Joseph; Nogga, Andreas; Pace, Emanuele; Papandreou, Zisis; Pavlin, Tina; Petratos, Gerassimos; Pripstein, David; Prout, David; Ransome, Ronald; Roblin, Yves; Rowntree, David; Rvachev, Marat; Sabatie, Franck; Saha, Arunava; Salme, Giovanni; SCOPETTA, S.; Skibinski, R.; Souder, Paul; Saito, Teijiro; Strauch, Steffen; Suleiman, Riad; Takahashi, Kazunori; Todor, Luminita; Tsubota, Hiroaki; Ueno, Hiroaki; Urciuoli, Guido; van der Meer, Rob; Vernin, Pascal; Voskanyan, Hakob; Witala, Henryk; Wojtsekhowski, Bogdan; Xiong, Feng; Xu, Wang; Yang, Jae-Choon; Zhang, Bin; Zolnierczuk, Piotr

    2008-07-01

    We present a measurement of the spin-dependent cross sections for the \\vec{^3He}(\\vec{e},e')X} reaction in the quasielastic and resonance regions at four-momentum transfer 0.1 < Q^2< 0.9 GeV^2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt--Cottingham and extended GDH sum rules for the first time. Impulse approximation and exact three-body Faddeev calculations are also compared to the data in the quasielastic region.

  8. He3 Spin-Dependent Cross Sections and Sum Rules

    NASA Astrophysics Data System (ADS)

    Slifer, K.; Amarian, M.; Auerbach, L.; Averett, T.; Berthot, J.; Bertin, P.; Bertozzi, B.; Black, T.; Brash, E.; Brown, D.; Burtin, E.; Calarco, J.; Cates, G.; Chai, Z.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Ciofi Degli Atti, C.; Cisbani, E.; de Jager, C. W.; Deur, A.; Disalvo, R.; Dieterich, S.; Djawotho, P.; Finn, M.; Fissum, K.; Fonvieille, H.; Frullani, S.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Glöckle, W.; Golak, J.; Goldberg, E.; Gomez, J.; Gorbenko, V.; Hansen, J.-O.; Hersman, B.; Holmes, R.; Huber, G. M.; Hughes, E.; Humensky, B.; Incerti, S.; Iodice, M.; Jensen, S.; Jiang, X.; Jones, C.; Jones, G.; Jones, M.; Jutier, C.; Kamada, H.; Ketikyan, A.; Kominis, I.; Korsch, W.; Kramer, K.; Kumar, K.; Kumbartzki, G.; Kuss, M.; Lakuriqi, E.; Laveissiere, G.; Lerose, J. J.; Liang, M.; Liyanage, N.; Lolos, G.; Malov, S.; Marroncle, J.; McCormick, K.; McKeown, R. D.; Meziani, Z.-E.; Michaels, R.; Mitchell, J.; Nogga, A.; Pace, E.; Papandreou, Z.; Pavlin, T.; Petratos, G. G.; Pripstein, D.; Prout, D.; Ransome, R.; Roblin, Y.; Rowntree, D.; Rvachev, M.; Sabatié, F.; Saha, A.; Salmè, G.; Scopetta, S.; Skibiński, R.; Souder, P.; Saito, T.; Strauch, S.; Suleiman, R.; Takahashi, K.; Teijiro, S.; Todor, L.; Tsubota, H.; Ueno, H.; Urciuoli, G.; van der Meer, R.; Vernin, P.; Voskanian, H.; Witała, H.; Wojtsekhowski, B.; Xiong, F.; Xu, W.; Yang, J.-C.; Zhang, B.; Zolnierczuk, P.

    2008-07-01

    We present a measurement of the spin-dependent cross sections for the He→3(e→,e')X reaction in the quasielastic and resonance regions at a four-momentum transfer 0.1≤Q2≤0.9GeV2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt-Cottingham and extended Gerasimov-Drell-Hearn sum rules for the first time. The data are also compared to an impulse approximation calculation and an exact three-body Faddeev calculation in the quasielastic region.

  9. Interfacial Structure Dependent Spin Mixing Conductance in Cobalt Thin Films.

    PubMed

    Tokaç, M; Bunyaev, S A; Kakazei, G N; Schmool, D S; Atkinson, D; Hindmarch, A T

    2015-07-31

    Enhancement of Gilbert damping in polycrystalline cobalt thin-film multilayers of various thicknesses, overlayered with copper or iridium, was studied in order to understand the role of local interface structure in spin pumping. X-ray diffraction indicates that cobalt films less than 6 nm thick have strong fcc(111) texture while thicker films are dominated by hcp(0001) structure. The intrinsic damping for cobalt thicknesses above 6 nm is weakly dependent on cobalt thickness for both overlayer materials, and below 6 nm the iridium overlayers show higher damping enhancement compared to copper overlayers, as expected due to spin pumping. The interfacial spin mixing conductance is significantly enhanced in structures where both cobalt and iridium have fcc(111) structure in comparison to those where the cobalt layer has subtly different hcp(0001) texture at the interface. PMID:26274431

  10. Interfacial Structure Dependent Spin Mixing Conductance in Cobalt Thin Films

    NASA Astrophysics Data System (ADS)

    Tokaç, M.; Bunyaev, S. A.; Kakazei, G. N.; Schmool, D. S.; Atkinson, D.; Hindmarch, A. T.

    2015-07-01

    Enhancement of Gilbert damping in polycrystalline cobalt thin-film multilayers of various thicknesses, overlayered with copper or iridium, was studied in order to understand the role of local interface structure in spin pumping. X-ray diffraction indicates that cobalt films less than 6 nm thick have strong fcc(111) texture while thicker films are dominated by hcp(0001) structure. The intrinsic damping for cobalt thicknesses above 6 nm is weakly dependent on cobalt thickness for both overlayer materials, and below 6 nm the iridium overlayers show higher damping enhancement compared to copper overlayers, as expected due to spin pumping. The interfacial spin mixing conductance is significantly enhanced in structures where both cobalt and iridium have fcc(111) structure in comparison to those where the cobalt layer has subtly different hcp(0001) texture at the interface.

  11. Measuring spin-dependent structure functions at CEBAF

    SciTech Connect

    Schaefer, A.

    1994-04-01

    The author analyses whether CEBAF with a 10 GeV beam could contribute significantly to the understanding of spin-dependent deep-inelastic scattering as well as semi-inclusive reactions. The main advantage of CEBAF is the much better attainable statistics, its great disadvantage its comparably low energy, which limits the accessible x-range to about 0.15 to 0.7. Within these constraints CEBAF could provide (1) high precision data which would be very valuable to understand the Q{sup 2} dependence of the spin-dependent structure functions g{sub 1}(x) and G{sub 2}(x) and (2) the by far most precise determination of the third moments of g{sub 1}(x) and g{sub 2}(x) the latter of which the author argues to be related to a fundamental property of the nucleon.

  12. Vector spin modeling for magnetic tunnel junctions with voltage dependent effects

    SciTech Connect

    Manipatruni, Sasikanth Nikonov, Dmitri E.; Young, Ian A.

    2014-05-07

    Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.

  13. Spin-dependent WIMP limits from a bubble chamber.

    PubMed

    Behnke, E; Collar, J I; Cooper, P S; Crum, K; Crisler, M; Hu, M; Levine, I; Nakazawa, D; Nguyen, H; Odom, B; Ramberg, E; Rasmussen, J; Riley, N; Sonnenschein, A; Szydagis, M; Tschirhart, R

    2008-02-15

    Bubble chambers were the dominant technology used for particle detection in accelerator experiments for several decades, eventually falling into disuse with the advent of other techniques. We report here on a new application for these devices. We operated an ultraclean, room-temperature bubble chamber containing 1.5 kilograms of superheated CF3I, a target maximally sensitive to spin-dependent and -independent weakly interacting massive particle (WIMP) couplings. An extreme intrinsic insensitivity to the backgrounds that commonly limit direct searches for dark matter was measured in this device under operating conditions leading to the detection of low-energy nuclear recoils like those expected from WIMPs. Improved limits on the spin-dependent WIMP-proton scattering cross section were extracted during our experiments, excluding this type of coupling as a possible explanation for a recent claim of particle dark-matter detection.

  14. Exotic paired phases in ladders with spin-dependent hopping

    SciTech Connect

    Feiguin, Adrian E.; Fisher, Matthew P. A.

    2011-03-15

    Fermions in two dimensions, when subject to anisotropic spin-dependent hopping, can potentially give rise to unusual paired states in unpolarized mixtures that can behave as non-Fermi liquids. One possibility is a fully paired state with a gap for fermion excitations in which the Cooper pairs remain uncondensed. Such a ''Cooper-pair Bose-metal'' phase would be expected to have a singular Bose surface in momentum space. As demonstrated in the context of two-dimensional bosons hopping with a frustrating ring-exchange interaction, an analogous Bose-metal phase has a set of quasi-one-dimensional descendant states when put on a ladder geometry. Here we present a density matrix renormalization group study of the attractive Hubbard model with spin-dependent hopping on a two-leg ladder geometry. In our setup, one spin species moves preferentially along the leg direction, while the other does so along the rung direction. We find compelling evidence for the existence of a novel Cooper-pair Bose-metal phase in a region of the phase diagram at intermediate coupling. We further explore the phase diagram of this model as a function of hopping anisotropy, density, and interaction strength, finding a conventional superfluid phase as well as a phase of paired Cooper pairs with d-wave symmetry, similar to the one found in models of hard-core bosons with ring exchange. We argue that simulating this model with cold Fermi gases on spin-dependent optical lattices is a promising direction for realizing exotic quantum states.

  15. Spin-dependent transport properties in GaMnAs-based spin hot-carrier transistors

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Ohya, Shinobu; Hai, Pham Nam; Tanaka, Masaaki

    2007-04-01

    The authors have investigated the spin-dependent transport properties of GaMnAs-based "three-terminal" semiconductor spin hot-carrier transistor (SSHCT) structures. The emitter-base bias voltage VEB dependence of the collector current IC, emitter current IE, and base current IB shows that the current transfer ratio α (=IC/IE) and the current gain β (=IC/IB) are 0.8-0.95 and 1-10, respectively, which means that GaMnAs-based SSHCTs have current amplification capability. In addition, the authors observed an oscillatory behavior of the tunneling magnetoresistance ratio with the increasing bias, which can be explained by the resonant tunneling effect in the GaMnAs quantum well.

  16. Spin-Dependent Beats Created by Irradiation of Microwave Field Through a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Tagani, M. Bagheri; Soleimani, H. Rahimpour

    We study spin-dependent transport through a quantum dot with Zeeman split levels coupled to ferromagnetic leads and under influence of microwave irradiation. Current polarization, spin current, spin accumulation and tunneling magnetoresistance are analyzed using nonequilibrium Green's function formalism and rate equations. Spin-dependent beats in spin resolved currents are observed. The effects of magnetic field, temperature and Coulomb interaction on these beats are studied.

  17. Dynamics of intracellular phospholipid membrane organization during oocyte maturation and successful vitrification of immature oocytes retrieved by ovum pick-up in cattle.

    PubMed

    Aono, Akira; Nagatomo, Hiroaki; Takuma, Tetsuya; Nonaka, Rika; Ono, Yoshitaka; Wada, Yasuhiko; Abe, Yasuyuki; Takahashi, Masashi; Watanabe, Tomomasa; Kawahara, Manabu

    2013-05-01

    The objective was to determine if immature bovine oocytes with cumulus cells at the germinal vesicle (GV) stage could be vitrified by aluminum sheets (AS; pieces of sheet-like aluminum foil). Cleavage rates in fertilized oocytes previously vitrified by the AS procedure were higher than those vitrified by a nylon-mesh holder (NM) procedure (89.3 ± 2.1% vs. 65.0 ± 3.7%). Cleaved embryos derived from the AS but not from the NM procedures developed to blastocysts. Furthermore, to investigate the effects of vitrifying GV oocytes on cytoplasmic structure and on the ability to undergo cytoplasmic changes, the intracellular phospholipid membrane (IM) was stained with the lipophilic fluorescent dye, 3,3'-dioctadecyloxa-carbocyanine perchlorate. After vitrification by AS, the IM remained intact relative to that of oocytes vitrified by NM. During in vitro maturation, reorganization of the IM was also undamaged in oocytes vitrified by AS before oocyte maturation, and the IM within oocytes vitrified by the NM procedure was evidently impaired. Finally, vitrification (AS) was used for GV oocytes collected using the ovum pick-up method. A bull calf was born after in vitro production and subsequent embryo transfer. The vitrification techniques described herein should facilitate generation of viable in vitro production bovine blastocysts using oocytes recovered using the ovum pick-up method.

  18. Effects of symmetry and spin configuration on spin-dependent transport properties of iron-phthalocyanine-based devices

    SciTech Connect

    Cui, Li-Ling; Yang, Bing-Chu Li, Xin-Mei; Cao, Can; Long, Meng-Qiu

    2014-07-21

    Spin-dependent transport properties of nanodevices constructed by iron-phthalocyanine (FePc) molecule sandwiched between two zigzag graphene nanoribbon electrodes are studied using first-principles quantum transport calculations. The effects of the symmetry and spin configuration of electrodes have been taken into account. It is found that large magnetoresistance, large spin polarization, dual spin-filtering, and negative differential resistance (NDR) can coexist in these devices. Our results show that 5Z-FePc system presents well conductive ability in both parallel (P) and anti-parallel (AP) configurations. For 6Z-FePc-P system, spin filtering effect and large spin polarization can be found. A dual spin filtering and NDR can also be shown in 6Z-FePc-AP. Our studies indicate that the dual spin filtering effect depends on the orbitals symmetry of the energy bands and spin mismatching of the electrodes. And all the effects would open up possibilities for their applications in spin-valve, spin-filter as well as effective spin diode devices.

  19. Effects of symmetry and spin configuration on spin-dependent transport properties of iron-phthalocyanine-based devices

    NASA Astrophysics Data System (ADS)

    Cui, Li-Ling; Yang, Bing-Chu; Li, Xin-Mei; Cao, Can; Long, Meng-Qiu

    2014-07-01

    Spin-dependent transport properties of nanodevices constructed by iron-phthalocyanine (FePc) molecule sandwiched between two zigzag graphene nanoribbon electrodes are studied using first-principles quantum transport calculations. The effects of the symmetry and spin configuration of electrodes have been taken into account. It is found that large magnetoresistance, large spin polarization, dual spin-filtering, and negative differential resistance (NDR) can coexist in these devices. Our results show that 5Z-FePc system presents well conductive ability in both parallel (P) and anti-parallel (AP) configurations. For 6Z-FePc-P system, spin filtering effect and large spin polarization can be found. A dual spin filtering and NDR can also be shown in 6Z-FePc-AP. Our studies indicate that the dual spin filtering effect depends on the orbitals symmetry of the energy bands and spin mismatching of the electrodes. And all the effects would open up possibilities for their applications in spin-valve, spin-filter as well as effective spin diode devices.

  20. Spin-dependent exciton quenching and spin coherence in CdSe/CdS nanocrystals.

    PubMed

    van Schooten, Kipp J; Huang, Jing; Baker, William J; Talapin, Dmitri V; Boehme, Christoph; Lupton, John M

    2013-01-01

    Large surface-to-volume ratios of semiconductor nanocrystals cause susceptibility to charge trapping, which can modify luminescence yields and induce single-particle blinking. Optical spectroscopies cannot differentiate between bulk and surface traps in contrast to spin-resonance techniques, which in principle avail chemical information on such trap sites. Magnetic resonance detection via spin-controlled photoluminescence enables the direct observation of interactions between emissive excitons and trapped charges. This approach allows the discrimination of three radical species located in two functionally different trap states in CdSe/CdS nanocrystals, underlying the fluorescence quenching and thus blinking mechanisms: a spin-dependent Auger process in charged particles; and a charge-separated state pair process, which leaves the particle neutral. The paramagnetic trap centers offer control of the energy transfer yield from the wide-gap CdS to the narrow-gap CdSe, that is, light harvesting within the heterostructure. Coherent spin motion within the trap states of the CdS arms of nanocrystal tetrapods is reflected by spatially remote luminescence from CdSe cores with surprisingly long coherence times of >300 ns at 3.5 K, illustrating coherent control of light harvesting. PMID:23189974

  1. Precision measurement of the neutron spin dependent structure functions

    SciTech Connect

    Kolomensky, Y.G.

    1997-02-01

    In experiment E154 at the Stanford Linear Accelerator Center the spin dependent structure function g{sub 1}{sup n} (x, Q{sup 2}) of the neutron was measured by scattering longitudinally polarized 48.3 GeV electrons off a longitudinally polarized {sup 3}He target. The high beam energy allowed the author to extend the kinematic coverage compared to the previous SLAC experiments to 0.014 {le} x {le} 0.7 with an average Q{sup 2} of 5 GeV{sup 2}. The author reports the integral of the spin dependent structure function in the measured range to be {integral}{sub 0.014}{sup 0.7} dx g{sub 1}{sup n}(x, 5 GeV{sup 2}) = {minus}0.036 {+-} 0.004(stat.) {+-} 0.005(syst.). The author observes relatively large values of g{sub 1}{sup n} at low x that call into question the reliability of data extrapolation to x {r_arrow} 0. Such divergent behavior disagrees with predictions of the conventional Regge theory, but is qualitatively explained by perturbative QCD. The author performs a Next-to-Leading Order perturbative QCD analysis of the world data on the nucleon spin dependent structure functions g{sub 1}{sup p} and g{sub 1}{sup n} paying careful attention to the experimental and theoretical uncertainties. Using the parameterizations of the helicity-dependent parton distributions obtained in the analysis, the author evolves the data to Q{sup 2} = 5 GeV{sup 2}, determines the first moments of the polarized structure functions of the proton and neutron, and finds agreement with the Bjorken sum rule.

  2. Orientation-dependent conductance in 2DEG/spin-triplet superconductor junctions with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Jin, Biao; Ma, Hongyang

    2015-12-01

    We study the conductance of two-dimensional electron gas/spin-triplet superconductor junctions in the presence of Rashba spin-orbit coupling. The conductance shows anisotropic dependence on the orientation of the d-vector in the superconductor and is simultaneously symmetric about the vector reversal. The properties are distinct from those for ferromagnet/spin-triplet superconductor or/and two-dimensional electron gas/spin-singlet superconductor junctions. The effects of the strength of the spin-orbit coupling and the height of the interfacial barrier are also investigated.

  3. Infinite magnetoresistance from the spin dependent proximity effect in symmetry driven bcc-Fe/V/Fe heteroepitaxial superconducting spin valves.

    PubMed

    Miao, Guo-Xing; Ramos, Ana V; Moodera, Jagadeesh S

    2008-09-26

    Superconductivity in fully epitaxial bcc-Fe/V/Fe hybrid spin valve structures is influenced by the spin currents and supercurrents as well as band symmetry. The transition temperature is spin dependent in the presence of the proximity effect. A unique feature in this system is the band symmetry filtering taking place at the Fe/V interface. The absence of Delta2 Bloch states at the Fermi level in the Fe spin majority channel leads to spin selectivity and reduced transparency at the interface. Infinite magnetoresistance with clear remanence states is obtained, and implies the potential for spintronic applications. PMID:18851482

  4. Discrimination between spin-dependent charge transport and spin-dependent recombination in π-conjugated polymers by correlated current and electroluminescence-detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Kavand, Marzieh; Baird, Douglas; van Schooten, Kipp; Malissa, Hans; Lupton, John M.; Boehme, Christoph

    2016-08-01

    Spin-dependent processes play a crucial role in organic electronic devices. Spin coherence can give rise to spin mixing due to a number of processes such as hyperfine coupling, and leads to a range of magnetic field effects. However, it is not straightforward to differentiate between pure single-carrier spin-dependent transport processes which control the current and therefore the electroluminescence, and spin-dependent electron-hole recombination which determines the electroluminescence yield and in turn modulates the current. We therefore investigate the correlation between the dynamics of spin-dependent electric current and spin-dependent electroluminescence in two derivatives of the conjugated polymer poly(phenylene-vinylene) using simultaneously measured pulsed electrically detected (pEDMR) and optically detected (pODMR) magnetic resonance spectroscopy. This experimental approach requires careful analysis of the transient response functions under optical and electrical detection. At room temperature and under bipolar charge-carrier injection conditions, a correlation of the pEDMR and the pODMR signals is observed, consistent with the hypothesis that the recombination currents involve spin-dependent electronic transitions. This observation is inconsistent with the hypothesis that these signals are caused by spin-dependent charge-carrier transport. These results therefore provide no evidence that supports earlier claims that spin-dependent transport plays a role for room-temperature magnetoresistance effects. At low temperatures, however, the correlation between pEDMR and pODMR is weakened, demonstrating that more than one spin-dependent process influences the optoelectronic materials' properties. This conclusion is consistent with prior studies of half-field resonances that were attributed to spin-dependent triplet exciton recombination, which becomes significant at low temperatures when the triplet lifetime increases.

  5. Organic light-emitting devices using spin-dependent processes

    DOEpatents

    Vardeny, Z. Valy; Wohlgenannt, Markus

    2010-03-23

    The maximum luminous efficiency of organic light-emitting materials is increased through spin-dependent processing. The technique is applicable to all electro-luminescent processes in which light is produced by singlet exciton decay, and all devices which use such effects, including LEDs, super-radiant devices, amplified stimulated emission devices, lasers, other optical microcavity devices, electrically pumped optical amplifiers, and phosphorescence (Ph) based light emitting devices. In preferred embodiments, the emissive material is doped with an impurity, or otherwise modified, to increase the spin-lattice relaxation rate (i.e., decrease the spin-lattice time), and hence raise the efficiency of the device. The material may be a polymer, oligomer, small molecule, single crystal, molecular crystal, or fullerene. The impurity is preferably a magnetic or paramagnetic substance. The invention is applicable to IR, UV, and other electromagnetic radiation generation and is thus not limited to the visible region of the spectrum. The methods of the invention may also be combined with other techniques used to improve device performance.

  6. Stacking order dependence of inverse spin Hall effect and anomalous Hall effect in spin pumping experiments

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Il; Kim, Dong-Jun; Seo, Min-Su; Park, Byong-Guk; Park, Seung-Young

    2015-05-01

    The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE011 resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage VISHE for the stacking order of the bilayer can separate the pure VISHE and the anomalous Hall effect (AHE) voltage VAHE utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θISH, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θISH values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable VISHE value in bilayer systems are large θISH and low resistivity.

  7. Spin-independent interferences and spin-dependent interactions with scalar dark matter

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Ochoa, F.

    2016-05-01

    We explore mechanisms of interferences under which the spin-independent interaction in the scattering of scalar dark matter with nucleus is suppressed in relation to the spin-dependent one. We offer a detailed derivation of the nuclear amplitudes based on the interactions with quarks in the framework of a nonuniversal U(1)' extension of the standard model. By assuming a range of parameters compatible with collider searches, electroweak observables and dark matter abundance, we find scenarios for destructive interferences with and without isospin symmetry. The model reveals solutions with mutually interfering scalar particles, canceling the effective spin-independent coupling with only scalar interactions, which requires an extra Higgs boson with mass M H > 125 GeV. The model also possesses scenarios with only vector interactions through two neutral gauge bosons, Z and Z', which do not exhibit interference effects. Due to the nonuniversality of the U(1)' symmetry, we distinguish two family structures of the quark sector with different numerical predictions. In one case, we obtain cross sections that pass all the Xenon-based detector experiments. In the other case, limits from LUX experiment enclose an exclusion region for dark matter between 9 and 800 GeV. We examine a third scenario with isospin-violating couplings where interferences between scalar and vector boson exchanges cancel the scattering. We provide solutions where interactions with Xenon-based detectors is suppressed for light dark matter, below 6 GeV, while interactions with Germanium- and Silicon-based detectors exhibit solutions up to the regions of interest for positive signals reported by CoGeNT and CDMS-Si experiments, and compatible with the observed DM relic density for DM mass in the range 8 .3-10 GeV. Spin-dependent interactions become the dominant source of scattering around the interference regions, where Maxwellian speed distribution is considered.

  8. Spin filtering and scaling of spin-dependent potentials in quasi-one-dimensional electron liquids with Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Lue, N.-Y.; Wu, G. Y.

    2010-04-01

    We investigate theoretically the spin-filtering effect in a quasi-one-dimensional (Q1D) electron liquid with spin-orbit interaction. The Q1D system considered is formed from a two-dimensional electron-gas (2DEG) subject to both a lateral confining potential and an interface potential perpendicular to the 2DEG. Spin and charge degrees of freedom in the system are mixed by the interface potential through the Rashba mechanism of spin-orbit interaction [A. V. Moroz and C. H. W. Barnes, Phys. Rev. B 60, 14272 (1999)] and we show that when a spin-dependent δ potential is further introduced into the system, for example, via implantation of magnetic/ferromagnetic impurities, the mixing leads to the spin-filtering effect which favors electrons with a certain spin orientation to transport through the δ potential. In particular, we calculate the scaling dimension of electron scattering both by spin-flip and by spin-independent δ potentials when the temperature is varied and show that, in the spin-flip case, the scaling of electron scattering with temperature varies with spin orientation. Conductance is calculated for both spin and charge transport, and the spin-filtering effect is discussed quantitatively in terms of the conductance.

  9. Device Concepts Based on Spin-dependent Transmission in Semiconductor Heterostructures

    NASA Technical Reports Server (NTRS)

    Ting, David Z. - Y.; Cartoixa, X.

    2004-01-01

    We examine zero-magnetic-field spin-dependent transmission in nonmagnetic semiconductor heterostructures with structural inversion asymmetry (SIA) and bulk inversion asymmetry (BIA), and report spin devices concepts that exploit their properties. Our modeling results show that several design strategies could be used to achieve high spin filtering efficiencies. The current spin polarization of these devices is electrically controllable, and potentially amenable to highspeed spin modulation, and could be integrated in optoelectronic devices for added functionality.

  10. Constraints on Short-Range Spin-Dependent Interactions from Scalar Spin-Spin Coupling in Deuterated Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Romalis, M. V.; Kimball, D. F. Jackson

    2013-01-01

    A comparison between existing nuclear magnetic resonance measurements and calculations of the scalar spin-spin interaction (J coupling) in deuterated molecular hydrogen yields stringent constraints on anomalous spin-dependent potentials between nucleons at the atomic scale (˜1Å). The dimensionless coupling constant gPpgPN/4π associated with the exchange of pseudoscalar (axionlike) bosons between nucleons is constrained to be less than 3.6×10-7 for boson masses in the range of 5 keV, representing improvement by a factor of 100 over previous constraints. The dimensionless coupling constant gApgAN/4π associated with the exchange of an axial-vector boson between nucleons is constrained to be gApgAN/4π<1.3×10-19 for bosons of mass ≲1000eV, improving constraints at this distance scale by a factor of 100 for proton-proton couplings and more than 8 orders of magnitude for neutron-proton couplings.

  11. Single-particle strength in neutron-rich 69Cu from the 70Zn(d ,3He)69Cu proton pick-up reaction

    NASA Astrophysics Data System (ADS)

    Morfouace, P.; Franchoo, S.; Sieja, K.; Stefan, I.; de Séréville, N.; Hammache, F.; Assié, M.; Azaiez, F.; Borcea, C.; Borcea, R.; Grassi, L.; Guillot, J.; Le Crom, B.; Lefebvre, L.; Matea, I.; Mengoni, D.; Napoli, D.; Petrone, C.; Stanoiu, M.; Suzuki, D.; Testov, D.

    2016-06-01

    We have performed the 70Zn(d ,3He)69Cu proton pick-up reaction in direct kinematics using a deuteron beam at 27 MeV. The outgoing 3He particles were detected at the focal-plane detection system of an Enge split-pole spectrometer. The excitation-energy spectrum was reconstructed up to 7 MeV and spectroscopic factors were obtained after analysis of the angular distributions in the finite-range distorted-wave Born approximation. The results show three new angular distributions for which the π f7 /2 strength was measured and a lower limit of the centroid is established. State-of-the-art shell-model calculations are performed and predict a π f7 /2 strength that lies too high in energy in comparison to our experimental results.

  12. Case of ovarian hyperstimulation and oocyte pick-up during very early period of unnoticed pregnancy followed by ongoing normal pregnancy.

    PubMed

    Takenaka, Hiroshi; Nakao, Kazuki; Horikawa, Michiharu; Negishi, Hiroaki

    2016-04-01

    We report a case of unnoticed pregnancy that was maintained during low estrogen and progesterone circumstances, that showed menses-like bleeding, and was then discovered after ovarian hyperstimulation during the next period. The patient was 39 years old and primigravid. She underwent intrauterine insemination, followed by luteal support with human chorionic gonadotrophin and progestin; however, she experienced menstruation-like bleeding 15 days later. As low estradiol and progesterone levels were confirmed on the 2nd day of bleeding, ovarian hyperstimulation of short protocol for in vitro fertilization was commenced. Although 13 mature follicles were observed, only six oocytes were retrieved and one developed into a blastocyst. Four days after oocyte pick-up, a gestational sac was seen in utero. The fetus is currently growing uneventfully. This case suggests that pregnancy can be maintained during ovarian hyperstimulation, even if menstruation-like bleeding is shown in low-progesterone circumstances. PMID:26869522

  13. HHMS-PI modeling of the solar wind with pick-up protons from the Sun to Voyager 2

    NASA Astrophysics Data System (ADS)

    Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.

    2011-12-01

    Our 3D time-dependent magnetohydrodynamic (MHD) solar wind model, the Hybrid Heliospheric Modeling System with Pickup Protons (HHMS-PI) (Detman et al., 2011) has been extended to Voyager 2. HHMS-PI uses a time-dependent lower boundary condition at 0.1 AU driven indirectly by solar observations via the Wang-Sheeley-Arge source surface current sheet model (Arge and Pizzo, 2000). We show results for the Halloween 2003 solar events for the solar wind and pickup protons throughout the heliosphere extending beyond Voyager 2 (at 73 AU) to 75 AU. We also show the latitudinal and longitudinal extent of the interplanetary propagation of these events. This work was funded by NASA Grant NNX08AE40G and by Carmel Research Center, Inc.

  14. Spin force and the generation of sustained spin current in time-dependent Rashba and Dresselhaus systems

    SciTech Connect

    Ho, Cong Son Tan, Seng Ghee; Jalil, Mansoor B. A.

    2014-05-14

    The generation of spin current and spin polarization in a two-dimensional electron gas structure is studied in the presence of Dresselhaus and Rashba spin-orbit couplings (SOC), the strength of the latter being modulated in time by an ac gate voltage. By means of the non-Abelian gauge field approach, we established the relation between the Lorentz spin force and the spin current in the SOC system, and showed that the longitudinal component of the spin force induces a transverse spin current. For a constant (time-invariant) Rashba system, we recover the universal spin Hall conductivity of e/(8π) , derived previously via the Berry phase and semi-classical methods. In the case of a time-dependent SOC system, the spin current is sustained even under strong impurity scattering. We evaluated the ac spin current generated by a time-modulated Rashba SOC in the absence of any dc electric field. The magnitude of the spin current reaches a maximum when the modulation frequency matches the Larmor frequency of the electrons.

  15. Spin-dependent delay time in ferromagnet/insulator/ferromagnet heterostructures

    SciTech Connect

    Xie, ZhengWei; Zheng Shi, De; Lv, HouXiang

    2014-07-07

    We study theoretically spin-dependent group delay and dwell time in ferromagnet/insulator/ferromagnet (FM/I/FM) heterostructure. The results indicate that, when the electrons with different spin orientations tunnel through the FM/I/FM junction, the spin-up process and the spin-down process are separated on the time scales. As the self-interference delay has the spin-dependent features, the variations of spin-dependent dwell-time and spin-dependent group-delay time with the structure parameters appear different features, especially, in low incident energy range. These different features show up as that the group delay times for the spin-up electrons are always longer than those for spin-down electrons when the barrier height or incident energy increase. In contrast, the dwell times for the spin-up electrons are longer (shorter) than those for spin-down electrons when the barrier heights (the incident energy) are under a certain value. When the barrier heights (the incident energy) exceed a certain value, the dwell times for the spin-up electrons turn out to be shorter (longer) than those for spin-down electrons. In addition, the group delay time and the dwell time for spin-up and down electrons also relies on the comparative direction of magnetization in two FM layers and tends to saturation with the thickness of the barrier.

  16. Angular-dependent magnetization reversal processes in artificial spin ice

    NASA Astrophysics Data System (ADS)

    Burn, D. M.; Chadha, M.; Branford, W. R.

    2015-12-01

    The angular dependence of the magnetization reversal in interconnected kagome artificial spin ice structures has been studied through experimental MOKE measurements and micromagnetic simulations. This reversal is mediated by the propagation of magnetic domain walls along the interconnecting bars, which either nucleate at the vertex or arrive following an interaction in a neighboring vertex. The physical differences in these processes show a distinct angular dependence allowing the different contributions to be identified. The configuration of the initial magnetization state, either locally or on a full sublattice of the system, controls the reversal characteristics of the array within a certain field window. This shows how the available magnetization reversal routes can be manipulated and the system can be trained.

  17. Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces

    SciTech Connect

    Ke, Yougang; Liu, Yachao; He, Yongli; Zhou, Junxiao; Luo, Hailu Wen, Shuangchun

    2015-07-27

    We report the realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces. Compared with the plasmonic metasurfaces, the all-dielectric metasurface exhibits more high transmission efficiency and conversion efficiency, which makes it possible to achieve the spin-dependent splitting with arbitrary intensity patterns. Our findings suggest a way for generation and manipulation of spin photons, and thereby offer the possibility of developing spin-based nanophotonic applications.

  18. Shape-dependent charge and spin transport through an electron waveguide

    NASA Astrophysics Data System (ADS)

    Ban, Yue; Sherman, E. Ya.

    2013-01-01

    We study electron transport in nanosized semiconductor waveguides of different shapes. The spin-dependent transport through these nonuniform nanostructures is investigated in the presence of spin-orbit coupling of the Rashba and Dresselhaus types. The resulting spin rotation strongly depends on the shape of the waveguide. The crossover from the classical motion to the tunneling regime can be controlled in the waveguide with narrowing by modulating the strength of the Rashba spin-orbit coupling.

  19. Spin-dependent thermoelectronic transport of a single molecule magnet Mn(dmit){sub 2}

    SciTech Connect

    Su, Zhongbo; Wei, Xinyuan; Yang, Zhongqin; An, Yipeng

    2014-05-28

    We investigate spin-dependent thermoelectronic transport properties of a single molecule magnet Mn(dmit){sub 2} sandwiched between two Au electrodes using first-principles density functional theory combined with nonequilibrium Green's function method. By applying a temperature difference between the two Au electrodes, spin-up and spin-down currents flowing in opposite directions can be induced due to asymmetric distribution of the spin-up and spin-down transmission spectra around the Fermi level. A pure spin current and 100% spin polarization are achieved by tuning back-gate voltage to the system. The spin caloritronics of the molecule with a perpendicular conformation is also explored, where the spin-down current is blocked strongly. These results suggest that Mn(dmit){sub 2} is a promising material for spin caloritronic applications.

  20. Reanalysis of nuclear spin matrix elements for dark matter spin-dependent scattering

    NASA Astrophysics Data System (ADS)

    Cannoni, M.

    2013-04-01

    We show how to include in the existing calculations for nuclei other than Xe129 and Xe131 the corrections to the isovector coupling arising in chiral effective field theory recently found in Menendez et al. [Phys. Rev. D 86, 103511 (2012)PRVDAQ1550-7998]. The dominant, momentum-independent, two-body current effect can be taken into account by formally redefining the static spin matrix elements ⟨Sp,n⟩. By further using the normalized form factor at q≠0 built with the one-body level structure functions, we show that the weakly interacting massive particles (WIMP)-nucleus cross section and the upper limits on the WIMP-nucleon cross sections coincide with the ones derived by using the exact functions at the two-body level. We explicitly show it in the case of XENON100 limits on the WIMP-neutron cross section, and we recalculate the limits on the WIMP-proton spin-dependent cross section set by COUPP. We also give practical formulas to obtain ⟨Sp,n⟩ given the structure functions in the various formalisms and notations existing in the literature. We argue that the standard treatment of the spin-dependent cross section in terms of three independent isospin functions, S00(q), S11(q), and S01(q), is redundant in the sense that the interference function S01(q) is the double product |S01(q)|=2S00(q)S11(q) even when including the new effective field theory corrections.

  1. Effects of interaction and polarization on spin-charge separation: A time-dependent spin-density-functional theory study

    NASA Astrophysics Data System (ADS)

    Xianlong, Gao

    2010-03-01

    We calculate the nonequilibrium dynamic evolution of a one-dimensional system of two-component fermionic atoms after a strong local quench by using a time-dependent spin-density-functional theory. The interaction quench is also considered to see its influence on the spin-charge separation. It is shown that the charge velocity is larger than the spin velocity for the system of on-site repulsive interaction (Luttinger liquid), and vise versa for the system of on-site attractive interaction (Luther-Emery liquid). We find that both the interaction quench and polarization suppress the spin-charge separation.

  2. Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.

    2016-10-01

    We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.

  3. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3

    PubMed Central

    Zhang, Weifeng; Han, Wei; Yang, See-Hun; Sun, Yan; Zhang, Yang; Yan, Binghai; Parkin, Stuart S. P.

    2016-01-01

    There has been considerable interest in spin-orbit torques for the purpose of manipulating the magnetization of ferromagnetic elements for spintronic technologies. Spin-orbit torques are derived from spin currents created from charge currents in materials with significant spin-orbit coupling that propagate into an adjacent ferromagnetic material. A key challenge is to identify materials that exhibit large spin Hall angles, that is, efficient charge-to-spin current conversion. Using spin torque ferromagnetic resonance, we report the observation of a giant spin Hall angle θSHeff of up to ~0.35 in (001)-oriented single-crystalline antiferromagnetic IrMn3 thin films, coupled to ferromagnetic permalloy layers, and a θSHeff that is about three times smaller in (111)-oriented films. For (001)-oriented samples, we show that the magnitude of θSHeff can be significantly changed by manipulating the populations of various antiferromagnetic domains through perpendicular field annealing. We identify two distinct mechanisms that contribute to θSHeff: the first mechanism, which is facet-independent, arises from conventional bulk spin-dependent scattering within the IrMn3 layer, and the second intrinsic mechanism is derived from the unconventional antiferromagnetic structure of IrMn3. Using ab initio calculations, we show that the triangular magnetic structure of IrMn3 gives rise to a substantial intrinsic spin Hall conductivity that is much larger for the (001) than for the (111) orientation, consistent with our experimental findings. PMID:27704044

  4. Magnetic field-dependent spin structures of nanocrystalline holmium

    PubMed Central

    Szary, Philipp; Kaiser, Daniel; Bick, Jens-Peter; Lott, Dieter; Heinemann, André; Dewhurst, Charles; Birringer, Rainer; Michels, Andreas

    2016-01-01

    The results are reported of magnetic field-dependent neutron diffraction experiments on polycrystalline inert-gas condensed holmium with a nanometre crystallite size (D = 33 nm). At T = 50 K, no evidence is found for the existence of helifan(3/2) or helifan(2) structures for the nanocrystalline sample, in contrast with results reported in the literature for the single crystal. Instead, when the applied field H is increased, the helix pattern transforms progressively, most likely into a fan structure. It is the component of H which acts on the basal-plane spins of a given nanocrystallite that drives the disappearance of the helix; for nanocrystalline Ho, this field is about 1.3 T, and it is related to a characteristic kink in the virgin magnetization curve. For a coarse-grained Ho sample, concomitant with the destruction of the helix phase, the emergence of an unusual angular anisotropy (streak pattern) and the appearance of novel spin structures are observed. PMID:27047307

  5. Spin-orbit torque induced spike-timing dependent plasticity

    SciTech Connect

    Sengupta, Abhronil Al Azim, Zubair; Fong, Xuanyao; Roy, Kaushik

    2015-03-02

    Nanoelectronic devices that mimic the functionality of synapses are a crucial requirement for performing cortical simulations of the brain. In this work, we propose a ferromagnet-heavy metal heterostructure that employs spin-orbit torque to implement spike-timing dependent plasticity. The proposed device offers the advantage of decoupled spike transmission and programming current paths, thereby leading to reliable operation during online learning. Possible arrangement of such devices in a crosspoint architecture can pave the way for ultra-dense neural networks. Simulation studies indicate that the device has the potential of achieving pico-Joule level energy consumption (maximum 2 pJ per synaptic event) which is comparable to the energy consumption for synaptic events in biological synapses.

  6. Stacking order dependence of inverse spin Hall effect and anomalous Hall effect in spin pumping experiments

    SciTech Connect

    Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young; Kim, Dong-Jun; Park, Byong-Guk

    2015-05-07

    The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE{sub 011} resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage V{sub ISHE} for the stacking order of the bilayer can separate the pure V{sub ISHE} and the anomalous Hall effect (AHE) voltage V{sub AHE} utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θ{sub ISH}, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θ{sub ISH} values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable V{sub ISHE} value in bilayer systems are large θ{sub ISH} and low resistivity.

  7. Geometrical dependence of spin current absorption into a ferromagnetic nanodot

    NASA Astrophysics Data System (ADS)

    Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi

    2016-10-01

    We have investigated the absorption property of the diffusive pure spin current due to a ferromagnetic nanodot in a laterally configured ferromagnetic/nonmagnetic hybrid nanostructure. The spin absorption in a nano-pillar-based lateral-spin-valve structure was confirmed to increase with increasing the lateral dimension of the ferromagnetic dot. However, the absorption efficiency was smaller than that in a conventional lateral spin valve based on nanowire junctions because the large effective cross section of the two dimensional nonmagnetic film reduces the spin absorption selectivity. We also found that the absorption efficiency of the spin current is significantly enhanced by using a thick ferromagnetic nanodot. This can be understood by taking into account the spin absorption through the side surface of the ferromagnetic dot quantitatively.

  8. Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach

    SciTech Connect

    Eslami, Leila Esmaeilzadeh, Mahdi

    2014-02-28

    Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted.

  9. Clinic Attendance for Antiretroviral Pills Pick-Up among HIV-Positive People in Nepal: Roles of Perceived Family Support and Associated Factors

    PubMed Central

    Kikuchi, Kimiyo; Ghimire, Mamata; Shibanuma, Akira; Pant, Madhab Raj; Poudel, Krishna C.; Jimba, Masamine

    2016-01-01

    Introduction HIV-positive people’s clinic attendance for medication pick-up is critical for successful HIV treatment. However, limited evidence exists on it especially in low-income settings such as Nepal. Moreover, the role of family support in clinic attendance remains under-explored. Therefore, this study was conducted to examine the association between perceived family support and regular clinic attendance and to assess factors associated with regular clinic attendance for antiretroviral pills pick-up among HIV-positive individuals in Nepal. Methods A cross-sectional study was conducted among 423 HIV-positive people in three districts of Nepal. Clinic attendance was assessed retrospectively for the period of 12 months. To assess the factors associated, an interview survey was conducted using a semi-structured questionnaire from July to August, 2015. Multiple logistic regression models were used to assess the factors associated with regular clinic attendance. Results Of 423 HIV-positive people, only 32.6% attended the clinics regularly. They were more likely to attend them regularly when they received high family support (AOR = 3.98, 95% CI = 2.29, 6.92), participated in support programs (AOR = 1.68, 95% CI = 1.00, 2.82), and had knowledge on the benefits of antiretroviral therapy (AOR = 2.62, 95% CI = 1.15, 5.99). In contrast, they were less likely to attend them regularly when they commuted more than 60 minutes to the clinics (AOR = 0.53, 95% CI = 0.30, 0.93), when they self-rated their health status as being very good (AOR = 0.13, 95% CI = 0.04, 0.44), good (AOR = 0.14, 95% CI = 0.04, 0.46), and fair (AOR = 0.21, 95% CI = 0.06, 0.70). Conclusion HIV-positive individuals are more likely to attend the clinics regularly when they receive high family support, know the benefits of antiretroviral therapy, and participate in support programs. To improve clinic attendance, family support should be incorporated with HIV care programs in resource limited settings

  10. Temperature dependence of spin Hall magnetoresistance in W/CoFeB bilayer

    NASA Astrophysics Data System (ADS)

    Okuno, Takaya; Taniguchi, Takuya; Kim, Sanghoon; Baek, Seung-heon Chris; Park, Byong-Guk; Moriyama, Takahiro; Kim, Kab-Jin; Ono, Teruo

    2016-08-01

    We investigate the temperature dependence of the spin Hall magnetoresistance (SMR) in a W/CoFeB bilayer. The SMR is found to increase with decreasing temperature. An analysis based on the SMR theory suggests that the spin Hall angle of W and/or the spin polarization of CoFeB can be the origin of the temperature dependence of the SMR. We also find that the spin diffusion length and the resistivity of W do not significantly vary with temperature, which indicates the necessity of further study on the electron transport mechanism in W films to reveal the origin of the spin Hall effect in W.

  11. Impact parameter dependent potentials and transverse single spin asymmetries

    NASA Astrophysics Data System (ADS)

    Alhalholy, Tareq

    Using the Eikonal approximation, we study single spin azimuthal asymmetry in elastic and in-elastic lepton-nucleon scattering for the case of transversely polarized nucleons with unpolarized lepton beam. We follow two different approaches to evaluate the asymmetry. In the first approach we utilize the convolution theory of Fourier transforms to express the nucleon potential that appears in the Coulomb phase formula in terms of the nucleon's Dirac and Pauli form factors in the nucleon current density for transversely polarized nucleons. In the second approach, we explicitly evaluate the potential due to transversely polarized nucleons in impact parameter space. The result shows that this potential is asymmetric about an axis normal to the transverse plane; a result that is consistent with the fact that the nucleon charge density (or the unpolarized impact parameter dependent parton distribution function) is transversely distorted for transverse nucleon polarization, which is not the case for longitudinal polarization of the nucleon. To further confirm this fact, we calculate the average transverse momentum experienced by the scattered electron. This quantity is zero considering scattering from a classical dipole moment while our results show a non-zero average transverse momentum even for scattering from a neutron; there we get a negative value for the average momentum, and a positive one (and larger in magnitude) for the case of a proton. The sign of the average transverse momentum is directly related to the sign of the single spin asymmetry, where it is negative in the case of a neutron target and positive for a proton. The expansion of the Eikonal amplitude reveals that the asymmetry is due to the interference of the one and two photon exchange Eikonal amplitudes. In both of the above mentioned approaches, we evaluate the one and two photon exchange amplitudes, from which the asymmetry is found for different parametrizations of the form factors.

  12. Spin Dependent Transport Properties of Metallic and Semiconducting Nanostructures

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.

    Present computing and communication devices rely on two different classes of technologies; information processing devices are based on electrical charge transport in semiconducting materials while information storage devices are based on orientation of electron spins in magnetic materials. A realization of a hybrid-type device that is based on charge as well as spin properties of electrons would perform both of these actions thereby enhancing computation power to many folds and reducing power consumptions. This dissertation focuses on the fabrication of such spin-devices based on metallic and semiconducting nanostructures which can utilize spin as well as charge properties of electrons. A simplified design of the spin-device consists of a spin injector, a semiconducting or metallic channel, and a spin detector. The channel is the carrier of the spin signal from the injector to the detector and therefore plays a crucial role in the manipulation of spin properties in the device. In this work, nanostructures like nanowires and nanostripes are used to function the channel in the spin-device. Methods like electrospinning, hydrothermal, and wet chemical were used to synthesize nanowires while physical vapor deposition followed by heat treatment in controlled environment was used to synthesis nanostripes. Spin-devices fabrication of the synthesized nanostructures were carried out by electron beam lithography process. The details of synthesis of nanostructures, device fabrication procedures and measurement techniques will be discussed in the thesis. We have successfully fabricated the spin-devices of tellurium nanowire, indium nanostripe, and indium oxide nanostripe and studied their spin transport properties for the first time. These spin-devices show large spin relaxation length compared to normal metals like copper and offer potentials for the future technologies. Further, Heusler alloys nanowires like nanowires of Co 2FeAl were synthesized and studied for electrical

  13. Dependence of spin-pumping spin Hall effect measurements on layer thicknesses and stacking order

    NASA Astrophysics Data System (ADS)

    Vlaminck, V.; Pearson, J. E.; Bader, S. D.; Hoffmann, A.

    2013-08-01

    Voltages generated from inverse spin Hall and anisotropic magnetoresistance effects via spin pumping in ferromagnetic (F)/nonmagnetic (N) bilayers are investigated by means of a broadband ferromagnetic resonance approach. Varying the nonmagnetic layer thickness enables the determination of the spin diffusion length in Pd of 5.5 ± 0.5 nm. We also observe a systematic change of the voltage line shape when reversing the stacking order of the F/N bilayer, which is qualitatively consistent with expectations from spin Hall effects. However, even after independent calibration of the precession angle, systematic quantitative discrepancies in analyzing the data with spin Hall effects remain.

  14. Temperature dependence of the non-local spin signal in Cu-based lateral spin-valves

    NASA Astrophysics Data System (ADS)

    Erickson, M. J.; Leighton, C.; Crowell, P. A.

