NASA Astrophysics Data System (ADS)
Guerry, Paul; Brown, Steven P.; Smith, Mark E.
2017-10-01
In the context of improving J coupling measurements in disordered solids, strong coupling effects have been investigated in the spin-echo and refocused INADEQUATE spin-echo (REINE) modulations of three- and four-spin systems under magic-angle-spinning (MAS), using density matrix simulations and solid-state NMR experiments on a cadmium phosphate glass. Analytical models are developed for the different modulation regimes, which are shown to be distinguishable in practice using Akaike's information criterion. REINE modulations are shown to be free of the damping that occurs for spin-echo modulations when the observed spin has the same isotropic chemical shift as its neighbour. Damping also occurs when the observed spin is bonded to a strongly-coupled pair. For mid-chain units, the presence of both direct and relayed damping makes both REINE and spin-echo modulations impossible to interpret quantitatively. We nonetheless outline how a qualitative comparison of the modulation curves can provide valuable information on disordered networks, possibly also pertaining to dynamic effects therein.
NASA Astrophysics Data System (ADS)
Akhtar, Waseem; Sekiguchi, Takeharu; Itahashi, Tatsumasa; Filidou, Vasileia; Morton, John J. L.; Vlasenko, Leonid; Itoh, Kohei M.
2012-09-01
We report on a pulsed electron paramagnetic resonance (EPR) study of the photoexcited triplet state (S=1) of oxygen-vacancy centers in silicon. Rabi oscillations between the triplet sublevels are observed using coherent manipulation with a resonant microwave pulse. The Hahn echo and stimulated echo decay profiles are superimposed with strong modulations known as electron-spin-echo envelope modulation (ESEEM). The ESEEM spectra reveal a weak but anisotropic hyperfine coupling between the triplet electron spin and a 29Si nuclear spin (I=1/2) residing at a nearby lattice site, that cannot be resolved in conventional field-swept EPR spectra.
Electrical detection of electron-spin-echo envelope modulations in thin-film silicon solar cells
NASA Astrophysics Data System (ADS)
Fehr, M.; Behrends, J.; Haas, S.; Rech, B.; Lips, K.; Schnegg, A.
2011-11-01
Electrically detected electron-spin-echo envelope modulations (ED-ESEEM) were employed to detect hyperfine interactions between nuclear spins and paramagnetic sites, determining spin-dependent transport processes in multilayer thin-film microcrystalline silicon solar cells. Electrical detection in combination with a modified Hahn-echo sequence was used to measure echo modulations induced by 29Si, 31P, and 1H nuclei weakly coupled to electron spins of paramagnetic sites in the amorphous and microcrystalline solar cell layers. In the case of CE centers in the μc-Si:H i-layer, the absence of 1H ESEEM modulations indicates that the adjacencies of CE centers are depleted from hydrogen atoms. On the basis of this result, we discuss several models for the microscopic origin of the CE center and conclusively assign those centers to coherent twin boundaries inside of crystalline grains in μc-Si:H.
Polaron spin echo envelope modulations in an organic semiconducting polymer
Mkhitaryan, V. V.; Dobrovitski, V. V.
2017-06-01
Here, we present a theoretical analysis of the electron spin echo envelope modulation (ESEEM) spectra of polarons in semiconducting π -conjugated polymers. We show that the contact hyperfine coupling and the dipolar interaction between the polaron and the proton spins give rise to different features in the ESEEM spectra. Our theory enables direct selective probe of different groups of nuclear spins, which affect the polaron spin dynamics. Namely, we demonstrate how the signal from the distant protons (coupled to the polaron spin via dipolar interactions) can be distinguished from the signal coming from the protons residing on the polaron sitemore » (coupled to the polaron spin via contact hyperfine interaction). We propose a method for directly probing the contact hyperfine interaction, that would enable detailed study of the polaron orbital state and its immediate environment. Lastly, we also analyze the decay of the spin echo modulation, and its connection to the polaron transport.« less
On the analysis of time-of-flight spin-echo modulated dark-field imaging data
NASA Astrophysics Data System (ADS)
Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus; Strobl, Markus
2017-06-01
Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering.
NASA Astrophysics Data System (ADS)
Schröder, Leif; Schmitz, Christian; Bachert, Peter
2004-12-01
Coupling constants of nuclear spin systems can be determined from phase modulation of multiplet resonances. Strongly coupled systems such as citrate in prostatic tissue exhibit a more complex modulation than AX connectivities, because of substantial mixing of quantum states. An extreme limit is the coupling of n isochronous spins (A n system). It is observable only for directly connected spins like the methylene protons of creatine and phosphocreatine which experience residual dipolar coupling in intact muscle tissue in vivo. We will demonstrate that phase modulation of this "pseudo-strong" system is quite simple compared to those of AB systems. Theory predicts that the spin-echo experiment yields conditions as in the case of weak interactions, in particular, the phase modulation depends linearly on the line splitting and the echo time.
Wavelength-independent constant period spin-echo modulated small angle neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sales, Morten, E-mail: lsp260@alumni.ku.dk; Plomp, Jeroen; Bouwman, Wim
2016-06-15
Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved bymore » ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI.« less
Electrical detection of nuclear spins in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.
2014-03-01
We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Jiang; Peisach, J.; Lijune Ming
Electron spin echo envelope modulation spectroscopy (ESEEM) was used to study the active site structure of isopenicillin N synthase (IPNS) from Cephalosporium acremonium with Cu(II) as a spectroscopic probe. Fourier transform of the simulated electron spin-echo envelope for the Cu(II)-substituted enzyme, Cu(II)IPNS, revealed two nearly magnetically equivalent, equatorially coordinated His imidazoles. The superhyperfine coupling constant, A{sub iso}, for the remote {sup 14}N of each imidazole was 1.65 MHz. The binding of substrate to the enzyme altered the magnetic coupling so that A{sub iso} is 1.30 MHz for one nitrogen and 2.16 MHz for the other. From a comparison of themore » ESSEM of Cu(II)IPNS in D{sub 2}O and H{sub 2}O, it is suggested that water is a ligand of Cu(II) and this is displaced upon the addition of substrate.« less
Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.
Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar
2015-07-28
The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.
NASA Astrophysics Data System (ADS)
Goslar, Janina; Hoffmann, Stanislaw K.; Lijewski, Stefan
2016-08-01
ESR spectra and electron spin relaxation of nitroxide radical in 4-oxo-TEMPO-d16-15N in propylene glycol were studied at X-band in the temperature range 10-295 K. The spin-lattice relaxation in the liquid viscous state determined from the resonance line shape is governed by three mechanisms occurring during isotropic molecular reorientations. In the glassy state below 200 K the spin-lattice relaxation, phase relaxation and electron spin echo envelope modulations (ESEEM) were studied by pulse spin echo technique using 2-pulse and 3-pulse induced signals. Electron spin-lattice relaxation is governed by a single non-phonon relaxation process produced by localized oscillators of energy 76 cm-1. Electron spin dephasing is dominated by a molecular motion producing a resonance-type peak in the temperature dependence of the dephasing rate around 120 K. The origin of the peak is discussed and a simple method for the peak shape analysis is proposed, which gives the activation energy of a thermally activated motion Ea = 7.8 kJ/mol and correlation time τ0 = 10-8 s. The spin echo amplitude is strongly modulated and FT spectrum contains a doublet of lines centered around the 2D nuclei Zeeman frequency. The splitting into the doublet is discussed as due to a weak hyperfine coupling of nitroxide unpaired electron with deuterium of reorienting CD3 groups.
Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan
2015-07-28
The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclearmore » modulation spectrum.« less
Zhang, Qinwei; Coolen, Bram F; Versluis, Maarten J; Strijkers, Gustav J; Nederveen, Aart J
2017-07-01
In this study, we present a new three-dimensional (3D), diffusion-prepared turbo spin echo sequence based on a stimulated-echo read-out (DPsti-TSE) enabling high-resolution and undistorted diffusion-weighted imaging (DWI). A dephasing gradient in the diffusion preparation module and rephasing gradients in the turbo spin echo module create stimulated echoes, which prevent signal loss caused by eddy currents. Near to perfect agreement of apparent diffusion coefficient (ADC) values between DPsti-TSE and diffusion-weighted echo planar imaging (DW-EPI) was demonstrated in both phantom transient signal experiments and phantom imaging experiments. High-resolution and undistorted DPsti-TSE was demonstrated in vivo in prostate and carotid vessel wall. 3D whole-prostate DWI was achieved with four b values in only 6 min. Undistorted ADC maps of the prostate peripheral zone were obtained at low and high imaging resolutions with no change in mean ADC values [(1.60 ± 0.10) × 10 -3 versus (1.60 ± 0.02) × 10 -3 mm 2 /s]. High-resolution 3D DWI of the carotid vessel wall was achieved in 12 min, with consistent ADC values [(1.40 ± 0.23) × 10 -3 mm 2 /s] across different subjects, as well as slice locations through the imaging volume. This study shows that DPsti-TSE can serve as a robust 3D diffusion-weighted sequence and is an attractive alternative to the traditional two-dimensional DW-EPI approaches. Copyright © 2017 John Wiley & Sons, Ltd.
Transient radical pairs studied by time-resolved EPR.
Bittl, Robert; Weber, Stefan
2005-02-25
Photogenerated short-lived radical pairs (RP) are common in biological photoprocesses such as photosynthesis and enzymatic DNA repair. They can be favorably probed by time-resolved electron paramagnetic resonance (EPR) methods with adequate time resolution. Two EPR techniques have proven to be particularly useful to extract information on the working states of photoinduced biological processes that is only difficult or sometimes even impossible to obtain by other types of spectroscopy. Firstly, transient EPR yields crucial information on the chemical nature and the geometry of the individual RP halves in a doublet-spin pair generated by a short laser pulse. This time-resolved method is applicable in all magnetic field/microwave frequency regimes that are used for continuous-wave EPR, and is nowadays routinely utilized with a time resolution reaching about 10 ns. Secondly, a pulsed EPR method named out-of-phase electron spin echo envelope modulation (OOP-ESEEM) is increasingly becoming popular. By this pulsed technique, the mutual spin-spin interaction between the RP halves in a doublet-spin pair manifests itself as an echo modulation detected as a function of the microwave-pulse spacing of a two-pulse echo sequence subsequent to a laser pulse. From the dipolar coupling, the distance between the radicals is readily derived. Since the spin-spin interaction parameters are typically not observable by transient EPR, the two techniques complement each other favorably. Both EPR methods have recently been applied to a variety of light-induced RPs in photobiology. This review summarizes the results obtained from such studies in the fields of plant and bacterial photosynthesis and DNA repair mediated by the enzyme DNA photolyase.
1994-04-25
Resonance Spectroscopy of Chromium-Doped Lanthanum Lutetium Gallium Garnet, M. H. Whitmore and D.J. Singel 8. 51V modulation of Mn5+ electron spin echoes in...Doped Lanthanum Lutetium Gallium Garnet Chapter 9 Characterization of Optical Centers in Mn.Ba3(VO4)2 178 by Spin-Echo EPR Spectroscopy I I ! I ii I i I I...previously unpublished EPR results on Cr:gehlenites (Chapter 6) and Cr:LLGG (lanthanum lutetium gallium garnet) (Chapter 8). The gehlenite spectra do
Fast REDOR with CPMG multiple-echo acquisition
NASA Astrophysics Data System (ADS)
Hung, Ivan; Gan, Zhehong
2014-01-01
Rotational-Echo Double Resonance (REDOR) is a widely used experiment for distance measurements in solids. The conventional REDOR experiment measures the signal dephasing from hetero-nuclear recoupling under magic-angle spinning (MAS) in a point by point manner. A modified Carr-Purcell Meiboom-Gill (CPMG) multiple-echo scheme is introduced for fast REDOR measurement. REDOR curves are measured from the CPMG echo amplitude modulation under dipolar recoupling. The real time CPMG-REDOR experiment can speed up the measurement by an order of magnitude. The effects from hetero-nuclear recoupling, the Bloch-Siegert shift and echo truncation to the signal acquisition are discussed and demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevan, L.
1982-10-21
During this period work has focused on the structural aspects of photoinduced charge separation in micellar media with initial forays into vesicular media. The primary techniques utilized are electron spin resonance and electron spin echo spectrometry. The analysis of electron spin echo modulation gives a unique handle on very weak hyperfine interactions thus providing a new structural tool for this general problem. Electron spin resonance and electron spin echo studies of the photoionization of N,N,N',N'tetramethylbenzidine (TMB) to give the cation radical have been carried out in anionic, cationic and nonionic micellar solutions frozen to 77/sup 0/K. The photoionization efficiency ofmore » TMB has also been studied in micelles with varying alkyl chain lengths of the surfactant. Stearic acid nitroxide spin probes have also been used to determine some structural aspects of the location of the neutral TMB molecule in anionic micelles before photoionization. The nitroxide work in which the nitroxide is acting as an electron acceptor also shows that a suitable electron acceptor can be located within the micellar structure. The effect of inorganic solutes on the efficiency of the photoionization of TMB in frozen micelles has also been studied. A series of electron scavenger studies have been initiated to study the effect on TMB photoionization efficiency. Electron spin echo detection of laser photogenerated TMB cation in liquid sodium dodecyl sulfate solutions at room temperature has recently been observed.« less
SNR-optimized phase-sensitive dual-acquisition turbo spin echo imaging: a fast alternative to FLAIR.
Lee, Hyunyeol; Park, Jaeseok
2013-07-01
Phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo imaging was recently introduced, producing high-resolution isotropic cerebrospinal fluid attenuated brain images without long inversion recovery preparation. Despite the advantages, the weighted-averaging-based technique suffers from noise amplification resulting from different levels of cerebrospinal fluid signal modulations over the two acquisitions. The purpose of this work is to develop a signal-to-noise ratio-optimized version of the phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo. Variable refocusing flip angles in the first acquisition are calculated using a three-step prescribed signal evolution while those in the second acquisition are calculated using a two-step pseudo-steady state signal transition with a high flip-angle pseudo-steady state at a later portion of the echo train, balancing the levels of cerebrospinal fluid signals in both the acquisitions. Low spatial frequency signals are sampled during the high flip-angle pseudo-steady state to further suppress noise. Numerical simulations of the Bloch equations were performed to evaluate signal evolutions of brain tissues along the echo train and optimize imaging parameters. In vivo studies demonstrate that compared with conventional phase-sensitive dual-acquisition single-slab three-dimensional turbo spin echo, the proposed optimization yields 74% increase in apparent signal-to-noise ratio for gray matter and 32% decrease in imaging time. The proposed method can be a potential alternative to conventional fluid-attenuated imaging. Copyright © 2012 Wiley Periodicals, Inc.
Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P
2014-01-01
In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglioni, P.; Rivara-Minten, E.; Kevan, L.
1989-02-23
Electron spin resonance (ESR) and electron spin echo modulation (ESEM) of photoionized N,N,N{prime},N{prime}-tetramethylbenzidine (TMB) cation adsorbed at the interface of butadiene-acrylonitrile-methacrylic acid and butadiene-styrene-acrylic acid polymeric latices have been studied as a function of sodium dodecyl sulfate (SDS) concentration adsorbed at the latex interface. The photoionization yield of TMB in frozen latices mainly depends on the strength of TMB{sup +}-water interactions, which are enhanced by added SDS as measured by ESEM. An increase in the negative surface potential of the latex particles, due to the adsorption of SDS at the latex surface, does not affect the photoionization yield, showing thatmore » the particle surface potential has, for negatively charged systems, a secondary role in promoting the photoionization yield. Differences in the TMB{sup +} yield are found for the two polymeric latices and are attributed to the different latex compositions and/or different interfacial structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivara-Minten, E.; Baglioni, P.; Kevan, L.
1988-05-05
Electron spin echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N',N'-tetramethylbenzidine cation radical (TMB/sup +/) in frozen mixed micelles of dodecyltrimethylammonium chloride (DTAC) and sodium dodecyl sulfate (SDS) have been studied as a function of the mixed micelle composition. ESEM effects due to TMB/sup +/ interactions with deuterium in D/sub 2/O show a decrease of the TMB/sup +/-water interaction that depends on the SDS-DTAC mixed micelle composition and reaches a minimum for the equimolar mixed micelle. The efficiency of charge separation upon photoionization of TMB to produce TMB/sup +/ measured by ESR correlates with the degreemore » of water penetration into the micelle. ESEM effects due to interaction of x-doxylstearic acid nitroxide probes with deuterium in D/sub 2/O show that the decrease of water penetration is due to higher surface packing due to electrostatic attraction among the polar headgroups of the two surfactants.« less
Allen, R W; Harnsberger, H R; Shelton, C; King, B; Bell, D A; Miller, R; Parkin, J L; Apfelbaum, R I; Parker, D
1996-08-01
To determine whether unenhanced high-resolution T2-weighted fast spin-echo MR imaging provides an acceptable and less expensive alternative to contrast-enhanced conventional T1-weighted spin-echo MR techniques in the diagnosis of acoustic schwannoma. We reviewed in a blinded fashion the records of 25 patients with pathologically documented acoustic schwannoma and of 25 control subjects, all of whom had undergone both enhanced conventional spin-echo MR imaging and unenhanced fast spin-echo MR imaging of the cerebellopontine angle/internal auditory canal region. The patients were imaged with the use of a quadrature head receiver coil for the conventional spin-echo sequences and dual 3-inch phased-array receiver coils for the fast spin-echo sequences. The size of the acoustic schwannomas ranged from 2 to 40 mm in maximum dimension. The mean maximum diameter was 12 mm, and 12 neoplasms were less than 10 mm in diameter. Acoustic schwannoma was correctly diagnosed on 98% of the fast spin-echo images and on 100% of the enhanced conventional spin-echo images. Statistical analysis of the data using the kappa coefficient demonstrated agreement beyond chance between these two imaging techniques for the diagnosis of acoustic schwannoma. There is no statistically significant difference in the sensitivity and specificity of unenhanced high-resolution fast spin-echo imaging and enhance T1-weighted conventional spin-echo imaging in the detection of acoustic schwannoma. We believe that the unenhanced high-resolution fast spin-echo technique provides a cost-effective method for the diagnosis of acoustic schwannoma.
Lock-in detection for pulsed electrically detected magnetic resonance
NASA Astrophysics Data System (ADS)
Hoehne, Felix; Dreher, Lukas; Behrends, Jan; Fehr, Matthias; Huebl, Hans; Lips, Klaus; Schnegg, Alexander; Suckert, Max; Stutzmann, Martin; Brandt, Martin S.
2012-04-01
We show that in pulsed electrically detected magnetic resonance (pEDMR) signal modulation in combination with a lock-in detection scheme can reduce the low-frequency noise level by one order of magnitude and in addition removes the microwave-induced non-resonant background. This is exemplarily demonstrated for spin-echo measurements in phosphorus-doped silicon. The modulation of the signal is achieved by cycling the phase of the projection pulse used in pEDMR for the readout of the spin state.
Effects of off-resonance spins on the performance of the modulated gradient spin echo sequence.
Serša, Igor; Bajd, Franci; Mohorič, Aleš
2016-09-01
Translational molecular dynamics in various materials can also be studied by diffusion spectra. These can be measured by a constant gradient variant of the modulated gradient spin echo (MGSE) sequence which is composed of a CPMG RF pulse train superimposed to a constant magnetic field gradient. The application of the RF train makes the effective gradient oscillating thus enabling measurements of diffusion spectra in a wide range of frequencies. However, seemingly straightforward implementation of the MGSE sequence proved to be complicated and can give overestimated results for diffusion if not interpreted correctly. In this study, unrestricted diffusion in water and other characteristic materials was analyzed by the MGSE sequence in the frequency range 50-3000Hz using a 6T/m diffusion probe. First, it was shown that the MGSE echo train acquired from the entire sample decays faster than the train acquired only from a narrow band at zero frequency of the sample. Then, it was shown that the decay rate is dependent on the band's off-resonance characterized by the ratio Δω0/ω1 and that with higher off-resonances the decay is faster. The faster decay therefore corresponds to a higher diffusion coefficient if the diffusion is calculated using standard Stejskal-Tanner formula. The result can be explained by complex coherence pathways contributing to the MGSE echo signals when |Δω0|/ω1>0. In a magnetic field gradient, all the pathways are more diffusion attenuated than the direct coherence pathway and therefore decay faster, which leads to an overestimation of the diffusion coefficient. A solution to this problem was found in an efficient off-resonance signal reduction by using only zero frequency filtered MGSE echo train signals. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Rhim, W. K.; Burum, D. P.; Elleman, D. D.
1977-01-01
Adiabatic demagnetization (ADRF) can be achieved in a dipolar coupled nuclear spin system in solids by applying a string of short RF pulses and gradually modulating the pulse amplitudes or pulse angles. This letter reports an adiabatic inverse polarization effect in solids and a rotary spin echo phenomenon observed in liquids when the pulse angle is gradually changed across integral multiples of pi during a string of RF pulses. The RF pulse sequence used is illustrated along with the NMR signal from a CaF2 single crystal as observed between the RF pulses and the rotary spin echo signal observed in liquid C6F6 for n = 2. The observed effects are explained qualitatively on the basis of average Hamiltonian theory.
NASA Astrophysics Data System (ADS)
Kusmin, A.; Bouwman, W. G.; van Well, A. A.; Pappas, C.
2017-06-01
We describe theoretical and practical aspects of spin-echo modulated small-angle neutron scattering (SEMSANS) as well as the potential combination with SANS. Based on the preliminary technical designs of SKADI (a SANS instrument proposed for the European Spallation Source) and a SEMSANS add-on, we assess the practicability, feasibility and scientific merit of a combined SANS and SEMSANS setup by calculating tentative SANS and SEMSANS results for soft matter, geology and advanced material samples that have been previously studied by scattering methods. We conclude that lengths from 1 nm up to 0.01 mm can be observed simultaneously in a single measurement. Thus, the combination of SANS and SEMSANS instrument is suited for the simultaneous observation of a wide range of length scales, e.g. for time-resolved studies of kinetic processes in complex multiscale systems.
Cieslak, John A; Focia, Pamela J; Gross, Adrian
2010-02-23
Electron spin-echo envelope modulation (ESEEM) spectroscopy is a well-established technique for the study of naturally occurring paramagnetic metal centers. The technique has been used to study copper complexes, hemes, enzyme mechanisms, micellar water content, and water permeation profiles in membranes, among other applications. In the present study, we combine ESEEM spectroscopy with site-directed spin labeling (SDSL) and X-ray crystallography in order to evaluate the technique's potential as a structural tool to describe the native environment of membrane proteins. Using the KcsA potassium channel as a model system, we demonstrate that deuterium ESEEM can detect water permeation along the lipid-exposed surface of the KcsA outer helix. We further demonstrate that (31)P ESEEM is able to identify channel residues that interact with the phosphate headgroup of the lipid bilayer. In combination with X-ray crystallography, the (31)P data may be used to define the phosphate interaction surface of the protein. The results presented here establish ESEEM as a highly informative technique for SDSL studies of membrane proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglioni, P.; Rivara-Minten, E.; Kevan, L.
1988-08-11
Electron spin echo modulation and electron spin resonance spectra of photogenerated N,N,N',N'-tetramethylbenzidine (TMB) cation radical and n-doxylstearic acids (n-DSA) in frozen micellar solutions of sodium and lithium dodecyl sulfate containing 15-crown-5 and 18-crown-6 ethers in D/sub 2/O have been studied as a function of crown ether concentration. Modulation effects due to N-DSA with water deuteriums give direct evidence that both crown ethers are mainly located at the micellar interface and that this causes a decrease of the hydration of the micellar interface. Crown ether complexation constants for sodium and lithium micellar counterions are reported and show that 18-crown-6 > 15-crown-5more » for sodium counterion and 15-crown-5 > 18-crown-6 for lithium counterion. Modulation effects from TMB/sup +/ interaction with water deuteriums indicate that the TMB molecule moves toward the micelle interfacial region when sodium or lithium cations are complexed by crown ethers. The TMB/sup +/ yield upon TMB photoionization increases by about 10% with crown ether addition for SDS and LDS micellar systems, but it is greater if the absolute values for the LDS system are compared to those for the SDS micellar system. This behavior correlates with the strength of TMB/sup +/-water interactions and suggests that the main factor in the photoionization efficiency is the photocation-water interaction.« less
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Narasimhan, P. T.
The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.
Room-temperature coupling between electrical current and nuclear spins in OLEDs
NASA Astrophysics Data System (ADS)
Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.
2014-09-01
The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.
Li, Z; Hu, H H; Miller, J H; Karis, J P; Cornejo, P; Wang, D; Pipe, J G
2016-04-01
A challenge with the T1-weighted postcontrast Cartesian spin-echo and turbo spin-echo brain MR imaging is the presence of flow artifacts. Our aim was to develop a rapid 2D spiral spin-echo sequence for T1-weighted MR imaging with minimal flow artifacts and to compare it with a conventional Cartesian 2D turbo spin-echo sequence. T1-weighted brain imaging was performed in 24 pediatric patients. After the administration of intravenous gadolinium contrast agent, a reference Cartesian TSE sequence with a scanning time of 2 minutes 30 seconds was performed, followed by the proposed spiral spin-echo sequence with a scanning time of 1 minutes 18 seconds, with similar spatial resolution and volumetric coverage. The results were reviewed independently and blindly by 3 neuroradiologists. Scores from a 3-point scale were assigned in 3 categories: flow artifact reduction, subjective preference, and lesion conspicuity, if any. The Wilcoxon signed rank test was performed to evaluate the reviewer scores. The t test was used to evaluate the SNR. The Fleiss κ coefficient was calculated to examine interreader agreement. In 23 cases, spiral spin-echo was scored over Cartesian TSE in flow artifact reduction (P < .001). In 21 cases, spiral spin-echo was rated superior in subjective preference (P < .001). Ten patients were identified with lesions, and no statistically significant difference in lesion conspicuity was observed between the 2 sequences. There was no statistically significant difference in SNR between the 2 techniques. The Fleiss κ coefficient was 0.79 (95% confidence interval, 0.65-0.93). The proposed spiral spin-echo pulse sequence provides postcontrast images with minimal flow artifacts at a faster scanning time than its Cartesian TSE counterpart. © 2016 by American Journal of Neuroradiology.
Pease, Anthony; Sullivan, Stacey; Olby, Natasha; Galano, Heather; Cerda-Gonzalez, Sophia; Robertson, Ian D; Gavin, Patrick; Thrall, Donald
2006-01-01
Three case history reports are presented to illustrate the value of the single-shot turbo spin-echo pulse sequence for assessment of the subarachnoid space. The use of the single-shot turbo spin-echo pulse sequence, which is a heavily T2-weighted sequence, allows for a rapid, noninvasive evaluation of the subarachnoid space by using the high signal from cerebrospinal fluid. This sequence can be completed in seconds rather than the several minutes required for a T2-fast spin-echo sequence. Unlike the standard T2-fast spin-echo sequence, a single-shot turbo spin-echo pulse sequence also provides qualitative information about the protein and the cellular content of the cerebrospinal fluid, such as in patients with inflammatory debris or hemorrhage in the cerebrospinal fluid. Although the resolution of the single-shot turbo spin-echo pulse sequence images is relatively poor compared with more conventional sequences, the qualitative information about the subarachnoid space and cerebrospinal fluid and the rapid acquisition time, make it a useful sequence to include in standard protocols of spinal magnetic resonance imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglioni, P.; Rivara-Minten, E.; Stenland, C.
1991-11-28
Electron spin-echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N[prime],N[prime]-tetramethylbenzidine (TMB) cation radical in frozen mixed micelles of sodium dodecyl sulfate (SDS) or dodecyltrimethylammonium chloride (DTAC) and hexakis(ethylene glycol) monododecyl ether (C[sub 12]E[sub 6]), selectively deuterated along the poly(ethylene glycol) group (C[sub 12]D[sub 6]) or along the alkyl chain ((CD)[sub 12]E[sub 6]), have been studied as a function of the mixed-micelle composition in H[sub 2]O and D[sub 2]O. ESEM effects due to TMB[sup +] interactions with deuterium in D[sub 2]O show a decrease of the TMB[sup +]-water interactions for the system DTAC/C[sub 12]E[sub 6] and anmore » increase for the system SDS/C[sub 12]E[sub 6] that depend on the composition of the mixed micelle. The location of TMB[sup +] in the mixed micelles, deduced by comparing the modulation effects due to interactions of the photocation with water deuteriums or deuteriums of deuterated surfactants, is reported for the SDS/C[sub 12]E[sub 6] and DTAC/C[sub 12]E[sub 6] mixed micelles. The efficiency of charge separation upon the photoionization of TMB to produce TMB[sup +] measured by ESR correlates with the surface charge and with the degree of water penetration into the mixed micelle.« less
Isotropic 3-D T2-weighted spin-echo for abdominal and pelvic MRI in children.
Dias, Sílvia Costa; Ølsen, Oystein E
2012-11-01
MRI has a fundamental role in paediatric imaging. The T2-weighted fast/turbo spin-echo sequence is important because it has high signal-to-noise ratio compared to gradient-echo sequences. It is usually acquired as 2-D sections in one or more planes. Volumetric spin-echo has until recently only been possible with very long echo times due to blurring of the soft-tissue contrast with long echo trains. A new 3-D spin-echo sequence uses variable flip angles to overcome this problem. It may reproduce useful soft-tissue contrast, with improved spatial resolution. Its isotropic capability allows subsequent reconstruction in standard, curved or arbitrary planes. It may be particularly useful for visualisation of small lesions, or if large lesions distort the usual anatomical relations. We present clinical examples, describe the technical parameters and discuss some potential artefacts and optimisation of image quality.
Analysis of phase error effects in multishot diffusion-prepared turbo spin echo imaging
Cervantes, Barbara; Kooijman, Hendrik; Karampinos, Dimitrios C.
2017-01-01
Background To characterize the effect of phase errors on the magnitude and the phase of the diffusion-weighted (DW) signal acquired with diffusion-prepared turbo spin echo (dprep-TSE) sequences. Methods Motion and eddy currents were identified as the main sources of phase errors. An analytical expression for the effect of phase errors on the acquired signal was derived and verified using Bloch simulations, phantom, and in vivo experiments. Results Simulations and experiments showed that phase errors during the diffusion preparation cause both magnitude and phase modulation on the acquired data. When motion-induced phase error (MiPe) is accounted for (e.g., with motion-compensated diffusion encoding), the signal magnitude modulation due to the leftover eddy-current-induced phase error cannot be eliminated by the conventional phase cycling and sum-of-squares (SOS) method. By employing magnitude stabilizers, the phase-error-induced magnitude modulation, regardless of its cause, was removed but the phase modulation remained. The in vivo comparison between pulsed gradient and flow-compensated diffusion preparations showed that MiPe needed to be addressed in multi-shot dprep-TSE acquisitions employing magnitude stabilizers. Conclusions A comprehensive analysis of phase errors in dprep-TSE sequences showed that magnitude stabilizers are mandatory in removing the phase error induced magnitude modulation. Additionally, when multi-shot dprep-TSE is employed the inconsistent signal phase modulation across shots has to be resolved before shot-combination is performed. PMID:28516049
Polarisation in spin-echo experiments: Multi-point and lock-in measurements
NASA Astrophysics Data System (ADS)
Tamtögl, Anton; Davey, Benjamin; Ward, David J.; Jardine, Andrew P.; Ellis, John; Allison, William
2018-02-01
Spin-echo instruments are typically used to measure diffusive processes and the dynamics and motion in samples on ps and ns time scales. A key aspect of the spin-echo technique is to determine the polarisation of a particle beam. We present two methods for measuring the spin polarisation in spin-echo experiments. The current method in use is based on taking a number of discrete readings. The implementation of a new method involves continuously rotating the spin and measuring its polarisation after being scattered from the sample. A control system running on a microcontroller is used to perform the spin rotation and to calculate the polarisation of the scattered beam based on a lock-in amplifier. First experimental tests of the method on a helium spin-echo spectrometer show that it is clearly working and that it has advantages over the discrete approach, i.e., it can track changes of the beam properties throughout the experiment. Moreover, we show that real-time numerical simulations can perfectly describe a complex experiment and can be easily used to develop improved experimental methods prior to a first hardware implementation.
Electrical detection of nuclear spin-echo signals in an electron spin injection system
NASA Astrophysics Data System (ADS)
Lin, Zhichao; Rasly, Mahmoud; Uemura, Tetsuya
2017-06-01
We demonstrated spin echoes of nuclear spins in a spin injection device with a highly polarized spin source by nuclear magnetic resonance (NMR). Efficient spin injection into GaAs from a half-metallic spin source of Co2MnSi enabled efficient dynamic nuclear polarization (DNP) and sensitive detection of NMR signals even at a low magnetic field of ˜0.1 T and a relatively high temperature of 4.2 K. The intrinsic coherence time T2 of 69Ga nuclear spins was evaluated from the spin-echo signals. The relation between T2 and the decay time of the Rabi oscillation suggests that the inhomogeneous effects in our system are not obvious. This study provides an all-electrical NMR system for nuclear-spin-based qubits.
Siewert, C; Hosten, N; Felix, R
1994-07-01
T2-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neurocranium. We evaluated fast spin-echo T2-weighted imaging (TT2) of the neurocranium in comparison to conventional spin-echo T2-weighted imaging (T2). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher in TT2 than in T2 (with the exception of gray-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT2, Parkinson patients have to be examined by conventional T2. If these limitations are taken into account, fast spin-echo T2-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T2-weighting achieved in a short acquisition time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, A.S.W.; Kevan, L.
1983-09-07
The photoionization of N,N,N',N'-tetramethylbenzidine (TMB) in dihexadecylphosphate anionic vesicles and in dioctadecyldimethylammonium chloride cationic vesicles has been studied by optical absorption and electron spin resonance in liquid and frozen solutions. The TMB cation has been observed to be stabilized in both types of vesicles. The photoionization efficiency is about twofold greater in the cationic vesicles compared to the anionic vesicles. Shifts in the optical absorption maximum between micellar and vesicle solutions indicate that TMB is in a less polar environment in the vesicle systems. Electron spin echo modulation spectrometry has been used to detect TMB cation-water interactions that are foundmore » to be weaker than in previously studied micellar solutions. This is consistent with the optical absorption results and with an asymmetric solubilization site for TMB and TMB/sup +/ within the vesicular structure. A new absorption in the photoionized vesicles is assigned to a nonparamagnetic diamine-diimine charge-transfer complex between two TMB cations in the same vesicle. This complex is not formed in micellar systems. 5 figures.« less
Matsuo, Masayuki; Kanematsu, Masayuki; Itoh, Kyo; Murakami, Takamichi; Maetani, Yoji; Kondo, Hiroshi; Goshima, Satoshi; Kako, Nobuo; Hoshi, Hiroaki; Konishi, Junji; Moriyama, Noriyuki; Nakamura, Hironobu
2004-01-01
The purpose of our study was to compare the detectability of malignant hepatic tumors on ferumoxides-enhanced MRI using five gradient-recalled echo sequences at different TEs. Ferumoxides-enhanced MRIs obtained in 31 patients with 50 malignant hepatic tumors (33 hepatocellular carcinomas, 17 metastases) were reviewed retrospectively by three independent offsite radiologists. T1-weighted gradient-recalled echo images with TEs of 1.4 and 4.2 msec; T2*-weighted gradient-recalled echo images with TEs of 6, 8, and 10 msec; and T2-weighted fast spin-echo images of livers were randomly reviewed on a segment-by-segment basis. Observer performance was tested using the McNemar test and receiver operating characteristic analysis for the clustered data. Lesion-to-liver contrast-to-noise ratio was also assessed. Mean lesion-to-liver contrast-to-noise ratios were negative and lower with gradient-recalled echo at 1.4 msec than with the other sequences. Sensitivity was higher (p < 0.05) with gradient-recalled echo at 6, 8, and 10 msec and fast spin-echo sequences (75-83%) than with gradient-recalled echo sequences at 1.4 and 4.2 msec (46-48%), and was higher (p < 0.05) with gradient-recalled echo sequence at 8 msec (83%) than with gradient-recalled echo at 6 msec and fast spin-echo sequences (75-78%). Specificity was comparably high with all sequences (95-98%). The area under the receiver operating characteristic curve (A(z)) was greater (p < 0.05) with gradient-recalled echo at 6, 8, and 10 msec and fast spin-echo sequences (A(z) = 0.91-0.93) than with gradient-recalled echo sequences at 1.4 and 4.2 msec (A(z) = 0.82-0.85). In the detection of malignant hepatic tumors, gradient-recalled echo sequences at 8 msec showed the highest sensitivity and had an A(z) value and lesion-to-liver contrast-to-noise ratio comparable with values from gradient-recalled echo sequences at 6 and 10 msec and fast spin-echo sequences.
Sun, Li; Hernandez-Guzman, Jessica; Warncke, Kurt
2009-01-01
Electron spin echo envelope modulation (ESEEM) is a technique of pulsed-electron paramagnetic resonance (EPR) spectroscopy. The analyis of ESEEM data to extract information about the nuclear and electronic structure of a disordered (powder) paramagnetic system requires accurate and efficient numerical simulations. A single coupled nucleus of known nuclear g value (gN) and spin I=1 can have up to eight adjustable parameters in the nuclear part of the spin Hamiltonian. We have developed OPTESIM, an ESEEM simulation toolbox, for automated numerical simulation of powder two- and three-pulse one-dimensional ESEEM for arbitrary number (N) and type (I, gN) of coupled nuclei, and arbitrary mutual orientations of the hyperfine tensor principal axis systems for N>1. OPTESIM is based in the Matlab environment, and includes the following features: (1) a fast algorithm for translation of the spin Hamiltonian into simulated ESEEM, (2) different optimization methods that can be hybridized to achieve an efficient coarse-to-fine grained search of the parameter space and convergence to a global minimum, (3) statistical analysis of the simulation parameters, which allows the identification of simultaneous confidence regions at specific confidence levels. OPTESIM also includes a geometry-preserving spherical averaging algorithm as default for N>1, and global optimization over multiple experimental conditions, such as the dephasing time ( ) for three-pulse ESEEM, and external magnetic field values. Application examples for simulation of 14N coupling (N=1, N=2) in biological and chemical model paramagnets are included. Automated, optimized simulations by using OPTESIM lead to a convergence on dramatically shorter time scales, relative to manual simulations. PMID:19553148
Inter-Vendor Reproducibility of Pseudo-Continuous Arterial Spin Labeling at 3 Tesla
Mutsaerts, Henri J. M. M.; Steketee, Rebecca M. E.; Heijtel, Dennis F. R.; Kuijer, Joost P. A.; van Osch, Matthias J. P.; Majoie, Charles B. L. M.; Smits, Marion; Nederveen, Aart J.