    2009-03-01

    We report on measurements of the T dependence of the non-local spin signal in lateral metallic spin valves, focusing on the limit of transparent ferromagnet (FM) / normal metal (Cu) interfaces. Devices with channel width 250 nm and contact widths 100 nm (Ni80Fe20 or Co) were fabricated using in-situ shadow masking. We employed high purity sources in UHV, enabling one-shot deposition with no air exposure of the interface. Multiple contact separations (250 -- 800 nm) were fabricated on a single substrate to facilitate measurement of the spin diffusion length (λs). NiFe/Cu devices with 250 nm contact separation show a maximum non-local transresistance of 420 μφ. Analysis of Hanle effect measurements yields spin lifetimes 8 ps at low T which compare well to those extracted from the measured λs (300 nm) and resistivity (1.5 μφcm), demonstrating consistency of our analysis. We observe a qualitatively different T dependence of the non-local signal depending on the relative sizes of the contact separation and λs. When the separation becomes comparable to λs we observe a maximum in the non-local spin signal at 35 -- 85 K, with strongly thickness dependent magnitude. These measurements of spin lifetime, resistivity, and λs vs T allow a quantitative comparison with the conductivity mismatch model. Work supported by the NSF MRSEC program.

  15. Improved embryo development in Japanese black cattle by in vitro fertilization using ovum pick-up plus intracytoplasmic sperm injection with dithiothreitol.

    PubMed

    Oikawa, Toshinori; Itahashi, Tomoko; Numabe, Takashi

    2016-01-01

    The purpose of this study was to determine whether dithiothreitol (DTT) treatment of sperm and ethanol activation improve embryo production by intracytoplasmic sperm injection (ICSI). Further, we compared ICSI with standard in vitro fertilization (IVF) in oocytes obtained from cattle. We demonstrated that DTT reduced the disulfide bond in the bovine sperm head. Using oocytes obtained from a slaughterhouse, ICSI-DTT treatment without ethanol showed the highest rate of blastocyst formation. We applied these results to fertilization using ovum pick-up (OPU). Eleven Japanese black cattle served as donors for OPU plus standard IVF (OPU-IVF). Of them, four donors with low embryo development rates were selected to determine whether embryo development was enhanced by OPU plus ICSI (OPU-ICSI). We assessed effects on embryo development following IVF and ICSI in oocytes obtained using OPU. Blastocyst rates were significantly higher for OPU-ICSI than for OPU-IVF. Our results suggest that OPU-ICSI improves the blastocyst development rate in donors with low embryo production compared with the standard OPU-IVF.

  16. Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses: from the research laboratory to clinical practice.

    PubMed

    Galli, Cesare; Duchi, Roberto; Colleoni, Silvia; Lagutina, Irina; Lazzari, Giovanna

    2014-01-01

    Assisted reproductive techniques developed for cattle in the last 25 years, like ovum pick up (OPU), intracytoplasmic sperm injection (ICSI), and somatic cell nuclear transfer, have been transferred and adapted to buffalo and horses. The successful clinical applications of these techniques require both the clinical skills specific to each animal species and an experienced laboratory team to support the in vitro phase of the work. In cattle, OPU can be considered a consolidated technology that is rapidly outpacing conventional superovulation for embryo transfer. In buffalo, OPU represents the only possibility for embryo production to advance the implementation of embryo-based biotechnologies in that industry, although it is still mainly in the developmental phase. In the horse, OPU is now an established procedure for breeding from infertile and sporting mares throughout the year. It requires ICSI that in the horse, contrary to what happens in cattle and buffalo, is very efficient and the only option because conventional IVF does not work. Somatic cell nuclear transfer is destined to fill a very small niche for generating animals of extremely high commercial value. The efficiency is low, but because normal animals can be generated it is likely that advancing our knowledge in that field might improve the technology and reduce its cost.

  17. The effects of twisting and type of aspiration needle on the efficiency of transvaginal ultrasound-guided ovum pick-up in cattle.

    PubMed

    Sasamoto, Yoshihiko; Sakaguchi, Minoru; Katagiri, Seiji; Yamada, Yutaka; Takahashi, Yoshiyuki

    2003-10-01

    The effects of twisting and type (single- or double-lumen) of aspiration needle on the efficiency of transvaginal ultrasound-guided ovum pick-up (US-guided OPU) were investigated in cattle. The first study using slaughterhouse ovaries revealed that twisting of the needle during follicle aspiration improved the oocyte recovery rate without deleterious effects on the attachment of cumulus layers. Vacuum pressure affected the oocyte recovery and cumulus attachment, regardless of the needle type. The needle type did not affect the oocyte recovery or cumulus attachment with an optimized vacuum pressure. In the second study, US-guided OPU was performed in live cows using two types of needles with a vacuum pressure of 75 mmHg. The needle type did not affect the oocyte recovery or cumulus attachment of the recovered oocytes. The results revealed that twisting of the needle is effective in follicle aspiration, and suggested that a single-lumen needle is as useful as a double-lumen needle for US-guided OPU in cattle.

  18. Dietary propylene glycol and in vitro embryo production after ovum pick-up in heifers with different anti-Müllerian hormone profiles.

    PubMed

    Gamarra, G; Ponsart, C; Lacaze, S; Le Guienne, B; Humblot, P; Deloche, M-C; Monniaux, D; Ponter, A A

    2015-11-01

    Rapid genetic improvement in cattle requires the production of high numbers of embryos of excellent quality. Increasing circulating insulin and/or glucose concentrations improves ovarian follicular growth, which may improve the response to superovulation. The measurement of anti-Müllerian hormone (AMH) can help predict an animal's response to superovulation treatment. The aim of the present study was to investigate whether increasing circulating insulin concentrations, through propylene glycol (PG) drenches, could improve in vitro embryo production in oestrus-synchronised superovulated heifers with different AMH profiles. Holstein heifers were grouped according to pre-experimental AMH concentrations as low (L) or high (H). The PG drench increased circulating insulin and glucose concentrations and reduced β-hydroxybutyrate and urea concentrations compared with the control group. AMH was a good predictor of follicle and oocyte numbers at ovum pick-up (OPU), and of oocyte and embryo quality (AMH H>AMH L). PG in the AMH H group increased the number of follicles and blastocyst quality above that in the control group, but did not improve these parameters in the AMH L group. These results indicate that short-term oral PG supplementation modifies an animal's metabolic milieu and is effective in improving in vitro embryo production, after superovulation-OPU, more markedly in heifers with high rather than low AMH concentrations.

  19. Anti-Muellerian hormone levels in plasma of Holstein-Friesian heifers as a predictive parameter for ovum pick-up and embryo production outcomes.

    PubMed

    Vernunft, Andreas; Schwerhoff, Mona; Viergutz, Torsten; Diederich, Mike; Kuwer, Andreas

    2015-01-01

    The aim of this study was to investigate whether plasma anti-Muellerian hormone (AMH) levels of Holstein-Friesian heifers could be used to predict ovum pick-up (OPU) and embryo production outcomes. Plasma samples and data were collected from 64 heifers, which underwent repeated OPU with subsequent in vitro embryo production followed by embryo flushing after superovulation. AMH levels were significantly positively correlated with the number of follicles aspirated per OPU session (r = 0.45), recovered oocytes per OPU (r =0.43) and in vitro produced embryos per OPU (r = 0.28). No significant correlations between AMH and in vivo produced embryos were ascertained. Our results suggest that correlations between AMH and outcomes of an OPU-IVF program are too low to use AMH as a precise predictive parameter for the success of a particular OPU procedure in Holstein-Friesian heifers. However, AMH can help to identify groups of very good or very poor oocyte donors.

  20. Cytoskeletal and mitochondrial properties of bovine oocytes obtained by Ovum Pick-Up: the effects of follicle stimulation and in vitro maturation.

    PubMed

    Somfai, Tamás; Matoba, Satoko; Inaba, Yasushi; Nakai, Michiko; Imai, Kei; Nagai, Takashi; Geshi, Masaya

    2015-12-01

    Follicle stimulation by follicular stimulating hormone (FSH) is known to improve developmental competence of bovine oocytes obtained by Ovum Pick-Up (OPU); however, the exact factors in oocytes affected by this treatment have remained unclear. We compared in vitro matured (IVM) oocytes obtained at the immature stage from cows by OPU either without or with stimulation with FSH (non-stimulated and stimulated OPU, respectively) to those obtained by superstimulation and in vivo maturation in terms of cytoskeleton morphology, mitochondrial distribution, intracellular adenosine triphosphate (ATP) content and H2 O2 levels at the metaphase-II stage and intracellular Ca(2+) levels after in vitro fertilization (IVF). Confocal microscopy after immunostaining revealed reduced size of the meiotic spindle, associated with increased tendencies of microfilament degradation and insufficient mitochondrial re-distribution in non-stimulated OPU-derived IVM oocytes compared with those collected by stimulated OPU, which in turn resembled in vivo matured oocytes. However, there was no difference in mitochondrial functions between oocytes obtained by stimulated or non-stimulated OPU in terms of ATP content, cytoplasmic H2 O2 levels, base Ca(2+) levels and the frequencies and amplitudes of Ca(2+) oscillations after IVF. Larger size of metaphase spindles in oocytes obtained by stimulated OPU may reflect and potentially contribute to their high developmental competence.

  1. Improved embryo development in Japanese black cattle by in vitro fertilization using ovum pick-up plus intracytoplasmic sperm injection with dithiothreitol

    PubMed Central

    OIKAWA, Toshinori; ITAHASHI, Tomoko; NUMABE, Takashi

    2015-01-01

    The purpose of this study was to determine whether dithiothreitol (DTT) treatment of sperm and ethanol activation improve embryo production by intracytoplasmic sperm injection (ICSI). Further, we compared ICSI with standard in vitro fertilization (IVF) in oocytes obtained from cattle. We demonstrated that DTT reduced the disulfide bond in the bovine sperm head. Using oocytes obtained from a slaughterhouse, ICSI-DTT treatment without ethanol showed the highest rate of blastocyst formation. We applied these results to fertilization using ovum pick-up (OPU). Eleven Japanese black cattle served as donors for OPU plus standard IVF (OPU-IVF). Of them, four donors with low embryo development rates were selected to determine whether embryo development was enhanced by OPU plus ICSI (OPU-ICSI). We assessed effects on embryo development following IVF and ICSI in oocytes obtained using OPU. Blastocyst rates were significantly higher for OPU-ICSI than for OPU-IVF. Our results suggest that OPU-ICSI improves the blastocyst development rate in donors with low embryo production compared with the standard OPU-IVF. PMID:26460690

  2. Narrow band imaging with magnification can pick up esophageal squamous cell carcinoma more efficiently than lugol chromoendoscopy in patients after chemoradiotherapy.

    PubMed

    Asada-Hirayama, Itsuko; Kodashima, Shinya; Fujishiro, Mitsuhiro; Ono, Satoshi; Niimi, Keiko; Mochizuki, Satoshi; Konno-Shimizu, Maki; Mikami-Matsuda, Rie; Minatsuki, Chihiro; Nakayama, Chiemi; Takahashi, Yu; Yamamichi, Nobutake; Koike, Kazuhiko

    2013-01-01

    Aim. Little is known about the usefulness of narrow band imaging (NBI) for surveillance of patients after chemoradiotherapy for esophageal neoplasia. Its usefulness in detecting esophageal squamous cell carcinoma (SCC) or high-grade intraepithelial neoplasia (HGIN) in these patients was retrospectively compared to Lugol chromoendoscopy. Patients and Methods. We assessed the diagnostic ability of NBI with magnification based on the biopsy specimens obtained from iodine-unstained lesions. Seventy-two iodine-unstained lesions were biopsied and consecutively enrolled for this study. The lesions were divided into NBI positive and NBI negative. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of NBI with magnification and PPV of Lugol chromoendoscopy was calculated using histological assessment as a gold standard. Results. Forty-six endoscopic examinations using NBI with magnification followed by Lugol chromoendoscopy were performed to 28 patients. The prevalence of SCC and HGIN was 21.4%. Sensitivity, specificity, PPV, NPV, and accuracy of NBI were 100.0%, 98.5%, 85.7%, 100%, and 98.6%, respectively. On the contrary, PPV of Lugol chromoendoscopy were 8.3%. Compared to Lugol chromoendoscopy, NBI with magnification showed equal sensitivity and significantly higher PPV (P < 0.0001). Conclusion. NBI with magnification would be able to pick up esophageal neoplasia more efficiently than Lugol chromoendoscopy in patients after chemoradiotherapy.

  3. Thickness dependence and the role of spin transfer torque in nonlinear giant magnetoresistance of permalloy dual spin valves

    NASA Astrophysics Data System (ADS)

    Banerjee, N.; Aziz, A.; Ali, M.; Robinson, J. W. A.; Hickey, B. J.; Blamire, M. G.

    2010-12-01

    The recent discovery of nonlinear current-dependent magnetoresistance in dual spin valve devices [A. Aziz, O. P. Wessely, M. Ali, D. M. Edwards, C. H. Marrows, B. J. Hickey, and M. G. Blamire, Phys. Rev. Lett. 103, 237203 (2009)10.1103/PhysRevLett.103.237203] opens up the possibility for distinct physics which extends the standard model of giant magnetoresistance. When the outer ferromagnetic layers of a dual spin valve are antiparallel, the resulting accumulation of spin in the middle ferromagnetic layer strongly modifies its bulk and interfacial spin asymmetry and resistance. Here, we report experimental evidence of the role of bulk spin accumulation in this nonlinear effect and show that interfacial spin accumulation alone cannot account for the observed dependence of the effect on the thickness of the middle ferromagnetic layer. It is also shown that spin torque acting on the middle ferromagnetic layer combined with the nonlinear effect might be useful in understanding the dynamical features associated with the nonlinear behavior.

  4. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane.

    PubMed

    Mishra, Debabrata; Markus, Tal Z; Naaman, Ron; Kettner, Matthias; Göhler, Benjamin; Zacharias, Helmut; Friedman, Noga; Sheves, Mordechai; Fontanesi, Claudio

    2013-09-10

    Spin-dependent photoelectron transmission and spin-dependent electrochemical studies were conducted on purple membrane containing bacteriorhodopsin (bR) deposited on gold, aluminum/aluminum-oxide, and nickel substrates. The result indicates spin selectivity in electron transmission through the membrane. Although the chiral bR occupies only about 10% of the volume of the membrane, the spin polarization found is on the order of 15%. The electrochemical studies indicate a strong dependence of the conduction on the protein's structure. Denaturation of the protein causes a sharp drop in the conduction through the membrane. PMID:23980184

  5. Nuclear Spin Orientation Dependence of Magnetoconductance: A New Method for Measuring the Spin of Charged Excitations in the QHE

    SciTech Connect

    Bowers, C.R.; Reno, J.L.; Simmons, J.A.; Vitkalov, S.A.

    1998-12-01

    A new method for measuring the spin of the electrically charged ground state excitations m the Q$j~j quantum Hall effect ia proposed and demonstmted for the tirst time in GaAs/AIGaAs nndtiquantum wells. The method is &sed on the nuclear spin orientation dependence of" the 2D dc conductivity y in the quantum Hall regime due to the nuclear hyperfine interaction. As a demonstration of this method the spin of the electrically charged excitations of the ground state is determined at filling factor v = 1.

  6. Ballistic Josephson junctions in the presence of generic spin dependent fields

    NASA Astrophysics Data System (ADS)

    Konschelle, François; Tokatly, Ilya V.; Bergeret, F. Sebastian

    2016-07-01

    Ballistic Josephson junctions are studied in the presence of a spin-splitting field and spin-orbit coupling. A generic expression for the quasiclassical Green's function is obtained and with its help we analyze several aspects of the proximity effect between a spin-textured normal metal (N) and singlet superconductors (S). In particular, we show that the density of states may show a zero-energy peak which is a generic consequence of the spin dependent couplings in heterostructures. In addition, we also obtain the spin current and the induced magnetic moment in a SNS structure and discuss possible coherent manipulation of the magnetization which results from the coupling between the superconducting phase and the spin degree of freedom. Our theory predicts a spin accumulation at the S/N interfaces, and transverse spin currents flowing perpendicular to the junction interfaces. Some of these findings can be understood in the light of a non-Abelian electrostatics.

  7. On the concentration dependence of wings of spectra of spin correlation functions of diluted Heisenberg paramagnets

    NASA Astrophysics Data System (ADS)

    Zobov, V. E.; Kucherov, M. M.

    2016-06-01

    Singular points of the autocorrelation function on the imaginary time axis that is averaged over the location of spins in the magnetically dilute spin lattice with isotropic spin-spin interaction at a high temperature have been studied. For the autocorrelation function in the approximation of the self-consistent fluctuating local field, nonlinear integral equations have been proposed which reflect the separation of the inhomogeneous spin systems into close spins and other spins. The coordinates of the nearest singular points have been determined in terms of the radius of convergence of the expansion in powers of time, the coefficients of which have been calculated from recurrence equations. It has been shown that the coordinates of singular points and, consequently, the wings of the autocorrelation function spectrum at strong magnetic dilution are determined by the modulation of the local field by the nearest pairs of spins leading to its logarithmic concentration dependence.

  8. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect

    Not Available

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  9. Temperature dependence of the non-local resistance and spin diffusion length in metallic lateral spin valves

    NASA Astrophysics Data System (ADS)

    Erickson, Michael J.; Leighton, Chris; Crowell, Paul A.

    2010-03-01

    We report measurements of the T dependence of the non-local spin signal in lateral metallic spin valves with transparent ferromagnet (FM) / normal metal (N) interfaces. We have employed complementary spin valve and Hanle effect measurements to systematically study spin injection and relaxation. Devices were deposited in UHV from high purity sources of all four combinations of Ni0.8Fe0.2 or Co FM's and Cu or Al N channels. Devices of width 250 nm, thicknesses 200 - 400 nm, and FM contact separations (d = 250 to 2000 nm) were fabricated on a single substrate using an in-situ shadow masking technique. δRNL measurements show a very different T dependence for NiFe and Co devices while showing similar behavior for both Al and Cu. This is generally consistent with the measured resistivities and modeling based on the assumption of transparent interfaces. Fitting δRNL vs. d yields a spin diffusion length with weak T dependence for both Al and Cu and is independent of FM. Hanle effect measurements confirm a consistent picture of spin relaxation. Work supported by the University of Minnesota NSF MRSEC.

  10. Ferrimagnetic ordering and spin entropy of field-dependent intermediate spins in Na0.82CoO2

    NASA Astrophysics Data System (ADS)

    Shu, G. J.; Chou, F. C.

    2016-04-01

    The peculiar field-dependent magnetism of Na0.82CoO2 has been investigated through an analysis of its dc and ac spin susceptibilities. To account for the easily activated narrow b2 g-a1 g gap of the crystal field for Co in the cobalt oxide layer, the spin-state transition of Co3 + (3 d6 ) between the low-spin (LS) state b2g 2a1g 0 of S =0 and the intermediate-spin (IS) state b2g 1a1g 1 of S =1 is thus seen as thermally activated and exhibits a Boltzmann distribution. The IS state of Co3 + within each √{13 }a hexagonal superlattice formed by the S =1 /2 state of the Co4 + ions appears randomly within each supercell and shows significant temperature and field dependence. The magnetic field is found to assist in pinning down the thermally activated state of Co3 + and swings the Boltzmann distribution weight toward a higher fraction of the IS state. The field dependence of the in-plane magnetic moment from the added number of S =1 spins is used to explain the origin of A -type antiferromagnetic (AF) ordering, particularly that the ferromagnetic (FM)-like behavior below TN at low field is actually a ferrimagnetic IS spin ordering of Co3 +.

  11. Spin-dependent heat transport and thermal boundary resistance

    NASA Astrophysics Data System (ADS)

    Jeong, Taehee

    In this thesis, thermal conductivity change depending on the magnetic configurations has been studied. In order to make different magnetic configurations, we developed a spin valve structure, which has high MR ratio and low saturation field. The high MR ratio was achieved using Co/Cu multilayer and 21A or 34A thick Cu layer. The low saturation field was obtained by implementing different coercivities of the successive ferromagnetic layers. For this purpose, Co/Cu/Cu tri-layered structure was used with the thicknesses of the Co layers; 15 A and 30 A. For the thermal conductivity measurement, a three-omega method was employed with a thermally isolated microscale rod. We fabricated the microscale rod using optical lithography and MEMS process. Then the rod was wire-bonded to a chip-carver for further electrical measurement. For the thermal conductivity measurement, we built the three-omega measurement system using two lock-in amplifiers and two differential amplifiers. A custom-made electromagnet was added to the system to investigate the impact of magnetic field. We observed titanic thermal conductivity change depending on the magnetic configurations of the Co/Cu/Co multilayer. The thermal conductivity change was closely correlated with that of the electric conductivity in terms of the spin orientation, but the thermal conductivity was much more sensitive than that of the electric conductivity. The relative thermal conductivity change was 50% meanwhile that of electric resistivity change was 8.0%. The difference between the two ratios suggests that the scattering mechanism for charge and heat transport in the Co/Cu/Co multilayer is different. The Lorentz number in Weidemann-Franz law is also spin-dependent. Thermal boundary resistance between metal and dielectrics was also studied in this thesis. The thermal boundary resistance becomes critical for heat transport in a nanoscale because the thermal boundary resistance can potentially determine overall heat transport

  12. Effects of eCG and FSH on ovarian response, recovery rate and number and quality of oocytes obtained by ovum pick-up in Holstein cows.

    PubMed

    Sendag, Sait; Cetin, Yunus; Alan, Muhammet; Hadeler, Klaus-Gerd; Niemann, Heiner

    2008-06-01

    The goal of the present study was to compare the ovarian response, oocyte yields per animal, and the morphological quality of oocytes collected by ultrasound guided follicular aspiration from Holstein cows treated either with FSH or eCG. Twenty four normal cyclic, German Holstein cows were randomly divided into two groups. Fourteen cows received 3000 IU eCG on day-4 prior to ovum pick-up (OPU) (day 0), 2 days later (day-2), 625 microg cloprostenol was administered. On day-1 GnRH was administered i.m. and 24h later OPU (day 0) was performed. In ten cows a total dose of 500 IU follicle stimulating hormone (Pluset) was administered intramuscularly in a constant dosage for 4 days with intervals of 12h, starting on day-5. Luteolysis was induced by application of 625 microg cloprostenol on day-2. On day-1 (24h after the last FSH treatment) GnRH was administered i.m. and 24h later OPU (day 0) was performed. Ovarian follicles were visualized on the ultrasound monitor, counted and recorded. All visible antral follicles were punctured. Recovered oocytes were graded morphologically based on the cumulus investment. Average follicle number in ovaries was higher in FSH group than eCG group (p<0.05). Oocyte yields per animal did not differ between FSH and eCG groups. The proportion of grade A oocytes was higher in the FSH group in the than eCG group (p<0.05). Likewise, rate of grade C oocytes in FSH group were lower than eCG group (p<0.05). In conclusion, these results suggest that ovarian response, follicle number in ovaries and oocyte quality are affected by the type of gonadotropin and FSH is better alternative than eCG for OPU treatment.

  13. Ovum pick up, in vitro embryo production, and pregnancy rates from a large-scale commercial program using Nelore cattle (Bos indicus) donors.

    PubMed

    Pontes, J H F; Melo Sterza, F A; Basso, A C; Ferreira, C R; Sanches, B V; Rubin, K C P; Seneda, M M

    2011-06-01

    The objective was to clarify in vitro production of bovine embryos in Brazil. Data from 656 ovum pick-up/in vitro production (OPU/IVP) procedures, performed on 317 Nelore (Bos indicus) donors, without hormone stimulation or control of ovarian follicular waves, were analysed. Donors were subjected to OPU from one to nine times (no specific schedule), with < 15 d between consecutive procedures. There were 20,848 oocytes, of which 15,747 (75.53%) were considered viable, 5,446 embryos were obtained, 5,398 embryos were immediately transferred, resulting in 1,974 pregnancies (36.57%) at Day 30 and 1,788 (33.12%) pregnancies at Day 60. The average number of total and viable oocytes produced per OPU session was (mean ± SEM) 30.84 ± 0.88 and 23.35 ± 0.7 (average of 8.1 ± 0.3 embryos and 3.0 ± 0.1 pregnancies per OPU-IVP procedure). Since oocyte production varied widely among donor, they were designated as very high, high, intermediate, and low, with 58.94 ± 2.04, 32.61 ± 0.50, 22.13 ± 0.50, and 10.26 ± 0.57 oocytes, respectively, produced by 78, 80, 79, and 80 donors. The number of viable oocytes recovered ranged from 0 to 128; since donors with numerous viable oocytes produced many viable embryos and pregnancies, oocyte production was useful for donor selection. However, there was no significant effect of the number of OPU sessions per donor on mean numbers of oocytes produced. In conclusion, we confirmed field reports of high oocyte production by some Nelore donors and demonstrated individual variation in oocyte yield, which was associated with embryo production and pregnancy rates.

  14. Applicability of a progesterone-based timed artificilal insemination protocol after follicular fluid aspiration using the ovum pick-up technique in suckled beef cows.

    PubMed

    Hirata, Toh-Ichi; Hoshina, Toshinori; Sasaki, Shu-Ichi; Sasaki, Osamu; Osawa, Takeshi

    2007-04-01

    We conducted a progesterone-based timed AI protocol after follicular fluid aspiration using the ovum pick-up (OPU) technique to examine its applicability to the suckled beef cow. A total of 19 beef cows were randomly allocated to one of the following three groups based on the number of days postpartum: 13 to 60 days (Group A: suckled; early postpartum period, n=9), 61 to 150 days (Group B: suckled; mid postpartum period, n=6), or 151 to 281 days (Group C: non-suckled; prolonged open period, n=4) postpartum. These cows were treated with follicular fluid aspiration and insertion of a progesterone-releasing intravaginal device (PRID) on day 0. The PRID was removed and 500 microg of cloprostenol was intramuscularly administered on day 7. A dose (100 microg) of fertirelin acetate was injected intramuscularly 48 hours later, and this was followed by a timed AI (TAI) after another 18 hours (day 10). Serum samples were taken on days 0, 7, 9, 10, 12, 17, 24 and 31 for determination of the estradiol-17beta (E(2)) and progesterone concentrations. Pregnancy diagnosis was made by rectal palpation approximately 60 days after TAI. There was no significant difference in the peripheral E(2) concentrations among the three groups during the period of the hormonal treatment. The average progesterone concentrations in Group A on day 17 were significantly higher than those in Group B and exceeded 1.0 ng/ml on day 17 and thereafter. There was no significant difference in the numbers of collected immature oocytes among the three groups. The pregnancy rates in Groups A, B, and C were 77.8% (7/9), 83.3% (5/6) and 50.0% (2/4), respectively. In conclusion, this timed AI protocol is applicable to suckled beef cows within the period of 60 days postpartum.

  15. Effects of ovum pick-up frequency and FSH stimulation: a retrospective study on seven years of beef cattle in vitro embryo production.

    PubMed

    De Roover, R; Feugang, J M N; Bols, P E J; Genicot, G; Hanzen, Ch

    2008-04-01

    The aim of this retrospective study was to compare the number of follicles, cumulus oocyte complexes (COCs) and cultured In Vitro Produced (IVP) embryos obtained from 1396 non-stimulated Ovum Pick-up (OPU) sessions on 81 donor animals in a twice weekly OPU scheme. Results were obtained from 640 sessions following FSH-LH superstimulation, on 112 donors subjected to OPU once every 2 weeks. The stimulation protocol started with the insertion of an ear implant containing 3 mg norgestomet (Crestar, Intervet, Belgium) 8 days before puncture (day -8). The dominant follicle was ablated by ultrasound-guided follicle puncture on day -6. On day -3 and day -2, cows were injected with FSH (Ovagen, ICP) twice daily (8 am to 8 pm), i.e. a total dose of 160 mug FSH and 40 mug LG per donor per stimulation cycle. Animals were punctured 48 h after the last FSH injection (day 0). Progesterone implants were removed the next day. Stimulated donor cows were treated with this protocol at 14-day intervals. Follicles were visualized with a Dynamic Imaging ultrasound scanner, equipped with a 6.5 MHz sectorial probe. Follicles were punctured with 55 cm long, 18 gauge needles at an aspiration pressure corresponding to a flow rate of 15 ml/min. Cumulus oocyte complexes were recovered and processed in a routine IVF set-up. Results demonstrate that, expressed per session, FSH stimulation prior to OPU increases production efficiency with significantly more follicles punctured and oocytes retrieved. However, when overall results during comparable 2-week periods are considered (four non-stimulated sessions vs one stimulated), more follicles are punctured and more oocytes are retrieved using the non-stimulated protocol. No significant differences in the number of cultured embryos could be detected, indicating that FSH/LH stimulation prior to OPU might have a positive effect on in vitro oocyte developmental competence as more embryos are cultured with less, presumably better-quality, oocytes.

  16. Comparison of different transvaginal ovum pick-up protocols to optimise oocyte retrieval and embryo production over a 10-week period in cows.

    PubMed

    Chaubal, S A; Molina, J A; Ohlrichs, C L; Ferre, L B; Faber, D C; Bols, P E J; Riesen, J W; Tian, X; Yang, X

    2006-05-01

    The objective was to develop a simple and effective ovum pick-up (OPU) protocol for cows, optimised for oocyte harvest and subsequent in vitro embryo production (IVP). Five protocols differing in collection frequency, dominant follicle removal (DFR) and FSH stimulation were tested on groups of three cows each, over an interval of 10 consecutive weeks. Performance was evaluated on per OPU session, per week and pooled (3 cowsx10weeks) basis. Among the non-stimulated groups, on a per cow per session basis, once- or twice-weekly OPU had no effect on the mean (+/- S.E.M.) number of follicles aspirated, oocytes retrieved and blastocysts produced (0.6+/-0.8 and 0.7 +/- 0.7, respectively). However, DFR 72 h prior to OPU almost doubled blastocyst production (1.2 +/- 1.3). In stimulated groups, FSH treatment (80 mg IM and 120 mg SC) was given once weekly prior to OPU. Treatment with FSH, followed by twice-weekly OPU, failed to show any synergistic effect of FSH and increased aspiration frequency. When FSH was given 36 h after DFR, followed by OPU 48 h later, more (P < 0.05) follicles (16.0 +/- 5.0), oocytes (10.6 +/- 4.5) and embryos (2.1 +/- 1.2) were obtained during each session, but not on a weekly basis. Pooled results over 10 weeks showed an overall improved performance for the treatment groups with twice-weekly OPU sessions, due to double the number of OPU sessions performed. However, the protocol that consisted of DFR, FSH treatment and a subsequent single OPU per week, was the most productive and cost-effective, with potential commercial appeal.

  17. Differential gene expression in cumulus oocyte complexes collected by ovum pick up from repeat breeder and normally fertile Holstein Friesian heifers.

    PubMed

    Puglisi, Roberto; Cambuli, Caterina; Capoferri, Rossana; Giannino, Laura; Lukaj, Aleksander; Duchi, Roberto; Lazzari, Giovanna; Galli, Cesare; Feligini, Maria; Galli, Andrea; Bongioni, Graziella

    2013-09-01

    The aim of this study was to establish whether perturbed gene expression during cumulus oocyte development causes repeat breeding in cattle. In this study, a repeat breeder was defined as a normal estrous cycling animal that did not become pregnant after three inseminations despite the absence of clinically detectable reproductive disorders. Transcripts of genes extracted from cumulus oocyte complexes (COC) that were collected from three repeat breeder and three normally fertile Holstein Friesian heifers were compared. Up to 40 COC were collected from each heifer by means of repeated sessions of ovum pick up in the absence of hormonal stimulation; immediately plunged into liquid nitrogen; and stored at -80°C until analysis. For each heifer, RNA was extracted from the pooled COC and hybridized on GeneChip(®) Bovine Gene Array (Affymetrix). Analysis of gene expression profiles of repeat breeder and control COC showed that 178 genes were differentially expressed (log2 fold change>1.5). Of these genes, 43 (24%) were up-regulated and 135 (76%) were down-regulated in repeat breeder relative to control heifers. This altered pattern of expression occurred in genes involved in several cellular biological processes and cellular components such as metabolism, angiogenesis, substrate/ion transport, regulation/signaling, cell adhesion and cytoskeleton. From these, 13 genes potentially involved in cumulus oocyte growth were subjected to validation by qRT-PCR and nine genes (annexin A1, ANXA1; lactoferrin, LTF; interferon stimulated exonuclease 20kDa, ISG20/HEM45; oxidized low density lipoprotein receptor 1, OLR1; fatty acid desaturase 2, FADS2; glutathione S-transferase A2 and A4, GSTA2 and GSTA4; glutathione peroxidase 1, GPX1; endothelin receptor type A, EDNRA) were confirmed to be differentially expressed. This study identified potential marker genes for fertility in dairy cattle.

  18. Bovine somatic cell nuclear transfer using recipient oocytes recovered by ovum pick-up: effect of maternal lineage of oocyte donors.

    PubMed

    Brüggerhoff, Katja; Zakhartchenko, Valeri; Wenigerkind, Hendrik; Reichenbach, Horst-Dieter; Prelle, Katja; Schernthaner, Wolfgang; Alberio, Ramiro; Küchenhoff, Helmut; Stojkovic, Miodrag; Brem, Gottfried; Hiendleder, Stefan; Wolf, Eckhard

    2002-02-01

    The efficiency of bovine nuclear transfer using recipient oocytes recovered by ultrasound-guided follicle aspiration (ovum pick-up [OPU]) was investigated. Oocyte donors were selected from 2 distinct maternal lineages (A and B) differing in 11 nucleotide positions of the mitochondrial DNA control region. A total of 1342 cumulus-oocyte complexes (COCs) were recovered. The numbers of total COCs and class I/II COCs recovered from donors of lineage A were higher (P < 0.001) than those obtained from lineage B. Follicle aspiration once per week yielded a higher (P < 0.001) total number of COCs per session than aspiration twice per week, whereas the reproduction status of donors (heifer vs. cow) had no effect on OPU results. Of the 1342 oocytes recovered, 733 (55%) were successfully matured in vitro and used for nuclear transfer. Fusion was achieved in 550 (75%) karyoplast-cytoplast complexes (KCCs), resulting in 277 (50%) cleaved embryos on Day 3. On Day 7 of culture, 84 transferable embryos (15% based on fused KCCs) were obtained. After 38 transfers (10 single, 22 double, and 6 triple transfers), 9 recipients (8 double and 1 triple transfer) were diagnosed as pregnant on Day 28, corresponding to a pregnancy rate of 24%. The proportion of transferable embryos on Day 7 was significantly (P < 0.05) influenced by maternal lineage of oocyte donors and by the frequency of follicle aspiration. Our study demonstrates the feasibility of generating nuclear transfer embryos with defined cytoplasmic background. These will be valuable tools to experimentally dissect the effects of nuclear and cytoplasmic components on embryonic, fetal, and postnatal development.

  19. Improving in vitro development of cloned bovine embryos with hybrid (Holstein-Chinese Yellow) recipient oocytes recovered by ovum pick up.

    PubMed

    Yang, Xiao-Yu; Zhao, Jian-Guo; Li, Hua-Wei; Li, Hua; Liu, Hai-Feng; Huang, Shu-Zhen; Zeng, Yi-Tao

    2005-10-01

    In the present study, oocytes from F1 hybrid cattle, as well as their parental lines, were recovered by ovum pick up (OPU) and used as recipient cytoplasm for somatic cell nuclear transfer (SCNT). Four F1 hybrid (Holstein dam x Chinese Yellow sire), 10 Holstein and four Chinese Yellow cattle were subjected to OPU once weekly. There were no significant differences among breeds for number of recovered oocytes per session (overall average, 7.8+/-0.5; mean+/-S.E.M.), quality of the recovered oocytes, or oocyte maturation rate (72-73%). Matured oocytes were all used as recipient cytoplasm (without selection) and a single batch of cumulus cells collected from a Holstein cow were used as donor cells. Although reconstructed embryos initiated cleavage sooner when the recipient cytoplasm was from hybrid cattle versus the two parental breeds, the overall cleavage rate was indistinguishable among breeds. At Day 8, the blastocyst rate from the cleaved embryos (51% versus 37% and 27%), the total number of cells per blastocyst (135+/-4.1 versus 116+/-3.6 and 101+/-4.2), and the percentage of Grade-A (excellent quality) blastocysts (54% versus 42% and 29%) in the hybrid group were all higher than that of Holstein and Yellow groups. Furthermore, the proportion of blastocysts obtained at Day 7 (as a percentage of the total number of blastocysts) was greater in the hybrid group than in Holstein and Yellow groups (89% versus 71% and 63%). In conclusion, the use of F1 hybrid oocytes as recipient cytoplasm significantly improved in vitro development of cloned bovine embryos relative to oocytes derived from the parental lines.

  20. Giant spin-dependent thermoelectric effect in magnetic tunnel junctions.

    PubMed

    Lin, Weiwei; Hehn, Michel; Chaput, Laurent; Negulescu, Béatrice; Andrieu, Stéphane; Montaigne, François; Mangin, Stéphane

    2012-01-01

    Thermoelectric effects in magnetic nanostructures and the so-called spin caloritronics are attracting much interest. Indeed it provides a new way to control and manipulate spin currents, which are key elements of spin-based electronics. Here we report on a giant magnetothermoelectric effect in a magnetic tunnel junction. The thermovoltage in this geometry can reach 1 mV. Moreover a magnetothermovoltage effect could be measured with ratio similar to the tunnel magnetoresistance ratio. The Seebeck coefficient can then be tuned by changing the relative magnetization orientation of the two magnetic layers in the tunnel junction. Therefore, our experiments extend the range of spintronic devices application to thermoelectricity and provide a crucial piece of information for understanding the physics of thermal spin transport. PMID:22434187

  1. Improving Limits on Exotic Spin Dependent Long Range Forces using Double Boson Exchange

    NASA Astrophysics Data System (ADS)

    Aldaihan, Sheakha; Snow, William Michael; Krause, Dennis; Long, Joshua

    2016-05-01

    Experimental search for unobserved forces above the submillimeter scale has been an active area of research over the last two decades. The existence of very light weakly interacting particles that mediate such forces has been suggested in many extensions of the Standard Model. The fact that the dark energy density corresponds to a length scale of about 100 μm also encourages searches for unobserved phenomena at this length scale. Parameterizations of forces in this range show that they can be represented as corrections to the gravitational and electromagnetic forces and have both spin-dependent as well as spin independent components. Very stringent limits on spin-independent couplings exist. For long-range spin dependent forces, limits are weaker by approximately 20 orders of magnitude compared to their spin independent analogs. The disparity in the limits raises the question of whether interesting limits on spin dependent couplings can be inferred from spin independent searches for long range forces. We show that this is possible using higher order contributions corresponding to double boson exchange and derive all possible long range forces arising from double boson exchange. We obtain improved limits on some spin dependent couplings using the leading effects from two boson exchange forces and a recently performed spin independent experiment.

  2. Discovery of Spin-Rate-Dependent Asteroid Thermal Inertia

    NASA Astrophysics Data System (ADS)

    Harris, Alan; Drube, Line

    2016-10-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into surface structure: porous material has a lower thermal inertia than rock. Using WISE/NEOWISE data and our new asteroid thermal-inertia estimator we show that the thermal inertia of main-belt asteroids (MBAs) appears to increase with spin period. Similar behavior is found in the case of thermophysically-modeled thermal inertia values of near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. On the basis of a picture of depth-dependent thermal inertia our results suggest that, in general, thermal inertia values representative of solid rock are reached some tens of centimeters to meters below the surface in the case of MBAs (the median diameter in our dataset = 24 km). In the case of the much smaller (km-sized) NEOs a thinner porous surface layer is indicated, with large pieces of solid rock possibly existing just a meter or less below the surface. These conclusions are consistent with our understanding from in-situ measurements of the surfaces of the Moon, and a few asteroids, and suggest a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids. Our results have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles ("kinetic impactors") in planetary defense.

  3. Spin-dependent electron transport in zinc- and manganese-doped adenine molecules

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-01-28

    The spin-dependent electron transport properties of zinc- and manganese-doped adenine molecules connected to zigzag graphene leads are studied in the zero bias regime using the non-equilibrium Green's function method. The conductance of the adenine molecule increased and became spin-dependent when a zinc or manganese atom was doped into the molecules. The effects of a transverse electric field on the spin-polarization of the transmitted electrons were investigated and the spin-polarization was controlled by changing the transverse electric field. Under the presence of a transverse electric field, both the zinc- and manganese-doped adenine molecules acted as spin-filters. The maximum spin-polarization of the manganese-doped adenine molecule was greater than the molecule doped with zinc.

  4. Spin-dependent thermoelectric effects in a strongly correlated double quantum dot

    NASA Astrophysics Data System (ADS)

    Karwacki, Łukasz; Trocha, Piotr

    2016-08-01

    We investigate spin-dependent thermoelectric transport through a system of two coupled quantum dots attached to reservoirs of spin-polarized electrons. Generally, we focus on the strongly correlated regime of transport. To this end, a slave-boson method for finite U is employed. Our main goal is to show that, apart from complex low-temperature physics, such a basic multilevel system provides a possibility to examine various quantum interference effects, with particular emphasis put on the influence of such phenomena on thermoelectric transport. Apart from the influence of interference effects on spin-degenerate charge transport, we show how spin-dependent transport, induced by ferromagnetic leads, can be modified as well. Finally, we also consider the case where the spin-relaxation time in the ferromagnetic leads is relatively long, which leads to the so-called spin thermoelectric effects.

  5. Metal thickness dependence on spin wave propagation in magnonic crystal using yttrium iron garnet

    SciTech Connect

    Kanazawa, Naoki; Goto, Taichi Hoong, Jet Wei; Buyandalai, Altansargai; Takagi, Hiroyuki; Inoue, Mitsuteru

    2015-05-07

    Magnonic crystals (MCs) are key components for spin wave manipulation. MCs realized with periodically metallized surfaces have an advantage in ease of the fabrication, but the effect of the metal thickness has not been studied well. In this work, the metal thickness dependence on the transmission spectra of localized mode spin waves was investigated. The metal thickness over half of the skin depth was necessary to prevent strong attenuation of spin waves.

  6. Improving Limits on Exotic Spin Dependent Long Range Forces using Double Boson Exchange

    NASA Astrophysics Data System (ADS)

    Aldaihan, Sheakha; Snow, William Michael; Krause, Dennis; Long, Joshua

    2016-03-01

    The existence of very light weakly interacting particles that mediate new long range forces has been suggested in many extensions of the Standard Model. Such particles span a length scale between a μm and a few meters and include axions, familons, Majorons,and arions. Parameterizations of forces in this range show that they are composite-dependent, have a Yukawa shape, and have both spin-dependent as well as spin independent components. Very stringent limits on spin-independent couplings exist. For long range spin dependent forces, limits are weaker by 20 orders of magnitude compared to their spin independent analogs. The disparity in the limits raises the question of whether interesting limits on spin dependent couplings can be inferred from spin independent searches for long range forces. We show that this is possible using higher order contributions corresponding to double boson exchange and report the limits placed on spin dependent couplings using this method. We gratefully acknowledge the support of Indiana University and the National Science Foundation. The first author also acknowdges King Abdullah scholarship program.

  7. A simple and effective theory for all-optical helicity-dependent spin switching

    NASA Astrophysics Data System (ADS)

    Zhang, Guoping; Bai, Yihua; George, Thomas F.

    All-optical helicity-dependent spin switching (AOS) represents a new frontier in magnetic recording technology, where a single ultrafast laser pulse, without any assistance from an external magnetic field, can permanently switch spin within a few hundred femtoseconds. By contrast, the existing theory does rely on an artificial magnetic field to switch spins. Here we develop a microscopic spin switch theory, free of any artificial field, and demonstrate unambiguously that both circularly and linearly polarized lights can switch spins faithfully. Our theory is based on the Hookean theory, but includes two new elements: spin-orbit coupling and exchange interaction. We predict that left (right) circularly polarized light only flips (flops) spin, a symmetry constraint that strongly favors ferrimagnetic orderings over ferromagnetic ones, with the allowable exchange interaction within 10 meV, consistent with all prior theories. The effect of the laser amplitude is highly nonlinear: If it is too weak, AOS does not occur, but if too strong, the spin cants; a compromise between them produces a narrow spin reversal window as observed experimentally. We envision that our model can be easily extended to describe spin frustrated systems and multiferroics, where the light-spin interaction Supported by the U.S. Department of Energy under Contract No. DE-FG02-06ER46304 and the National Energy Research Scientific Computing Center.

  8. Optically induced spin-dependent diffusive transport in the presence of spin-orbit interaction for all-optical magnetization reversal

    NASA Astrophysics Data System (ADS)

    Elyasi, Mehrdad; Yang, Hyunsoo

    2016-07-01

    We have considered the effect of different spin-orbit interaction mechanisms on the process of demagnetization under the influence of short-pulse lasers. All-optical magnetization reversal of perpendicularly magnetized thin films can occur if there are sufficient strong spin-Hall, skew scattering, and Rashba interactions. In the presence of spin-orbit interactions, the transient charge currents provide the generation of transverse-spin currents and accumulations, which eventually exert spin-transfer torque on the magnetization. By combining the optically excited spin-dependent diffusive transport with the spin and charge currents due to skew scattering, spin-Hall, inverse spin-Hall, and Rashba interactions into a numerical model, we demonstrate a possibility of ultrafast all-optical magnetization reversal. This understanding provokes intriguing, more in-depth experimental studies on the role of spin-orbit interaction mechanisms in optimizing structures for all-optical magnetization reversal.

  9. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi2Te3

    NASA Astrophysics Data System (ADS)

    Dey, Rik; Pramanik, Tanmoy; Roy, Anupam; Rai, Amritesh; Guchhait, Samaresh; Sonde, Sushant; Movva, Hema C. P.; Colombo, Luigi; Register, Leonard F.; Banerjee, Sanjay K.

    2014-06-01

    We have studied angle dependent magnetoresistance of Bi2Te3 thin film with field up to 9 T over 2-20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  10. Inversion of spin dependent photocurrent at Fe3O4/modulation doped GaAs heterointerfaces

    NASA Astrophysics Data System (ADS)

    Shirahata, Y.; Wada, E.; Itoh, M.; Taniyama, T.

    2011-04-01

    We demonstrate inversion of the spin dependent photocurrent across an Fe3O4/modulation doped GaAs interface under optical spin orientation condition. The spin dependent photocurrent for fully epitaxial Fe3O4/GaAs and Fe/GaAs interfaces clearly show the opposite magnetic field dependence, where the spin filtering efficiency for the Fe3O4/GaAs decreases with increasing magnetic field. The results clearly indicate that the spin polarization of the Fe3O4 layer has the opposite sign to that of Fe at the Fermi energy, consistent with theoretical predictions, and the result is a consequence of the atomically flat Fe3O4/GaAs interface we obtained.

  11. Dependence of Kambersky damping on Fermi level and spin orientation

    SciTech Connect

    Qu, T.; Victora, R. H.

    2014-05-07

    Kambersky damping represents the loss of magnetic energy from the electrons to the lattice through the spin orbit interaction. It is demonstrated that, for bcc Fe-based transition metal alloys, the logarithm of the energy loss is proportional to the density of states at the Fermi level. Both inter and intraband damping are calculated for spins at arbitrary angle to the previously examined [001] direction. Although the easy axis 〈100〉 shows isotropic relaxation and achieves the minimum damping value of 0.002, other directions, such as 〈110〉, show substantial anisotropic damping.

  12. Electron number dependence of spin triplet-singlet relaxation time

    NASA Astrophysics Data System (ADS)

    Li, H. O.; Xiao, M.; Cao, G.; You, J.; Guo, G. P.

    2014-02-01

    In a GaAs single quantum dot, the relaxation time T1 between spin triplet and singlet states has been measured for the last few even electron numbers. The singlet-triplet energy separation EST is tuned as a control parameter for the comparison of T1 between different electron numbers. T1 steadily decreases with increasing electron numbers from 2-electrons to 6-electrons. This implies an enhancement of the spin-orbit coupling strength due to multi-electron interaction in a quantum dot.

  13. In vitro embryo production in goats: Slaughterhouse and laparoscopic ovum pick up-derived oocytes have different kinetics and requirements regarding maturation media.