2014-01-01
Purpose Prior to the implementation of arterial spin labeling (ASL) in clinical multi-center studies, it is important to establish its status quo inter-vendor reproducibility. This study evaluates and compares the intra- and inter-vendor reproducibility of pseudo-continuous ASL (pCASL) as clinically implemented by GE and Philips. Material and Methods 22 healthy volunteers were scanned twice on both a 3T GE and a 3T Philips scanner. The main difference in implementation between the vendors was the readout module: spiral 3D fast spin echo vs. 2D gradient-echo echo-planar imaging respectively. Mean and variation of cerebral blood flow (CBF) were compared for the total gray matter (GM) and white matter (WM), and on a voxel-level. Results Whereas the mean GM CBF of both vendors was almost equal (p = 1.0), the mean WM CBF was significantly different (p<0.01). The inter-vendor GM variation did not differ from the intra-vendor GM variation (p = 0.3 and p = 0.5 for GE and Philips respectively). Spatial inter-vendor CBF and variation differences were observed in several GM regions and in the WM. Conclusion These results show that total GM CBF-values can be exchanged between vendors. For the inter-vendor comparison of GM regions or WM, these results encourage further standardization of ASL implementation among vendors. PMID:25090654
Inter-vendor reproducibility of pseudo-continuous arterial spin labeling at 3 Tesla.
Mutsaerts, Henri J M M; Steketee, Rebecca M E; Heijtel, Dennis F R; Kuijer, Joost P A; van Osch, Matthias J P; Majoie, Charles B L M; Smits, Marion; Nederveen, Aart J
2014-01-01
Prior to the implementation of arterial spin labeling (ASL) in clinical multi-center studies, it is important to establish its status quo inter-vendor reproducibility. This study evaluates and compares the intra- and inter-vendor reproducibility of pseudo-continuous ASL (pCASL) as clinically implemented by GE and Philips. 22 healthy volunteers were scanned twice on both a 3T GE and a 3T Philips scanner. The main difference in implementation between the vendors was the readout module: spiral 3D fast spin echo vs. 2D gradient-echo echo-planar imaging respectively. Mean and variation of cerebral blood flow (CBF) were compared for the total gray matter (GM) and white matter (WM), and on a voxel-level. Whereas the mean GM CBF of both vendors was almost equal (p = 1.0), the mean WM CBF was significantly different (p<0.01). The inter-vendor GM variation did not differ from the intra-vendor GM variation (p = 0.3 and p = 0.5 for GE and Philips respectively). Spatial inter-vendor CBF and variation differences were observed in several GM regions and in the WM. These results show that total GM CBF-values can be exchanged between vendors. For the inter-vendor comparison of GM regions or WM, these results encourage further standardization of ASL implementation among vendors.
Exchange-mediated spin-lattice relaxation of Fe3+ ions in borate glasses.
Misra, Sushil K; Pilbrow, John R
2007-03-01
Spin-lattice relaxation times (T1) of two borate glasses doped with different concentrations of Fe2O3 were measured using the Electron Spin-Echo (ESE) technique at X-band (9.630 GHz) in the temperature range 2-6K. In comparison with a previous investigation of Fe3+-doped silicate glasses, the relaxation rates were comparable and differed by no more than a factor of two. The data presented here extend those previously reported for borate glasses in the 10-250K range but measured using the amplitude-modulation technique. The T1 values were found to depend on temperature (T) as T(n) with n approximately 1 for the 1% and 0.1% Fe2O3-doped glass samples. These results are consistent with spin-lattice relaxation as effected by exchange interaction of a Fe3+ spin exchange-coupled to another Fe3+ spin in an amorphous material.
Tan, Huan; Hoge, W Scott; Hamilton, Craig A; Günther, Matthias; Kraft, Robert A
2011-07-01
Arterial spin labeling is a noninvasive technique that can quantitatively measure cerebral blood flow. While traditionally arterial spin labeling employs 2D echo planar imaging or spiral acquisition trajectories, single-shot 3D gradient echo and spin echo (GRASE) is gaining popularity in arterial spin labeling due to inherent signal-to-noise ratio advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T(2) decay. A novel technique combining 3D GRASE and a periodically rotated overlapping parallel lines with enhanced reconstruction trajectory (PROPELLER) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3 × 3 × 5 mm(3) nominal voxel size with pulsed arterial spin labeling preparation sequence. Data from five healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in cerebral blood flow quantification with 3D gradient echo and spin echo, 3D GRASE PROPELLER demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. Copyright © 2011 Wiley-Liss, Inc.
On the application of magic echo cycles for quadrupolar echo spectroscopy of spin-1 nuclei.
Mananga, E S; Roopchand, R; Rumala, Y S; Boutis, G S
2007-03-01
Magic echo cycles are introduced for performing quadrupolar echo spectroscopy of spin-1 nuclei. An analysis is performed via average Hamiltonian theory showing that the evolution under chemical shift or static field inhomogeneity can be refocused simultaneously with the quadrupolar interaction using these cycles. Due to the higher convergence in the Magnus expansion, with sufficient RF power, magic echo based quadrupolar echo spectroscopy outperforms the conventional two pulse quadrupolar echo in signal to noise. Experiments highlighting a signal to noise enhancement over the entire bandwidth of the quadrupolar pattern of a powdered sample of deuterated polyethelene are shown.
van Leersum, M; Schweitzer, M E; Gannon, F; Finkel, G; Vinitski, S; Mitchell, D G
1996-11-01
To develop MR criteria for grades of chondromalacia patellae and to assess the accuracy of these grades. Fat-suppressed T2-weighted double-echo, fat-suppressed T2-weighted fast spin echo, fat-suppressed T1-weighted, and gradient echo sequences were performed at 1.5 T for the evaluation of chondromalacia. A total of 1000 MR, 200 histologic, and 200 surface locations were graded for chondromalacia and statistically compared. Compared with gross inspection as well as with histology the most accurate sequences were fat-suppressed T2-weighted conventional spin echo and fat suppressed T2-weighted fast spin echo, although the T1-weighted and proton density images also correlated well. The most accurate MR criteria applied to the severe grades of chondromalacia, with less accurate results for lesser grades. This study demonstrates that fat-suppressed routine T2-weighted and fast spin echo T2-weighted sequences seem to be more accurate than proton density, T1-weighted, and gradient echo sequences in grading chondromalacia. Good histologic and macroscopic correlation was seen in more severe grades of chondromalacia, but problems remain for the early grades in all sequences studied.
NASA Astrophysics Data System (ADS)
Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.
2009-10-01
A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.
Sarkar, Subhendra N; Mangosing, Jason L; Sarkar, Pooja R
2013-01-01
MRI tissue contrast is not well preserved at high field. In this work, we used a phantom with known, intrinsic contrast (3.6%) for model tissue pairs to test the effects of low angle refocusing pulses and magnetization transfer from adjacent slices on intrinsic contrast at 1.5 and 3 Tesla. Only T1-weighted spin echo sequences were tested since for such sequences the contrast loss, tissue heating, and image quality degradation at high fields seem to present significant diagnostic and quality issues. We hypothesized that the sources of contrast loss could be attributed to low refocusing angles that do not fulfill the Hahn spin echo conditions or to magnetization transfer effects from adjacent slices in multislice imaging. At 1.5 T the measured contrast was 3.6% for 180° refocusing pulses and 2% for 120° pulses, while at 3 T, it was 4% for 180° and only 1% for 120° refocusing pulses. There was no significant difference between single slice and multislice imaging suggesting little or no role played by magnetization transfer in the phantom chosen. Hence, one may conclude that low angle refocusing pulses not fulfilling the Hahn spin echo conditions are primarily responsible for significant deterioration of T1-weighted spin echo image contrast in high-field MRI.
Neutron resonance spin echo with longitudinal DC fields
NASA Astrophysics Data System (ADS)
Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang
2016-12-01
We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.
Morphology effects on spin-dependent transport and recombination in polyfluorene thin films
NASA Astrophysics Data System (ADS)
Miller, Richards; van Schooten, K. J.; Malissa, H.; Joshi, G.; Jamali, S.; Lupton, J. M.; Boehme, C.
2016-12-01
We have studied the role of spin-dependent processes on conductivity in polyfluorene (PFO) thin films by preforming continuous wave (cw) electrically detected magnetic resonance (EDMR) spectroscopy at temperatures between 10 K and room temperature using microwave frequencies between about 1 GHz and 20 GHz, as well as pulsed EDMR at the X band (10 GHz). Variable frequency EDMR allows us to establish the role of spin-orbit coupling in spin-dependent processes whereas pulsed EDMR allows for the observation of coherent spin motion effects. We used PFO for this study in order to allow for the investigation of the effects of microscopic morphological ordering since this material can adopt two distinct intrachain morphologies: an amorphous (glassy) phase, in which monomer units are twisted with respect to each other, and an ordered (β) phase, where all monomers lie within one plane. In thin films of organic light-emitting diodes, the appearance of a particular phase can be controlled by deposition parameters and solvent vapor annealing, and is verified by electroluminescence spectroscopy. Under bipolar charge-carrier injection conditions, we conducted multifrequency cw EDMR, electrically detected Rabi spin-beat experiments, and Hahn echo and inversion-recovery measurements. Coherent echo spectroscopy reveals electrically detected electron-spin-echo envelope modulation due to the coupling of the carrier spins to nearby nuclear spins. Our results demonstrate that, while conformational disorder can influence the observed EDMR signals, including the sign of the current changes on resonance as well as the magnitudes of local hyperfine fields and charge-carrier spin-orbit interactions, it does not qualitatively affect the nature of spin-dependent transitions in this material. In both morphologies, we observe the presence of at least two different spin-dependent recombination processes. At room temperature and 10 K, polaron-pair recombination through weakly spin-spin coupled intermediate charge-carrier pair states is dominant, while at low temperatures, additional signatures of spin-dependent charge transport through the interaction of polarons with triplet excitons are seen in the half-field resonance of a triplet spin-1 species. This additional contribution arises since triplet lifetimes are increased at lower temperatures. We tentatively conclude that spectral broadening induced by hyperfine coupling is slightly weaker in the more ordered β-phase than in the glassy phase since protons are more evenly spaced, whereas broadening effects due to spin-orbit coupling, which impacts the distribution of g -factors, appear to be somewhat more significant in the β-phase.
Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory.
Jobez, Pierre; Laplane, Cyril; Timoney, Nuala; Gisin, Nicolas; Ferrier, Alban; Goldner, Philippe; Afzelius, Mikael
2015-06-12
Long-lived quantum memories are essential components of a long-standing goal of remote distribution of entanglement in quantum networks. These can be realized by storing the quantum states of light as single-spin excitations in atomic ensembles. However, spin states are often subjected to different dephasing processes that limit the storage time, which in principle could be overcome using spin-echo techniques. Theoretical studies suggest this to be challenging due to unavoidable spontaneous emission noise in ensemble-based quantum memories. Here, we demonstrate spin-echo manipulation of a mean spin excitation of 1 in a large solid-state ensemble, generated through storage of a weak optical pulse. After a storage time of about 1 ms we optically read-out the spin excitation with a high signal-to-noise ratio. Our results pave the way for long-duration optical quantum storage using spin-echo techniques for any ensemble-based memory.
NASA Astrophysics Data System (ADS)
Bleuel, M.; Bröll, M.; Lang, E.; Littrell, K.; Gähler, R.; Lal, J.
2006-01-01
In this paper we report the results of our first tests of a novel proof-of-principle instrument developed at the IPNS, Argonne. The experiment was performed on the time of flight POSY1 instrument, the polarized reflectometer at the IPNS, which was modified to accommodate the apparatus. Two sets of RF-flippers were tested together, generating a modulated intensity by zero effort (MIEZE)-type neutron resonant spin echo signal which was observed at the detector using a wide neutron wavelength band.
NASA Astrophysics Data System (ADS)
Poltavtsev, S. V.; Langer, L.; Yugova, I. A.; Salewski, M.; Kapitonov, Y. V.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.
2016-10-01
We use spontaneous (two-pulse) and stimulated (three-pulse) photon echoes for studying the coherent evolution of optically excited ensemble of trions which are localized in semiconductor CdTe/CdMgTe quantum well. Application of transverse magnetic field leads to the Larmor precession of the resident electron spins, which shuffles optically induced polarization between optically accessible and inaccessible states. This results in several spectacular phenomena. First, magnetic field induces oscillations of spontaneous photon echo amplitude. Second, in three-pulse excitation scheme, the photon echo decay is extended by several orders of magnitude. In this study, short-lived optical excitation which is created by the first pulse is coherently transferred into a long-lived electron spin state using the second optical pulse. This coherent spin state of electron ensemble persists much longer than any optical excitation in the system, preserving information on initial optical field, which can be retrieved as a photon echo by means of third optical pulse.
Shi, Xianfeng; Kim, Seong-Eun; Jeong, Eun-Kee
2011-01-01
The conventional stimulated-echo NMR sequence only measures the longitudinal component, while discarding the transverse component, after tipping up the prepared magnetization. This transverse magnetization can be used to measure a spin-echo, in addition to the stimulated-echo. 2D ss-SESTEPI is an EPI-based singleshot imaging technique that simultaneously acquires a spin-echo-planar image (SEPI) and a stimulated-echo-planar image (STEPI) after a single RF excitation. The magnitudes of SEPI and STEPI differ by T1 decay and diffusion weighting for perfect 90° RF, and thus can be used to rapidly measure T1. However, the spatial variation of B1 amplitude induces un-even splitting of the transverse magnetization for SEPI and STEPI within the imaging FOV. Correction for B1 inhomogeneity is therefore critical for 2D ss-SESTEPI to be used for T1 measurement. We developed a method for B1 inhomogeneity correction by acquiring an additional STEPI with minimal mixing time, calculating the difference between the spin-echo and the stimulated-echo and multiplying the STEPI by the inverse functional map. Diffusion-induced decay is corrected by measuring the average diffusivity during the prescanning. Rapid singleshot T1 mapping may be useful for various applications, such as dynamic T1 mapping for real-time estimation of the concentration of contrast agent in DCE-MRI. PMID:20564579
Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory
NASA Astrophysics Data System (ADS)
Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei
2015-09-01
Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.
Adjustable shunt valve-induced magnetic resonance imaging artifact: a comparative study.
Toma, Ahmed K; Tarnaris, Andrew; Grieve, Joan P; Watkins, Laurence D; Kitchen, Neil D
2010-07-01
In this paper, the authors' goal was to compare the artifact induced by implanted (in vivo) adjustable shunt valves in spin echo, diffusion weighted (DW), and gradient echo MR imaging pulse sequences. The MR images obtained in 8 patients with proGAV and 6 patients with Strata II adjustable shunt valves were assessed for artifact areas in different planes as well as the total volume for different pulse sequences. Artifacts induced by the Strata II valve were significantly larger than those induced by proGAV valve in spin echo MR imaging pulse sequence (29,761 vs 2450 mm(3) on T2-weighted fast spin echo, p = 0.003) and DW images (100,138 vs 38,955 mm(3), p = 0.025). Artifacts were more marked on DW MR images than on spin echo pulse sequence for both valve types. Adjustable valve-induced artifacts can conceal brain pathology on MR images. This should influence the choice of valve implantation site and the type of valve used. The effect of artifacts on DW images should be highlighted pending the development of less MR imaging artifact-inducing adjustable shunt valves.
Electron paramagnetic resonance of a 10B-containing heterocyclic radical
NASA Astrophysics Data System (ADS)
Eaton, Sandra S.; Ngendahimana, Thacien; Eaton, Gareth R.; Jupp, Andrew R.; Stephan, Douglas W.
2018-05-01
Electron paramagnetic resonance measurements for a 10B-containing heterocyclic phenanthrenedione radical, (C6F5)2B(O2C14H8), were made at X-band in 9:1 toluene:dichloromethane from 10 to 293 K and in toluene from 180 to 293 K. In well-deoxygenated 0.1 mM toluene solution at room temperature hyperfine couplings to 10B, four pairs of protons and five pairs of fluorines contribute to a continuous wave spectrum with many resolved lines. Hyperfine couplings were adjusted to provide the best fit for spectra of the radical enriched in 10B and the analogous radical synthesized with 10,11B in natural abundance, resulting in small refinements of the hyperfine coupling constants previously reported for the natural abundance sample. Electron spin relaxation rates at temperatures between 15 and 293 K were similar for samples containing 10B and natural isotope abundance. Analysis of electron spin echo envelope modulation and hyperfine correlation spectroscopy data at 80 K found Axx = -7.5 ± 0.3, Ayy = -8.5 ± 0.3, and Azz = -10.8 ± 0.3 MHz for 11B, which indicates small spin density on the boron. The spin echo and hyperfine spectroscopy data for the 10B -containing radical are consistent with the factor of 2.99 smaller hyperfine values for 10B than for 11B.
Sudden transition and sudden change from open spin environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zheng-Da; School of Science, Jiangnan University, Wuxi 214122; Xu, Jing-Bo, E-mail: xujb@zju.edu.cn
2014-11-15
We investigate the necessary conditions for the existence of sudden transition or sudden change phenomenon for appropriate initial states under dephasing. As illustrative examples, we study the behaviors of quantum correlation dynamics of two noninteracting qubits in independent and common open spin environments, respectively. For the independent environments case, we find that the quantum correlation dynamics is closely related to the Loschmidt echo and the dynamics exhibits a sudden transition from classical to quantum correlation decay. It is also shown that the sudden change phenomenon may occur for the common environment case and stationary quantum discord is found at themore » high temperature region of the environment. Finally, we investigate the quantum criticality of the open spin environment by exploring the probability distribution of the Loschmidt echo and the scaling transformation behavior of quantum discord, respectively. - Highlights: • Sudden transition or sudden change from open spin baths are studied. • Quantum discord is related to the Loschmidt echo in independent open spin baths. • Steady quantum discord is found in a common open spin bath. • The probability distribution of the Loschmidt echo is analyzed. • The scaling transformation behavior of quantum discord is displayed.« less
Improved Spin-Echo-Edited NMR Diffusion Measurements
NASA Astrophysics Data System (ADS)
Otto, William H.; Larive, Cynthia K.
2001-12-01
The need for simple and robust schemes for the analysis of ligand-protein binding has resulted in the development of diffusion-based NMR techniques that can be used to assay binding in protein solutions containing a mixture of several ligands. As a means of gaining spectral selectivity in NMR diffusion measurements, a simple experiment, the gradient modified spin-echo (GOSE), has been developed to reject the resonances of coupled spins and detect only the singlets in the 1H NMR spectrum. This is accomplished by first using a spin echo to null the resonances of the coupled spins. Following the spin echo, the singlet magnetization is flipped out of the transverse plane and a dephasing gradient is applied to reduce the spectral artifacts resulting from incomplete cancellation of the J-coupled resonances. The resulting modular sequence is combined here with the BPPSTE pulse sequence; however, it could be easily incorporated into any pulse sequence where additional spectral selectivity is desired. Results obtained with the GOSE-BPPSTE pulse sequence are compared with those obtained with the BPPSTE and CPMG-BPPSTE experiments for a mixture containing the ligands resorcinol and tryptophan in a solution of human serum albumin.
Arbitrary waveform modulated pulse EPR at 200 GHz
NASA Astrophysics Data System (ADS)
Kaminker, Ilia; Barnes, Ryan; Han, Songi
2017-06-01
We report here on the implementation of arbitrary waveform generation (AWG) capabilities at ∼200 GHz into an Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) instrument platform operating at 7 T. This is achieved with the integration of a 1 GHz, 2 channel, digital to analog converter (DAC) board that enables the generation of coherent arbitrary waveforms at Ku-band frequencies with 1 ns resolution into an existing architecture of a solid state amplifier multiplier chain (AMC). This allows for the generation of arbitrary phase- and amplitude-modulated waveforms at 200 GHz with >150 mW power. We find that the non-linearity of the AMC poses significant difficulties in generating amplitude-modulated pulses at 200 GHz. We demonstrate that in the power-limited regime of ω1 < 1 MHz phase-modulated pulses were sufficient to achieve significant improvements in broadband (>10 MHz) spin manipulation in incoherent (inversion), as well as coherent (echo formation) experiments. Highlights include the improvement by one order of magnitude in inversion bandwidth compared to that of conventional rectangular pulses, as well as a factor of two in improvement in the refocused echo intensity at 200 GHz.
Computer simulation of magnetic resonance spectra employing homotopy.
Gates, K E; Griffin, M; Hanson, G R; Burrage, K
1998-11-01
Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence transitions in the presence of energy level anticrossings and looping transitions. Herein we describe the application and implementation of homotopy to the analysis of continuous wave electron paramagnetic resonance spectra. The method can also be applied to electron nuclear double resonance, electron spin echo envelope modulation, solid-state nuclear magnetic resonance, and nuclear quadrupole resonance spectra. Copyright 1998 Academic Press.
The aluminum ordering in aluminosilicates: a dipolar 27Al NMR spectroscopy study.
Gee, Becky A
2004-01-01
The spatial ordering of aluminum atoms in CsAl(SiO3)2 and 3Al2O3.2SiO2 was probed by 27Al dipolar solid-state NMR spectroscopy. The 27Al response to a Hahn spin-echo pulse sequence in a series of aluminum-containing model crystalline compounds demonstrates that quantitative 27Al homonuclear dipolar second moments can be obtained to within +/-20% of the theoretical values, if evaluation of the spin-echo response curve is limited to short evolution periods (2t1 < or = 0.10 ms). Additionally, selective excitation of the central transition m = 1/2 --> -1/2 is necessary in order to ensure quantitative results. Restriction of spin exchange affecting the dephasing of the magnetization may decelerate the spin-echo decay at longer evolution periods. Considering these restraints, the method was used to probe the spatial distribution of aluminum atoms among the tetrahedral sites in two aluminosilicate materials. Experimental 27Al spin-echo response data for the aluminosilicates CsAl(SiO3)2 (synthetic pollucite) and 3Al2O3.2SiO2 (mullite) are compared with theoretical data based on (I) various degrees of aluminum-oxygen-aluminum bond formation among tetrahedrally coordinated aluminum atoms (Al(T(d) )-O-Al(T(d) )) and (II) the maximum avoidance of Al(T(d) )-O-Al(T(d) ) bonding. Analysis of the second moment values and resulting echo decay responses suggests that partial suppression of spin exchange among aluminum atoms in crystallographically distinct sites may contribute to the 27Al spin echo decay in 3Al2O3.2SiO2, thus complicating quantitative analysis of the data. Silicon-29 and aluminum-27 magic angle spinning (MAS) NMR spectra of 3Al2O3.2SiO2 are consistent with those previously reported. The experimental 27Al spin-echo response behavior of CsAl(SiO3)2 differs from the theoretical response behavior based on the maximum avoidance of Al-O-Al bonding between tetrahedral aluminum sites in CsAl(SiO3)2. A single unresolved resonance is observed in both the silicon-29 and aluminum-27 MAS spectra of CsAl(SiO3)2. Copyright 2003 John Wiley & Sons, Ltd.
Sato, Y; Ogasawara, K; Narumi, S; Sasaki, M; Saito, A; Tsushima, E; Namba, T; Kobayashi, M; Yoshida, K; Terayama, Y; Ogawa, A
2016-06-01
Preoperative identification of plaque vulnerability may allow improved risk stratification for patients considered for carotid endarterectomy. The present study aimed to determine which plaque imaging technique, cardiac-gated black-blood fast spin-echo, magnetization-prepared rapid acquisition of gradient echo, source image of 3D time-of-flight MR angiography, or noncardiac-gated spin-echo, most accurately predicts development of microembolic signals during exposure of carotid arteries in carotid endarterectomy. Eighty patients with ICA stenosis (≥70%) underwent the 4 sequences of preoperative MR plaque imaging of the affected carotid bifurcation and then carotid endarterectomy under transcranial Doppler monitoring of microembolic signals in the ipsilateral middle cerebral artery. The contrast ratio of the carotid plaque was calculated by dividing plaque signal intensity by sternocleidomastoid muscle signal intensity. Microembolic signals during exposure of carotid arteries were detected in 23 patients (29%), 3 of whom developed new neurologic deficits postoperatively. Those deficits remained at 24 hours after surgery in only 1 patient. The area under the receiver operating characteristic curve to discriminate between the presence and absence of microembolic signals during exposure of the carotid arteries was significantly greater with nongated spin-echo than with black-blood fast spin-echo (difference between areas, 0.258; P < .0001), MPRAGE (difference between areas, 0.106; P = .0023), or source image of 3D time-of-flight MR angiography (difference between areas, 0.128; P = .0010). Negative binomial regression showed that in the 23 patients with microembolic signals, the contrast ratio was associated with the number of microembolic signals only in nongated spin-echo (risk ratio, 1.36; 95% confidence interval, 1.01-1.97; P < .001). Nongated spin-echo may predict the development of microembolic signals during exposure of the carotid arteries in carotid endarterectomy more accurately than other MR plaque imaging techniques. © 2016 by American Journal of Neuroradiology.
Barrow, Nathan S; Yates, Jonathan R; Feller, Steven A; Holland, Diane; Ashbrook, Sharon E; Hodgkinson, Paul; Brown, Steven P
2011-04-07
Magic-angle spinning (MAS) NMR spin-echo dephasing is systematically investigated for the spin I = 3/2 (11)B nucleus in lithium diborate, Li(2)O·2B(2)O(3). A clear dependence on the quadrupolar frequency (ω(Q)(PAS)/2π = 3C(Q)/[4I(2I- 1)]) is observed: the B3 (larger C(Q)) site dephases more slowly than the B4 site at all investigated MAS frequencies (5 to 20 kHz) at 14.1 T. Increasing the MAS frequency leads to markedly slower dephasing for the B3 site, while there is a much less evident effect for the B4 site. Considering samples at 5, 25, 80 (natural abundance) and 100% (11)B isotopic abundance, dephasing becomes faster for both sites as the (11)B isotopic abundance increases. The experimental behaviour is rationalised using density matrix simulations for two and three dipolar-coupled (11)B nuclei. The experimentally observed slower dephasing for the larger C(Q) (B3) site is reproduced in all simulations and is explained by the reintroduction of the dipolar coupling by the so-called "spontaneous quadrupolar-driven recoupling mechanism" having a different dependence on the MAS frequency for different quadrupolar frequencies. Specifically, isolated spin-pair simulations show that the spontaneous quadrupolar-driven recoupling mechanism is most efficient when the quadrupolar frequency is equal to twice the MAS frequency. While for isolated spin-pair simulations, increasing the MAS frequency leads to faster dephasing, agreement with experiment is observed for three-spin simulations which additionally include the homogeneous nature of the homonuclear dipolar coupling network. First-principles calculations, using the GIPAW approach, of the (2)J(11B-11B) couplings in lithium diborate, metaborate and triborate are presented: a clear trend is revealed whereby the (2)J(11B-11B) couplings increase with increasing B-O-B bond angle and B-B distance. However, the calculated (2)J(11B-11B) couplings are small (0.95, 1.20 and 2.65 Hz in lithium diborate), thus explaining why no zero crossing due to J modulation is observed experimentally, even for the sample at 25% (11)B where significant spin-echo intensity remains out to durations of ∼200 ms.
Turboprop: improved PROPELLER imaging.
Pipe, James G; Zwart, Nicholas
2006-02-01
A variant of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI, called turboprop, is introduced. This method employs an oscillating readout gradient during each spin echo of the echo train to collect more lines of data per echo train, which reduces the minimum scan time, motion-related artifact, and specific absorption rate (SAR) while increasing sampling efficiency. It can be applied to conventional fast spin-echo (FSE) imaging; however, this article emphasizes its application in diffusion-weighted imaging (DWI). The method is described and compared with conventional PROPELLER imaging, and clinical images collected with this PROPELLER variant are shown. Copyright 2006 Wiley-Liss, Inc.
Hargreaves, Brian
2012-01-01
Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185
Juras, Vladimir; Bohndorf, Klaus; Heule, Rahel; Kronnerwetter, Claudia; Szomolanyi, Pavol; Hager, Benedikt; Bieri, Oliver; Zbyn, Stefan; Trattnig, Siegfried
2016-06-01
To assess the clinical relevance of T2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T2-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B1 and B0 changes. • 3D-TESS T 2 mapping provides clinically comparable results to CPMG in shorter scan-time. • Clinical and investigational studies may benefit from high temporal resolution of 3D-TESS. • 3D-TESS T 2 values are able to differentiate between healthy and damaged cartilage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Z.; Mkhitaryan, Vagharsh; Raikh, M. E.
2016-02-02
We study analytically the free induction decay and the spin echo decay originating from the localized carriers moving between the sites which host random magnetic fields. Due to disorder in the site positions and energies, the on-site residence times, , are widely spread according to the L evy distribution. The power-law tail ∝ τ -1-∝ in the distribution of does not affect the conventional spectral narrowing for α > 2, but leads to a dramatic acceleration of the free induction decay in the domain 2 > α > 1. The next abrupt acceleration of the decay takes place as becomesmore » smaller than 1. In the latter domain the decay does not follow a simple-exponent law. To capture the behavior of the average spin in this domain, we solve the evolution equation for the average spin using the approach different from the conventional approach based on the Laplace transform. Unlike the free induction decay, the tail in the distribution of the residence times leads to the slow decay of the spin echo. The echo is dominated by realizations of the carrier motion for which the number of sites, visited by the carrier, is minimal.« less
Lin, Yanqin; Lin, Liangjie; Wei, Zhiliang; Zhong, Jianhui; Chen, Zhong
2016-12-01
To acquire single voxel localized one-dimensional 1 H magnetic resonance spectroscopy (MRS) without J coupling modulations, free from amplitude and phase distortions. A pulse sequence, named PRESSIR, is developed for volume localized MRS without J modulations at arbitrary echo time (TE). The J coupling evolution is suppressed by the J-refocused module that uses a 90° pulse at the midpoint of a double spin echo. The localization performance of the PRESSIR sequence was tested with a two-compartment phantom. The proposed sequence shows similar voxel localization accuracy as PRESS. Both PRESSIR and PRESS sequences were performed on MRS brain phantom and pig brain tissue. PRESS spectra suffer from amplitude and phase distortions due to J modulations, especially under moderate and long TEs, while PRESSIR spectra are almost free from distortions. The PRESSIR sequence proposed herein enables the acquisition of single voxel in-phase MRS within a single scan. It allows an enhanced signal intensity of J coupling metabolites and reducing undesired broad resonances with short T2s while suppressing J modulations. Moreover, it provides an approach for direct measurement of nonoverlapping J coupling peaks and of transverse relaxation times T2s. Magn Reson Med 76:1661-1667, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Hoffmann, Stanisław K.; Goslar, Janina; Lijewski, Stefan; Zalewska, Alina
2013-11-01
Pseudotetrahedral CuS4 complexes of Cu(dmit)2 compound in DMF solution were studied by EPR, UV-Vis and electron spin echo methods. After rapid freezing at 77 K a good glassy state is formed and the CuS4 complex has a D2d symmetry of a compressed tetrahedron with xy ground state and spin-Hamiltonian parameters g|| = 2.089, g⊥ = 2.026, A|| = 146 × 10-4 cm-1 and A⊥ = 30 × 10-4 cm-1. The complex is not deformed in the glassy state and is very rigid as indicated by the echo detected spectrum and by electron spin relaxation which is governed by reorientations of methyl groups of surrounding DMF molecules as shown by electron spin echo envelope modulation (ESEEM) spectrum. The g|| and A|| of Cu(dmit)2 and other CuS4 complexes collected in Peisach-Blumberg correlation diagram were analyzed using extended Molecular Orbital theory. We explain why the correlation line for copper-sulfur complexes has larger slope compared to the CuO4 and CuN4 tetrahedra. Along the correlation line the delocalization of unpaired electron density onto ligand is constant and varies from β = 0.78-0.83 for g|| in the range 2.06-2.10 of correlation diagram. The slope of the line is determined by the product of MO-coefficients αc1, where α is a parameter characterizing delocalization of unpaired electron in x2-y2 and c1 < 1 is a mixing parameter decreasing when 4p contribution grows. We found, unexpectedly, that αc1≈0.7 for all CuS4 complexes suggesting a correlation between degree of tetrahedral deformation and MO-parameters. MO-coefficients for Cu(dmit)2 are α = 0.753, β = 0.752 and c1 = 0.930 confirming a strong delocalization of unpaired electron in xy and x2-y2 orbitals.
MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI.
Thiessen, J D; Shams, E; Stortz, G; Schellenberg, G; Bishop, D; Khan, M S; Kozlowski, P; Retière, F; Sossi, V; Thompson, C J; Goertzen, A L
2016-11-21
A full-ring PET insert consisting of 16 PET detector modules was designed and constructed to fit within the 114 mm diameter gradient bore of a Bruker 7 T MRI. The individual detector modules contain two silicon photomultiplier (SiPM) arrays, dual-layer offset LYSO crystal arrays, and high-definition multimedia interface (HDMI) cables for both signal and power transmission. Several different RF shielding configurations were assessed prior to construction of a fully assembled PET insert using a combination of carbon fibre and copper foil for RF shielding. MR-compatibility measurements included field mapping of the static magnetic field (B 0 ) and the time-varying excitation field (B 1 ) as well as acquisitions with multiple pulse sequences: spin echo (SE), rapid imaging with refocused echoes (RARE), fast low angle shot (FLASH) gradient echo, and echo planar imaging (EPI). B 0 field maps revealed a small degradation in the mean homogeneity (+0.1 ppm) when the PET insert was installed and operating. No significant change was observed in the B 1 field maps or the image homogeneity of various MR images, with a 9% decrease in the signal-to-noise ratio (SNR) observed only in EPI images acquired with the PET insert installed and operating. PET detector flood histograms, photopeak amplitudes, and energy resolutions were unchanged in individual PET detector modules when acquired during MRI operation. There was a small baseline shift on the PET detector signals due to the switching amplifiers used to power MRI gradient pulses. This baseline shift was observable when measured with an oscilloscope and varied as a function of the gradient duty cycle, but had no noticeable effect on the performance of the PET detector modules. Compact front-end electronics and effective RF shielding led to minimal cross-interference between the PET and MRI systems. Both PET detector and MRI performance was excellent, whether operating as a standalone system or a hybrid PET/MRI.
MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI
NASA Astrophysics Data System (ADS)
Thiessen, J. D.; Shams, E.; Stortz, G.; Schellenberg, G.; Bishop, D.; Khan, M. S.; Kozlowski, P.; Retière, F.; Sossi, V.; Thompson, C. J.; Goertzen, A. L.
2016-11-01
A full-ring PET insert consisting of 16 PET detector modules was designed and constructed to fit within the 114 mm diameter gradient bore of a Bruker 7 T MRI. The individual detector modules contain two silicon photomultiplier (SiPM) arrays, dual-layer offset LYSO crystal arrays, and high-definition multimedia interface (HDMI) cables for both signal and power transmission. Several different RF shielding configurations were assessed prior to construction of a fully assembled PET insert using a combination of carbon fibre and copper foil for RF shielding. MR-compatibility measurements included field mapping of the static magnetic field (B 0) and the time-varying excitation field (B 1) as well as acquisitions with multiple pulse sequences: spin echo (SE), rapid imaging with refocused echoes (RARE), fast low angle shot (FLASH) gradient echo, and echo planar imaging (EPI). B 0 field maps revealed a small degradation in the mean homogeneity (+0.1 ppm) when the PET insert was installed and operating. No significant change was observed in the B 1 field maps or the image homogeneity of various MR images, with a 9% decrease in the signal-to-noise ratio (SNR) observed only in EPI images acquired with the PET insert installed and operating. PET detector flood histograms, photopeak amplitudes, and energy resolutions were unchanged in individual PET detector modules when acquired during MRI operation. There was a small baseline shift on the PET detector signals due to the switching amplifiers used to power MRI gradient pulses. This baseline shift was observable when measured with an oscilloscope and varied as a function of the gradient duty cycle, but had no noticeable effect on the performance of the PET detector modules. Compact front-end electronics and effective RF shielding led to minimal cross-interference between the PET and MRI systems. Both PET detector and MRI performance was excellent, whether operating as a standalone system or a hybrid PET/MRI.
Ultrafast NMR diffusion measurements exploiting chirp spin echoes.
Ahola, Susanna; Mankinen, Otto; Telkki, Ville-Veikko
2017-04-01
Standard diffusion NMR measurements require the repetition of the experiment multiple times with varying gradient strength or diffusion delay. This makes the experiment time-consuming and restricts the use of hyperpolarized substances to boost sensitivity. We propose a novel single-scan diffusion experiment, which is based on spatial encoding of two-dimensional data, employing the spin-echoes created by two successive adiabatic frequency-swept chirp π pulses. The experiment is called ultrafast pulsed-field-gradient spin-echo (UF-PGSE). We present a rigorous derivation of the echo amplitude in the UF-PGSE experiment, justifying the theoretical basis of the method. The theory reveals also that the standard analysis of experimental data leads to a diffusion coefficient value overestimated by a few per cent. Although the overestimation is of the order of experimental error and thus insignificant in many practical applications, we propose that it can be compensated by a bipolar gradient version of the experiment, UF-BP-PGSE, or by corresponding stimulated-echo experiment, UF-BP-pulsed-field-gradient stimulated-echo. The latter also removes the effect of uniform background gradients. The experiments offer significant prospects for monitoring fast processes in real time as well as for increasing the sensitivity of experiments by several orders of magnitude by nuclear spin hyperpolarization. Furthermore, they can be applied as basic blocks in various ultrafast multidimensional Laplace NMR experiments. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Qualification test of a MPPC-based PET module for future MRI-PET scanners
NASA Astrophysics Data System (ADS)
Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Funamoto, H.; Tsujikawa, T.; Yamamoto, S.