    PubMed

    Souza-Fabjan, Joanna Maria G; Locatelli, Yann; Duffard, Nicolas; Corbin, Emilie; Touzé, Jean-Luc; Perreau, Christine; Beckers, Jean François; Freitas, Vicente José F; Mermillod, Pascal

    2014-05-01

    A total of 3427 goat oocytes were used in this study to identify possible differences during in vitro embryo production from slaughterhouse or laparoscopic ovum pick up (LOPU) oocytes. In experiment 1, one complex, one semi-defined, and one simplified IVM media were compared using slaughterhouse oocytes. In experiment 2, we checked the effect of oocyte origin (slaughterhouse or LOPU) on the kinetics of maturation (18 vs. 22 vs. 26 hours) when submitted to semi-defined or simplified media. In experiment 3, we determined the differences in embryo development between slaughterhouse and LOPU oocytes when submitted to both media and then to IVF or parthenogenetic activation (PA). Embryos from all groups were vitrified, and their viability evaluated in vitro after thawing. In experiment 1, no difference (P > 0.05) was detected among treatments for maturation rate (metaphase II [MII]; 88% on average), cleavage (72%), blastocyst from the initial number of cumulus oocyte complexes (46%) or from the cleaved ones (63%), hatching rate (69%), and the total number of blastomeres (187). In experiment 2, there was no difference of MII rate between slaughterhouse oocytes cultured for 18 or 22 hours, whereas the MII rate increased significantly (P < 0.05) between 18 and 22 hours for LOPU oocytes in the simplified medium. Moreover, slaughterhouse oocytes cultured in simplified medium matured significantly faster than LOPU oocytes at 18 and 22 hours (P < 0.05). In experiment 3, cleavage rate was significantly greater (P < 0.001) in all four groups of embryos produced by PA than IVF. Interestingly, PA reached similar rates for slaughterhouse oocytes cultured in both media, but improved (P < 0.05) the cleavage rate of LOPU oocytes. Slaughterhouse oocytes had acceptable cleavage rate after IVF (∼67%), whereas LOPU oocytes displayed a lower one (∼38%), in contrast to cleavage after PA. The percentage of blastocysts in relation to cleaved embryos was not affected by the origin of the

  14. Two different schemes of twice-weekly ovum pick-up in dairy heifers: effect on oocyte recovery and ovarian function.

    PubMed

    Petyim, S; Båge, R; Hallap, T; Bergqvist, A-S; Rodríguez-Martínez, H; Larsson, B

    2003-06-01

    The aim of the present study was to compare two different schemes of twice-weekly ovum pick-up (OPU), continuous (C) and discontinuous (DC), with special emphasis on differences in oocyte yield and quality, estrous cyclicity, ovarian dynamics, and progesterone production. Subsequent to characterization of their normal estrous cycles (pre-OPU period), eight dairy heifers were subjected to 4 months of twice-weekly OPU under two different schemes: the DC (OPU restricted to Days 0-12 of the cycle) and the C schemes. Effects of the two different schemes on oocyte yield, quality, and in vitro competence, together with effects on ovarian dynamics and progesterone production, were monitored. The mean numbers of punctured follicles and recovered oocytes per session were slightly higher (not significant (n.s.)) using the DC scheme, but in total, similar numbers of oocytes were obtained. The quality of the oocytes as well as cleavage rate after in vitro fertilization of the oocytes did not differ between the two OPU schemes. There was no influence of a corpus luteum (CL) producing progesterone on the oocyte yield and quality, whereas the presence of dominant follicles appeared to decrease the number of recovered ooctyes. During the pre-OPU period, all heifers showed normal cyclicity. In the DC scheme, the heifers showed regular and normal cyclic activity throughout the puncture period, with one to two complete follicular waves during the interval from the last OPU to the next estrus. In the C scheme, the heifers occasionally revealed cyclicities with irregular interestrous intervals and weaker signs of estrus. No complete follicular waves were seen during the OPU period in this scheme. The CL developed from the ovulation of the preovulatory follicles in the DC scheme showed similar characteristics to the CLs of the pre-OPU period; however, the CL-like structures from the puncture of follicles, in both the DC and the C schemes, revealed a shorter life span and inferior

  15. Prolonging the interval from ovarian hyperstimulation to laparoscopic ovum pick-up improves oocyte yield, quality, and developmental competence in goats.

    PubMed

    Abdullah, R B; Liow, S L; Rahman, A N M A; Chan, W K; Wan-Khadijah, W E; Ng, S C

    2008-09-15

    The objective was to evaluate the effect of the interval between ovarian hyperstimulation and laparoscopic ovum pick-up (LOPU) on quality and developmental competence of goat oocytes before and after in vitro maturation (IVM) and intracytoplasmic sperm injection (ICSI). Estrus was synchronized with an intravaginal insert containing 0.3g progesterone (CIDR) for 10d, combined with a luteolytic treatment of 125 microg cloprostenol 36 h prior to CIDR removal. Ovaries were hyperstimulated with 70 mg FSH and 500 IU hCG given im 36, 60, or 72 h prior to LOPU (n=15, 16, and 7 does, respectively). For these groups, oocyte retrieval rates (mean+/-S.E.M.) were 24.7+/-2.9, 54.5+/-4.7, and 82.8+/-4.6% (P<0.001), and the proportions of cumulus-oocyte complexes (COC) with more than five layers of cumulus cells were 29.7+/-8.3, 37.6+/-6.9, and 37.3+/-7.0% (P<0.001). The proportion of IVM oocytes was highest at 72 h (82.1+/-2.8%; P<0.05), with no significant difference between 36 and 60 h (57.3+/-8.9% and 69.0+/-8.4%). Cleavage rates of ICSI embryos were 4.2+/-4.2, 70.9+/-8.4, and 78.9+/-8.2% with LOPU 36, 60, and 72 h post FSH/hCG (P<0.01), with a lower proportion of Grade-A embryos (P<0.05) following LOPU at 36 h compared to 60 and 72 h (29.7+/-8.3%, 37.6+/-6.9%, and 37.3+/-7.0%). In summary, a prolonged interval from FSH/hCG to LOPU improved oocyte retrieval rate and oocyte quality. Therefore, under the present conditions, LOPU 60 or 72 h after FSH/hCG optimized yields of good-quality oocytes for IVM and embryo production in goats.

  16. Superstimulation prior to the ovum pick-up to improve in vitro embryo production in lactating and non-lactating Holstein cows.

    PubMed

    Vieira, L M; Rodrigues, C A; Castro Netto, A; Guerreiro, B M; Silveira, C R A; Moreira, R J C; Sá Filho, M F; Bó, G A; Mapletoft, R J; Baruselli, P S

    2014-07-15

    The present study evaluated the efficacy of superstimulation with p-FSH (Folltropin) before the ovum pick-up (OPU) on IVP in lactating and nonlactating Holstein donors. A total of 30 Holstein cows (15 lactating and 15 nonlactating) were blocked by lactation status to one of two groups (control or p-FSH), in a cross-over design. On a random day of the estrous cycle, all cows received an intravaginal progesterone device and 2.0 mg IM of estradiol benzoate (Day 0). Cows in the control group received no further treatment, whereas cows in the p-FSH group received a total dosage of 200 mg of p-FSH on Days 4 and 5 in four decreasing doses 12 hours apart (57, 57, 43, and 43 mg). On Day 7, the progesterone device was removed, and OPU was conducted in both groups (40 hours after the last p-FSH injection in the p-FSH-treated group). There was no difference between groups (P = 0.92) in the numbers of follicles that were aspirated per OPU session (17.2 ± 1.3 vs. 17.1 ± 1.1 in control and p-FSH-treated cows, respectively); however, p-FSH-treated cows had a higher (P < 0.001) percentage of medium-sized follicles (6-10 mm) at the time of the OPU (55.1%; 285/517) than control cows (20.8%; 107/514). Although recovery rate was lower (60.0%, 310/517 vs. 69.8%, 359/514; P = 0.002), p-FSH-treated cows had a higher blastocyst production rate (34.5%, 89/258 vs. 19.8%, 55/278; P < 0.001) and more transferable embryos per OPU session were produced in the p-FSH group (3.0 ± 0.5 vs. 1.8 ± 0.4; P = 0.02). Regardless of treatment, non-lactating cows had a higher blastocyst rate (41.9%, 106/253 vs. 13.4%, 38/283; P = 0.001) and produced more transferable embryos per OPU session (3.5 ± 0.5 vs. 1.3 ± 0.3; P = 0.003) than lactating cows. Thus, superstimulation of Holstein donors with p-FSH before OPU increased the efficiency of IVP. In addition, non-lactating donors had higher percentage of in vitro blastocyst development and produced more embryos per OPU session than lactating cows.

  17. Different intervals of ovum pick-up affect the competence of oocytes to support the preimplantation development of cloned bovine embryos.

    PubMed

    Ding, Li-Jun; Tian, Hai-Bin; Wang, Jing-Jun; Chen, Juan; Sha, Hong-Ying; Chen, Jian-Quan; Cheng, Guo-Xiang

    2008-12-01

    The objective of this study was to determine the effect of different frequencies of transvaginal ovum pick-up (OPU) on the quantity of recovered cumulus oocyte complexes (COCs) and subsequently the competence of matured oocytes to support the preimplantation development of cloned bovine embryos. The COCs were aspirated from the ovaries of 6 Chinese Holstein cows by transvaginal follicle aspiration twice a week (every 3 or 4 days) (Group I), every 5 days (Group II), once a week (every 7 days) (Group III), every 10 days (Group IV), and once every 2 weeks (every 14 days) (Group V). The developmental stages of the follicles were confirmed by the diameter of the dominant follicle (DF) and harvested COCs, and the dynamics of the follicular wave were clarified. In addition, extrusions of the first polar body (PB I) from the oocytes were observed at different time intervals after the initiation of in vitro maturation (IVM) to identify the appropriate culture time window for somatic cell nuclear transfer. Matured oocytes were used to produce cloned bovine embryos that were subsequently cultured in the goat oviduct. After 7 days, the embryos were flushed out, and the developmental rates of the blastocysts were compared among the five groups. The results showed that the aspirations of all follicles >or=3 mm in diameter (D1) induced and synchronized the dynamics of the follicular wave, and the subordinate follicles became atretic after 4 days (D5). Another follicular wave started between D7 and D10, and atresia in the subordinate follicles in the second follicular wave began on D14. The timing of meiotic progression (from the initiation of IVM to the extrusion of PB I) in the oocytes obtained by OPU was later than that of the oocytes obtained from the abattoir. Between 20 and 24 hr after the initiation of IVM, 20% of the oocytes extruded their PB I. Further, 80% (520/650) of the harvested COCs were arrested at metaphase II (MII) by 22 hr of the initiation of IVM and were used

  18. Paradoxical effects of bovine somatotropin treatment on the ovarian follicular population and in vitro embryo production of lactating buffalo donors submitted to ovum pick-up.

    PubMed

    Ferraz, M L; Sá Filho, M F; Batista, E O S; Watanabe, Y F; Watanabe, M R; Dayan, A; Joaquim, D C; Accorsi, M R; Gimenes, L U; Vieira, L M; Baruselli, P S

    2015-03-01

    The aim of the present study was to evaluate the effect of bovine somatotropin (bST; 500mg) administration on lactating buffalo donors submitted to two different ovum pick-up (OPU) and in vitro embryo production schemes with a 7 or 14d intersession OPU interval. A total of 16 lactating buffalo cows were randomly assigned into one of four experimental groups according to the bST treatment (bST or No-bST) and the OPU intersession interval (7 or 14d) in a 2×2 factorial design (16 weeks of OPU sessions). The females submitted to OPU every 14d had a larger (P<0.001) number of ovarian follicles suitable for puncture (15.6±0.7 vs. 12.8±0.4) and an increased (P=0.004) number of cumulus-oocyte complexes (COCs) recovered (10.0±0.5 vs. 8.5±0.3) compared to the 7d interval group. However, a 7 or 14d interval between OPU sessions had no effect (P=0.34) on the number of blastocysts produced per OPU (1.0±0.1 vs. 1.3±0.2, respectively). In addition, bST treatment increased (P<0.001) the number of ovarian follicles suitable for puncture (15.3±0.5 vs. 12.1±0.4) but reduced the percentage (18.9% vs. 10.9%; P=0.009) and the number (1.4±0.2 vs. 0.8±0.1; P=0.003) of blastocysts produced per OPU session compared with the non-bST-treated buffaloes. In conclusion, the 14d interval between OPU sessions and bST treatment efficiently increased the number of ovarian follicles suitable for puncture. However, the OPU session interval had no effect on embryo production, and bST treatment reduced the in vitro blastocyst outcomes in lactating buffalo donors.

  19. Controlling spin-dependent localization and directed transport in a bipartite lattice

    NASA Astrophysics Data System (ADS)

    Luo, Yunrong; Lu, Gengbiao; Kong, Chao; Hai, Wenhua

    2016-04-01

    We study coherent control of spin-dependent dynamical localization (DL) and directed transport (DT) of a spin-orbit-coupled single atom held in a driven optical bipartite lattice. Under the high-frequency limit and nearest-neighbor tight-binding approximation, we find a new decoupling mechanism between states with the same (different) spins, which leads to two sets of analytical solutions describing DL and DT with (without) spin flipping. The analytical results are numerically confirmed, and perfect agreements are found. Extending the research to a system of spin-orbit-coupled single atoms, the spin current and quantum information transport with controllable propagation speed and distance are investigated. The results can be experimentally tested in the current setups and may be useful in quantum information processing.

  20. Approximate spin projected spin-unrestricted density functional theory method: Application to diradical character dependences of second hyperpolarizabilities

    SciTech Connect

    Nakano, Masayoshi Minami, Takuya Fukui, Hitoshi Yoneda, Kyohei Shigeta, Yasuteru Kishi, Ryohei; Champagne, Benoît; Botek, Edith

    2015-01-22

    We develop a novel method for the calculation and the analysis of the one-electron reduced densities in open-shell molecular systems using the natural orbitals and approximate spin projected occupation numbers obtained from broken symmetry (BS), i.e., spin-unrestricted (U), density functional theory (DFT) calculations. The performance of this approximate spin projection (ASP) scheme is examined for the diradical character dependence of the second hyperpolarizability (γ) using several exchange-correlation functionals, i.e., hybrid and long-range corrected UDFT schemes. It is found that the ASP-LC-UBLYP method with a range separating parameter μ = 0.47 reproduces semi-quantitatively the strongly-correlated [UCCSD(T)] result for p-quinodimethane, i.e., the γ variation as a function of the diradical character.

  1. Approximate spin projected spin-unrestricted density functional theory method: Application to diradical character dependences of second hyperpolarizabilities

    NASA Astrophysics Data System (ADS)

    Nakano, Masayoshi; Minami, Takuya; Fukui, Hitoshi; Yoneda, Kyohei; Shigeta, Yasuteru; Kishi, Ryohei; Champagne, Benoıît; Botek, Edith

    2015-01-01

    We develop a novel method for the calculation and the analysis of the one-electron reduced densities in open-shell molecular systems using the natural orbitals and approximate spin projected occupation numbers obtained from broken symmetry (BS), i.e., spin-unrestricted (U), density functional theory (DFT) calculations. The performance of this approximate spin projection (ASP) scheme is examined for the diradical character dependence of the second hyperpolarizability (γ) using several exchange-correlation functionals, i.e., hybrid and long-range corrected UDFT schemes. It is found that the ASP-LC-UBLYP method with a range separating parameter μ = 0.47 reproduces semi-quantitatively the strongly-correlated [UCCSD(T)] result for p-quinodimethane, i.e., the γ variation as a function of the diradical character.

  2. The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design

    NASA Astrophysics Data System (ADS)

    Ni, Yun; Wang, Xia; Tao, Wei; Zhu, Si-Cong; Yao, Kai-Lun

    2016-05-01

    By performing first-principle quantum transport calculations, we studied the electronic and transport properties of zigzag α-graphyne nanoribbons in different magnetic configurations. We designed the device based on zigzag α-graphyne nanoribbon and studied the spin-dependent transport properties, whose current-voltage curves show obvious spin-polarization and conductance plateaus. The interesting transport behaviours can be explained by the transport spectra under different magnetic configurations, which basically depends on the symmetry matching of the electrodes’ bandstructures. Simultaneously, spin Seebeck effect is also found in the device. Thus, according to the transport behaviours, zigzag α-graphyne nanoribbons can be used as a dual spin filter diode, a molecule signal converter and a spin caloritronics device, which indicates that α-graphyne is a promising candidate for the future application in spintronics.

  3. Temperature Dependence of Electron Spin Relaxation of 2,2-diphenyl-1-picrylhydrazyl in Polystyrene

    PubMed Central

    Meyer, Virginia; Eaton, Sandra S.; Eaton, Gareth R.

    2012-01-01

    The electron spin relaxation rates for the stable radical DPPH (2,2-diphenyl-1-picrylhydrazyl) doped into polystyrene were studied by inversion recovery and electron spin echo at X-band and Q-band between 20 and 295 K. At low concentration (340 μM, 0.01%) spin-lattice relaxation was dominated by the Raman process and a local mode. At high concentration (140 mM, 5%) relaxation is orders of magnitude faster than at the lower concentration, and 1/T1 is approximately linearly dependent on temperature. Spin lattice relaxation rates are similar at X-band and Q-band. The temperature dependence of spin echo dephasing was faster at about 140 K than at higher or lower temperatures, which is attributed to a wagging motion of the phenyl groups. PMID:23565040

  4. The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design.

    PubMed

    Ni, Yun; Wang, Xia; Tao, Wei; Zhu, Si-Cong; Yao, Kai-Lun

    2016-01-01

    By performing first-principle quantum transport calculations, we studied the electronic and transport properties of zigzag α-graphyne nanoribbons in different magnetic configurations. We designed the device based on zigzag α-graphyne nanoribbon and studied the spin-dependent transport properties, whose current-voltage curves show obvious spin-polarization and conductance plateaus. The interesting transport behaviours can be explained by the transport spectra under different magnetic configurations, which basically depends on the symmetry matching of the electrodes' bandstructures. Simultaneously, spin Seebeck effect is also found in the device. Thus, according to the transport behaviours, zigzag α-graphyne nanoribbons can be used as a dual spin filter diode, a molecule signal converter and a spin caloritronics device, which indicates that α-graphyne is a promising candidate for the future application in spintronics. PMID:27180808

  5. The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design

    PubMed Central

    Ni, Yun; Wang, Xia; Tao, Wei; Zhu, Si-Cong; Yao, Kai-Lun

    2016-01-01

    By performing first-principle quantum transport calculations, we studied the electronic and transport properties of zigzag α-graphyne nanoribbons in different magnetic configurations. We designed the device based on zigzag α-graphyne nanoribbon and studied the spin-dependent transport properties, whose current-voltage curves show obvious spin-polarization and conductance plateaus. The interesting transport behaviours can be explained by the transport spectra under different magnetic configurations, which basically depends on the symmetry matching of the electrodes’ bandstructures. Simultaneously, spin Seebeck effect is also found in the device. Thus, according to the transport behaviours, zigzag α-graphyne nanoribbons can be used as a dual spin filter diode, a molecule signal converter and a spin caloritronics device, which indicates that α-graphyne is a promising candidate for the future application in spintronics. PMID:27180808

  6. Spin-dependent transport in a magnetic two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Smorchkova, I. P.; Kikkawa, J. M.; Samarth, N.; Awschalom, D. D.

    1998-07-01

    Magneto-transport and magneto-optical probes are used to interrogate spin-dependent transport in magnetic heterostructures wherein a two dimensional electron gas (2DEG) is exchange-coupled to local moments. At low temperatures, the significant s-d exchange-enhanced spin splitting in these “magnetic” 2DEGs is responsible for the observation of unusual transport properties such as a complete spin polarization of the gas at large Landau level filling factors and a pronounced, non-monotonic background magneto-resistance. Magneto-transport measurements of gated samples performed in a parallel field geometry are used to systematically study the variation of the magneto-resistance with sheet concentration, yielding new insights into the dependence of spin transport on the Fermi energy of the majority spin carriers.

  7. Sum rule measurements of the spin-dependent compton amplitude (nucleon spin structure at Q{sup 2} = 0)

    SciTech Connect

    Babusci, D.; Giordano, G.; Baghaei, H.; Cichocki, A.; Blecher, M.; Breuer, M.; Commeaux, C.; Didelez, J.P.; Caracappa, A.; Fan, Q.

    1995-12-31

    Energy weighted integrals of the difference in helicity-dependent photo-production cross sections ({sigma}{sub {1/2}} - {sigma}{sub 3/2}) provide information on the nucleon`s Spin-dependent Polarizability ({gamma}), and on the spin-dependent part of the asymptotic forward Compton amplitude through the Drell-Hearn-Gerasimov (DHG) sum rule. (The latter forms the Q{sup 2}=0 limit of recent spin-asymmetry experiments in deep-inelastic lepton-scattering.) There are no direct measurements of {sigma}{sub {1/2}} or {sigma}{sub 3/2}, for either the proton or the neutron. Estimates from current {pi}-photo-production multipole analyses, particularly for the proton-neutron difference, are in good agreement with relativistic-l-loop Chiral calculations ({chi}PT) for {gamma} but predict large deviations from the DHG sum rule. Either (a) both the 2-loop corrections to the Spin-Polarizability are large and the existing multipoles are wrong, or (b) modifications to the Drell-Hearn-Gerasimov sum rule are required to fully describe the isospin structure of the nucleon. The helicity-dependent photo-reaction amplitudes, for both the proton and the neutron, will be measured at LEGS from pion-threshold to 470 MeV. In these double-polarization experiments, circularly polarized photons from LEGS will be used with SPHICE, a new frozen-spin target consisting of {rvec H} {center_dot} {rvec D} in the solid phase. Reaction channels will be identified in SASY, a large detector array covering about 80% of 4{pi}. A high degree of symmetry in both target and detector will be used to minimize systematic uncertainties.

  8. Multireference Møller Plesset perturbation theory using spin-dependent orbital energies

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuka; Nakano, Haruyuki; Hirao, Kimihiko

    2001-03-01

    The use of spin-dependent orbital energies is proposed in the multireference Møller-Plesset perturbation theory. In this method a single canonical Fock orbital set is used for both alpha and beta electrons, while the orbital energies depend on the spin of the electron that occupies the orbital. The method is tested on the energy splitting between states of different spins in the CH 2, CF 2, CO, O 2, N 2+, and o-benzyne molecules. The results agree well with available experimental data; the deviations are within 4 kcal/mol in all cases considered.

  9. Equations of motion of test particles for solving the spin-dependent Boltzmann-Vlasov equation

    NASA Astrophysics Data System (ADS)

    Xia, Yin; Xu, Jun; Li, Bao-An; Shen, Wen-Qing

    2016-08-01

    A consistent derivation of the equations of motion (EOMs) of test particles for solving the spin-dependent Boltzmann-Vlasov equation is presented. The resulting EOMs in phase space are similar to the canonical equations in Hamiltonian dynamics, and the EOM of spin is the same as that in the Heisenburg picture of quantum mechanics. Considering further the quantum nature of spin and choosing the direction of total angular momentum in heavy-ion reactions as a reference of measuring nucleon spin, the EOMs of spin-up and spin-down nucleons are given separately. The key elements affecting the spin dynamics in heavy-ion collisions are identified. The resulting EOMs provide a solid foundation for using the test-particle approach in studying spin dynamics in heavy-ion collisions at intermediate energies. Future comparisons of model simulations with experimental data will help to constrain the poorly known in-medium nucleon spin-orbit coupling relevant for understanding properties of rare isotopes and their astrophysical impacts.

  10. Time dependence of spin currents in noncollinear magnetic multilayers:the diffusion equation approach

    NASA Astrophysics Data System (ADS)

    Zhang, Jianwei; Levy, Peter

    2005-03-01

    We used the time dependent diffusion equations to study the time evolution of spin torque in noncollinear magnetic multilayers. For 3d transition-metal ferromagnetic layers we find this torque build up in femtoseconds; it reach its steady state in about 75 femtoseconds after undergoing damped oscillations with a period of about 5 femtoseconds. In our approach the initial discontinuity of the spin current at the interface between noncollinear magnetic layers does not directly create spin torque; rather it is the source term that creates transverse spin accumulation and thereby removes the discontinuity in the spin current when steady state is achieved. In this view the spin torque comes from the transverse spin accumulation. We find the dependence of the spin torque on the angle between the magnetizations predicted by the diffusion equation is close to that found by using the Boltzmann equation [1]. Work supported by the National Science Foundation, Grant DMR 0131883. [1] Jianwei Zhang and P.M. Levy, Phys. Rev. B70, 184442(2004).

  11. Temperature dependence of the spin relaxation in highly degenerate ZnO thin films

    SciTech Connect

    Prestgard, M. C.; Siegel, G.; Tiwari, A.; Roundy, R.; Raikh, M.

    2015-02-28

    Zinc oxide is considered a potential candidate for fabricating next-generation transparent spintronic devices. However, before this can be achieved, a thorough scientific understanding of the various spin transport and relaxation processes undergone in this material is essential. In the present paper, we are reporting our investigations into these processes via temperature dependent Hanle experiments. ZnO thin films were deposited on c-axis sapphire substrates using a pulsed laser deposition technique. Careful structural, optical, and electrical characterizations of the films were performed. Temperature dependent non-local Hanle measurements were carried out using an all-electrical scheme for spin injection and detection over the temperature range of 20–300 K. From the Hanle data, spin relaxation time in the films was determined at different temperatures. A detailed analysis of the data showed that the temperature dependence of spin relaxation time follows the linear-in-momentum Dyakonov-Perel mechanism.

  12. Effect of repeated eCG treatments and ovum pick-up on ovarian response and oocyte recovery during early pregnancy in suckling beef cows.

    PubMed

    Aller, J F; Mucci, N C; Kaiser, G G; Callejas, S S; Alberio, R H

    2012-07-01

    This study was designed to evaluate in suckling early pregnant beef cows with and without eCG-pre-stimulation: (i) the influence of day gestation (from 40 to 101 days) and the consecutive eCG treatments on the follicular growth induced by means of ultrasound-guided transvaginal follicle ablation (FA; all follicles ≥ 5 mm) and the number and quality oocytes recovered by ovum pick-up (OPU) and (ii) the possible effects of repeated hormonal stimulation and FA/OPU on pregnancy outcome. Twelve suckling early pregnant Angus cows (40 days post fixed-time artificial insemination) were randomly assigned to each of two groups (n=6 group(-1)). Group 1 treatments included: FA (Day 0), eCG (1600 IU; Day 1) and OPU (Day 5). Group 2: as cited Group 1 with no eCG treatment. In both groups, OPU was repeated five times (Days 45, 59, 73, 87 and 101 of gestation). The numbers (mean ± SEM) of class II (5-9 mm; 4.3 ± 0.9) and class III (≥10 mm; 2.5 ± 0.4) follicles visualized per cow per OPU session in eCG-treated cows were greater (P<0.05) than for non-treated cows (0.9 ± 0.1 and 0.9 ± 0.1, respectively). In contrast, the number (mean ± SEM) of class I (<5mm) follicles per cow per OPU session was lower for cows with eCG treatment (2.8 ± 0.4) than for non-treated cows (5.7 ± 0.5). The mean number of aspirated follicles was not significantly different (P<0.05) between eCG-treated cows and non-treated cows at 45 and 59 days of pregnancy. However, the mean number of aspirated follicles was greater (P=0.03) in eCG-treated cows than non-treated cows from 73 day of pregnancy onwards. The numbers (mean ± SEM) of recovered oocytes and viable oocytes/cow/session were greater (P<0.05) for eCG-treated cows (2.2 ± 0.2 and 1.6 ± 0.4, respectively) than for non-treated cows (1.0 ± 0.2 and 0.9 ± 0.2, respectively). No donor pregnancies were lost either during or following OPU procedure. We can conclude that (1) eCG-treated pregnant suckled cows can be a source of oocytes for IVF at

  13. Genetic parameters for oocyte number and embryo production within a bovine ovum pick-up-in vitro production embryo-production program.

    PubMed

    Merton, J S; Ask, B; Onkundi, D C; Mullaart, E; Colenbrander, B; Nielen, M

    2009-10-15

    Genetic factors influencing the outcome of bovine ovum pick-up-in vitro production (OPU-IVP) and its relation to female fertility were investigated. For the first time, genetic parameters were estimated for the number of cumulus-oocyte complexes (Ncoc), quality of cumulus-oocyte complexes (Qcoc), number and proportion of cleaved embryos at Day 4 (Ncleav(D4), Pcleav(D4)), and number and proportion of total and transferable embryos at Day 7 of culture (Nemb(D7), Pemb(D7) and NTemb(D7), PTemb(D7), respectively). Data were recorded by CRV (formally Holland Genetics) from the OPU-IVP program from January 1995 to March 2006. Data were collected from 1508 Holstein female donors, both cows and pregnant virgin heifers, with a total of 18,702 OPU sessions. Data were analyzed with repeated-measure sire models with permanent environment effect using ASREML (Holstein Friesian). Estimates of heritability were 0.25 for Ncoc, 0.09 for Qcoc, 0.19 for Ncleav(D4), 0.21 for Nemb(D7), 0.16 for NTemb(D7), 0.07 for Pcleav(D4), 0.12 for Pemb(D7), and 0.10 for PTemb(D7). Genetic correlation between Ncoc and Qcoc was close to zero, whereas genetic correlations between Ncoc and the number of embryos were positive and moderate to high for Nemb(D7) (0.47), NTemb(D7) (0.52), and Ncleav(D4) (0.85). Genetic correlations between Ncoc and percentages of embryos (Pcleav(D4), Pemb(D7), and PTemb(D7)) were all close to zero. Phenotypic correlations were in line with genetic correlations. Genetic and phenotypic correlations between Qcoc and all other traits were not significant except for the phenotypic correlations between Qcoc and number of embryos, which were negative and low to moderate for Nemb(D7) (-0.20), NTemb(D7) (-0.24), and Ncleav(D4) (-0.43). Results suggest that cumulus-oocyte complex (COC) quality, based on cumulus investment, is independent from the total number of COCs collected via OPU and that in general, a higher number of COCs will lead to a higher number of embryos produced. The

  14. In vivo collection of follicular fluid and granulosa cells from individual follicles of different diameters in cattle by an adapted ovum pick-up system

    PubMed Central

    2013-01-01

    Background Most studies on granulosa cell (GC) function in cattle have been performed using GC and follicular fluid (FF) samples collected from slaughterhouse ovaries. Using this approach, the follicular developmental stage and functional status are unknown and indirectly inferred, limiting data interpretation. Ultrasound-guided follicle aspiration has previously been used to recover GC or FF samples, but this was mostly carried out in large follicles or pools of small follicles, without recording the efficiency of recovery. The present study was aimed at adapting and evaluating an ovum pick-up (OPU) system for the in vivo recovery of FF and GC from individual follicles of different diameters. Methods In the first trial, the losses of fluid inside the tubing system were calculated using a conventional or an adapted-OPU system. Blood plasma volumes equivalent to the amount of FF in follicles of different diameters were aspirated using a conventional OPU Teflon circuit. The OPU system was then adapted by connecting 0.25 mL straws to the circuit. A second trial evaluated the efficiency of FF recovery in vivo. Follicles ranging from 4.0 to 16.8 mm in diameter were aspirated individually using the conventional or adapted-OPU systems. A third trial assessed the in vivo recovery of GC and the subsequent amount of RNA obtained from the follicles of different diameters from Holstein and Gir cattle. Results In Trial I, the plasma recovery efficiency was similar (P > 0.05) for the volumes expected for 12 and 10 mm follicles, but decreased (P < 0.05) for smaller follicles (45.7+/−4.0%, 12.4+/−4.3% and 0.0+/−0.0% for 8, 6, and 4 mm follicles, respectively). Using the adaptation, the losses intrinsic to the aspiration system were similar for all follicle diameters. In Trial II, the expected and recovered volumes of FF were correlated (r = 0.89) and the efficiency of recovery was similar among follicles <12 mm, while larger follicles had a progressive increase

  15. Electric dipolar spin resonance in systems with a valley dependent g-factor

    NASA Astrophysics Data System (ADS)

    Rancic, Marko; Burkard, Guido

    We theoretically investigate the electric dipole spin resonance (EDSR) in a single Si/SiGe quantum dot in the presence of a magnetic field gradient, e.g., produced by a micromagnet. The control of electron spin states can be achieved by applying an oscillatory electric field, which induces periodic oscillations in real space of the electron spin inside the quantum dot. This motion inside a magnetic field gradient produces an effective periodic in-plane magnetic field, and allows for driven spin rotations near resonance. The magnetic field gradient induces a valley dependent g-factor and a valley dependent Rabi frequency. Our first goal is to quantitatively and qualitatively describe valley dependent g-factors and a valley dependent Rabi frequencies using a microscopic model. A valley dependent g-factor combined with inter-valley scattering gives rise to a novel electron spin decoherence mechanism. The second goal of our study is to describe the drop of coherence in the presence of inver-valley scattering, and furthermore, to discuss the interplay between valley and spin relaxation. All relevant decoherence mechanisms are quantitatively evaluated by solving a Lindblad master equation.

  16. Spin-dependent Seebeck effects in a graphene nanoribbon coupled to two square lattice ferromagnetic leads

    SciTech Connect

    Zhou, Benhu Zeng, Yangsu; Zhou, Benliang; Zhou, Guanghui; Ouyang, Tao

    2015-03-14

    We theoretically investigate spin-dependent Seebeck effects for a system consisting of a narrow graphene nanoribbon (GNR) contacted to square lattice ferromagnetic (FM) electrodes with noncollinear magnetic moments. Both zigzag-edge graphene nanoribbons (ZGNRs) and armchair-edge graphene nanoribbons (AGNRs) were considered. Compared with our previous work with two-dimensional honeycomb-lattice FM leads, a more realistic model of two-dimensional square-lattice FM electrodes is adopted here. Using the nonequilibrium Green's function method combining with the tight-binding Hamiltonian, it is demonstrated that both the charge Seebeck coefficient S{sub C} and the spin-dependent Seebeck coefficient S{sub S} strongly depend on the geometrical contact between the GNR and the leads. In our previous work, S{sub C} for a semiconducting 15-AGNR system near the Dirac point is two orders of magnitude larger than that of a metallic 17-AGNR system. However, S{sub C} is the same order of magnitude for both metallic 17-AGNR and semiconducting 15-AGNR systems in the present paper because of the lack of a transmission energy gap for the 15-AGNR system. Furthermore, the spin-dependent Seebeck coefficient S{sub S} for the systems with 20-ZGNR, 17-AGNR, and 15-AGNR is of the same order of magnitude and its maximum absolute value can reach 8 μV/K. The spin-dependent Seebeck effects are not very pronounced because the transmission coefficient weakly depends on spin orientation. Moreover, the spin-dependent Seebeck coefficient is further suppressed with increasing angle between the relative alignments of magnetization directions of the two leads. Additionally, the spin-dependent Seebeck coefficient can be strongly suppressed for larger disorder strength. The results obtained here may provide valuable theoretical guidance in the experimental design of heat spintronic devices.

  17. Spin-dependent shot noise in diluted magnetic semiconductor/semiconductor heterostructures with a nonmagnetic barrier

    NASA Astrophysics Data System (ADS)

    Wu, Shuang; Guo, Yong

    2014-05-01

    We investigate quantum size effect on the spin-dependent shot noise in the diluted magnetic semiconductor (DMS)/semiconductor heterostructure with a nonmagnetic semiconductor (NMS) barrier in the presence of external magnetic and electric fields. The results demonstrate that the NMS barrier plays a quite different role from the DMS layer in the electron transport process. It is found that spin-down shot noise shows relatively regular oscillations as the width of DMS layer increases, while the spin-up shot noise deceases monotonically. However, as the width of NMS layer increases, the spin-down shot noise displays irregular oscillations at first and then decreases while the spin-up shot noise decreases at a quite different rate. The results indicate that the shot noise can be used as a sensitive probe in detecting material type and its size.

  18. Spin-dependent electron emission from metals in the neutralization of He{sup +} ions

    SciTech Connect

    Alducin, M.; Roesler, M.; Juaristi, J.I.

    2005-08-15

    We calculate the spin-polarization of electrons emitted in the neutralization of He{sup +} ions interacting with metals. All stages of the emission process are included: the spin-dependent perturbation induced by the projectile, the excitation of electrons in Auger neutralization processes, the creation of a cascade of secondaries, and the escape of the electrons through the surface potential barrier. The model allows us to explain in quantitative terms the measured spin-polarization of the yield in the interaction of spin-polarized He{sup +} ions with paramagnetic surfaces, and to disentangle the role played by each of the involved mechanisms. We show that electron-electron scattering processes at the surface determine the spin-polarization of the total yield. High energy emitted electrons are the ones providing direct information on the He{sup +} ion neutralization process and on the electronic properties of the surface.

  19. Spin-dependent screening and Auger neutralization of He{sup +} ions in metals

    SciTech Connect

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2004-07-01

    The screening of a He{sup +} ion embedded in a paramagnetic electron gas is studied using density functional theory within the local spin density approximation. We calculate the induced electron density and the induced density of states for each spin orientation, parallel and antiparallel to that of the electron bound to the He{sup +} ion. Our results show that the screening is preferably due to parallel spin electrons, especially for low electron densities of the medium. In a second step, the rates for Auger neutralization of a He{sup +} ion in an electron gas are calculated, paying special attention to their dependence on the spin of the electron excited in the Auger process. The results obtained are used to interpret experiments in which the spin polarization of the emitted yield is measured when a He{sup +} projectile is neutralized in front of a metal surface.

  20. The chirality dependent spin filter design in the graphene-like junction.

    PubMed

    Tian, Hongyu; Wang, Sake; Hu, Jingguo; Wang, Jun

    2015-04-01

    We investigate the chirality-dependent spin transport in a graphene-like topological insulator (TI) TI/n junction, where a perpendicular magnetic field or an off-resonant circularly- polarized light field is applied to the normal (n) region. It is found that the coupling between the helical edge states of the TI and chiral edge states from the magnetic/light field results in a perfect spin filtering effect and only one spin species can tunnel through the junction interface. The origin is ascribed to the chirality-conservation requirement, since the two spin species have the opposite chiralities in the TI region and in the n region both of them have the same chiralities. For a TI/n superlattice structure, the spin filtering effect is enhanced and even survives in a fairly strong disorder environment. PMID:25694439

  1. The chirality dependent spin filter design in the graphene-like junction

    NASA Astrophysics Data System (ADS)

    Tian, Hongyu; Wang, Sake; Hu, Jingguo; Wang, Jun

    2015-04-01

    We investigate the chirality-dependent spin transport in a graphene-like topological insulator (TI) TI/n junction, where a perpendicular magnetic field or an off-resonant circularly- polarized light field is applied to the normal (n) region. It is found that the coupling between the helical edge states of the TI and chiral edge states from the magnetic/light field results in a perfect spin filtering effect and only one spin species can tunnel through the junction interface. The origin is ascribed to the chirality-conservation requirement, since the two spin species have the opposite chiralities in the TI region and in the n region both of them have the same chiralities. For a TI/n superlattice structure, the spin filtering effect is enhanced and even survives in a fairly strong disorder environment.

  2. Design of spin-forbidden transitions for polypyridyl metal complexes by time-dependent density functional theory including spin-orbit interaction.

    PubMed

    Kanno, Shohei; Imamura, Yutaka; Hada, Masahiko

    2016-05-25

    We explore spin-forbidden transitions for a Ru dye with an N3 skeleton and an Fe dye with a DX1 skeleton by time-dependent density functional theory with spin-orbit interaction. The modified N3-based Ru dye with iodine anions has an absorption edge in the long wavelength region which is not observed in the original N3 dye. The long wavelength absorption edge originates from the spin-orbit interaction with iodine. Although the Fe dye has a small spin-orbit interaction, because of less spin-orbit interaction from the light metal, spin-forbidden transitions also occur for DX1-based Fe dye systems with iodine anions. This result indicates that the introduction of iodine can strengthen the spin-orbit interaction for a dye sensitizer and offers a new approach for designing spin-forbidden transitions.

  3. Time Dependence of the freezing temperature for thin film spin glasses

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond

    There have been many measurements of the dependence of the ``freezing temperature'', Tf, on the thickness o of thin film spin glasses. Tf decreases with decreasing o, but never vanishes. This contribution suggests that the dependence of Tf on o is a time dependent relationship. Because the lower critical dimension of a spin glass, dl ~ 2 . 5 , when the spin glass correlation length ξ (t , T) grows to o, the spin glass dimensionality crosses over from d = 3 to d = 2 . What remains are spin glass correlations for length scales <= o . The time dependence of the magnetization dynamics are then activated, with activation energy equal to a largest barrier Δmax (o) , and an associated activation time τ. For measurements at time scales such that ξ (t , T) < o , the effective dimension d = 3 , and the characteristic cusp and knee of a spin glass is observed. For experimental time scales greater than τ, with ξ (t , T) ~ o , the zero-field cooled magnetization has grown to the field-cooled value of the magnetization, leading to the identification of Tf. Quantitative agreement with experiment is exhibited. Supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-SC0013599.

  4. Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport.

    PubMed

    Aragonès, Albert C; Aravena, Daniel; Cerdá, Jorge I; Acís-Castillo, Zulema; Li, Haipeng; Real, José Antonio; Sanz, Fausto; Hihath, Josh; Ruiz, Eliseo; Díez-Pérez, Ismael

    2016-01-13

    Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe(II) complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature. PMID:26675052

  5. The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning

    SciTech Connect

    Mance, Deni; Baldus, Marc; Gast, Peter; Huber, Martina; Ivanov, Konstantin L.

    2015-06-21

    We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei.

  6. Generation of spin-dependent coherent states in a quantum wire

    NASA Astrophysics Data System (ADS)

    Pawłowski, J.; Szumniak, P.; Bednarek, S.

    2016-10-01

    We propose an all-electrically controlled nanodevice—a gated semiconductor nanowire—capable of generating a coherent state of a single electron trapped in a harmonic oscillator or superposition of such coherent states—the Schrödinger cat state. In the proposed scheme, the electron in the ground state of the harmonic potential is driven by resonantly oscillating Rashba spin-orbit coupling. This allows for the creation of the Schrödinger cat state with superposition amplitudes depending on the initial electron spin state. Such a method can be used for initialization of a single-spin qubit defined in a coherent state. The harmonic confinement potential along the InSb nanowire and the modulation of the Rashba spin-orbit coupling is obtained by proper gating. The results are supported by realistic three-dimensional time-dependent self-consistent Poisson-Schrödinger calculations.

  7. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As

    NASA Astrophysics Data System (ADS)

    Jungwirth, T.; Wunderlich, J.; Novák, V.; Olejník, K.; Gallagher, B. L.; Campion, R. P.; Edmonds, K. W.; Rushforth, A. W.; Ferguson, A. J.; Němec, P.

    2014-07-01

    Over the past two decades, the research of (Ga,Mn)As has led to a deeper understanding of relativistic spin-dependent phenomena in magnetic systems. It has also led to discoveries of new effects and demonstrations of unprecedented functionalities of experimental spintronic devices with general applicability to a wide range of materials. This is a review of the basic material properties that make (Ga,Mn)As a favorable test-bed system for spintronics research and a discussion of contributions of (Ga,Mn)As studies in the general context of the spin-dependent phenomena and device concepts. Special focus is on the spin-orbit coupling induced effects and the reviewed topics include the interaction of spin with electrical current, light, and heat.

  8. Phase separation in optical lattices in a spin-dependent external potential

    SciTech Connect

    A-Hai Chen; Gao Xianlong

    2010-01-15

    We investigate the phase separation in one-dimensional Fermi gases on optical lattices. The density distributions and the magnetization are calculated by means of the density-matrix renormalization method. The phase separation between spin-up and spin-down atoms is induced by the interplay of the spin-dependent harmonic confinement and the strong repulsive interaction between intercomponent fermions. We find the existence of a critical repulsive interaction strength above which the phase separation evolves. By increasing the trap imbalance, the composite phase of the Mott-insulating core is changed into one of the ferromagnetic insulating core, which is incompressible and originates from the Pauli exclusion principle.

  9. Spin relaxation time dependence on optical pumping intensity in GaAs:Mn

    SciTech Connect

    Burobina, V.; Binek, Ch.

    2014-04-28

    We analyze the dependence of electron spin relaxation time on optical pumping intensity in a partially compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 10{sup 17} cm{sup −3}. The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor.

  10. Quenching of the spin-dependent scattering of weakly interacting massive particles on heavy nuclei

    NASA Astrophysics Data System (ADS)

    Nikolaev, M. A.; Klapdor-Kleingrothaus, H. V.

    1993-12-01

    We present calculations of the quenching of the spin-dependent elastic scattering cross section for dark matter WIMPs on heavy nuclei. The theory of finite Fermi systems was used to describe the behavior of the nuclear spin matrix elements in the nuclear medium. The results of the calculations for planned dark matter detector nuclei are not only always smaller than corresponding single particle estimations but in some cases also differ from the ones obtained by using measured nuclear magnetic moments.

  11. Landau-Zener and Rabi oscillations in the spin-dependent conductance

    NASA Astrophysics Data System (ADS)

    Fernández-Alcázar, L. J.; Pastawski, H. M.

    2014-01-01

    We describe the spin-dependent quantum conductance in a wire where a magnetic field is spatially modulated. The change in direction and intensity of the magnetic field acts as a perturbation that mixes spin projections. This is exemplified by a ferromagnetic nanowire. There the local field varies smoothly its direction generating a domain wall (DW) as described by the well-known Cabrera-Falicov model. Here, we generalize this model to include also a strength modulation. We identify two striking diabatic regimes that appear when such magnetic inhogeneity occurs. 1) If the field strength at the DW is weak enough, the local Zeeman energies result in an avoided crossing. Thus, the spin-flip probability follows the Landau-Zener formula. 2) For strong fields, the spin-dependent conductance shows oscillations as a function of the DW width. We interpret them in terms of Rabi oscillations. Time and length scales obtained from this simplified view show an excellent agreement with the exact dynamical solution of the spin-dependent transport. These results remain valid for other situations involving modulated magnetic structures and thus they open new prospects for the use of quantum interferences in spin-based devices. This paper is dedicated to the memory of the lifelong collaborator Patricia Rebeca Levstein.

  12. Spin-dependent transport and current-induced spin transfer torque in a disordered zigzag silicene nanoribbon

    NASA Astrophysics Data System (ADS)

    Zhou, Benliang; Zhou, Benhu; Liu, Guang; Guo, Dan; Zhou, Guanghui

    2016-11-01

    We study theoretically the spin-dependent transport and the current-induced spin transfer torque (STT) for a zigzag silicene nanoribbon (ZSiNR) with Anderson-type disorders between two ferromagnetic electrodes. By using the nonequilibrium Green's function method, it is predicted that the transport property and STT through the junction depend sensitively on the disorder, especially around the Dirac point. As a result, the conductance decreases and increases for two electrode in parallel and antiparallel configurations, respectively. Due to the disorder, the magnetoresistance (MR) decreases accordingly even within the energy regime for the perfect plateau without disorders. In addition, the conductance versus the relative angle of the magnetization shows a cosine-like behavior. The STT per unit of the bias voltage versus the angle of the magnetization exhibits a sine-like behavior, and versus the Fermi energy is antisymmetrical to the Dirac point and exhibits sharp peaks. Furthermore, the peaks of the STT are suppressed much as the disorder strength increases, especially around the Dirac point. The results obtained here may provide a valuable suggestion to experimentally design spin valve devices based on ZSiNR.

  13. Spin-dependent transport behavior in C{sub 60} and Alq{sub 3} based spin valves with a magnetite electrode (invited)

    SciTech Connect

    Zhang, Xianmin Mizukami, Shigemi; Ma, Qinli; Kubota, Takahide; Miyazaki, Terunobu; Oogane, Mikihiko; Naganuma, Hiroshi; Ando, Yasuo

    2014-05-07

    The spin-dependent transport behavior in organic semiconductors (OSs) is generally observed at low temperatures, which likely results from poor spin injection efficiency at room temperature from the ferromagnetic metal electrodes to the OS layer. Possible reasons for this are the low Curie temperature and/or the small spin polarization efficiency for the ferromagnetic electrodes used in these devices. Magnetite has potential as an advanced candidate for use as the electrode in spintronic devices, because it can achieve 100% spin polarization efficiency in theory, and has a high Curie temperature (850 K). Here, we fabricated two types of organic spin valves using magnetite as a high efficiency electrode. C{sub 60} and 8-hydroxyquinoline aluminum (Alq{sub 3}) were employed as the OS layers. Magnetoresistance ratios of around 8% and over 6% were obtained in C{sub 60} and Alq{sub 3}-based spin valves at room temperature, respectively, which are two of the highest magnetoresistance ratios in organic spin valves reported thus far. The magnetoresistance effect was systemically investigated by varying the thickness of the Alq{sub 3} layer. Moreover, the temperature dependence of the magnetoresistance ratios for C{sub 60} and Alq{sub 3}-based spin valves were evaluated to gain insight into the spin-dependent transport behavior. This study provides a useful method in designing organic spin devices operated at room temperature.

  14. Momentum-dependent band spin splitting in semiconducting MnO2: a density functional calculation.

    PubMed

    Noda, Yusuke; Ohno, Kaoru; Nakamura, Shinichiro

    2016-05-11

    Recently, manganese-oxide compounds have attracted considerable attention, in particular, as candidate materials for photochemical water-splitting reactions. Here, we investigate electronic states of pristine manganese dioxides (MnO2) in different crystal phases using spin-polarized density functional theory (DFT) with Hubbard U correction. Geometrical structures and band dispersions of α-, β-, δ-, and λ-MnO2 crystals with collinear magnetic [ferromagnetic (FM) and antiferromagnetic (AFM)] orders are discussed in detail. We reveal that penalty energies that arise by violating the Goodenough-Kanamori rule are important and the origin of the magnetic interactions of the MnO2 crystals is governed by the superexchange interactions of Mn-O-Mn groups. In addition, it is found that momentum-dependent band spin splitting occurs in the AFM α-, β-, and δ-MnO2 crystals while no spin splitting occurs in the AFM λ-MnO2 crystal. Our results show that spin-split band dispersions stem from the different orientations of Mn-centred oxygen octahedra. Such interesting electronic states of the MnO2 crystals are unraveled by our discussion on the relationship between the effective (spin-dependent) single-electron potentials and the space-group symmetry operations that map up-spin Mn atoms onto down-spin Mn atoms. This work provides a basis to understand the relationship between the spin-dependent electronic states and the crystallography of manganese oxides. Another relationship to the recent experimental observations of the photochemical oxygen evolution of MnO2 crystals is also discussed.

  15. Momentum-dependent band spin splitting in semiconducting MnO2: a density functional calculation.

    PubMed

    Noda, Yusuke; Ohno, Kaoru; Nakamura, Shinichiro

    2016-05-11

    Recently, manganese-oxide compounds have attracted considerable attention, in particular, as candidate materials for photochemical water-splitting reactions. Here, we investigate electronic states of pristine manganese dioxides (MnO2) in different crystal phases using spin-polarized density functional theory (DFT) with Hubbard U correction. Geometrical structures and band dispersions of α-, β-, δ-, and λ-MnO2 crystals with collinear magnetic [ferromagnetic (FM) and antiferromagnetic (AFM)] orders are discussed in detail. We reveal that penalty energies that arise by violating the Goodenough-Kanamori rule are important and the origin of the magnetic interactions of the MnO2 crystals is governed by the superexchange interactions of Mn-O-Mn groups. In addition, it is found that momentum-dependent band spin splitting occurs in the AFM α-, β-, and δ-MnO2 crystals while no spin splitting occurs in the AFM λ-MnO2 crystal. Our results show that spin-split band dispersions stem from the different orientations of Mn-centred oxygen octahedra. Such interesting electronic states of the MnO2 crystals are unraveled by our discussion on the relationship between the effective (spin-dependent) single-electron potentials and the space-group symmetry operations that map up-spin Mn atoms onto down-spin Mn atoms. This work provides a basis to understand the relationship between the spin-dependent electronic states and the crystallography of manganese oxides. Another relationship to the recent experimental observations of the photochemical oxygen evolution of MnO2 crystals is also discussed. PMID:27119122

  16. The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains.

    PubMed

    An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun

    2016-07-28

    Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied. PMID:27475355

  17. Magnetic field dependence of spin-forbidden electronic excitations reflects the Haldane or paramagnetic ground state

    NASA Astrophysics Data System (ADS)

    Long, V. C.; Montague, J. R.; Kozen, A. C.; Wei, X.; Landry, B. R.; Pearson, K. R.; Turnbull, M. M.; Landee, C. P.

    2007-03-01

    We compare the zero-field and magnetic field-dependent optical spectra of the Haldane chain compound NENB (Ni[en]2NO2BF4; en = C2N2H8) and the paramagnetic compound, Ni(en) 3(ClO4)2,H2O. Due to similar electronic coordination of Ni^2+, the two materials show similar zero-field d-d electronic transitions, including a spin-forbidden (SF) transition at 1.58 eV, overlapping a broad spin-allowed band at 1.45 eV. The relatively greater intensity of the SF band in the Haldane compound suggests activation by a spin exchange mechanism, whereas a spin-orbit coupling origin is likely in the paramagnet. A second narrower SF spin flip transition appears in NENB at 1.66 eV. In both compounds, the SF excitations are sensitive to applied field H. In NENB, the SF intensity is suppressed by H, consistent with behavior of spin exchange-activated bands. In Ni(en)3(ClO4)-2,H2O, the SF field sensitivity appears to combine an energy shift and intensity decrease. Details of the H dependence reflect the magnetic ground state of the material: the field sensitivity commences only above HC 10 T, in the Haldane compound, whereas the field-induced modifications begin immediately at H = 0 T in the paramagnet.

  18. The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains.

    PubMed

    An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun

    2016-07-28

    Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.

  19. The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains

    NASA Astrophysics Data System (ADS)

    An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun

    2016-07-01

    Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.

  20. The spin-dependent transport of Co-encapsulated Si nanotubes contacted with Cu electrodes

    SciTech Connect

    Guo, Yan-Dong; Yan, Xiao-Hong; Xiao, Yang

    2014-02-10

    Unlike carbon nanotubes, silicon ones are hard to form. However, they could be stabilized by metal-encapsulation. Using first-principles calculations, we investigate the spin-dependent electronic transport of Co-encapsulated Si nanotubes, which are contacted with Cu electrodes. For the finite tubes, as the tube-length increases, the transmission changes from spin-unpolarized to spin-polarized. Further analysis shows that, not only the screening of electrodes on Co's magnetism but also the spin-asymmetric Co-Co interactions are the physical mechanisms. As Cu and Si are the fundamental elements in semiconductor industry, our results may throw light on the development of silicon-based spintronic devices.

  1. Spin-dependent thermal transport perpendicular to the planes of Co/Cu multilayers

    NASA Astrophysics Data System (ADS)

    Kimling, Johannes; Wilson, R. B.; Rott, Karsten; Kimling, Judith; Reiss, Günter; Cahill, David G.

    2015-04-01

    We report measurements of the cross-plane thermal conductivity of periodic Co/Cu multilayers using time-domain thermoreflectance. The cross-plane thermal conductivity increases from ˜18 W m-1K-1 at remanence to ˜32 W m-1K-1 at saturation fields. This giant magnetothermal resistance (GMTR) effect is consistent with predictions based on the Wiedemann-Franz law. We discuss the role of a spin-dependent temperature, known as spin heat accumulation, in GMTR experiments and develop a three-temperature model capable of predicting the time evolution of the temperatures of majority-spin electrons, minority-spin electrons, and phonons subsequent to pulsed laser heating.

  2. Time- and power-dependent operation of a parametric spin-wave amplifier

    SciTech Connect

    Brächer, T.; Heussner, F.; Pirro, P.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Serga, A. A.; Hillebrands, B.

    2014-12-08

    We present the experimental observation of the localized amplification of externally excited, propagating spin waves in a transversely in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide by means of parallel pumping. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the dependency of the amplification on the applied pumping power and on the delay between the input spin-wave packet and the pumping pulse. We show that there are two different operation regimes: At large pumping powers, the spin-wave packet needs to enter the amplifier before the pumping is switched on in order to be amplified while at low powers the spin-wave packet can arrive at any time during the pumping pulse.

  3. Separation of Rashba and Dresselhaus spin-orbit interactions using crystal direction dependent transport measurements

    SciTech Connect

    Ho Park, Youn; Kim, Hyung-jun; Chang, Joonyeon; Hee Han, Suk; Eom, Jonghwa; Choi, Heon-Jin; Cheol Koo, Hyun

    2013-12-16

    The Rashba spin-orbit interaction effective field is always in the plane of the two-dimensional electron gas and perpendicular to the carrier wavevector but the direction of the Dresselhaus field depends on the crystal orientation. These two spin-orbit interaction parameters can be determined separately by measuring and analyzing the Shubnikov-de Haas oscillations for various crystal directions. In the InAs quantum well system investigated, the Dresselhaus term is just 5% of the Rashba term. The gate dependence of the oscillation patterns clearly shows that only the Rashba term is modulated by an external electric field.

  4. Ballistic spin-dependent transport of Rashba rings with multi-leads

    SciTech Connect

    Huang Guangyao; Liang Shidong

    2011-05-15

    Research Highlights: > Transmission coefficients of each outgoing lead in multi-lead mesoscopic Rashba rings. > Spin polarizations of each outgoing lead in multi-lead mesoscopic Rashba rings. > Resonant and antiresonant conditions of spin polarization in multi-lead Rashba rings. > Symmetries of conductance and spin polarization of symmetric multi-lead Rashba rings. - Abstract: Using the Landauer-Buettiker formula with the transfer matrix technique, we develop a formalism of the ballistic spin-dependent electron transport in the multi-lead Rashba rings. We give analytic formulas of the total conductance G{sub j}, spin-{sigma} conductance g{sub j}{sup {sigma}} and spin polarization P{sub j} of each outgoing lead j, and their resonant and antiresonant conditions. Analytic studying with numerical investigating Rashba rings with several symmetric and asymmetric leads, we find that G{sub j}, g{sub j}{sup {sigma}} and P{sub j} oscillate with the incoming electron energy and the spin-orbit interaction (SOI) strength, and their antiresonances depend on the incoming electron energy, the SOI strength and the outgoing-lead angle with the incoming lead. For the symmetric-lead rings, G{sub j}, g{sub j}{sup {sigma}} and P{sub j} have some symmetries, G{sub j}=G{sub N-j},g{sub j}{sup {sigma}}=g{sub N-j}{sup -{sigma}}, and P{sub j} = -P{sub N-j} for symmetric leads, j and N - j, where the angles between the symmetric outgoing leads j and N - j and the incoming lead are {gamma}{sub N-j} = 2{pi} - {gamma}{sub j}. The spin polarization of the outgoing lead with {gamma}{sub j} = {pi} is exactly zero for even-N-symmetric-lead rings. These symmetries originate from the lead symmetry and time reversal invariance. For asymmetry-lead rings these symmetries vanish.

  5. Spin-dependent recombination at arsenic donors in ion-implanted silicon

    SciTech Connect

    Franke, David P. Brandt, Martin S.; Otsuka, Manabu; Matsuoka, Takashi; Itoh, Kohei M.; Vlasenko, Leonid S.; Vlasenko, Marina P.

    2014-09-15

    Spin-dependent transport processes in thin near-surface doping regions created by low energy ion implantation of arsenic in silicon are detected by two methods, spin-dependent recombination using microwave photoconductivity and electrically detected magnetic resonance monitoring the direct current through the sample. The high sensitivity of these techniques allows the observation of the magnetic resonance, in particular, of As in weak magnetic fields and at low resonance frequencies (40–1200 MHz), where high-field-forbidden transitions between the magnetic sublevels can be observed due to the mixing of electron and nuclear spin states. Several implantation-induced defects are present in the samples studied and act as spin readout partner. We explicitly demonstrate this by electrically detected electron double resonance experiments and identify a pair recombination of close pairs formed by As donors and oxygen-vacancy centers in an excited triplet state (SL1) as the dominant spin-dependent process in As-implanted Czochralski-grown Si.

  6. Scale dependencies of proton spin constituents with a nonperturbative αs

    NASA Astrophysics Data System (ADS)

    Jia, Shaoyang; Huang, Feng

    2012-11-01

    By introducing the contribution from dynamically generated gluon mass, we present a brand new parametrized form of QCD beta function to get an inferred limited running behavior of QCD coupling constant αs. This parametrized form is regarded as an essential factor to determine the scale dependencies of the proton spin constituents at the very low scale. In order to compare with experimental results directly, we work within the gauge-invariant framework to decompose the proton spin. Utilizing the updated next-to-next-leading-order evolution equations for angular momentum observables within a modified minimal subtraction scheme, we indicate that gluon contribution to proton spin cannot be ignored. Specifically, by assuming asymptotic limits of the total quark/gluon angular momentum valid, respectively, the scale dependencies of quark angular momentum Jq and gluon angular momentum Jg down to Q2˜1GeV2 are presented, which are comparable with the preliminary analysis of deeply virtual Compton scattering experiments by HERMES and JLab. After solving scale dependencies of quark spin ΔΣq, orbital angular momenta of quarks Lq are given by subtraction, presenting a holistic picture of proton spin partition within up and down quarks at a low scale.

  7. Electron density dependence of the spin Hall effect in GaAs probed by scanning Kerr rotation microscopy

    NASA Astrophysics Data System (ADS)

    Matsuzaka, S.; Ohno, Y.; Ohno, H.

    2009-12-01

    We studied electron density (n) dependence of the extrinsic spin Hall effect in n -doped GaAs with n raging from 1.8×1016 to 3.3×1017cm-3 . By scanning Kerr microscopy measurements, we observed spin accumulation near the channel edges in all the samples due to the extrinsic spin Hall effect. The spin Hall conductivity σSH is obtained for each sample by comparing the Kerr rotation induced by optically injected spins. σSH is found to increase with n , and it is shown that a theoretical model reported earlier agrees well with the experimental n dependence of σSH .

  8. Temperature dependence of the electron spin g factor in CdTe and InP

    NASA Astrophysics Data System (ADS)

    Pfeffer, Pawel; Zawadzki, Wlodek

    2012-04-01

    Temperature dependence of the electron spin g factors in bulk CdTe and InP is calculated and compared with experiment. It is assumed that the only modification of the band structure related to temperature is a dilatation change in the fundamental energy gap. The dilatation changes of fundamental gaps are calculated for both materials using available experimental data. Computations of the band structures in the presence of a magnetic field are carried out employing five-level P.p model appropriate for medium-gap semiconductors. In particular, the model takes into account spin splitting due to bulk inversion asymmetry (BIA) of the materials. The resulting theoretical effective masses and g factors increase with electron energy due to band nonparabolicity. Average g values are calculated by summing over populated Landau and spin levels properly accounting for the thermal distribution of electrons in the band. It is shown that the spin splitting due to BIA in the presence of a magnetic field gives observable contributions to g values. Our calculations are in good agreement with experiments in the temperature range of 0 K to 300 K for CdTe and 0 K to 180 K for InP. The temperature dependence of g is stronger in CdTe than in InP due to different signs of band-edge g values in the two materials. Good agreement between the theory and experiments strongly indicates that the temperature dependence of spin g factors is correctly explained. In addition, we discuss formulas for the energy dependence of spin g factor due to band nonparabolicity, which are liable to misinterpretation.

  9. In vitro embryo development and blastocyst hatching rates following vitrification of river buffalo embryos produced from oocytes recovered from slaughterhouse ovaries or live animals by ovum pick-up.

    PubMed

    Manjunatha, B M; Gupta, P S P; Ravindra, J P; Devaraj, M; Nandi, S

    2008-03-01

    The present study was undertaken to determine whether the source of oocytes (ovum pick up versus slaughterhouse ovaries) affected in vitro embryo production and embryo survival (as measured by blastocyst hatching rates) following vitrification in buffaloes (Bubalus bubalis). Oocytes recovered from live buffaloes (n=6) by ovum pick up (OPU) and by manual aspiration from slaughterhouse ovaries were in vitro matured, fertilized and cultured to blastocyst stage under same culture conditions. Vitrification of blastocysts was carried out in two steps at 24 degrees C. Embryos were equilibrated in 10% EG+10% DMSO+0.3 M sucrose in base medium for 4 min. Subsequently, the embryos were transferred into 25% EG+25% DMSO+0.3 M sucrose in base medium for 45 s and then the embryos were loaded into straws and immersed in liquid nitrogen. Following warming, blastocysts were cultured in vitro for 48 h to assess hatching. Oocytes derived from live animals by OPU resulted in a significantly higher blastocyst yield then those derived from slaughterhouse ovaries (30.6+/-4.3 versus 18.5+/-1.8). Blastocyst hatching rates following vitrification of buffalo embryos produced from the oocytes collected from live animals by OPU was significantly higher than the oocytes collected from slaughterhouse ovaries (52.8+/-4.2 versus 40.2+/-4.4). In conclusion, the present study showed that source of oocytes (OPU versus slaughterhouse ovaries) affects the in vitro embryo development and blastocyst hatching rates following vitrification of embryos in buffaloes.

  10. Electric dipole spin resonance in systems with a valley-dependent g factor

    NASA Astrophysics Data System (ADS)

    Rančić, Marko J.; Burkard, Guido

    2016-05-01

    In this theoretical study we qualitatively and quantitatively investigate the electric dipole spin resonance (EDSR) in a single Si/SiGe quantum dot in the presence of a magnetic field gradient, e.g., produced by a ferromagnet. We model a situation in which the control of electron spin states is achieved by applying an oscillatory electric field, inducing real-space oscillations of the electron inside the quantum dot. One of the goals of our study is to present a microscopic theory of valley-dependent g factors in Si/SiGe quantum dots and investigate how valley relaxation combined with a valley-dependent g factor leads to a novel electron spin dephasing mechanism. Furthermore, we discuss the interplay of spin and valley relaxations in Si/SiGe quantum dots. Our findings suggest that the electron spin dephases due to valley relaxation, and are in agreement with recent experimental studies [Nat. Nanotechnol. 9, 666 (2014), 10.1038/nnano.2014.153].

  11. The spin-dependent neutralino-nucleus form factor for {sup 127}I

    SciTech Connect

    Ressell, M.T.; Dean, D.J.

    1996-12-01

    We present the results of detailed shell model calculations of the spin-dependent elastic form factor for the nucleus {sup 127}I. the calculations were performed in extremely large model spaces which adequately describe the configuration mixing in this nucleus. Good agreement between the calculated and experimental values of the magnetic moment are found. Other nuclear observables are also compared to experiment. The dependence of the form factor upon the model space and effective interaction is discussed.

  12. Current dependence of spin torque switching rate based on Fokker-Planck approach

    SciTech Connect

    Taniguchi, Tomohiro Imamura, Hiroshi

    2014-05-07

    The spin torque switching rate of an in-plane magnetized system in the presence of an applied field is derived by solving the Fokker-Planck equation. It is found that three scaling currents are necessary to describe the current dependence of the switching rate in the low-current limit. The dependences of these scaling currents on the applied field strength are also studied.

  13. A NEW METHOD FOR EXTRACTING SPIN-DEPENDENT NEUTRON STRUCTURE FUNCTIONS FROM NUCLEAR DATA

    SciTech Connect

    Kahn, Y.F.; Melnitchouk, W.

    2009-01-01

    High-energy electrons are currently the best probes of the internal structure of nucleons (protons and neutrons). By collecting data on electrons scattering off light nuclei, such as deuterium and helium, one can extract structure functions (SFs), which encode information about the quarks that make up the nucleon. Spin-dependent SFs, which depend on the relative polarization of the electron beam and the target nucleus, encode quark spins. Proton SFs can be measured directly from electron-proton scattering, but those of the neutron must be extracted from proton data and deuterium or helium-3 data because free neutron targets do not exist. At present, there is no reliable method for accurately determining spin-dependent neutron SFs in the low-momentum-transfer regime, where nucleon resonances are prominent and the functions are not smooth. The focus of this study was to develop a new method for extracting spin-dependent neutron SFs from nuclear data. An approximate convolution formula for nuclear SFs reduces the problem to an integral equation, for which a recursive solution method was designed. The method was then applied to recent data from proton and deuterium scattering experiments to perform a preliminary extraction of spin-dependent neutron SFs in the resonance region. The extraction method was found to reliably converge for arbitrary test functions, and the validity of the extraction from data was verifi ed using a Bjorken integral, which relates integrals of SFs to a known quantity. This new information on neutron structure could be used to assess quark-hadron duality for the neutron, which requires detailed knowledge of SFs in all kinematic regimes.

  14. Spin-Fluctuation Mechanism of Anomalous Temperature Dependence of Magnetocrystalline Anisotropy in Itinerant Magnets.

    PubMed

    Zhuravlev, I A; Antropov, V P; Belashchenko, K D

    2015-11-20

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe_{1-x}Co_{x})_{2}B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit "hot spots" by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization due to these peculiar electronic mechanisms, which contrast starkly with those assumed in existing models. PMID:26636868

  15. Angular dependence of the spin textures in two-dimensional chiral magnets

    SciTech Connect

    Tang, Dan; Qi, Yang

    2015-05-28

    The angular dependence of spin textures in thin helimagnetic films is investigated by a Monte Carlo simulation. When an external field is applied at an angle relative to the film normal, we find that the skyrmion states with broken axis-symmetric structure are able to persist over a wide range of angles by changing the spin orientation. In addition, the uniaxial anisotropy is able to stabilize the distorted skyrmions. This behavior reflects the robust topological stability of skyrmion states in helimagnets and favors their application in spintronic devices.

  16. Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets

    DOE PAGES

    Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.

    2015-11-16

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1–xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization. These peculiar electronic mechanisms are in stark contrast to the assumptions of the existing models.

  17. Spin-Fluctuation Mechanism of Anomalous Temperature Dependence of Magnetocrystalline Anisotropy in Itinerant Magnets.

    PubMed

    Zhuravlev, I A; Antropov, V P; Belashchenko, K D

    2015-11-20

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe_{1-x}Co_{x})_{2}B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit "hot spots" by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization due to these peculiar electronic mechanisms, which contrast starkly with those assumed in existing models.

  18. Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets

    SciTech Connect

    Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.

    2015-11-16

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1–xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization. These peculiar electronic mechanisms are in stark contrast to the assumptions of the existing models.

  19. {sup 3}He Spin-Dependent Cross Sections and Sum Rules

    SciTech Connect

    Slifer, K.; Auerbach, L.; Choi, Seonho; Incerti, S.; Lakuriqi, E.; Meziani, Z.-E.; Amarian, M.; Ketikyan, A.; Voskanian, H.; Averett, T.; Berthot, J.; Bertin, P.; DiSalvo, R.; Fonvieille, H.; Laveissiere, G.; Roblin, Y.

    2008-07-11

    We present a measurement of the spin-dependent cross sections for the {sup 3}He-vector (e-vector,e{sup '})X reaction in the quasielastic and resonance regions at a four-momentum transfer 0.1{<=}Q{sup 2}{<=}0.9 GeV{sup 2}. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt-Cottingham and extended Gerasimov-Drell-Hearn sum rules for the first time. The data are also compared to an impulse approximation calculation and an exact three-body Faddeev calculation in the quasielastic region.

  20. Phenomenological analysis of the nucleon spin contents and their scale dependence

    SciTech Connect

    Wakamatsu, M.; Nakakoji, Y.

    2008-04-01

    In the past few years, a great deal of evidence has accumulated which indicates that the gluon polarization inside the nucleon is likely to be small at least at the low renormalization scales. On the other hand, the recent lattice QCD analyses suggest that the net orbital angular momentum carried by the quarks is nearly zero. There is also some indication, noted by Brodsky and Gardner based on the COMPASS observation of small single-spin asymmetry on the isoscalar deuteron target, that the gluon orbital angular momentum inside the nucleon is likely to be small. Naively combining all these observations, we are led to a rather embarrassing conclusion that the nucleon constituents altogether do not carry an adequate amount of angular momentum saturating the total nucleon spin. We show that this somewhat confused state of affairs can be cleared up only by paying careful attention to the scale dependencies of the nucleon spin decomposition.

  1. Spin dependent transport in diluted magnetic semiconductor/superconductor tunnel junctions

    NASA Astrophysics Data System (ADS)

    Shokri, A. A.; Negarestani, S.

    2014-12-01

    A modification of Blonder-Tinkham-Klapwijk (BTK) model is proposed to describe transport properties of diluted magnetic semiconductor (DMS)/superconductor(SC)/DMS double tunneling junctions. Coherent spin-polarized transport is studied by taking into account the Andreev reflection on spatial variation of SC barrier parameters in the heterostructure. It is shown that the conductance spectrum exhibits an oscillatory behavior with quasi-particle energy, and the oscillation amplitude is reduced with increasing temperature. We also examine the dependence of tunneling magnetoresistance (TMR) on the barrier strength (κ) and spin polarization (P) of two DMS layers. Our results show that TMR decreases with increasing temperature and barrier strength, which may be useful in designing the nano spin-valve devices based on DMS and SC materials.

  2. Ultrafast demagnetization, spin-dependent Seebeck effect, and thermal spin transfer torque in Pt/TbFe/Cu and Pt/TbFe/Cu/Fe thin films

    NASA Astrophysics Data System (ADS)

    Kimling, Johannes; Hebler, Birgit; Kimling, Judith; Albrecht, Manfred; Cahill, David G.

    We investigate diffusive spin currents in Pt(20nm)/TbFe(10nm)/Cu(100nm) and Pt(20 nm)/TbFe(10nm)/ Cu(100nm)/Fe(3nm) stacks using time-resolved magneto-optic Kerr effect (TRMOKE) and time-domain thermoreflectance measurements. Our experiments are based on two hypothesis: (1) fast changes of magnetization due to laser excitation are transferred into spin accumulation, e.g., via electron-magnon scattering; the generated spin accumulation drives a diffusive spin current into adjacent normal metal layers; (2) electronic thermal transport through the ferromagnetic layer injects a spin current into adjacent normal metal layers, based on the spin-dependent Seebeck effect. We excite the Pt layer with ps-laser pulses. Resulting diffusive spin currents generate nonequilibrium magnetization in the Cu layer (sample I) and induce a precession of the magnetization of the Fe layer via spin transfer torque (sample II). Both responses are probed using TRMOKE. Prior experiments used [Co(0.2nm)/Pt(0.4nm)]x5/Co(0.2nm) instead of TbFe. The ferrimagnetic TbFe layer with introduces two major modifications: (1) slow demagnetization behavior, and (2) large thermal resistance. Hence, thermal spin transfer torques can be observed on significantly longer time scales. Financial support by the German Research Foundation under DFG-Grant No. KI 1893/1-1 and DFG-Grant No. AL 618/21-1 are kindly acknowledged.

  3. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Sakano, M.; Zhang, Y. J.; Akashi, R.; Morikawa, D.; Harasawa, A.; Yaji, K.; Kuroda, K.; Miyamoto, K.; Okuda, T.; Ishizaka, K.; Arita, R.; Iwasa, Y.

    2014-08-01

    The valley degree of freedom of electrons is attracting growing interest as a carrier of information in various materials, including graphene, diamond and monolayer transition-metal dichalcogenides. The monolayer transition-metal dichalcogenides are semiconducting and are unique due to the coupling between the spin and valley degrees of freedom originating from the relativistic spin-orbit interaction. Here, we report the direct observation of valley-dependent out-of-plane spin polarization in an archetypal transition-metal dichalcogenide—MoS2—using spin- and angle-resolved photoemission spectroscopy. The result is in fair agreement with a first-principles theoretical prediction. This was made possible by choosing a 3R polytype crystal, which has a non-centrosymmetric structure, rather than the conventional centrosymmetric 2H form. We also confirm robust valley polarization in the 3R form by means of circularly polarized photoluminescence spectroscopy. Non-centrosymmetric transition-metal dichalcogenide crystals may provide a firm basis for the development of magnetic and electric manipulation of spin/valley degrees of freedom.

  4. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones.

    PubMed

    Lammer, Helmut; Lichtenegger, Herbert I M; Kulikov, Yuri N; Griessmeier, Jean-Mathias; Terada, N; Erkaev, Nikolai V; Biernat, Helfried K; Khodachenko, Maxim L; Ribas, Ignasi; Penz, Thomas; Selsis, Franck

    2007-02-01

    Atmospheric erosion of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wave-lengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 microm band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O ion pick up at orbital distances

  5. Spin-dependent Seebeck Effect, Thermal Colossal Magnetoresistance and Negative Differential Thermoelectric Resistance in Zigzag Silicene Nanoribbon Heterojunciton

    PubMed Central

    Fu, Hua-Hua; Wu, Dan-Dan; Zhang, Zu-Quan; Gu, Lei

    2015-01-01

    Spin-dependent Seebeck effect (SDSE) is one of hot topics in spin caloritronics, which examine the relationships between spin and heat transport in materials. Meanwhile, it is still a huge challenge to obtain thermally induced spin current nearly without thermal electron current. Here, we construct a hydrogen-terminated zigzag silicene nanoribbon heterojunction, and find that by applying a temperature difference between the source and the drain, spin-up and spin-down currents are generated and flow in opposite directions with nearly equal magnitudes, indicating that the thermal spin current dominates the carrier transport while the thermal electron current is much suppressed. By modulating the temperature, a pure thermal spin current can be achieved. Moreover, a thermoelectric rectifier and a negative differential thermoelectric resistance can be obtained in the thermal electron current. Through the analysis of the spin-dependent transport characteristics, a phase diagram containing various spin caloritronic phenomena is provided. In addition, a thermal magnetoresistance, which can reach infinity, is also obtained. Our results put forward an effective route to obtain a spin caloritronic material which can be applied in future low-power-consumption technology. PMID:26000658

  6. Growth-temperature dependence of optical spin-injection dynamics in self-assembled InGaAs quantum dots

    SciTech Connect

    Yamamura, Takafumi; Kiba, Takayuki; Yang, Xiaojie; Takayama, Junichi; Subagyo, Agus; Sueoka, Kazuhisa; Murayama, Akihiro

    2014-09-07

    The growth-temperature dependence of the optical spin-injection dynamics in self-assembled quantum dots (QDs) of In{sub 0.5}Ga{sub 0.5}As was studied by increasing the sheet density of the dots from 2 × 10{sup 10} to 7 × 10{sup 10} cm{sup −2} and reducing their size through a decrease in growth temperature from 500 to 470 °C. The circularly polarized transient photoluminescence (PL) of the resulting QD ensembles was analyzed after optical excitation of spin-polarized carriers in GaAs barriers by using rate equations that take into account spin-injection dynamics such as spin-injection time, spin relaxation during injection, spin-dependent state-filling, and subsequent spin relaxation. The excitation-power dependence of the transient circular polarization of PL in the QDs, which is sensitive to the state-filling effect, was also examined. It was found that a systematic increase occurs in the degree of circular polarization of PL with decreasing growth temperature, which reflects the transient polarization of exciton spin after spin injection. This is attributed to strong suppression of the filling effect for the majority-spin states as the dot-density of the QDs increases.

  7. Evaluation of the forward Compton scattering off protons. II. Spin-dependent amplitude and observables

    NASA Astrophysics Data System (ADS)

    Gryniuk, Oleksii; Hagelstein, Franziska; Pascalutsa, Vladimir

    2016-08-01

    The forward Compton scattering off the proton is determined by substituting the empirical total photoabsorption cross sections into dispersive sum rules. In addition to the spin-independent amplitude evaluated previously [Phys. Rev. D 92, 074031 (2015)], we obtain the spin-dependent amplitude over a broad energy range. The two amplitudes contain all the information about the forward CS process and we hence can reconstruct the observables. The results are compared with predictions of chiral perturbation theory where available. The low-energy expansion of the spin-dependent Compton scattering amplitude yields the Gerasimov-Drell-Hearn (GDH) sum rule and relations for the forward spin polarizabilities (FSPs) of the proton. Our evaluation provides an empirical verification of the GDH sum rule for the proton and yields empirical values of the proton FSPs. For the GDH integral, we obtain 204.5 (21.4 ) μ b , in agreement with the sum rule prediction: 204.784481 (4 ) μ b . For the FSPs, we obtain γ0=-92.9 (10.5 )×10-6 fm4 and γ0¯=48.4 (8.2 )×10-6 fm6, improving on the accuracy of previous evaluations.

  8. Spin-Dependent Studies of the Dynamics of He+ Ion Neutralization at Surfaces

    NASA Astrophysics Data System (ADS)

    Lancaster, J. C.; Kontur, F. J.; Nordlander, P.; Walters, G. K.; Dunning, F. B.

    2001-05-01

    Spin-labelling techniques, specifically the use of electron-spin-polarized ^4He^+ ions coupled with energy-resolved measurements of the ejected electron polarization, are used to study the dynamics of He^+ neutralization at surfaces. The He^+ ions are produced by Penning ionization in collisions between polarized He(2^3S) metastable atoms contained in a weak rf-excited discharge. Studies of Cu(100), Au(100), Al(100) and sub-monolayer alkali-covered Al(100) surfaces are underway to investigate the role of surface electronic structure, work function and adsorbate coverage in determining the neutralization dynamics. The data for clean surfaces display the same general behavior and reveal a marked correlation in the spins of the electrons involved in Auger neutralization of the He^+ ions. A pronounced energy dependence in the ejected electron polarization also is observed. These results are explained by model calculations which show the presence of the (polarized) He^+ ion leads to strong, spin-dependent perturbations in the local surface electronic structure. Quite different behavior is observed at alkali-covered surfaces, and further work is underway to identify the underlying dynamics.

  9. Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice

    SciTech Connect

    Li, Yuan Liu, Yu; Zhu, Laipan; Qin, Xudong; Wu, Qing; Huang, Wei; Chen, Yonghai; Niu, Zhichuan; Xiang, Wei; Hao, Hongyue

    2015-05-11

    In this letter, we investigated the spin polarized photocurrents excited by mid-infrared radiation and near-infrared radiation, respectively, in InAs/GaSb type II superlattices with different kinds of interfaces. By periodically varying the polarization state of the radiation, we analyzed Rashba-type and Dresselhaus-type spin polarized photocurrents, which present different features depending on the interface types and excitation conditions. Under mid-infrared excitation, the ratio of Rashba-type and Dresselhaus-type spin polarized photocurrents of the superlattice with InSb-like interface is obviously larger than that of the superlattice with GaAs-like interface, the ratio of the superlattice with alternate interface is in the middle. Whereas under near-infrared excitation, the ratios of the three superlattices are nearly the same. Further researches reveal the synactic effects of interface dependent strain and asymmetric interface potential on the spin splitting. Besides, the polarized Raman spectroscopies of these structures were also analyzed.

  10. Length dependence of rectification in organic co-oligomer spin rectifiers

    NASA Astrophysics Data System (ADS)

    Gui-Chao, Hu; Zhao, Zhang; Ying, Li; Jun-Feng, Ren; Chuan-Kui, Wang

    2016-05-01

    The rectification ratio of organic magnetic co-oligomer diodes is investigated theoretically by changing the molecular length. The results reveal two distinct length dependences of the rectification ratio: for a short molecular diode, the charge-current rectification changes little with the increase of molecular length, while the spin-current rectification is weakened sharply by the length; for a long molecular diode, both the charge-current and spin-current rectification ratios increase quickly with the length. The two kinds of dependence switch at a specific length accompanied with an inversion of the rectifying direction. The molecular ortibals and spin-resolved transmission analysis indicate that the dominant mechanism of rectification suffers a change at this specific length, that is, from asymmetric shift of molecular eigenlevels to asymmetric spatial localization of wave functions upon the reversal of bias. This work demonstrates a feasible way to control the rectification in organic co-oligomer spin diodes by adjusting the molecular length. Project supported by the National Natural Science Foundation of China (Grant No. 11374195), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM017), the Taishan Scholar Project of Shandong Province, China, and the Excellent Young Scholars Research Fund of Shandong Normal University, China.

  11. Spin-dependent transport for armchair-edge graphene nanoribbons between ferromagnetic leads.

    PubMed

    Zhou, Benhu; Chen, Xiongwen; Zhou, Benliang; Ding, Kai-He; Zhou, Guanghui

    2011-04-01

    We theoretically investigate the spin-dependent transport for the system of an armchair-edge graphene nanoribbon (AGNR) between two ferromagnetic (FM) leads with arbitrary polarization directions at low temperatures, where a magnetic insulator is deposited on the AGNR to induce an exchange splitting between spin-up and -down carriers. By using the standard nonequilibrium Green's function (NGF) technique, it is demonstrated that the spin-resolved transport property for the system depends sensitively on both the width of AGNR and the polarization strength of FM leads. The tunneling magnetoresistance (TMR) around zero bias voltage possesses a pronounced plateau structure for a system with semiconducting 7-AGNR or metallic 8-AGNR in the absence of exchange splitting, but this plateau structure for the 8-AGNR system is remarkably broader than that for the 7-AGNR one. Interestingly, an increase of the exchange splitting Δ suppresses the amplitude of the structure for the 7-AGNR system. However, the TMR is much enhanced for the 8-AGNR system under a bias amplitude comparable to the splitting strength. Further, the current-induced spin-transfer torque (STT) for the 7-AGNR system is systematically larger than that for the 8-AGNR one. The findings here suggest the design of GNR-based spintronic devices by using a metallic AGNR, but it is more favorable to fabricate a current-controlled magnetic memory element by using a semiconducting AGNR.

  12. Spin-dependent electron scattering at graphene edges on Ni(111).

    PubMed

    Garcia-Lekue, A; Balashov, T; Olle, M; Ceballos, G; Arnau, A; Gambardella, P; Sanchez-Portal, D; Mugarza, A

    2014-02-14

    We investigate the scattering of surface electrons by the edges of graphene islands grown on Ni(111). By combining local tunneling spectroscopy and ab initio electronic structure calculations we find that the hybridization between graphene and Ni states results in strongly reflecting graphene edges. Quantum interference patterns formed around the islands reveal a spin-dependent scattering of the Shockley bands of Ni, which we attribute to their distinct coupling to bulk states. Moreover, we find a strong dependence of the scattering amplitude on the atomic structure of the edges, depending on the orbital character and energy of the surface states.

  13. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    SciTech Connect

    Kanaki, Toshiki Asahara, Hirokatsu; Ohya, Shinobu Tanaka, Masaaki

    2015-12-14

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.

  14. Edge contact dependent spin transport for n-type doping zigzag-graphene with asymmetric edge hydrogenation.

    PubMed

    Deng, Xiaoqing; Zhang, Zhenhua; Tang, Guiping; Fan, Zhiqiang; Zhu, Huali; Yang, Changhu

    2014-01-01

    Spin transport features of the n-type doping zigzag graphene nanoribbons (ZGNRs) with an edge contact are investigated by first principle methods, where ZGNRs are C-H2 bonded at one edge while C-H bonded at the other to form an asymmetric edge hydrogenation. The results show that a perfect spin filtering effect (100%) in such ZGNR nanojunctions can be achieved in a very large bias region for the unchanged spin states regardless of bias polarities, and the nanojunction with a contact of two C-H2 bonded edges has larger spin polarized current than that with a contact of two C-H bonded edges. The transmission pathways and the projected density of states (PDOS) demonstrate that the edge of C-H2 bonds play a crucial role for the spin magnetism and spin-dependent transport properties. Moreover, the negative differential resistance (NDR) effect is also observed in the spin-polarized current.

  15. Edge contact dependent spin transport for n-type doping zigzag-graphene with asymmetric edge hydrogenation

    PubMed Central

    Deng, Xiaoqing; Zhang, Zhenhua; Tang, Guiping; Fan, Zhiqiang; Zhu, Huali; Yang, Changhu

    2014-01-01

    Spin transport features of the n-type doping zigzag graphene nanoribbons (ZGNRs) with an edge contact are investigated by first principle methods, where ZGNRs are C–H2 bonded at one edge while C–H bonded at the other to form an asymmetric edge hydrogenation. The results show that a perfect spin filtering effect (100%) in such ZGNR nanojunctions can be achieved in a very large bias region for the unchanged spin states regardless of bias polarities, and the nanojunction with a contact of two C–H2 bonded edges has larger spin polarized current than that with a contact of two C–H bonded edges. The transmission pathways and the projected density of states (PDOS) demonstrate that the edge of C-H2 bonds play a crucial role for the spin magnetism and spin-dependent transport properties. Moreover, the negative differential resistance (NDR) effect is also observed in the spin-polarized current. PMID:24509476

  16. Turbulent pick-up of new-born ions near Venus and Mars and problems of numerical modelling of the solar wind interaction with these planets. I - Features of the solar wind interaction with planets

    NASA Astrophysics Data System (ADS)

    Breus, T. K.; Krymskii, A. M.

    1992-01-01

    This paper deals with mass-loading near Venus. It is shown that heavy ions born upstream of the Venusian shockfront do not significantly change the solar wind (SW) parameters (in particular, Mach number). In the Venusian magnetosheath, the number of heavy ions undergoing acceleration in the large-scale field, which can be the source of the asymmetry and nonhydrodynamic properties of the plasma, is a few percent of the total ion flux from the dayside to the downstream mantle. The most intensive mass-loading of the SW flow is near the ionopause. Pick-up instabilities are possible there and plasma with two ion species will have hydrodynamic features due to turbulence resulting from instabilities.

  17. Rashba-type spin-orbit coupling in bilayer Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Su, S.-W.; Gou, S.-C.; Sun, Q.; Wen, L.; Liu, W.-M.; Ji, A.-C.; Ruseckas, J.; Juzeliūnas, G.

    2016-05-01

    We explore a way of producing the Rashba spin-orbit coupling (SOC) for ultracold atoms by using a two-component (spinor) atomic Bose-Einstein condensate (BEC) confined in a bilayer geometry. The SOC of the Rashba type is created if the atoms pick up a π phase after completing a cyclic transition between four combined spin-layer states composed of two spin and two layer states. The cyclic coupling of the spin-layer states is carried out by combining an intralayer Raman coupling and an interlayer laser assisted tunneling. We theoretically determine the ground-state phases of the spin-orbit-coupled BEC for various strengths of the atom-atom interaction and the laser-assisted coupling. It is shown that the bilayer scheme provides a diverse ground-state phase diagram. In an intermediate range of the atom-light coupling two interlacing lattices of half-skyrmions and half-antiskyrmions are spontaneously created. In the strong-coupling regime, where the SOC of the Rashba type is formed, the ground state represents plane-wave or standing-wave phases depending on the interaction between the atoms. A variational analysis is shown to be in good agreement with the numerical results.

  18. Impact of hadronic and nuclear corrections on global analysis of spin-dependent parton distributions

    SciTech Connect

    Jimenez-Delgado, Pedro; Accardi, Alberto; Melnitchouk, Wally

    2014-02-01

    We present the first results of a new global next-to-leading order analysis of spin-dependent parton distribution functions from the most recent world data on inclusive polarized deep-inelastic scattering, focusing in particular on the large-x and low-Q^2 regions. By directly fitting polarization asymmetries we eliminate biases introduced by using polarized structure function data extracted under nonuniform assumptions for the unpolarized structure functions. For analysis of the large-x data we implement nuclear smearing corrections for deuterium and 3He nuclei, and systematically include target mass and higher twist corrections to the g_1 and g_2 structure functions at low Q^2. We also explore the effects of Q^2 and W^2 cuts in the data sets, and the potential impact of future data on the behavior of the spin-dependent parton distributions at large x.

  19. LETTER TO THE EDITOR: The temperature dependence of the spin - Peierls energy gap in ?

    NASA Astrophysics Data System (ADS)

    Lussier, J.-G.; Coad, S. M.; McMorrow, D. F.; McK Paul, D.

    1996-01-01

    We have studied the temperature dependence of the spin - Peierls (SP) energy gap in a single crystal of 0953-8984/8/4/003/img8 using cold neutrons. Our measurements enable us to examine the scaling relationship between the magnitude of the SP gap and the intensity of the structural superlattice peak in the vicinity of the transition temperature (0953-8984/8/4/003/img9). We also discuss our data in the context of recent numerical calculations for which different scaling laws are obtained depending on the magnitude of the intrachain next-nearest-neighbour interaction in a Heisenberg spin-chain Hamiltonian. The consequence of two-dimensional correlations and the possible existence above 0953-8984/8/4/003/img9 of a second low-lying energy gap due to frustration are considered.

  20. Spin-dependent direct gap emission in tensile-strained Ge films on Si substrates

    NASA Astrophysics Data System (ADS)

    Vitiello, E.; Virgilio, M.; Giorgioni, A.; Frigerio, J.; Gatti, E.; De Cesari, S.; Bonera, E.; Grilli, E.; Isella, G.; Pezzoli, F.

    2015-11-01

    The circular polarization of direct gap emission of Ge is studied in optically excited tensile-strained Ge-on-Si heterostructures as a function of doping and temperature. Owing to the spin-dependent optical selection rules, the radiative recombinations involving strain-split light (c Γ -LH ) and heavy hole (c Γ -HH ) bands are unambiguously resolved. The fundamental c Γ -LH transition is found to have a low temperature circular polarization degree of about 85%, despite an off-resonance excitation of more than 300 meV. By photoluminescence (PL) measurements and tight-binding calculations we show that this exceptionally high value is due to the characteristic energy dependence of the optically induced electron spin population. Finally, our observation of a direct gap doublet clarifies that the light hole contribution, previously considered to be negligible, can dominate the room temperature PL even at low tensile strain values of ≈0.2 % .

  1. Temperature dependence of spin pumping and Gilbert damping in thin Co/Pt bilayers.

    PubMed

    Verhagen, T G A; Tinkey, H N; Overweg, H C; van Son, M; Huber, M; van Ruitenbeek, J M; Aarts, J

    2016-02-10

    We report on the temperature dependence of the spin-pumping effect and the Gilbert damping in Co/Pt bilayers grown on Silicon oxide by measuring the change of the linewidth in a ferromagnetic resonance (FMR) experiment. By varying the Co thickness d(Co) between 1.5 nm and 50 nm we find that the damping increases inversely proportional to d(Co) at all temperatures between 300 K and 5 K, showing that the spin pumping effect does not depend on temperature. We also find that the linewidth increases with decreasing temperature for all thicknesses down to about 30 K, before leveling off to a constant, or even decreasing again. This behavior is similar to what is found in bulk ferromagnets, leading to the conclusion that in thin films a conductivity-like damping mechanism is present similar to what is known in crystals. PMID:26759959

  2. Temperature dependence of spin pumping and Gilbert damping in thin Co/Pt bilayers

    NASA Astrophysics Data System (ADS)

    Verhagen, T. G. A.; Tinkey, H. N.; Overweg, H. C.; van Son, M.; Huber, M.; van Ruitenbeek, J. M.; Aarts, J.

    2016-02-01

    We report on the temperature dependence of the spin-pumping effect and the Gilbert damping in Co/Pt bilayers grown on Silicon oxide by measuring the change of the linewidth in a ferromagnetic resonance (FMR) experiment. By varying the Co thickness {{d}\\text{Co}} between 1.5 nm and 50 nm we find that the damping increases inversely proportional to {{d}\\text{Co}} at all temperatures between 300 K and 5 K, showing that the spin pumping effect does not depend on temperature. We also find that the linewidth increases with decreasing temperature for all thicknesses down to about 30 K, before leveling off to a constant, or even decreasing again. This behavior is similar to what is found in bulk ferromagnets, leading to the conclusion that in thin films a conductivity-like damping mechanism is present similar to what is known in crystals.

  3. Reevaluation of spin-dependent WIMP-proton interactions as an explanation of the DAMA data

    SciTech Connect

    Nobile, Eugenio Del; Gelmini, Graciela B.; Georgescu, Andreea; Huh, Ji-Haeng

    2015-08-25

    We reexamine the interpretation of the annual modulation signal observed by the DAMA experiment as due to WIMPs with a spin-dependent coupling mostly to protons. We consider both axial-vector and pseudo-scalar couplings, and elastic as well as endothermic and exothermic inelastic scattering. We conclude that the DAMA signal is in strong tension with null results of other direct detection experiments, particularly PICASSO and KIMS.

  4. Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study.

    PubMed

    Pravdivtsev, Andrey N; Ivanov, Konstantin L; Yurkovskaya, Alexandra V; Petrov, Pavel A; Limbach, Hans-Heinrich; Kaptein, Robert; Vieth, Hans-Martin

    2015-12-01

    We have investigated the magnetic field dependence of Signal Amplification By Reversible Exchange (SABRE) arising from binding of para-hydrogen (p-H2) and a substrate to a suitable transition metal complex. The magnetic field dependence of the amplification of the (1)H Nuclear Magnetic Resonance (NMR) signals of the released substrates and dihydrogen, and the transient transition metal dihydride species shows characteristic patterns, which is explained using the theory presented here. The generation of SABRE is most efficient at low magnetic fields due to coherent spin mixing at nuclear spin Level Anti-Crossings (LACs) in the SABRE complexes. We studied two Ir-complexes and have shown that the presence of a (31)P atom in the SABRE complex doubles the number of LACs and, consequently, the number of peaks in the SABRE field dependence. Interestingly, the polarization of SABRE substrates is always accompanied by the para-to-ortho conversion in dihydride species that results in enhancement of the NMR signal of free (H2) and catalyst-bound H2 (Ir-HH). The field dependences of hyperpolarized H2 and Ir-HH by means of SABRE are studied here, for the first time, in detail. The field dependences depend on the chemical shifts and coupling constants of Ir-HH, in which the polarization transfer takes place. A negative coupling constant of -7Hz between the two chemically equivalent but magnetically inequivalent hydride nuclei is determined, which indicates that Ir-HH is a dihydride with an HH distance larger than 2Å. Finally, the field dependence of SABRE at high fields as found earlier has been investigated and attributed to polarization transfer to the substrate by cross-relaxation. The present study provides further evidence for the key role of LACs in the formation of SABRE-derived polarization. Understanding the spin dynamics behind the SABRE method opens the way to optimizing its performance and overcoming the main limitation of NMR, its notoriously low sensitivity.

  5. Spin-dependent intravalley and intervalley electron-phonon scatterings in germanium

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Nestoklon, M. O.; Cheng, J. L.; Ivchenko, E. L.; Wu, M. W.

    2013-08-01

    The spin-dependent electron-phonon scattering in the L and Γ valleys of germanium crystals has been investigated theoretically. For this purpose, the 16 × 16 k · p Hamiltonian correctly describing the electron dispersion in the vicinity of the L point of the Brillouin zone in germanium in the lowest conduction bands and the highest valence bands has been constructed. This Hamiltonian facilitates the analysis of the spin-dependent properties of conduction electrons. Then, the electron scatterings by phonons in the L and Γ valleys, i.e., intra- L valley, intra-Γ valley, inter- L-Γ valley, and inter- L-L valley scatterings, have been considered successively. The scattering matrix expanded in powers of the electron wave vectors counted from the centers of the valleys has been constructed using the invariant method for each type of processes. The numerical coefficients in these matrices have been found by the pseudopotential method. The partial contributions of the Elliott and Yafet mechanisms to the spin-dependent electron scattering have been analyzed. The obtained results can be used in studying the optical orientation and relaxation of hot electrons in germanium.