2014-11-01
We have developed a high-resolution, compact Positron Emission Tomography (PET) module for future use in MRI-PET scanners. The module consists of large-area, 4×4 ch MPPC arrays (Hamamatsu S11827-3344MG) optically coupled with Ce:LYSO scintillators fabricated into 12×12 matrices of 1×1 mm2 pixels. At this stage, a pair of module and coincidence circuits was assembled into an experimental prototype gantry arranged in a ring of 90 mm in diameter to form the MPPC-based PET system. The PET detector ring was then positioned around the RF coil of the 4.7 T MRI system. We took an image of a point 22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure interference between the MPPC-based PET and the MRI. We only found a slight degradation in the spatial resolution of the PET image from 1.63 to 1.70 mm (FWHM; x-direction), or 1.48-1.55 mm (FWHM; y-direction) when operating with the MRI, while the signal-to-noise ratio (SNR) of the MRI image was only degraded by 5%. These results encouraged us to develop a more advanced version of the MRI-PET gantry with eight MPPC-based PET modules, whose detailed design and first qualification test are also presented in this paper.
Coherence rephasing combined with spin-wave storage using chirped control pulses
NASA Astrophysics Data System (ADS)
Demeter, Gabor
2014-06-01
Photon-echo based optical quantum memory schemes often employ intermediate steps to transform optical coherences to spin coherences for longer storage times. We analyze a scheme that uses three identical chirped control pulses for coherence rephasing in an inhomogeneously broadened ensemble of three-level Λ systems. The pulses induce a cyclic permutation of the atomic populations in the adiabatic regime. Optical coherences created by a signal pulse are stored as spin coherences at an intermediate time interval, and are rephased for echo emission when the ensemble is returned to the initial state. Echo emission during a possible partial rephasing when the medium is inverted can be suppressed with an appropriate choice of control pulse wave vectors. We demonstrate that the scheme works in an optically dense ensemble, despite control pulse distortions during propagation. It integrates conveniently the spin-wave storage step into memory schemes based on a second rephasing of the atomic coherences.
MRI of gallstones with different compositions.
Tsai, Hong-Ming; Lin, Xi-Zhang; Chen, Chiung-Yu; Lin, Pin-Wen; Lin, Jui-Che
2004-06-01
Gallstones are usually recognized on MRI as filling defects of hypointensity. However, they sometimes may appear as hyperintensities on T1-weighted imaging. This study investigated how gallstones appear on MRI and how their appearance influences the detection of gallstones. Gallstones from 24 patients who had MRI performed before the removal of the gallstones were collected for study. The gallstones were classified either as cholesterol gallstone (n = 4) or as pigment gallstone (n = 20) according to their gross appearance and based on analysis by Fourier transform infrared spectroscopy. MRI included three sequences: single-shot fast spin-echo T2-weighted imaging, 3D fast spoiled gradient-echo T1-weighted imaging, and in-phase fast spoiled gradient-echo T1-weighted imaging. The signal intensity and the detection rate of gallstones on MRI were further correlated with the character of the gallstones. On T1-weighted 3D fast spoiled gradient-echo images, most of the pigment gallstones (18/20) were hyperintense and all the cholesterol gallstones (4/4) were hypointense. The mean ratio of the signal intensity of gallstone to bile was (+/- standard deviation) 3.36 +/- 1.88 for pigment gallstone and 0.24 +/- 0.10 for cholesterol gallstone on the 3D fast spoiled gradient-echo sequence (p < 0.001). Combining the 3D fast spoiled gradient-echo and single-shot fast spin-echo sequences achieved the highest gallstone detection rate (96.4%). Based on the differences of signal intensity of gallstones, the 3D fast spoiled gradient-echo T1-weighted imaging was able to diagnose the composition of gallstones. Adding the 3D fast spoiled gradient-echo imaging to the single-shot fast spin-echo T2-weighted sequence can further improve the detection rate of gallstones.
Use of earth field spin echo NMR to search for liquid minerals
Stoeffl, Wolfgang
2001-01-01
An instrument for measuring the spatial, qualitative and quantitative parameters of an underground nuclear magnetic resonance (NMR) active liquid mineral deposit, including oil and water. A phased array of excitation and receiver antennas on the surface and/or in a borehole excites the NMR active nuclei in the deposit, and using known techniques from magnetic resonance imaging (MRI), the spatial and quantitative distribution of the deposit can be measured. A surface array may utilize, for example, four large (50-500 diameter) diameter wire loops laid on the ground surface, and a weak (1.5-2.5 kHz) alternating current (AC) field applied, matching the NMR frequency of hydrogen in the rather flat and uniform earth magnetic field. For a short duration (a few seconds) an additional gradient field can be generated, superimposed to the earth field, by applying direct current (DC) to the grid (wire loops), enhancing the position sensitivity of the spin-echo and also suppressing large surface water signals by shifting them to a different frequency. The surface coil excitation can be combined with downhole receivers, which are much more radio-quiet compared to surface receivers, and this combination also enhances the position resolution of the MRI significantly. A downhole receiver module, for example, may have a 5.5 inch diameter and fit in a standard six inch borehole having a one-quarter inch thick stainless steel casing. The receiver module may include more than one receiver units for improved penetration and better position resolution.
Alibek, Sedat; Adamietz, Boris; Cavallaro, Alexander; Stemmer, Alto; Anders, Katharina; Kramer, Manuel; Bautz, Werner; Staatz, Gundula
2008-08-01
We compared contrast-enhanced T1-weighted magnetic resonance (MR) imaging of the brain using different types of data acquisition techniques: periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER, BLADE) imaging versus standard k-space sampling (conventional spin-echo pulse sequence) in the unsedated pediatric patient with focus on artifact reduction, overall image quality, and lesion detectability. Forty-eight pediatric patients (aged 3 months to 18 years) were scanned with a clinical 1.5-T whole body MR scanner. Cross-sectional contrast-enhanced T1-weighted spin-echo sequence was compared to a T1-weighted dark-fluid fluid-attenuated inversion-recovery (FLAIR) BLADE sequence for qualitative and quantitative criteria (image artifacts, image quality, lesion detectability) by two experienced radiologists. Imaging protocols were matched for imaging parameters. Reader agreement was assessed using the exact Bowker test. BLADE images showed significantly less pulsation and motion artifacts than the standard T1-weighted spin-echo sequence scan. BLADE images showed statistically significant lower signal-to-noise ratio but higher contrast-to-noise ratios with superior gray-white matter contrast. All lesions were demonstrated on FLAIR BLADE imaging, and one false-positive lesion was visible in spin-echo sequence images. BLADE MR imaging at 1.5 T is applicable for central nervous system imaging of the unsedated pediatric patient, reduces motion and pulsation artifacts, and minimizes the need for sedation or general anesthesia without loss of relevant diagnostic information.
El Mkami, Hassane; Ward, Richard; Bowman, Andrew; Owen-Hughes, Tom; Norman, David G.
2014-01-01
Pulsed electron–electron double resonance (PELDOR) coupled with site-directed spin labeling is a powerful technique for the elucidation of protein or nucleic acid, macromolecular structure and interactions. The intrinsic high sensitivity of electron paramagnetic resonance enables measurement on small quantities of bio-macromolecules, however short relaxation times impose a limit on the sensitivity and size of distances that can be measured using this technique. The persistence of the electron spin-echo, in the PELDOR experiment, is one of the most crucial limitations to distance measurement. At a temperature of around 50 K one of the predominant factors affecting persistence of an echo, and as such, the sensitivity and measurable distance between spin labels, is the electron spin echo dephasing time (Tm). It has become normal practice to use deuterated solvents to extend Tm and recently it has been demonstrated that deuteration of the underlying protein significantly extends Tm. Here we examine the spatial effect of segmental deuteration of the underlying protein, and also explore the concentration and temperature dependence of highly deuterated systems. PMID:25310878
Neutron resonance spin-echo upgrade at the three-axis spectrometer FLEXX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groitl, F., E-mail: felix.groitl@psi.ch; Quintero-Castro, D. L.; Habicht, K.
2015-02-15
We describe the upgrade of the neutron resonance spin-echo setup at the cold neutron triple-axis spectrometer FLEXX at the BER II neutron source at the Helmholtz-Zentrum Berlin. The parameters of redesigned key components are discussed, including the radio frequency (RF) spin-flip coils, the magnetic shield, and the zero field coupling coils. The RF-flippers with larger beam windows allow for an improved neutron flux transfer from the source to the sample and further to the analyzer. The larger beam cross sections permit higher coil inclination angles and enable measurements on dispersive excitations with a larger slope of the dispersion. Due tomore » the compact design of the spin-echo units in combination with the increased coil tilt angles, the accessible momentum-range in the Larmor diffraction mode is substantially enlarged. In combination with the redesigned components of the FLEXX spectrometer, including the guide, the S-bender polarizer, the double focusing monochromator, and a Heusler crystal analyzer, the count rate increased by a factor of 15.5, and the neutron beam polarization is enhanced. The improved performance extends the range of feasible experiments, both for inelastic scattering on excitation lifetimes in single crystals, and for high-resolution Larmor diffraction. The experimental characterization of the instrument components demonstrates the reliable performance of the new neutron resonance spin-echo option, now available for the scientific community at FLEXX.« less
All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles.
Serrano, D; Karlsson, J; Fossati, A; Ferrier, A; Goldner, P
2018-05-29
Nanoscale systems that coherently couple to light and possess spins offer key capabilities for quantum technologies. However, an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically controlled nuclear spins with long coherence lifetimes (T 2 ) in rare-earth-doped nanoparticles. We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under an external magnetic field of 9 mT, a T 2 value comparable to those obtained in bulk rare-earth crystals. Moreover, we achieve spin T 2 extension using all-optical spin dynamical decoupling and observe high fidelity between excitation and echo phases. Rare-earth-doped nanoparticles are thus the only nano-material in which optically controlled spins with millisecond coherence lifetimes have been reported. These results open the way to providing quantum light-atom-spin interfaces with long storage time within hybrid architectures.
Skew Projection of Echo-Detected EPR Spectra for Increased Sensitivity and Resolution
Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.
2013-01-01
The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier Transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five. PMID:23644351
Skew projection of echo-detected EPR spectra for increased sensitivity and resolution
NASA Astrophysics Data System (ADS)
Bowman, Michael K.; Krzyaniak, Matthew D.; Cruce, Alex A.; Weber, Ralph T.
2013-06-01
The measurement of EPR spectra during pulsed EPR experiments is commonly accomplished by recording the integral of the electron spin echo as the applied magnetic field is stepped through the spectrum. This approach to echo-detected EPR spectral measurement (ED-EPR) limits sensitivity and spectral resolution and can cause gross distortions in the resulting spectra because some of the information present in the electron spin echo is discarded in such measurements. However, Fourier transformation of echo shapes measured at a series of magnetic field values followed by skew projection onto either a magnetic field or resonance frequency axis can increase both spectral resolution and sensitivity without the need to trade one against the other. Examples of skew-projected spectra with single crystals, glasses and powders show resolution improvements as large as a factor of seven with sensitivity increases of as much as a factor of five.
NASA Astrophysics Data System (ADS)
Afach, S.; Ayres, N. J.; Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Daum, M.; Fertl, M.; Franke, B.; Griffith, W. C.; Grujić, Z. D.; Harris, P. G.; Heil, W.; Hélaine, V.; Kasprzak, M.; Kermaidic, Y.; Kirch, K.; Knowles, P.; Koch, H.-C.; Komposch, S.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Lemière, Y.; Mtchedlishvili, A.; Musgrave, M.; Naviliat-Cuncic, O.; Pendlebury, J. M.; Piegsa, F. M.; Pignol, G.; Plonka-Spehr, C.; Prashanth, P. N.; Quéméner, G.; Rawlik, M.; Rebreyend, D.; Ries, D.; Roccia, S.; Rozpedzik, D.; Schmidt-Wellenburg, P.; Severijns, N.; Thorne, J. A.; Weis, A.; Wursten, E.; Wyszynski, G.; Zejma, J.; Zenner, J.; Zsigmond, G.
2015-10-01
We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1 μ T magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1 pT /cm . This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van den Berg, R.; Brandino, G. P.; El Araby, O.
In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less
Competing interactions in semiconductor quantum dots
van den Berg, R.; Brandino, G. P.; El Araby, O.; ...
2014-10-14
In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less
Shrestha, Manoj; Hok, Pavel; Nöth, Ulrike; Lienerth, Bianca; Deichmann, Ralf
2018-03-30
The purpose of this work was to optimize the acquisition of diffusion-weighted (DW) single-refocused spin-echo (srSE) data without intrinsic eddy-current compensation (ECC) for an improved performance of ECC postprocessing. The rationale is that srSE sequences without ECC may yield shorter echo times (TE) and thus higher signal-to-noise ratios (SNR) than srSE or twice-refocused spin-echo (trSE) schemes with intrinsic ECC. The proposed method employs dummy scans with DW gradients to drive eddy currents into a steady state before data acquisition. Parameters of the ECC postprocessing algorithm were also optimized. Simulations were performed to obtain minimum TE values for the proposed sequence and sequences with intrinsic ECC. Experimentally, the proposed method was compared with standard DW-trSE imaging, both in vitro and in vivo. Simulations showed substantially shorter TE for the proposed method than for methods with intrinsic ECC when using shortened echo readouts. Data of the proposed method showed a marked increase in SNR. A dummy scan duration of at least 1.5 s improved performance of the ECC postprocessing algorithm. Changes proposed for the DW-srSE sequence and for the parameter setting of the postprocessing ECC algorithm considerably reduced eddy-current artifacts and provided a higher SNR.
Cook, Jeremy C.
2014-01-01
Following a brief introduction, the Neutron Resonance Spin-Echo (NRSE) principle is discussed classically in Sec. 2. In Sec. 3, two idealized 4-coil NRSE spectrometers are discussed (one using single π-flipper coil units and one using paired “bootstrap” coils); some idealized (exact π-flip) expressions are given for the spin-echo signal and some theoretical limitations are discussed. A more quantum mechanical discussion of NRSE is presented in Sec. 4 and additional theory related to the spin-echo signal, including wavelength-dependence, is given is Sec. 5. Factors affecting the instrumental resolution are discussed in Sec. 6. In Sec. 7, a variety of engineering issues are assessed in the context of challenging performance goals for a NIST Center for Neutron Research (NCNR) NRSE spectrometer. In Sec. 8, some Monte Carlo simulations are presented that examine the combined influences of spectrometer imperfections on the NRSE signal. These are compared with analytical predictions developed in previous sections. In Sec. 9, possible alternatives for a NCNR NRSE spectrometer configuration are discussed together with a preliminary assessment of the spectrometer neutron guide requirements. A summary of some of the useful formulas is given in Appendix A. PMID:26601027
... echo” (as opposed to spin-echo or proton beam) imaging. Gradient-echo MRI is most efficient at ... radiosurgery for cavernous malformations: Kjellberg's experience with proton beam therapy in 98 cases at the Harvard Cyclotron. ...
Control of photon storage time using phase locking.
Ham, Byoung S
2010-01-18
A photon echo storage-time extension protocol is presented by using a phase locking method in a three-level backward propagation scheme, where phase locking serves as a conditional stopper of the rephasing process in conventional two-pulse photon echoes. The backward propagation scheme solves the critical problems of extremely low retrieval efficiency and pi rephasing pulse-caused spontaneous emission noise in photon echo based quantum memories. The physics of the storage time extension lies in the imminent population transfer from the excited state to an auxiliary spin state by a phase locking control pulse. We numerically demonstrate that the storage time is lengthened by spin dephasing time.
Grebenkov, Denis S
2011-02-01
A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.
Frank, Lawrence R.; Jung, Youngkyoo; Inati, Souheil; Tyszka, J. Michael; Wong, Eric C.
2009-01-01
We present an acquisition and reconstruction method designed to acquire high resolution 3D fast spin echo diffusion tensor images while mitigating the major sources of artifacts in DTI - field distortions, eddy currents and motion. The resulting images, being 3D, are of high SNR, and being fast spin echoes, exhibit greatly reduced field distortions. This sequence utilizes variable density spiral acquisition gradients, which allow for the implementation of a self-navigation scheme by which both eddy current and motion artifacts are removed. The result is that high resolution 3D DTI images are produced without the need for eddy current compensating gradients or B0 field correction. In addition, a novel method for fast and accurate reconstruction of the non-Cartesian data is employed. Results are demonstrated in the brains of normal human volunteers. PMID:19778618
Noncontrast Peripheral MRA with Spiral Echo Train Imaging
Fielden, Samuel W.; Mugler, John P.; Hagspiel, Klaus D.; Norton, Patrick T.; Kramer, Christopher M.; Meyer, Craig H.
2015-01-01
Purpose To develop a spin echo train sequence with spiral readout gradients with improved artery–vein contrast for noncontrast angiography. Theory Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Methods Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. Results In vivo, artery–vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery–vein contrast, better spatial resolution (1.2 mm2 versus 1.5 mm2), and was acquired in less time (1.4 min versus 7.5 min). Conclusion The spiral spin echo train sequence can be used for flow-independent angiography to generate threedimensional angiograms of the periphery quickly and without the use of contrast agents. PMID:24753164
Noncontrast peripheral MRA with spiral echo train imaging.
Fielden, Samuel W; Mugler, John P; Hagspiel, Klaus D; Norton, Patrick T; Kramer, Christopher M; Meyer, Craig H
2015-03-01
To develop a spin echo train sequence with spiral readout gradients with improved artery-vein contrast for noncontrast angiography. Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. In vivo, artery-vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery-vein contrast, better spatial resolution (1.2 mm(2) versus 1.5 mm(2) ), and was acquired in less time (1.4 min versus 7.5 min). The spiral spin echo train sequence can be used for flow-independent angiography to generate three-dimensional angiograms of the periphery quickly and without the use of contrast agents. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevan, L.
1984-05-01
The structural aspects controlling charge separation in molecular photoionization reactions in organized molecular assemblies involving micelles and vesicles are being studied by optical and electron magnetic resonance techniques including the time domain technique of electron spin echo modulation (ESEM). Photoionization of N,N,N',N'-tetramethylbenzidine (TMB) to give the cation radical has been carried out in both liquid and frozen micellar and vesicular solutions. Cation-water interactions have been detected by ESEM analysis and indicate that the cation is localized asymmetrically within these organized molecular assemblies. x-Doxylstearic acid spin probes have been used to determine that the neutral TMB molecule before photoionization is alsomore » localized asymmetrically within such organized molecular assemblies. Electron spin echo detection of laser photogenerated TMB cation in liquid micellar solutions gives a direct measurement of the phase memory magnetic relaxation time which gives additional structural information. The photoionization efficiency has been related to cation-water interactions measured by ESEM. The photoionization efficiency is also dependent on surface charge and is about twofold greater in cationic micelles and vesicles compared to anionic micelles and vesicles. TMB is in a less polar environment in vesicles compared to micelles consistent with ESEM results. The preferential adsorption of metal species at micellar surfaces has been detected by ESEM. Modifications in the micelle surface have been effected by added salts and varying counterions which have been related to cation-water interactions and to the TMB photoionization efficiency. Corresponding changes in the surface and internal micellar structure have been investigated by x-doxylstearic acid spin probes and specifically deuterated surfactants. The decay kinetics of TMB cations in micelles have been interpreted in terms of a time dependent rate constant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maldonado, R.; Kevan, L.; Szajdzinska-Pietek, E.
1984-11-01
The electron spin echo modulation (ESEM) and electron spin resonance (ESR) spectra of the cation radical of N,N,N',N'-tetramethylbenzidine (TMB) in frozen sodium dodecyl sulfate (SDS)= and dodecyltrimethylammonium chloride (DTAC) micelles were studied as a function of sodium chloride concentration. TMB/sup +center-dot/ was produced by photoionization at 350 nm of the parent compound in the micelles at 77 K. From the ESEM analysis it is found that the cation--water interactions increase with salt addition in both anionic and cationic micelles to a maximum near 0.2 M NaCl and then decrease somewhat. The increase is interpreted in terms of an increase inmore » the water density at the micellar surface due to an increased surface concentration of hydrated counterions. The decrease may be due to TMB moving further from the polar micellar surface with added salt. From ESR spectra the photoionization yields of TMB at 77 K were determined. For DTAC micelles the yields are found to decrease with salt addition as expected from electrostatic considerations. For SDS micelles the photoionization yields increase for salt concentrations up to about 0.15 M and decrease for greater salt concentrations up to 0.5 M. The initial increase in cation yield correlates with electrostatic expectations. The decrease may be due to TMB moving further from the polar micellar surface with added salt. The possible effect of differing TMB protonation equilibria between anionic and cationic micelles on the photoionization yields was found to be unimportant by adjusting the bulk solution pH. An important conclusion is that salt addition can be used to optimize charge separation for photoionized solutes in anionic micelles.« less
Rapid myelin water imaging in human cervical spinal cord.
Ljungberg, Emil; Vavasour, Irene; Tam, Roger; Yoo, Youngjin; Rauscher, Alexander; Li, David K B; Traboulsee, Anthony; MacKay, Alex; Kolind, Shannon
2017-10-01
Myelin water imaging (MWI) using multi-echo T 2 relaxation is a quantitative MRI technique that can be used as an in vivo biomarker for myelin in the central nervous system. MWI using a multi-echo spin echo sequence currently takes more than 20 min to acquire eight axial slices (5 mm thickness) in the cervical spinal cord, making spinal cord MWI impractical for implementation in clinical studies. In this study, an accelerated gradient and spin echo sequence (GRASE), previously validated for brain MWI, was adapted for spinal cord MWI. Ten healthy volunteers were scanned with the GRASE sequence (acquisition time 8.5 min) and compared with the multi-echo spin echo sequence (acquisition time 23.5 min). Using region of interest analysis, myelin estimates obtained from the two sequences were found to be in good agreement (mean difference = -0.0092, 95% confidence interval = - 0.0092 ± 0.061; regression slope = 1.01, ρ = 0.9). MWI using GRASE was shown to be highly reproducible with an average coefficient of variation of 6.1%. The results from this study show that MWI can be performed in the cervical spinal cord in less than 10 min, allowing for practical implementation in multimodal clinical studies. Magn Reson Med 78:1482-1487, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Laule, Cornelia; Bjarnason, Thorarin A; Vavasour, Irene M; Traboulsee, Anthony L; Wayne Moore, G R; Li, David K B; MacKay, Alex L
2017-11-01
Prolonged spin-spin relaxation times in tumour tissue have been observed since some of the earliest nuclear magnetic resonance investigations of the brain. Over the last three decades, numerous studies have sought to characterize tumour morphology and malignancy using quantitative assessment of T 2 relaxation times, although attempts to categorize and differentiate tumours have had limited success. However, previous work must be interpreted with caution as relaxation data were typically acquired using a variety of multiple echo sequences with a range of echoes and T 2 decay curves and were frequently fit with monoexponential analysis. We defined the distribution of T 2 components in three different human brain tumours (glioblastoma, oligodendroglioma, meningioma) using a multi-echo sequence with a greater number of echoes and a longer acquisition window than previously used (48 echoes, data collection out to 1120 ms) with no a priori assumptions about the number of exponential components contributing to the T 2 decay. T 2 relaxation times were increased in tumour tissue and each tumour showed a distinct T 2 distribution profile. Tumours have complex and unique compartmentalization characteristics. Quantitative assessment of T 2 relaxation in brain cancer may be useful in evaluating different grades of brain tumours on the basis of their T 2 distribution profile, and has the potential to be a non-invasive diagnostic tool which may also be useful in monitoring therapy. Further study with a larger sample size and varying grades of tumours is warranted.
Quantum measurement of a rapidly rotating spin qubit in diamond.
Wood, Alexander A; Lilette, Emmanuel; Fein, Yaakov Y; Tomek, Nikolas; McGuinness, Liam P; Hollenberg, Lloyd C L; Scholten, Robert E; Martin, Andy M
2018-05-01
A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T 2 . We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors.
Quantum measurement of a rapidly rotating spin qubit in diamond
Fein, Yaakov Y.; Hollenberg, Lloyd C. L.; Scholten, Robert E.
2018-01-01
A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T2. We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors. PMID:29736417
Afach, S; Ayres, N J; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Griffith, W C; Grujić, Z D; Harris, P G; Heil, W; Hélaine, V; Kasprzak, M; Kermaidic, Y; Kirch, K; Knowles, P; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cuncic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Plonka-Spehr, C; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severijns, N; Thorne, J A; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G
2015-10-16
We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1 μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1 pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.
NASA Astrophysics Data System (ADS)
Swanberg, Kelley M.; Prinsen, Hetty; Coman, Daniel; de Graaf, Robin A.; Juchem, Christoph
2018-05-01
Glutathione (GSH) is an endogenous antioxidant implicated in numerous biological processes, including those associated with multiple sclerosis, aging, and cancer. Spectral editing techniques have greatly facilitated the acquisition of glutathione signal in living humans via proton magnetic resonance spectroscopy, but signal quantification at 7 Tesla is still hampered by uncertainty about the glutathione transverse decay rate T2 relative to those of commonly employed quantitative references like N-acetyl aspartate (NAA), total creatine, or water. While the T2 of uncoupled singlets can be derived in a straightforward manner from exponential signal decay as a function of echo time, similar estimation of signal decay in GSH is complicated by a spin system that involves both weak and strong J-couplings as well as resonances that overlap those of several other metabolites and macromolecules. Here, we extend a previously published method for quantifying the T2 of GABA, a weakly coupled system, to quantify T2 of the strongly coupled spin system glutathione in the human brain at 7 Tesla. Using full density matrix simulation of glutathione signal behavior, we selected an array of eight optimized echo times between 72 and 322 ms for glutathione signal acquisition by J-difference editing (JDE). We varied the selectivity and symmetry parameters of the inversion pulses used for echo time extension to further optimize the intensity, simplicity, and distinctiveness of glutathione signals at chosen echo times. Pairs of selective adiabatic inversion pulses replaced nonselective pulses at three extended echo times, and symmetry of the time intervals between the two extension pulses was adjusted at one extended echo time to compensate for J-modulation, thereby resulting in appreciable signal-to-noise ratio and quantifiable signal shapes at all measured points. Glutathione signal across all echo times fit smooth monoexponential curves over ten scans of occipital cortex voxels in nine subjects. The T2 of glutathione was calculated to be 145.0 ± 20.1 ms (mean ± standard deviation); this result was robust within one standard deviation to changes in metabolite fitting baseline corrections and removal of individual data points on the signal decay curve. The measured T2 of NAA (222.1 ± 24.7 ms) and total creatine (153.0 ± 19.9 ms) were both higher than that calculated for GSH. Apparent glutathione concentration quantified relative to both reference metabolites increased by up to 32% and 6%, respectively, upon correction with calculated T2 values, emphasizing the importance of considering T2 relaxation differences in the spectroscopic measurement of these metabolites, especially at longer echo times.
Swanberg, Kelley M; Prinsen, Hetty; Coman, Daniel; de Graaf, Robin A; Juchem, Christoph
2018-05-01
Glutathione (GSH) is an endogenous antioxidant implicated in numerous biological processes, including those associated with multiple sclerosis, aging, and cancer. Spectral editing techniques have greatly facilitated the acquisition of glutathione signal in living humans via proton magnetic resonance spectroscopy, but signal quantification at 7 Tesla is still hampered by uncertainty about the glutathione transverse decay rate T 2 relative to those of commonly employed quantitative references like N-acetyl aspartate (NAA), total creatine, or water. While the T 2 of uncoupled singlets can be derived in a straightforward manner from exponential signal decay as a function of echo time, similar estimation of signal decay in GSH is complicated by a spin system that involves both weak and strong J-couplings as well as resonances that overlap those of several other metabolites and macromolecules. Here, we extend a previously published method for quantifying the T 2 of GABA, a weakly coupled system, to quantify T 2 of the strongly coupled spin system glutathione in the human brain at 7 Tesla. Using full density matrix simulation of glutathione signal behavior, we selected an array of eight optimized echo times between 72 and 322 ms for glutathione signal acquisition by J-difference editing (JDE). We varied the selectivity and symmetry parameters of the inversion pulses used for echo time extension to further optimize the intensity, simplicity, and distinctiveness of glutathione signals at chosen echo times. Pairs of selective adiabatic inversion pulses replaced nonselective pulses at three extended echo times, and symmetry of the time intervals between the two extension pulses was adjusted at one extended echo time to compensate for J-modulation, thereby resulting in appreciable signal-to-noise ratio and quantifiable signal shapes at all measured points. Glutathione signal across all echo times fit smooth monoexponential curves over ten scans of occipital cortex voxels in nine subjects. The T 2 of glutathione was calculated to be 145.0 ± 20.1 ms (mean ± standard deviation); this result was robust within one standard deviation to changes in metabolite fitting baseline corrections and removal of individual data points on the signal decay curve. The measured T 2 of NAA (222.1 ± 24.7 ms) and total creatine (153.0 ± 19.9 ms) were both higher than that calculated for GSH. Apparent glutathione concentration quantified relative to both reference metabolites increased by up to 32% and 6%, respectively, upon correction with calculated T 2 values, emphasizing the importance of considering T 2 relaxation differences in the spectroscopic measurement of these metabolites, especially at longer echo times. Copyright © 2018 Elsevier Inc. All rights reserved.
Quantum decoherence dynamics of divacancy spins in silicon carbide
Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; ...
2016-09-29
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs aremore » both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Lastly, our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.« less
Quantum decoherence dynamics of divacancy spins in silicon carbide.
Seo, Hosung; Falk, Abram L; Klimov, Paul V; Miao, Kevin C; Galli, Giulia; Awschalom, David D
2016-09-29
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the 29 Si and 13 C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.
NASA Astrophysics Data System (ADS)
Garcia, J.; Hidalgo, S. S.; Solis, S. E.; Vazquez, D.; Nuñez, J.; Rodriguez, A. O.
2012-10-01
The susceptibility artifacts can degrade of magnetic resonance image quality. Electrodes are an important source of artifacts when performing brain imaging. A dedicated phantom was built using a depth electrode to study the susceptibility effects under different pulse sequences. T2-weighted images were acquired with both gradient-and spin-echo sequences. The spin-echo sequences can significantly attenuate the susceptibility artifacts allowing a straightforward visualization of the regions surrounding the electrode.
Coherent pump pulses in Double Electron Electron Resonance Spectroscopy
Tait, Claudia E.; Stoll, Stefan
2016-01-01
The recent introduction of shaped pulses to Double Electron Electron Resonance (DEER) spectroscopy has led to significant enhancements in sensitivity through increased excitation bandwidths and improved control over spin dynamics. The application of DEER has so far relied on the presence of an incoherent pump channel to average out most undesired coherent effects of the pump pulse(s) on the observer spins. However, in fully coherent EPR spectrometers that are increasingly used to generate shaped pulses, the presence of coherent pump pulses means that these effects need to be explicitly considered. In this paper, we examine the effects of coherent rectangular and sech/tanh pump pulses in DEER experiments with up to three pump pulses. We show that, even in the absence of significant overlap of the observer and pump pulse excitation bandwidths, coherence transfer pathways involving both types of pulses generate spin echoes of considerable intensity. These echoes introduce artefacts, which, if not identified and removed, can easily lead to misinterpretation. We demonstrate that the observed echoes can be quantitatively modelled using a simple spin quantum dynamics approach that includes instrumental transfer functions. Based on an analysis of the echo crossing artefacts, we propose efficient phase cycling schemes for their suppression. This enables the use of advanced DEER experiments, characterized by high sensitivity and increased accuracy for long-distance measurements, on novel fully coherent EPR spectrometers. PMID:27339858
Mulkern, Robert V; Balasubramanian, Mukund; Mitsouras, Dimitrios
2014-07-30
To determine whether Lorentzian or Gaussian intra-voxel frequency distributions are better suited for modeling data acquired with gradient-echo sampling of single spin-echoes for the simultaneous characterization of irreversible and reversible relaxation rates. Clinical studies (e.g., of brain iron deposition) using such acquisition schemes have typically assumed Lorentzian distributions. Theoretical expressions of the time-domain spin-echo signal for intra-voxel Lorentzian and Gaussian distributions were used to fit data from a human brain scanned at both 1.5 Tesla (T) and 3T, resulting in maps of irreversible and reversible relaxation rates for each model. The relative merits of the Lorentzian versus Gaussian model were compared by means of quality of fit considerations. Lorentzian fits were equivalent to Gaussian fits primarily in regions of the brain where irreversible relaxation dominated. In the multiple brain regions where reversible relaxation effects become prominent, however, Gaussian fits were clearly superior. The widespread assumption that a Lorentzian distribution is suitable for quantitative transverse relaxation studies of the brain should be reconsidered, particularly at 3T and higher field strengths as reversible relaxation effects become more prominent. Gaussian distributions offer alternate fits of experimental data that should prove quite useful in general. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Accelerated Radiation-Damping for Increased Spin Equilibrium (ARISE)
Huang, Susie Y.; Witzel, Thomas; Wald, Lawrence L.
2008-01-01
Control of the longitudinal magnetization in fast gradient echo sequences is an important factor enabling the high efficiency of balanced Steady State Free Precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The Accelerated Radiation damping for Increased Spin Equilibrium (ARISE) method uses an external feedback circuit to strengthen the Radiation Damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T1 relaxation. The method is characterized in gradient echo phantom imaging at 3T as a function of feedback gain, phase, and duration and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10ms) during a refocused interval of a crushed gradient echo sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T2 relaxation has time to occur. Appropriate applications might include improving navigated sequences. Unlike conventional flip-back schemes, the ARISE “flip-back” is generated by the spins themselves, thereby offering a potentially useful building block for enhancing gradient echo sequences. PMID:18956463
Morishige, Kunio; Kacher, Daniel F.; Libby, Peter; Josephson, Lee; Ganz, Peter; Weissleder, Ralph; Aikawa, Masanori
2010-01-01
Background Macrophages contribute to the progression and acute complications of atherosclerosis. Macrophage imaging may serve as a biomarker to identify subclinical inflamed lesions, to predict future risk, and to aid in the assessment of novel therapies. Methods and Results To test the hypothesis that nanoparticle-enhanced, high-resolution magnetic resonance imaging (MRI) can measure plaque macrophage accumulation, we used 3-T MRI with a macrophage-targeted superparamagnetic nanoparticle preparation (monocrystalline iron oxide nanoparticles-47 [MION-47]) in cholesterol-fed New Zealand White rabbits 6 months after balloon injury. In vivo MRI visualized thickened abdominal aortas on both T1- and T2-weighted spin-echo images (T1 spin echo, 20 axial slices per animal; T2 spin echo, 28 slices per animal). Seventy-two hours after MION-47 injection, aortas exhibited lower T2 signal intensity compared with before contrast imaging (signal intensity ratio, aortic wall/muscle: before, 1.44±0.26 versus after, 0.95±0.22; 164 slices; P<0.01), whereas T1 spin echo images showed no significant change. MRI on ex vivo specimens provided similar results. Histological studies colocalized iron accumulation with immunoreactive macrophages in atheromata. The magnitude of signal intensity reduction on T2 spin echo in vivo images further correlated with macrophage areas in situ (150 slices; r=0.73). Treatment with rosuvastatin for 3 months yielded diminished macrophage content (P<0.05) and reversed T2 signal intensity changes (P<0.005). Signal changes in rosuvastatin-treated rabbits correlated with reduced macrophage burden (r=0.73). In vitro validation studies showed concentration-dependent MION-47 uptake by human primary macrophages. Conclusion The magnitude of T2 signal intensity reduction in high-resolution MRI after administration of superparamagnetic phagocytosable nanoparticles can assess macrophage burden in atheromata, providing a clinically translatable tool to identify inflamed plaques and to monitor therapy-mediated changes in plaque inflammation. PMID:20937980
Mars, Mokhtar; Bouaziz, Mouna; Tbini, Zeineb; Ladeb, Fethi; Gharbi, Souha
2018-06-12
This study aims to determine how Magnetic Resonance Imaging (MRI) acquisition techniques and calculation methods affect T2 values of knee cartilage at 1.5 Tesla and to identify sequences that can be used for high-resolution T2 mapping in short scanning times. This study was performed on phantom and twenty-nine patients who underwent MRI of the knee joint at 1.5 Tesla. The protocol includes T2 mapping sequences based on Single Echo Spin Echo (SESE), Multi-Echo Spin Echo (MESE), Fast Spin Echo (FSE) and Turbo Gradient Spin Echo (TGSE). The T2 relaxation times were quantified and evaluated using three calculation methods (MapIt, Syngo Offline and monoexponential fit). Signal to Noise Ratios (SNR) were measured in all sequences. All statistical analyses were performed using the t-test. The average T2 values in phantom were 41.7 ± 13.8 ms for SESE, 43.2 ± 14.4 ms for MESE, 42.4 ± 14.1 ms for FSE and 44 ± 14.5 ms for TGSE. In the patient study, the mean differences were 6.5 ± 8.2 ms, 7.8 ± 7.6 ms and 8.4 ± 14.2 ms for MESE, FSE and TGSE compared to SESE respectively; these statistical results were not significantly different (p > 0.05). The comparison between the three calculation methods showed no significant difference (p > 0.05). t-Test showed no significant difference between SNR values for all sequences. T2 values depend not only on the sequence type but also on the calculation method. None of the sequences revealed significant differences compared to the SESE reference sequence. TGSE with its short scanning time can be used for high-resolution T2 mapping. ©2018The Author(s). Published by S. Karger AG, Basel.
Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A
2005-03-01
To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.
Kim, Hyun-joo; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin
2011-01-01
Objective We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Materials and Methods Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. Results The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). Conclusion The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella. PMID:21228943
Kim, Hyun-joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin
2011-01-01
We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella.
ENDOR with band-selective shaped inversion pulses
NASA Astrophysics Data System (ADS)
Tait, Claudia E.; Stoll, Stefan
2017-04-01
Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.
NASA Astrophysics Data System (ADS)
Freidlin, R. Z.; Kakareka, J. W.; Pohida, T. J.; Komlosh, M. E.; Basser, P. J.
2012-08-01
In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper describes a snapshot DWI sequence, which utilizes a novel single-sided bipolar diffusion sensitizing gradient pulse within a spin echo sequence. The proposed method shortens the diffusion time by applying a single refocused bipolar diffusion gradient on one side of a refocusing RF pulse, instead of a set of diffusion sensitizing gradients, separated by a refocusing RF pulse, while reducing the impact of magnetic field inhomogeneity by using a spin echo sequence. A novel MRI phantom that can exhibit a range of complex motions was designed to demonstrate the robustness of the proposed DWI sequence.
Vanarthos, W J; Pope, T L; Monu, J U
1994-12-01
To test the diagnostic value of T1 spin-echo and T1 fat-saturated magnetic resonance images (MRIs), we reviewed axial T1-weighted images with and without fat saturation in 20 patients with clinically suspected chondromalacia of the patella. All scans were obtained on 1.5-MR units. The scans were randomly ordered and reviewed independently at different times by two radiologists without knowledge of the arthroscopy results. The sensitivity of the individual techniques for detecting grade 3 or 4 chondromalacia patellae was 92% for fat-saturated axial T1-weighted images alone, and 67% for axial T1-weighted images without fat saturation. The sensitivity of the combined techniques was 100% for grades 3 and 4 and 90% for all grades (0 to 4). Chondromalacia patellae is diagnosed more accurately by using T1 fat saturation than by using T1 spin-echo images. With a combination of the two techniques, accuracy is 90% to 100%.
Application of Medical Magnetic Resonance Imaging for Particle Concentration Measurement
NASA Astrophysics Data System (ADS)
Borup, Daniel; Elkins, Christopher; Eaton, John
2014-11-01
Particle transport and deposition in internal flows is important in a range of applications such as dust aggregation in turbine engines and aerosolized medicine deposition in human airways. Unlike optical techniques, Magnetic Resonance Imaging (MRI) is well suited for complex applications in which optical access is not possible. Here we present efforts to measure 3D particle concentration distribution using MRI. Glass particles dispersed in water flow reduce MRI signal from a spin-echo or gradient-echo scanning sequence by decreasing spin density and dephasing the spins present in the fluid. A preliminary experiment was conducted with a particle streak injected at the centerline of a turbulent round pipe flow with a U bend. Measurements confirmed that signal strength was related to particle concentration and showed the effects of gravitational settling and turbulent dispersion. Next, measurements of samples in a mixing chamber were taken. Particle volume fraction was varied and sensitivity to particle/fluid velocity was investigated. These results give a relationship between MRI signal, particle volume fraction, MRI sequence echo time, and spin relaxation parameters that can be used to measure local particle volume fraction in other turbulent flows of interest.
Knoll, Florian; Raya, José G; Halloran, Rafael O; Baete, Steven; Sigmund, Eric; Bammer, Roland; Block, Tobias; Otazo, Ricardo; Sodickson, Daniel K
2015-01-01
Radial spin echo diffusion imaging allows motion-robust imaging of tissues with very low T2 values like articular cartilage with high spatial resolution and signal-to-noise ratio (SNR). However, in vivo measurements are challenging due to the significantly slower data acquisition speed of spin-echo sequences and the less efficient k-space coverage of radial sampling, which raises the demand for accelerated protocols by means of undersampling. This work introduces a new reconstruction approach for undersampled DTI. A model-based reconstruction implicitly exploits redundancies in the diffusion weighted images by reducing the number of unknowns in the optimization problem and compressed sensing is performed directly in the target quantitative domain by imposing a Total Variation (TV) constraint on the elements of the diffusion tensor. Experiments were performed for an anisotropic phantom and the knee and brain of healthy volunteers (3 and 2 volunteers, respectively). Evaluation of the new approach was conducted by comparing the results to reconstructions performed with gridding, combined parallel imaging and compressed sensing, and a recently proposed model-based approach. The experiments demonstrated improvement in terms of reduction of noise and streaking artifacts in the quantitative parameter maps as well as a reduction of angular dispersion of the primary eigenvector when using the proposed method, without introducing systematic errors into the maps. This may enable an essential reduction of the acquisition time in radial spin echo diffusion tensor imaging without degrading parameter quantification and/or SNR. PMID:25594167
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2016-12-01
Identity operation in the form of π pulses is widely used in NMR spectroscopy. For an isolated single spin system, a sequence of even number of π pulses performs an identity operation, leaving the spin state essentially unaltered. For multi-spin systems, trains of π pulses with appropriate phases and time delays modulate the spin Hamiltonian to perform operations such as decoupling and recoupling. However, experimental imperfections often jeopardize the outcome, leading to severe losses in sensitivity. Here, we demonstrate that a newly designed Genetic Algorithm (GA) is able to optimize a train of π pulses, resulting in a robust identity operation. As proof-of-concept, we optimized the recoupling sequence in the transferred-echo double-resonance (TEDOR) pulse sequence, a key experiment in biological magic angle spinning (MAS) solid-state NMR for measuring multiple carbon-nitrogen distances. The GA modified TEDOR (GMO-TEDOR) experiment with improved recoupling efficiency results in a net gain of sensitivity up to 28% as tested on a uniformly 13C, 15N labeled microcrystalline ubiquitin sample. The robust identity operation achieved via GA paves the way for the optimization of several other pulse sequences used for both solid- and liquid-state NMR used for decoupling, recoupling, and relaxation experiments.
Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes
NASA Astrophysics Data System (ADS)
Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.
2006-05-01
Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.
Fuchs, Katharina; Hezel, Fabian; Klix, Sabrina; Mekle, Ralf; Wuerfel, Jens; Niendorf, Thoralf
2014-12-01
This work proposes a dual contrast rapid acquisition with relaxation enhancement (RARE) variant (2in1-RARE), which provides simultaneous proton density (PD) and T2 * contrast in a single acquisition. The underlying concept of 2in1-RARE is the strict separation of spin echoes and stimulated echoes. This approach offers independent weighting of spin echoes and stimulated echoes. 2in1-RARE was evaluated in phantoms including signal-to-noise ratio (SNR) and point spread function assessment. 2in1-RARE was benchmarked versus coherent RARE and a split-echo RARE variant. The applicability of 2in1-RARE for brain imaging was demonstrated in a small cohort of healthy subjects (n = 10) and, exemplary, a multiple sclerosis patient at 3 Tesla as a precursor to a broader clinical study. 2in1-RARE enables the simultaneous acquisition of dual contrast weighted images without any significant image degradation and without sacrificing SNR versus split-echo RARE. This translates into a factor of two speed gain over multi-contrast, sequential split-echo RARE. A 15% broadening of the point spread function was observed in 2in1-RARE. T1 relaxation effects during the mixing time can be neglected for brain tissue. 2in1-RARE offers simultaneous acquisition of images of anatomical (PD) and functional (T2 *) contrast. It presents an alternative to address scan time constraints frequently encountered during sequential acquisition of T2 * or PD-weighted RARE. © 2013 Wiley Periodicals, Inc.
Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee
2018-06-12
This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P < 0.05). There was no significant difference in conspicuity, signal-to-noise ratio, or contrast-to-noise ratio of the smallest metastases (P > 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.
Accelerated Slice Encoding for Metal Artifact Correction
Hargreaves, Brian A.; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T.; Gold, Garry E.; Brau, Anja C. S.; Pauly, John M.; Pauly, Kim Butts
2010-01-01
Purpose To demonstrate accelerated imaging with artifact reduction near metallic implants and different contrast mechanisms. Materials and Methods Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The SNR effects of all reconstructions were quantified in one subject. 10 subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. Results The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. Conclusion SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. PMID:20373445
Accelerated slice encoding for metal artifact correction.
Hargreaves, Brian A; Chen, Weitian; Lu, Wenmiao; Alley, Marcus T; Gold, Garry E; Brau, Anja C S; Pauly, John M; Pauly, Kim Butts
2010-04-01
To demonstrate accelerated imaging with both artifact reduction and different contrast mechanisms near metallic implants. Slice-encoding for metal artifact correction (SEMAC) is a modified spin echo sequence that uses view-angle tilting and slice-direction phase encoding to correct both in-plane and through-plane artifacts. Standard spin echo trains and short-TI inversion recovery (STIR) allow efficient PD-weighted imaging with optional fat suppression. A completely linear reconstruction allows incorporation of parallel imaging and partial Fourier imaging. The signal-to-noise ratio (SNR) effects of all reconstructions were quantified in one subject. Ten subjects with different metallic implants were scanned using SEMAC protocols, all with scan times below 11 minutes, as well as with standard spin echo methods. The SNR using standard acceleration techniques is unaffected by the linear SEMAC reconstruction. In all cases with implants, accelerated SEMAC significantly reduced artifacts compared with standard imaging techniques, with no additional artifacts from acceleration techniques. The use of different contrast mechanisms allowed differentiation of fluid from other structures in several subjects. SEMAC imaging can be combined with standard echo-train imaging, parallel imaging, partial-Fourier imaging, and inversion recovery techniques to offer flexible image contrast with a dramatic reduction of metal-induced artifacts in scan times under 11 minutes. (c) 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Shakhmuratova, L. N.; Hutchison, W. D.; Isbister, D. J.; Chaplin, D. H.
1997-07-01
A new coherent transient in pulsed NMR, the two-pulse nutational stimulated echo, is reported for the ferromagnetic system 60CoFe using resonant perturbations on the directional emission of anisotropic γ-radiation from thermally oriented nuclei. The new spin echo is a result of non-linear nuclear spin dynamics due to large Larmor inhomogeneity active during radiofrequency pulse application. It is made readily observable through the gross detuning between NMR radiofrequency excitation and gamma radiation detection, and inhomogeneity in the Rabi frequency caused by metallic skin-effect. The method of concatenation of perturbation factors in a statistical tensor formalism is quantitatively applied to successfully predict and then fit in detail the experimental time-domain data.
Double-spin-echo diffusion weighting with a modified eddy current adjustment.
Finsterbusch, Jürgen
2010-04-01
Magnetic field inhomogeneities like eddy current-related gradient fields cause geometric distortions in echo-planar imaging (EPI). This in particular affects diffusion-weighted imaging where these distortions vary with the direction of the diffusion weighting and hamper the accurate determination of diffusion parameters. The double-spin-echo preparation often used aims to reduce the cumulative eddy current effect by adjusting the diffusion-weighting gradient pulse durations to the time constant of the dominant eddy current contribution. However, eddy currents with a variety of time constants may be present and cause residual distortions. Here, a modification is proposed where the two bipolar gradient pairs of the preparation are adjusted independently to different time constants. At the expense of a slightly prolonged echo time, residual geometric distortions and correspondingly increased values of the diffusion anisotropy can be reduced as is demonstrated in phantoms and the human brain. Thus, it may help to improve the reliability of diffusion-weighted EPI. Copyright 2010 Elsevier Inc. All rights reserved.
A powerful graphical pulse sequence programming tool for magnetic resonance imaging.
Jie, Shen; Ying, Liu; Jianqi, Li; Gengying, Li
2005-12-01
A powerful graphical pulse sequence programming tool has been designed for creating magnetic resonance imaging (MRI) applications. It allows rapid development of pulse sequences in graphical mode (allowing for the visualization of sequences), and consists of three modules which include a graphical sequence editor, a parameter management module and a sequence compiler. Its key features are ease to use, flexibility and hardware independence. When graphic elements are combined with a certain text expressions, the graphical pulse sequence programming is as flexible as text-based programming tool. In addition, a hardware-independent design is implemented by using the strategy of two step compilations. To demonstrate the flexibility and the capability of this graphical sequence programming tool, a multi-slice fast spin echo experiment is performed on our home-made 0.3 T permanent magnet MRI system.
High-speed multislice T1 mapping using inversion-recovery echo-planar imaging.
Ordidge, R J; Gibbs, P; Chapman, B; Stehling, M K; Mansfield, P
1990-11-01
Tissue contrast in MR images is a strong function of spin-lattice (T1) and spin-spin (T2) relaxation times. However, the T1 relaxation time is rarely quantified because of the long scan time required to produce an accurate T1 map of the subject. In a standard 2D FT technique, this procedure may take up to 30 min. Modifications of the echo-planar imaging (EPI) technique which incorporate the principle of inversion recovery (IR) enable multislice T1 maps to be produced in total scan times varying from a few seconds up to a minute. Using IR-EPI, rapid quantification of T1 values may thus lead to better discrimination between tissue types in an acceptable scan time.
Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain.
Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk
2015-05-01
The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of the 256 GAPD/scintillator elements of a detector block was <3% for 60 min, and simultaneous PET and MR images of a brain phantom were successfully acquired. Experimental results indicate that a compact and lightweight PET insert for hybrid PET/MRI can be developed using GAPD arrays and charge signal transmission method proposed in this study without significant interference.
3D polymer gel dosimetry using a 3D (DESS) and a 2D MultiEcho SE (MESE) sequence
NASA Astrophysics Data System (ADS)
Maris, Thomas G.; Pappas, Evangelos; Karolemeas, Kostantinos; Papadakis, Antonios E.; Zacharopoulou, Fotini; Papanikolaou, Nickolas; Gourtsoyiannis, Nicholas
2006-12-01
The utilization of 3D techniques in Magnetic Resonance Imaging data aquisition and post-processing analysis is a prerequisite especially when modern radiotherapy techniques (conformal RT, IMRT, Stereotactic RT) are to be used. The aim of this work is to compare a 3D Double Echo Steady State (DESS) and a 2D Multiple Echo Spin Echo (MESE) sequence in 3D MRI radiation dosimetry using two different MRI scanners and utilising N-VInylPyrrolidone (VIPAR) based polymer gels.
Josan, Sonal; Yen, Yi-Fen; Hurd, Ralph; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk
2011-01-01
Undersampled spiral CSI (spCSI) using a free induction decay (FID) acquisition allows sub-second metabolic imaging of hyperpolarized 13C. Phase correction of the FID acquisition can be difficult, especially with contributions from aliased out-of-phase peaks. This work extends the spCSI sequence by incorporating double spin-echo radiofrequency (RF) pulses to eliminate the need for phase correction and obtain high quality spectra in magnitude mode. The sequence also provides an added benefit of attenuating signal from flowing spins, which can otherwise contaminate signal in the organ of interest. The refocusing pulses can potentially lead to a loss of hyperpolarized magnetization in dynamic imaging due to flow of spins through the fringe field of the RF coil, where the refocusing pulses fail to provide complete refocusing. Care must be taken for dynamic imaging to ensure that the spins remain within the B1-homogeneous sensitive volume of the RF coil. PMID:21316280
Khemani, S; Lingam, R K; Kalan, A; Singh, A
2011-08-01
To evaluate the diagnostic performance of half-Fourier-acquisition single-shot turbo-spin-echo (HASTE) diffusion-weighted magnetic resonance imaging in the detection, localisation and prediction of extent of cholesteatoma following canal wall up mastoid surgery. Prospective blinded observational study. University affiliated teaching hospital. Forty-eight patients undergoing second-look surgery after previous canal wall up mastoid surgery for primary acquired cholesteatoma. All patients underwent non-echo planar HASTE diffusion-weighted imaging prior to being offered 'second-look' surgery. Radiological findings were correlated with second-look intra-operative findings in 38 cases with regard to presence, location and maximum dimensions of cholesteatoma. Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging accurately predicted the presence of cholesteatoma in 23 of 28 cases, and it correctly excluded in nine of 10 cases. Five false negatives were caused by keratin pearls of <2 mm and in one case 5 mm. Overall sensitivity and specificity for detection of cholesteatoma were 82% (95% confidence interval [CI] 62-94%) and 90% (CI 55-100%), respectively. Positive predictive value and negative predictive value were 96% (CI 79-100%) and 64% (CI 35-87%), respectively. Overall accuracy for detection of cholesteatoma was 84% (CI 69-94%). Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging has good performance in localising cholesteatoma to a number of anatomical sub-sites within the middle ear and mastoid (sensitivity ranging from 75% to 88% and specificity ranging from 94% to 100%). There was no statistically significant difference in the size of cholesteatoma detected radiologically and that found during surgery (paired t-test, P = 0.16). However, analysis of size agreement suggests possible radiological underestimation of size when using HASTE diffusion-weighted imaging (mean difference -0.6 mm, CI -5.3 to 4.6 mm). Half-Fourier-acquisition single-shot turbo-spin-echo diffusion-weighted imaging performs reasonably well in predicting the presence and location of postoperative cholesteatoma but may miss small foci of disease and may underestimate the true size of cholesteatoma. © 2011 Blackwell Publishing Ltd.
Giesemann, Anja M; Raab, Peter; Lyutenski, Stefan; Dettmer, Sabine; Bültmann, Eva; Frömke, Cornelia; Lenarz, Thomas; Lanfermann, Heinrich; Goetz, Friedrich
2014-03-01
Magnetic resonance imaging of the temporal bone has an important role in decision making with regard to cochlea implantation, especially in children with cochlear nerve deficiency. The purpose of this study was to evaluate the usefulness of the combination of an advanced high-resolution T2-weighted sequence with a surface coil in a 3-Tesla magnetic resonance imaging scanner in cases of suspected cochlear nerve aplasia. Prospective study. Seven patients with cochlear nerve hypoplasia or aplasia were prospectively examined using a high-resolution three-dimensional variable flip-angle turbo spin-echo sequence using a surface coil, and the images were compared with the same sequence in standard resolution using a standard head coil. Three neuroradiologists evaluated the magnetic resonance images independently, rating the visibility of the nerves in diagnosing hypoplasia or aplasia. Eight ears in seven patients with hypoplasia or aplasia of the cochlear nerve were examined. The average age was 2.7 years (range, 9 months-5 years). Seven ears had accompanying malformations. The inter-rater reliability in diagnosing hypoplasia or aplasia was greater using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence (fixed-marginal kappa: 0.64) than with the same sequence in lower resolution (fixed-marginal kappa: 0.06). Examining cases of suspected cochlear nerve aplasia using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence in combination with a surface coil shows significant improvement over standard methods. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Portnoy, S; Flint, J J; Blackband, S J; Stanisz, G J
2013-04-01
Oscillating gradient spin-echo (OGSE) pulse sequences have been proposed for acquiring diffusion data with very short diffusion times, which probe tissue structure at the subcellular scale. OGSE sequences are an alternative to pulsed gradient spin echo measurements, which typically probe longer diffusion times due to gradient limitations. In this investigation, a high-strength (6600 G/cm) gradient designed for small-sample microscopy was used to acquire OGSE and pulsed gradient spin echo data in a rat hippocampal specimen at microscopic resolution. Measurements covered a broad range of diffusion times (TDeff = 1.2-15.0 ms), frequencies (ω = 67-1000 Hz), and b-values (b = 0-3.2 ms/μm2). Variations in apparent diffusion coefficient with frequency and diffusion time provided microstructural information at a scale much smaller than the imaging resolution. For a more direct comparison of the techniques, OGSE and pulsed gradient spin echo data were acquired with similar effective diffusion times. Measurements with similar TDeff were consistent at low b-value (b < 1 ms/μm(2) ), but diverged at higher b-values. Experimental observations suggest that the effective diffusion time can be helpful in the interpretation of low b-value OGSE data. However, caution is required at higher b, where enhanced sensitivity to restriction and exchange render the effective diffusion time an unsuitable representation. Oscillating and pulsed gradient diffusion techniques offer unique, complementary information. In combination, the two methods provide a powerful tool for characterizing complex diffusion within biological tissues. Copyright © 2012 Wiley Periodicals, Inc.
Jiang, Yun; Ma, Dan; Keenan, Kathryn E; Stupic, Karl F; Gulani, Vikas; Griswold, Mark A
2017-10-01
The purpose of this study was to evaluate accuracy and repeatability of T 1 and T 2 estimates of a MR fingerprinting (MRF) method using the ISMRM/NIST MRI system phantom. The ISMRM/NIST MRI system phantom contains multiple compartments with standardized T 1 , T 2 , and proton density values. Conventional inversion-recovery spin echo and spin echo methods were used to characterize the T 1 and T 2 values in the phantom. The phantom was scanned using the MRF-FISP method over 34 consecutive days. The mean T 1 and T 2 values were compared with the values from the spin echo methods. The repeatability was characterized as the coefficient of variation of the measurements over 34 days. T 1 and T 2 values from MRF-FISP over 34 days showed a strong linear correlation with the measurements from the spin echo methods (R 2 = 0.999 for T 1 ; R 2 = 0.996 for T 2 ). The MRF estimates over the wide ranges of T 1 and T 2 values have less than 5% variation, except for the shortest T 2 relaxation times where the method still maintains less than 8% variation. MRF measurements of T 1 and T 2 are highly repeatable over time and across wide ranges of T 1 and T 2 values. Magn Reson Med 78:1452-1457, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Simultaneous multislice refocusing via time optimal control.
Rund, Armin; Aigner, Christoph Stefan; Kunisch, Karl; Stollberger, Rudolf
2018-02-09
Joint design of minimum duration RF pulses and slice-selective gradient shapes for MRI via time optimal control with strict physical constraints, and its application to simultaneous multislice imaging. The minimization of the pulse duration is cast as a time optimal control problem with inequality constraints describing the refocusing quality and physical constraints. It is solved with a bilevel method, where the pulse length is minimized in the upper level, and the constraints are satisfied in the lower level. To address the inherent nonconvexity of the optimization problem, the upper level is enhanced with new heuristics for finding a near global optimizer based on a second optimization problem. A large set of optimized examples shows an average temporal reduction of 87.1% for double diffusion and 74% for turbo spin echo pulses compared to power independent number of slices pulses. The optimized results are validated on a 3T scanner with phantom measurements. The presented design method computes minimum duration RF pulse and slice-selective gradient shapes subject to physical constraints. The shorter pulse duration can be used to decrease the effective echo time in existing echo-planar imaging or echo spacing in turbo spin echo sequences. © 2018 International Society for Magnetic Resonance in Medicine.
van den Bos, Indra C; Hussain, Shahid M; Krestin, Gabriel P; Wielopolski, Piotr A
2008-07-01
Institutional Review Board approval and signed informed consent were obtained by all participants for an ongoing sequence optimization project at 3.0 T. The purpose of this study was to evaluate breath-hold diffusion-induced black-blood echo-planar imaging (BBEPI) as a potential alternative for specific absorption rate (SAR)-intensive spin-echo sequences, in particular, the fast spin-echo (FSE) sequences, at 3.0 T. Fourteen healthy volunteers (seven men, seven women; mean age +/- standard deviation, 32.7 years +/- 6.8) were imaged for this purpose. Liver coverage (20 cm, z-axis) was always performed in one 25-second breath hold. Imaging parameters were varied interactively with regard to echo time, diffusion b value, and voxel size. Images were evaluated and compared with fat-suppressed T2-weighted FSE images for image quality, liver delineation, geometric distortions, fat suppression, suppression of the blood signal, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). An optimized short- (25 msec) and long-echo (80 msec) BBEPI provided full anatomic, single breath-hold liver coverage (100 and 50 sections, respectively), with resulting voxel sizes of 3.3 x 2.7 x 2.0 mm and 3.3 x 2.7 x 4.0 mm, respectively. Repetition time was 6300 msec, matrix size was 160 x 192, and an acceleration factor of 2.00 was used. b Values of more than 20 sec/mm(2) showed better suppression of the blood signal but b values of 10 sec/mm(2) provided improved volume coverage and signal consistency. Compared with fat-suppressed T2-weighted FSE, the optimized BBEPI sequence provided (a) comparable image quality and liver delineation, (b) acceptable geometric distortions, (c) improved suppression of fat and blood signals, and (d) high CNR and SNR. BBEPI is feasible for fast, low-SAR, thin-section morphologic imaging of the entire liver in a single breath hold at 3.0 T. (c) RSNA, 2008.
Inner-volume echo volumar imaging (IVEVI) for robust fetal brain imaging.
Nunes, Rita G; Ferrazzi, Giulio; Price, Anthony N; Hutter, Jana; Gaspar, Andreia S; Rutherford, Mary A; Hajnal, Joseph V
2018-07-01
Fetal functional MRI studies using conventional 2-dimensional single-shot echo-planar imaging sequences may require discarding a large data fraction as a result of fetal and maternal motion. Increasing the temporal resolution using echo volumar imaging (EVI) could provide an effective alternative strategy. Echo volumar imaging was combined with inner volume (IV) imaging (IVEVI) to locally excite the fetal brain and acquire full 3-dimensional images, fast enough to freeze most fetal head motion. IVEVI was implemented by modifying a standard multi-echo echo-planar imaging sequence. A spin echo with orthogonal excitation and refocusing ensured localized excitation. To introduce T2* weighting and to save time, the k-space center was shifted relative to the spin echo. Both single and multi-shot variants were tested. Acoustic noise was controlled by adjusting the amplitude and switching frequency of the readout gradient. Image-based shimming was used to minimize B 0 inhomogeneities within the fetal brain. The sequence was first validated in an adult. Eight fetuses were scanned using single-shot IVEVI at a 3.5 × 3.5 × 5.0 mm 3 resolution with a readout duration of 383 ms. Multishot IVEVI showed reduced geometric distortions along the second phase-encode direction. Fetal EVI remains challenging. Although effective echo times comparable to the T2* values of fetal cortical gray matter at 3 T could be achieved, controlling acoustic noise required longer readouts, leading to substantial distortions in single-shot images. Although multishot variants enabled us to reduce susceptibility-induced geometric distortions, sensitivity to motion was increased. Future studies should therefore focus on improvements to multishot variants. Magn Reson Med 80:279-285, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Refocused linewidths less than 10 Hz in 1H solid-state NMR.
Paruzzo, Federico M; Stevanato, Gabriele; Halse, Meghan E; Schlagnitweit, Judith; Mammoli, Daniele; Lesage, Anne; Emsley, Lyndon
2018-06-02
Coherence lifetimes in homonuclear dipolar decoupled 1 H solid-state NMR experiments are usually on the order of a few ms. We discover an oscillation that limits the lifetime of the coherences by recording spin-echo dephasing curves. We find that this oscillation can be removed by the application of a double spin-echo experiment, leading to coherence lifetimes of more than 45 ms in adamantane and more that 22 ms in β-AspAla, corresponding to refocused linewidths of less than 7 and 14 Hz respectively. Copyright © 2018 Elsevier Inc. All rights reserved.
Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; ...
2014-10-29
We report that the detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density.
Dynamics of polymers in elongational flow studied by the neutron spin-echo technique
NASA Astrophysics Data System (ADS)
Rheinstädter, Maikel C.; Sattler, Rainer; Häußler, Wolfgang; Wagner, Christian
2010-09-01
The nanoscale fluctuation dynamics of semidilute high molecular weight polymer solutions of polyethylenoxide (PEO) in D 2O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow geometry and provided a pressure driven flow with a high elongational component that stretched the polymers most efficiently. Neutron scattering experiments in dilute polymer solutions are challenging because of the low polymer concentration and corresponding small quasi-elastic signals. A relaxation process with relaxation times of about 10 ps was observed, which shows anisotropic dynamics with applied flow.
Measuring restriction sizes using diffusion weighted magnetic resonance imaging: a review.
Martin, Melanie
2013-01-01
This article reviews a new concept in magnetic resonance as applied to cellular and biological systems. Diffusion weighted magnetic resonance imaging can be used to infer information about restriction sizes of samples being measured. The measurements rely on the apparent diffusion coefficient changing with diffusion times as measurements move from restricted to free diffusion regimes. Pulsed gradient spin echo (PGSE) measurements are limited in the ability to shorten diffusion times and thus are limited in restriction sizes which can be probed. Oscillating gradient spin echo (OGSE) measurements could provide shorter diffusion times so smaller restriction sizes could be probed.
T1 weighted fat/water separated PROPELLER acquired with dual bandwidths.
Rydén, Henric; Berglund, Johan; Norbeck, Ola; Avventi, Enrico; Skare, Stefan
2018-04-24
To describe a fat/water separated dual receiver bandwidth (rBW) spin echo PROPELLER sequence that eliminates the dead time associated with single rBW sequences. A nonuniform noise whitening by regularization of the fat/water inverse problem is proposed, to enable dual rBW reconstructions. Bipolar, flyback, and dual spin echo sequences were developed. All sequences acquire two echoes with different rBW without dead time. Chemical shift displacement was corrected by performing the fat/water separation in k-space, prior to gridding. The proposed sequences were compared to fat saturation, and single rBW sequences, in terms of SNR and CNR efficiency, using clinically relevant acquisition parameters. The impact of motion was investigated. Chemical shift correction greatly improved the image quality, especially at high resolution acquired with low rBW, and also improved motion estimates. SNR efficiency of the dual spin echo sequence was up to 20% higher than the single rBW acquisition, while CNR efficiency was 50% higher for the bipolar acquisition. Noise whitening was deemed necessary for all dual rBW acquisitions, rendering high image quality with strong and homogenous fat suppression. Dual rBW sequences eliminate the dead time present in single rBW sequences, which improves SNR efficiency. In combination with the proposed regularization, this enables highly efficient T1-weighted PROPELLER images without chemical shift displacement. © 2018 International Society for Magnetic Resonance in Medicine.
Ozcan, H Nursun; Gormez, Ayşegul; Ozsurekci, Yasemin; Karakaya, Jale; Oguz, Berna; Unal, Sule; Cetin, Mualla; Ceyhan, Mehmet; Haliloglu, Mithat
2017-02-01
Computed tomography (CT) is commonly used to detect pulmonary infection in immunocompromised children. To compare MRI and multidetector CT findings of pulmonary abnormalities in immunocompromised children. Seventeen neutropaenic children (6 girls; ages 2-18 years) were included. Non-contrast-enhanced CT was performed with a 64-detector CT scanner. Axial and coronal non-enhanced thoracic MRI was performed using a 1.5-T scanner within 24 h of the CT examination (true fast imaging with steady-state free precession, fat-saturated T2-weighted turbo spin echo with motion correction, T2-weighted half-Fourier single-shot turbo spin echo [HASTE], fat-saturated T1-weighted spoiled gradient echo). Pulmonary abnormalities (nodules, consolidations, ground glass opacities, atelectasis, pleural effusion and lymph nodes) were evaluated and compared among MRI sequences and between MRI and CT. The relationship between MRI sequences and nodule sizes was examined by chi- square test. Of 256 CT lesions, 207 (81%, 95% confidence interval [CI] 76-85%) were detected at MRI. Of 202 CT-detected nodules, 157 (78%, 95% CI 71-83%) were seen at motion-corrected MRI. Of the 1-5-mm nodules, 69% were detected by motion-corrected T2-weighted MRI and 38% by HASTE MRI. Sensitivity of MRI (both axial fat-saturated T2-weighted turbo spin echo with variable phase encoding directions (BLADE) images and HASTE sequences) to detect pulmonary abnormalities is promising.
Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segawa, Takuya F., E-mail: takuya.segawa@alumni.ethz.ch; Doppelbauer, Maximilian; Garbuio, Luca
2016-05-21
Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the {sup 1}H NMR spectrum of H{sub 2}O at a Larmormore » frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10–20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.« less
Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods.
Segawa, Takuya F; Doppelbauer, Maximilian; Garbuio, Luca; Doll, Andrin; Polyhach, Yevhen O; Jeschke, Gunnar
2016-05-21
Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the (1)H NMR spectrum of H2O at a Larmor frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10-20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.
Klix, Sabrina; Hezel, Fabian; Fuchs, Katharina; Ruff, Jan; Dieringer, Matthias A.; Niendorf, Thoralf
2014-01-01
Purpose Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for self-calibrated parallel imaging. Methods For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired simultaneously. SENSE reconstruction was employed. Results The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging. Conclusion SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE. SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging. PMID:24728341
The Solar Flux Dependence of Ionospheric 150 km Radar Echoes and Implications
NASA Astrophysics Data System (ADS)
Patra, A. K.; Pavan Chaitanya, P.; St.-Maurice, J.-P.; Otsuka, Y.; Yokoyama, T.; Yamamoto, M.
2017-11-01
Radar echoes from the daytime equatorial ionospheric F1 region, popularly known as "150 km echoes," have challenged ionospheric plasma physicists for several decades. Recent theoretical simulations showed that enhanced photoelectron fluxes can amplify the amplitude of plasma waves, generating spectra similar to those of the radar echoes, implying that larger solar fluxes should produce more frequent and stronger 150 km echoes. Inspired by this proposal, we studied the occurrence and intensity dependence of the echoes on the EUV flux observed by SOHO over several years. The occurrence and intensity of the echoes were found to have an inverse relationship with this EUV flux measurement. The multiyear trend is independent of the variability often observed over successive days with nearly identical EUV fluxes. These results imply that the relationship between the echoes and EUV flux is more complex. We propose that gravity waves modulate the amplitude of 150 km echoes through changes in the variations in plasma density and photoelectron fluxes associated with the gravity wave-induced neutral density modulations.
Spin coherence and 14N ESEEM effects of nitrogen-vacancy centers in diamond with X-band pulsed ESR
NASA Astrophysics Data System (ADS)
Rose, B. C.; Weis, C. D.; Tyryshkin, A. M.; Schenkel, T.; Lyon, S. A.
2017-02-01
Pulsed ESR experiments are reported for ensembles of negatively-charged nitrogen-vacancy centers (NV$^-$) in diamonds at X-band magnetic fields (280-400 mT) and low temperatures (2-70 K). The NV$^-$ centers in synthetic type IIb diamonds (nitrogen impurity concentration $<1$~ppm) are prepared with bulk concentrations of $2\\cdot 10^{13}$ cm$^{-3}$ to $4\\cdot 10^{14}$ cm$^{-3}$ by high-energy electron irradiation and subsequent annealing. We find that a proper post-radiation anneal (1000$^\\circ$C for 60 mins) is critically important to repair the radiation damage and to recover long electron spin coherence times for NV$^-$s. After the annealing, spin coherence times of T$_2 = 0.74$~ms at 5~K are achieved, being only limited by $^{13}$C nuclear spectral diffusion in natural abundance diamonds. At X-band magnetic fields, strong electron spin echo envelope modulation (ESEEM) is observed originating from the central $^{14}$N nucleus. The ESEEM spectral analysis allows for accurate determination of the $^{14}$N nuclear hypefine and quadrupole tensors. In addition, the ESEEM effects from two proximal $^{13}$C sites (second-nearest neighbor and fourth-nearest neighbor) are resolved and the respective $^{13}$C hyperfine coupling constants are extracted.
Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion
NASA Astrophysics Data System (ADS)
Scheuer, Jochen; Stark, Alexander; Kost, Matthias; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor
2015-12-01
Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. The signal to noise ratio of the recovered 2D spectrum is compared to the Fourier transform of randomly subsampled data, where we observe a strong suppression of the noise when the matrix completion algorithm is applied. We show that the peaks in the spectrum can be obtained with only 10% of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buljubasich, Lisandro; Dente, Axel D.; Levstein, Patricia R.
2015-10-28
We performed Loschmidt echo nuclear magnetic resonance experiments to study decoherence under a scaled dipolar Hamiltonian by means of a symmetrical time-reversal pulse sequence denominated Proportionally Refocused Loschmidt (PRL) echo. The many-spin system represented by the protons in polycrystalline adamantane evolves through two steps of evolution characterized by the secular part of the dipolar Hamiltonian, scaled down with a factor |k| and opposite signs. The scaling factor can be varied continuously from 0 to 1/2, giving access to a range of complexity in the dynamics. The experimental results for the Loschmidt echoes showed a spreading of the decay rates thatmore » correlate directly to the scaling factors |k|, giving evidence that the decoherence is partially governed by the coherent dynamics. The average Hamiltonian theory was applied to give an insight into the spin dynamics during the pulse sequence. The calculations were performed for every single radio frequency block in contrast to the most widely used form. The first order of the average Hamiltonian numerically computed for an 8-spin system showed decay rates that progressively decrease as the secular dipolar Hamiltonian becomes weaker. Notably, the first order Hamiltonian term neglected by conventional calculations yielded an explanation for the ordering of the experimental decoherence rates. However, there is a strong overall decoherence observed in the experiments which is not reflected by the theoretical results. The fact that the non-inverted terms do not account for this effect is a challenging topic. A number of experiments to further explore the relation of the complete Hamiltonian with this dominant decoherence rate are proposed.« less
Loschmidt echo as a robust decoherence quantifier for many-body systems
NASA Astrophysics Data System (ADS)
Zangara, Pablo R.; Dente, Axel D.; Levstein, Patricia R.; Pastawski, Horacio M.
2012-07-01
We employ the Loschmidt echo, i.e., the signal recovered after the reversal of an evolution, to identify and quantify the processes contributing to decoherence. This procedure, which has been extensively used in single-particle physics, is employed here in a spin ladder. The isolated chains have 1/2 spins with XY interaction and their excitations would sustain a one-body-like propagation. One of them constitutes the controlled system S whose reversible dynamics is degraded by the weak coupling with the uncontrolled second chain, i.e., the environment E. The perturbative SE coupling is swept through arbitrary combinations of XY and Ising-like interactions, that contain the standard Heisenberg and dipolar ones. Different time regimes are identified for the Loschmidt echo dynamics in this perturbative configuration. In particular, the exponential decay scales as a Fermi golden rule, where the contributions of the different SE terms are individually evaluated and analyzed. Comparisons with previous analytical and numerical evaluations of decoherence based on the attenuation of specific interferences show that the Loschmidt echo is an advantageous decoherence quantifier at any time, regardless of the S internal dynamics.
Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.
Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W
2000-02-01
The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences. Copyright 2000 Academic Press.
Spin echo SPI methods for quantitative analysis of fluids in porous media.
Li, Linqing; Han, Hui; Balcom, Bruce J
2009-06-01
Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement. In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90 degrees excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T(2) attenuation of the echo train yields an image convolution which causes blurring. The T(2) blur effect is moderate for porous media with T(2) lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media. In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T(2) distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T(2) weighted image may be acquired from each echo. The echo time (TE) of each T(2) weighted image may be reduced to 500 micros or less. These profiles can be fit to extract a T(2) distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the spatially resolved T(2) distribution. These 1D images do not suffer from a T(2) related blurring. The above SE-SPI measurements are combined to generate 1D images of the local saturation and T(2) distribution as a function of saturation, upon centrifugation of petroleum reservoir core samples. The logarithm mean T(2) is observed to shift linearly with water saturation. This new reservoir core analysis measurement may provide a valuable calibration of the Coates equation for irreducible water saturation, which has been widely implemented in NMR well logging measurements.
NASA Astrophysics Data System (ADS)
Fehr, M.; Schnegg, A.; Rech, B.; Astakhov, O.; Finger, F.; Bittl, R.; Teutloff, C.; Lips, K.