  6. Floquet-engineering topological and spin-dependent bands with interacting ultracold fermions

    NASA Astrophysics Data System (ADS)

    Jotzu, Gregor; Messer, Michael; Görg, Frederik; Greif, Daniel; Lebrat, Martin; Uehlinger, Thomas; Desbuquois, Rémi; Esslinger, Tilman

    2016-05-01

    Periodically driven quantum systems, when observed on time-scales longer than one modulation period, can be described by effective Floquet Hamiltonians that show qualitatively new features. Using a magnetic field gradient, we apply an oscillating force to ultracold fermions in an optical lattice. The resulting effective energy bands then become spin dependent, allowing for a tunable ratio of the effective mass for each internal state, also giving access to the regime where one spin is completely localized whilst the other remains itinerant. In a honeycomb lattice, circular modulation leads to the appearance of complex next-nearest neighbour tunnelling. This corresponds to a staggered magnetic flux in the lattice, allowing for the realisation of Haldane's model of a topological Chern insulator. When spin dependence is included, time-reversal symmetry can be restored giving rise to the Kane-Mele model. A crucial question is whether Floquet engineering can be extended to interacting systems, how the resulting Hamiltonians are modified, and whether the system thermalizes to a steady state. In particular, we study how heating in the system depends on the modulation and interaction parameters and identify regimes where it becomes negligible.

  7. On the importance of direct detection combined limits for spin independent and spin dependent dark matter interactions

    NASA Astrophysics Data System (ADS)

    Marcos, Cristina; Peiró, Miguel; Robles, Sandra

    2016-03-01

    In this work we show how the inclusion of dark matter (DM) direct detection upper bounds in a theoretically consistent manner can affect the allowed parameter space of a DM model. Traditionally, the limits from DM direct detection experiments on the elastic scattering cross section of DM particles as a function of their mass are extracted under simplifying assumptions. Relaxing the assumptions related to the DM particle nature, such as the neutron to proton ratio of the interactions, or the possibility of having similar contributions from the spin independent (SI) and spin dependent (SD) interactions can vary significantly the upper limits. Furthermore, it is known that astrophysical and nuclear uncertainties can also affect the upper bounds. To exemplify the impact of properly including all these factors, we have analysed two well motivated and popular DM scenarios: neutralinos in the NMSSM and a Z' portal with Dirac DM. We have found that the allowed parameter space of these models is subject to important variations when one includes both the SI and SD interactions at the same time, realistic neutron to proton ratios, as well as using different self-consistent speed distributions corresponding to popular DM halo density profiles, and distinct SD structure functions. Finally, we provide all the necessary information to include the upper bounds of SuperCDMS and LUX taking into account all these subtleties in the investigation of any particle physics model. The data for each experiment and example codes are available at this site http://goo.gl/1CDFYi, and their use is detailed in the appendices of this work.

  8. Thickness and power dependence of the spin-pumping effect in Y3Fe5O12 /Pt heterostructures measured by the inverse spin Hall effect

    NASA Astrophysics Data System (ADS)

    Jungfleisch, M. B.; Chumak, A. V.; Kehlberger, A.; Lauer, V.; Kim, D. H.; Onbasli, M. C.; Ross, C. A.; Kläui, M.; Hillebrands, B.

    2015-04-01

    The dependence of the spin-pumping effect on the yttrium iron garnet (Y3Fe5O12 , YIG) thickness detected by the inverse spin Hall effect (ISHE) has been investigated quantitatively. Due to the spin-pumping effect driven by the magnetization precession in the ferrimagnetic insulator Y3Fe5O12 film a spin-polarized electron current is injected into the Pt layer. This spin current is transformed into electrical charge current by means of the ISHE. An increase of the ISHE voltage with increasing film thickness is observed and compared to the theoretically expected behavior. The effective damping parameter of the YIG/Pt samples is found to be enhanced with decreasing Y3Fe5O12 film thickness. The investigated samples exhibit a spin mixing conductance of geff↑↓=(3.87 ±0.21 ) ×1018m-2 and a spin Hall angle between θISHE=0.013 ±0.001 and 0.045 ±0.004 depending on the used spin-diffusion length. Furthermore, the influence of nonlinear effects on the generated voltage and on the Gilbert damping parameter at high excitation powers is revealed. It is shown that for small YIG film thicknesses a broadening of the linewidth due to nonlinear effects at high excitation powers is suppressed because of a lack of nonlinear multimagnon scattering channels. We have found that the variation of the spin-pumping efficiency for thick YIG samples exhibiting pronounced nonlinear effects is much smaller than the nonlinear enhancement of the damping.

  9. Constraints on spin-dependent parton distributions at large x from global QCD analysis

    NASA Astrophysics Data System (ADS)

    Jimenez-Delgado, P.; Avakian, H.; Melnitchouk, W.

    2014-11-01

    We investigate the behavior of spin-dependent parton distribution functions (PDFs) at large parton momentum fractions x in the context of global QCD analysis. We explore the constraints from existing deep-inelastic scattering data, and from theoretical expectations for the leading x → 1 behavior based on hard gluon exchange in perturbative QCD. Systematic uncertainties from the dependence of the PDFs on the choice of parametrization are studied by considering functional forms motivated by orbital angular momentum arguments. Finally, we quantify the reduction in the PDF uncertainties that may be expected from future high-x data from Jefferson Lab at 12 GeV.

  10. Generalized spin-dependent WIMP-nucleus interactions and the DAMA modulation effect

    SciTech Connect

    Scopel, Stefano; Yoon, Kook-Hyun; Yoon, Jong-Hyun E-mail: koreasds@naver.com

    2015-07-01

    Guided by non-relativistic Effective Field Theory (EFT) we classify the most general spin-dependent interactions between a fermionic Weakly Interacting Massive Particle (WIMP) and nuclei, and within this class of models we discuss the viability of an interpretation of the DAMA modulation result in terms of a signal from WIMP elastic scatterings using a halo-independent approach. We find that, although several relativistic EFT's can lead to a spin-dependent cross section, in some cases with an explicit, non-negligible dependence on the WIMP incoming velocity, three main scenarios can be singled out in the non-relativistic limit which approximately encompass them all, and that only differ by their dependence on the transferred momentum. For two of them compatibility between DAMA and other constraints is possible for a WIMP mass below 30 GeV, but only for a WIMP velocity distribution in the halo of our Galaxy which departs from a Maxwellian. This is achieved by combining a suppression of the WIMP effective coupling to neutrons (to evade constraints from xenon and germanium detectors) to an explicit quadratic or quartic dependence of the cross section on the transferred momentum (that leads to a relative enhancement of the expected rate off sodium in DAMA compared to that off fluorine in droplet detectors and bubble chambers). For larger WIMP masses the same scenarios are excluded by scatterings off iodine in COUPP.

  11. Thickness dependence of spin torque ferromagnetic resonance in Co{sub 75}Fe{sub 25}/Pt bilayer films

    SciTech Connect

    Ganguly, A.; Barman, A.; Kondou, K.; Sukegawa, H.; Mitani, S.; Kasai, S.; Niimi, Y.; Otani, Y.

    2014-02-17

    The spin Hall angle of Pt in Co{sub 75}Fe{sub 25}/Pt bilayer films was experimentally investigated by means of the spin-torque ferromagnetic resonance and the modulation of damping measurements. By comparing the present results with the Ni{sub 80}Fe{sub 20}/Pt system, we found that the ferromagnetic layer underneath the Pt one greatly affects the estimation of the spin Hall angle. We also discuss the spin diffusion length of Pt and the ferromagnetic thickness dependence of the Gilbert damping coefficient.

  12. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1-x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  13. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1‑x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  14. Systematic study of the spin stiffness dependence on phosphorus alloying in the ferromagnetic semiconductor (Ga,Mn)As

    SciTech Connect

    Shihab, S.; Thevenard, L.; Bardeleben, H. J. von; Gourdon, C.; Riahi, H.; Lemaître, A.

    2015-04-06

    We study the dependence of the spin stiffness constant on the phosphorus concentration in the ferromagnetic semiconductor (Ga,Mn)(As,P) with the aim of determining whether alloying with phosphorus is detrimental, neutral, or advantageous to the spin stiffness. Time-resolved magneto-optical experiments are carried out in thin epilayers. Laser pulses excite two perpendicular standing spin wave modes, which are exchange related. We show that the first mode is spatially uniform across the layer corresponding to a k≈0 wavevector. From the two frequencies and k-vector spacings we obtain the spin stiffness constant for different phosphorus concentrations using weak surface pinning conditions. The mode assessment is checked by comparison to the spin stiffness obtained from domain pattern analysis for samples with out-of-plane magnetization. The spin stiffness is found to exhibit little variation with phosphorus concentration in contradiction with ab-initio predictions.

  15. Spin-dependent Otto quantum heat engine based on a molecular substance

    NASA Astrophysics Data System (ADS)

    Hübner, W.; Lefkidis, G.; Dong, C. D.; Chaudhuri, D.; Chotorlishvili, L.; Berakdar, J.

    2014-07-01

    We explore the potential of single molecules for thermodynamic cycles. To this end we propose two molecular heat engines based on the Ni2 dimer in the presence of a static magnetic field: (a) a quantum Otto engine and (b) a modified quantum Otto engine for which optical excitations induced by a laser pulse substitute for one of the heat-exchange points. For reliable predictions and to inspect the role of spin and electronic correlations we perform fully correlated ab initio calculations of the molecular electronic structure including spin-orbital effects. We analyze the efficiency of the engines in dependence of the electronic level scheme and the entanglement and find a significant possible enhancement connected to the quantum nature and the heat capacity of the dimer, as well as to the zero-field triplet states splitting.

  16. Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films

    PubMed Central

    Li, D. L.; Ma, Q. L.; Wang, S. G.; Ward, R. C. C.; Hesjedal, T.; Zhang, X.-G.; Kohn, A.; Amsellem, E.; Yang, G.; Liu, J. L.; Jiang, J.; Wei, H. X.; Han, X. F.

    2014-01-01

    Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. Here, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1 spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. In this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices. PMID:25451163

  17. Nuclear shell model calculations of the spin-dependent neutralino- nucleus cross sections

    SciTech Connect

    Ressell, M.T.; Aufderheide, M.B.; Bloom, S.D.; Mathews, G.J.; Resler, D.A. ); Griest, K. . Dept. of Physics)

    1992-11-01

    We describe nuclear shell model calculations of the spin-dependent elastic cross sections of supersymmetric particles on several nuclei, including [sup 73]Ge and [sup 29]Si, which are being used in the construction of dark matter detectors. To check the accuracy of the wave functions we have calculated excited state energy spectra, magnetic moments, and spectroscopic factors for each of the nuclei. Our results differ significantly from previous estimates based upon the independent single particle shell model and the odd group model. These differences are especially evident if the naive quark model estimates of the quark contribution to nucleon spin are correct. We also discuss the modifications that occur when finite momentum transfer between the neutralino and nucleus is included.

  18. Spin and Isospin Dependent Interactions in Classical Molecular Simulations of Dense Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Amason, Charlee; Caplan, Matt; Horowitz, Cj

    2015-10-01

    A neutron star is the hot, incredibly dense remnant of a massive star gone supernova. Extreme conditions on neutron stars allow for the formation of exotically shaped nuclear matter, known colloquially as ``nuclear pasta.'' Competition between the strong nuclear force and the repulsive Coulomb force results in frustration of the neutron star crust, ultimately resulting in these pasta shapes. Previous work at Indiana University has used classical molecular dynamic simulations to model the formation of this pasta. For this project, we introduce a similar model with a new spin dependent interaction. Using this model, we perform molecular dynamics simulations of both symmetric nuclear matter and pure neutron matter with 400 particles. The energies found are similar to those in chiral effective field theory calculations. When we include Coulomb interactions, the model produces pasta shapes. Future work will incorporate this spin potential into larger pasta simulations. Supported by the National Science Foundation REU at Indiana University.

  19. Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films

    DOE PAGES

    Li, D. L.; Ma, Q. L.; Wang, S. G.; Ward, R. C. C.; Hesjedal, T.; Zhang, X. -G.; Kohn, A.; Amsellem, E.; Yang, G.; Liu, J. L.; et al

    2014-12-02

    Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. In this paper, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1more » spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. Finally, in this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices.« less

  20. Quark helicity flip and the transverse spin dependence of inclusive DIS

    SciTech Connect

    Andrei Afanasev; Mark Strikman; Christian Weiss

    2007-05-21

    Inclusive DIS with unpolarized beam exhibits a subtle dependence on the transverse target spin, arising from the interference of one-photon and two-photon exchange amplitudes in the cross section. We argue that this observable probes mainly the quark helicity-flip amplitudes induced by the non-perturbative vacuum structure of QCD (spontaneous chiral symmetry breaking). This conjecture is based on (a) the absence of significant Sudakov suppression of the helicity-flip process if soft gluon emission in the quark subprocess is limited by the chiral symmetry breaking scale mu^2_{chiral} >> Lambda^2_{QCD}; (b) the expectation that the quark helicity-conserving twist-3 contribution is small. The normal target spin asymmetry is estimated to be of the order 10^{-4} in the kinematics of the planned Jefferson Lab Hall A experiment.

  1. Extrinsic spin-orbit coupling and density dependent weak antilocalization in three-dimensional topological insulators

    NASA Astrophysics Data System (ADS)

    Liu, Weizhe; Adroguer, Pierre; Bi, Xintao; Hankiewicz, Ewelina; Culcer, Dimitrie

    2015-03-01

    Topological insulators (TIs) have revolutionized our understanding of insulating behaviour. Three-dimensional TIs are insulators in the bulk but conducting along their surfaces. Much of recent researches on 3D TIs focus on overcoming the transport bottleneck, namely the fact that surface transport is overwhelmed by bulk transport stemming from unintentional doping. The key to overcoming this bottleneck is identifying unambiguous signatures of surface state transport. We will discuss one such signature: weak antilocalization, meaning that coherent backscattering increases the electrical conductivity. The features of this effect, however, are rather subtle, because in TI the impurities have also strong spin-orbit coupling. I will show that spin-orbit coupled impurities introduce an additional time scale, which is expected to be shorter than the dephasing time, and the resulting conductivity has a distinguished part with linear dependent on the carrier number density. The result we predict is directly observable experimentally.

  2. Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films

    SciTech Connect

    Li, D. L.; Ma, Q. L.; Wang, S. G.; Ward, R. C. C.; Hesjedal, T.; Zhang, X. -G.; Kohn, A.; Amsellem, E.; Yang, G.; Liu, J. L.; Jiang, J.; Wei, H. X.; Han, X. F.

    2014-12-02

    Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. In this paper, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1 spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. Finally, in this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices.

  3. Spin-dependent transverse force on a vortex light beam in an inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Petrov, N. I.

    2016-04-01

    Spin-dependent effects on vortex light beams propagating in an inhomogeneous medium are demonstrated by solving the full three-component field Maxwell equations using the perturbation analysis. It is found that the hybrid Laguerre-Gauss modes with polarization-orbital angular momentum (OAM) entanglement are the vector solutions of the Maxwell equations in a graded-index medium. Focusing of linearly and circularly polarized vortex light beams in a cylindrical graded-index medium is investigated. It is shown that the vortex light beam undergoes an additional transverse force acting differently on circular polarized beams with opposite handedness. The wave shape variation with distance taking into account the spin-orbit and nonparaxial effects is analyzed. Effect of long-term periodical revival of wave packets due to mode interference in a graded-index cylindrical optical waveguide is demonstrated.

  4. Cluster size dependence of double ionization energy spectra of spin-polarized aluminum and sodium clusters: All-electron spin-polarized GW+T -matrix method

    NASA Astrophysics Data System (ADS)

    Noguchi, Yoshifumi; Ohno, Kaoru; Solovyev, Igor; Sasaki, Taizo

    2010-04-01

    The double ionization energy (DIE) spectra are calculated for the spin-polarized aluminum and sodium clusters by means of the all-electron spin-polarized GW+T -matrix method based on the many-body perturbation theory. Our method using the one- and two-particle Green’s functions enables us to determine the whole spectra at once in a single calculation. The smaller is the size of the cluster, the larger the difference between the minimal double ionization energy and the twice of the ionization potential. This is because the strong Coulomb repulsion between two holes becomes dominant in small confined geometry. Due to Pauli’s exclusion principle, the parallel spin DIE is close to or smaller than the antiparallel spin DIE except for Na4 that has well-separated highest and second highest occupied molecular-orbital levels calculated by the spin-dependent GW calculation. In this paper, we compare the results calculated for aluminum and sodium clusters and discuss the spin-polarized effect and the cluster size dependence of the resulting spectra in detail.

  5. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory

    SciTech Connect

    Zhang, Xing; Herbert, John M.

    2014-08-14

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H{sub 3} near its D{sub 3h} geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state.

  6. Selective pick-up of increased iron by deferoxamine-coupled cellulose abrogates the iron-driven induction of matrix-degrading metalloproteinase 1 and lipid peroxidation in human dermal fibroblasts in vitro: a new dressing concept.

    PubMed

    Wenk, J; Foitzik, A; Achterberg, V; Sabiwalsky, A; Dissemond, J; Meewes, C; Reitz, A; Brenneisen, P; Wlaschek, M; Meyer-Ingold, W; Scharffetter-Kochanek, K

    2001-06-01

    Using atomic absorption spectrum analysis, we found iron levels in exudates from chronic wounds to be significantly increased (3.71 +/- 1.56 micromol per g protein) compared to wound fluids from acute wounds derived from blister fluids (1.15 +/- 0.62 micromol per g protein, p < 0.02), drainage fluids of acute wounds (0.87 +/- 0.34 micromol per g protein, p < 0.002), and pooled human plasma of 50 volunteers (0.42 micromol per g protein). Increased free iron and an increase in reactive oxygen species released from neutrophils represent pathogenic key steps that --via the Fenton reaction - are thought to be responsible for the persistent inflammation, increased connective tissue degradation, and lipid peroxidation contributing to the prooxidant hostile microenvironment of chronic venous leg ulcers. We herein designed a selective pick-up dressing for iron ions by covalently binding deferoxamine to cellulose. No leakage occurred following gamma sterilization of the dressing and, more importantly, the deferoxamine-coupled cellulose dressing retained its iron complexing properties sufficient to reduce iron levels found in chronic venous ulcers to levels comparable to those found in acute wounds. In order to study the functionality of the dressing, human dermal fibroblasts were exposed to a Fenton reaction mimicking combination of 220 microM Fe(III) citrate and 1 mM ascorbate resulting in a 4-fold induction of matrix-degrading metalloproteinase 1 as determined by a matrix-degrading metalloproteinase 1 specific enzyme-linked immunosorbent assay. This induction was completely suppressed by dissolved deferoxamine at a concentration of 220 microM or by an equimolar amount of deferoxamine immobilized to cellulose. In addition, the Fe(III) citrate and ascorbate driven Fenton reaction resulted in an 8-fold increase in malondialdehyde, the major product of lipid peroxidation, as determined by high pressure liquid chromatography. This increase in malondialdehyde levels could be

  7. The natural silk spinning process. A nucleation-dependent aggregation mechanism?

    PubMed

    Li, G; Zhou, P; Shao, Z; Xie, X; Chen, X; Wang, H; Chunyu, L; Yu, T

    2001-12-01

    The spinning mechanism of natural silk has been an open issue. In this study, both the conformation transition from random coil to beta sheet and the beta sheet aggregation growth of silk fibroin are identified in the B. mori regenerated silk fibroin aqueous solution by circular dichroism (CD) spectroscopy. A nucleation-dependent aggregation mechanism, similar to that found in prion protein, amyloid beta (Abeta) protein, and alpha-synuclein protein with the conformation transition from a soluble protein to a neurotoxic, insoluble beta sheet containing aggregate, is a novel suggestion for the silk spinning process. We present evidence that two steps are involved in this mechanism: (a) nucleation, a rate-limiting step involving the conversion of the soluble random coil to insoluble beta sheet and subsequently a series of thermodynamically unfavorable association of beta sheet unit, i.e. the formation of a nucleus or seed; (b) once the nucleus forms, further growth of the beta sheet unit becomes thermodynamically favorable, resulting a rapid extension of beta sheet aggregation. The aggregation growth follows a first order kinetic process with respect to the random coil fibroin concentration. The increase of temperature accelerates the beta sheet aggregation growth if the beta sheet seed is introduced into the random coil fibroin solution. This work enhances our understanding of the natural silk spinning process in vivo.

  8. Spin-dependent studies of the dynamics of He(2 3S) atom deexcitation at surfaces

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Nordlander, P.

    1995-06-01

    Electron spin labelling techniques provide a powerful technique with which to probe the dynamics of He(2 3S) atom deexcitation at surfaces. Studies with a clean Cu(100) surface reveal that deexcitation occurs exclusively through resonance ionization followed by Auger neutralization and that the electrons involved in Auger neutralization are correlated in spin. Model calculations suggest that this can be explained by considering the local perturbation in the surface electronic structure induced by the presence of the (polarized) He + ion. The calculated induced densities of states are spin dependent and exhibit sharp Kondo-like resonances near the Fermi level. Measurements at an adsorbed Xe film are also described and suggest that electron ejection results both from direct Auger deexcitation (surface Penning ionization) and from resonance ionization of incident atoms, the resulting ions being neutralized through an interaction that involves neighboring Xe atoms in the film. The Xe film data provide an unusual example of a surface at which resonance ionization and Auger deexcitation occur in parallel with comparable rates.

  9. Magnetic field dependence of muon spin relaxation in geometrically frustrated Gd2Ti2O7

    NASA Astrophysics Data System (ADS)

    Dunsiger, S. R.; Kiefl, R. F.; Chakhalian, J. A.; Greedan, J. E.; Macfarlane, W. A.; Miller, R. I.; Morris, G. D.; Price, A. N.; Raju, N. P.; Sonier, J. E.

    2006-05-01

    Muon spin relaxation has been investigated in the geometrically frustrated antiferromagnet Gd2Ti2O7 as a function of magnetic field and temperature. Well above the magnetic ordering temperature of Tc=1K , the field dependence of the muon spin relaxation rate (T1-1) originates from field-induced changes in the spectral density of Gd fluctuations. This allows one to determine both the autocorrelation time and magnitude of the fluctuating local magnetic field at the muon. Well below Tc a coherent precession signal is observed, corresponding to a much smaller quasistatic local magnetic field. At low temperatures T1-1 levels off, at a constant value which is much larger than reported recently for a single crystal of Gd2Ti2O7 [Yaouanc , Phys. Rev. Lett. 95, 047203 (2005)]. A magnetic field of 2T completely quenches the low-temperature spin relaxation in the present sample. These results indicate that the ordered state is characterized by low-frequency dynamics which are most likely due to residual crystalline disorder.

  10. Spin-dependent, optogalvanic effects of laser-pumped He(2/3/S1) atoms

    NASA Astrophysics Data System (ADS)

    Schearer, L. D.; Tin, Pedetha

    1989-10-01

    Spin-dependent optogalvanic effects of laser-pumped He(2/3/S1) atoms are demonstrated. As helium atoms are excited with an IR tunable laser, changes in the conductivity of helium radio-frequency discharge are observed. With approximately 1 mW/sq cm of tunable laser power near 1.083 microns, the intensity-modulated optogalvanic effect signals are obtained as the laser is tuned through the D0(2/3/S1-2/3/P0), D1(2/3/S1-2/3/P1), and D2(2/3/S1-2/3/P2) transitions at 1.082908, 1.083025, and 1.083034 microns, respectively. If the laser emission is now circularly polarized and directed onto the helium discharge cell with the applied field parallel to the pump axis, some of the metastable atoms are oriented with their electronic spins along the field direction, modulating the coil current. One of the important applications of spin-polarized ensembles of metastable 4He is in extremely sensitive magnetic-field measuring devices.

  11. Picking up Clues from the Discard Pile

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As NASA's Phoenix Mars Lander excavates trenches, it also builds piles with most of the material scooped from the holes. The piles, like this one called 'Caterpillar,' provide researchers some information about the soil.

    On Aug. 24, 2008, during the late afternoon of the 88th Martian day after landing, Phoenix's Surface Stereo Imager took separate exposures through red, green and blue filters that have been combined into this approximately true-color image.

    This conical pile of soil is about 10 centimeters (4 inches) tall. The sources of material that the robotic arm has dropped onto the Caterpillar pile have included the 'Dodo' and ''Upper Cupboard' trenches and, more recently, the deeper 'Stone Soup' trench.

    Observations of the pile provide information, such as the slope of the cone and the textures of the soil, that helps scientists understand properties of material excavated from the trenches.

    For the Stone Soup trench in particular, which is about 18 centimeters (7 inches) deep, the bottom of the trench is in shadow and more difficult to observe than other trenches that Phoenix has dug. The Phoenix team obtained spectral clues about the composition of material from the bottom of Stone Soup by photographing Caterpillar through 15 different filters of the Surface Stereo Imager when the pile was covered in freshly excavated material from the trench.

    The spectral observation did not produce any sign of water-ice, just typical soil for the site. However, the bigger clumps do show a platy texture that could be consistent with elevated concentration of salts in the soil from deep in Stone Soup. The team chose that location as the source for a soil sample to be analyzed in the lander's wet chemistry laboratory, which can identify soluble salts in the soil.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Nurses' 'Scrubs' Pick Up Bad Hospital Germs

    MedlinePlus

    ... federal policy. More Health News on: Health Facilities Infection Control Recent Health News Related MedlinePlus Health Topics Health Facilities Infection Control About MedlinePlus Site Map FAQs Contact Us Get ...

  13. Rio + 5: picking up the pieces.

    PubMed

    Hinrichsen, D

    1997-01-01

    The UN General Assembly Special Session held during June 1997 has failed to take forward the objectives set out at the Earth Summit in Rio, casting doubt on the global effort to create a sustainable future. This article presents a balance sheet set out by Don Hinrichsen in the wake of Rio+5. It outlines the progress made by the UN as well as the prevailing issues, which need to be acted upon immediately. It is noted that little progress has been made since the Summit; only the issues of population, forests, and oceans have been given attention, subsequently achieving a significant progress. However, the UN has failed in addressing the issues of poverty, high consumption, management of freshwater, and the continued loss and impoverishment of biological diversity. Little or lack of progress has been made since Rio in implementing recommendations tackling such problems. In the context of the issues regarding land degradation and climate change, assessing progress would be too early for these aspects.

  14. Frequency dependence of electron spin-lattice relaxation for semiquinones in alcohol solutions

    NASA Astrophysics Data System (ADS)

    Elajaili, Hanan B.; Biller, Joshua R.; Eaton, Sandra S.; Eaton, Gareth R.

    2014-10-01

    The spin-lattice relaxation rates at 293 K for three anionic semiquinones (2,5-di-t-butyl-1,4-benzosemiquinone, 2,6-di-t-butyl-1,4-benzosemiquinone, and 2,3,5,6-tetramethoxy-1,4-benzosemiquinone) were studied at up to 8 frequencies between 250 MHz and 34 GHz in ethanol or methanol solution containing high concentrations of OH-. The relaxation rates are about a factor of 2 faster at lower frequencies than at 9 or 34 GHz. However, in perdeuterated alcohols the relaxation rates exhibit little frequency dependence, which demonstrates that the dominant frequency-dependent contribution to relaxation is modulation of dipolar interactions with solvent nuclei. The relaxation rates were modeled as the sum of two frequency-independent contributions (spin rotation and a local mode) and two frequency-dependent contributions (modulation of dipolar interaction with solvent nuclei and a much smaller contribution from modulation of g anisotropy). The correlation time for modulation of the interaction with solvent nuclei is longer than the tumbling correlation time of the semiquinone and is consistent with hydrogen bonding of the alcohol to the oxygen atoms of the semiquinones.

  15. Charge transfer in time-dependent density-functional theory via spin-symmetry breaking

    SciTech Connect

    Fuks, Johanna I.; Maitra, Neepa T.

    2011-04-15

    Long-range charge-transfer excitations pose a major challenge for time-dependent density-functional approximations. We show that spin-symmetry breaking offers a simple solution for molecules composed of open-shell fragments, yielding accurate excitations at large separations when the acceptor effectively contains one active electron. Unrestricted exact-exchange and self-interaction-corrected functionals are performed on one-dimensional models and on the real LiH molecule within the pseudopotential approximation to demonstrate our results.

  16. Process Dependent Sivers Function and Implication for Single Spin Asymmetry in Inclusive Hadron Production

    SciTech Connect

    Leonard Gamberg, Zhong-Bo Kang

    2011-01-01

    We study the single transverse spin asymmetries in the single inclusive particle production within the framework of the generalized parton model (GPM). By carefully analyzing the initial- and final-state interactions, we include the process-dependence of the Sivers functions into the GPM formalism. The modified GPM formalism has a close connection with the collinear twist-3 approach. Within the new formalism, we make predictions for inclusive {pi}{sup 0} and direct photon productions at RHIC energies. We find the predictions are opposite to those in the conventional GPM approach.

  17. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi{sub 2}Te{sub 3}

    SciTech Connect

    Dey, Rik Pramanik, Tanmoy; Roy, Anupam; Rai, Amritesh; Guchhait, Samaresh; Sonde, Sushant; Movva, Hema C. P.; Register, Leonard F.; Banerjee, Sanjay K.; Colombo, Luigi

    2014-06-02

    We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  18. Tuning magnetoresistance and magnetic-field-dependent electroluminescence through mixing a strong-spin-orbital-coupling molecule and a weak-spin-orbital-coupling polymer

    SciTech Connect

    Wu, Yue; Xu, Zhihua; Hu, Bin; Howe, Jane Y

    2007-01-01

    We report a tunable magnetoresistance by uniformly mixing strong-spin-orbital-coupling molecule fac-tris (2-phenylpyridinato) iridium [Ir(ppy)3] and weak-spin-orbital-coupling polymer poly(N-vinyl carbazole) (PVK). Three possible mechanisms, namely charge transport distribution, energy transfer, and intermolecular spin-orbital interaction, are discussed to interpret the Ir(ppy)3 concentration-dependent magnetoresistance in the PVK+Ir(ppy)3 composite. The comparison between the magnetic field effects measured from energy-transfer and non-energy-transfer Ir(ppy)3 doped polymer composites indicates that energy transfer and intermolecular spin-orbital interaction lead to rough and fine tuning for the magnetoresistance, respectively. Furthermore, the photocurrent dependence of magnetic field implies that the excited states contribute to the magnetoresistance through dissociation. As a result, the modification of singlet or triplet ratio of excited states through energy transfer and intermolecular spin-orbital interaction form a mechanism to tune the magnetoresistance in organic semiconducting materials.

  19. The influence of spin orbit coupling and a current dependent potential on the residual resistivity of disordered magnetic alloys

    NASA Astrophysics Data System (ADS)

    Ebert, H.; Vernes, A.; Banhart, J.

    1999-11-01

    It has been shown recently, for a number of various magnetic disordered alloy systems, that the spin-orbit coupling (SOC) may have an important influence on the isotropic residual resistivity and that it is the primary source of the galvano-magnetic properties spontaneous magnetoresistance anisotropy (SMA) and anomalous Hall resistivity (AHR). Here it is demonstrated that—in contrast to many other spin-orbit induced phenomena—all these findings stem from the part of the spin-orbit coupling that gives rise to a mixing of the two spin sub-systems. In line with this result it is shown that inclusion of a current dependent potential within a calculation of the underlying electronic structure hardly affects the transport properties if the corresponding magnetic vector potential does not lead to a mixing of the spin sub-systems.

  20. Exploration of Defects in 4H-SiC MOSFETs via Spin Dependent Charge Pumping

    NASA Astrophysics Data System (ADS)

    Anders, Mark; Lenahan, Patrick; Lelis, Aivars

    4H-SiC MOSFETs have great promise for use in high temperature and high voltage applications. Unfortunately, defects at the SiC/SiO2 interface reduce the performance of these devices. Previously, our group utilized electrically detected magnetic resonance (EDMR) detected via spin dependent recombination (SDR) to identify such SiC/SiO2 interface defects utilizing the bipolar amplification (BAE) biasing scheme; we observed SiC silicon vacancies, E-prime centers, and hydrogen complexed E-prime centers. All of these defects must have levels around the middle of the SiC band gap because they are effective recombination centers. We expanded our studies to include EDMR detection via spin dependent charge pumping (SDCP) at low field, X band, and K band, allowing EDMR exploration of nearly the entire 4H-SiC band gap. Perhaps the most important finding of the (nearly) full band gap measurements is the absence of the carbon dangling bond spectrum in the SDCP. Additionally, in nMOSFETs, we observe an SDCP EDMR spectrum dominated by a silicon vacancy, whereas in pMOSFETs, we also observe a strong, nearly isotropic single line spectrum with g = 2.00244 and 2.00248 when the c-axis is nearly parallel and perpendicular to the magnetic field, respectively. The results suggest that silicon vacancy centers dominate nMOSFET interfaces whereas additional defects clearly play important roles in pMOSFETs.

  1. Neutral particle effects on the spin-dependent electron scattering in dense plasmas

    SciTech Connect

    Lee, Gyeong Won; Jung, Young-Dae

    2014-09-15

    The influence of neutral particle collisions on the spin-channel preference for spin-asymmetry scattering is investigated in dense plasmas. The effective electron-electron interaction potential taking into account the electron-neutral collision effects is employed to obtain the scattering cross sections for the spin-triplet and singlet states and spin-asymmetry scattering parameter. It is found that the electron-neutral collision effect enhances the spin-asymmetry scattering parameter as well as the preference for the spin-singlet scattering channel. It is also shown that the preference for the spin-singlet scattering channel increases with an increase of the thermal energy. In addition, it is found that the angular averaged spin-asymmetry parameter decreases with increasing collision frequency and thermal energy. The variations of the spin-singlet and spin-triplet scattering channels are also discussed.

  2. Repeating collisions in an optical trap and the evaluation of spin-dependent interactions among neutral particles

    SciTech Connect

    Li, Z. B.; Chen, Z. F.; He, Y. Z.; Bao, C. G.

    2010-09-15

    A dynamic process of repeating collisions of a pair of trapped neutral particles with weak spin-dependent interaction is designed and studied. A related theoretical derivation and numerical calculation have been performed to study the inherent coordinate-spin and momentum-spin correlations. Because of the repeating collisions, the effect of the weak interaction can be accumulated and enlarged, and therefore can be eventually detected. Numerical results suggest that the Cr-Cr interaction, which has not yet been completely clarified, could thereby be determined. The design can be used in general to determine various interactions among neutral atoms and molecules, in particular for the determination of very weak forces.

  3. Role of interface transparency and spin-dependent scattering in diffusive ferromagnet/superconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Linder, Jacob; Yokoyama, Takehito; Sudbø, Asle

    2008-05-01

    We present a numerical study of the density of states in a ferromagnet/superconductor junction and the Josephson current in a superconductor/ferromagnet/superconductor junction in the diffusive limit by solving the Usadel equation with Nazarov’s boundary conditions. Our calculations are valid for an arbitrary interface transparency and an arbitrary spin-dependent scattering rate, which allows us to explore the entire proximity-effect regime. We first investigate how the proximity-induced anomalous Green’s function affects the density of states in the ferromagnet for three magnitudes of the exchange field h compared to the superconducting gap Δ : (i) h≲Δ , (ii) h≳Δ , and (iii) h≫Δ . In each case, we consider the effect of the barrier transparency and allow for various concentrations of magnetic impurities. We clarify features that may be expected in the various parameter regimes accessible for the ferromagnetic film, with regard to thickness and exchange field. In particular, we address how the zero-energy peak and minigap observed in experiments may be understood in terms of the interplay between the singlet and the triplet anomalous Green’s functions and their dependence on the concentration of magnetic impurities. Our results should serve as a useful tool for the quantitative analysis of experimental data. We also investigate the role of the barrier transparency and spin-flip scattering in a superconductor/ferromagnet/superconductor junction. We suggest that such diffusive Josephson junctions with large residual values of the supercurrent at the 0-π transition, where the first harmonic term in the current vanishes, may be used as efficient supercurrent-switching devices. We numerically solve for the Josephson current in such a junction to clarify to what extent this idea may be realized in an experimental setup. It is also found that uniaxial spin-flip scattering has a very different effect on the 0-π transition points depending on whether one

  4. Dependence of inverse-spin Hall effect and spin-rectified voltage on tantalum thickness in Ta/CoFeB bilayer structure

    SciTech Connect

    Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young; Kim, Dong-Jun; Park, Byong-Guk

    2015-01-19

    Ta-layer thickness (t{sub Ta}) dependence of the measured DC voltage V from the inverse-spin Hall effect (ISHE) in Ta/CoFeB bilayer structure is experimentally investigated using the ferromagnetic resonance in the TE{sub 011} resonant cavity. The ISHE signals excluding the spin-rectified effect (SRE) were separated from the fitted curve of V against t{sub Ta}. For t{sub Ta} ≈ λ{sub Ta} (Ta-spin diffusion length = 2.7 nm), the deviation in ISHE voltage V{sub ISH} between the experimental and theoretical values is significantly increased because of the large SRE contribution, which also results in a large deviation in the spin Hall angle θ{sub SH} (from 10% to 40%). However, when t{sub Ta} ≫ λ{sub Ta}, the V{sub ISH} values are consistent with theoretical values because the SRE terms become negligible, which subsequently improves the accuracy of the obtained θ{sub SH} within 4% deviation. The results will provide an outline for an accurate estimation of the θ{sub SH} for materials with small λ value, which would be useful for utilizing the spin Hall effect in a 3-terminal spintronic devices in which magnetization can be controlled by in-plane current.

  5. Temperature dependence of spin-dependent tunneling conductance of magnetic tunnel junctions with half-metallic C o2MnSi electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Bing; Moges, Kidist; Honda, Yusuke; Liu, Hong-xi; Uemura, Tetsuya; Yamamoto, Masafumi; Inoue, Jun-ichiro; Shirai, Masafumi

    2016-09-01

    In order to elucidate the origin of the temperature (T ) dependence of spin-dependent tunneling conductance (G ) of magnetic tunnel junctions (MTJs), we experimentally investigated the T dependence of G for the parallel and antiparallel magnetization alignments, GP and GAP, of high-quality C o2MnSi (CMS)/MgO/CMS MTJs having systematically varied spin polarizations (P ) at 4.2 K by varying the Mn composition α in C o2M nαSi electrodes that exhibited giant tunneling magnetoresistance ratios. Results showed that GP normalized by its value at 4.2 K exhibited a notable, nonmonotonic T dependence although its variation with T was significantly smaller than that of GAP normalized by its value at 4.2 K, indicating that an analysis of the experimental GP(T ) is critical to revealing the origin of the T dependence of G . By analyzing the experimental GP(T ) , we clarified that both spin-flip inelastic tunneling via a thermally excited magnon and spin-conserving elastic tunneling in which P decays with increasing T play key roles. The experimental GAP(T ) , including its stronger T dependence for higher P at 4.2 K, was also consistently explained with this model. Our findings provide a unified picture for understanding the origin of the T dependence of G of MTJs with a wide range of P , including MTJs with high P close to a half-metallic value.

  6. Perfect spin filtering controlled by an electric field in a bilayer graphene junction: Effect of layer-dependent exchange energy

    NASA Astrophysics Data System (ADS)

    Kitakorn, Jatiyanon; I-Ming, Tang; Bumned, Soodchomshom

    2016-07-01

    Magneto transport of carriers with a spin-dependent gap in a ferromagnetic-gated bilayer of graphene is investigated. We focus on the effect of an energy gap induced by the mismatch of the exchange fields in the top and bottom layers of an AB-stacked graphene bilayer. The interplay of the electric and exchange fields causes the electron to acquire a spin-dependent energy gap. We find that, only in the case of the anti-parallel configuration, the effect of a magnetic-induced gap will give rise to perfect spin filtering controlled by the electric field. The resolution of the spin filter may be enhanced by varying the bias voltage. Perfect switching of the spin polarization from + 100% to -100% by reversing the direction of electric field is predicted. Giant magnetoresistance is predicted to be easily realized when the applied electric field is smaller than the magnetic energy gap. It should be pointed out that the perfect spin filter is due to the layer-dependent exchange energy. This work points to the potential application of bilayer graphene in spintronics. Project supported by the Kasetsart University Research and Development Institute (KURDI) and Thailand Research Fund (TRF) (Grant No. TRG5780274).

  7. Femtosecond Measurements Of Size-Dependent Spin Crossover In FeII(pyz)Pt(CN)4 Nanocrystals

    DOE PAGES

    Sagar, D. M.; Baddour, Frederick G.; Konold, Patrick; Ullom, Joel; Ruddy, Daniel A.; Johnson, Justin C.; Jimenez, Ralph

    2016-01-07

    We report a femtosecond time-resolved spectroscopic study of size-dependent dynamics in nanocrystals (NCs) of Fe(pyz)Pt(CN)4. We observe that smaller NCs (123 or 78 nm cross section and < 25 nm thickness) exhibit signatures of spin crossover (SCO) with time constants of ~ 5-10 ps whereas larger NCs with 375 nm cross section and 43 nm thickness exhibit a weaker SCO signature accompanied by strong spectral shifting on a ~20 ps time scale. For the small NCs, the fast dynamics appear to result from thermal promotion of residual low-spin states to high-spin states following nonradiative decay, and the size dependence ismore » postulated to arise from differing high-spin vs low-spin fractions in domains residing in strained surface regions. The SCO is less efficient in larger NCs owing to their larger size and hence lower residual LS/HS fractions. Our results suggest that size-dependent dynamics can be controlled by tuning surface energy in NCs with dimensions below ~25 nm for use in energy harvesting, spin switching, and other applications.« less

  8. Perfect spin filtering controlled by an electric field in a bilayer graphene junction: Effect of layer-dependent exchange energy

    NASA Astrophysics Data System (ADS)

    Kitakorn, Jatiyanon; I-Ming, Tang; Bumned, Soodchomshom

    2016-07-01

    Magneto transport of carriers with a spin-dependent gap in a ferromagnetic-gated bilayer of graphene is investigated. We focus on the effect of an energy gap induced by the mismatch of the exchange fields in the top and bottom layers of an AB-stacked graphene bilayer. The interplay of the electric and exchange fields causes the electron to acquire a spin-dependent energy gap. We find that, only in the case of the anti-parallel configuration, the effect of a magnetic-induced gap will give rise to perfect spin filtering controlled by the electric field. The resolution of the spin filter may be enhanced by varying the bias voltage. Perfect switching of the spin polarization from + 100% to ‑100% by reversing the direction of electric field is predicted. Giant magnetoresistance is predicted to be easily realized when the applied electric field is smaller than the magnetic energy gap. It should be pointed out that the perfect spin filter is due to the layer-dependent exchange energy. This work points to the potential application of bilayer graphene in spintronics. Project supported by the Kasetsart University Research and Development Institute (KURDI) and Thailand Research Fund (TRF) (Grant No. TRG5780274).

  9. Experimental studies of spin dependent phenomena in giant magnetoresistance (GMR) and dilute magnetic semiconductor (DMS) systems

    NASA Astrophysics Data System (ADS)

    Theodoropoulou, Nikoleta

    The dissertation consists of two research subjects; Giant Magnetoresistance (GMR) and Dilute Magnetic Semiconductors (DMS). Their common thread is the electronic spin. Both of these subjects are important components of the field of spintronics. In the first GMR study, using temperature-dependent magnetoresistance and magnetization measurements on Fe/Cr multilayers, we identified hysteretic and time-dependent behavior that denotes the presence of a glassy antiferromagnetic (GAF) phase. Pronounced irreversible behavior with logarithmic time dependence manifests itself below an identified "de Almeida and Thouless" (AT) line and confirms the important role of an underlying disordered magnetic domain structure stemming from inter- and intralayer dipolar couplings. Our identification of a field-independent spin-glass temperature associated with this GAF phase sets an energy scale (140K) below which interlayer exchange coupling (IEC) dominates. At room temperature, where the GMR effect is still robust, IEC plays only a minor role in forcing the antiparallel interlayer domain orientations that give rise to the high resistance state in zero magnetic fields. In the DMS study, by using the method of ion implantation to incorporate magnetic ions into a variety of semiconducting substrates, we investigated the nature of magnetism in magnetic semiconductor systems. The magnetic ions Mn, Fe, and Ni were implanted into each of the epitaxially grown semiconductors GaN, GaP, and SiC to achieve volume concentrations between 1 and 5 atomic %. The implanted samples were examined with both x-ray diffraction (XRD) and transmission electron microscopy (TEM) to characterize their microstructure (in most cases, no secondary phases were found) and with SQUID magnetometry to determine their magnetic properties (hysteresis, coercive fields, and differences between field-cooled (FC) and zero-field cooled (ZFC) magnetizations). We discovered room temperature ferromagnetism in p-GaP: C with high

  10. Nonequilibrium dynamics of a mixed spin-1/2 and spin-3/2 Ising ferrimagnetic system with a time dependent oscillating magnetic field source

    NASA Astrophysics Data System (ADS)

    Vatansever, Erol; Polat, Hamza

    2015-10-01

    Nonequilibrium phase transition properties of a mixed Ising ferrimagnetic model consisting of spin-1/2 and spin-3/2 on a square lattice under the existence of a time dependent oscillating magnetic field have been investigated by making use of Monte Carlo simulations with a single-spin flip Metropolis algorithm. A complete picture of dynamic phase boundary and magnetization profiles have been illustrated and the conditions of a dynamic compensation behavior have been discussed in detail. According to our simulation results, the considered system does not point out a dynamic compensation behavior, when it only includes the nearest-neighbor interaction, single-ion anisotropy and an oscillating magnetic field source. As the next-nearest-neighbor interaction between the spins-1/2 takes into account and exceeds a characteristic value which sensitively depends upon values of single-ion anisotropy and only of amplitude of external magnetic field, a dynamic compensation behavior occurs in the system. Finally, it is reported that it has not been found any evidence of dynamically first-order phase transition between dynamically ordered and disordered phases, which conflicts with the recently published molecular field investigation, for a wide range of selected system parameters.

  11. Observation of spin-dependent quantum well resonant tunneling in textured CoFeB layers

    SciTech Connect

    Teixeira, J. M. Costa, J. D.; Ventura, J.; Sousa, J. B.; Wisniowski, P.; Freitas, P. P.

    2014-03-17

    We report the observation of spin-dependent quantum well (QW) resonant tunneling in textured CoFeB free layers of single MgO magnetic tunnel junctions (MTJs). The inelastic electron tunneling spectroscopy spectra clearly show the presence of resonant oscillations in the parallel configuration, which are related with the appearance of majority-spin Δ{sub 1} QW states in the CoFeB free layer. To gain a quantitative understanding, we calculated QW state positions in the voltage-thickness plane using the so-called phase accumulation model (PAM) and compared the PAM solutions with the experimental resonant voltages observed for a set of MTJs with different CoFeB free layer thicknesses (t{sub fl} = 1.55, 1.65, 1.95, and 3.0 nm). An overall good agreement between experiment and theory was obtained. An enhancement of the tunnel magnetoresistance with bias is observed in a bias voltage region corresponding to the resonant oscillations.

  12. High spin-dependent tunneling magnetoresistance in magnetite powders made by arc-discharge

    NASA Astrophysics Data System (ADS)

    Prakash, T.; Williams, G. V. M.; Kennedy, J.; Rubanov, S.

    2016-09-01

    We report the successful synthesis of ferrimagnetic magnetite powders made using an arc-discharge method in a partial oxygen atmosphere. X-ray and electron diffraction measurements show that the powders also contain some antiferromagnetic hematite and a small amount of FeO and Fe that has not oxidized. The Raman data show that there is a small fraction of ferrimagnetic maghemite that cannot be seen in the x-ray diffraction data. There is a wide particle size distribution where there are nanoparticles as small as 7 nm, larger faceted nanoparticles, and particles that are up to 25 μm in diameter. The saturation magnetization at high magnetic fields is ˜74% of that found in the bulk magnetite, where the lower value is due to the presence of some antiferromagnetic hematite. The temperature dependence of the saturation magnetization changes at the Verwey transition temperature, and it has a power low dependence with an exponent of 3/2 at low temperatures and 2.23 at high temperatures above the Verwey transition temperature. Electronic transport measurements were made on a cold-pressed pellet and the electrical resistance had an exponential dependence on temperature that may be due to electrostatic charging during tunneling between small nanoparticles. A large magnetoresistance from spin-dependent tunneling between the magnetite particles was observed that reached -9.5% at 120 K and 8 T.

  13. Pressure dependence of critical temperature of bulk FeSe from spin fluctuation theory

    NASA Astrophysics Data System (ADS)

    Hirschfeld, Peter; Kreisel, Andreas; Wang, Yan; Tomic, Milan; Jeschke, Harald; Jacko, Anthony; Valenti, Roser; Maier, Thomas; Scalapino, Douglas

    2013-03-01

    The critical temperature of the 8K superconductor FeSe is extremely sensitive to pressure, rising to a maximum of 40K at about 10GPa. We test the ability of the current generation of fluctuation exchange pairing theories to account for this effect, by downfolding the density functional theory electronic structure for each pressure to a tight binding model. The Fermi surface found in such a procedure is then used with fixed Hubbard parameters to determine the pairing strength using the random phase approximation for the spin singlet pairing vertex. We find that the evolution of the Fermi surface captured by such an approach is alone not sufficient to explain the observed pressure dependence, and discuss alternative approaches. PJH, YW, AK were supported by DOE DE-FG02-05ER46236, the financial support of MT, HJ, and RV from the DFG Schwerpunktprogramm 1458 is kindly acknowledged.