2014-02-01
Light-induced degradation of hydrogenated amorphous silicon (a-Si :H), known as the Staebler-Wronski effect, has been studied by time-domain pulsed electron-paramagnetic resonance. Electron-spin echo relaxation measurements in the annealed and light-soaked state revealed two types of defects (termed type I and II), which can be discerned by their electron-spin echo relaxation. Type I exhibits a monoexponential decay related to indirect flip-flop processes between dipolar coupled electron spins in defect clusters, while the phase relaxation of type II is dominated by H1 nuclear spin dynamics and is indicative for isolated spins. We propose that defects are either located at internal surfaces of microvoids (type I) or are isolated and uniformly distributed in the bulk (type II). The concentration of both defect type I and II is significantly higher in the light-soaked state compared to the annealed state. Our results indicate that in addition to isolated defects, defects on internal surfaces of microvoids play a role in light-induced degradation of device-quality a-Si :H.
Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot.
Kawakami, E; Scarlino, P; Ward, D R; Braakman, F R; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K
2014-09-01
Nanofabricated quantum bits permit large-scale integration but usually suffer from short coherence times due to interactions with their solid-state environment. The outstanding challenge is to engineer the environment so that it minimally affects the qubit, but still allows qubit control and scalability. Here, we demonstrate a long-lived single-electron spin qubit in a Si/SiGe quantum dot with all-electrical two-axis control. The spin is driven by resonant microwave electric fields in a transverse magnetic field gradient from a local micromagnet, and the spin state is read out in the single-shot mode. Electron spin resonance occurs at two closely spaced frequencies, which we attribute to two valley states. Thanks to the weak hyperfine coupling in silicon, a Ramsey decay timescale of 1 μs is observed, almost two orders of magnitude longer than the intrinsic timescales in GaAs quantum dots, whereas gate operation times are comparable to those reported in GaAs. The spin echo decay time is ~40 μs, both with one and four echo pulses, possibly limited by intervalley scattering. These advances strongly improve the prospects for quantum information processing based on quantum dots.
Notch filtering the nuclear environment of a spin qubit.
Malinowski, Filip K; Martins, Frederico; Nissen, Peter D; Barnes, Edwin; Cywiński, Łukasz; Rudner, Mark S; Fallahi, Saeed; Gardner, Geoffrey C; Manfra, Michael J; Marcus, Charles M; Kuemmeth, Ferdinand
2017-01-01
Electron spins in gate-defined quantum dots provide a promising platform for quantum computation. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots and accurate qubit operations. However, the effective magnetic noise arising from the hyperfine interaction with uncontrolled nuclear spins in the host lattice constitutes a major source of decoherence. Low-frequency nuclear noise, responsible for fast (10 ns) inhomogeneous dephasing, can be removed by echo techniques. High-frequency nuclear noise, recently studied via echo revivals, occurs in narrow-frequency bands related to differences in Larmor precession of the three isotopes 69 Ga, 71 Ga and 75 As (refs 15,16,17). Here, we show that both low- and high-frequency nuclear noise can be filtered by appropriate dynamical decoupling sequences, resulting in a substantial enhancement of spin qubit coherence times. Using nuclear notch filtering, we demonstrate a spin coherence time (T 2 ) of 0.87 ms, five orders of magnitude longer than typical exchange gate times, and exceeding the longest coherence times reported to date in Si/SiGe gate-defined quantum dots.
Zhang, Na; Zhang, Lei; Yang, Qi; Pei, Anqi; Tong, Xiaoxin; Chung, Yiu-Cho; Liu, Xin
2017-06-01
To implement a fast (~15min) MRI protocol for carotid plaque screening using 3D multi-contrast MRI sequences without contrast agent on a 3Tesla MRI scanner. 7 healthy volunteers and 25 patients with clinically confirmed transient ischemic attack or suspected cerebrovascular ischemia were included in this study. The proposed protocol, including 3D T1-weighted and T2-weighted SPACE (variable-flip-angle 3D turbo spin echo), and T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) was performed first and was followed by 2D T1-weighted and T2-weighted turbo spin echo, and post-contrast T1-weighted SPACE sequences. Image quality, number of plaques, and vessel wall thicknesses measured at the intersection of the plaques were evaluated and compared between sequences. Average examination time of the proposed protocol was 14.6min. The average image quality scores of 3D T1-weighted, T2-weighted SPACE, and T1-weighted magnetization prepared rapid acquisition gradient echo were 3.69, 3.75, and 3.48, respectively. There was no significant difference in detecting the number of plaques and vulnerable plaques using pre-contrast 3D images with or without post-contrast T1-weighted SPACE. The 3D SPACE and 2D turbo spin echo sequences had excellent agreement (R=0.96 for T1-weighted and 0.98 for T2-weighted, p<0.001) regarding vessel wall thickness measurements. The proposed protocol demonstrated the feasibility of attaining carotid plaque screening within a 15-minute scan, which provided sufficient anatomical coverage and critical diagnostic information. This protocol offers the potential for rapid and reliable screening for carotid plaques without contrast agent. Copyright © 2016. Published by Elsevier Inc.
Multifrequency Pulsed EPR Studies of Biologically Relevant Manganese(II) Complexes
Stich, T. A.; Lahiri, S.; Yeagle, G.; Dicus, M.; Brynda, M.; Gunn, A.; Aznar, C.; DeRose, V. J.; Britt, R. D.
2011-01-01
Electron paramagnetic resonance studies at multiple frequencies (MF EPR) can provide detailed electronic structure descriptions of unpaired electrons in organic radicals, inorganic complexes, and metalloenzymes. Analysis of these properties aids in the assignment of the chemical environment surrounding the paramagnet and provides mechanistic insight into the chemical reactions in which these systems take part. Herein, we present results from pulsed EPR studies performed at three different frequencies (9, 31, and 130 GHz) on [Mn(II)(H2O)6]2+, Mn(II) adducts with the nucleotides ATP and GMP, and the Mn(II)-bound form of the hammerhead ribozyme (MnHH). Through line shape analysis and interpretation of the zero-field splitting values derived from successful simulations of the corresponding continuous-wave and field-swept echo-detected spectra, these data are used to exemplify the ability of the MF EPR approach in distinguishing the nature of the first ligand sphere. A survey of recent results from pulsed EPR, as well as pulsed electron-nuclear double resonance and electron spin echo envelope modulation spectroscopic studies applied to Mn(II)-dependent systems, is also presented. PMID:22190766
Lin, Tao; Sun, Huijun; Chen, Zhong; You, Rongyi; Zhong, Jianhui
2007-12-01
Diffusion weighting in MRI is commonly achieved with the pulsed-gradient spin-echo (PGSE) method. When combined with spin-warping image formation, this method often results in ghosts due to the sample's macroscopic motion. It has been shown experimentally (Kennedy and Zhong, MRM 2004;52:1-6) that these motion artifacts can be effectively eliminated by the distant dipolar field (DDF) method, which relies on the refocusing of spatially modulated transverse magnetization by the DDF within the sample itself. In this report, diffusion-weighted images (DWIs) using both DDF and PGSE methods in the presence of macroscopic sample motion were simulated. Numerical simulation results quantify the dependence of signals in DWI on several key motion parameters and demonstrate that the DDF DWIs are much less sensitive to macroscopic sample motion than the traditional PGSE DWIs. The results also show that the dipolar correlation distance (d(c)) can alter contrast in DDF DWIs. The simulated results are in good agreement with the experimental results reported previously.
NASA Astrophysics Data System (ADS)
Wang, Kaiyu; Zhang, Zhiyong; Ding, Xiaoyan; Tian, Fang; Huang, Yuqing; Chen, Zhong; Fu, Riqiang
2018-02-01
The feasibility of using the spin-echo based diagonal peak suppression method in solid-state MAS NMR homonuclear chemical shift correlation experiments is demonstrated. A complete phase cycling is designed in such a way that in the indirect dimension only the spin diffused signals are evolved, while all signals not involved in polarization transfer are refocused for cancellation. A data processing procedure is further introduced to reconstruct this acquired spectrum into a conventional two-dimensional homonuclear chemical shift correlation spectrum. A uniformly 13C, 15N labeled Fmoc-valine sample and the transmembrane domain of a human protein, LR11 (sorLA), in native Escherichia coli membranes have been used to illustrate the capability of the proposed method in comparison with standard 13C-13C chemical shift correlation experiments.
Decoherence and spin echo in biological systems.
Nesterov, Alexander I; Berman, Gennady P
2015-05-01
The spin-echo approach is extended to include biocomplexes for which the interaction with dynamical noise, produced by the protein environment, is strong. Significant restoration of the free induction decay signal due to homogeneous (decoherence) and inhomogeneous (dephasing) broadening is demonstrated analytically and numerically for both an individual dimer of interacting chlorophylls and for an ensemble of dimers. Our approach does not require the use of small interaction constants between the electron states and the protein fluctuations. It is based on an exact and closed system of ordinary differential equations that can be easily solved for a wide range of parameters that are relevant for bioapplications.
Decoherence and spin echo in biological systems
NASA Astrophysics Data System (ADS)
Nesterov, Alexander I.; Berman, Gennady P.
2015-05-01
The spin-echo approach is extended to include biocomplexes for which the interaction with dynamical noise, produced by the protein environment, is strong. Significant restoration of the free induction decay signal due to homogeneous (decoherence) and inhomogeneous (dephasing) broadening is demonstrated analytically and numerically for both an individual dimer of interacting chlorophylls and for an ensemble of dimers. Our approach does not require the use of small interaction constants between the electron states and the protein fluctuations. It is based on an exact and closed system of ordinary differential equations that can be easily solved for a wide range of parameters that are relevant for bioapplications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brasch, R.C.; Wesbey, G.E.; Gooding, C.A.
Tissue deposits of hemosiderin, a paramagnetic iron-protein complex, resulted in marked abnormalities of magnetic resonance (MR) spin-echo signal intensity within the viscera of three children with transfusional hemosiderosis and thalassemia major. In all patients the liver and bone marrow demonstrated abnormally low spin-echo intensities and the kidneys and muscles had abnormally high intensities. These observations correlate with in vitro MR observation of ferric (Fe/sup +3/) solutions, in which concentrations of ferric salts greater than 20 mmol yielded higher intensities than did water alone. MR imaging is sensitive to the tissue deposition of hemosiderin, and MR intensity appears to provide amore » rough measure of the amount of iron deposited.« less
Removal of intensity bias in magnitude spin-echo MRI images by nonlinear diffusion filtering
NASA Astrophysics Data System (ADS)
Samsonov, Alexei A.; Johnson, Chris R.
2004-05-01
MRI data analysis is routinely done on the magnitude part of complex images. While both real and imaginary image channels contain Gaussian noise, magnitude MRI data are characterized by Rice distribution. However, conventional filtering methods often assume image noise to be zero mean and Gaussian distributed. Estimation of an underlying image using magnitude data produces biased result. The bias may lead to significant image errors, especially in areas of low signal-to-noise ratio (SNR). The incorporation of the Rice PDF into a noise filtering procedure can significantly complicate the method both algorithmically and computationally. In this paper, we demonstrate that inherent image phase smoothness of spin-echo MRI images could be utilized for separate filtering of real and imaginary complex image channels to achieve unbiased image denoising. The concept is demonstrated with a novel nonlinear diffusion filtering scheme developed for complex image filtering. In our proposed method, the separate diffusion processes are coupled through combined diffusion coefficients determined from the image magnitude. The new method has been validated with simulated and real MRI data. The new method has provided efficient denoising and bias removal in conventional and black-blood angiography MRI images obtained using fast spin echo acquisition protocols.
Setting the magic angle for fast magic-angle spinning probes.
Penzel, Susanne; Smith, Albert A; Ernst, Matthias; Meier, Beat H
2018-06-15
Fast magic-angle spinning, coupled with 1 H detection is a powerful method to improve spectral resolution and signal to noise in solid-state NMR spectra. Commercial probes now provide spinning frequencies in excess of 100 kHz. Then, one has sufficient resolution in the 1 H dimension to directly detect protons, which have a gyromagnetic ratio approximately four times larger than 13 C spins. However, the gains in sensitivity can quickly be lost if the rotation angle is not set precisely. The most common method of magic-angle calibration is to optimize the number of rotary echoes, or sideband intensity, observed on a sample of KBr. However, this typically uses relatively low spinning frequencies, where the spinning of fast-MAS probes is often unstable, and detection on the 13 C channel, for which fast-MAS probes are typically not optimized. Therefore, we compare the KBr-based optimization of the magic angle with two alternative approaches: optimization of the splitting observed in 13 C-labeled glycine-ethylester on the carbonyl due to the Cα-C' J-coupling, or optimization of the H-N J-coupling spin echo in the protein sample itself. The latter method has the particular advantage that no separate sample is necessary for the magic-angle optimization. Copyright © 2018. Published by Elsevier Inc.
Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong
2015-05-15
Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. Themore » PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of the 256 GAPD/scintillator elements of a detector block was <3% for 60 min, and simultaneous PET and MR images of a brain phantom were successfully acquired. Conclusions: Experimental results indicate that a compact and lightweight PET insert for hybrid PET/MRI can be developed using GAPD arrays and charge signal transmission method proposed in this study without significant interference.« less
Ferguson, Kate R; Beavan, Sarah E; Longdell, Jevon J; Sellars, Matthew J
2016-07-08
Here, we demonstrate generating and storing entanglement in a solid-state spin-wave quantum memory with on-demand readout using the process of rephased amplified spontaneous emission (RASE). Amplified spontaneous emission (ASE), resulting from an inverted ensemble of Pr^{3+} ions doped into a Y_{2}SiO_{5} crystal, generates entanglement between collective states of the praseodymium ensemble and the output light. The ensemble is then rephased using a four-level photon echo technique. Entanglement between the ASE and its echo is confirmed and the inseparability violation preserved when the RASE is stored as a spin wave for up to 5 μs. RASE is shown to be temporally multimode with almost perfect distinguishability between two temporal modes demonstrated. These results pave the way for the use of multimode solid-state quantum memories in scalable quantum networks.
T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging.
Tamir, Jonathan I; Uecker, Martin; Chen, Weitian; Lai, Peng; Alley, Marcus T; Vasanawala, Shreyas S; Lustig, Michael
2017-01-01
A new acquisition and reconstruction method called T 2 Shuffling is presented for volumetric fast spin-echo (three-dimensional [3D] FSE) imaging. T 2 Shuffling reduces blurring and recovers many images at multiple T 2 contrasts from a single acquisition at clinically feasible scan times (6-7 min). The parallel imaging forward model is modified to account for temporal signal relaxation during the echo train. Scan efficiency is improved by acquiring data during the transient signal decay and by increasing echo train lengths without loss in signal-to-noise ratio (SNR). By (1) randomly shuffling the phase encode view ordering, (2) constraining the temporal signal evolution to a low-dimensional subspace, and (3) promoting spatio-temporal correlations through locally low rank regularization, a time series of virtual echo time images is recovered from a single scan. A convex formulation is presented that is robust to partial voluming and radiofrequency field inhomogeneity. Retrospective undersampling and in vivo scans confirm the increase in sharpness afforded by T 2 Shuffling. Multiple image contrasts are recovered and used to highlight pathology in pediatric patients. A proof-of-principle method is integrated into a clinical musculoskeletal imaging workflow. The proposed T 2 Shuffling method improves the diagnostic utility of 3D FSE by reducing blurring and producing multiple image contrasts from a single scan. Magn Reson Med 77:180-195, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A TEMPORAL MAP IN GEOSTATIONARY ORBIT: THE COVER ETCHING ON THE EchoStar XVI ARTIFACT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisberg, Joel M., E-mail: jweisber@carleton.edu; Paglen, Trevor, E-mail: trevor@paglen.com
Geostationary satellites are unique among orbital spacecraft in that they experience no appreciable atmospheric drag. After concluding their respective missions, geostationary spacecraft remain in orbit virtually in perpetuity. As such, they represent some of human civilization's longest lasting artifacts. With this in mind, the EchoStar XVI satellite, to be launched in fall 2012, will play host to a time capsule intended as a message for the deep future. Inspired in part by the Pioneer Plaque and Voyager Golden Records, the EchoStar XVI Artifact is a pair of gold-plated aluminum jackets housing a small silicon disk containing 100 photographs. The Covermore » Etching, the subject of this paper, is etched onto one of the two jackets. It is a temporal map consisting of a star chart, pulsar timings, and other information describing the epoch from which EchoStar XVI came. The pulsar sample consists of 13 rapidly rotating objects, 5 of which are especially stable, having spin periods <10 ms and extremely small spin-down rates. In this paper, we discuss our approach to the time map etched onto the cover and the scientific data shown on it, and we speculate on the uses that future scientists may have for its data. The other portions of the EchoStar XVI Artifact will be discussed elsewhere.« less
Single-shot turbo spin echo acquisition for in vivo cardiac diffusion MRI.
Edalati, Masoud; Lee, Gregory R; Hui Wang; Taylor, Michael D; Li, Yu Y
2016-08-01
Diffusion MRI offers the ability to noninvasively characterize the microstructure of myocardium tissue and detect disease related pathology in cardiovascular examination. This study investigates the feasibility of in vivo cardiac diffusion MRI under free-breathing condition. A high-speed imaging technique, correlation imaging, is used to enable single-shot turbo spin echo for free-breathing cardiac data acquisition. The obtained in vivo cardiac diffusion-weighted images illustrate robust image quality and minor geometry distortions. The resultant diffusion scalar maps show reliable quantitative values consistent with those previously published in the literature. It is demonstrated that this technique has the potential for in vivo free-breathing cardiac diffusion MRI.
Ben-Eliezer, Noam; Solomon, Eddy; Harel, Elad; Nevo, Nava; Frydman, Lucio
2012-12-01
An approach has been recently introduced for acquiring arbitrary 2D NMR spectra or images in a single scan, based on the use of frequency-swept RF pulses for the sequential excitation and acquisition of the spins response. This spatiotemporal-encoding (SPEN) approach enables a unique, voxel-by-voxel refocusing of all frequency shifts in the sample, for all instants throughout the data acquisition. The present study investigates the use of this full-refocusing aspect of SPEN-based imaging in the multi-shot MRI of objects, subject to sizable field inhomogeneities that complicate conventional imaging approaches. 2D MRI experiments were performed at 7 T on phantoms and on mice in vivo, focusing on imaging in proximity to metallic objects. Fully refocused SPEN-based spin echo imaging sequences were implemented, using both Cartesian and back-projection trajectories, and compared with k-space encoded spin echo imaging schemes collected on identical samples under equal bandwidths and acquisition timing conditions. In all cases assayed, the fully refocused spatiotemporally encoded experiments evidenced a ca. 50 % reduction in signal dephasing in the proximity of the metal, as compared to analogous results stemming from the k-space encoded spin echo counterparts. The results in this study suggest that SPEN-based acquisition schemes carry the potential to overcome strong field inhomogeneities, of the kind that currently preclude high-field, high-resolution tissue characterizations in the neighborhood of metallic implants.
NASA Astrophysics Data System (ADS)
Lundbom, Jesper; Heikkinen, Sami; Fielding, Barbara; Hakkarainen, Antti; Taskinen, Marja-Riitta; Lundbom, Nina
2009-11-01
AimThis study investigated the impact of fatty acid (FA) composition on the echo time behavior of triglyceride resonances in a clinical setting. The feasibility of 1H NMR spectroscopy to detect these resonances was also evaluated in human adipose tissue in vivo. MethodTen edible oils chosen to cover a wide spectrum of FA compositions were used as phantom material. The detailed FA composition and intrinsic proton spectra of the oils were characterized by gas chromatography and high-resolution 1H NMR spectroscopy (11.7 T), respectively. The detailed echo time behavior of the oils were subsequently measured by 1H NMR spectroscopy in a clinical scanner (1.5 T) using PRESS. The effect of temperature was investigated in five oils. ResultsThe olefinic (5.3 ppm) and diallylic (2.8 ppm) resonances exhibited distinct J-modulation patterns independent of oil FA composition. The methylene resonance (1.3 ppm) displayed an exponential decay, with the apparent T2 showing a weak positive correlation with oil unsaturation ( R = 0.628, P = 0.052), probably a result of changes in viscosity. For the methyl resonance (0.9 ppm), oils high in ω-3 FA displayed a markedly different J-modulation pattern compared to non-ω-3 oils. The characteristic J-modulation of the ω-3 methyl group could be attributed to the phase behavior of the ω-3 methyl triplet signal (all triplet lines in-phase at TE of 135 ms), a result of the ω-3 methyl end forming a first order spin system. The ω-3 methyl outer triplet line at 1.08 ppm of the TE = 140 ms spectrum was found to be useful for determining the ω-3 content of the oils ( R = 0.999, standard error of estimate (SE) 0.80). The olefinic and diallylic proton resonance (measured at TE = 50 ms) areas correlated with the olefinic ( R = 0.993, SE 0.33) and diallylic ( R = 0.997, SE 0.19) proton contents calculated from the GC data. Information derived from long echo time spectra (TE = 200) demonstrated good correlations to GC data and showed no change with increasing temperature (and T2). In 1H NMR spectra (1.5 T) of adipose tissue in five healthy subjects, the analytically important olefinic and diallylic resonances were clearly resolved with a coefficient of variation of 1.6% and 8.4%, respectively, for repeated measurements. The characteristic phase behavior of the ω-3 methyl outer triplet line at 1.08 ppm could also be detected at very long echo times (470 and 540 ms). ConclusionFatty acid composition has an impact on the echo time behavior of triglyceride resonances. Long TE spectra can resolve ω-3 FA in adipose tissue in vivo. These findings will benefit long TE studies of tissue lipids.
NASA Astrophysics Data System (ADS)
Shvyd'ko, Yuri
2016-02-01
X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.
Lankford, Christopher L; Does, Mark D
2018-02-01
Quantitative MRI may require correcting for nuisance parameters which can or must be constrained to independently measured or assumed values. The noise and/or bias in these constraints propagate to fitted parameters. For example, the case of refocusing pulse flip angle constraint in multiple spin echo T 2 mapping is explored. An analytical expression for the mean-squared error of a parameter of interest was derived as a function of the accuracy and precision of an independent estimate of a nuisance parameter. The expression was validated by simulations and then used to evaluate the effects of flip angle (θ) constraint on the accuracy and precision of T⁁2 for a variety of multi-echo T 2 mapping protocols. Constraining θ improved T⁁2 precision when the θ-map signal-to-noise ratio was greater than approximately one-half that of the first spin echo image. For many practical scenarios, constrained fitting was calculated to reduce not just the variance but the full mean-squared error of T⁁2, for bias in θ⁁≲6%. The analytical expression derived in this work can be applied to inform experimental design in quantitative MRI. The example application to T 2 mapping provided specific cases, depending on θ⁁ accuracy and precision, in which θ⁁ measurement and constraint would be beneficial to T⁁2 variance or mean-squared error. Magn Reson Med 79:673-682, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Li, Yan; Larson, Peder; Chen, Albert P.; Lupo, Janine M.; Ozhinsky, Eugene; Kelley, Douglas; Chang, Susan M.; Nelson, Sarah J.
2014-01-01
Purpose The purpose of this study was to evaluate the feasibility of using a short echo time, 3D H-1 magnetic resonance spectroscopic imaging (MRSI) sequence at 7T to assess the metabolic signature of lesions for patients with glioma. Materials and Methods 29 patients with glioma were studied. MRSI data were obtained using CHESS water suppression, spectrally-selective adiabatic inversion-recovery pulses and automatically prescribed outer-volume-suppression for lipid suppression, and spin echo slice selection (TE=30ms). An interleaved flyback echo-planar trajectory was applied to shorten the total acquisition time (~10min). Relative metabolite ratios were estimated in tumor and in normal-appearing white and gray matter (NAWM, GM). Results Levels of glutamine, myo-inositol, glycine and glutathione relative to total creatine (tCr) were significantly increased in the T2 lesions for all tumor grades compared to those in the NAWM (p < 0.05), while N-acetyl aspartate to tCr were significantly decreased (p < 0.05). In grade 2 gliomas, level of total choline-containing-compounds to tCr was significantly increased (p = 0.0137), while glutamate to tCr was significantly reduced (p = 0.0012). Conclusion The improved sensitivity of MRSI and the increased number of metabolites that can be evaluated using 7T MR scanners is of interest for evaluating patients with glioma. This study has successfully demonstrated the application of a short-echo spin-echo MRSI sequence to detect characteristic differences in regions of tumor versus normal appearing brain. PMID:24935758
Dual-pathway multi-echo sequence for simultaneous frequency and T2 mapping
NASA Astrophysics Data System (ADS)
Cheng, Cheng-Chieh; Mei, Chang-Sheng; Duryea, Jeffrey; Chung, Hsiao-Wen; Chao, Tzu-Cheng; Panych, Lawrence P.; Madore, Bruno
2016-04-01
Purpose: To present a dual-pathway multi-echo steady state sequence and reconstruction algorithm to capture T2, T2∗ and field map information. Methods: Typically, pulse sequences based on spin echoes are needed for T2 mapping while gradient echoes are needed for field mapping, making it difficult to jointly acquire both types of information. A dual-pathway multi-echo pulse sequence is employed here to generate T2 and field maps from the same acquired data. The approach might be used, for example, to obtain both thermometry and tissue damage information during thermal therapies, or susceptibility and T2 information from a same head scan, or to generate bonus T2 maps during a knee scan. Results: Quantitative T2, T2∗ and field maps were generated in gel phantoms, ex vivo bovine muscle, and twelve volunteers. T2 results were validated against a spin-echo reference standard: A linear regression based on ROI analysis in phantoms provided close agreement (slope/R2 = 0.99/0.998). A pixel-wise in vivo Bland-Altman analysis of R2 = 1/T2 showed a bias of 0.034 Hz (about 0.3%), as averaged over four volunteers. Ex vivo results, with and without motion, suggested that tissue damage detection based on T2 rather than temperature-dose measurements might prove more robust to motion. Conclusion: T2, T2∗ and field maps were obtained simultaneously, from the same datasets, in thermometry, susceptibility-weighted imaging and knee-imaging contexts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wonneberger, Uta, E-mail: uta.wonneberger@charite.d; Schnackenburg, Bernhard, E-mail: bernhard.schnackenburg@philips.co; Streitparth, Florian, E-mail: florian.streitparth@charite.de
2010-04-15
In this article, we study in vitro evaluation of needle artefacts and image quality for musculoskeletal laser-interventions in an open high-field magnetic resonance imaging (MRI) scanner at 1.0T with vertical field orientation. Five commercially available MRI-compatible puncture needles were assessed based on artefact characteristics in a CuSO4 phantom (0.1%) and in human cadaveric lumbar spines. First, six different interventional sequences were evaluated with varying needle orientation to the main magnetic field B0 (0{sup o} to 90{sup o}) in a sequence test. Artefact width, needle-tip error, and contrast-to-noise ratio (CNR) were calculated. Second, a gradient-echo sequence used for thermometric monitoring wasmore » assessed and in varying echo times, artefact width, tip error, and signal-to-noise ratio (SNR) were measured. Artefact width and needle-tip error correlated with needle material, instrument orientation to B0, and sequence type. Fast spin-echo sequences produced the smallest needle artefacts for all needles, except for the carbon fibre needle (width <3.5 mm, tip error <2 mm) at 45{sup o} to B0. Overall, the proton density-weighted spin-echo sequences had the best CNR (CNR{sub Muscle/Needle} >16.8). Concerning the thermometric gradient echo sequence, artefacts remained <5 mm, and the SNR reached its maximum at an echo time of 15 ms. If needle materials and sequences are accordingly combined, guidance and monitoring of musculoskeletal laser interventions may be feasible in a vertical magnetic field at 1.0T.« less
NASA Astrophysics Data System (ADS)
Rose, Brendon Charles
This thesis is focused on the characterization of highly coherent defects in both silicon and diamond, particularly in the context of quantum memory applications. The results are organized into three parts based on the spin system: phosphorus donor electron spins in silicon, negatively charged nitrogen vacancy color centers in diamond (NV-), and neutrally charged silicon vacancy color centers in diamond (SiV0). The first part on phosphorus donor electron spins presents the first realization of strong coupling with spins in silicon. To achieve this, the silicon crystal was made highly pure and highly isotopically enriched so that the ensemble dephasing time, T2*, was long (10 micros). Additionally, the use of a 3D resonator aided in realizing uniform coupling, allowing for high fidelity spin ensemble manipulation. These two properties have eluded past implementations of strongly coupled spin ensembles and have been the limiting factor in storing and retrieving quantum information. Second, we characterize the spin properties of the NV- color center in diamond in a large magnetic field. We observe that the electron spin echo envelope modulation originating from the central 14N nuclear spin is much stronger at large fields and that the optically induced spin polarization exhibits a strong orientation dependence that cannot be explained by the existing model for the NV- optical cycle, we develop a modification of the existing model that reproduces the data in a large magnetic field. In the third part we perform characterization and stabilization of a new color center in diamond, SiV0, and find that it has attractive, highly sought-after properties for use as a quantum memory in a quantum repeater scheme. We demonstrate a new approach to the rational design of new color centers by engineering the Fermi level of the host material. The spin properties were characterized in electron spin resonance, revealing long spin relaxation and spin coherence times at cryogenic temperature. Additionally, we observe that the optical emission is highly coherent, predominately into a narrow zero phonon line that is stable in frequency. The combination of coherent optical and spin degrees of freedom has eluded all previous solid state defects.
Zausinger, Stefan; Yousry, Indra; Brueckmann, Hartmut; Schmid-Elsaesser, Robert; Tonn, Joerg-Christian
2006-02-01
The indications for resection of cavernous malformations (CMs) of the brainstem include neurological deficits, (recurrent) hemorrhage, and surgically accessible location. In particular, knowledge of the thickness of the parenchymal layer and of the CM's spatial relation to nuclei, tracts, cranial nerves, and vessels is critical for planning the surgical approach. We reviewed the operative treatment of 13 patients with 14 brainstem CMs, with special regard to refined three-dimensional (3D)-constructive interference in steady-state (CISS) magnetic resonance imaging (MRI). Patients were evaluated neurologically and by conventional spin-echo/fast spin-echo and 3D-CISS MRI. Surgery was performed with the use of microsurgical techniques and neurophysiological monitoring. Eleven CMs were located in the pons/pontomedullary region; 10 of the 11 were operated on via the lateral suboccipital approach. Three CMs were located near the floor of the fourth ventricle and operated on via the median suboccipital approach, with total removal of all CMs. Results were excellent or good in 10 patients; one patient transiently required tracheostomy, and two patients developed new hemipareses/ataxia with subsequent improvement. Not only did 3D-CISS sequences allow improved judgment of the thickness of the parenchymal layer over the lesion compared with spin-echo/fast spin-echo MRI, but 3D-CISS imaging also proved particularly superior in demonstrating the spatial relation of the lesion to fairly "safe" entry zones (e.g., between the trigeminal nerve and the VIIth and VIIIth nerve groups) by displaying the cranial nerves and vessels within the cerebellopontine cistern more precisely. Surgical treatment of brainstem CMs is recommended in symptomatic patients. Especially in patients with lesions situated ventrolaterally, the 3D-CISS sequence seems to be a valuable method for identifying the CM's relation to safe entry zones, thereby facilitating the surgical approach.
Xie, Yibin; Yang, Qi; Xie, Guoxi; Pang, Jianing; Fan, Zhaoyang; Li, Debiao
2016-06-01
The purpose of this study was to develop a three-dimensional black blood imaging method for simultaneously evaluating the carotid and intracranial arterial vessel walls with high spatial resolution and excellent blood suppression with and without contrast enhancement. The delay alternating with nutation for tailored excitation (DANTE) preparation module was incorporated into three-dimensional variable flip angle turbo spin echo (SPACE) sequence to improve blood signal suppression. Simulations and phantom studies were performed to quantify image contrast variations induced by DANTE. DANTE-SPACE, SPACE, and two-dimensional turbo spin echo were compared for apparent signal-to-noise ratio, contrast-to-noise ratio, and morphometric measurements in 14 healthy subjects. Preliminary clinical validation was performed in six symptomatic patients. Apparent residual luminal blood was observed in five (pre-contrast) and nine (post-contrast) subjects with SPACE and only two (post-contrast) subjects with DANTE-SPACE. DANTE-SPACE showed 31% (pre-contrast) and 100% (post-contrast) improvement in wall-to-blood contrast-to-noise ratio over SPACE. Vessel wall area measured from SPACE was significantly larger than that from DANTE-SPACE due to possible residual blood signal contamination. DANTE-SPACE showed the potential to detect vessel wall dissection and identify plaque components in patients. DANTE-SPACE significantly improved arterial and venous blood suppression compared with SPACE. Simultaneous high-resolution carotid and intracranial vessel wall imaging to potentially identify plaque components was feasible with a scan time under 6 min. Magn Reson Med 75:2286-2294, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Gousse, A E; Barbaric, Z L; Safir, M H; Madjar, S; Marumoto, A K; Raz, S
2000-11-01
We assessed the merit of dynamic half Fourier acquisition, single shot turbo spin-echo sequence T2-weighted magnetic resonance imaging (MRI) for evaluating pelvic organ prolapse and all other female pelvic pathology by prospectively correlating clinical with imaging findings. From September 1997 to April 1998, 100 consecutive women 23 to 88 years old with (65) and without (35) pelvic organ prolapse underwent half Fourier acquisition, single shot turbo spin-echo sequence dynamic pelvic T2-weighted MRI at our institution using a 1.5 Tesla magnet with phased array coils. Mid sagittal and parasagittal views with the patient supine, relaxed and straining were obtained using no pre-examination preparation or instrumentation. We evaluated the anterior vaginal wall, bladder, urethra, posterior vaginal wall, rectum, pelvic floor musculature, perineum, uterus, vaginal cuff, ovaries, ureters and intraperitoneal organs for all pathological conditions, including pelvic prolapse. Patients underwent a prospective physical examination performed by a female urologist, and an experienced radiologist blinded to pre-imaging clinical findings interpreted all studies. Physical examination, MRI and intraoperative findings were statistically correlated. Total image acquisition time was 2.5 minutes, room time 10 minutes and cost American $540. Half Fourier acquisition, single shot turbo spin-echo T2-weighted MRI revealed pathological entities other than pelvic prolapse in 55 cases, including uterine fibroids in 11, ovarian cysts in 9, bilateral ureteronephrosis in 3, nabothian cyst in 7, Bartholin's gland cyst in 4, urethral diverticulum in 3, polytetrafluoroethylene graft abscess in 3, bladder diverticulum in 2, sacral spinal abnormalities in 2, bladder tumor in 1, sigmoid diverticulosis in 1 and other in 9. Intraoperative findings were considered the gold standard against which physical examination and MRI were compared. Using these criteria the sensitivity, specificity and positive predictive value of MRI were 100%, 83% and 97% for cystocele; 100%, 75% and 94% for urethrocele; 100%, 54% and 33% for vaginal vault prolapse; 83%, 100% and 100% for uterine prolapse; 87%, 80% and 91% for enterocele; and 76%, 50% and 96% for rectocele. Dynamic half Fourier acquisition, single shot turbo spin-echo MRI appears to be an important adjunct in the comprehensive evaluation of the female pelvis. Except for rectocele, pelvic floor prolapse is accurately staged and pelvic organ pathology reliably detected. The technique is rapid, noninvasive and cost-effective, and it allows the clinician to visualize the whole pelvis using a single dynamic study that provides superb anatomical detail.
Car, B; Veissier, L; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T
2018-05-11
In Er^{3+}:Y_{2}SiO_{5}, we demonstrate the selective optical addressing of the ^{89}Y^{3+} nuclear spins through their superhyperfine coupling with the Er^{3+} electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y^{3+} nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.
NASA Astrophysics Data System (ADS)
Car, B.; Veissier, L.; Louchet-Chauvet, A.; Le Gouët, J.-L.; Chanelière, T.
2018-05-01
In Er3 +:Y2SiO5 , we demonstrate the selective optical addressing of the
Viessmann, Olivia; Li, Linqing; Benjamin, Philip
2016-01-01
Purpose To optimize intracranial vessel wall imaging (VWI) at 7T for sharp wall depiction and high boundary contrast. Methods A variable flip angle turbo spin echo scheme (SPACE) was optimized for VWI. SPACE provides black‐blood contrast, but has less crushing effect on cerebrospinal fluid (CSF). However, a delay alternating with nutation for tailored excitation (DANTE) preparation suppresses the signal from slowly moving spins of a few mm per second. Therefore, we optimized a DANTE‐preparation module for 7T. Signal‐to‐noise ratio (SNR), contrast‐to‐noise ratio (CNR), and signal ratio for vessel wall, CSF, and lumen were calculated for SPACE and DANTE‐SPACE in 11 volunteers at the middle cerebral artery (MCA). An exemplar MCA stenosis patient was scanned with DANTE‐SPACE. Results The 7T‐optimized SPACE sequence improved the vessel wall point‐spread function by 17%. The CNR between the wall and CSF was doubled (12.2 versus 5.6) for the DANTE‐SPACE scans compared with the unprepared SPACE. This increase was significant in the right hemisphere (P = 0.016), but not in the left (P = 0.090). The CNR between wall and lumen was halved, but remained at a high value (24.9 versus 56.5). Conclusion The optimized SPACE sequence improves VWI at 7T. Additional DANTE preparation increases the contrast between the wall and CSF. Increased outer boundary contrast comes at the cost of reduced inner boundary contrast. Magn Reson Med 77:655–663, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26890988
Viessmann, Olivia; Li, Linqing; Benjamin, Philip; Jezzard, Peter
2017-02-01
To optimize intracranial vessel wall imaging (VWI) at 7T for sharp wall depiction and high boundary contrast. A variable flip angle turbo spin echo scheme (SPACE) was optimized for VWI. SPACE provides black-blood contrast, but has less crushing effect on cerebrospinal fluid (CSF). However, a delay alternating with nutation for tailored excitation (DANTE) preparation suppresses the signal from slowly moving spins of a few mm per second. Therefore, we optimized a DANTE-preparation module for 7T. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal ratio for vessel wall, CSF, and lumen were calculated for SPACE and DANTE-SPACE in 11 volunteers at the middle cerebral artery (MCA). An exemplar MCA stenosis patient was scanned with DANTE-SPACE. The 7T-optimized SPACE sequence improved the vessel wall point-spread function by 17%. The CNR between the wall and CSF was doubled (12.2 versus 5.6) for the DANTE-SPACE scans compared with the unprepared SPACE. This increase was significant in the right hemisphere (P = 0.016), but not in the left (P = 0.090). The CNR between wall and lumen was halved, but remained at a high value (24.9 versus 56.5). The optimized SPACE sequence improves VWI at 7T. Additional DANTE preparation increases the contrast between the wall and CSF. Increased outer boundary contrast comes at the cost of reduced inner boundary contrast. Magn Reson Med 77:655-663, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Liu, Ho-Ling; Chang, Ting-Ting; Yan, Feng-Xian; Li, Cheng-He; Lin, Yu-Shi; Wong, Alex M
2015-06-01
The forward volumetric transfer constant (K(trans)), a physiological parameter extracted from dynamic contrast-enhanced (DCE) MRI, is weighted by vessel permeability and tissue blood flow. The permeability × surface area product per unit mass of tissue (PS) in brain tumors was estimated in this study by combining the blood flow obtained through pseudo-continuous arterial spin labeling (PCASL) and K(trans) obtained through DCE MRI. An analytical analysis and a numerical simulation were conducted to understand how errors in the flow and K(trans) estimates would propagate to the resulting PS. Fourteen pediatric patients with brain tumors were scanned on a clinical 3-T MRI scanner. PCASL perfusion imaging was performed using a three-dimensional (3D) fast-spin-echo readout module to determine blood flow. DCE imaging was performed using a 3D spoiled gradient-echo sequence, and the K(trans) map was obtained with the extended Tofts model. The numerical analysis demonstrated that the uncertainty of PS was predominantly dependent on that of K(trans) and was relatively insensitive to the flow. The average PS values of the whole tumors ranged from 0.006 to 0.217 min(-1), with a mean of 0.050 min(-1) among the patients. The mean K(trans) value was 18% lower than the PS value, with a maximum discrepancy of 25%. When the parametric maps were compared on a voxel-by-voxel basis, the discrepancies between PS and K(trans) appeared to be heterogeneous within the tumors. The PS values could be more than two-fold higher than the K(trans) values for voxels with high K(trans) levels. This study proposes a method that is easy to implement in clinical practice and has the potential to improve the quantification of the microvascular properties of brain tumors. Copyright © 2015 John Wiley & Sons, Ltd.
Bagnato, Francesca; Hametner, Simon; Pennell, David; Dortch, Richard; Dula, Adrienne N; Pawate, Siddharama; Smith, Seth A; Lassmann, Hans; Gore, John C; Welch, Edward B
2015-01-01
The high value of the specific absorption rate (SAR) of radio-frequency (RF) energy arising from the series of RF refocusing pulses in T2-weighted (T2-w) turbo spin echo (TSE) MRI hampers its clinical application at 7.0 Tesla (7T). T2-w gradient and spin echo (GRASE) uses the speed from gradient refocusing in combination with the chemical-shift/static magnetic field (B0) inhomogeneity insensitivity from spin-echo refocusing to acquire T2-w images with a limited number of refocusing RF pulses, thus reducing SAR. To investigate whether low SAR T2-w GRASE could replace T2-w TSE in detecting white matter (WM) disease in MS patients imaged at 7T. The .7 mm3 isotropic T2-w TSE and T2-w GRASE images with variable echo times (TEs) and echo planar imaging (EPI) factors were obtained on a 7T scanner from postmortem samples of MS brains. These samples were derived from brains of 3 female MS patients. WM lesions (WM-Ls) and normal-appearing WM (NAWM) signal intensity, WM-Ls/NAWM contrast-to-noise ratio (CNR) and MRI/myelin staining sections comparisons were obtained. GRASE sequences with EPI factor/TE = 3/50 and 3/75 ms were comparable to the SE technique for measures of CNR in WM-Ls and NAWM and for detection of WM-Ls. In all sequences, however, identification of areas with remyelination, Wallerian degeneration, and gray matter demyelination, as depicted by myelin staining, was not possible. T2-w GRASE images may replace T2-w TSE for clinical use. However, even at 7T, both sequences fail in detecting and characterizing MS disease beyond visible WM-Ls. Copyright © 2015 by the American Society of Neuroimaging.
Development of a MPPC-based prototype gantry for future MRI-PET scanners
NASA Astrophysics Data System (ADS)
Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Ohshima, T.; Taya, T.; Yamamoto, S.
2014-12-01
We have developed a high spatial resolution, compact Positron Emission Tomography (PET) module designed for small animals and intended for use in magnetic resonance imaging (MRI) systems. This module consists of large-area, 4 × 4 ch MPPC arrays (S11830-3344MF; Hamamatsu Photonics K.K.) optically coupled with Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) scintillators fabricated into 16 × 16 matrices of 0.5 × 0.5 mm2 pixels. We set the temperature sensor (LM73CIMK-0; National Semiconductor Corp.) at the rear of the MPPC acceptance surface, and apply optimum voltage to maintain the gain. The eight MPPC-based PET modules and coincidence circuits were assembled into a gantry arranged in a ring 90 mm in diameter to form the MPPC-based PET system. We have developed two types PET gantry: one made of non-magnetic metal and the other made of acrylonitrile butadiene styrene (ABS) resins. The PET gantry was positioned around the RF coil of the 4.7 T MRI system. We took an image of a point }22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure the interference between the MPPC-based PET and MRI. The spatial resolution of PET imaging in a transaxial plane of about 1 mm (FWHM) was achieved in all cases. Operating with PET made of ABS has no effect on MR images, while operating with PET made of non-magnetic metal has a significant detrimental effect on MR images. This paper describes our quantitative evaluations of PET images and MR images, and presents a more advanced version of the gantry for future MRI/DOI-PET systems.
Theory and optical design of x-ray echo spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvyd'ko, Yuri
X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less
Theory and optical design of x-ray echo spectrometers
Shvyd'ko, Yuri
2017-08-02
X-ray echo spectroscopy, a space-domain counterpart of neutron spin echo, is a recently proposed inelastic x-ray scattering (IXS) technique. X-ray echo spectroscopy relies on imaging IXS spectra and does not require x-ray monochromatization. Due to this, the echo-type IXS spectrometers are broadband, and thus have a potential to simultaneously provide dramatically increased signal strength, reduced measurement times, and higher resolution compared to the traditional narrow-band scanning-type IXS spectrometers. The theory of x-ray echo spectrometers presented earlier [Yu. Shvyd'ko, Phys. Rev. Lett. 116, 080801 (2016)] is developed here further with a focus on questions of practical importance, which could facilitate opticalmore » design and assessment of the feasibility and performance of the echo spectrometers. Among others, the following questions are addressed: spectral resolution, refocusing condition, echo spectrometer tolerances, refocusing condition adjustment, effective beam size on the sample, spectral window of imaging and scanning range, impact of the secondary source size on the spectral resolution, angular dispersive optics, focusing and collimating optics, and detector's spatial resolution. In conclusion, examples of optical designs and characteristics of echo spectrometers with 1-meV and 0.1-meV resolutions are presented.« less
Note: A new design for a low-temperature high-intensity helium beam source
NASA Astrophysics Data System (ADS)
Lechner, B. A. J.; Hedgeland, H.; Allison, W.; Ellis, J.; Jardine, A. P.
2013-02-01
A high-intensity supersonic beam source is a key component of any atom scattering instrument, affecting the sensitivity and energy resolution of the experiment. We present a new design for a source which can operate at temperatures as low as 11.8 K, corresponding to a beam energy of 2.5 meV. The new source improves the resolution of the Cambridge helium spin-echo spectrometer by a factor of 5.5, thus extending the accessible timescales into the nanosecond range. We describe the design of the new source and discuss experiments characterizing its performance. Spin-echo measurements of benzene/Cu(100) illustrate its merit in the study of a typical slow-moving molecular adsorbate species.
Zhang, Kai; Nusran, N. M.; Slezak, B. R.; ...
2016-05-17
While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically bymore » careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (~10) operations. This occurs in spite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. In conclusion, we have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Nusran, N. M.; Slezak, B. R.
While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically bymore » careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (~10) operations. This occurs in spite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. In conclusion, we have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.« less
Okazaki, M; Kuwata, K; Miki, Y; Shiga, S; Shiga, T
1985-10-01
Electron spin lattice relaxation times (T1) and the phase memory times (Tm) were obtained for the synthetic melanin system from 3-hydroxytyrosine (dopa) by means of electron spin echo spectroscopy at 77 degrees K. Saturation behavior of the ESR spectra of melanins in melanin-containing tissue and of the synthetic melanin was also determined at the same temperature. The spin lattice relaxation time and the spectral diffusion time of the synthetic melanin are very long (4.3 ms and 101 microseconds, respectively, in the solid state), and the ESR signal saturates readily at low microwave powers. On the other hand, ESR spectra of natural melanins from the tissues chosen for this study, as well as those of synthetic melanins which contain Fe3+ of g = 4.3 and Mn2+ of g = 2, are relatively difficult to saturate compared with samples without such metal ions. These results show clearly that a large part of those two metal ions in sites responsible for the ESR spectral components with these particular g values are coordinated to melanin in melanin-containing tissue, and modify the magnetic relaxation behavior of the melanin. Accumulations of these metal ions in melanins are different from system to system, and they increase in the order: hair (black), retina and choroid (brown), malignant melanoma of eye and skin, and lentigo and nevus of skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yap, Yung Szen, E-mail: yungszen@utm.my; Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor; Tabuchi, Yutaka
2015-06-15
We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, wemore » observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously—a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.« less
gr-MRI: A software package for magnetic resonance imaging using software defined radios
NASA Astrophysics Data System (ADS)
Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.
2016-09-01
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.
Evolution of multiple quantum coherences with scaled dipolar Hamiltonian
NASA Astrophysics Data System (ADS)
Sánchez, Claudia M.; Buljubasich, Lisandro; Pastawski, Horacio M.; Chattah, Ana K.
2017-08-01
In this article, we introduce a pulse sequence which allows the monitoring of multiple quantum coherences distribution of correlated spin states developed with scaled dipolar Hamiltonian. The pulse sequence is a modification of our previous Proportionally Refocused Loschmidt echo (PRL echo) with phase increment, in order to verify the accuracy of the weighted coherent quantum dynamics. The experiments were carried out with different scaling factors to analyze the evolution of the total magnetization, the time dependence of the multiple quantum coherence orders, and the development of correlated spins clusters. In all cases, a strong dependence between the evolution rate and the weighting factor is observed. Remarkably, all the curves appeared overlapped in a single trend when plotted against the self-time, a new time scale that includes the scaling factor into the evolution time. In other words, the spin system displayed always the same quantum evolution, slowed down as the scaling factor decreases, confirming the high performance of the new pulse sequence.
X-ray echo spectroscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Shvyd'ko, Yuri V.
2016-09-01
X-ray echo spectroscopy, a counterpart of neutron spin-echo, was recently introduced [1] to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-meV and 0.02-meV ultra-high-resolution IXS applications (resolving power > 10^8) with broadband 5-13 meV dispersing systems will be presented featuring more than 1000-fold signal enhancement. The technique is general, applicable in different photon frequency domains. [1.] Yu. Shvyd'ko, Phys. Rev. Lett. 116, accepted (2016), arXiv:1511.01526.
Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot
NASA Astrophysics Data System (ADS)
Kawakami, Erika
2015-03-01
Electron spins in Si/SiGe quantum dots are one of the most promising candidates for a quantum bit for their potential to scale up and their long dephasing time. We realized coherent control of single electron spin in a single quantum dot (QD) defined in a Si/SiGe 2D electron gas. Spin rotations are achieved by applying microwave excitation to one of the gates, which oscillates the electron wave function back and forth in the gradient field produced by cobalt micromagnets fabricated near the dot. The electron spin is read out in single-shot mode via spin-to-charge conversion and a QD charge sensor. In earlier work, both the fidelity of single-spin rotations and the spin echo decay time were limited by a small splitting of the lowest two valleys. By changing the direction and magnitude of the external magnetic field as well as the gate voltages that define the dot potential, we were able to increase the valley splitting and also the difference in Zeeman splittings associated with these two valleys. This has resulted in considerable improvements in the gate fidelity and spin echo decay times. Thanks to the long intrinsic dephasing time T2* = 900 ns and Rabi frequency of 1.4 MHz, we now obtain an average single qubit gate fidelity of an electron spin in a Si/SiGe quantum dot of 99 percent, measured via randomized benchmarking. The dephasing time is extended to 70 us for the Hahn echo and up to 400 us with CPMG80. From the dynamical decoupling data, we extract the noise spectral density in the range of 30 kHz-3 MHz. We will discuss the mechanism that induces this noise and is responsible for decoherence. In parallel, we also realized electron spin resonance and coherent single-spin control by second harmonic generation, which means we can drive an electron spin at half the Larmor frequency. Finally, we observe not only single-spin transitions but also transitions whereby both the spin and the valley state are flipped. Altogether, these measurements have significantly increased our understanding and raised the prospects of spin qubits in Si/SiGe quantum dots. This work has been done in collaboration with T.M. J. Jullien, P. Scarlino, V.V. Dobrovitski, D.R. Ward, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen. This work was supported in part by the Army Research Office (ARO) (W911NF-12-0607), the Foundation for Fundamental Research on Matter (FOM) and the European Research Council (ERC). Development and maintenance of the growth facilities used for fabricating samples was supported by the Department of Energy (DOE) (DE-FG02-03ER46028). E.K. was supported by a fellowship from the Nakajima Foundation. This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison.
Hirata, Kenichiro; Nakaura, Takeshi; Okuaki, Tomoyuki; Tsuda, Noriko; Taguchi, Narumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki
2018-01-01
We compared the efficacy of three-dimensional (3D) isotropic T2-weighted fast spin-echo imaging using a 3D hybrid profile order technique with a single-breath-hold (3D-Hybrid BH) with a two-dimensional (2D) T2-weighted fast spin-echo conventional respiratory-gated (2D-Conventional RG) technique for visualising small liver lesions. This study was approved by our institutional review board. The requirement to obtain written informed consent was waived. Fifty patients with small (≤15mm) hepatocellular carcinomas (HCC) (n=26), or benign cysts (n=24), had undergone hepatic MRI including both 2D-Conventional RG and 3D-Hybrid BH. We calculated the signal-to-noise ratio (SNR) and tumour-to-liver contrast (TLC). The diagnostic performance of the two protocols was analysed. The image acquisition time was 89% shorter with the 3D-Hybrid BH than with 2D-Conventional RG. There was no significant difference in the SNR between the two protocols. The area under the curve (AUC) of the TLC was significantly higher on 3D-Hybrid BH than on 2D-Conventional RG. The 3D-Hybrid BH sequence significantly improved diagnostic performance for small liver lesions with a shorter image acquisition time without sacrificing accuracy. Copyright © 2017. Published by Elsevier B.V.
Magnusson, P; Bäck, S A; Olsson, L E
1999-11-01
MR image nonuniformity can vary significantly with the spin-echo pulse sequence repetition time. When MR images with different nonuniformity shapes are used in a T1-calculation the resulting T1-image becomes nonuniform. As shown in this work the uniformity TR-dependence of the spin-echo pulse sequence is a critical property for T1 measurements in general and for ferrous sulfate dosimeter gel (FeGel) applications in particular. The purpose was to study the characteristics of the MR image plane nonuniformity in FeGel evaluation. This included studies of the possibility of decreasing nonuniformities by selecting uniformity optimized repetition times, studies of the transmitted and received RF-fields and studies of the effectiveness of the correction methods background subtraction and quotient correction. A pronounced MR image nonuniformity variation with repetition and T1 relaxation time was observed, and was found to originate from nonuniform RF-transmission in combination with the inherent differences in T1 relaxation for different repetition times. The T1 calculation itself, the uniformity optimized repetition times, nor none of the correction methods studied could sufficiently correct the nonuniformities observed in the T1 images. The nonuniformities were found to vary considerably less with inversion time for the inversion-recovery pulse sequence, than with repetition time for the spin-echo pulse sequence, resulting in considerably lower T1 image nonuniformity levels.
Seifi, Payam; Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.
2011-01-01
Purpose: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors’ aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique.Methods: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom.Results: For the phantom used in this study, transverse relaxation (T2e) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T2e images.Conclusions: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique. PMID:21815379
NASA Astrophysics Data System (ADS)
Larson, Peder E. Z.; Kerr, Adam B.; Leon Swisher, Christine; Pauly, John M.; Vigneron, Daniel B.
2012-12-01
In this work, we present a new MR spectroscopy approach for directly observing nuclear spins that undergo exchange, metabolic conversion, or, generally, any frequency shift during a mixing time. Unlike conventional approaches to observe these processes, such as exchange spectroscopy (EXSY), this rapid approach requires only a single encoding step and thus is readily applicable to hyperpolarized MR in which the magnetization is not replenished after T1 decay and RF excitations. This method is based on stimulated-echoes and uses phase-sensitive detection in conjunction with precisely chosen echo times in order to separate spins generated during the mixing time from those present prior to mixing. We are calling the method Metabolic Activity Decomposition Stimulated-echo Acquisition Mode or MAD-STEAM. We have validated this approach as well as applied it in vivo to normal mice and a transgenic prostate cancer mouse model for observing pyruvate-lactate conversion, which has been shown to be elevated in numerous tumor types. In this application, it provides an improved measure of cellular metabolism by separating [1-13C]-lactate produced in tissue by metabolic conversion from [1-13C]-lactate that has flowed into the tissue or is in the blood. Generally, MAD-STEAM can be applied to any system in which spins undergo a frequency shift.
Pseudo Steady-State Free Precession for MR-Fingerprinting.
Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen
2017-03-01
This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
The Effect of Concomitant Fields in Fast Spin Echo Acquisition on Asymmetric MRI Gradient Systems
Tao, Shengzhen; Weavers, Paul T.; Trzasko, Joshua D.; Huston, John; Shu, Yunhong; Gray, Erin M.; Foo, Thomas K.F.; Bernstein, Matt A.
2017-01-01
Purpose To investigate the effect of the asymmetric gradient concomitant fields (CF) with zeroth and first-order spatial dependence on fast/turbo spin-echo acquisitions, and to demonstrate the effectiveness of their real-time compensation. Methods After briefly reviewing the CF produced by asymmetric gradients, the effects of the additional zeroth and first-order CFs on these systems are investigated using extended-phase graph simulations. Phantom and in vivo experiments are performed to corroborate the simulation. Experiments are performed before and after the real-time compensations using frequency tracking and gradient pre-emphasis to demonstrate their effectiveness in correcting the additional CFs. The interaction between the CFs and prescan-based correction to compensate for eddy currents is also investigated. Results It is demonstrated that, unlike the second-order CFs on conventional gradients, the additional zeroth/first-order CFs on asymmetric gradients cause substantial signal loss and dark banding in fast spin-echo acquisitions within a typical brain-scan field of view. They can confound the prescan correction for eddy currents and degrade image quality. Performing real-time compensation successfully eliminates the artifacts. Conclusions We demonstrate that the zeroth/first-order CFs specific to asymmetric gradients can cause substantial artifacts, including signal loss and dark bands for brain imaging. These effects can be corrected using real-time compensation. PMID:28643408
A 2D spiral turbo-spin-echo technique.
Li, Zhiqiang; Karis, John P; Pipe, James G
2018-03-09
2D turbo-spin-echo (TSE) is widely used in the clinic for neuroimaging. However, the long refocusing radiofrequency pulse train leads to high specific absorption rate (SAR) and alters the contrast compared to conventional spin-echo. The purpose of this work is to develop a robust 2D spiral TSE technique for fast T 2 -weighted imaging with low SAR and improved contrast. A spiral-in/out readout is incorporated into 2D TSE to fully take advantage of the acquisition efficiency of spiral sampling while avoiding potential off-resonance-related artifacts compared to a typical spiral-out readout. A double encoding strategy and a signal demodulation method are proposed to mitigate the artifacts because of the T 2 -decay-induced signal variation. An adapted prescan phase correction as well as a concomitant phase compensation technique are implemented to minimize the phase errors. Phantom data demonstrate the efficacy of the proposed double encoding/signal demodulation, as well as the prescan phase correction and concomitant phase compensation. Volunteer data show that the proposed 2D spiral TSE achieves fast scan speed with high SNR, low SAR, and improved contrast compared to conventional Cartesian TSE. A robust 2D spiral TSE technique is feasible and provides a potential alternative to conventional 2D Cartesian TSE for T 2 -weighted neuroimaging. © 2018 International Society for Magnetic Resonance in Medicine.
Larson, Peder E Z; Kerr, Adam B; Swisher, Christine Leon; Pauly, John M; Vigneron, Daniel B
2012-12-01
In this work, we present a new MR spectroscopy approach for directly observing nuclear spins that undergo exchange, metabolic conversion, or, generally, any frequency shift during a mixing time. Unlike conventional approaches to observe these processes, such as exchange spectroscopy (EXSY), this rapid approach requires only a single encoding step and thus is readily applicable to hyperpolarized MR in which the magnetization is not replenished after T(1) decay and RF excitations. This method is based on stimulated-echoes and uses phase-sensitive detection in conjunction with precisely chosen echo times in order to separate spins generated during the mixing time from those present prior to mixing. We are calling the method Metabolic Activity Decomposition Stimulated-echo Acquisition Mode or MAD-STEAM. We have validated this approach as well as applied it in vivo to normal mice and a transgenic prostate cancer mouse model for observing pyruvate-lactate conversion, which has been shown to be elevated in numerous tumor types. In this application, it provides an improved measure of cellular metabolism by separating [1-(13)C]-lactate produced in tissue by metabolic conversion from [1-(13)C]-lactate that has flowed into the tissue or is in the blood. Generally, MAD-STEAM can be applied to any system in which spins undergo a frequency shift. Copyright © 2012 Elsevier Inc. All rights reserved.
Parallel MR imaging: a user's guide.
Glockner, James F; Hu, Houchun H; Stanley, David W; Angelos, Lisa; King, Kevin
2005-01-01
Parallel imaging is a recently developed family of techniques that take advantage of the spatial information inherent in phased-array radiofrequency coils to reduce acquisition times in magnetic resonance imaging. In parallel imaging, the number of sampled k-space lines is reduced, often by a factor of two or greater, thereby significantly shortening the acquisition time. Parallel imaging techniques have only recently become commercially available, and the wide range of clinical applications is just beginning to be explored. The potential clinical applications primarily involve reduction in acquisition time, improved spatial resolution, or a combination of the two. Improvements in image quality can be achieved by reducing the echo train lengths of fast spin-echo and single-shot fast spin-echo sequences. Parallel imaging is particularly attractive for cardiac and vascular applications and will likely prove valuable as 3-T body and cardiovascular imaging becomes part of standard clinical practice. Limitations of parallel imaging include reduced signal-to-noise ratio and reconstruction artifacts. It is important to consider these limitations when deciding when to use these techniques. (c) RSNA, 2005.
Caballero, Daniel; Antequera, Teresa; Caro, Andrés; Ávila, María Del Mar; G Rodríguez, Pablo; Perez-Palacios, Trinidad
2017-07-01
Magnetic resonance imaging (MRI) combined with computer vision techniques have been proposed as an alternative or complementary technique to determine the quality parameters of food in a non-destructive way. The aim of this work was to analyze the sensory attributes of dry-cured loins using this technique. For that, different MRI acquisition sequences (spin echo, gradient echo and turbo 3D), algorithms for MRI analysis (GLCM, NGLDM, GLRLM and GLCM-NGLDM-GLRLM) and predictive data mining techniques (multiple linear regression and isotonic regression) were tested. The correlation coefficient (R) and mean absolute error (MAE) were used to validate the prediction results. The combination of spin echo, GLCM and isotonic regression produced the most accurate results. In addition, the MRI data from dry-cured loins seems to be more suitable than the data from fresh loins. The application of predictive data mining techniques on computational texture features from the MRI data of loins enables the determination of the sensory traits of dry-cured loins in a non-destructive way. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Harris, Robert J; Yao, Jingwen; Chakhoyan, Ararat; Raymond, Catalina; Leu, Kevin; Liau, Linda M; Nghiemphu, Phioanh L; Lai, Albert; Salamon, Noriko; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M
2018-04-06
To introduce a new pH-sensitive and oxygen-sensitive MRI technique using amine proton CEST echo spin-and-gradient echo (SAGE) EPI (CEST-SAGE-EPI). pH-weighting was obtained using CEST estimations of magnetization transfer ratio asymmetry (MTR asym ) at 3 ppm, and oxygen-weighting was obtained using R2' measurements. Glutamine concentration, pH, and relaxation rates were varied in phantoms to validate simulations and estimate relaxation rates. The values of MTR asym and R2' in normal-appearing white matter, T 2 hyperintensity, contrast enhancement, and macroscopic necrosis were measured in 47 gliomas. Simulation and phantom results confirmed an increase in MTR asym with decreasing pH. The CEST-SAGE-EPI estimates of R 2 , R2*, and R2' varied linearly with gadolinium diethylenetriamine penta-acetic acid concentration (R 2 = 6.2 mM -1 ·sec -1 and R2* = 6.9 mM -1 ·sec -1 ). The CEST-SAGE-EPI and Carr-Purcell-Meiboom-Gill estimates of R 2 (R 2 = 0.9943) and multi-echo gradient-echo estimates of R2* (R 2 = 0.9727) were highly correlated. T 2 lesions had lower R2' and higher MTR asym compared with normal-appearing white matter, suggesting lower hypoxia and high acidity, whereas contrast-enhancement tumor regions had elevated R2' and MTR asym , indicating high hypoxia and acidity. The CEST-SAGE-EPI technique provides simultaneous pH-sensitive and oxygen-sensitive image contrasts for evaluation of the brain tumor microenvironment. Advantages include fast whole-brain acquisition, in-line B 0 correction, and simultaneous estimation of CEST effects, R 2 , R2*, and R2' at 3 T. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Muzamil, Akhmad; Haries Firmansyah, Achmad
2017-05-01
The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information.
Rooney, O M; Troke, J; Nicholson, J K; Griffin, J L
2003-11-01
High-resolution magic angle spinning (HRMAS) (1)H NMR spectroscopy is ideal for monitoring the metabolic environment within tissues, particularly when spectra are weighted by physical properties such as T(1) and T(2) relaxation times and apparent diffusion coefficients (ADCs). In this study, spectral-editing using T(1) and T(2) relaxation times and ADCs at variable diffusion times was used in conjunction with HRMAS (1)H NMR spectroscopy at 14.1 T in liver tissue. To enhance the sensitivity of ADC measurements to low molecular weight metabolites a T(2) spin echo was included in a standard stimulated gradient spin-echo sequence. Fatty liver induced in rats by chronic orotic acid feeding was investigated using this modified sequence. An increase in the combined ADC for the co-resonant peaks glucose, betaine, and TMAO during fatty liver disease was detected (ADCs = 0.60 +/- 0.11 and 0.35 +/- 0.1 * 10(-9) m(2)s(-1) (n = 3) for rats fed with and without orotic acid), indicative of a reduction in glucose and betaine and an increase in TMAO. Copyright 2003 Wiley-Liss, Inc.
Basic physics of nuclear magnetic resonance.
Patz, S
1986-01-01
This review of basic physics of nuclear magnetic resonance (NMR) discusses precession of magnetic nuclei in a static external field, introduces the concept of the rotating frame, and describes excitation of nuclei by an RF field. Treats subject of T1 and T2 relaxation from the dual viewpoints of (1) phenomena of relaxation times for both the longitudinal and transverse magnetization and (2) relaxation resulting from local field fluctuations. It describes practical ways in which T1 and T2 are measured (i.e., inversion recovery and spin-echo) and gives the value of the nuclear magnetization in thermodynamic equilibrium with a static external field. It discusses the reduction of NMR signal resulting from saturation. These concepts are related to clinical use with a set of four spin-echo images of a human head.
Instrument developments and recent scientific highlights at the J-NSE
NASA Astrophysics Data System (ADS)
Ivanova, Oxana; Pasini, Stefano; Monkenbusch, Michael; Holderer, Olaf
2017-06-01
The J-NSE neutron spin echo spectrometer faces now 10 years of successful user operation at the FRM II research reactor at the Heinz Maier-Leibnitz Zentrum (MLZ). We present scientific highlights and instrumental developments of the last decade, for example the development of grazing incidence neutron spin echo spectroscopy (GINSES) at the J-NSE and investigations of the dynamics at solid-liquid interfaces with this new option. Polymers in confinement have been a prominent topic, as well as the internal dynamics of proteins. The scientific questions also triggered instrumental developments such as a new polarizer and a new neutron guide concept. Finally, the future of the J-NSE will be addressed with a short presentation of the current upgrade program with superconducting main coils with reduced intrinsic field integral inhomogeneity.
Cardiovascular magnetic resonance physics for clinicians: part I.
Ridgway, John P
2010-11-30
There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained.
Cardiovascular magnetic resonance physics for clinicians: part I
2010-01-01
There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained. PMID:21118531
NASA Astrophysics Data System (ADS)
Lisin, V. N.; Shegeda, A. M.; Samartsev, V. V.
2015-09-01
A relative phase shift between the different groups of excited dipoles, which appears as result of its frequency splitting due to action of a pulse of electric or magnetic fields, depends on a time, if the pulse overlaps in time with echo-pulse. As а consequence, the echo waveform is changed. The echo time form is modulated. The inverse modulation period well enough approximates Zeeman and pseudo-Stark splitting in the cases of magnetic and, therefore, electrical fields. Thus the g-factors of ground 4I15/2 and excited 4F9/2 optical states of Er3+ ion in LuLiF4 and YLiF4 have been measured and pseudo-Stark shift of R1 line in ruby has been determined.
Cervantes, Barbara; Kirschke, Jan S; Klupp, Elizabeth; Kooijman, Hendrik; Börnert, Peter; Haase, Axel; Rummeny, Ernst J; Karampinos, Dimitrios C
2018-01-01
To design a preparation module for vessel signal suppression in MR neurography of the extremities, which causes minimal attenuation of nerve signal and is highly insensitive to eddy currents and motion. The orthogonally combined motion- and diffusion-sensitized driven equilibrium (OC-MDSDE) preparation was proposed, based on the improved motion- and diffusion-sensitized driven equilibrium methods (iMSDE and FC-DSDE, respectively), with specific gradient design and orientation. OC-MDSDE was desensitized against eddy currents using appropriately designed gradient prepulses. The motion sensitivity and vessel signal suppression capability of OC-MDSDE and its components were assessed in vivo in the knee using 3D turbo spin echo (TSE). Nerve-to-vessel signal ratios were measured for iMSDE and OC-MDSDE in 7 subjects. iMSDE was shown to be highly sensitive to motion with increasing flow sensitization. FC-DSDE showed robustness against motion, but resulted in strong nerve signal loss with diffusion gradients oriented parallel to the nerve. OC-MDSDE showed superior vessel suppression compared to iMSDE and FC-DSDE and maintained high nerve signal. Mean nerve-to-vessel signal ratios in 7 subjects were 0.40 ± 0.17 for iMSDE and 0.63 ± 0.37 for OC-MDSDE. OC-MDSDE combined with 3D TSE in the extremities allows high-near-isotropic-resolution imaging of peripheral nerves with reduced vessel contamination and high nerve signal. Magn Reson Med 79:407-415, 2018. © 2017 Wiley Periodicals, Inc. © 2017 International Society for Magnetic Resonance in Medicine.
Kimura, Atsuomi; Narazaki, Michiko; Kanazawa, Yoko; Fujiwara, Hideaki
2004-07-01
The tissue distribution of perfluorooctanoic acid (PFOA), which is known to show unique biological responses, has been visualized in female mice by (19)F magnetic resonance imaging (MRI) incorporated with the recent advances in microimaging technique. The chemical shift selected fast spin-echo method was applied to acquire in vivo (19)F MR images of PFOA. The in vivo T(1) and T(2) relaxation times of PFOA were proven to be extremely short, which were 140 (+/- 20) ms and 6.3 (+/- 2.2) ms, respectively. To acquire the in vivo (19)F MR images of PFOA, it was necessary to optimize the parameters of signal selection and echo train length. The chemical shift selection was effectively performed by using the (19)F NMR signal of CF(3) group of PFOA without the signal overlapping because the chemical shift difference between the CF(3) and neighbor signals reaches to 14 kHz. The most optimal echo train length to obtain (19)F images efficiently was determined so that the maximum echo time (TE) value in the fast spin-echo sequence was comparable to the in vivo T(2) value. By optimizing these parameters, the in vivo (19)F MR image of PFOA was enabled to obtain efficiently in 12 minutes. As a result, the time course of the accumulation of PFOA into the mouse liver was clearly pursued in the (19)F MR images. Thus, it was concluded that the (19)F MRI becomes the effective method toward the future pharmacological and toxicological studies of perfluorocarboxilic acids.
Wirth, W; Eckstein, F; Boeth, H; Diederichs, G; Hudelmaier, M; Duda, G N
2014-10-01
Cartilage spin-spin magnetic resonance imaging (MRI) relaxation time (T2) represents a promising imaging biomarker of "early" osteoarthritis (OA) known to be associated with cartilage composition (collagen integrity, orientation, and hydration). However, no longitudinal imaging studies have been conducted to examine cartilage maturation in healthy subjects thus far. Therefore, we explore T2 change in the deep and superficial cartilage layers at the end of adolescence. Twenty adolescent and 20 mature volleyball athletes were studied (each 10 men and 10 women). Multi-echo spin-echo (MESE) images were acquired at baseline and 2-year follow-up. After segmentation, cartilage T2 was calculated in the deep and superficial cartilage layers of the medial tibial (MT) and the central, weight-bearing part of the medial femoral condyle (cMF), using five echoes (TE 19.4-58.2 ms). 16 adolescent (6 men, 10 women, baseline age 15.8 ± 0.5 years) and 17 mature (nine men, eight women, age 46.5 ± 5.2 years) athletes had complete baseline and follow-up images of sufficient quality to compute T2. In adolescents, a longitudinal decrease in T2 was observed in the deep layers of MT (-2.0 ms; 95% confidence interval (CI): [-3.4, -0.6] ms; P < 0.01) and cMF (-1.3 ms; [-2.4, -0.3] ms; P < 0.05), without obvious differences between males and females. No significant change was observed in the superficial layers, or in the deep or superficial layers of the mature athletes. In this first pilot study on quantitative imaging of cartilage maturation in healthy, athletic subjects, we find evidence of cartilage compositional change in deep cartilage layers of the medial femorotibial compartment in adolescents, most likely related to organizational changes in the collagen matrix. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Park, H J; Lee, S Y; Choi, Y J; Hong, H P; Park, S J; Park, J H; Kim, E
2017-02-01
To investigate whether the image quality of three-dimensional (3D) volume isotropic fast spin echo acquisition (VISTA) magnetic resonance imaging (MRI) of the calcaneofibular ligament (CFL) view is comparable to that of 2D fast spin echo T2-weighted images (2D T2 FSE) for the evaluation of the CFL, and whether 3D VISTA can replace 2D T2 FSE for the evaluation of CFL injuries. This retrospective study included 76 patients who underwent ankle MRI with CFL views of both 2D T2 FSE MRI and 3D VISTA. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of both techniques were measured. The anatomical identification score and diagnostic performances were evaluated by two readers independently. The diagnostic performances of 3D VISTA and 2D T2 FSE were analysed by sensitivity, specificity, and accuracy for diagnosing CFL injury with reference standards of surgically or clinically confirmed diagnoses. Surgical correlation was performed in 29% of the patients, and clinical examination was used in those who did not have surgery (71%). The SNRs and CNRs of 3D VISTA were significantly higher than those of 2D T2 FSE. The anatomical identification scores on 3D VISTA were inferior to those on 2D T2 FSE, and the differences were statistically significant (p<0.05). There were no significant differences in diagnostic performance between the two sequences when diagnoses were classified as normal or abnormal. Although the image quality of 3D VISTA MRI of the CFL view is not equal to that of 2D T2 FSE for the anatomical evaluation of CFL, 3D VISTA has a diagnostic performance comparable to that of 2D T2 FSE for the diagnosis of CFL injuries. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Spectroscopic sampling of the left side of long-TE spin echoes: a free lunch?
Mulkern, Robert V; Balasubramanian, Mukund
2018-04-01
Use of spectroscopically-acquired spin echoes typically involves Fourier transformation of the right side of the echo while largely neglecting the left side. For sufficiently long echo times, the left side may have enough spectral resolution to offer some utility. Since the acquisition of this side is "free", we deemed it worthy of attention and investigated the spectral properties and information content of this data. Theoretical expressions for left- and right-side spectra were derived assuming Lorentzian frequency distributions. For left-side spectra, three regimes were identified based upon the relative magnitudes of reversible and irreversible transverse relaxation rates, R 2 ' and R 2 , respectively. Point-resolved spectroscopy (PRESS) data from muscle, fat deposit and bone marrow were acquired at 1.5 T to test aspects of the theoretical expressions. For muscle water or methylene marrow resonances, left-side signals were substantially or moderately larger than right-side signals but were similar in magnitude for muscle choline and creatine resonances. Left- versus right-side spectral-peak amplitude ratios depend sensitively on the relative values of R 2 and R 2 ' , which can be estimated given this ratio and a right-side linewidth measurement. Left-side spectra can be used to augment signal-to-noise and to estimate spectral R 2 and R 2 ' values under some circumstances.
The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI Methods
Jack, Clifford R.; Bernstein, Matt A.; Fox, Nick C.; Thompson, Paul; Alexander, Gene; Harvey, Danielle; Borowski, Bret; Britson, Paula J.; Whitwell, Jennifer L.; Ward, Chadwick; Dale, Anders M.; Felmlee, Joel P.; Gunter, Jeffrey L.; Hill, Derek L.G.; Killiany, Ron; Schuff, Norbert; Fox-Bosetti, Sabrina; Lin, Chen; Studholme, Colin; DeCarli, Charles S.; Krueger, Gunnar; Ward, Heidi A.; Metzger, Gregory J.; Scott, Katherine T.; Mallozzi, Richard; Blezek, Daniel; Levy, Joshua; Debbins, Josef P.; Fleisher, Adam S.; Albert, Marilyn; Green, Robert; Bartzokis, George; Glover, Gary; Mugler, John; Weiner, Michael W.