  14. Spin Hall magnetoresistance in Co2FeSi/Pt thin films: dependence on Pt thickness and temperature

    NASA Astrophysics Data System (ADS)

    Huang, Xiufeng; Dai, Zhiwen; Huang, Lin; Lu, Guangduo; Liu, Min; Piao, Hongguang; Kim, Dong-Hyun; Yu, Seong-cho; Pan, Liqing

    2016-11-01

    We have investigated the temperature and the Pt layer thickness dependence of the magnetoresistances (MRs) in Co2FeSi/Pt thin films. Based on the field dependent measurements, it can be seen that the spin-current-induced spin Hall magnetoresistance (SMR) plays the dominant role in the MRs in the Co2FeSi/Pt bilayers in the whole temperature range. Meanwhile, a quite small part of anisotropic magnetoresistance (AMR) existed in the MRs. It proved to be originated from magnetic proximity effect (MPE) by measuring the Pt thickness and temperature dependence of the AMR. Moreover, the Co2FeSi layer thickness has much weaker effect on the SMR and AMR compared to the Pt layer thickness. These results indicate that the Co2FeSi/Pt interface is beneficial to be used in the spin-current-induced physical phenomena.

  15. Strain dependent electron spin dynamics in bulk cubic GaN

    SciTech Connect

    Schaefer, A.; Buß, J. H.; Hägele, D.; Rudolph, J.; Schupp, T.; Zado, A.; As, D. J.

    2015-03-07

    The electron spin dynamics under variable uniaxial strain is investigated in bulk cubic GaN by time-resolved magneto-optical Kerr-rotation spectroscopy. Spin relaxation is found to be approximately independent of the applied strain, in complete agreement with estimates for Dyakonov-Perel spin relaxation. Our findings clearly exclude strain-induced relaxation as an effective mechanism for spin relaxation in cubic GaN.

  16. Strain dependent electron spin dynamics in bulk cubic GaN

    NASA Astrophysics Data System (ADS)

    Schaefer, A.; Buß, J. H.; Schupp, T.; Zado, A.; As, D. J.; Hägele, D.; Rudolph, J.

    2015-03-01

    The electron spin dynamics under variable uniaxial strain is investigated in bulk cubic GaN by time-resolved magneto-optical Kerr-rotation spectroscopy. Spin relaxation is found to be approximately independent of the applied strain, in complete agreement with estimates for Dyakonov-Perel spin relaxation. Our findings clearly exclude strain-induced relaxation as an effective mechanism for spin relaxation in cubic GaN.

  17. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    SciTech Connect

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan; Rousseau, Olivier; Otani, YoshiChika

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  18. Strong dependence of spin dynamics on the orientation of an external magnetic field for InSb and InAs

    NASA Astrophysics Data System (ADS)

    Litvinenko, K. L.; Leontiadou, M. A.; Li, Juerong; Clowes, S. K.; Emeny, M. T.; Ashley, T.; Pidgeon, C. R.; Cohen, L. F.; Murdin, B. N.

    2010-03-01

    Electron spin relaxation times have been measured in InSb and InAs epilayers in a moderate (<4 T) external magnetic field. A strong and opposite field dependence of the spin lifetime was observed for longitudinal (Faraday) and transverse (Voigt) configuration. In the Faraday configuration the spin lifetime increases because the D'yakonov-Perel' dephasing process is suppressed. At the high field limit the Elliot-Yafet spin flip relaxation process dominates, enabling its direct determination. Conversely, as predicted theoretically for narrow band gap semiconductors, an additional efficient spin dephasing mechanism dominates in the Voigt configuration significantly decreasing the electron spin lifetime with increasing field.

  19. Bias voltage dependence of the electron spin depolarization in quantum wires in the quantum Hall regime detected by the resistively detected NMR

    SciTech Connect

    Chida, K.; Yamauchi, Y.; Arakawa, T.; Kobayashi, K.; Ono, T.; Hashisaka, M.; Nakamura, S.; Machida, T.

    2013-12-04

    We performed the resistively-detected nuclear magnetic resonance (RDNMR) to study the electron spin polarization in the non-equilibrium quantum Hall regime. By measuring the Knight shift, we derive source-drain bias voltage dependence of the electron spin polarization in quantum wires. The electron spin polarization shows minimum value around the threshold voltage of the dynamic nuclear polarization.

  20. Universal dependence of the spin wave band structure on the geometrical characteristics of two-dimensional magnonic crystals

    PubMed Central

    Tacchi, S.; Gruszecki, P.; Madami, M.; Carlotti, G.; Kłos, J. W.; Krawczyk, M.; Adeyeye, A.; Gubbiotti, G.

    2015-01-01

    In the emerging field of magnon-spintronics, spin waves are exploited to encode, carry and process information in materials with periodic modulation of their magnetic properties, named magnonic crystals. These enable the redesign of the spin wave dispersion, thanks to its dependence on the geometric and magnetic parameters, resulting in the appearance of allowed and forbidden band gaps for specific propagation directions. In this work, we analyze the spin waves band structure of two-dimensional magnonic crystals consisting of permalloy square antidot lattices with different geometrical parameters. We show that the frequency of the most intense spin-wave modes, measured by Brillouin light scattering, exhibits a universal dependence on the aspect ratio (thickness over width) of the effective nanowire enclosed between adjacent rows of holes. A similar dependence also applies to both the frequency position and the width of the main band gap of the fundamental (dispersive) mode at the edge of the first Brillouin zone. These experimental findings are successfully explained by calculations based on the plane-wave method. Therefore, a unified vision of the spin-waves characteristics in two-dimensional antidot lattices is provided, paving the way to the design of tailored nanoscale devices, such as tunable magnonic filters and phase-shifters, with predicted functionalities. PMID:26012863

  1. Size dependence of nanosecond-scale spin-torque switching in perpendicularly magnetized tunnel junctions

    NASA Astrophysics Data System (ADS)

    Devolder, T.; Le Goff, A.; Nikitin, V.

    2016-06-01

    We have time resolved the spin-transfer-torque-induced switching in perpendicularly magnetized tunnel junctions of diameters from 50 to 250 nm in the subthreshold thermally activated regime. When the field and the spin torque concur to both favor the P to AP transition, the reversal yields monotonic resistance ramps that can be interpreted as a domain wall propagation through the device at velocities of the order of 17 to 30 nm/ns; smaller cells switch faster, and proportionally to their diameter. At the largest sizes, transient domain wall pinning can occasionally occur. When the field hinders the P to AP transition triggered by the spin torque, the P to AP switching is preceded by repetitive switching attempts, during which the resistance transiently increases until successful reversal occurs. At 50 nm, the P to AP switching proceeds reproducibly in 3 ns, with a monotonic featureless increase of the device resistance. In the reverse transition (AP to P), the variability of thermally activated reversal is not restricted to stochastic variations of incubation delays before the onset of reversal: several reversal paths are possible even in the smallest perpendicularly magnetized junctions. Besides, the nonuniform nature of the magnetic response seems still present at the nanoscale, with sometimes electrical signatures of strong disorder during the AP to P reversal. The AP to P transition is preceded by a strong instability of the AP states in devices larger than 100 nm. The resistance becomes extremely agitated before switching to P in a path yielding a slow (20 to 50 ns) and irregular increase of the conductance with substantial event-to-event variability. Unreversed bubbles of typical diameter 60 nm can persist a few additional microseconds in the largest junctions. The complexity of the AP to P switching is reduced but not suppressed when the junctions are downsized below 60 nm. The instability of the initial AP state is no longer detected but the other features

  2. Quantum systems with position-dependent mass and spin-orbit interaction via Rashba and Dresselhaus terms

    SciTech Connect

    Schmidt, Alexandre G. M. Portugal, L. Jesus, Anderson L. de

    2015-01-15

    We consider a particle with spin 1/2 with position-dependent mass moving in a plane. Considering separately Rashba and Dresselhaus spin-orbit interactions, we write down the Hamiltonian for this problem and solve it for Dirichlet boundary conditions. Our radial wavefunctions have two contributions: homogeneous ones which are written as Bessel functions of non-integer orders—that depend on angular momentum m—and particular solutions which are obtained after decoupling the non-homogeneous system. In this process, we find non-homogeneous Bessel equation, Laguerre, as well as biconfluent Heun equation. We also present the probability densities for m = 0, 1, 2 in an annular quantum well. Our results indicate that the background as well as the spin-orbit interaction naturally splits the spinor components.

  3. Abnormal bias dependence of magnetoresistance in CoFeB/MgO/Si spin-injection tunnel contacts

    SciTech Connect

    Park, June-Young; Park, Byong-Guk; Baek, Seung-heon Chris; Park, Seung-Young; Jo, Younghun

    2015-11-02

    We report a strong bias voltage dependence of magnetoresistance (MR) in CoFeB/MgO/Si spin-injection tunnel contacts using the three-terminal Hanle geometry. When a bias voltage is relatively large, the MR is composed of two characteristic signals: a conventional Hanle signal observed at a low magnetic field, which is due to the precession of injected spins, and another signal originating from the rotation of the magnetization at a larger magnetic field. In contrast, for a small bias voltage, additional signals appear at a wide range of magnetic fields, which occasionally overwhelms the conventional Hanle signals. Because the additional signals are pronounced at a low bias and are significantly reduced by annealing at moderate temperatures, they can be attributed to multi-step tunneling via defect states at the interfaces or tunnel barrier. Our results demonstrate that the spin injection signal caused by the defect states can be evaluated by its bias voltage dependence.

  4. Local magnetoresistance through Si and its bias voltage dependence in ferromagnet/MgO/silicon-on-insulator lateral spin valves

    SciTech Connect

    Saito, Y. Tanamoto, T.; Ishikawa, M.; Sugiyama, H.; Inokuchi, T.; Hamaya, K.; Tezuka, N.

    2014-05-07

    Local magnetoresistance (MR) through silicon (Si) and its bias voltage (V{sub bias}) (bias current (I{sub bias})) dependence in ferromagnet (FM)/MgO/silicon-on-insulator lateral spin valves are investigated. From the experimental measurements, we find that the local-MR through Si increases with increasing V{sub bias}. This anomalous increase of local-MR as a function of V{sub bias} can be understood by considering the standard drift-diffusion theory improved by taking into account the difference in the interface resistances and first order quantum effect between FM/MgO/Si (source) and Si/MgO/FM (drain) interfaces. The interface resistance dependence on experimentally obtained local-MR ratios also agrees with the improved standard spin diffusion theory. These results indicate that experimentally observed local-MR is certainly related to the spin signal through the Si bulk band.

  5. Magnetic field dependence of the lowest-frequency edge-localized spin wave mode in a magnetic nanotriangle.

    PubMed

    Lin, C S; Lim, H S; Wang, Z K; Ng, S C; Kuok, M H; Adeyeye, A O

    2011-03-01

    An understanding of the spin dynamics of nanoscale magnetic elements is important for their applications in magnetic sensing and storage. Inhomogeneity of the demagnetizing field in a non-ellipsoidal magnetic element results in localization of spin waves near the edge of the element. However, relative little work has been carried out to investigate the effect of the applied magnetic fields on the nature of such localized modes. In this study, micromagnetic simulations are performed on an equilateral triangular nanomagnet to investigate the magnetic field dependence of the mode profiles of the lowest-frequency spin wave. Our findings reveal that the lowest-frequency mode is localized at the base edge of the equilateral triangle. The characteristics of its mode profile change with the ground state magnetization configuration of the nanotriangle, which, in turn, depends on the magnitude of the in-plane applied magnetic field.

  6. Orientation and thickness dependence of magnetization at the interfacesof highly spin-polarized manganite thin films

    SciTech Connect

    Chopdekar, Rajesh V.; Arenholz, Elke; Suzuki, Y.

    2008-08-18

    We have probed the nature of magnetism at the surface of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films. The spin polarization of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces are more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films; for a given film thickness it is the tetragonal distortion of (001) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depends strongly on the crystal surface orientation as well as epitaxial strain.

  7. Cooling field and temperature dependent exchange bias in spin glass/ferromagnet bilayers

    PubMed Central

    Rui, W. B.; Hu, Y.; Du, A.; You, B.; Xiao, M. W.; Zhang, W.; Zhou, S. M.; Du, J.

    2015-01-01

    We report on the experimental and theoretical studies of cooling field (HFC) and temperature (T) dependent exchange bias (EB) in FexAu1 − x/Fe19Ni81 spin glass (SG)/ferromagnet (FM) bilayers. When x varies from 8% to 14% in the FexAu1 − x SG alloys, with increasing T, a sign-changeable exchange bias field (HE) together with a unimodal distribution of coercivity (HC) are observed. Significantly, increasing in the magnitude of HFC reduces (increases) the value of HE in the negative (positive) region, resulting in the entire HE ∼ T curve to move leftwards and upwards. In the meanwhile, HFC variation has weak effects on HC. By Monte Carlo simulation using a SG/FM vector model, we are able to reproduce such HE dependences on T and HFC for the SG/FM system. Thus this work reveals that the SG/FM bilayer system containing intimately coupled interface, instead of a single SG layer, is responsible for the novel EB properties. PMID:26348277

  8. Orbital-cooperative spin fluctuation and orbital-dependent transport in ruthenates

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoya

    2014-12-01

    Unusual transport properties deviating from the Fermi liquid are observed in ruthenates near a magnetic quantum-critical point (QCP). To understand the electronic properties of the ruthenates near and away from an antiferromagnetic (AF) QCP, I study the electronic structure and magnetic and transport properties for the t2 g-orbital Hubbard model on a square lattice in fluctuation-exchange approximation including Maki-Thompson (MT) current vertex correction (CVC). The results away from the AF QCP reproduce several experimental results of Sr2RuO4 qualitatively and provide new mechanisms about the enhancement of spin fluctuation at QIC -AF≈(0.66 π ,0.66 π ) , larger mass enhancement of the dx y orbital than that of the dx z /y z orbital, and nonmonotonic temperature dependence of the Hall coefficient. Also, the results near the AF QCP explain the T -linear inplane resistivity in Sr2Ru0.075Ti0.025O4 and give an experimental test on the obtained temperature dependence of the Hall coefficient. I reveal spatial correlation including the self-energy of electrons beyond mean-field approximations is essential to determine the electronic properties of the ruthenates. I also show several ubiquitous transport properties near an AF QCP and characteristic transport properties of a multiorbital system by comparison with results of a single-orbital system near an AF QCP.

  9. Establishment of conditions for ovum pick up and IVM of jennies oocytes toward the setting up of efficient IVF and in vitro embryos culture procedures in donkey (Equus asinus).

    PubMed

    Goudet, Ghylène; Douet, Cécile; Kaabouba-Escurier, Aurore; Couty, Isabelle; Moros-Nicolás, Carla; Barrière, Philippe; Blard, Thierry; Reigner, Fabrice; Deleuze, Stefan; Magistrini, Michèle

    2016-07-15

    Most wild and domestic donkey breeds are currently endangered or threatened. Their preservation includes the creation of a Genome Resource Bank. Embryos cryopreservation allows the preservation of genetics from both male and female and is the fastest method to restore a breed. Because embryo production in vivo is limited in equids, our objective was to establish conditions for in vitro production of embryos in donkey using ovum pick up (OPU), IVM, IVF, and in vitro culture of zygotes. Donkey cumulus-oocyte complexes (COCs) were collected by transvaginal ultrasound-guided aspirations OPU in adult cyclic jennies and in vitro matured in tissue culture medium 199 supplemented with fetal calf serum and epidermal growth factor for 24, 30, 34, or 38 hours. They were preincubated with oviductal fluid for 30 minutes, coincubated with frozen-thawed donkey semen treated with procaine for 18 hours, and cultured for 30 hours in Dulbecco's Modified Eagle Medium-F12 supplemented with NaHCO3, fetal calf serum, and gentamycin. From the five OPU sessions, we collected 92 COCs in 193 follicles (48%) with an average of 4.2 COCs per jenny. All COCs were expanded after more than 24-hour IVM. At collection, jennies oocytes contained a germinal vesicle. Metaphase 1 oocytes were observed after 30-hour IVM and 44% were in metaphase 2 after 34-hour IVM. In our conditions, IVM of donkey oocytes was slower than IVM of equine oocytes and optimal duration for donkey oocytes IVM may be 34 hours. Only 15% of jennies oocytes contained two pronuclei after coincubation with donkey spermatozoa and none of them developed further after 48 hours post-IVF. Moreover, some parthenogenetic activation occurred. Thus, the treatment of donkey sperm with procaine may not be efficient for IVF. In conclusion, we established for the first time conditions for OPU in jennies with high recovery rates. We reported that IVM of jennies oocytes can produce 44% of metaphase 2 oocytes after 34 hours in culture

  10. Mass-number and excitation-energy dependence of the spin cutoff parameter

    NASA Astrophysics Data System (ADS)

    Grimes, S. M.; Voinov, A. V.; Massey, T. N.

    2016-07-01

    The spin cutoff parameter determining the nuclear level density spin distribution ρ (J ) is defined through the spin projection as 1 /2 or equivalently for spherical nuclei, ( 3 ) 1 /2. It is needed to divide the total level density into levels as a function of J . To obtain the total level density at the neutron binding energy from the s -wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonly used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.

  11. On the calculation of nuclear spin-spin coupling constants. The bond length dependence of the Fermi contact term in H 2 and HD

    NASA Astrophysics Data System (ADS)

    Bacskay, George B.

    1995-08-01

    A theoretical study of the Fermi contact contribution to the HH and HD spin-spin coupling constant is reported, with special emphasis on its calculation using quantum chemical techniques over a wide range of internuclear distances, that has necessitated an extension of the existing methodology so the effects of near-degeneracy are properly treated. A detailed configuration interaction calculation on H 2 shows that as the molecule is stretched the coupling constant displays a sharp increase before decaying to zero as the molecule dissociates. Such distance dependence is reflected in the calculated vibrational averages of the coupling constant for HD that show a rapid increase with vibrational excitation.

  12. Polarization Dependence of the Spin-Density-Wave Excitations in Single-Domain Chromium

    SciTech Connect

    Boeni, P.; Sternlieb, B.J.; Shirane, G.; Roessli, B.; Werner, S.A.; Lorenzo, J.E.

    1997-12-31

    A polarised neutron scattering experiment has been performed on a single-Q, single domain sample of Cr in a magnetic field of 4 T in the transverse spin-density-wave phase. It is confirmed that the longitudinal fluctuations are enhanced for energy transfers E {lt} 8 meV similarly as in the longitudinal spin-density-wave phase. The spin wave modes with deltaS parallel and perpendicular to Q are isotropic within the E-range investigated.

  13. Consequences of the thermal dependence of spin orbit coupling in semiconductors

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashree

    2016-11-01

    The k → · p → perturbation theory in semiconductor modifies some spin related parameters of the semi-conducting system. Furthermore, renormalization of the Kane model parameters occurs when temperature appears in the scenario. In this paper, we have analyzed the consequences of this renormalized Kane parameters on some spin transport issues. It is noteworthy to study that the temperature corrected scenario can open a new direction towards the spin calorimetric applications in semiconductors.

  14. Magnetic-Phase Dependence of the Spin Carrier Mean Free Path in Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Li, Jing; Niquet, Yann-Michel; Delerue, Christophe

    2016-06-01

    We show theoretically that the intrinsic (phonon-limited) carrier mobility in graphene nanoribbons is considerably influenced by the presence of spin-polarized edge states. When the coupling between opposite edges switches from antiferromagnetic to ferromagnetic with increasing carrier density, the current becomes spin polarized and the mean free path rises from 10 nm to micrometers. In the ferromagnetic state, the current flows through one majority-spin channel which is ballistic over micrometers and several minority-spin channels with mean free paths as low as 1 nm. These features predicted in technology-relevant conditions could be nicely exploited in spintronic devices.

  15. Magnetic-Phase Dependence of the Spin Carrier Mean Free Path in Graphene Nanoribbons.

    PubMed

    Li, Jing; Niquet, Yann-Michel; Delerue, Christophe

    2016-06-10

    We show theoretically that the intrinsic (phonon-limited) carrier mobility in graphene nanoribbons is considerably influenced by the presence of spin-polarized edge states. When the coupling between opposite edges switches from antiferromagnetic to ferromagnetic with increasing carrier density, the current becomes spin polarized and the mean free path rises from 10 nm to micrometers. In the ferromagnetic state, the current flows through one majority-spin channel which is ballistic over micrometers and several minority-spin channels with mean free paths as low as 1 nm. These features predicted in technology-relevant conditions could be nicely exploited in spintronic devices.

  16. Symmetry-dependent spin-charge transport and thermopower through a ZSiNR-based FM/normal/FM junction.

    PubMed

    Zhou, Benliang; Zhou, Benhu; Chen, Xiongwen; Liao, Wenhu; Zhou, Guanghui

    2015-11-25

    We investigate the spin-dependent transport and spin thermopower for a zigzag silicene nanoribbon (ZSiNR) with two ends covered by ferromagnets (FMs) under the modulation of a perpendicular electric field, where we take the 6- and 7-ZSiNR to exemplify the effect of the even- and odd-N ZSiNRs, respectively. By using the nonequilibrium Green's function approach, it is demonstrated that a ZSiNR-based FM/normal/FM junction still shows an interesting symmetry-dependent property although the σ mirror plane is absent for any ZSiNR due to the buckled structure of silicene. The junction with even- or odd-N ZSiNR has very different transport and thermopower behavior, which is attributed to the different parity of π and [Formula: see text] band wavefunctions under the c 2 symmetry operation with respect to the centre axis between two edges, and is linked to the unique symmetry of the band structure for the ribbon. As a result, the magnetoresistance (MR) for the 6-ZSiNR junction with a 100% plateau around zero electron energy is observed, but the plateau is absent for the 7-ZSiNR one. In addition, the spin thermopower also displays the even-odd behaviour. The 6-ZSiNR junction is found to possess superior thermospin performance compared with the 7-ZSiNR one, and its spin thermopower can be improved by one order of magnitude in the absence of an electric field. As the strength of the field increases, the spin thermopower for the 6-ZSiNR junction dramatically decreases, while it notably enhances for the 7-ZSiNR one. Interestingly, the spin thermopower for both junctions is strongly dependent on the strength of magnetisation in FM, and it can be very pronounced with a maximum absolute value of 200 μV K(-1)by the optimisation of the parameters. However, with the increase in temperature, the spin thermopower for the 6-ZSiNR junction decreases, but the situation for the 7-ZSiNR one is opposite. Finally, the spin figure of merit for the 6-ZSiNR junction is found to be four orders

  17. Symmetry-dependent spin-charge transport and thermopower through a ZSiNR-based FM/normal/FM junction

    NASA Astrophysics Data System (ADS)

    Zhou, Benliang; Zhou, Benhu; Chen, Xiongwen; Liao, Wenhu; Zhou, Guanghui

    2015-11-01

    We investigate the spin-dependent transport and spin thermopower for a zigzag silicene nanoribbon (ZSiNR) with two ends covered by ferromagnets (FMs) under the modulation of a perpendicular electric field, where we take the 6- and 7-ZSiNR to exemplify the effect of the even- and odd-N ZSiNRs, respectively. By using the nonequilibrium Green’s function approach, it is demonstrated that a ZSiNR-based FM/normal/FM junction still shows an interesting symmetry-dependent property although the σ mirror plane is absent for any ZSiNR due to the buckled structure of silicene. The junction with even- or odd-N ZSiNR has very different transport and thermopower behavior, which is attributed to the different parity of π and {π*} band wavefunctions under the c 2 symmetry operation with respect to the centre axis between two edges, and is linked to the unique symmetry of the band structure for the ribbon. As a result, the magnetoresistance (MR) for the 6-ZSiNR junction with a 100% plateau around zero electron energy is observed, but the plateau is absent for the 7-ZSiNR one. In addition, the spin thermopower also displays the even-odd behaviour. The 6-ZSiNR junction is found to possess superior thermospin performance compared with the 7-ZSiNR one, and its spin thermopower can be improved by one order of magnitude in the absence of an electric field. As the strength of the field increases, the spin thermopower for the 6-ZSiNR junction dramatically decreases, while it notably enhances for the 7-ZSiNR one. Interestingly, the spin thermopower for both junctions is strongly dependent on the strength of magnetisation in FM, and it can be very pronounced with a maximum absolute value of 200 μV K-1by the optimisation of the parameters. However, with the increase in temperature, the spin thermopower for the 6-ZSiNR junction decreases, but the situation for the 7-ZSiNR one is opposite. Finally, the spin figure of merit for the 6-ZSiNR junction is found to be four orders of magnitude

  18. Symmetry-dependent spin-charge transport and thermopower through a ZSiNR-based FM/normal/FM junction.

    PubMed

    Zhou, Benliang; Zhou, Benhu; Chen, Xiongwen; Liao, Wenhu; Zhou, Guanghui

    2015-11-25

    We investigate the spin-dependent transport and spin thermopower for a zigzag silicene nanoribbon (ZSiNR) with two ends covered by ferromagnets (FMs) under the modulation of a perpendicular electric field, where we take the 6- and 7-ZSiNR to exemplify the effect of the even- and odd-N ZSiNRs, respectively. By using the nonequilibrium Green's function approach, it is demonstrated that a ZSiNR-based FM/normal/FM junction still shows an interesting symmetry-dependent property although the σ mirror plane is absent for any ZSiNR due to the buckled structure of silicene. The junction with even- or odd-N ZSiNR has very different transport and thermopower behavior, which is attributed to the different parity of π and [Formula: see text] band wavefunctions under the c 2 symmetry operation with respect to the centre axis between two edges, and is linked to the unique symmetry of the band structure for the ribbon. As a result, the magnetoresistance (MR) for the 6-ZSiNR junction with a 100% plateau around zero electron energy is observed, but the plateau is absent for the 7-ZSiNR one. In addition, the spin thermopower also displays the even-odd behaviour. The 6-ZSiNR junction is found to possess superior thermospin performance compared with the 7-ZSiNR one, and its spin thermopower can be improved by one order of magnitude in the absence of an electric field. As the strength of the field increases, the spin thermopower for the 6-ZSiNR junction dramatically decreases, while it notably enhances for the 7-ZSiNR one. Interestingly, the spin thermopower for both junctions is strongly dependent on the strength of magnetisation in FM, and it can be very pronounced with a maximum absolute value of 200 μV K(-1)by the optimisation of the parameters. However, with the increase in temperature, the spin thermopower for the 6-ZSiNR junction decreases, but the situation for the 7-ZSiNR one is opposite. Finally, the spin figure of merit for the 6-ZSiNR junction is found to be four orders

  19. Transverse Quark Spin Effects and the Flavor Dependence of the Boer-Mulders Function

    SciTech Connect

    Leonard P. Gamberg; Gary R. Goldstein; Marc Schlegel

    2007-07-30

    The naive time reversal odd (T-odd) parton distribution $h_{1}^{\\perp}$, the so-called Boer-Mulders function, for both $u$- and $d$-quarks is considered in the diquark spectator model. While other approaches give evidence that the signs of the Boer-Mulders function for both flavors $u$ and $d$ are the same and negative, previous caculations in the diquark-spectator model found $h_{1}^{\\perp(u)}$ and $h_{1}^{\\perp(d)}$ have differnet signs. The flavor dependence is of significance for the analysis of the azimuthal $\\cos(2\\phi)$ asymmetries in unpolarized SIDIS and DY-processes, as well as for the overall physical understanding of the distribution of transversely polarized quarks in unpolarized nucleons. We find substantial differences with previous work. In particular we obtain estimates of the zeroth, half and first moments of Boer-Mulders functions that are negative over the full range in Bjorken $x$ for both the up and down quarks. In conjunction with the Collins function we then predict the $\\cos(2\\phi)$ azimuthal asymmetry for $\\pi^{+}$ and $\\pi^{-}$ in this framework. We also find that the Sivers up and down quark are negative and postive respectively. As a by-product of the formalism, we calculate the chiral-odd but T-even function $h_{1L}^{\\perp}$ in the spectator framework, which allows us to present a prediction for the single spin asymmetry $A_{UL}^{\\sin(2\\phi)}$ for a longitudinally polarized target in SIDIS.

  20. Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field

    SciTech Connect

    Eklund, Anders Sani, Sohrab R.; Chung, Sunjae; Amir Hossein Banuazizi, S.; Östling, Mikael; Gunnar Malm, B.; Bonetti, Stefano; Majid Mohseni, S.; Persson, Johan; Iacocca, Ezio; Åkerman, Johan

    2014-03-03

    The nano-scale spin torque oscillator (STO) is a compelling device for on-chip, highly tunable microwave frequency signal generation. Currently, one of the most important challenges for the STO is to increase its longer-time frequency stability by decreasing the 1/f frequency noise, but its high level makes even its measurement impossible using the phase noise mode of spectrum analyzers. Here, we present a custom made time-domain measurement system with 150 MHz measurement bandwidth making possible the investigation of the variation of the 1/f as well as the white frequency noise in a STO over a large set of operating points covering 18–25 GHz. The 1/f level is found to be highly dependent on the oscillation amplitude-frequency non-linearity and the vicinity of unexcited oscillation modes. These findings elucidate the need for a quantitative theoretical treatment of the low-frequency, colored frequency noise in STOs. Based on the results, we suggest that the 1/f frequency noise possibly can be decreased by improving the microstructural quality of the metallic thin films.

  1. A New and Improved Spin-Dependent Dark Matter Exclusion Limit Using the PICASSO Experiment

    NASA Astrophysics Data System (ADS)

    Clark, Kenneth John

    2008-12-01

    The PICASSO project is a direct dark matter search experiment located 2070 metres underground in SNOLAB. Superheated droplets of Freon (C4 F10) are used as the active mass, providing a target for the incoming neutralinos. Recoiling nuclei deposit energy in the superheated Freon droplets, triggering a phase transition, the pressure waves of which can be detected using piezo-electric sensors. Previously published limits using an exposure of 1.98+/-0.19 kg day obtained a peak spin-dependent cross section exclusion limit for neutralino-proton interactions of 1.31 pb at a neutralino mass of 29 GeV/c2 at a 90% confidence level (1). Improvements in the detectors installed in the underground experiment have provided 20.99+/-0.25 kg day for analysis and improvements in the analysis method have produced an exclusion limit of 2.9x10-2 pb at a neutralino mass of 16.7 GeV/c2. In addition, a thorough study of the backgrounds, corrections and systematic uncertainties has been included, indicating that this limit does not exceed 3.5x10-2 pb when considering the one sigma error on the uncertainty band.

  2. Co nanoelectrodes for the study of spin dependent transport through nano-objects

    NASA Astrophysics Data System (ADS)

    Grisolia, J.; Martin, C.; Ressier, L.; Gauffier, J.-L.; Respaud, M.; Peyrade, J.-P.; Vieu, C.

    2004-07-01

    In order to study the spin dependent transport mechanisms through a small collection of nano-objects, we propose an original fabrication process of ferromagnetic nanoelectrodes (NEs). It consists in etching, through a negative PMMA mask patterned by high-dose HREBL exposure, the continuous ferromagnetic layer deposited in optimal conditions by sputtering under ultra high vacuum into couples of planar nanoelectrodes (NEs) separated by a nanometric gap. The main advantage of this approach is to guarantee a priori a better crystalline and magnetic quality of the NEs. In this paper, we describe in detail the impact of various parameters such as the electron beam dose, the coded layout NE gap, the layer development, the inversed PMMA removal as well as the ion beam etching parameters …. Observations by scanning electron microscopy (SEM) and atomic force microscopy (AFM) reveal that a 270 nC cm -1 is required to reverse the PMMA tone and provide a strong etching mask. NE gap from 5 nm to several tens of nm were obtained in a reproducible way. Moreover, thanks to the micropads created by a first HREBL stage, the samples were electrically bonded to a gold base plate allowing low current electrical measurements. These measurements on Co NEs showed that 5-20 nm range separated gaps have resistance in the range of hundreds GΩ to TΩ. These measurements correlated with energy dispersive spectroscopy (EDS) observations demonstrate that this process provides well adapted systems for the investigation of nano-object electrical properties.

  3. Optical spin polarization and Hanle effect in GaAsSb: Temperature dependence

    SciTech Connect

    Qiu, Weiyang; Wang, Xingjun E-mail: luwei@mail.sitp.ac.cn; Chen, Pingping; Li, Ning; Lu, Wei E-mail: luwei@mail.sitp.ac.cn

    2014-08-25

    Continuous-wave optical orientation spectroscopy and the Hanle effect are used to investigate the optical spin polarization and spin dephasing time (gT{sub s}) in GaAsSb with a Sb concentration of ∼6% as a function of temperature. Optical and spin polarizations up to ∼21% were achieved at ∼120 K, and the scaled spin lifetime gT{sub s} decreased monotonously from ∼1.5 ns at 5 K to ∼20 ps at 200 K. We demonstrate that the spin properties of GaAs could be modified by incorporating a small percentage of Sb into it, as a result of an increase in the spin–orbit interactions.

  4. Theoretical study on spin-forbidden transitions of osmium complexes by two-component relativistic time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Imamura, Yutaka; Kamiya, Muneaki; Nakajima, Takahito

    2016-03-01

    We study spin-forbidden transitions of Os polypyridyl sensitizers by two-component relativistic time-dependent density functional theory with the spin-orbit interaction based on Tamm-Dancoff approximation. The absorption spectra, including spin-forbidden-transition peaks, for the Os complexes are reasonably reproduced in comparison with the experimental ones. The extension of the conjugated lengths in the Os complexes is investigated and found to be effective to enhance photo absorption for spin-allowed transitions as well as spin-forbidden ones. This study provides fruitful information for a design of new dyes in terms of conjugation lengths.

  5. A spin dependent recombination study of radiation induced defects at and near the Si/SiO sub 2 interface

    SciTech Connect

    Jupina, M.A.; Lenahan, P.M. )

    1989-12-01

    A new electron spin resonance technique, spin dependent recombination (SDR) permits extremely rapid, high signal to noise ratio electron spin resonance (ESR) measurements of electrically active radiation damage centers in (relatively) hard MOS transistors in integrated circuits. Using SDR the authors observe the radiation induced buildup of Pbo and E' centers at relatively low concentration in individual MOSFETs in integrated circuits with (100) silicon surface orientation. Earlier ESR studies of extremely large ({approximately}1 cm{sup 2}) capacitor structures have identified Pb and E' centers as the dominant radiation induced defects in MOS devices. The authors discuss how their results extend and confirm these earlier results and at least qualitatively answer objections to the earlier work related to the relevance of large capacitor studies to transistors in an integrated circuit.

  6. Dramatic impact of the giant local magnetic fields on spin-dependent recombination processes in gadolinium based garnets

    SciTech Connect

    Romanov, N. G. Tolmachev, D. O.; Gurin, A. S.; Uspenskaya, Yu. A.; Asatryan, H. R.; Badalyan, A. G.; Baranov, P. G.; Wieczorek, H.; Ronda, C.

    2015-06-29

    A giant magnetic field effect on spin-dependent recombination of the radiation-induced defects has been found in cerium doped gadolinium based garnet crystals and ceramics, promising materials for scintillator applications. A sharp and strong increase in the afterglow intensity stimulated by external magnetic field and an evidence of the magnetic field memory have been discovered. The effect was ascribed to huge Gd-induced internal magnetic fields, which suppress the recombination, and cross-relaxation with Gd{sup 3+} ions leading to reorientation of the spins of the electron and hole centers. Thus, the spin system of radiation-induced defects in gadolinium garnet based scintillator materials was shown to accumulate significant energy which can be released in external magnetic fields.

  7. Phase-dependent deterministic switching of magnetoelectric spin wave detector in the presence of thermal noise via compensation of demagnetization

    SciTech Connect

    Dutta, Sourav Naeemi, Azad; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2015-11-09

    The possibility of achieving phase-dependent deterministic switching of the magnetoelectric spin wave detector in the presence of thermal noise has been discussed. The proposed idea relies on the modification of the energy landscape by partially canceling the out-of-plane demagnetizing field and the resultant change in the intrinsic magnetization dynamics to drive the nanomagnet towards a preferential final magnetization state. The remarkable increase in the probability of successful switching can be accounted for by the shift in the location of the saddle point in the energy landscape and a resultant change in the nature of the relaxation dynamics of the magnetization from a highly precessional to a fairly damped one and an increased dependence on the initial magnetization values, a crucial requirement for phase-dependent spin wave detection.

  8. Spin-polarized hydrogen Rydberg time-of-flight: Experimental measurement of the velocity-dependent H atom spin-polarization

    SciTech Connect

    Broderick, Bernadette M.; Lee, Yumin; Doyle, Michael B.; Chernyak, Vladimir Y.; Suits, Arthur G.; Vasyutinskii, Oleg S.

    2014-05-15

    We have developed a new experimental method allowing direct detection of the velocity dependent spin-polarization of hydrogen atoms produced in photodissociation. The technique, which is a variation on the H atom Rydberg time-of-flight method, employs a double-resonance excitation scheme and experimental geometry that yields the two coherent orientation parameters as a function of recoil speed for scattering perpendicular to the laser propagation direction. The approach, apparatus, and optical layout we employ are described here in detail and demonstrated in application to HBr and DBr photolysis at 213 nm. We also discuss the theoretical foundation for the approach, as well as the resolution and sensitivity we achieve.

  9. Size-dependent magnetism in nanocrystals of spin-chain α-CoV2O6

    NASA Astrophysics Data System (ADS)

    Shu, H.; Ouyang, Z. W.; Sun, Y. C.; Ruan, M. Y.; Li, J. J.; Yue, X. Y.; Wang, Z. X.; Xia, Z. C.; Rao, G. H.

    2016-06-01

    Magnetization and high-field ESR measurements have been performed to study the magnetism of nanocrystals of α-CoV2O6, an Ising spin-chain system without triangular lattice but presenting interesting 1/3 magnetization step. The results demonstrated the antiferromagnetic (AFM) enhancement and gradual suppression of the 1/3 magnetization step in nanoparticle samples. Within the framework of core-shell model consisting of the AFM core spins and the uncompensated/disordered shell spins, the AFM enhancement below TN=13 K is a result of enhanced shell disorder with weak ferromagnetism. This AFM enhancement, along with the suppression of saturation magnetization, results in the suppression of 1/3 magnetization step. Furthermore, the paramagnetism of the shell was confirmed by our high-field ESR measurements. The time-dependent magnetization suggests the presence of spin-glass-like freezing. This is expected for nanoparticles with surface shell disorder with ferromagnetic correlations, but is not expected for bulk material of α-CoV2O6 without spin frustration. These findings demonstrate that size tuning is an effective parameter for controlling the ground state of α-CoV2O6.

  10. Investigation of organic magnetoresistance dependence on spin-orbit coupling using 8-hydroxyquinolinate rare-earth based complexes

    NASA Astrophysics Data System (ADS)

    Carvalho, R. S.; Costa, D. G.; Ávila, H. C.; Paolini, T. B.; Brito, H. F.; Capaz, Rodrigo B.; Cremona, M.

    2016-05-01

    The recently discovered organic magnetoresistance effect (OMAR) reveals the spin-dependent behavior of the charge transport in organic semiconductors. So far, it is known that hyperfine interactions play an important role in this phenomenon and also that spin-orbit coupling is negligible for light-atom based compounds. However, in the presence of heavy atoms, spin-orbit interactions should play an important role in OMAR. It is known that these interactions are responsible for singlet and triplet states mixing via intersystem crossing and the change of spin-charge relaxation time in the charge mobility process. In this work, we report a dramatic change in the OMAR effect caused by the presence of strong intramolecular spin-orbit coupling in a series of rare-earth quinolate organic complex-based devices. Our data show a different OMAR lineshape compared with the OMAR lineshape of tris(8-hydroxyquinolinate) aluminum-based devices, which are well described in the literature. In addition, electronic structure calculations based on density functional theory help to establish the connection between this results and the presence of heavy central ions in the different complexes.

  11. First-principles study of spin-dependent thermoelectric properties of half-metallic Heusler thin films between platinum leads

    NASA Astrophysics Data System (ADS)

    Comtesse, Denis; Geisler, Benjamin; Entel, Peter; Kratzer, Peter; Szunyogh, László

    2014-03-01

    The electronic and magnetic bulk properties of half-metallic Heusler alloys such as Co2FeSi,Co2FeAl, Co2MnSi, and Co2MnAl are investigated by means of ab initio calculations in combination with Monte Carlo simulations. The electronic structure is analyzed using the plane-wave code quantum espresso and the magnetic exchange interactions are determined using the Korringa-Kohn-Rostoker (KKR) method. From the magnetic exchange interactions, the Curie temperature is obtained via Monte Carlo simulations. In addition, electronic transport properties of trilayer systems consisting of two semi-infinite platinum leads and a Heusler layer in-between are obtained from the fully relativistic screened KKR method by employing the Kubo-Greenwood formalism. The focus is on thermoelectric properties, namely, the Seebeck effect and its spin dependence. It turns out that already thin Heusler layers provide highly spin-polarized currents. This is attributed to the recovery of half-metallicity with increasing layer thickness. The absence of electronic states of spin-down electrons around the Fermi level suppresses the contribution of this spin channel to the total conductance, which strongly influences the thermoelectric properties and results in a spin polarization of thermoelectric currents.

  12. Maximum magnitude in bias-dependent spin accumulation signals of CoFe/MgO/Si on insulator devices

    SciTech Connect

    Ishikawa, M. Sugiyama, H.; Inokuchi, T.; Tanamoto, T.; Saito, Y.; Hamaya, K.; Tezuka, N.

    2013-12-28

    We study in detail how the bias voltage (V{sub bias}) and interface resistance (RA) depend on the magnitude of spin accumulation signals (|ΔV| or |ΔV|/I, where I is current) as detected by three-terminal Hanle measurements in CoFe/MgO/Si on insulator (SOI) devices with various MgO layer thicknesses and SOI carrier densities. We find the apparent maximum magnitude of spin polarization as a function of V{sub bias} and the correlation between the magnitude of spin accumulation signals and the shape of differential conductance (dI/dV) curves within the framework of the standard spin diffusion model. All of the experimental results can be explained by taking into account the density of states (DOS) in CoFe under the influence of the applied V{sub bias} and the quality of MgO tunnel barrier. These results indicate that it is important to consider the DOS of the ferromagnetic materials under the influence of an applied V{sub bias} and the quality of tunnel barrier when observing large spin accumulation signals in Si.

  13. Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides.

    PubMed

    Wang, Meng; Zhang, Chenglin; Lu, Xingye; Tan, Guotai; Luo, Huiqian; Song, Yu; Wang, Miaoyin; Zhang, Xiaotian; Goremychkin, E A; Perring, T G; Maier, T A; Yin, Zhiping; Haule, Kristjan; Kotliar, Gabriel; Dai, Pengcheng

    2013-01-01

    High-temperature superconductivity in iron pnictides occurs when electrons and holes are doped into their antiferromagnetic parent compounds. Since spin excitations may be responsible for electron pairing and superconductivity, it is important to determine their electron/hole-doping evolution and connection with superconductivity. Here we use inelastic neutron scattering to show that while electron doping to the antiferromagnetic BaFe₂As₂ parent compound modifies the low-energy spin excitations and their correlation with superconductivity (<50 meV) without affecting the high-energy spin excitations (>100 meV), hole-doping suppresses the high-energy spin excitations and shifts the magnetic spectral weight to low-energies. In addition, our absolute spin susceptibility measurements for the optimally hole-doped iron pnictide reveal that the change in magnetic exchange energy below and above T(c) can account for the superconducting condensation energy. These results suggest that high-T(c) superconductivity in iron pnictides is associated with both the presence of high-energy spin excitations and a coupling between low-energy spin excitations and itinerant electrons.

  14. Structure-Dependent Spin Polarization in Polymorphic CdS:Y Semiconductor Nanocrystals.

    PubMed

    Wang, Pan; Xiao, Bingxin; Zhao, Rui; Ma, Yanzhang; Zhang, Mingzhe

    2016-03-01

    Searching for the polymorphic semiconductor nanocrystals would provide precise and insightful structure-spin polarization correlations and meaningful guidance for designing and synthesizing high spin-polarized spintronic materials. Herein, the high spin polarization is achieved in polymorphic CdS:Y semiconductor nanocrystals. The high-pressure polymorph of rock-salt CdS:Y nanocrystals has been recovered at ambient conditions synthesized by the wurtzite CdS:Y nanocrystals as starting material under 5.2 GPa and 300 °C conditions. The rock-salt CdS:Y polymorph displays more robust room-temperature ferromagnetism than wurtzite sample, which can reach the ferromagnetic level of conventional semiconductors doped with magnetic transition-metal ions, mainly due to the significantly enhanced spin configuration and defect states. Therefore, crystal structure directly governs the spin configuration, which determines the degree of spin polarization. This work can provide experimental and theoretical methods for designing the high spin-polarized semiconductor nanocrystals, which is important for applications in semiconductor spintronics. PMID:26905093

  15. Structure-Dependent Spin Polarization in Polymorphic CdS:Y Semiconductor Nanocrystals.

    PubMed

    Wang, Pan; Xiao, Bingxin; Zhao, Rui; Ma, Yanzhang; Zhang, Mingzhe

    2016-03-01

    Searching for the polymorphic semiconductor nanocrystals would provide precise and insightful structure-spin polarization correlations and meaningful guidance for designing and synthesizing high spin-polarized spintronic materials. Herein, the high spin polarization is achieved in polymorphic CdS:Y semiconductor nanocrystals. The high-pressure polymorph of rock-salt CdS:Y nanocrystals has been recovered at ambient conditions synthesized by the wurtzite CdS:Y nanocrystals as starting material under 5.2 GPa and 300 °C conditions. The rock-salt CdS:Y polymorph displays more robust room-temperature ferromagnetism than wurtzite sample, which can reach the ferromagnetic level of conventional semiconductors doped with magnetic transition-metal ions, mainly due to the significantly enhanced spin configuration and defect states. Therefore, crystal structure directly governs the spin configuration, which determines the degree of spin polarization. This work can provide experimental and theoretical methods for designing the high spin-polarized semiconductor nanocrystals, which is important for applications in semiconductor spintronics.

  16. Distance measurements across randomly distributed nitroxide probes from the temperature dependence of the electron spin phase memory time at 240 GHz

    NASA Astrophysics Data System (ADS)

    Edwards, Devin T.; Takahashi, Susumu; Sherwin, Mark S.; Han, Songi

    2012-10-01

    At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (TM) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of TM to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r¯=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r, which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n for nitroxides tethered to a quasi two-dimensional surface of large (Ø ˜ 200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization.

  17. Distance measurements across randomly distributed nitroxide probes from the temperature dependence of the electron spin phase memory time at 240 GHz.

    PubMed

    Edwards, Devin T; Takahashi, Susumu; Sherwin, Mark S; Han, Songi

    2012-10-01

    At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (T(M)) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of T(M) to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r(3), which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n(32) for nitroxides tethered to a quasi two-dimensional surface of large (Ø∼200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization.

  18. Prediction of spin-dependent electronic structure in 3d-transition-metal doped antimonene

    NASA Astrophysics Data System (ADS)

    Yang, L. F.; Song, Y.; Mi, W. B.; Wang, X. C.

    2016-07-01

    We investigate the geometric structure and electronic and magnetic properties of 3d-transition-metal atom doped antimonene using spin-polarized first-principles calculations. Strong orbital hybridization exhibits between 3d-transition-metal and Sb atoms, where covalent bonds form in antimonene. A spin-polarized semiconducting state appears in Cr-doped antimonene, while half-metallic states appear by doping Ti, V, and Mn. These findings indicate that once combined with doping states, the bands of antimonene systems offer a variety of features. Specific dopants lead to half-metallic characters with high spin polarization that has potential application in spintronics.

  19. Modeling of Temperature Dependence of Magnetization in TbFe Films — An Atomistic Spin Simulation Study

    NASA Astrophysics Data System (ADS)

    Jiao, Xiankai; Zhang, Zongzhi; Liu, Yaowen

    2016-04-01

    In this paper, we performed spin simulations at atomistic level to study the temperature dependent properties of perpendicularly magnetized TbFe thin films. The crystallographically amorphous feature of TbFe ferrimagnetic alloys is modeled by using a lattice system with disordered site occupation of rare earth (RE) and transition metal (TM) spins. The simulated Curie temperature (TC) is consistent well with the mean-field approximation theory. With the increase of Tb concentration, the TC decreases almost linearly, whereas the magnetization compensation temperature (TM) increases gradually until the TC value is reached. The inter-sublattice exchange coupling strength JTM-RE between the RE and TM atoms can significantly affect TM, but has less impact on TC. With the increase of Tb concentration, the TbFe sample of high JTM-RE exhibits a much faster increase in TM than the sample with low JTM-RE. Moreover, we have tested the simulation code to model the laser pulse induced ultrafast nonequilibrium spin dynamics. As an example, the femto-second pulse laser induced demagnetization and recovery process is clearly reproduced. These features are in a good agreement with the experiments, indicating that the simulation model can capture the basic physics in describing the high temperature dependent magnetic property as well as the ultrafast spin dynamics.

  20. Photon energy dependence of photo-induced inverse spin-Hall effect in Pt/GaAs and Pt/Ge

    SciTech Connect

    Isella, Giovanni Bottegoni, Federico; Ferrari, Alberto; Finazzi, Marco; Ciccacci, Franco

    2015-06-08

    We report the photon energy dependence of photo-induced inverse spin Hall effect (ISHE) in Pt/GaAs and Pt/Ge Schottky junctions. The experimental results are compared with a spin drift-diffusion model, which highlights the role played by the different spin lifetime in the two semiconductors, in determining the energy dependence of the ISHE signal detected in the Pt layer. The good qualitative agreement between experiments and modelling indicates that photo-induced ISHE can be used as a tool to characterize spin lifetime in semiconductors.

  1. Spin-dependent recombination in GaAs1- x N x alloys at oblique magnetic field

    NASA Astrophysics Data System (ADS)

    Ivchenko, E. L.; Bakaleinikov, L. A.; Afanasiev, M. M.; Kalevich, V. K.

    2016-08-01

    We have studied experimentally and theoretically the optical orientation and spin-dependent Shockley-Read-Hall recombination in a semiconductor in a magnetic field at an arbitrary angle α between the field and circularly polarized exciting beam. The experiments are performed at room temperature in GaAs1- x N x alloys where deep paramagnetic centers are responsible for the spin-dependent recombination. The observed magnetic-field dependences of the circular polarization ρ( B) and intensity J( B) of photoluminescence can be approximately presented as a superposition of two Lorentzian contours, normal and inverted, with their half-widths differing by an order of magnitude. The normal, narrow, Lorentzian contour is associated with depolarization of the transverse (to the field) component of spin polarization of the localized electrons, whereas the inverted, broad, Lorentzian is due to suppression of the hyperfine interaction of the localized electron with the own nucleus of the defect. The ratio between the height of one Lorentzian and depth of the other is governed by the field tilt angle α. In contrast to the hyperfine interaction of a shallow-donor-bound electron with a large number of nuclei of the crystal lattice, in the optical orientation of the electron-nuclear system under study no additional narrow peak appears in the oblique field. This result demonstrates that in the GaAsN alloys the hyperfine interaction of the localized electron with the single nucleus of the paramagnetic center remains strong even at room temperature. For a theoretical description of the experiment, we have extended the theory of spin-dependent recombination via deep paramagnetic centers with the nuclear angular momentum I = 1/2 developed previously for the particular case of the longitudinal field. The calculated curves ρ( B), J( B) agree with the approximate description of the experimental dependences as a sum of two Lorentzians, and an additional narrow shifted peak does not

  2. Precision Measurement of the Spin-dependent Asymmetry in the Threshold Region of Quasielastic 3He

    SciTech Connect

    Feng Xiong

    2002-09-01

    The first precision measurement of the spin-dependent asymmetry in the threshold region of polarized {sup 3}He(polarized e, e') was carried out in Hall A at the Jefferson Laboratory, using a longitudinally polarized continuous electron beam incident on a high-pressure polarized {sup 3}He gas target. The polarized electron beam was generated by illuminating a strained GaAs cathode with high intensity circularly polarized laser light, and an average beam polarization of about 70% was achieved. The {sup 3}He target was polarized based on the principle of spin-exchange optical pumpint and the average target polarization was about 30%. The scattered electrons were detected in the two Hall A high resolution spectrometers, HRSe and HRSh. The data from HRSh were used for this analysis and covered both the elastic peak and the threshold region. Two kinematic points were measured in the threshold region, one with a central Q{sup 2}-value of 0.1 (GeV/c){sup 2} at an incident beam energy E{sub 0} = 0.778 GeV and the other with a central Q{sup 2}-value of 0.2 (GeV/c){sup 2} at E-0 = 1.727 GeV. The average beam current was 10 mu-A, which was mainly due to the limitation of the polarized {sup 3}He target. The measured asymmetry was compared with both plane wave impulse approximation (PWIA) calculations and non-relativistic full Faddeev calculations which include both final-state interactions (FSIs) and meson-exchange currents (MECs) effects. The poor description of the data by PWIA calculations at both Q{sup 2}-values suggests the existence of strong FSI and MEC effects in the threshold region of polarized {sup 3}He (polarized e, e'). Indeed, the agreement between the data and full calculations is very good at Q{sup 2} = 0.1 (GeV/c){sup 2}. On the other hand, a small discrepancy at Q{sup 2} = 0.2 (GeV/c){sup 2} is observed, which might be due to some Q{sup 2} -dependent effects such as relativity and three-nucleon forces (3NFs), which are not included in the framework of non

  3. Antidamping spin-orbit torque driven by spin-flip reflection mechanism on the surface of a topological insulator: A time-dependent nonequilibrium Green function approach

    NASA Astrophysics Data System (ADS)

    Mahfouzi, Farzad; Nikolić, Branislav K.; Kioussis, Nicholas

    2016-03-01

    Motivated by recent experiments observing spin-orbit torque (SOT) acting on the magnetization m ⃗ of a ferromagnetic (F) overlayer on the surface of a three-dimensional topological insulator (TI), we investigate the origin of the SOT and the magnetization dynamics in such systems. We predict that lateral F/TI bilayers of finite length, sandwiched between two normal metal leads, will generate a large anti-damping-like SOT per very low charge current injected parallel to the interface. The large values of anti-damping-like SOT are spatially localized around the transverse edges of the F overlayer. Our analysis is based on adiabatic expansion (to first order in ∂ m ⃗/∂ t ) of time-dependent nonequilibrium Green functions (NEGFs), describing electrons pushed out of equilibrium both by the applied bias voltage and by the slow variation of a classical degree of freedom [such as m ⃗(t ) ]. From it we extract formulas for spin torque and charge pumping, which show that they are reciprocal effects to each other, as well as Gilbert damping in the presence of SO coupling. The NEGF-based formula for SOT naturally splits into four components, determined by their behavior (even or odd) under the time and bias voltage reversal. Their complex angular dependence is delineated and employed within Landau-Lifshitz-Gilbert simulations of magnetization dynamics in order to demonstrate capability of the predicted SOT to efficiently switch m ⃗ of a perpendicularly magnetized F overlayer.

  4. Inelastic dark matter with spin-dependent couplings to protons and large modulation fractions in DAMA

    NASA Astrophysics Data System (ADS)

    Scopel, Stefano; Yoon, Kook-Hyun

    2016-02-01

    We discuss a scenario where the DAMA modulation effect is explained by a Weakly Interacting Massive Particle (WIMP) which upscatters inelastically to a heavier state and predominantly couples to the spin of protons. In this scenario constraints from xenon and germanium targets are evaded dynamically, due to the suppression of the WIMP coupling to neutrons, while those from fluorine targets are evaded kinematically, because the minimal WIMP incoming speed required to trigger upscatters off fluorine exceeds the maximal WIMP velocity in the Galaxy, or is very close to it. In this scenario WIMP scatterings off sodium are usually sensitive to the large-speed tail of the WIMP velocity distribution and modulated fractions of the signal close to unity arise in a natural way. On the other hand, a halo-independent analysis with more conservative assumptions about the WIMP velocity distribution allows to extend the viable parameter space to configurations where large modulated fractions are not strictly necessary. We discuss large modulated fractions in the Maxwellian case showing that they imply a departure from the usual cosine time dependence of the expected signal in DAMA. However we explicitly show that the DAMA data is not sensitive to this distortion, both in time and frequency space, even in the extreme case of a 100 % modulated fraction. Moreover the same scenario provides an explanation of the maximum in the energy spectrum of the modulation amplitude detected by DAMA in terms of WIMPs whose minimal incoming speed matches the kinematic threshold for inelastic upscatters. For the elastic case the detection of such maximum suggests an inversion of the modulation phase below the present DAMA energy threshold, while this is not expected for inelastic scattering. This may allow to discriminate between the two scenarios in a future low-threshold analysis of the DAMA data.

  5. Precision Measurement of the Neutron Spin Asymmetries and Spin-dependent Structure Functions in the Valence Quark Region

    SciTech Connect

    Xiaochao Zheng; Konrad Aniol; David Armstrong; Todd Averett; William Bertozzi; Sebastien Binet; Etienne Burtin; Emmanuel Busato; Cornel Butuceanu; John Calarco; Alexandre Camsonne; Gordon Cates; Zhengwei Chai; Jian-ping Chen; Seonho Choi; Eugene Chudakov; Francesco Cusanno; Raffaele De Leo; Alexandre Deur; Sonja Dieterich; Dipangkar Dutta; John Finn; Salvatore Frullani; Haiyan Gao; Juncai Gao; Franco Garibaldi; Shalev Gilad; Ronald Gilman; Javier Gomez; Jens-ole Hansen; Douglas Higinbotham; Wendy Hinton; Tanja Horn; Cornelis De Jager; Xiaodong Jiang; Lisa Kaufman; James Kelly; Wolfgang Korsch; Kevin Kramer; John Lerose; David Lhuillier; Nilanga Liyanage; Demetrius Margaziotis; Frederic Marie; Pete Markowitz; Kathy Mccormick; Zein-eddine Meziani; Robert Michaels; Bryan Moffit; Sirish Nanda; Damien Neyret; Sarah Phillips; Anthony Powell; Thierry Pussieux; Bodo Reitz; Julie Roche; Michael Roedelbronn; Guy Ron; Marat Rvachev; Arunava Saha; Nikolai Savvinov; Jaideep Singh; Simon Sirca; Karl Slifer; Patricia Solvignon; Paul Souder; Daniel Steiner; Steffen Strauch; Vincent Sulkosky; William Tobias; Guido Urciuoli; Antonin Vacheret; Bogdan Wojtsekhowski; Hong Xiang; Yuan Xiao; Feng Xiong; Bin Zhang; Lingyan Zhu; Xiaofeng Zhu; Piotr Zolnierczuk

    2004-05-01

    We report on measurements of the neutron spin asymmetries A{sub 1,2}{sup n} and polarized structure functions g{sub 1,2}{sup n} at three kinematics in the deep inelastic region, with x = 0.33, 0.47 and .60 and Q{sub 2} = 2.7, 3.5 and 4.8 (GeV/c){sup 2}, respectively. These measurements were performed using a 5.7 GeV longitudinally-polarized electron beam and a polarized {sup 3}He target. The results for A{sub 1}{sup n} and g{sub 1}{sup n} at x = 0.33 are consistent with previous world data and, at the two higher x points, have improved the precision of the world data by about an order of magnitude. The new A{sub 1}{sup n} data show a zero crossing around x = 0.47 and the value at x = 0.60 is significantly positive. These results agree with a next-to-leading order QCD analysis of previous world data. The trend of data at high x agrees with constituent quark model predictions but disagrees with that from leading-order perturbative QCD (pQCD) assuming hadron helicity conservation. Results for A{sub 2}{sup n} and g{sub 2}{sup n} have a precision comparable to the best world data in this kinematic region. Combined with previous world data, the moment d{sub 2}{sup n} was evaluated and the new result has improved the precision of this quantity by about a factor of two. When combined with the world proton data, polarized quark distribution functions were extracted from the new g{sub 1}{sup n}/F{sub 1}{sup n} values based on the quark parton model. While results for {Delta}u/u agree well with predictions from various models, results for {Delta}d/d disagree with the leading-order pQCD prediction when hadron helicity conservation is imposed.

  6. Size-dependent magnetic ordering and spin dynamics in DyPO4 and GdPO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Evangelisti, Marco; Sorop, Tibi G.; Bakharev, Oleg N.; Visser, Dirk; Hillier, Adrian D.; Alonso, Juan J.; Haase, Markus; Boatner, Lynn A.; Jos de Jongh, L.

    2011-09-01

    Low-temperature magnetic susceptibility and heat-capacity measurements on nanoparticles (d≈ 2.6 nm) of the antiferromagnetic compounds DyPO4 (TN=3.4 K) and GdPO4 (TN=0.77 K) provide clear demonstrations of finite-size effects, which limit the divergence of the magnetic correlation lengths, thereby suppressing the bulk long-range magnetic ordering transitions. Instead, the incomplete antiferromagnetic order inside the particles leads to the formation of net magnetic moments on the particles. For the nanoparticles of Ising-type DyPO4 superparamagnetic blocking is found in the ac susceptibility at ≃1 K, those of the XY-type GdPO4 analog show a dipolar spin-glass transition at ≃0.2 K. Monte Carlo simulations for the magnetic heat capacities of both bulk and nanoparticle samples are in agreement with the experimental data. Strong size effects are also apparent in the Dy3+ and Gd3+ spin dynamics, which were studied by zero-field muon spin rotation (μSR) and high-field 31P-nuclear magnetic resonance (31P-NMR) nuclear relaxation measurements. The freezing transitions observed in the ac susceptibility of the nanoparticles also appear as peaks in the temperature dependence of the zero-field μSR rates, but at slightly higher temperatures, as to be expected from the higher frequency of the muon probe. For both bulk and nanoparticles of GdPO4, the muon and 31P-NMR rates are for T⩾5 K dominated by exchange-narrowed hyperfine broadening arising from the electron spin-spin interactions inside the particles. The dipolar hyperfine interactions acting on the muons and the 31P are, however, much reduced in the nanoparticles. For the DyPO4 analogs the high-temperature rates appear to be fully determined by electron spin-lattice relaxation processes.

  7. NMR spin-spin coupling constants: bond angle dependence of the sign and magnitude of the vicinal (3)JHF coupling.

    PubMed

    Viesser, Renan V; Ducati, Lucas C; Autschbach, Jochen; Tormena, Cláudio F

    2016-08-24

    The dependence of the magnitude and sign of (3)JHFF on the bond angle in fluoro-cycloalkene compounds is evaluated by electronic structure calculations using different levels of theory, viz. DFT, SOPPA(CCSD) and SOPPA(CC2). Localized molecular orbital contributions to (3)JHFF are analyzed to assess which orbitals are responsible for (3)JHFF and which are the most important coupling transmission mechanisms for each compound. Fluoro-ethylene is used as a model system to evaluate the dependence of the (3)JHFF coupling constant on the angle between the σCα-F and σCα'-HF vectors. Through-space and hyperconjugative transmission pathways and ring strain are identified as responsible for the opposite trend between (3)JHFF and bond angle, and for the negative signs obtained for the two molecules, respectively. One of the fluorine lone pairs, σCα'-HF, σCα-F, σCα'-Cβ' bonding orbitals and the σ*Cα-F antibonding orbital are involved in the J-coupling pathways, according to analyses of pairwise-steric and hyperconjugative energies. PMID:27526856

  8. NMR spin-spin coupling constants: bond angle dependence of the sign and magnitude of the vicinal (3)JHF coupling.

    PubMed

    Viesser, Renan V; Ducati, Lucas C; Autschbach, Jochen; Tormena, Cláudio F

    2016-08-24

    The dependence of the magnitude and sign of (3)JHFF on the bond angle in fluoro-cycloalkene compounds is evaluated by electronic structure calculations using different levels of theory, viz. DFT, SOPPA(CCSD) and SOPPA(CC2). Localized molecular orbital contributions to (3)JHFF are analyzed to assess which orbitals are responsible for (3)JHFF and which are the most important coupling transmission mechanisms for each compound. Fluoro-ethylene is used as a model system to evaluate the dependence of the (3)JHFF coupling constant on the angle between the σCα-F and σCα'-HF vectors. Through-space and hyperconjugative transmission pathways and ring strain are identified as responsible for the opposite trend between (3)JHFF and bond angle, and for the negative signs obtained for the two molecules, respectively. One of the fluorine lone pairs, σCα'-HF, σCα-F, σCα'-Cβ' bonding orbitals and the σ*Cα-F antibonding orbital are involved in the J-coupling pathways, according to analyses of pairwise-steric and hyperconjugative energies.

  9. Size dependence of electron spin dephasing in InGaAs quantum dots

    SciTech Connect

    Huang, Y. Q.; Puttisong, Y.; Buyanova, I. A.; Chen, W. M.; Yang, X. J.; Subagyo, A.; Sueoka, K.; Murayama, A.

    2015-03-02

    We investigate ensemble electron spin dephasing in self-assembled InGaAs/GaAs quantum dots (QDs) of different lateral sizes by employing optical Hanle measurements. Using low excitation power, we are able to obtain a spin dephasing time T{sub 2}{sup *} (in the order of ns) of the resident electron after recombination of negative trions in the QDs. We show that T{sub 2}{sup *} is determined by the hyperfine field arising from the frozen fluctuation of nuclear spins, which scales with the size of QDs following the Merkulov-Efros-Rosen model. This scaling no longer holds in large QDs, most likely due to a breakdown in the lateral electron confinement.

  10. Full quantum treatment of spin-dependent beam-beam processes at linear colliders

    NASA Astrophysics Data System (ADS)

    Hartin, Anthony

    2011-05-01

    Depolarisation processes at future linear colliders need to be understood as precisely as possible. To that end a theoretical consideration of the spin flip process and its radiative corrections is presented here. The spin flip process contains a divergence and it is useful to repeat the calculation of its transition rate using a coordinate system which makes the physical nature of the divergence apparent. It is argued that the radiative corrections to the spin flip process should be considered within the Furry Picture. The Electron Self Energy in the external field is being explicitly re-examined in order to establish the presence of UV divergences and the procedure required to remove them. A calculation of the Vertex Correction in an external field is being performed and results obtained so far for special kinematics are consistent with known results.

  11. Solvate-dependent spin crossover and exchange in cobalt(II) oxazolidine nitroxide chelates.

    PubMed

    Gass, Ian A; Tewary, Subrata; Rajaraman, Gopalan; Asadi, Mousa; Lupton, David W; Moubaraki, Boujemaa; Chastanet, Guillaume; Létard, Jean-Francois; Murray, Keith S

    2014-05-19

    Two oxazolidine nitroxide complexes of cobalt(II), [Co(II)(L(•))2](B(C6F5)4)2·CH2Cl2 (1) and [Co(II)(L(•))2](B(C6F5)4)2·2Et2O (2), where, L(•) is the tridentate chelator 4,4-dimethyl-2,2-bis(2-pyridyl)oxazolidine N-oxide, have been investigated by crystallographic, magnetic, reflectivity, and theoretical (DFT) methods. This work follows on from a related study on [Co(II)(L(•))2](NO3)2 (3), a multifunctional complex that simultaneously displays magnetic exchange, spin crossover, and single molecule magnetic features. Changing the anion and the nature of solvation in the present crystalline species leads to significant differences, not only between 1 and 2 but also in comparison to 3. Structural data at 123 and 273 K, in combination with magnetic data, show that at lower temperatures 1 displays low-spin Co(II)-to-radical exchange with differences in fitted J values in comparison to DFT (broken symmetry) calculated J values ascribed to the sensitive influence of a tilt angle (θ) formed between the Co(dz(2)) and the trans-oriented O atoms of the NO radical moieties in L(•). Spin crossover in 1 is evident at higher temperatures, probably influenced by the solvate molecules and crystal packing arrangement. Complex 2 remains in the high-spin Co(II) state between 2 and 350 K and undergoes antiferromagnetic exchange between Co-radical and radical-radical centers, but it is difficult to quantify. Calculations of the magnetic orbitals, eigenvalue plots, and the spin densities at the Co and radical sites in 1 and 2 have yielded satisfying details on the mechanism of metal-radical and radical-radical exchange, the radical spins being in π*NO orbitals.

  12. Theory of antisymmetric spin-pair-dependent electric polarization in multiferroics

    NASA Astrophysics Data System (ADS)

    Miyahara, S.; Furukawa, N.

    2016-01-01

    We investigate magnetoelectric couplings between an electric polarization and an antisymmetric spin pair, Si×Sj , in a multiorbital Hubbard model on a distorted lattice. We microscopically derive a generic form of the electric polarization, pAS=d ̂(Si×Sj) , with a tensor, d ̂, which includes the electric polarization induced by the Katsura-Nagaosa-Balatsky formula as a subset. The origin and nature of these magnetoelectric couplings are clarified in a unified way; the results indicate that various noncollinear magnetic structures, such as canted antiferromagnetic, proper screw, and 120∘ spin structures, show multiferroic behaviors owing to non-Katsura-Nagaosa-Balatsky coupling.

  13. Cerebrovascular Reactivity Measured with Arterial Spin Labeling and Blood Oxygen Level Dependent Techniques

    PubMed Central

    Zhou, Yongxia; Rodgers, Zachary B.; Kuo, Anderson H.

    2015-01-01

    Purpose To compare cerebrovascular reactivity (CVR) quantified with pseudo-continuous arterial spin labeling (pCASL) and blood oxygen level dependent (BOLD) fMRI techniques. Materials and Methods Sixteen healthy volunteers (age: 37.8±14.3 years; 6 women and 10 men; education attainment: 17+2.1 years) were recruited and completed a 5% CO2 gas-mixture breathing paradigm at 3T field strength. ASL and BOLD images were acquired for CVR determination assuming that mild hypercapnia does not affect the cerebral metabolic rate of oxygen. Both CVR quantifications were derived as the ratio of the fractional cerebral blood flow (CBF) or BOLD signal change over the change in end-tidal CO2 pressure. Results The absolute CBF, BOLD and CVR measures were consistent with literature values. CBF derived CVR was 5.11 ± 0.87%/mmHg in gray matter (GM) and 4.64 ± 0.37%/mmHg in parenchyma. BOLD CVR was 0.23±0.04 %/mmHg and 0.22±0.04 %/mmHg for GM and parenchyma respectively. The most significant correlations between BOLD and CBF-based CVRs were also in GM structures, with greater vascular response in occipital cortex than in frontal and parietal lobes (6.8 %/mmHg versus 4.5 %/mmHg, 50% greater). Parenchymal BOLD CVR correlated significantly with the fractional change in CBF in response to hypercapnia (r=0.61, P=0.01), suggesting the BOLD response to be significantly flow driven. GM CBF decreased with age in room air (-5.58 mL/100g/min per decade for GM; r=-0.51, P=0.05), but there was no association of CBF with age during hypercapnia. A trend toward increased pCASL CVR with age was observed, scaling as 0.64 %/mmHg per decade for GM. Conclusion Consistent with previously reported CVR values, our results suggest that BOLD and CBF CVR techniques are complementary to each other in evaluating neuronal and vascular underpinning of hemodynamic processes. PMID:25708263

  14. Computational Studies of Condensed Matter Systems: Manganese Vanadium Oxide and 2D attractive Hubbard model with spin-dependent disorder

    NASA Astrophysics Data System (ADS)

    Nanguneri, Ravindra

    In this dissertation, we describe two projects, organized into two chapters, which comprise the study of condensed matter systems using self-consistent mean-field theories. In the first chapter, we study the exchange constants of MnV2O 4 using linear response, based on the magnetic force theorem (MFT), and the LSDA+U approximation of DFT in the LMTO basis. We obtain the exchanges for three different orbital orderings of the Vanadium atoms of the spinel. We then map the exchange constants to a Heisenberg model with single-ion anisotropy and solve for the spin-wave excitations in the non-collinear, low temperature phase of the spinel. The single-ion anisotropy parameters are obtained from an atomic multiplet exact-diagonalization program, taking into effect the crystal-field (CF) splitting and the spin-orbit coupling (SOC). We find good agreement between the spin-waves of one of our orbital ordered setups with previously reported experimental spin-waves as determined by neutron-scattering. We can therefore determine the correct orbital order (OO) from various proposals. In the second chapter, we show that the presence of a spin-dependent random potential in a superconductor or a superfluid atomic gas leads to distinct transitions at which the energy gap and average order parameter vanish, generating an intermediate gapless superfluid phase, in marked contrast to the case of spin-symmetric randomness where no such gapless superfluid phase is seen. By allowing the pairing amplitude to become inhomogeneous, the gapless superconducting phase persists to considerably higher disorder compared to the much earlier prediction of Abrikosov-Gor'kov. The low-lying excited states are located predominantly in regions where the pairing amplitude vanishes and coexist with the superfluid regions with a finite pairing. Our results are based on inhomogeneous Bogoliubov-de Gennes (BdG) mean field theory for a two dimensional attractive Hubbard model with spin-dependent

  15. Size-dependent magnetic ordering and spin-dynamics in DyPO4 and GdPO4 nanoparticles

    SciTech Connect

    Evangelisti, Marco; Sorop, Tibi G; Bakharev, Oleg N; Visser, Dirk; Hillier, Adrian D.; Alonso, Juan; Haase, Markus; Boatner, Lynn A; De Jongh, L. Jos

    2011-01-01

    Low-temperature magnetic susceptibility and heat capacity measurements on nanoparticles (d 2.6 nm) of the antiferromagnetic compounds DyPO4 (TN = 3:4 K) and GdPO4 (TN = 0:77 K) provide clear demonstrations of finite-size effects, which limit the divergence of the magnetic correlation lengths, thereby suppressing the bulk long-range magnetic ordering transitions. Instead, the incomplete antiferromagnetic order inside the particles leads to the formation of net magnetic moments on the particles. For the nanoparticles of Ising-type DyPO4 superparamagnetic blocking is found in the ac-susceptibility at 1 K, those of the XY-type GdPO4 analogue show a dipolar spin-glass transition at 0:2 K. Monte Carlo simulations for the magnetic heat capacities of both bulk and nanoparticle samples are in agreement with the experimental data. Strong size effects are also apparent in the Dy3+ and Gd3+ spin-dynamics, which were studied by zero-field SR relaxation and high-field 31P-NMR nuclear relaxation measurements. The freezing transitions observed in the ac-susceptibility of the nanoparticles also appear as peaks in the temperature dependence of the zero-field SR rates, but at slightly higher temperatures - as to be expected from the higher frequency of the muon probe. For both bulk and nanoparticles of GdPO4, the muon and 31P-NMR rates are for T 5 K dominated by exchange-narrowed hyperfine broadening arising from the electron spin-spin interactions inside the particles. The dipolar hyperfine interactions acting on the muons and the 31P are, however, much reduced in the nanoparticles. For the DyPO4 analogues the high-temperature rates appear to be fully determined by electron spin-lattice relaxation processes.

  16. Hyperfine transitions in He-like ions as a tool for nuclear-spin-dependent parity-nonconservation studies

    SciTech Connect

    Ferro, Fabrizio; Surzhykov, Andrey; Stoehlker, Thomas

    2011-05-15

    In this paper a scheme is proposed for measuring nuclear-spin-dependent parity-nonconservation effects in highly charged ions. The idea is to employ circularly polarized laser light for inducing the transition between the level (1s2s){sup 1}S{sub 0} and the hyperfine sublevels of (1s2s){sup 3}S{sub 1} in He-like ions with nonzero nuclear spin. We argue that an interference between the allowed magnetic dipole M1 and the parity-violating electric dipole E1 decay channel leads to an observable asymmetry of order 10{sup -7} in the transition cross section, in the atomic range 28{<=}Z{<=}35. Experimental requirements for asymmetry measurements are discussed in the case of He-like {sub 34}{sup 77}Se.

  17. Spin-dependent Otto quantum heat engine based on a molecular substance

    NASA Astrophysics Data System (ADS)

    Hübner, Wolfgang; Lefkidis, Georgios; Dong, Chuanding; Chaudhuri, Debapriya; Chotorlishvili, Levan; Berakdar, Jamal

    2015-03-01

    We explore the potential of single molecules for thermodynamic cycles. To this end we propose two molecular heat engines based on the realistic Ni2 dimer: a quantum Otto engine and a modified quantum Otto engine for which laser-induced optical excitations substitute for one of the heat-exchange points. For reliable predictions and to inspect the role of spin and electronic correlations we perform fully correlated ab initio calculations of the electronic structure and the excited states. We analyze the efficiency and the word output of the derived engines and find an enhancement when the spin degree of freedom is included. We also use the von Neumann entropy to describe correlations and entanglement of the engines during the cycles. Furthermore, we link our results to previous results regarding an isobaric stroke and a magnetic quantum Diesel engine on the same substance.

  18. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces.

    PubMed

    Tong, Lianming; Miljković, Vladimir D; Käll, Mikael

    2010-01-01

    We demonstrate optical alignment and rotation of individual plasmonic nanostructures with lengths from tens of nanometers to several micrometers using a single beam of linearly polarized near-infrared laser light. Silver nanorods and dimers of gold nanoparticles align parallel to the laser polarization because of the high long-axis dipole polarizability. Silver nanowires, in contrast, spontaneously turn perpendicular to the incident polarization and predominantly attach at the wire ends, in agreement with electrodynamics simulations. Wires, rods, and dimers all rotate if the incident polarization is turned. In the case of nanowires, we demonstrate spinning at an angular frequency of approximately 1 Hz due to transfer of spin angular momentum from circularly polarized light. PMID:20030391

  19. Experimental observation of spin-dependent electron many-body effects in CdTe

    SciTech Connect

    Horodyská, P.; Němec, P. Novotný, T.; Trojánek, F.; Malý, P.

    2014-08-07

    In semiconductors, the spin degree of freedom is usually disregarded in the theoretical treatment of electron many-body effects such as band-gap renormalization and screening of the Coulomb enhancement factor. Nevertheless, as was observed experimentally in GaAs, not only the single-particle phase-space filling but also many-body effects are spin sensitive. In this paper, we report on time- and polarization-resolved differential transmission pump-probe measurements in CdTe, which has the same zincblende crystal structure but different material parameters compared to that of GaAs. We show experimentally that at room temperature in CdTe—unlike in GaAs—the pump-induced decrease of transmission due to the band-gap renormalization can even exceed the transmission increase due to the phase-space filling, which enables to measure directly the spin-sensitivity of the band-gap renormalization. We also observed that the influence of the band-gap renormalization is more prominent at low temperatures.

  20. Temperature dependence of the NMR relaxation rate 1 /T1 for quantum spin chains

    NASA Astrophysics Data System (ADS)

    Dupont, Maxime; Capponi, Sylvain; Laflorencie, Nicolas

    2016-10-01

    We present results of numerical simulations performed on one-dimensional spin chains in order to extract the so-called relaxation rate 1 /T1 accessible through NMR experiments. Building on numerical tensor network methods using the matrix product states formalism, we can follow the nontrivial crossover occurring in critical chains between the high-temperature diffusive classical regime and the low-temperature response described by the Tomonaga-Luttinger liquid (TLL) theory, for which analytical expressions are known. In order to compare analytics and numerics, we focus on a generic spin-1 /2 X X Z chain which is a paradigm of gapless TLL, as well as a more realistic spin-1 anisotropic chain, modeling the DTN material, which can be either in a trivial gapped phase or in a TLL regime induced by an external magnetic field. Thus, by monitoring the finite temperature crossover, we provide quantitative limits on the range of validity of TLL theory, that will be useful when interpreting experiments on quasi-one-dimensional materials.

  1. Modeling Spin Fluctuations and Magnetic Excitations from Time-Dependent Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Gorni, Tommaso; Timrov, Iurii; Dal Corso, Andrea; Baroni, Stefano

    Harnessing spin fluctuations and magnetic excitations in materials is key in many fields of technology, spanning from memory devices to information transfer and processing, to name but a few. A proper understanding of the interplay between collective and single-particle spin excitations is still lacking, and it is expected that first-principle simulations based on TDDFT may shed light on this interplay, as well as on the role of important effects such as relativistic ones and related magnetic anisotropies. All the numerical approaches proposed so far to tackle this problem are based on the computationally demanding solution of the Sternheimer equations for the response orbitals or the even more demanding solution of coupled Dyson equations for the spin and charge susceptibilities. The Liouville-Lanczos approach to TDDFT has already proven to be a valuable alternative, the most striking of its features being the avoidance of sums over unoccupied single-particle states and the frequency-independence of the main numerical bottleneck. In this work we present an extension of this methodology to magnetic systems and its implementation in the Quantum ESPRESSO distribution, together with a few preliminary results on the magnon dispersions in bulk Fe.

  2. Polarization dependent soft x-ray spectro-microscopy of local spin structures

    NASA Astrophysics Data System (ADS)

    Robertson, Maccallum; Agostino, Christopher; Im, Mi-Young; Montoya, Sergio; Fullerton, Eric; Fischer, Peter

    Quantitative information about element-specific contributions to local magnetic spin and orbital moments is readily available by XMCD spectroscopy and images of magnetic domain patterns with a few tens of nanometer spatial resolution. We show that the x-ray spectroscopic analysis of x-ray microscopy images provides quantitative information about local spin structures. We have investigated two prototypical multilayered PMA film systems prepared by sputtering, specifically (Co 0.3 nm/Pt 0.5 nm)x30 and (Fe 0.7nm/Gd 0.4nm)x100 systems. A spectroscopic sequence of full-field magnetic transmission soft x-ray microscopy (MTXM) images covering about 8mm field-of-views with a spatial resolution of about 20nm were recorded across the Co and Fe L edges, resp. To modulate the magnetic contrast, two sets of images were obtained with left and right circular polarization. Standard XMCD spectroscopy analysis procedures were applied to retrieve the local spectroscopic behavior. We observe a decrease of the L3/L2 ratio when approaching the domain walls, indicating a non-uniform spin configuration along the vertical profile of a domain, which we will discuss in view of both systems' magnetic anisotropies. U.S. DOE under Contract No. DE-AC02-05-CH11231.

  3. Orbital-dependent second-order scaled-opposite-spin correlation functionals in the optimized effective potential method

    SciTech Connect

    Grabowski, Ireneusz Śmiga, Szymon; Buksztel, Adam; Fabiano, Eduardo; Teale, Andrew M.; Sala, Fabio Della

    2014-07-14

    The performance of correlated optimized effective potential (OEP) functionals based on the spin-resolved second-order correlation energy is analysed. The relative importance of singly- and doubly- excited contributions as well as the effect of scaling the same- and opposite- spin components is investigated in detail comparing OEP results with Kohn–Sham (KS) quantities determined via an inversion procedure using accurate ab initio electronic densities. Special attention is dedicated in particular to the recently proposed scaled-opposite–spin OEP functional [I. Grabowski, E. Fabiano, and F. Della Sala, Phys. Rev. B 87, 075103 (2013)] which is the most advantageous from a computational point of view. We find that for high accuracy, a careful, system dependent, selection of the scaling coefficient is required. We analyse several size-extensive approaches for this selection. Finally, we find that a composite approach, named OEP2-SOSh, based on a post-SCF rescaling of the correlation energy can yield high accuracy for many properties, being comparable with the most accurate OEP procedures previously reported in the literature but at substantially reduced computational effort.

  4. Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures

    PubMed Central

    Zdravkov, Vladimir I; Kehrle, Jan-Michael; Obermeier, Günter; Ullrich, Aladin; Morari, Roman; Krug von Nidda, Hans-Albrecht; Müller, Claus; Kupriyanov, Mikhail Yu; Sidorenko, Anatolie S; Horn, Siegfried; Deminov, Rafael G; Tagirov, Lenar R; Tidecks, Reinhard

    2016-01-01

    Summary Background: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature T c, i.e., a superconducting triplet spin-valve effect, around mutually perpendicular alignment. Results: The superconducting triplet spin valve is realized with S = Nb a singlet superconductor, F1 = Cu41Ni59 and F2 = Co ferromagnetic metals, AF = CoOx an antiferromagnetic oxide, and N = nc-Nb a normal conducting (nc) non-magnetic metal, which serves to decouple F1 and F2. The non-collinear alignment of the magnetizations is obtained by applying an external magnetic field parallel to the layers of the heterostructure and exploiting the intrinsic perpendicular easy-axis of the magnetization of the Cu41Ni59 thin film in conjunction with the exchange bias between CoOx and Co. The magnetic configurations are confirmed by superconducting quantum interference device (SQUID) magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, d F1, of F1 and was found to decay with increasing d F1. The data is described by an empirical model and, moreover, by calculations using the microscopic theory. Conclusion: The long-range triplet component of superconducting pairing is generated from the singlet component mainly at the N/F2 interface, where the amplitude of the singlet component is suppressed exponentially with increasing distance d F1. The decay length of the empirical model is found to be comparable to twice the electron mean free path of F1 and, thus, to the decay length of the singlet component in F1. Moreover, the obtained data is in qualitative agreement with the microscopic theory, which, however, predicts a (not investigated) breakdown of the

  5. In-plane angular dependence of the spin-wave nonreciprocity of an ultrathin film with Dzyaloshinskii-Moriya interaction

    SciTech Connect

    Zhang, Vanessa Li; Di, Kai; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Yu, Jiawei; Yoon, Jungbum; Qiu, Xuepeng; Yang, Hyunsoo

    2015-07-13

    The nonreciprocal propagation of spin waves in an ultrathin Pt/Co/Ni film has been measured by Brillouin light scattering. The frequency nonreciprocity, due to the interfacial Dzyaloshinskii-Moriya interaction (DMI), has a sinusoidal dependence on the in-plane angle between the magnon wavevector and the applied magnetic field. The results, which are in good agreement with analytical predictions reported earlier, yield a value of the DMI constant which is the same as that obtained previously from a study of the magnon dispersion relations. We have demonstrated that our magnon-dynamics based method can experimentally ascertain the DMI constant of multilayer thin films.

  6. Improved limits on spin-dependent WIMP-proton interactions from a two liter CF3I bubble chamber.

    PubMed

    Behnke, E; Behnke, J; Brice, S J; Broemmelsiek, D; Collar, J I; Cooper, P S; Crisler, M; Dahl, C E; Fustin, D; Hall, J; Hinnefeld, J H; Hu, M; Levine, I; Ramberg, E; Shepherd, T; Sonnenschein, A; Szydagis, M

    2011-01-14

    Data from the operation of a bubble chamber filled with 3.5 kg of CF3I in a shallow underground site are reported. An analysis of ultrasound signals accompanying bubble nucleations confirms that alpha decays generate a significantly louder acoustic emission than single nuclear recoils, leading to an efficient background discrimination. Three dark matter candidate events were observed during an effective exposure of 28.1  kg  day, consistent with a neutron background. This observation provides strong direct detection constraints on weakly interacting massive particle (WIMP)-proton spin-dependent scattering for WIMP masses >20  GeV/c2.

  7. Improved Limits on Spin-Dependent WIMP-Proton Interactions from a Two Liter CF$_3$I Bubble Chamber

    SciTech Connect

    Behnke, E.; Behnke, J.; Brice, S.J.; Broemmelsiek, D.; Collar, J.I.; Cooper, P.S.; Crisler, M.; Dahl, C.E.; Fustin, D.; Hall, J.; Hinnefeld, J.H.; /Indiana U., South Bend /Fermilab /Indiana U., South Bend /Fermilab /Indiana U., South Bend /Fermilab

    2010-08-01

    Data from the operation of a bubble chamber filled with 3.5 kg of CF{sub 3}I in a shallow underground site are reported. An analysis of ultrasound signals accompanying bubble nucleations confirms that alpha decays generate a significantly louder acoustic emission than single nuclear recoils, leading to an efficient background discrimination. Three dark matter candidate events were observed during an effective exposure of 28.1 kg-day, consistent with a neutron background. This observation provides the strongest direct detection constraint to date on WIMP-proton spin-dependent scattering for WIMP masses > 20 GeV/c{sup 2}.

  8. Precision Measurement of the Spin Dependent Asymmetry in the Threshold Region of {sup 3}He(e,e{prime})

    SciTech Connect

    F. Xiong; Dipangkar Dutta; W. Xu; Bryon Anderson; L. Auberbach; Todd Averett; William Bertozzi; Timothy Black; John Calarco; Larry Cardman; Gorden Cates; Zhengwei Chai; Jian-ping Chen; Seonho Choi; Eugene Chudakov; Steve Churchwell; G.S. Corrado; C. Crawford; Dan Dale; Alexandre Deur; Pibaro Djawotho; Bradley Filippone; Mike Finn; Haiyan Gao; Ron Gilman; Alexander Glamazdin; Charles Glashausser; W. Glockle; J. Golak; Javier Gomez; Victor Gorbenko; Jens-Ole Hansen; F. William Hersman; Douglas W. Higinbotham; Richard Holmes; C.R. Howell; E. Hughes; B. Humensky; Sebastian Incerti; Kees de Jager; J.Steffen Jensen; Xiangdong Jiang; C.E. Jones; Mark Jones; R. Kahl; H. Kamada; A. Kievsky; Ioannis Kominis; Wolfgang Korsch; Kevin Kramer; Gerfried Kumbartzki; Michael Kuss; E. Lakuriqi; Meme Liang; Nilanga Liyanage; John LeRose; Sergey Malov; Dimitri Margaziotis; Jeffrey Martin; Kathy McCormick; Robert McKeown; K. McIlhany; Zein-Eddine Meziani; Robert Michaels; G.W. Miller; E. Pace; T. Pavlin; Gerassimos G. Petratos; R.I. Pomatsalyuk; D. Pripstein; David Prout; Ronald Ransome; Yves Roblin; Marat Rvachev; Arun Saha; G. Salme; M. Schnee; Taeksu Shin; Karl Slifer; Paul Souder; Steffen Strauch; Riad Suleiman; M. Sutter; Bryan Tipton; Luminita Todor; M. Viviani; B. Vlahovic; J. Watson; C.F. Williamson; H. Witala; Bogdan B. Wojtsekhowski; J. Yeh; P. Zolnierczuk

    2001-12-10

    We present the first precision measurement of the spin-dependent asymmetry in the threshold region of {sup 3}He(e,e{prime}) at Q{sup 2}-values of 0.1 and 0.2 (GeV/c){sup 2}. The agreement between the data and non-relativistic Faddeev calculations which include both final-state interactions (FSI) and meson-exchange currents (MEC) effects is very good at Q{sup 2} = 0.1 (GeV/c){sup 2}, while a small discrepancy at Q{sup 2} = 0.2 (GeV/c){sup 2} is observed.

  9. The nuclear spinspin coupling in the hydrogen molecule: its equilibrium value and bond-length dependence

    NASA Astrophysics Data System (ADS)

    Raynes, William T.; Panteli, Nicholas

    1983-02-01

    Beckett and Carr's recent accurate measurements of nuclear spinspin coupling in HD gas over a wide range of temperature have been used to obtain the magnitude of the coupling at equilibrium and the bond length dependence of the coupling at equilibrium. The value of 40.62 ± 0.06 Hz for the coupling at equilibrium is significantly less than 42.94 ± 0.1 Hz which is the value measured in pure liquid HD. The coupling is very sensitive to bond length.

  10. Area-dependence of spin-triplet supercurrent in ferromagnetic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Wang, Yixing; Pratt, William P., Jr.; Birge, Norman O.

    2012-02-01

    Spin-triplet supercurrents in strong ferromagnetic Josephson junctions were reported by several groups in 2010. At the same time, the 0-π current-phase relationship of the spin-triplet supercurrent was predicted to be controllable by the magnetization orientations of different ferromagnetic layers. Our junctions contain a series of ferromagnetic layers consisting of a synthetic antiferromagnet Co/Ru/Co sandwiched between two thin magnetic layers such as PdNi or Ni [1]. When looking along the direction of current flow, one should obtain 0 junctions if the rotation direction of magnetizations is the same from one to the next, and π junctions when the opposite rotation direction is the case. Since our magnetic layers have multiple domains in the virgin state, we should expect 0 and π phases to alternate randomly in different locations in the junctions. The critical current in the virgin state should scale with the square-root of the junction area. After aligning the outer ferromagnetic layers in the same direction with an external field, the current-phase relation should be uniform across the whole junction area and the critical current should be proportional to the junction area. We will present data confirming this expectation for the magnetized state, whereas the situation for the virgin state is presently unclear. [4pt] [1] T.S. Khaire, M.A. Khasawneh, W.P. Pratt Jr and N.O. Birge, Phys. Rev. Lett. 104 137002 (2010).

  11. Co thickness dependence of structural and magnetic properties in spin quantum cross devices utilizing stray magnetic fields

    SciTech Connect

    Kaiju, H. Kasa, H.; Mori, S.; Misawa, T.; Abe, T.; Nishii, J.; Komine, T.

    2015-05-07

    We investigate the Co thickness dependence of the structural and magnetic properties of Co thin-film electrodes sandwiched between borate glasses in spin quantum cross (SQC) devices that utilize stray magnetic fields. We also calculate the Co thickness dependence of the stray field between the two edges of Co thin-film electrodes in SQC devices using micromagnetic simulation. The surface roughness of Co thin films with a thickness of less than 20 nm on borate glasses is shown to be as small as 0.18 nm, at the same scanning scale as the Co film thickness, and the squareness of the hysteresis loop is shown to be as large as 0.96–1.0. As a result of the establishment of polishing techniques for Co thin-film electrodes sandwiched between borate glasses, we successfully demonstrate the formation of smooth Co edges and the generation of stray magnetic fields from Co edges. Theoretical calculation reveals that a strong stray field beyond 6 kOe is generated when the Co thickness is greater than 10 nm at a junction gap distance of 5 nm. From these experimental and calculation results, it can be concluded that SQC devices with a Co thickness of 10–20 nm can be expected to function as spin-filter devices.

  12. Ab-initio investigation of spin-dependent transport properties in Fe-doped armchair graphyne nanoribbons

    NASA Astrophysics Data System (ADS)

    GolafroozShahri, S.; Roknabadi, M. R.; Shahtahmasebi, N.; Behdani, M.

    2016-12-01

    An ab-initio study on the spin-polarized transport properties of H-passivated Fe-doped graphyne nanoribbons is presented. All the calculations were based on density functional theory (DFT). Doping single magnetic atom on graphyne nanoribbons leads to metallicity which can significantly improve the conductivity. The currents are not degenerate for both up and down spin electrons and they are considerably spin-polarized. Therefore a relatively good spin-filtering can be expected. For configurations with geometric symmetry spin-rectifying is also observed. Therefore they can be applied as a dual spin-filter or a dual spin-diode in spintronic equipment.

  13. Thickness dependence of spin polarization and electronic structure of ultra-thin films of MoS2 and related transition-metal dichalcogenides

    PubMed Central

    Chang, Tay-Rong; Lin, Hsin; Jeng, Horng-Tay; Bansil, A.

    2014-01-01

    We have carried out thickness dependent first-principles electronic structure calculations on ultra-thin films of transition-metal dichalcogenides MX2 (M = Mo or W; X = S, Se, or Te). When spin-orbit coupling (SOC) is included in the computations, monolayer MX2 thin films display spin-split states around the valence band maximum at the Brillouin zone corners with nearly 100% spin polarization. The spins are aligned oppositely along out-of-the-plane direction at the K and K′ points. For the bilayer films, spin polarization of this SOC induced band splitting can be switched on or off by an out-of-the-plane external electric field. The spin-polarized states are weakly coupled between the layers in bulk MX2 compounds with small kz dispersion. We confirm a transition from an indirect to direct band gap as the thickness is reduced to a monolayer in MoS2, in agreement with recent experimental findings. Owing to the presence of a large spin-splitting energy and an insulating band gap, MX2 compounds have great potential for spin/valley electronic applications at room temperature. PMID:25189645

  14. A mononuclear iron(II) complex: cooperativity, kinetics and activation energy of the solvent-dependent spin transition.

    PubMed

    Bushuev, Mark B; Pishchur, Denis P; Logvinenko, Vladimir A; Gatilov, Yuri V; Korolkov, Ilya V; Shundrina, Inna K; Nikolaenkova, Elena B; Krivopalov, Viktor P

    2016-01-01

    The system [FeL2](BF4)2 (1)-EtOH-H2O (L is 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(pyridin-2-yl)-6-methylpyrimidine) shows a complicated balance between the relative stabilities of solvatomorphs and polymorphs of the complex [FeL2](BF4)2. New solvatomorphs, 1(LS)·EtOH·H2O and β-1(LS)·xH2O, were isolated in this system. They were converted into four daughter phases, 1(A/LS), 1(D/LS), 1(E/LS)·yEtOH·zH2O and 1(F/LS). On thermal cycling in sealed ampoules, the phases 1(LS)·EtOH·H2O and β-1(LS)·xH2O transform into the anhydrous phase 1(A/LS). The hysteresis loop width for the (A/LS) ↔ (A/HS) spin transition depends on the water and ethanol contents in the ampoule and varies from ca. 30 K up to 145 K. The reproducible hysteresis loop of 145 K is the widest ever reported one for a spin crossover complex. The phase 1(A/LS) combines the outstanding spin crossover properties with thermal robustness allowing for multiple cycling in sealed ampoules without degradation. The kinetics of the 1(A/LS) → 1(A/HS) transition is sigmoidal which is indicative of strong cooperative interactions. The cooperativity of the 1(A/LS) → 1(A/HS) transition is related to the formation of a 2D supramolecular structure of the phase 1(A/LS). The activation energy for the spin transition is very high (hundreds of kJ mol(-1)). The kinetics of the 1(A/HS) → 1(A/LS) transition can either be sigmoidal or exponential depending on the water and ethanol contents in the ampoule. The phases 1(D/LS) and 1(F/LS) show gradual crossover, whereas the phase 1(E/LS)·yEtOH·yH2O shows a reversible hysteretic transition associated with the solvent molecule release and uptake.

  15. Cooling a nanomechanical resonator using spin-dependent transport and noise interference in Andreev reflections

    NASA Astrophysics Data System (ADS)

    Stadler, Pascal; Belzig, Wolfgang; Rastelli, Gianluca

    Nanoelectromechanical systems promise to manipulate mechanical motion in the quantum regime using electron transport. For such a goal, a necessary condition is the ability of cooling the resonator into or near to its quantum ground state. A still open challenge in this field is the achievement of active cooling using purely electron transport in, for instance, suspended carbon nanotube quantum dots. We consider the quantum transport in a carbon nanotube quantum dot suspended between two electric nanocontacts. Due to the interaction between electrons and flexural mechanical modes, the electron transport results in inelastic vibration-assisted tunneling processes. These give rise to a mechanical damping and to a steady nonequilibrium phonon occupation of the resonator. We discuss these effects for two different coherent transport regimes: (i) spin-polarized current between two ferromagnets and (ii) subgap Andreev current between a superconductor and normal metal.

  16. Spin-dependent charge transfer state design rules in organic photovoltaics.

    PubMed

    Chang, Wendi; Congreve, Daniel N; Hontz, Eric; Bahlke, Matthias E; McMahon, David P; Reineke, Sebastian; Wu, Tony C; Bulović, Vladimir; Van Voorhis, Troy; Baldo, Marc A

    2015-01-01

    Charge transfer states play a crucial role in organic photovoltaics, mediating both photocurrent generation and recombination losses. In this work, we examine recombination losses as a function of the electron-hole spacing in fluorescent charge transfer states, including direct monitoring of both singlet and triplet charge transfer state dynamics. Here we demonstrate that large donor-acceptor separations minimize back transfer from the charge transfer state to a low-lying triplet exciton 'drain' or the ground state by utilizing external pressure to modulate molecular spacing. The triplet drain quenches triplet charge transfer states that would otherwise be spin protected against recombination, and switches the most efficient origin of the photocurrent from triplet to singlet charge transfer states. Future organic solar cell designs should focus on raising the energy of triplet excitons to better utilize triplet charge transfer mediated photocurrent generation or increasing the donor-acceptor spacing to minimize recombination losses. PMID:25762410

  17. Distorted spin dependent spectral function of {sup 3}He and semi-inclusive deep inelastic scattering processes

    SciTech Connect

    Kaptari, Leonya P.; Del Dotto, Alessio; Pace, Emanuele; Salme, Giovanni; Scopetta, Sergio

    2014-03-01

    The spin dependent spectral function, relevant to describe polarized electron scattering off polarized {sup 3}He, is studied, within the Plane Wave Impulse Approximation and taking into account final state interaction effects (FSI). In particular, the case of semi-inclusive deep inelastic scattering (SiDIS) is considered, evaluating the FSI of the hadronizing quark with the nuclear remnants. It is shown that particular kinematical regions can be selected to minimize the latter effects, so that parton distributions in the neutron can be accessed. On the other side, in the regions where FSI dominates, the considered reactions can elucidate the mechanism of hadronization of quarks during the propagation in the nuclear medium. It is shown that the obtained spin dependent spectral function can be directly applied to investigate the SiDIS reaction e-vector + {sup 3}He-vector to h+X, where the hadron h originates from the current fragmentation. Experiments of this type are being performed at JLab to extract neutron transverse momentum dependent parton distributions. As a case study, a different SiDIS process, with detection of slow (A-1) systems in the final state, is considered in more details, in order to establish when nuclear structure effects and FSI can be distinguished from elementary reactions on quasi-free nucleons. It is argued that, by a proper choice of kinematics, the origin of nuclear effects in polarized DIS phenomena and the details of the interaction between the hadronizing quark and the nuclear medium can be investigated at a level which is not reachable in inclusive deep inelastic scattering.

  18. Carrier-impurity spin transfer dynamics in paramagnetic II-VI diluted magnetic semiconductors in the presence of a wave-vector-dependent magnetic field

    NASA Astrophysics Data System (ADS)

    Cygorek, M.; Tamborenea, P. I.; Axt, V. M.

    2016-05-01

    Quantum kinetic equations of motion for carrier and impurity spins in paramagnetic II-VI diluted magnetic semiconductors in a k -dependent effective magnetic field are derived, where the carrier-impurity correlations are taken into account. In the Markov limit, rates for the electron-impurity spin transfer can be derived for electron spins parallel and perpendicular to the impurity spins corresponding to measurable decay rates in Kerr experiments in Faraday and Voigt geometry. Our rigorous microscopic quantum kinetic treatment automatically accounts for the fact that, in an individual spin flip-flop scattering process, a spin flip of an electron is necessarily accompanied by a flop of an impurity spin in the opposite direction and the corresponding change of the impurity Zeeman energy influences the final energy of the electron after the scattering event. This shift in the electron energies after a spin flip-flop scattering process, which usually has been overlooked in the literature, turns out to be especially important in the case of extremely diluted magnetic semiconductors in an external magnetic field. As a specific example for a k -dependent effective magnetic field the effects of a Rashba field on the dynamics of the carrier-impurity correlations in a Hg1 -x -yCdyMnxTe quantum well are described. It is found that, although accounting for the Rashba interaction in the dynamics of the correlations leads to a modified k -space dynamics, the time evolution of the total carrier spin is not significantly influenced. Furthermore, a connection between the present theory and the description of collective carrier-impurity precession modes is presented.

  19. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever

    NASA Astrophysics Data System (ADS)

    Antognozzi, M.; Bermingham, C. R.; Harniman, R. L.; Simpson, S.; Senior, J.; Hayward, R.; Hoerber, H.; Dennis, M. R.; Bekshaev, A. Y.; Bliokh, K. Y.; Nori, F.

    2016-08-01

    Radiation pressure is associated with the momentum of light, and it plays a crucial role in a variety of physical systems. It is usually assumed that both the optical momentum and the radiation-pressure force are naturally aligned with the propagation direction of light, given by its wavevector. Here we report the direct observation of an extraordinary optical momentum and force directed perpendicular to the wavevector, and proportional to the optical spin (degree of circular polarization). Such an optical force was recently predicted for evanescent waves and other structured fields. It can be associated with the ’spin-momentum’ part of the Poynting vector, introduced by Belinfante in field theory 75 years ago. We measure this unusual transverse momentum using a femtonewton-resolution nano-cantilever immersed in an evanescent optical field above the total internal reflecting glass surface. Furthermore, the measured transverse force exhibits another polarization-dependent contribution determined by the imaginary part of the complex Poynting vector. By revealing new types of optical forces in structured fields, our findings revisit fundamental momentum properties of light and enrich optomechanics.

  20. Dependence of the ferroelectric properties of modified spin-coating-derived PZT thick films on the crystalline orientation

    NASA Astrophysics Data System (ADS)

    Annapureddy, Venkateswarlu; Choi, Jong-Jin; Kim, Jong-Woo; Hahn, Byung-Dong; Ahn, Cheol-Woo; Ryu, Jungho

    2016-06-01

    The effects of crystalline orientation on the ferroelectric properties of lead zirconate titanate (PZT) thick films deposited on (111)-oriented Pt/Ti/SiO2/Si substrates by using a modified spincoating method have been studied. The texture and the microstructure of the thick films were characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis, respectively. The XRD results implied that the texture of the PZT films was sensitive to the pyrolysis conditions after spin-coating, but less dependent on the film's thickness. The texture had mainly a (111)-orientation for pyrolysis temperatures from 330 to 400 °C, and changes in the (100)- orientation occurred for pyrolysis temperatures at or above 450 °C after annealing at 650 °C for 5 min. The formation of a preferred texture could be explained by using the intermetallic phases and the internal stress energies between the substrate and the film. The ferroelectric properties of the PZT films fabricated by using this method have been found to be enhanced as compared to those of the PZT films fabricated by using the conventional spin-coating method and to be correlated to the microstructure of the film.

  1. Phase diagram of the Fermi-Hubbard model with spin-dependent external potentials: A DMRG study

    NASA Astrophysics Data System (ADS)

    Wei, Xing-Bo; Meng, Ye-Ming; Wu, Zhe-Ming; Gao, Xian-Long

    2015-11-01

    We investigate a one-dimensional two-component system in an optical lattice of attractive interactions under a spin-dependent external potential. Based on the density-matrix renormalization group methods, we obtain its phase diagram as a function of the external potential imbalance and the strength of the attractive interaction through the analysis on the density profiles and the momentum pair correlation functions. We find that there are three different phases in the system, a coexisted fully polarized and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, a normal polarized phase, and a Bardeen-Cooper-Schrieffer (BCS) phase. Different from the systems of spin-independent external potential, where the FFLO phase is normally favored by the attractive interactions, in the present situation, the FFLO phases are easily destroyed by the attractive interactions, leading to the normal polarized or the BCS phase. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374266 and 11174253) and the Program for New Century Excellent Talents in University, China.

  2. Spectroscopic and Theoretical Study of Spin-Dependent Electron Transfer in an Iron(III) Superoxo Complex.

    PubMed

    Stout, Heather D; Kleespies, Scott T; Chiang, Chien-Wei; Lee, Way-Zen; Que, Lawrence; Münck, Eckard; Bominaar, Emile L

    2016-06-01

    It was shown previously (J. Am. Chem. Soc. 2014, 136, 10846) that bubbling of O2 into a solution of Fe(II)(BDPP) (H2BDPP = 2,6-bis[[(S)-2-(diphenylhydroxymethyl)-1-pyrrolidinyl]methyl]pyridine) in tetrahydrofuran at -80 °C generates a high-spin (SFe = (5)/2) iron(III) superoxo adduct, 1. Mössbauer studies revealed that 1 is an exchange-coupled system, [Formula: see text], where SR = (1)/2 is the spin of the superoxo radical, of which the spectra were not well enough resolved to determine whether the coupling was ferromagnetic (S = 3 ground state) or antiferromagnetic (S = 2). The glass-forming 2-methyltetrahydrofuran solvent yields highly resolved Mössbauer spectra from which the following data have been extracted: (i) the ground state of 1 has S = 3 (J < 0); (ii) |J| > 15 cm(-1); (iii) the zero-field-splitting parameters are D = -1.1 cm(-1) and E/D = 0.02; (iv) the major component of the electric-field-gradient tensor is tilted ≈7° relative to the easy axis of magnetization determined by the MS = ±3 and ±2 doublets. The excited-state MS = ±2 doublet yields a narrow parallel-mode electron paramagnetic resonance signal at g = 8.03, which was used to probe the magnetic hyperfine splitting of (17)O-enriched O2. A theoretical model that considers spin-dependent electron transfer for the cases where the doubly occupied π* orbital of the superoxo ligand is either "in" or "out" of the plane defined by the bent Fe-OO moiety correctly predicts that 1 has an S = 3 ground state, in contrast to the density functional theory calculations for 1, which give a ground state with both the wrong spin and orbital configuration. This failure has been traced to a basis set superposition error in the interactions between the superoxo moiety and the adjacent five-membered rings of the BDPP ligand and signals a fundamental problem in the quantum chemistry of O2 activation. PMID:27159412

  3. Resonant cavity mode dependence of anomalous and inverse spin Hall effect

    SciTech Connect

    Kim, Sang-Il; Seo, Min-Su; Park, Seung-young

    2014-05-07

    The direct current electric voltage induced by the Inverse Spin Hall Effect (ISHE) and Anomalous Hall Effect (AHE) was investigated in the TE{sub 011} and TE{sub 102} cavities. The ISHE and AHE components were distinguishable through the fitting of the voltage spectrum. The unwanted AHE was minimized by placing the DUT (Device Under Test) at the center of both the TE{sub 011} and TE{sub 102} cavities. The voltage of ISHE in the TE{sub 011} cavity was larger than that in the TE{sub 102} cavity due to the higher quality factor of the former. Despite optimized centering, AHE voltage from TE{sub 011} cavity was also higher. The reason was attributed to the E-field distribution inside the cavity. In the case of the TE{sub 011} cavity, the DUT was easily exposed to the E-field in all directions. Therefore, the parasitic AHE voltage in the TE{sub 102} cavity was less sensitive than that in the TE{sub 011} cavity to decentering problem.

  4. Spin dependence of K mixing, strong configuration mixing, and electromagnetic properties of Hf178

    NASA Astrophysics Data System (ADS)

    Hayes, A. B.; Cline, D.; Wu, C. Y.; Ai, H.; Amro, H.; Beausang, C.; Casten, R. F.; Gerl, J.; Hecht, A. A.; Heinz, A.; Hua, H.; Hughes, R.; Janssens, R. V. F.; Lister, C. J.; Macchiavelli, A. O.; Meyer, D. A.; Moore, E. F.; Napiorkowski, P.; Pardo, R. C.; Schlegel, Ch.; Seweryniak, D.; Simon, M. W.; Srebrny, J.; Teng, R.; Vetter, K.; Wollersheim, H. J.

    2007-03-01

    The combined data of two Coulomb excitation experiments has verified the purely electromagnetic population of the Kπ=4+,6+,8-, and 16+ rotational bands in Hf178 via 2≤ν≤14 K-forbidden transitions, quantifying the breakdown of the K-selection rule with increasing spin in the low-K bands. The γ-, 4+, and 6+ bands were extended, and four new states in a rotational band were tentatively assigned to a previously known Kπ=0+ band. The quasiparticle structure of the 6+ (t(1)/(2)=77 ns) and 8- (t(1)/(2)=4 s) isomer bands were evaluated, showing that the gyromagnetic ratios of the 6+ isomer band are consistent with a pure π(7)/(2)+[404],π(5)/(2)+[402] structure. The 8- isomer band at 1147 keV and the second 8- band at 1479 keV, thought to be predominantly ν(7)/(2)-[514],ν(9)/(2)+[624] and π(9)/(2)-[514],π(7)/(2)+[404], respectively, are mixed to a degree approaching the strong-mixing limit. Based on measured matrix elements, it was shown that heavy-ion bombardment could depopulate the 16+ isomer at the ~1% level, although no states were found that would mediate photodeexcitation of the isomer via low-energy x-ray absorption.

  5. Single Spin Asymmetries in l p(transv. pol.) --> h X processes and transverse momentum dependent factorization

    SciTech Connect

    Anselmino, Mauro; Mariaelena, Boglione; D'Alesio, Umberto; Melis, Stefano; Murgia, Francesco; Prokudin, Alexey

    2014-06-01

    Some estimates for the transverse Single Spin Asymmetry, A_N, in the inclusive processes l p(transv. Pol.) --> h X, given in a previous paper, are expanded and compared with new experimental data. The predictions are based on the Sivers distributions and the Collins fragmentation functions which fit the azimuthal asymmetries measured in Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes (l p(transv. Pol.) --> l' h X). The factorisation in terms of Transverse Momentum Dependent distribution and fragmentation functions (TMD factorisation) -- i.e., the theoretical framework in which SIDIS azimuthal asymmetries are analysed -- is assumed to hold also for the inclusive process l p --> h X at large P_T. The values of A_N thus obtained agree in sign and shape with the data. Some predictions are given for future experiments.

  6. CoFe alloy as middle layer for strong spin dependent quantum well resonant tunneling in double barrier magnetic tunnel junctions

    SciTech Connect

    Liu, R. S.; Yang, See-Hun; Jiang, Xin; Zhang, Xiaoguang; Rice, Philip M.; Canali, Carlo M.; Parkin, S. S. P.

    2013-01-01

    We report the spin-dependent quantum well resonant tunneling effect in CoFe/MgO/CoFe/MgO/CoFeB (CoFe) double barrier magnetic tunnel junctions. The dI/dV spectra reveal clear resonant peaks for the parallel magnetization configurations, which can be matched to quantum well resonances obtained from calculation. The differential TMR exhibits an oscillatory behavior with a sign change due to the formation of the spin-dependent QW states in the middle CoFe layer. Also, we observe pronounced TMR enhancement at resonant voltages at room temperature, suggesting that it is very promising to achieve high TMR using the spin-dependent QW resonant tunneling effect.

  7. Thickness dependence of spin Hall angle of Au grown on Y3F e5O12 epitaxial films

    NASA Astrophysics Data System (ADS)

    Brangham, Jack T.; Meng, Keng-Yuan; Yang, Angela S.; Gallagher, James C.; Esser, Bryan D.; White, Shane P.; Yu, Sisheng; McComb, David W.; Hammel, P. Chris; Yang, Fengyuan

    2016-08-01

    We measure the spin Hall angle in Au layers of 5-100 nm thicknesses by spin pumping from Y3F e5O12 epitaxial films grown by ultrahigh vacuum, off-axis sputtering. We observe a striking increase in the spin Hall angle for Au layers thinner than the measured spin diffusion length of 12.6 nm. In particular, the 5 nm Au layer shows a large spin Hall angle of 0.087, compared to those of 0.016 and 0.017 for the 50 and 100 nm Au layers, respectively, suggesting that the top surface plays a dominant role in spin Hall physics when the spin current is able to reach it. Other spin pumping related parameters, including Gilbert damping enhancement, interfacial spin mixing conductance, and spin current are also determined for Au layers of various thicknesses. Given the pervasive role of ultrathin films in electrical and spin transport applications, this result emphasizes the importance of considering the impact of the top surface and reveals the possibility of tuning critical spin parameters by film thickness.

  8. Time-dependent spin and transport properties of a single-molecule magnet in a tunnel junction

    NASA Astrophysics Data System (ADS)

    Hammar, H.; Fransson, J.

    2016-08-01

    In single-molecule magnets, the exchange between a localized spin moment and the electronic background provides a suitable laboratory for studies of dynamical aspects of both local spin and transport properties. Here we address the time evolution of a localized spin moment coupled to an electronic level in a molecular quantum dot embedded in a tunnel junction between metallic leads. The interactions between the localized spin moment and the electronic level generate an effective interaction between the spin moment at different instances in time. Therefore, we show that, despite being a single-spin system, there are effective contributions of isotropic Heisenberg and anisotropic Ising and Dzyaloshinski-Moriya character acting on the spin moment. The interactions can be controlled by gate voltage, voltage bias, the spin polarization in the leads, in addition to external magnetic fields. Signatures of the spin dynamics are found in the transport properties of the tunneling system, and we demonstrate that measurements of the spin current may be used for readout of the local spin moment orientation.

  9. Anomalous temperature-dependent spin-valley polarization in monolayer WS2

    PubMed Central

    Hanbicki, A.T.; Kioseoglou, G.; Currie, M.; Hellberg, C. Stephen; McCreary, K.M.; Friedman, A.L.; Jonker, B.T.

    2016-01-01

    Single layers of transition metal dichalcogenides (TMDs) are direct gap semiconductors with nondegenerate valley indices. An intriguing possibility for these materials is the use of their valley index as an alternate state variable. Several limitations to such a utility include strong intervalley scattering, as well as multiparticle interactions leading to multiple emission channels. We prepare single-layer WS2 films such that the photoluminescence is from either the neutral or charged exciton (trion). After excitation with circularly polarized light, the neutral exciton emission has zero polarization. However, the trion emission has a large polarization (28%) at room temperature. The trion emission also has a unique, non-monotonic temperature dependence that is a consequence of the multiparticle nature of the trion. This temperature dependence enables us to determine that intervalley scattering, electron-hole radiative recombination, and Auger processes are the dominant mechanisms at work in this system. Because this dependence involves trion systems, one can use gate voltages to modulate the polarization (or intensity) emitted from TMD structures. PMID:26728976

  10. Anomalous temperature-dependent spin-valley polarization in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Hanbicki, A. T.; Kioseoglou, G.; Currie, M.; Hellberg, C. Stephen; McCreary, K. M.; Friedman, A. L.; Jonker, B. T.

    2016-01-01

    Single layers of transition metal dichalcogenides (TMDs) are direct gap semiconductors with nondegenerate valley indices. An intriguing possibility for these materials is the use of their valley index as an alternate state variable. Several limitations to such a utility include strong intervalley scattering, as well as multiparticle interactions leading to multiple emission channels. We prepare single-layer WS2 films such that the photoluminescence is from either the neutral or charged exciton (trion). After excitation with circularly polarized light, the neutral exciton emission has zero polarization. However, the trion emission has a large polarization (28%) at room temperature. The trion emission also has a unique, non-monotonic temperature dependence that is a consequence of the multiparticle nature of the trion. This temperature dependence enables us to determine that intervalley scattering, electron-hole radiative recombination, and Auger processes are the dominant mechanisms at work in this system. Because this dependence involves trion systems, one can use gate voltages to modulate the polarization (or intensity) emitted from TMD structures.

  11. Angular and temperature-dependent 77Se NMR in the metallic, SDW, and field-induced spin density wave phases of (TMTSF)2X

    NASA Astrophysics Data System (ADS)

    Lumata, L. L.; Brooks, J. S.; Kuhns, P. L.; Reyes, A. P.; Brown, S. E.; Cui, H. B.; Haddon, R. C.; Yamada, J.-I.

    2008-10-01

    We report angular dependent 77Se NMR measurements on the partially quenched, metallic, and magnetic field-induced spin density wave (FISDW) states of (TMTSF)2CIO4. To correlate the NMR data with the FISDW phase diagram, electrical transport was also measured concurrently in some cases. Similar measurements on (TMTSF)2PF6 allow comparison of the behavior of the NMR signal of the spin density wave (SDW) transition with that of the FISDW transition. We present details of the experimental findings including the enhancement behavior, and correlations of the angular dependence of the NMR spectra with the spin-lattice relaxation rate 1/T1. A possible model to describe the behavior of the NMR signal intensity and 1/T1 in terms of a Hebel-Slichter mechanism upon crossing the metal-FISDW transition is presented.

  12. Pulse Phase Dependence of Low Energy Emission Lines in an X-ray pulsar 4U 1626-67 during its spin-up and spin-down phase

    NASA Astrophysics Data System (ADS)

    Beri, Aru; Paul, Biswajit; Dewangan, Gulab Chand

    2016-07-01

    We will present the results obtained from the new observation of an ultra-compact X-ray binary pulsar 4U 1626-67, carried out with the XMM-Newton observatory. 4U 1626-67, a unique accretion powered pulsar underwent two torque reversals since its discovery in 1977. Pulse phase resolved spectroscopy of this source performed using the data from the XMM-Newton observatory during its spin-down phase revealed the dependence of the emission lines on the pulse phase. O VII emission line at 0.569 keV showed the maximum variation by factor of 4. These variations were interpreted due to warps in the accretion disk (Beri et al. 2015). Radiation pressure induced warping is also believed to be the cause for spin-down. In light of this possible explanation for spin-down torque reversal we expect different line variability during the spin-up phase. We will discuss the implications of the results obtained after performing pulse phase resolved spectroscopy using data from the EPIC-pn during the current spin-up phase. Detailed study of the prominent Neon and Oxygen line complexes with the high resolution Reflection Grating Spectrometer (RGS) on-board XMM-Newton will also be presented.

  13. Spin-dependent tunneling properties in GaMnAs-based magnetic tunnel transistors

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Ohya, Shinobu; Hai, Pham Nam; Tanaka, Masaaki

    2007-03-01

    III-V-based ferromagnetic-semiconductor heterostructures comprising GaMnAs are hopeful candidates for future spintronic devices. Thus far, only two-terminal devices have mainly been studied. Meanwhile, GaMnAs-based `three-terminal' magnetic tunnel transistors (MTTs) have a potential to add novel functions to integrated circuits. We prepared MTT structures composed of GaMnAs (30 nm)/ AlAs (2 nm)/ GaMnAs (30 nm)/ GaAs:Be (30 nm; 1*10^17cm-3) on p-GaAs(001) substrates using molecular-beam epitaxy (MBE). The VEB dependence of IC, IE, and IB shows that the current transfer ratio α (= IC / IE) is 0.8-0.95; this is much higher than 0.03, the maximum value reported in metal-based MTTs. The current gain β (= IC / IB) is of the order of 10, which means that GaMnAs-based MTTs have current amplifiability. The VEC dependence of the tunneling magnetoresistance (TMR) ratio differed significantly from that observed in single-barrier magnetic tunnel junctions (MTJs). This work was partly supported by PRESTO / SORST of JST, Grant-in-Aids for Scientific Research, IT-RR2002 of MEXT, and Kurata-Memorial Hitachi Sci. & Tech. Foundation.

  14. Q-dependence of the spin fluctuations in the intermediate valence compound CePd3

    SciTech Connect

    Fanelli, V. R.; Lawrence, J. M.; Goremychkin, E. A.; Osborn, R.; Bauer, E. D.; McClellan, K. J.; Thompson, J. D.; Booth, C. H.; Christianson, A. D.; Riseborough, P. S.

    2014-06-25

    We report inelastic neutron scattering experiments on a single crystal of the intermediate valence compound CePd3. At 300 K the magnetic scattering is quasielastic, with half-width G = 23 meV, and is independent of momentum transfer Q. At low temperature, the Q-averaged magnetic spectrum is inelastic, exhibiting a broad peak centered near E-max = 55 meV. These results, together with the temperature dependence of the susceptibility, 4f occupation number, and specific heat, can be fit by the Kondo/Anderson impurity model. The low temperature scattering near Emax, however, shows significant variations with Q, reflecting the coherence of the 4f lattice. The intensity is maximal at (1/2, 1/2, 0), intermediate at (1/2, 0, 0) and (0, 0, 0), and weak at (1/2, 1/2, 1/2). We discuss this Q-dependence in terms of current ideas about coherence in heavy fermion systems.

  15. Time-dependent approach to spin-vibronic coupling: Implementation and assessment

    SciTech Connect

    Etinski, Mihajlo; Rai-Constapel, Vidisha; Marian, Christel M.

    2014-03-21

    In this work, we present the generalization of a time-dependent method for the calculation of intersystem crossing (ISC) rates in the Condon approximation. When ISC takes place between electronic states with the same orbital type, i.e., when the transition is forbidden according to the El-Sayed rules, it is necessary to go beyond the Condon approximation. Similar to the Herzberg-Teller expansion of the vibronic interaction, the electronic spin–orbit matrix elements are assumed to depend linearly on the nuclear coordinates. The ISC rate is then a sum of three contributions: a direct, mixed direct-vibronic, and vibronic term. The method, presented in this work, is based on the generating function formalism and the multi-mode harmonic oscillator approximation. In addition to the zero-temperature case, we implemented formulae for finite-temperature conditions assuming a Boltzmann population of vibrational levels in the initial state. Tests have been carried out for a variety of molecules for which literature data were available. We computed vibronic one-photon spectra of free-base porphyrin and free-base chlorin and calculated ISC rates for xanthone, thioxanthone, thionine, as well as free-base porphyrin and found excellent agreement with previous results. Quantitative rates for triplet formation in rhodamine A have been determined theoretically for the first time. We find the S{sub 1}↝ T{sub 2} channel to be the major source of triplet rhodamine formation in the gas phase.

  16. spin pumping occurred under nonlinear spin precession

    NASA Astrophysics Data System (ADS)

    Zhou, Hengan; Fan, Xiaolong; Ma, Li; Zhou, Shiming; Xue, Desheng

    Spin pumping occurs when a pure-spin current is injected into a normal metal thin layer by an adjacent ferromagnetic metal layer undergoing ferromagnetic resonance, which can be understood as the inverse effect of spin torque, and gives access to the physics of magnetization dynamics and damping. An interesting question is that whether spin pumping occurring under nonlinear spin dynamics would differ from linear case. It is known that nonlinear spin dynamics differ distinctly from linear response, a variety of amplitude dependent nonlinear effect would present. It has been found that for spin precession angle above a few degrees, nonlinear damping term would present and dominated the dynamic energy/spin-moment dissipation. Since spin pumping are closely related to the damping process, it is interesting to ask whether the nonlinear damping term could be involved in spin pumping process. We studied the spin pumping effect occurring under nonlinear spin precession. A device which is a Pt/YIG microstrip coupled with coplanar waveguide was used. High power excitation resulted in spin precession entering in a nonlinear regime. Foldover resonance lineshape and nonlinear damping have been observed. Based on those nonlinear effects, we determined the values of the precession cone angles, and the maximum cone angle can reach a values as high as 21.5 degrees. We found that even in nonlinear regime, spin pumping is still linear, which means the nonlinear damping and foldover would not affect spin pumping process.

  17. The Academic Spin-Offs as an Engine of Economic Transition in Eastern Europe. A Path-Dependent Approach

    ERIC Educational Resources Information Center

    Tchalakov, Ivan; Mitev, Tihomir; Petrov, Venelin

    2010-01-01

    The paper questions some of the premises in studying academic spin-offs in developed countries, claiming that when taken as characteristics of "academic spin-offs per se," they are of little help in understanding the phenomenon in the Eastern European countries during the transitional and post-transitional periods after 1989. It argues for the…

  18. ISOTOPIC ANOMALIES IN PRIMITIVE SOLAR SYSTEM MATTER: SPIN-STATE-DEPENDENT FRACTIONATION OF NITROGEN AND DEUTERIUM IN INTERSTELLAR CLOUDS

    SciTech Connect

    Wirstroem, Eva S.; Cordiner, Martin A.; Charnley, Steven B.; Milam, Stefanie N.

    2012-09-20

    Organic material found in meteorites and interplanetary dust particles is enriched in D and {sup 15}N. This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar nebula. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and {sup 15}N and can account for the largest isotopic enrichments measured in carbonaceous meteorites. However, more recent measurements have shown that, in some primitive samples, a large {sup 15}N enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, {sup 15}N enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H{sub 2}, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both {sup 15}N and D in dense cloud cores. We also show that while the nitriles, HCN and HNC, contain the greatest {sup 15}N enrichment, this is not expected to correlate with extreme D enrichment. These calculations therefore support the view that solar system {sup 15}N and D isotopic anomalies have an interstellar heritage. We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  19. Thickness-dependent photocatalytic performance of nanocrystalline TiO2 thin films prepared by sol-gel spin coating

    NASA Astrophysics Data System (ADS)

    Wu, Chung-Yi; Lee, Yuan-Ling; Lo, Yu-Shiu; Lin, Chen-Jui; Wu, Chien-Hou

    2013-09-01

    TiO2 nanocrystalline thin films on soda lime glass have been prepared by sol-gel spin coating. The thin films were characterized for surface morphology, crystal structure, chemical composition, thickness, and transparency by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ellipsometry, and UV-vis spectrophotometry. The films prepared by titanium tetraisopropoxide (TTIP) as the precursor under pH of 3.5 ± 0.5 and with calcination temperature of 450 ̊C for 3 h exhibited superior homogeneous aggregation, good optical transparency, superhydrophilicity, and reliable thickness. The effect of film thickness on the photocatalytic degradation of acid yellow 17 was investigated under UV irradiation. The photocatalytic activity was strongly correlated with the number of coatings and followed Langmuir-type kinetics. Under the same film thickness, TiO2 thin films prepared by 0.1 M TTIP exhibited more efficient photocatalytic activity than those prepared by 0.3 M TTIP. For thin films prepared by 0.1 M TTIP, the maximum specific photocatalytic activity occurred at 5 coatings with thickness of 93 ± 1 nm. A model was proposed to rationalize the dependence of the film thickness on the photocatalytic activity, which predicts the existence of an optimum film thickness.

  20. Isotopic Anomalies in Primitive Solar System Matter: Spin-State Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milan, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15, This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar core. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotop c enrichments measured in carbonaceous meteorites, However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores, We also show that while the nitriles, HCN and HNC, contain the greatest N-15 enrichment, this is not expected to correlate with extreme D emichment. These calculations therefore support the view that Solar System N-15 and D isotopic anomalies have an interstellar heritage, We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  1. Isotopic Anomalies in Primitive Solar System Matter: Spin-State-Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milam, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15. This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar nebula, Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotopic enrichments measured in carbonaceous meteorites. However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores. We also show that while the nitriles, HCN and HNC, contain the greatest N=15 enrichment, this is not expected to correlate with extreme D enrichment. These calculations therefore support the view that solar system N-15 and D isotopic anomalies have an interstellar heritage. We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  2. Localization of the hand motor area by arterial spin labeling and blood oxygen level-dependent functional magnetic resonance imaging.

    PubMed

    Pimentel, Marco A F; Vilela, Pedro; Sousa, Inês; Figueiredo, Patrícia

    2013-01-01

    The new clinically available arterial spin labeling (ASL) perfusion imaging sequences present some advantages relatively to the commonly used blood oxygen level-dependent (BOLD) method for functional brain studies using magnetic resonance imaging (MRI). In particular, regional cerebral blood flow (CBF) changes are thought to be more directly related with neuronal activation. In this study, we aimed to investigate the accuracy of the functional localization of the hand motor area obtained by simultaneous CBF and BOLD contrasts provided by ASL functional MRI (fMRI) and compare it with a standard BOLD fMRI protocol. For this purpose, we measured the distance between the center of gravity of the activation clusters obtained with each contrast (CBF, BOLD(ASL), and Standard BOLD) and 11 positions defined on a well-established anatomical landmark of the hand motor area (the omega in the axial plane of the precentral gyrus). We found that CBF measurements were significantly closer to the anatomical landmark than the ones obtained using either simultaneous BOLD(ASL) or standard BOLD contrasts. Moreover, we also observed reduced intersubject variability of the functional localization, as well as percent signal change, for CBF relative to both BOLD contrast measurements. In conclusion, our results add further evidence in support to the notion that CBF provides a more accurate localization of motor activation than BOLD contrast, indicating that ASL may be an appropriate technique for clinical fMRI studies. PMID:22121040

  3. Distinguishing the laser-induced spin precession excitation mechanism in Fe/MgO(001) through field orientation dependent measurements

    SciTech Connect

    Ma, T. P.; Zhang, S. F.; Yang, Y.; Chen, Z. H.; Zhao, H. B.; Wu, Y. Z.

    2015-01-07

    Rotational field dependence of laser-induced magnetization precession in a single-crystal Fe/MgO(001) sample was studied by the time resolved magneto-optical Kerr effect. Polar and longitudinal magnetization components were separated by measuring precession dynamics under opposite fields. When the applied field is weaker than the anisotropy field of an Fe film, the precession amplitude is small for the field direction near the easy axis and becomes larger as the field rotates towards the hard axis, showing a four-fold symmetry in agreement with the in-plane magnetic anisotropy; whereas at higher fields, the amplitude displays a drop near the hard axis. Such precession behavior can be well reproduced using an excitation model with rapidly modified but slowly recovered magnetic anisotropy and considering the elliptical precession trajectory. Our results indicate that the dominant mechanism for triggering Fe spin precession is the anisotropy modulation correlating with the lattice thermalization, rather than the transient anisotropy modulation due to the high electron temperature within 1 ps.

  4. Spin- and valley-dependent commensurability oscillations and electric-field-induced quantum Hall plateaux in periodically modulated silicene

    SciTech Connect

    Shakouri, Kh.; Peeters, F. M.; Vasilopoulos, P.; Vargiamidis, V.; Hai, G.-Q.

    2014-05-26

    We study the commensurability oscillations in silicene subject to a perpendicular electric field E{sub z}, a weak magnetic field B, and a weak periodic potential V=V{sub 0}cos(Cy),C=2π/a{sub 0} with a{sub 0} its period. The field E{sub z} and/or the modulation lift the spin degeneracy of the Landau levels and lead to spin and valley resolved Weiss oscillations. The spin resolution is maximal when the field E{sub z} is replaced by a periodic one E{sub z}=E{sub 0}cos(Dy),D=2π/b{sub 0}, while the valley one is maximal for b{sub 0} = a{sub 0}. In certain ranges of B values, the current is fully spin or valley polarized. Additional quantum Hall conductivity plateaux arise due to spin and valley intra-Landau-level transitions.

  5. Anomalous spectral dependence of optical polarization and its impact on spin detection in InGaAs/GaAs quantum dots

    SciTech Connect

    Puttisong, Y.; Huang, Y. Q.; Buyanova, I. A.; Chen, W. M.; Yang, X. J.; Subagyo, A.; Sueoka, K.; Murayama, A.

    2014-09-29

    We show that circularly polarized emission light from InGaAs/GaAs quantum dot (QD) ensembles under optical spin injection from an adjacent GaAs layer can switch its helicity depending on emission wavelengths and optical excitation density. We attribute this anomalous behavior to simultaneous contributions from both positive and negative trions and a lower number of photo-excited holes than electrons being injected into the QDs due to trapping of holes at ionized acceptors and a lower hole mobility. Our results call for caution in reading out electron spin polarization by optical polarization of the QD ensembles and also provide a guideline in improving efficiency of spin light emitting devices that utilize QDs.

  6. Electron spin-lattice relaxation mechanisms of nitroxyl radicals in ionic liquids and conventional organic liquids: temperature dependence of a thermally activated process.

    PubMed

    Kundu, Krishnendu; Kattnig, Daniel R; Mladenova, Boryana Y; Grampp, Günter; Das, Ranjan

    2015-03-26

    During the past two decades, several studies have established a significant role played by a thermally activated process in the electron spin relaxation of nitroxyl free radicals in liquid solutions. Its role has been used to explain the spin relaxation behavior of these radicals in a wide range of viscosities and microwave frequencies. However, no temperature dependence of this process has been reported. In this work, our main aim was to investigate the temperature dependence of this process in neat solvents. Electron spin-lattice relaxation times of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 4-hydroxy-TEMPO (TEMPOL), in X-band microwave frequency, were measured by the pulse saturation recovery technique in three room-temperature ionic liquids ([bmim][BF4], [emim][BF4], and [bmim][PF6]), di-isononyl phthalate, and sec-butyl benzene. The ionic liquids provided a wide range of viscosity in a modest range of temperature. An auxiliary aim was to examine whether the dynamics of a probe molecule dissolved in ionic liquids was different from that in conventional molecular liquids, as claimed in several reports on fluorescence dynamics in ionic liquids. This was the reason for the inclusion of di-isononyl phthalate, whose viscosities are similar to that of the ionic liquids in similar temperatures, and sec-butyl benzene. Rotational correlation times of the nitroxyl radicals were determined from the hyperfine dependence of the electron paramagnetic resonance (EPR) line widths. Observation of highly well-resolved proton hyperfine lines, riding over the nitrogen hyperfine lines, in the low viscosity regime in all the solvents, gave more accurate values of the rotational correlation times than the values generally measured in the absence of these hyperfine lines and reported in the literature. The measured rotational correlation times obeyed a modified Stokes-Einstein-Debye relation of temperature dependence in all solvents. By separating the contributions of g

  7. Electron spin-lattice relaxation mechanisms of nitroxyl radicals in ionic liquids and conventional organic liquids: temperature dependence of a thermally activated process.

    PubMed

    Kundu, Krishnendu; Kattnig, Daniel R; Mladenova, Boryana Y; Grampp, Günter; Das, Ranjan

    2015-03-26

    During the past two decades, several studies have established a significant role played by a thermally activated process in the electron spin relaxation of nitroxyl free radicals in liquid solutions. Its role has been used to explain the spin relaxation behavior of these radicals in a wide range of viscosities and microwave frequencies. However, no temperature dependence of this process has been reported. In this work, our main aim was to investigate the temperature dependence of this process in neat solvents. Electron spin-lattice relaxation times of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 4-hydroxy-TEMPO (TEMPOL), in X-band microwave frequency, were measured by the pulse saturation recovery technique in three room-temperature ionic liquids ([bmim][BF4], [emim][BF4], and [bmim][PF6]), di-isononyl phthalate, and sec-butyl benzene. The ionic liquids provided a wide range of viscosity in a modest range of temperature. An auxiliary aim was to examine whether the dynamics of a probe molecule dissolved in ionic liquids was different from that in conventional molecular liquids, as claimed in several reports on fluorescence dynamics in ionic liquids. This was the reason for the inclusion of di-isononyl phthalate, whose viscosities are similar to that of the ionic liquids in similar temperatures, and sec-butyl benzene. Rotational correlation times of the nitroxyl radicals were determined from the hyperfine dependence of the electron paramagnetic resonance (EPR) line widths. Observation of highly well-resolved proton hyperfine lines, riding over the nitrogen hyperfine lines, in the low viscosity regime in all the solvents, gave more accurate values of the rotational correlation times than the values generally measured in the absence of these hyperfine lines and reported in the literature. The measured rotational correlation times obeyed a modified Stokes-Einstein-Debye relation of temperature dependence in all solvents. By separating the contributions of g

  8. Energy dependence of the spin excitation anisotropy in uniaxial-strained BaFe1.9Ni0.1As2

    DOE PAGES

    Song, Yu; Lu, Xingye; Abernathy, Douglas L.; Tam, David W.; Niedziela, Jennifer L.; Tian, Wei; Si, Qimiao; Dai, Pengcheng; Luo, Huiqian

    2015-11-06

    In this study, we use inelastic neutron scattering to study the temperature and energy dependence of the spin excitation anisotropy in uniaxial-strained electron-doped iron pnictide BaFe1.9Ni0.1As2 near optimal superconductivity (Tc = 20K). Our work has been motivated by the observation of in-plane resistivity anisotropy in the paramagnetic tetragonal phase of electron-underdoped iron pnictides under uniaxial pressure, which has been attributed to a spin-driven Ising-nematic state or orbital ordering. Here we show that the spin excitation anisotropy, a signature of the spin-driven Ising-nematic phase, exists for energies below 60 meV in uniaxial-strained BaFe1.9Ni0.1As2. Since this energy scale is considerably larger thanmore » the energy splitting of the dxz and dyz bands of uniaxial-strained Ba(Fe1–xCox)2As2 near optimal superconductivity, spin Ising-nematic correlations are likely the driving force for the resistivity anisotropy and associated electronic nematic correlations.« less

  9. Pick-up ion energization at the termination shock

    SciTech Connect

    Gary, S Peter; Winske, Dan; Wu, Pin; Schwadron, N A

    2009-01-01

    One-dimensional hybrid simulations are used to investigate how pickup ions are energized at the perpendicular termination shock. Contrary to previous models based on pickup ion energy gain by repeated crossings of the shock front (shock surfing) or due to a reforming shock front, the present simulations show that pickup ion energy gain involves a gyro-phasedependent interaction with the inhomogeneous motional electric field at the shock. The process operates at all relative concentrations of pickup ion density.

  10. Picking up the Pieces: Themes in Macedonian Midcareer Transitions

    ERIC Educational Resources Information Center

    Sudnik, Paul

    2012-01-01

    Addressing midcareer transition in post-socialist Macedonia, this work sought to provide practical help to participants through a range of techniques. Four themes are identified as important options for transitioners. Enthusiasm for "entrepreneurship" is tempered by a lack of funds and "portfolio careers" are also viewed with caution. "Employment…

  11. Picking up Clues from the Discard Pile (Stereo)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As NASA's Phoenix Mars Lander excavates trenches, it also builds piles with most of the material scooped from the holes. The piles, like this one called 'Caterpillar,' provide researchers some information about the soil.

    On Aug. 24, 2008, during the late afternoon of the 88th Martian day after landing, Phoenix's Surface Stereo Imager took separate exposures through its left eye and right eye that have been combined into this stereo view. The image appears three dimensional when seen through red-blue glasses.

    This conical pile of soil is about 10 centimeters (4 inches) tall. The sources of material that the robotic arm has dropped onto the Caterpillar pile have included the 'Dodo' and ''Upper Cupboard' trenches and, more recently, the deeper 'Stone Soup' trench.

    Observations of the pile provide information, such as the slope of the cone and the textures of the soil, that helps scientists understand properties of material excavated from the trenches.

    For the Stone Soup trench in particular, which is about 18 centimeters (7 inches) deep, the bottom of the trench is in shadow and more difficult to observe than other trenches that Phoenix has dug. The Phoenix team obtained spectral clues about the composition of material from the bottom of Stone Soup by photographing Caterpillar through 15 different filters of the Surface Stereo Imager when the pile was covered in freshly excavated material from the trench.

    The spectral observation did not produce any sign of water-ice, just typical soil for the site. However, the bigger clumps do show a platy texture that could be consistent with elevated concentration of salts in the soil from deep in Stone Soup. The team chose that location as the source for a soil sample to be analyzed in the lander's wet chemistry laboratory, which can identify soluble salts in the soil.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Essays of a peripheral mind: Picking up rocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2008 the Heinz Center released its report “The State of the Nation’s Ecosystems, 2008.” The current report provides sets of assessments on the status of the nation’s rangelands an area of approximately 1 billion acres. Unfortunately, on numerous occasions the report contains the phase “Data Gap...

  13. Raton basin coalbed methane production picking up in Colorado

    USGS Publications Warehouse

    Hemborg, H. Thomas

    1996-01-01

    Coalbed methane production in the Raton basin of south-central Colorado and northeast New Mexico has gone over pilot testing and entered the development stage which is expected to last several years. The development work is restricted to roughly a 25 mile by 15 mile wide `fairway' centered about 20 miles west of Trinidad, Colorado. At last count, 85 wells were producing nearly 17.5 MMcfd of coalbed methane from the basin's Raton and Vermejo formation coals.

  14. Physics papers get poor pick-up on social media

    NASA Astrophysics Data System (ADS)

    Lavender, Gemma

    2014-02-01

    A list of the 100 most popular scientific papers that were discussed on social media in 2013 - those that had the most "likes" on Facebook, Tweets or coverage in blogs - is dominated by papers in biology and the social sciences, with physics and mathematics papers only taking up a couple of places on the list.

  15. Hunt for improved carbon capture picks up speed

    SciTech Connect

    2010-01-01

    A high-throughput metal-organic framework synthesis instrument in action. Berkeley Lab chemist Jeffrey Long's lab will soon host a round-the-clock, robotically choreographed hunt for carbon-hungry materials. The Berkeley Lab chemist leads a diverse team of scientists whose goal is to quickly discover materials that can efficiently strip carbon dioxide from a power plant's exhaust, before it leaves the smokestack and contributes to climate change. They're betting on a recently discovered class of materials called metal-organic frameworks, which boast a record-shattering internal surface area. A sugar cube-sized piece, if unfolded and flattened, would more than blanket a football field. The crystalline material can also be tweaked to absorb specific molecules. More: http://newscenter.lbl.gov/feature-stories/2010/05/26/carbon-capture-search/

  16. Raton basin coalbed methane production picking up in Colorado

    SciTech Connect

    Hemborg, H.T.

    1996-11-11

    Coalbed methane production in the Raton basin of south-central Colorado and northeast New Mexico has advanced past pilot testing and is entering into a development stage that should stretch out over several years. At last count 85 wells were producing nearly 17.5 MMcfd of coalbed methane from the basin`s Raton and Vermejo formation coals (Early Paleocene to Latest Maastrichtian). This development work is currently restricted to roughly a 25 mile by 15 mile wide ``fairway`` centered about 20 miles west of Trinidad, Colo., in the headwater area of the Purgatoire River. The paper discusses the companies involved in the basin development, geology of the coal seam, and water disposal from coal seam dewatering.

  17. Spin-Ml and El responses of nuclei probed by proton inelastic scattering

    NASA Astrophysics Data System (ADS)

    Tamii, Atsushi; Matsubara, Hiroaki

    2014-12-01

    We pick up two studies on the nuclear responses from the recent experiments of high-resolution proton inelastic scattering at the Research Center for Nuclear Physics, Osaka University; 1) study of the nuclear symmetry and the neutron skin thickness by the measurement of energy electric dipole (El) response of 208Pb, and 2) study of the tensor correlation in the ground state by the measurement of the spin-Ml responses of even-even self-conjugate nuclei in the sd-shell nuclei.

  18. Supramolecular control of the spin-dependent dynamics of long-lived charge-separated states at the micellar interface as studied by magnetic field effect.

    PubMed

    Miura, Tomoaki

    2013-05-30

    Spin selectivity in long-lived charge separation at the micellar interface is studied using the magnetic field effect (MFE). An amphiphilic viologen is complexed with a nonionic surfactant to form a supramolecular acceptor cage, of which the size is controlled by the acceptor concentration, as confirmed by dynamic light scattering measurement. Photoinduced electron transfer (ET) from a guest polyaromatic molecule to the viologen moiety is observed spin-dependently with time-resolved fluorescence (trFL) and transient absorption (TA). A negative MFE on the radical yield is successfully observed, which indicates generation of singlet-born long-lived radical pair that is realized by supramolecular control of the donor-acceptor (D-A) distances. The dominance of the singlet-precursor MFE is sensitive to the acceptor concentration, which presumably affects the D-A distance as well as the cage size. However, theoretical analysis of the MFE gives large recombination rates of ca. 10(8) s(-1), which indicate the contribution of spin-allowed recombination of the pseudocontact radical pair generated by still active in-cage diffusion. Dependence of the viologen concentration and alkyl chain length on the recombination and escape dynamics is discussed in terms of precursor spin states and the microenvironments in the cage.

  19. Spin accumulation in the extrinsic spin Hall effect

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Fabian, J.; Žutić, I.; Das Sarma, S.

    2005-12-01

    The drift-diffusion formalism for spin-polarized carrier transport in semiconductors is generalized to include spin-orbit coupling. The theory is applied to treat the extrinsic spin Hall effect using realistic boundary conditions. It is shown that carrier and spin-diffusion lengths are modified by the presence of spin-orbit coupling and that spin accumulation due to the extrinsic spin Hall effect is strongly and qualitatively influenced by boundary conditions. Analytical formulas for the spin-dependent carrier recombination rates and inhomogeneous spin densities and currents are presented.

  20. Ballistic spin resonance.

    PubMed

    Frolov, S M; Lüscher, S; Yu, W; Ren, Y; Folk, J A; Wegscheider, W

    2009-04-16

    The phenomenon of spin resonance has had far-reaching influence since its discovery 70 years ago. Electron spin resonance driven by high-frequency magnetic fields has enhanced our understanding of quantum mechanics, and finds application in fields as diverse as medicine and quantum information. Spin resonance can also be induced by high-frequency electric fields in materials with a spin-orbit interaction; the oscillation of the electrons creates a momentum-dependent effective magnetic field acting on the electron spin. Here we report electron spin resonance due to a spin-orbit interaction that does not require external driving fields. The effect, which we term ballistic spin resonance, is driven by the free motion of electrons that bounce at frequencies of tens of gigahertz in micrometre-scale channels of a two-dimensional electron gas. This is a frequency range that is experimentally challenging to access in spin resonance, and especially difficult on a chip. The resonance is manifest in electrical measurements of pure spin currents-we see a strong suppression of spin relaxation length when the oscillating spin-orbit field is in resonance with spin precession in a static magnetic field. These findings illustrate how the spin-orbit interaction can be harnessed for spin manipulation in a spintronic circuit, and point the way to gate-tunable coherent spin rotations in ballistic nanostructures without external alternating current fields. PMID:19370029