2008-01-01
The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a longitudinal multisite observational study of healthy elders, mild cognitive impairment (MCI), and Alzheimer's disease. Magnetic resonance imaging (MRI), (18F)-fluorode-oxyglucose positron emission tomography (FDG PET), urine serum, and cerebrospinal fluid (CSF) biomarkers, as well as clinical/psychometric assessments are acquiredat multiple time points. All data will be cross-linked and made available to the general scientific community. The purpose of this report is to describe the MRI methods employed in ADNI. The ADNI MRI core established specifications thatguided protocol development. A major effort was devoted toevaluating 3D T1-weighted sequences for morphometric analyses. Several options for this sequence were optimized for the relevant manufacturer platforms and then compared in a reduced-scale clinical trial. The protocol selected for the ADNI study includes: back-to-back 3D magnetization prepared rapid gradient echo (MP-RAGE) scans; B1-calibration scans when applicable; and an axial proton density-T2 dual contrast (i.e., echo) fast spin echo/turbo spin echo (FSE/TSE) for pathology detection. ADNI MRI methods seek to maximize scientific utility while minimizing the burden placed on participants. The approach taken in ADNI to standardization across sites and platforms of the MRI protocol, postacquisition corrections, and phantom-based monitoring of all scanners could be used as a model for other multisite trials. PMID:18302232
In vivo Proton Electron Double Resonance Imaging of Mice with Fast Spin Echo Pulse Sequence
Sun, Ziqi; Li, Haihong; Petryakov, Sergey; Samouilov, Alex; Zweier, Jay L.
2011-01-01
Purpose To develop and evaluate a 2D fast spin echo (FSE) pulse sequence for enhancing temporal resolution and reducing tissue heating for in vivo proton electron double resonance imaging (PEDRI) of mice. Materials and Methods A four-compartment phantom containing 2 mM TEMPONE was imaged at 20.1 mT using 2D FSE-PEDRI and regular gradient echo (GRE)-PEDRI pulse sequences. Control mice were infused with TEMPONE over ∼1 min followed by time-course imaging using the 2D FSE-PEDRI sequence at intervals of 10 – 30 s between image acquisitions. The average signal intensity from the time-course images was analyzed using a first-order kinetics model. Results Phantom experiments demonstrated that EPR power deposition can be greatly reduced using the FSE-PEDRI pulse sequence compared to the conventional gradient echo pulse sequence. High temporal resolution was achieved at ∼4 s per image acquisition using the FSE-PEDRI sequence with a good image SNR in the range of 233-266 in the phantom study. The TEMPONE half-life measured in vivo was ∼72 s. Conclusion Thus, the FSE-PEDRI pulse sequence enables fast in vivo functional imaging of free radical probes in small animals greatly reducing EPR irradiation time with decreased power deposition and provides increased temporal resolution. PMID:22147559
2012-10-01
EMBC10.1722. 10. Mitra, P.P., Halperin, B.I.: Effects of finite gradient-pulse widths in pulsed- field - gradient diffusion measurements . Journal of Magnetic ...December 2011 ABSTRACT: The addition of a pair of magnetic field gradient pulses had initially enabled the measurement of spin motion to nuclear mag- netic...introduced a pair of (homogenous) magnetic field gradients into the spin echo experi- ment with the purpose of accurately measuring the scalar diffusion
Theoretical proposal for a magnetic resonance study of charge transport in organic semiconductors
NASA Astrophysics Data System (ADS)
Mkhitaryan, Vagharsh
Charge transport in disordered organic semiconductors occurs via carrier incoherent hops in a band of localized states. In the framework of continuous-time random walk the carrier on-site waiting time distribution (WTD) is one of the basic characteristics of diffusion. Besides, WTD is fundamentally related to the density of states (DOS) of localized states, which is a key feature of a material determining the optoelectric properties. However, reliable first-principle calculations of DOS in organic materials are not yet available and experimental characterization of DOS and WTD is desirable. We theoretically study the spin dynamics of hopping carriers and propose measurement schemes directly probing WTD, based on the zero-field spin relaxation and the primary (Hahn) spin echo. The proposed schemes are possible because, as we demonstrate, the long-time behavior of the zero-field relaxation and the primary echo is determined by WTD, both for the hyperfine coupling dominated and the spin-orbit coupling dominated spin dynamics. We also examine the dispersive charge transport, which is a non-Markovian sub-diffusive process characterized by non-stationarity. We show that the proposed schemes unambiguously capture the effects of non-stationarity, e.g., the aging behavior of random walks. This work was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.
Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank
2008-10-01
Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images from the SC are needed, in cases of rapidly evolving conditions, to decrease the duration of anesthesia or to improve MR exploration by including additional MR measurements. Copyright (c) 2008 John Wiley & Sons, Ltd.
J-Refocused Coherence Transfer Spectroscopic Imaging at 7 T in Human Brain
Pan, J.W.; Avdievich, N.; Hetherington, H.P.
2013-01-01
Short echo spectroscopy is commonly used to minimize signal modulation due to J-evolution of the cerebral amino acids. However, short echo acquisitions suffer from high sensitivity to macromolecules which make accurate baseline determination difficult. In this report, we describe implementation at 7 T of a double echo J-refocused coherence transfer sequence at echo time (TE) of 34 msec to minimize J-modulation of amino acids while also decreasing interfering macromolecule signals. Simulation of the pulse sequence at 7 T shows excellent resolution of glutamate, glutamine, and N-acetyl aspartate. B1 sufficiency at 7 T for the double echo acquisition is achieved using a transceiver array with radiofrequency (RF) shimming. Using an alternate RF distribution to minimize receiver phase cancellation in the transceiver, accurate phase determination for the coherence transfer is achieved with rapid single scan calibration. This method is demonstrated in spectroscopic imaging mode with n = 5 healthy volunteers resulting in metabolite values consistent with literature and in a patient with epilepsy. PMID:20648684
The Fourier Transform in Chemistry-NMR, Part 3. Multiple-Pulse Experiments.
ERIC Educational Resources Information Center
Williams, Kathryn R.; King, Roy W.
1990-01-01
Described are six multipulse experiments with an emphasis on their application to common problems in chemistry. Exercises in relaxation time measurement, spin echoes, and polarization transfer are proposed. (CW)
Image domain propeller fast spin echo.
Skare, Stefan; Holdsworth, Samantha J; Lilja, Anders; Bammer, Roland
2013-04-01
A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed - image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15-20%, a receiver bandwidth of ±32-63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times - without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. Copyright © 2013 Elsevier Inc. All rights reserved.
Evaluation of thermometric monitoring for intradiscal laser ablation in an open 1.0 T MR scanner.
Wonneberger, Uta; Schnackenburg, Bernhard; Wlodarczyk, Waldemar; Rump, Jens; Walter, Thula; Streitparth, Florian; Teichgräber, Ulf Karl Mart
2010-01-01
The purpose of this study was to evaluate different methods of magnetic resonance thermometry (MRTh) for the monitoring of intradiscal laser ablation therapy in an open 1.0 Tesla magnetic resonance (MR) scanner. MRTh methods based on the two endogenous MR temperature indicators of spin-lattice relaxation time T1 and water proton resonance frequency (PRF) shift were optimised and compared in vitro. For the latter, we measured the effective spin-spin relaxation times T2* in intervertebral discs of volunteers. Then we compared four gradient echo-based imaging techniques to monitor laser ablations in human disc specimens. Criteria of assessment were outline of anatomic detail, immunity against needle artefacts, signal-to-noise ratio (SNR) and accuracy of the calculated temperature. T2* decreased in an inverse and almost linear manner with the patients' age (r = 0.9) from 70 to 30 ms (mean of 49 ms). The optimum image quality (anatomic details, needle artefacts, SNR) and temperature accuracy (+/-1.09 degrees C for T1-based and +/-1.11 degrees C for PRF-based MRTh) was achieved with a non-spoiled gradient-echo sequence with an echo time of TE = 10 ms. Combination of anatomic and thermometric non-invasive monitoring of laser ablations in the lumbar spine is feasible. The temperature accuracy of the investigated T1- and PRF-based MRTh methods in vitro is high enough and promises to be reliable in vivo as well.
Berg, A; Pernkopf, M; Waldhäusl, C; Schmidt, W; Moser, E
2004-09-07
Precise methods of modem radiation therapy such as intensity modulated radiotherapy (IMRT), brachytherapy (BT) and high LET irradiation allow for high dose localization in volumes of a few mm3. However, most dosimetry methods-ionization chambers, TLD arrangements or silicon detectors, for example-are not capable of detecting sub-mm dose variations or do not allow for simple dose imaging. Magnetic resonance based polymer dosimetry (MRPD) appears to be well suited to three-dimensional high resolution relative dosimetry but the spatial resolution based on a systematic modulation transfer function (MTF) approach has not yet been investigated. We offer a theoretical construct for addressing the spatial resolution in different dose imaging systems, i.e. the dose modulation transfer function (DMTF) approach, an experimental realization of this concept with a phantom and quantitative comparisons between two dosimetric systems: polymer gel and film dosimetry. Polymer gel samples were irradiated by Co-60 photons through an absorber grid which is characterized by periodic structures of different spatial period (a), the smallest one at width of a/2 = 280 microm. The modulation in dose under the grid is visualized via calibrated, high resolution, parameter-selective (T2) and dose images based on multi-echo MR imaging. The DMTF is obtained from the modulation depth of the spin-spin relaxation time (T2) after calibration. Voxel sizes below 0.04 mm3 could be achieved, which are significantly smaller than those reported in MR based dose imaging on polymer gels elsewhere, using a powerful gradient system and a highly sensitive small birdcage resonator on a whole-body 3T MR scanner. Dose modulations at 22% of maximum dose amplitude could be observed at about 2 line pairs per mm. The polymer DMTF results are compared to those of a typical clinical film-scanner system. This study demonstrates that MR based gel dosimetry at 200 microm pixel resolution might even be superior, with reference to relative spatial resolution, to the results of a standard film-scanner system offering a nominal scan resolution of 200 microm.
[Imaging characteristics of PROPELLER T2-weighted imaging].
Goto, Masami; Aoki, Shigeki; Hayashi, Naoto; Mori, Harushi; Watanabe, Yasushi; Ino, Kenji; Satake, Yoshirou; Nishida, Katuji; Sato, Haruo; Iida, Kyouhito; Mima, Kazuo; Ohtomo, Kuni
2004-11-01
As the PROPELLER sequence is a combination of the radial scan and fast-spin-echo (FSE) sequence, it can be considered an FSE sequence with a motion correlation. However, there are some differences between PROPELLER and FSE owing to differences in k-space trajectory. We clarified the imaging characteristics of PROPELLER T2-weighted imaging (T2WI) for different parameters in comparison with usual FSE T2WI. When the same parameters were used, PROPELLER T2WI showed a higher signal-to-noise ratio (SNR) and lower spatial resolution than usual FSE. Effective echo time (TE) changed with different echo train lengths (ETL) or different bandwidths on PROPELLER, and imaging contrast changed accordingly to be more effective.
New Imaging Strategies Using a Motion-Resistant Liver Sequence in Uncooperative Patients
Kim, Bong Soo; Lee, Kyung Ryeol; Goh, Myeng Ju
2014-01-01
MR imaging has unique benefits for evaluating the liver because of its high-resolution capability and ability to permit detailed assessment of anatomic lesions. In uncooperative patients, motion artifacts can impair the image quality and lead to the loss of diagnostic information. In this setting, the recent advances in motion-resistant liver MR techniques, including faster imaging protocols (e.g., dual-echo magnetization-prepared rapid-acquisition gradient echo (MP-RAGE), view-sharing technique), the data under-sampling (e.g., gradient recalled echo (GRE) with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA), single-shot echo-train spin-echo (SS-ETSE)), and motion-artifact minimization method (e.g., radial GRE with/without k-space-weighted image contrast (KWIC)), can provide consistent, artifact-free images with adequate image quality and can lead to promising diagnostic performance. Understanding of the different motion-resistant options allows radiologists to adopt the most appropriate technique for their clinical practice and thereby significantly improve patient care. PMID:25243115
A new pulse width reduction technique for pulsed electron paramagnetic resonance spectroscopy.
Ohba, Yasunori; Nakazawa, Shigeaki; Kazama, Shunji; Mizuta, Yukio
2008-03-01
We present a new technique for a microwave pulse modulator that generates a short microwave pulse of approximately 1ns for use in an electron paramagnetic resonance (EPR) spectrometer. A quadruple-frequency multiplier that generates a signal of 16-20GHz from an input of 4-5GHz was employed to reduce the rise and fall times of the pulse prepared by a PIN diode switch. We examined the transient response characteristics of a commercial frequency multiplier and found that the device can function as a multiplier for pulsed signal even though it was designed for continuous wave operation. We applied the technique to a Ku band pulsed EPR spectrometer and successfully observed a spin echo signal with a broad excitation bandwidth of approximately 1.6mT using 80 degrees pulses of 1.5ns.
WE-DE-206-04: MRI Pulse Sequences - Spin Echo, Gradient Echo, EPI, Non-Cartesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooley, R.
Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner,more » and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.« less
Efficient spectroscopic imaging by an optimized encoding of pre-targeted resonances
Zhang, Zhiyong; Shemesh, Noam; Frydman, Lucio
2016-01-01
A “relaxation-enhanced” (RE) selective-excitation approach to acquire in vivo localized spectra with flat baselines and very good signal-to-noise ratios –particularly at high fields– has been recently proposed. As RE MRS targets a subset of a priori known resonances, new possibilities arise to acquire spectroscopic imaging data in a faster, more efficient manner. Hereby we present one such opportunity based on what we denominate Relaxation-Enhanced Chemical-shift-Encoded Spectroscopically-Separated (RECESS) imaging. RECESS delivers spectral/spatial correlations of various metabolites, by collecting a gradient echo train whose timing is defined by the chemical shifts of the various selectively excited resonances to be disentangled. Different sites thus impart distinct, coherent phase modulations on the images; condition number considerations allow one to disentangle these contributions of the various sites by a simple matrix inversion. The efficiency of the ensuing spectral/spatial correlation method is high enough to enable the examination of additional spatial axes via their phase encoding in CPMG-like spin-echo trains. The ensuing single-shot 1D spectral / 2D spatial RECESS method thus accelerates the acquisition of quality MRSI data by factors that, depending on the sensitivity, range between 2 and 50. This is illustrated with a number of phantom, of ex vivo and of in vivo acquisitions. PMID:26910285
Li, Zhiqiang; Schär, Michael; Wang, Dinghui; Zwart, Nicholas R; Madhuranthakam, Ananth J; Karis, John P; Pipe, James G
2016-01-01
The three-dimensional (3D) spiral turbo spin echo (TSE) sequence is one of the preferred readout methods for arterial spin labeled (ASL) perfusion imaging. Conventional spiral TSE collects the data using a spiral-out readout on a stack of spirals trajectory. However, it may result in suboptimal image quality and is not flexible in protocol design. The goal of this study is to provide a more robust readout technique without such limitation. The proposed technique incorporates a spiral-in/out readout into 3D TSE, and collects the data on a distributed spirals trajectory. The data set is split into the spiral-in and -out subsets that are reconstructed separately and combined after image deblurring. The volunteer results acquired with the proposed technique show no geometric distortion or signal pileup, as is present with GRASE, and no signal loss, as is seen with conventional spiral TSE. Examples also demonstrate the flexibility in changing the imaging parameters to satisfy various criteria. The 3D TSE with a distributed spiral-in/out trajectory provides a robust readout technique and allows for easy protocol design, thus is a promising alternative to GRASE or conventional spiral TSE for ASL perfusion imaging. © 2015 Wiley Periodicals, Inc.
Lan, Gao; Yunmin, Lian; Pu, Wang; Haili, Huai
2016-06-01
This study aimed to observe and evaluate six 3.0 T sequences of metallic artifacts produced by metal dental crowns. Dental crowns fabricated with four different materials (Co-Gr, Ni-Gr, Ti alloy and pure Ti) were evaluated. A mature crossbreed dog was used as the experimental animal, and crowns were fabricated for its upper right second premolar. Each crown was examined through head MRI (3.0 T) with six sequences, namely, T₁ weighted-imaging of spin echo (T₁W/SE), T₂ weighted-imaging of inversion recovery (T₂W/IR), T₂ star gradient echo (T₂*/GRE), T2 weighted-imaging of fast spin echo (T₂W/FSE), T₁ weighted-imaging of fluid attenuate inversion recovery (T₂W/FLAIR), and T₂ weighted-imaging of propeller (T₂W/PROP). The largest area and layers of artifacts were assessed and compared. The artifact in the T₂*/GRE sequence was significantly wider than those in the other sequences (P < 0.01), whose artifact extent was not significantly different (P > 0.05). T₂*/GRE exhibit the strongest influence on the artifact, whereas the five other sequences contribute equally to artifact generation.
Sutherland-Smith, James; Tilley, Brenda
2012-01-01
Magnetic resonance imaging (MRI) artifacts secondary to metallic implants and foreign bodies are well described. Herein, we provide quantitative data from veterinary implants including total hip arthroplasty implants, cranial cruciate repair implants, surgical screws, a skin staple, ligation clips, an identification microchip, ameroid constrictor, and potential foreign bodies including air gun and BB projectiles and a sewing needle. The objects were scanned in a gelatin phantom with plastic grid using standardized T2-weighted turbo-spin echo (TSE), T1-weighted spin echo, and T2*-weighted gradient recalled echo (GRE) image acquisitions at 1.5 T. Maximum linear dimensions and areas of signal voiding and grid distortion were calculated using a DICOM workstation for each sequence and object. Artifact severity was similar between the T2-weighted TSE and T1-weighted images, while the T2*-weighted images were most susceptible to artifact. Metal type influenced artifact size with the largest artifacts arising from steel objects followed by surgical stainless steel, titanium, and lead. For animals with metallic surgical implants or foreign bodies, the quantification of the artifact size will help guide clinicians on the viability of MRI. © 2012 Veterinary Radiology & Ultrasound.
Jack, Clifford R.; Garwood, Michael; Wengenack, Thomas M.; Borowski, Bret; Curran, Geoffrey L.; Lin, Joseph; Adriany, Gregor; Grohn, Olli H.J.; Grimm, Roger; Poduslo, Joseph F.
2009-01-01
One of the cardinal pathologic features of Alzheimer’s disease (AD) is formation of senile, or amyloid, plaques. Transgenic mice have been developed that express one or more of the genes responsible for familial AD in humans. Doubly transgenic mice develop “human-like” plaques, providing a mechanism to study amyloid plaque biology in a controlled manner. Imaging of labeled plaques has been accomplished with other modalities, but only MRI has sufficient spatial and contrast resolution to visualize individual plaques non-invasively. Methods to optimize visualization of plaques in vivo in transgenic mice at 9.4 T using a spin echo sequence based on adiabatic pulses are described. Preliminary results indicate that a spin echo acquisition more accurately reflects plaque size, while a T2* weighted gradient echo sequence reflects plaque iron content not plaque size. In vivo MRI – ex vivo MRI – in vitro histological correlations are provided. Histologically verified plaques as small as 50 μm in diameter were visualized in the living animal. To our knowledge this work represents the first demonstration of non-invasive in vivo visualization of individual AD plaques without the use of a contrast agent. PMID:15562496
Jenista, Elizabeth R; Stokes, Ashley M; Branca, Rosa Tamara; Warren, Warren S
2009-11-28
A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.
Kim, Yeo Ju; Cha, Jang Gyu; Shin, Yoon Sang; Chaudhari, Akshay S; Suh, Young Ju; Hwan Yoon, Seung; Gold, Garry E
2018-05-01
The purpose of this study was to evaluate the feasibility of 3D ultrashort TE (UTE) MRI in depicting the cartilaginous endplate (CEP) and its abnormalities and to investigate the association between CEP abnormalities and disk degeneration on T2-weighted spin-echo (SE) MR images in cervical disks in vivo. Eight healthy volunteers and 70 patients were examined using 3-T MRI with the 3D UTE cones trajectory technique (TR/TE, 16.1/0.032, 6.6). In the volunteer study, quantitative and qualitative assessments of CEP depiction were conducted for the 3D UTE and T2-weighted SE imaging. In the patient study, CEP abnormalities were analyzed. Intersequence agreement between the images obtained with the first-echo 3D UTE sequence and the images created by subtracting the second-echo from the first-echo 3D UTE sequence (subtracted 3D UTE) and the intraobserver and interobserver agreements for 3D UTE overall were also tested. The CEP abnormalities on the 3D UTE images correlated with the Miyazaki grading of the T2-weighted SE images. In the volunteer study, the CEP was well visualized on 3D UTE images but not on T2-weighted SE images (p < 0.001). In the patient study, for evaluation of CEP abnormalities, intersequence agreements were substantial to almost perfect, intraobserver agreements were substantial to almost perfect, and interobserver agreements were moderate to substantial (p < 0.001). All of the CEP abnormalities correlated with the Miyazaki grade with statistical significance (p < 0.001). Three-dimensional UTE MRI feasibly depicts the CEP and CEP abnormalities, which may be associated with the severity of disk degeneration on T2-weighted SE MRI.
Ellingson, Benjamin M.; Lai, Albert; Nguyen, Huytram N.; Nghiemphu, Phioanh L.; Pope, Whitney B.; Cloughesy, Timothy F.
2015-01-01
Purpose Evaluation of nonenhancing tumor (NET) burden is an important, yet challenging part of brain tumor response assessment. The current study focuses on using dual echo turbo spin echo MRI as a means of quickly estimating tissue T2, which can be used to objectively define NET burden. Experimental Design A series of experiments were performed to establish the use of T2 maps for defining NET burden. First, variation in T2 was determined using ACR water phantoms in 16 scanners evaluated over 3 years. Next, sensitivity and specificity of T2 maps for delineating NET from other tissues was examined. Then, T2-defined NET was used to predict survival in separate subsets of glioblastoma patients treated with radiation therapy, concurrent radiation and chemotherapy, or bevacizumab at recurrence. Results Variability in T2 in the ACR phantom was 3-5%. In training data, ROC analysis suggested that 125ms < T2 < 250ms could delineate NET with a sensitivity >90% and specificity >65%. Using this criterion, NET burden after completion of radiation therapy alone, or concurrent radiation therapy and chemotherapy, was shown to be predictive of survival (Cox, P<0.05), and the change in NET volume before and after bevacizumab therapy in recurrent glioblastoma was also a predictive of survival (P<0.05). Conclusions T2 maps using dual echo data are feasible, stable, and can be used to objectively define NET burden for use in brain tumor characterization, prognosis, and response assessment. The use of effective T2 maps for defining NET burden should be validated in a randomized clinical trial. PMID:25901082
Gersing, Alexandra S; Schwaiger, Benedikt J; Heilmeier, Ursula; Joseph, Gabby B; Facchetti, Luca; Kretzschmar, Martin; Lynch, John A; McCulloch, Charles E; Nevitt, Michael C; Steinbach, Lynne S; Link, Thomas M
2017-06-01
To evaluate the ability of different MRI sequences to detect chondrocalcinosis within knee cartilage and menisci, and to analyze the association with joint degeneration. Subjects with radiographic knee chondrocalcinosis (n = 90, age 67.7 ± 7.3 years, 50 women) were selected from the Osteoarthritis Initiative and matched to controls without radiographic chondrocalcinosis (n = 90). Visualization of calcium-containing crystals (CaC) was compared between 3D T1-weighted gradient-echo (T1GE), 3D dual echo steady-state (DESS), 2D intermediate-weighted (IW), and proton density (PD)-weighted fast spin-echo (FSE) sequences obtained with 3T MRI and correlated with a semiquantitative CaC score obtained from radiographs. Structural abnormalities were assessed using Whole-Organ MRI Score (WORMS) and logistic regression models were used to compare cartilage compartments with and without CaC. Correlations between CaC counts of MRI sequences and degree of radiographic calcifications were highest for GE (r T1GE = 0.73, P < 0.001; r DESS = 0.68, P < 0.001) compared to other sequences (P > 0.05). Meniscus WORMS was significantly higher in subjects with chondrocalcinosis compared to controls (P = 0.005). Cartilage defects were significantly more frequent in compartments with CaC than without (patella: P = 0.006; lateral tibia: P < 0.001; lateral femur condyle: P = 0.017). Gradient-echo sequences were most useful for the detection of chondrocalcinosis and presence of CaC was associated with higher prevalence of cartilage and meniscal damage. • Magnetic resonance imaging is useful for assessing burden of calcium-containing crystals (CaC). • Gradient-echo sequences are superior to fast spin echo sequences for CaC imaging. • Presence of CaC is associated with meniscus and cartilage degradation.
NASA Astrophysics Data System (ADS)
Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper
2017-12-01
Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.
Genetic algorithm optimized triply compensated pulses in NMR spectroscopy
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2015-11-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π / 2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-13C, 15N NAVL peptide as well as U-13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.
Syryamina, Victoria N; Isaev, Nikolay P; Peggion, Cristina; Formaggio, Fernando; Toniolo, Claudio; Raap, Jan; Dzuba, Sergei A
2010-09-30
Trichogin GA IV is a lipopeptide antibiotic of fungal origin, which is known to be able to modify the membrane permeability. TOAC nitroxide spin-labeled analogues of this membrane active peptide were investigated in hydrated bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) by electron spin echo (ESE) spectroscopy. Because the TOAC nitroxide spin label is rigidly attached to the peptide backbone, it may report on the backbone orientational dynamics. The ESE signal in this system is observed below ∼150 K. Previously, three-pulse stimulated ESE was found to be sensitive to two types of orientational motion of spin-labeled POPC lipid bilayers at these temperatures. The first type is fast stochastic librations, with a correlation time on the nanosecond scale (which also manifests itself in a two-pulse primary ESE experiment). The second type is slow millisecond inertial rotations. In the present work, we find that at low molar peptide to lipid ratio (1:200), where the individual peptide molecules are randomly distributed at the membrane surface, the spin labels show only a fast type of motion. At the high molar peptide to lipid ratio (1:20), a slow motion is also observed. Because at this high concentration trichogin GA IV is known to change its orientation from the in-plane topology to the transmembrane disposition, the observed onset of a slow motion may be safely attributed to the dynamics of peptides, which are elongated along the lipid molecules of the membrane. The possible interrelation between this backbone rotational motion of the peptide antibiotic and the membrane leakage is discussed.
Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast.
Jordan, Caroline D; Saranathan, Manojkumar; Bangerter, Neal K; Hargreaves, Brian A; Gold, Garry E
2013-05-01
The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. We measured the T₁ and T₂ relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T₁ relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T₂ relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T₁ and T₂ measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. The T₁ relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T₂ relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T₂-weighted FSE, and 3D-FSE-Cube. The T₁ and T₂ changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
gr-MRI: A software package for magnetic resonance imaging using software defined radios.
Hasselwander, Christopher J; Cao, Zhipeng; Grissom, William A
2016-09-01
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs. Copyright © 2016. Published by Elsevier Inc.
Schlaeger, Sarah; Klupp, Elisabeth; Weidlich, Dominik; Cervantes, Barbara; Foreman, Sarah C; Deschauer, Marcus; Schoser, Benedikt; Katemann, Christoph; Kooijman, Hendrik; Rummeny, Ernst J; Zimmer, Claus; Kirschke, Jan S; Karampinos, Dimitrios C
2018-04-02
The assessment of fatty infiltration and edema in the musculature of patients with neuromuscular diseases (NMDs) typically requires the separate performance of T1-weighted and fat-suppressed T2-weighted sequences. T2-weighted Dixon turbo spin echo (TSE) enables the generation of T2-weighted fat- and water-separated images, which can be used to assess both pathologies simultaneously. The present study examines the diagnostic performance of T2-weighted Dixon TSE compared with the standard sequences in 10 patients with NMDs and 10 healthy subjects. Whole-body magnetic resonance imaging was performed including T1-weighted Dixon fast field echo, T2-weighted short-tau inversion recovery, and T2-weighted Dixon TSE. Fatty infiltration and intramuscular edema were rated by 2 radiologists using visual semiquantitative rating scales. To assess intermethod and interrater agreement, weighted Cohen's κ coefficients were calculated. The ratings of fatty infiltration showed high intermethod and high interrater agreement (T1-weighted Dixon fast field echo vs T2-weighted Dixon TSE fat image). The evaluation of edematous changes showed high intermethod and good interrater agreement (T2-weighted short-tau inversion recovery vs T2-weighted Dixon TSE water image). T2-weighted Dixon TSE imaging is an alternative for accelerated simultaneous grading of whole-body skeletal muscle fat infiltration and edema in patients with NMDs.
Project Echo: 960-Megacycle, 10-Kilowatt Transmitter
NASA Technical Reports Server (NTRS)
Schafer, J. P.; Brandt, R. H.
1961-01-01
A 10-kw transmitter operating at 960 to 961 Mc was used at the eastern terminus of the Project Echo communications experiment. This transmitter is located on Crawford's Hill near Holmdel, New Jersey. The 10-kw output feeds into a waveguide line leading to a 60-foot dish antenna. Exciter-driver units are available to drive the power amplifier with various modulations, such as wide-deviation FM, low-index phase modulation, single-sideband or double-sideband modulation with or without carrier, 960.05 or 961.05 Mc constant-frequency CW, and radar on-off pulses at 961.05 Mc. The main output amplifier consists primarily of a four-stage, externally-tuned-cavity, water-cooled klystron, operating at a beam voltage of 16 to 18 kv. The transmitter has been operated during many Moonbounce, tropospheric scatter, and Echo I tests with very satisfactory results. This paper describes its use before March 1, 1961.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... that is a unique combination of: (1) multi-gradient Single Point Imaging involving global phase...-encoding gradients. The combination approach of single point imaging with the spin-echo signal detection...
Access to long-term optical memories using photon echoes retrieved from semiconductor spins
NASA Astrophysics Data System (ADS)
Langer, L.; Poltavtsev, S. V.; Yugova, I. A.; Salewski, M.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.
2014-11-01
The ability to store optical information is important for both classical and quantum communication. Achieving this in a comprehensive manner (converting the optical field into material excitation, storing this excitation, and releasing it after a controllable time delay) is greatly complicated by the many, often conflicting, properties of the material. More specifically, optical resonances in semiconductor quantum structures with high oscillator strength are inevitably characterized by short excitation lifetimes (and, therefore, short optical memory). Here, we present a new experimental approach to stimulated photon echoes by transferring the information contained in the optical field into a spin system, where it is decoupled from the optical vacuum field and may persist much longer. We demonstrate this for an n-doped CdTe/(Cd,Mg)Te quantum well, the storage time of which could be increased by more than three orders of magnitude, from the picosecond range up to tens of nanoseconds.
Phase incremented echo train acquisition applied to magnetic resonance pore imaging
NASA Astrophysics Data System (ADS)
Hertel, S. A.; Galvosas, P.
2017-02-01
Efficient phase cycling schemes remain a challenge for NMR techniques if the pulse sequences involve a large number of rf-pulses. Especially complex is the Carr Purcell Meiboom Gill (CPMG) pulse sequence where the number of rf-pulses can range from hundreds to several thousands. Our recent implementation of Magnetic Resonance Pore Imaging (MRPI) is based on a CPMG rf-pulse sequence in order to refocus the effect of internal gradients inherent in porous media. While the spin dynamics for spin- 1 / 2 systems in CPMG like experiments are well understood it is still not straight forward to separate the desired pathway from the spectrum of unwanted coherence pathways. In this contribution we apply Phase Incremented Echo Train Acquisition (PIETA) to MRPI. We show how PIETA offers a convenient way to implement a working phase cycling scheme and how it allows one to gain deeper insights into the amplitudes of undesired pathways.
NMR investigation of the short-chain ionic surfactant-water systems.
Popova, M V; Tchernyshev, Y S; Michel, D
2004-02-03
The structure and dynamics of surfactant molecules [CH3(CH2)7COOK] in heavy water solutions were investigated by 1H and 2H NMR. A double-exponential attenuation of the spin-echo amplitude in a Carr-Purcell-Meiboom-Gill experiment was found. We expect correspondence to both bounded and monomeric states. At high concentrations in the NMR self-diffusion measurements also a double-exponential decay of the spin-echo signal versus the square of the dc magnetic gradient was observed. The slow component of the diffusion process is caused by micellar aggregates, while the fast component is the result of the self-diffusion of the monomers through the micelles. The self-diffusion studies indicate that the form of micelles changes with increasing total surfactant concentration. The critical temperature range for self-association is reflected in the 1H transverse relaxation.
MRI Artifacts of a Metallic Stent Derived From a Human Aorta Specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soto, M. E.; Flores, P.; Marrufo, O.
Magnetic resonance imaging has proved to be a useful technique to get images of the whole body. However, the presence of ferromagnetic material can cause susceptibility artifacts, which result from microscopic gradients that occur near the boundaries between areas displaying different magnetic susceptibility. These gradients cause dephasing of spins and frequency shifts in the surrounding tissues. Intravoxel dephasing and spatial mis-registration can degrade image quality. An aorta with a metallic stent was preserved in formaldehyde at 10% inside acrylic cylinders and used to obtain MR images. We tested pulsed spin echo and gradient echo sequences to improve image quality. Allmore » experiments were performed on a 7T/21 cm Varian system (Varian, Inc, Palo Alto, CA) equipped with Direct Drive technology and a 16-rung birdcage coil transceiver. The presence of metallic stents produces a lack of signal that might give falsely reassuring appearances within the vessel lumen.« less
Electron spin-echo techniques for the study of protein motion
NASA Astrophysics Data System (ADS)
Kar, Leela; Johnson, Michael E.; Bowman, Michael K.
Electron spin-echo (ESE) spectroscopy has been used to make the first direct measurements of spin-spin relaxation times of a spin-labeled protein at physiological temperatures. Results from experiments using maleimide-labeled deoxygenated hemoglobin (dHb) from individuals homozygous for sickle cell anemia (dHbS) have been compared with those from control experiments using dHb from normal adults (dHbA). Hb "immobilized" by ammonium sulfate precipitation and by siloxane polymer entrapment have been studied for a suitable "rigid" reference. Two-dimensional ESE (2D-ESE) experiments have been performed using all of these systems. The 2D contour plots show that 2D-ESE is sensitive to the slow motion of dHbS polymers and can differentiate it from both that of immobilized Hb and of HbA molecules in solution at the same temperature and concentration. More importantly, the 2D-ESE technique enables one to select for slower motion and thereby extract the dHbS polymer signal from the total signal generated by the heterogeneous system containing dHbS molecules in solution as well as in the polymer. Computer simulations using current slow motional theories show that detailed motional and structural information may be obtained by such studies. The considerable potential of 2D-ESE spectroscopy in the study of macromolecular motion is illustrated by comparing 2D-ESE with the nonlinear technique of saturation transfer electron paramagnetic resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardash, Maria E.; Dzuba, Sergei A., E-mail: dzuba@kinetics.nsc.ru
Lipid-cholesterol interactions are responsible for different properties of biological membranes including those determining formation in the membrane of spatial inhomogeneities (lipid rafts). To get new information on these interactions, electron spin echo (ESE) spectroscopy, which is a pulsed version of electron paramagnetic resonance (EPR), was applied to study 3β-doxyl-5α-cholestane (DCh), a spin-labeled analog of cholesterol, in phospholipid bilayer consisted of equimolecular mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine. DCh concentration in the bilayer was between 0.1 mol.% and 4 mol.%. For comparison, a reference system containing a spin-labeled 5-doxyl-stearic acid (5-DSA) instead of DCh was studied as well. The effects of “instantaneousmore » diffusion” in ESE decay and in echo-detected (ED) EPR spectra were explored for both systems. The reference system showed good agreement with the theoretical prediction for the model of spin labels of randomly distributed orientations, but the DCh system demonstrated remarkably smaller effects. The results were explained by assuming that neighboring DCh molecules are oriented in a correlative way. However, this correlation does not imply the formation of clusters of cholesterol molecules, because conventional continuous wave EPR spectra did not show the typical broadening due to aggregation of spin labels and the observed ESE decay was not faster than in the reference system. So the obtained data evidence that cholesterol molecules at low concentrations in biological membranes can interact via large distances of several nanometers which results in their orientational self-ordering.« less
2012-12-31
View of Integrated Cardiovascular (ICV) Echo Ultrasound Scan,in the Columbus module. ICV aims to quantify the extent,time course and clinical significance of cardiac atrophy (decrease in the size of the heart muscle) in space. Photo was taken during Expedition 34.
Modulation of pure spin currents with a ferromagnetic insulator
NASA Astrophysics Data System (ADS)
Villamor, Estitxu; Isasa, Miren; Vélez, Saül; Bedoya-Pinto, Amilcar; Vavassori, Paolo; Hueso, Luis E.; Bergeret, F. Sebastián; Casanova, Fèlix
2015-01-01
We propose and demonstrate spin manipulation by magnetically controlled modulation of pure spin currents in cobalt/copper lateral spin valves, fabricated on top of the magnetic insulator Y3F e5O12 (YIG). The direction of the YIG magnetization can be controlled by a small magnetic field. We observe a clear modulation of the nonlocal resistance as a function of the orientation of the YIG magnetization with respect to the polarization of the spin current. Such a modulation can only be explained by assuming a finite spin-mixing conductance at the Cu/YIG interface, as it follows from the solution of the spin-diffusion equation. These results open a path towards the development of spin logics.
Coherent Two-Dimensional Terahertz Magnetic Resonance Spectroscopy of Collective Spin Waves.
Lu, Jian; Li, Xian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Kurihara, Takayuki; Suemoto, Tohru; Nelson, Keith A
2017-05-19
We report a demonstration of two-dimensional (2D) terahertz (THz) magnetic resonance spectroscopy using the magnetic fields of two time-delayed THz pulses. We apply the methodology to directly reveal the nonlinear responses of collective spin waves (magnons) in a canted antiferromagnetic crystal. The 2D THz spectra show all of the third-order nonlinear magnon signals including magnon spin echoes, and 2-quantum signals that reveal pairwise correlations between magnons at the Brillouin zone center. We also observe second-order nonlinear magnon signals showing resonance-enhanced second-harmonic and difference-frequency generation. Numerical simulations of the spin dynamics reproduce all of the spectral features in excellent agreement with the experimental 2D THz spectra.
Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A
2017-04-01
To develop and assess a new technique for three-dimensional (3D) full lung T1 and T2* mapping using a single free breathing scan during a clinically feasible time. A 3D stack of dual-echo ultrashort echo time (UTE) radial acquisition interleaved with and without a WET (water suppression enhanced through T1 effects) saturation pulse was used to map T1 and T2* simultaneously in a single scan. Correction for modulation due to multiple views per segment was derived. Bloch simulations were performed to study saturation pulse excitation profile on lung tissue. Optimization of the saturation delay time (for T1 mapping) and echo time (for T2* mapping) was performed. Monte Carlo simulation was done to predict accuracy and precision of the sequence with signal-to-noise ratio of in vivo images used in the simulation. A phantom study was carried out using the 3D interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE) sequence and reference standard inversion recovery spin echo sequence (IR-SE) to compare accuracy of the sequence. Nine healthy volunteers were imaged and mean (SD) of T1 and T2* in lung parenchyma at 3T were estimated through manually assisted segmentation. 3D lung coverage with a resolution of 2.5 × 2.5 × 6 mm 3 was performed and nominal scan time was recorded for the scans. Repeatability was assessed in three of the volunteers. Regional differences in T1/T2* values were also assessed. The phantom study showed accuracy of T1 values to be within 2.3% of values obtained from IR-SE. Mean T1 value in lung parenchyma was 1002 ± 82 ms while T2* was 0.85 ± 0.1 ms. Scan time was ∼10 min for volunteer scans. Mean coefficient of variation (CV) across slices was 0.057 and 0.09, respectively. Regional variation along the gravitational direction and between right and left lung were not significant (P = 0.25 and P = 0.06, respectively) for T1. T2* showed significant variation (P = 0.03) along the gravitational direction. Repeatability for three volunteers was within 0.7% for T1 and 1.9% for T2*. 3D T1 and T2* maps of the entire lung can be obtained in a single scan of ∼10 min with a resolution of 2.5 × 2.5 × 6 mm 3 . 2 J. Magn. Reson. Imaging 2017;45:1097-1104. 2016 International Society for Magnetic Resonance in Medicine.
Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe
Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.
2015-01-01
We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. The method can be applied to a wide range of solid-state systems. PMID:26497777
A low-cost spectrometer for NMR measurements in the Earth's magnetic field
NASA Astrophysics Data System (ADS)
Michal, Carl A.
2010-10-01
We describe and demonstrate an inexpensive, easy-to-build, portable spectrometer for nuclear magnetic resonance measurements in the Earth's magnetic field. The spectrometer is based upon a widely available inexpensive microcontroller, which acts as a pulse programmer, audio-frequency synthesizer and digitizer, replacing what are typically the most expensive specialized components of the system. The microcontroller provides the capability to execute arbitrarily long and complicated sequences of phase-coherent, phase-modulated excitation pulses and acquire data sets of unlimited duration. Suitably packaged, the spectrometer is amenable to measurements in the research lab, in the field or in the teaching lab. The choice of components was heavily weighted by cost and availability, but required no significant sacrifice in performance. Using an existing personal computer, the resulting design can be assembled for as little as US200. The spectrometer performance is demonstrated with spin-echo and Carr-Purcell-Meiboom-Gill pulse sequences on a water sample.
NASA Astrophysics Data System (ADS)
Thrippleton, Michael J.; Ball, Thomas J.; Wimperis, Stephen
2008-01-01
The satellite transitions acquired in real time by magic angle spinning (STARTMAS) NMR experiment combines a train of pulses with sample rotation at the magic angle to refocus the first- and second-order quadrupolar broadening of spin I =3/2 nuclei in a series of echoes, while allowing the isotropic chemical and quadrupolar shifts to evolve. The result is real-time isotropic NMR spectra at high spinning rates using conventional MAS equipment. In this paper we describe in detail how STARTMAS data can be acquired and processed with ease on commercial equipment. We also discuss the advantages and limitations of the approach and illustrate the discussion with numerical simulations and experimental data from four different powdered solids.
Epel, Boris; Sundramoorthy, Subramanian V.; Barth, Eugene D.; Mailer, Colin; Halpern, Howard J.
2011-01-01
Purpose: The authors compare two electron paramagnetic resonance imaging modalities at 250 MHz to determine advantages and disadvantages of those modalities for in vivo oxygen imaging. Methods: Electron spin echo (ESE) and continuous wave (CW) methodologies were used to obtain three-dimensional images of a narrow linewidth, water soluble, nontoxic oxygen-sensitive trityl molecule OX063 in vitro and in vivo. The authors also examined sequential images obtained from the same animal injected intravenously with trityl spin probe to determine temporal stability of methodologies. Results: A study of phantoms with different oxygen concentrations revealed a threefold advantage of the ESE methodology in terms of reduced imaging time and more precise oxygen resolution for samples with less than 70 torr oxygen partial pressure. Above∼100 torr, CW performed better. The images produced by both methodologies showed pO2 distributions with similar mean values. However, ESE images demonstrated superior performance in low pO2 regions while missing voxels in high pO2 regions. Conclusions: ESE and CW have different areas of applicability. ESE is superior for hypoxia studies in tumors. PMID:21626937
NASA Astrophysics Data System (ADS)
Jaroniec, Christopher P.; Tounge, Brett A.; Rienstra, Chad M.; Herzfeld, Judith; Griffin, Robert G.
2000-09-01
Heteronuclear dipolar recoupling with rotational-echo double-resonance (REDOR) is investigated in the rapid magic-angle spinning regime, where radiofrequency irradiation occupies a significant fraction of the rotor period (10-60%). We demonstrate, in two model 13C-15N spin systems, [1-13C, 15N] and [2-13C, 15N]glycine, that REDOR ΔS/S0 curves acquired at high MAS rates and relatively low recoupling fields are nearly identical to the ΔS/S0 curve expected for REDOR with ideal δ-function pulses. The only noticeable effect of the finite π pulse length on the recoupling is a minor scaling of the dipolar oscillation frequency. Experimental results are explained using both numerical calculations and average Hamiltonian theory, which is used to derive analytical expressions for evolution under REDOR recoupling sequences with different π pulse phasing schemes. For xy-4 and extensions thereof, finite pulses scale only the dipolar oscillation frequency by a well-defined factor. For other phasing schemes (e.g., xx-4 and xx¯-4) both the frequency and amplitude of the oscillation are expected to change.
NASA Astrophysics Data System (ADS)
Marchetti, Paul S.; Bhattacharyya, Lokesh; Ellis, Paul D.; Brewer, C. Fred
Solid-state 113Cd NMR spectroscopy of static powder samples of 113Cd-substituted metalloproteins, parvalbumin, concanavalin A, and pea and lentil lectins, was carried out. Cross polarization followed by application of a train of uniformly spaced π pulses was employed to investigate the origin of residual cadmium NMR linewidths observed previously in these proteins. Fourier transformation of the resulting spin-echo train yielded spectra consisting of uniformly spaced lines having linewidths of the order of 1-2 ppm. The observed linewidths were not influenced by temperature as low as -50°C or by extent of protein hydration. Since the echo-train pulse sequence is able to eliminate inhomogeneous but not homogeneous contributions to the linewidths, there is a predominant inhomogeneous contribution to cadmium linewidths in the protein CP/MAS spectra. However, significant changes in spectral intensities were observed with change in temperature and extent of protein hydration. These intensity changes are attributed for parvalbumin and concanavalin A to changes in cross-polarization efficiency with temperature and hydration. For pea and lentil lectins, this effect is attributed to the elimination of static disorder at the pea and lentil S2 metal-ion sites due to sugar binding.
Palmucci, Stefano; Roccasalva, Federica; Piccoli, Marina; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ragozzino, Alfonso; Milone, Pietro; Ettorre, Giovanni Carlo
2017-01-01
Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP-based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP.
Music-based magnetic resonance fingerprinting to improve patient comfort during MRI examinations.
Ma, Dan; Pierre, Eric Y; Jiang, Yun; Schluchter, Mark D; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A
2016-06-01
Unpleasant acoustic noise is a drawback of almost every MRI scan. Instead of reducing acoustic noise to improve patient comfort, we propose a technique for mitigating the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and repetition times in a two- and three-dimensional magnetic resonance fingerprinting (MRF) examination. This new acquisition method, named MRF-Music, was used to quantify T1 , T2 , and proton density maps simultaneously while providing pleasing sounds to the patients. MRF-Music scans improved patient comfort significantly during MRI examinations. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. MRF-Music sequence provides significant improvement in patient comfort compared with the MRF scan and other fast imaging techniques such as echo planar imaging and turbo spin echo scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameters simultaneously. Magn Reson Med 75:2303-2314, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Back-clocking of Fe2+/Fe1+ spin states in a H2-producing catalyst by advanced EPR
NASA Astrophysics Data System (ADS)
Stathi, Panagiota; Mitrikas, George; Sanakis, Yiannis; Louloudi, Maria; Deligiannakis, Yiannis
2013-10-01
A mononuclear Fe-(P(PPh2)3) ((P(PPh2)3) = tris[2-diphenylphospino)ethyl]phosphine) catalyst was studied in situ under catalytic conditions using advanced electron paramagnetic resonance (EPR) techniques. Fe-(P(PPh2)3) efficiently catalyses H2 production using HCOOH as substrate. Dual-mode continuous-wave (CW) EPR, used to study the initial Fe2+(S = 2) state, shows that the complex is characterised by a - rather small - zero field splitting parameter Δ = 0.45 cm-1 and geff = 8.0. In the presence of HCOOH substrate the complex evolves and a unique Fe1+(S = 1/2) state is trapped. The Fe1+ atom is coordinated by four 31P nuclei in a pseudo-C3 symmetry. Only a small fraction of the Fe1+ spin density is delocalised onto the 31P atoms. Four-pulse electron spin echo envelope modulation (ESEEM) and two-dimensional hyperfine sublevel correlation spectroscopy (2D-HYSCORE) data reveal the existence of two types of 1H couplings. One corresponds to weak, purely dipolar coupling, tentatively assigned to phenyl protons. The most important is a - rather unusual - 1H coupling with negative Aiso (-2.75 MHz) and strong dipolar part (T = 5.5 MHz). This 1H is located on the pseudo-C3 symmetry axis of the Fe1+-(P(PPh2)3-HCOO- complex where one substrate molecule, formate anion, is coordinated on the Fe1+ atom.
Methods And System Suppressing Clutter In A Gain-Block, Radar-Responsive Tag System
Ormesher, Richard C.; Axline, Robert M.
2006-04-18
Methods and systems reduce clutter interference in a radar-responsive tag system. A radar transmits a series of linear-frequency-modulated pulses and receives echo pulses from nearby terrain and from radar-responsive tags that may be in the imaged scene. Tags in the vicinity of the radar are activated by the radar's pulses. The tags receive and remodulate the radar pulses. Tag processing reverses the direction, in time, of the received waveform's linear frequency modulation. The tag retransmits the remodulated pulses. The radar uses a reversed-chirp de-ramp pulse to process the tag's echo. The invention applies to radar systems compatible with coherent gain-block tags. The invention provides a marked reduction in the strength of residual clutter echoes on each and every echo pulse received by the radar. SAR receiver processing effectively whitens passive-clutter signatures across the range dimension. Clutter suppression of approximately 14 dB is achievable for a typical radar system.
Gubler, F M; Algra, P R; Maas, M; Dijkstra, P F; Falke, T H
1993-01-01
OBJECTIVES--To examine the contents of intraosseous cysts in patients with rheumatoid arthritis (RA) through the signal intensity characteristics on gadolinium-DTPA (Gd-DTPA) enhanced magnetic resonance imaging. METHODS--The hand or foot joints of nine patients with the cystic form of RA (where the initial radiological abnormality consisted of intraosseous cysts without erosions) were imaged before and after intravenous administration of Gd-DTPA. A 0.6 unit, T1 weighted spin echo and T2* weighted gradient echo were used to obtain images in at least two perpendicular planes. RESULTS--Most cysts showed a low signal intensity on the non-enhanced T1 weighted (spin echo) images and a high signal intensity on the T2* weighted (gradient echo) images, consistent with a fluid content. No cyst showed an enhancement of signal intensity on the T1 weighted images after intravenous administration of Gd-DTPA, whereas synovium hyperplasia at the site of bony erosions did show an increased signal intensity after Gd-DTPA. Magnetic resonance imaging detected more cysts (as small as 2 mm) than plain films, and the cysts were located truly intraosseously. In six patients no other joint abnormalities were identified by magnetic resonance imaging; the three other patients also showed, after Gd-DTPA administration, an enhanced synovium at the site of bony erosions. CONCLUSIONS--It is suggested that intraosseous bone cysts in patients with RA do not contain hyperaemic synovial proliferation. The bone cysts in patients with the cystic form of RA may be the only joint abnormality. Images PMID:8257207
NASA Astrophysics Data System (ADS)
Juras, Vladimir; Bittsansky, Michal; Majdisova, Zuzana; Szomolanyi, Pavol; Sulzbacher, Irene; Gäbler, Stefan; Stampfl, Jürgen; Schüller, Georg; Trattnig, Siegfried
2009-03-01
The objective of this study was to evaluate the correlations between MR parameters and the biomechanical properties of naturally degenerated human articular cartilage. Human cartilage explants from the femoral condyles of patients who underwent total knee replacement were evaluated on a micro-imaging system at 3 T. To quantify glycosaminoglycan (GAG) content, delayed gadolinium-enhanced MRI of the cartilage (dGEMRIC) was used. T2 maps were created by using multi-echo, multi-slice spin echo sequences with six echoes: 15, 30, 45, 60, 75, and 90 ms. Data for apparent diffusion constant (ADC) maps were obtained from pulsed gradient spin echo (PGSE) sequences with five b-values: 10.472, 220.0, 627.0, 452.8, 724.5, and 957.7. MR parameters were correlated with mechanical parameters (instantaneous ( I) and equilibrium ( Eq) modulus and relaxation time ( τ)), and the OA stage of each cartilage specimen was determined by histological evaluation of hematoxylin-eosin stained slices. For some parameters, a high correlation was found: the correlation of T1Gd vs Eq ( r = 0.8095), T1Gd vs I/ Eq ( r = -0.8441) and T1Gd vs τ ( r = 0.8469). The correlation of T2 and ADC with selected biomechanical parameters was not statistically significant. In conclusion, GAG content measured by dGEMRIC is highly related to the selected biomechanical properties of naturally degenerated articular cartilage. In contrast, T2 and ADC were unable to estimate these properties. The results of the study imply that some MR parameters can non-invasively predict the biomechanical properties of degenerated articular cartilage.
Age-related apparent diffusion coefficient changes in the normal brain.
Watanabe, Memi; Sakai, Osamu; Ozonoff, Al; Kussman, Steven; Jara, Hernán
2013-02-01
To measure the mean diffusional age-related changes of the brain over the full human life span by using diffusion-weighted spin-echo single-shot echo-planar magnetic resonance (MR) imaging and sequential whole-brain apparent diffusion coefficient (ADC) histogram analysis and, secondarily, to build mathematical models of these normal age-related changes throughout human life. After obtaining institutional review board approval, a HIPAA-compliant retrospective search was conducted for brain MR imaging studies performed in 2007 for various clinical indications. Informed consent was waived. The brain data of 414 healthy subjects (189 males and 225 females; mean age, 33.7 years; age range, 2 days to 89.3 years) were obtained with diffusion-weighted spin-echo single-shot echo-planar MR imaging. ADC histograms of the whole brain were generated. ADC peak values, histogram widths, and intracranial volumes were plotted against age, and model parameters were estimated by using nonlinear regression. Four different stages were identified for aging changes in ADC peak values, as characterized by specific mathematical terms: There were age-associated exponential decays for the maturation period and the development period, a constant term for adulthood, and a linear increase for the senescence period. The age dependency of ADC peak value was simulated by using four-term six-coefficient function, including biexponential and linear terms. This model fit the data very closely (R(2) = 0.91). Brain diffusivity as a whole demonstrated age-related changes through four distinct periods of life. These results could contribute to establishing an ADC baseline of the normal brain, covering the full human life span.
A quantitative experimental phantom study on MRI image uniformity.
Felemban, Doaa; Verdonschot, Rinus G; Iwamoto, Yuri; Uchiyama, Yuka; Kakimoto, Naoya; Kreiborg, Sven; Murakami, Shumei
2018-05-23
Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA). Six metallic materials embedded in a glass phantom were scanned (i.e. Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included spin echo (SE) and gradient echo (GRE) scanned in three planes (i.e. axial, coronal, and sagittal). Moreover, three surface coil types (i.e. head and neck, Brain, and temporomandibular joint coils) and two image correction methods (i.e. surface coil intensity correction or SCIC, phased array uniformity enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the National Electrical Manufacturers Association peak-deviation non-uniformity method. Results showed that temporomandibular joint coils elicited the least uniform image and brain coils outperformed head and neck coils when metallic materials were present. Additionally, when metallic materials were present, spin echo outperformed gradient echo especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e. no significant deviation from images without metallic metals). Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g. coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.
Suh, Chong Hyun; Jung, Seung Chai; Kim, Kyung Won; Pyo, Junhee
2016-09-01
This study aimed to compare the detectability of brain metastases using contrast-enhanced spin-echo (SE) and gradient-echo (GRE) T1-weighted images. The Ovid-MEDLINE and EMBASE databases were searched for studies on the detectability of brain metastases using contrast-enhanced SE or GRE images. The pooled proportions for the detectability of brain metastases were assessed using random-effects modeling. Heterogeneity among studies was determined using χ (2) statistics for the pooled estimates and the inconsistency index, I (2) . To overcome heterogeneity, subgroup analyses according to slice thickness and lesion size were performed. A total of eight eligible studies, which included a sample size of 252 patients and 1413 brain metastases, were included. The detectability of brain metastases using SE images (89.2 %) was higher than using GRE images (81.6 %; adjusted 84.0 %), but this difference was not statistically significant (p = 0.2385). In subgroup analysis of studies with 1-mm-thick slices and small metastases (<5 mm in diameter), 3-dimensional (3D) SE images demonstrated a higher detectability in comparison to 3D GRE images (93.7 % vs 73.1 % in 1-mm-thick slices; 89.5 % vs 59.4 % for small metastases) (p < 0.0001). Although both SE or GRE images are acceptable for detecting brain metastases, contrast-enhanced 3D SE images using 1-mm-thick slices are preferred for detecting brain metastases, especially small lesions (<5 mm in diameter).
Cohen, Alexander D; Nencka, Andrew S; Lebel, R Marc; Wang, Yang
2017-01-01
A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.
Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.
ERIC Educational Resources Information Center
Chesick, John P.
1989-01-01
Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)
Chekhovich, E.A.; Hopkinson, M.; Skolnick, M.S.; Tartakovskii, A.I.
2015-01-01
Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear–nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2–4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639
Intensity inhomogeneity correction for magnetic resonance imaging of human brain at 7T.
Uwano, Ikuko; Kudo, Kohsuke; Yamashita, Fumio; Goodwin, Jonathan; Higuchi, Satomi; Ito, Kenji; Harada, Taisuke; Ogawa, Akira; Sasaki, Makoto
2014-02-01
To evaluate the performance and efficacy for intensity inhomogeneity correction of various sequences of the human brain in 7T MRI using the extended version of the unified segmentation algorithm. Ten healthy volunteers were scanned with four different sequences (2D spin echo [SE], 3D fast SE, 2D fast spoiled gradient echo, and 3D time-of-flight) by using a 7T MRI system. Intensity inhomogeneity correction was performed using the "New Segment" module in SPM8 with four different values (120, 90, 60, and 30 mm) of full width at half maximum (FWHM) in Gaussian smoothness. The uniformity in signals in the entire white matter was evaluated using the coefficient of variation (CV); mean signal intensities between the subcortical and deep white matter were compared, and contrast between subcortical white matter and gray matter was measured. The length of the lenticulostriate (LSA) was measured on maximum intensity projection (MIP) images in the original and corrected images. In all sequences, the CV decreased as the FWHM value decreased. The differences of mean signal intensities between subcortical and deep white matter also decreased with smaller FWHM values. The contrast between white and gray matter was maintained at all FWHM values. LSA length was significantly greater in corrected MIP than in the original MIP images. Intensity inhomogeneity in 7T MRI can be successfully corrected using SPM8 for various scan sequences.
Time-Dependent Influence of Cell Membrane Permeability on MR Diffusion Measurements
Li, Hua; Jiang, Xiaoyu; Xie, Jingping; McIntyre, J. Oliver; Gore, John C.; Xu, Junzhong
2015-01-01
Purpose To investigate the influence of cell membrane permeability on diffusion measurements over a broad range of diffusion times. Methods Human myelogenous leukemia K562 cells were cultured and treated with saponin to selectively alter cell membrane permeability, resulting in a broad physiologically relevant range from 0.011 μm/ms to 0.044 μm/ms. Apparent diffusion coefficient (ADC) values were acquired with the effective diffusion time (Δeff) ranging from 0.42 to 3000 ms. Cosine-modulated oscillating gradient spin echo (OGSE) measurements were performed to achieve short Δeff from 0.42 to 5 ms, while stimulated echo acquisitions (STEAM) were used to achieve long Δeff from 11 to 2999 ms. Computer simulations were also performed to support the experimental results. Results Both computer simulations and experiments in vitro showed that the influence of membrane permeability on diffusion MR measurements is highly dependent on the choice of diffusion time, and it is negligible only when the diffusion time is at least one order of magnitude smaller than the intracellular exchange lifetime. Conclusion The influence of cell membrane permeability on the measured ADCs is negligible in OGSE measurements at moderately high frequencies. By contrast, cell membrane permeability has a significant influence on ADC and quantitative diffusion measurements at low frequencies such as those sampled using conventional pulsed gradient methods. PMID:26096552
Spin coherence and 14N ESEEM effects of nitrogen-vacancy centers in diamond with X-band pulsed ESR
Rose, B. C.; Weis, C. D.; Tyryshkin, A. M.; ...
2016-12-20
Pulsed ESR experiments are reported for ensembles of negatively-charged nitrogen-vacancy centers (NV - ) in diamonds at X-band magnetic fields (280–400 mT) and low temperatures (2–70 K). The NV - centers in synthetic type IIa diamonds (nitrogen impurity concentration < 1 ppm) are prepared with bulk concentrations of 2 • 10 13 cm -3 to 4• 10 14 cm -3 by high-energy electron irradiation and subsequent annealing. We find that a proper post-radiation anneal (1000°C for 60 min) is very important to repair the radiation damage and to recover long electron spin coherence times for NV more » - s. After the annealing, spin coherence times of T 2 = 0.74ms at 5 K are achieved, being only limited by 13 C nuclear spectral diffusion in natural abundance diamonds. By measuring the temperature dependence of T 2 in the under-annealed diamonds (900°C) we directly extract the density (10 14 -16 cm -3 ) and activation energy (2.5 meV) of unannealed defects responsible for the faster NV - decoherence. At X-band magnetic fields, strong electron spin echo envelope modulation (ESEEM) is observed originating from the central 14 N nucleus, and we extract accurate 14 N nuclear hypefine and quadrupole tensors. In addition, the ESEEM effects from two proximal 13 C sites (second-nearest neighbor and fourth-nearest neighbor) are resolved and the respective 13 C hyperfine coupling constants are extracted.« less
53Cr NMR study of CuCrO2 multiferroic
NASA Astrophysics Data System (ADS)
Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Yakubovskii, A. Yu.; Kumagai, K.; Furukawa, Y.; Sadykov, A. F.; Piskunov, Yu. V.; Gerashchenko, A. P.; Barilo, S. N.; Shiryaev, S. V.
2015-11-01
The magnetically ordered phase of the CuCrO2 single crystal has been studied by the nuclear magnetic resonance (NMR) method on 53Cr nuclei in the absence of an external magnetic field. The 53Cr NMR spectrum is observed in the frequency range νres = 61-66 MHz. The shape of the spectrum depends on the delay tdel between pulses in the pulse sequence τπ/2- t del-τπ- t del-echo. The spin-spin and spin-lattice relaxation times have been measured. Components of the electric field gradient, hyperfine fields, and the magnetic moment on chromium atoms have been estimated.
Zero-field optical magnetic resonance study of phosphorus donors in 28-silicon
NASA Astrophysics Data System (ADS)
Morse, Kevin J.; Dluhy, Phillip; Huber, Julian; Salvail, Jeff Z.; Saeedi, Kamyar; Riemann, Helge; Abrosimov, Nikolay V.; Becker, Peter; Pohl, Hans-Joachim; Simmons, S.; Thewalt, M. L. W.
2018-03-01
Donor spins in silicon are some of the most promising qubits for upcoming solid-state quantum technologies. The nuclear spins of phosphorus donors in enriched silicon have among the longest coherence times of any solid-state system as well as simultaneous high fidelity qubit initialization, manipulation, and readout. Here we characterize the phosphorus in silicon system in the regime of "zero" magnetic field, where a singlet-triplet spin clock transition can be accessed, using laser spectroscopy and magnetic resonance methods. We show the system can be optically hyperpolarized and has ˜10 s Hahn echo coherence times, even for applied static magnetic fields below Earth's field.
Barat, Maxime; Soyer, Philippe; Dautry, Raphael; Pocard, Marc; Lo-Dico, Rea; Najah, Haythem; Eveno, Clarisse; Cassinotto, Christophe; Dohan, Anthony
2018-03-01
To assess the performances of three-dimensional (3D)-T2-weighted sequences compared to standard T2-weighted turbo spin echo (T2-TSE), T2-half-Fourier acquisition single-shot turbo spin-echo (T2-HASTE), diffusion weighted imaging (DWI) and 3D-T1-weighted VIBE sequences in the preoperative detection of malignant liver tumors. From 2012 to 2015, all patients of our institution undergoing magnetic resonance imaging (MRI) examination for suspected malignant liver tumors were prospectively included. Patients had contrast-enhanced 3D-T1-weighted, DWI, 3D-T2-SPACE, T2-HASTE and T2-TSE sequences. Imaging findings were compared with those obtained at follow-up, surgery and histopathological analysis. Sensitivities for the detection of malignant liver tumors were compared for each sequence using McNemar test. A subgroup analysis was conducted for HCCs. Image artifacts were analyzed and compared using Wilcoxon paired signed rank-test. Thirty-three patients were included: 13 patients had 40 hepatocellular carcinomas (HCC) and 20 had 54 liver metastases. 3D-T2-weighted sequences had a higher sensitivity than T2-weighted TSE sequences for the detection of malignant liver tumors (79.8% versus 68.1%; P < 0.001). The difference did not reach significance for HCC. T1-weighted VIBE and DWI had a higher sensitivity than T2-weighted sequences. 3D-T2-weighted-SPACE sequences showed significantly less artifacts than T2-weitghted TSE. 3D-T2-weighted sequences show very promising performances for the detection of liver malignant tumors compared to T2-weighted TSE sequences. Copyright © 2018 Elsevier B.V. All rights reserved.
Falzone, Cristian; Rossi, Federica; Calistri, Maurizio; Tranquillo, Massimo; Baroni, Massimo
2008-01-01
In humans, contrast-enhanced fluid-attenuated inversion recovery (FLAIR) imaging plays an important role in detecting brain disease. The aim of this study was to define the clinical utility of contrast-enhanced FLAIR imaging by comparing the results with those with contrast-enhanced spin echo T1-weighted images (SE T1WI) in animals with different brain disorders. Forty-one dogs and five cats with a clinical suspicion of brain disease and 30 normal animals (25 dogs and five cats) were evaluated using a 0.2 T permanent magnet. Before contrast medium injection, spin echo T1-weighted, SE T1WI, and FLAIR sequences were acquired in three planes. SE T1WI and FLAIR images were also acquired after gadolinium injection. Sensitivity in detecting the number, location, margin, and enhancement pattern and rate were evaluated. No lesions were found in a normal animal. In affected animals, 48 lesions in 34 patients were detected in contrast-enhanced SE T1WI whereas 81 lesions in 44 patients were detected in contrast-enhanced FLAIR images. There was no difference in the characteristics of the margins or enhancement pattern of the detected lesions. The objective enhancement rate, the mean value between lesion-to-white matter ratio and lesion-to-gray matter ratio, although representing an overlap of T1 and T2 effects and not pure contrast medium shortening of T1 relaxation, was better in contrast-enhanced FLAIR images. These results suggest a superiority of contrast-enhanced FLAIR images as compared with contrast-enhanced SE T1WI in detecting enhancing brain lesions.
Shemesh, Noam; Alvarez, Gonzalo A; Frydman, Lucio
2013-12-01
Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N-1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N-1)x+y≡TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.
Skinner, Jack T; Robison, Ryan K; Elder, Christopher P; Newton, Allen T; Damon, Bruce M; Quarles, C Chad
2014-12-01
Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate with muscle oxy-hemoglobin saturation. Copyright © 2014 Elsevier Inc. All rights reserved.
Taylor, Brian A.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason
2009-01-01
The authors investigated the performance of the iterative Steiglitz–McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (≤16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer–Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR)≥5 for echo train lengths (ETLs)≥4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and∕or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with ≥4 echoes and for T2* (<1.0%) with ≥7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire ≤16 echoes for one- and two-peak systems. Preliminary ex vivo and in vivo experiments corroborated the results from simulation experiments and further indicate the potential of this technique for MR-guided interventional procedures with high spatiotemporal resolution ∼1.6×1.6×4 mm3 in ≤5 s. PMID:19378736
Fan, Zhaoyang; Yang, Qi; Deng, Zixin; Li, Yuxia; Bi, Xiaoming; Song, Shlee; Li, Debiao
2017-03-01
Although three-dimensional (3D) turbo spin echo (TSE) with variable flip angles has proven to be useful for intracranial vessel wall imaging, it is associated with inadequate suppression of cerebrospinal fluid (CSF) signals and limited spatial coverage at 3 Tesla (T). This work aimed to modify the sequence and develop a protocol to achieve whole-brain, CSF-attenuated T 1 -weighted vessel wall imaging. Nonselective excitation and a flip-down radiofrequency pulse module were incorporated into a commercial 3D TSE sequence. A protocol based on the sequence was designed to achieve T 1 -weighted vessel wall imaging with whole-brain spatial coverage, enhanced CSF-signal suppression, and isotropic 0.5-mm resolution. Human volunteer and pilot patient studies were performed to qualitatively and quantitatively demonstrate the advantages of the sequence. Compared with the original sequence, the modified sequence significantly improved the T 1 -weighted image contrast score (2.07 ± 0.19 versus 3.00 ± 0.00, P = 0.011), vessel wall-to-CSF contrast ratio (0.14 ± 0.16 versus 0.52 ± 0.30, P = 0.007) and contrast-to-noise ratio (1.69 ± 2.18 versus 4.26 ± 2.30, P = 0.022). Significant improvement in vessel wall outer boundary sharpness was observed in several major arterial segments. The new 3D TSE sequence allows for high-quality T 1 -weighted intracranial vessel wall imaging at 3 T. It may potentially aid in depicting small arteries and revealing T 1 -mediated high-signal wall abnormalities. Magn Reson Med 77:1142-1150, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Steer-PROP: a GRASE-PROPELLER sequence with interecho steering gradient pulses.
Srinivasan, Girish; Rangwala, Novena; Zhou, Xiaohong Joe
2018-05-01
This study demonstrates a novel PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) pulse sequence, termed Steer-PROP, based on gradient and spin echo (GRASE), to reduce the imaging times and address phase errors inherent to GRASE. The study also illustrates the feasibility of using Steer-PROP as an alternative to single-shot echo planar imaging (SS-EPI) to produce distortion-free diffusion images in all imaging planes. Steer-PROP uses a series of blip gradient pulses to produce N (N = 3-5) adjacent k-space blades in each repetition time, where N is the number of gradient echoes in a GRASE sequence. This sampling strategy enables a phase correction algorithm to systematically address the GRASE phase errors as well as the motion-induced phase inconsistency. Steer-PROP was evaluated on phantoms and healthy human subjects at both 1.5T and 3.0T for T 2 - and diffusion-weighted imaging. Steer-PROP produced similar image quality as conventional PROPELLER based on fast spin echo (FSE), while taking only a fraction (e.g., 1/3) of the scan time. The robustness against motion in Steer-PROP was comparable to that of FSE-based PROPELLER. Using Steer-PROP, high quality and distortion-free diffusion images were obtained from human subjects in all imaging planes, demonstrating a considerable advantage over SS-EPI. The proposed Steer-PROP sequence can substantially reduce the scan times compared with FSE-based PROPELLER while achieving adequate image quality. The novel k-space sampling strategy in Steer-PROP not only enables an integrated phase correction method that addresses various sources of phase errors, but also minimizes the echo spacing compared with alternative sampling strategies. Steer-PROP can also be a viable alternative to SS-EPI to decrease image distortion in all imaging planes. Magn Reson Med 79:2533-2541, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Mariappan, Yogesh K.; Dzyubak, Bogdan; Glaser, Kevin J.; Venkatesh, Sudhakar K.; Sirlin, Claude B.; Hooker, Jonathan; McGee, Kiaran P.
2017-01-01
Purpose To (a) evaluate modified spin-echo (SE) magnetic resonance (MR) elastographic sequences for acquiring MR images with improved signal-to-noise ratio (SNR) in patients in whom the standard gradient-echo (GRE) MR elastographic sequence yields low hepatic signal intensity and (b) compare the stiffness values obtained with these sequences with those obtained with the conventional GRE sequence. Materials and Methods This HIPAA-compliant retrospective study was approved by the institutional review board; the requirement to obtain informed consent was waived. Data obtained with modified SE and SE echo-planar imaging (EPI) MR elastographic pulse sequences with short echo times were compared with those obtained with the conventional GRE MR elastographic sequence in two patient cohorts, one that exhibited adequate liver signal intensity and one that exhibited low liver signal intensity. Shear stiffness values obtained with the three sequences in 130 patients with successful GRE-based examinations were retrospectively tested for statistical equivalence by using a 5% margin. In 47 patients in whom GRE examinations were considered to have failed because of low SNR, the SNR and confidence level with the SE-based sequences were compared with those with the GRE sequence. Results The results of this study helped confirm the equivalence of SE MR elastography and SE-EPI MR elastography to GRE MR elastography (P = .0212 and P = .0001, respectively). The SE and SE-EPI MR elastographic sequences provided substantially improved SNR and stiffness inversion confidence level in 47 patients in whom GRE MR elastography had failed. Conclusion Modified SE-based MR elastographic sequences provide higher SNR MR elastographic data and reliable stiffness measurements; thus, they enable quantification of stiffness in patients in whom the conventional GRE MR elastographic sequence failed owing to low signal intensity. The equivalence of the three sequences indicates that the current diagnostic thresholds are applicable to SE MR elastographic sequences for assessing liver fibrosis. © RSNA, 2016 PMID:27509543
Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe
Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.
2015-10-26
We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonancemore » can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanaya, T.; Takahashi, N.; Nishida, K.
2005-01-01
We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does includemore » only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.« less
Dynamic and static fluctuations in polymer gels studied by neutron spin-echo
NASA Astrophysics Data System (ADS)
Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeba, Y.
2006-11-01
We report neutron spin-echo measurements on three types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, the second is PVA gel in an aqueous borax solution and the third is chemically cross-linked PVA gel. The observed normalized intermediate scattering functions I( Q, t)/ I( Q,0) were very different among them. The I( Q, t)/ I( Q,0) of the first and third gels showed a non-decaying component in addition to a decaying component, but the second one did not have the non-decaying one. This clearly indicates that the fluctuations in the first and third PVA gels consist of static and dynamic fluctuations whereas the second PVA gel does include only the dynamic fluctuations. The dynamic and static fluctuations of the PVA gels were analyzed in terms of a restricted motion in the gel network and the Zimm motion, respectively.
Motion Correction in PROPELLER and Turboprop-MRI
Tamhane, Ashish A.; Arfanakis, Konstantinos
2009-01-01
PROPELLER and Turboprop-MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo and gradient and spin-echo, respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop-MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that, blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop-MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction were discussed for PROPELLER and Turboprop-MRI. PMID:19365858
Inoue, Yuuji; Yoneyama, Masami; Nakamura, Masanobu; Takemura, Atsushi
2018-06-01
The two-dimensional Cartesian turbo spin-echo (TSE) sequence is widely used in routine clinical studies, but it is sensitive to respiratory motion. We investigated the k-space orders in Cartesian TSE that can effectively reduce motion artifacts. The purpose of this study was to demonstrate the relationship between k-space order and degree of motion artifacts using a moving phantom. We compared the degree of motion artifacts between linear and asymmetric k-space orders. The actual spacing of ghost artifacts in the asymmetric order was doubled compared with that in the linear order in the free-breathing situation. The asymmetric order clearly showed less sensitivity to incomplete breath-hold at the latter half of the imaging period. Because of the actual number of partitions of the k-space and the temporal filling order, the asymmetric k-space order of Cartesian TSE was superior to the linear k-space order for reduction of ghosting motion artifacts.
Classical analogs for Rabi-oscillations, Ramsey-fringes, and spin-echo in Josephson junctions
NASA Astrophysics Data System (ADS)
Marchese, J. E.; Cirillo, M.; Grønbech-Jensen, N.
2007-08-01
We investigate the results of recently published experiments on the quantum behavior of Josephson circuits in terms of the classical modeling based on the resistively and capacitively-shunted (RCSJ) junction model. Our analysis shows evidence for a close analogy between the nonlinear behavior of a pulsed microwave-driven Josephson junction at low temperature and low dissipation and the experimental observations reported for the Josephson circuits. Specifically, we demonstrate that Rabi-oscillations, Ramsey-fringes, and spin-echo observations are not phenomena with a unique quantum interpretation. In fact, they are natural consequences of transients to phase-locking in classical nonlinear dynamics and can be observed in a purely classical model of a Josephson junction when the experimental recipe for the application of microwaves is followed and the experimental detection scheme followed. We therefore conclude that classical nonlinear dynamics can contribute to the understanding of relevant experimental observations of Josephson response to various microwave perturbations at very low temperature and low dissipation.
NASA Astrophysics Data System (ADS)
Bannenberg, L. J.; Kakurai, K.; Falus, P.; Lelièvre-Berna, E.; Dalgliesh, R.; Dewhurst, C. D.; Qian, F.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.
2017-04-01
We present a comprehensive small angle neutron scattering and neutron spin echo spectroscopy study of the structural and dynamical aspects of the helimagnetic transition in Fe1 -xCoxSi with x =0.30 . In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1 -xCoxSi is gradual, and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1 -xCoxSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets.
Self-diffusion imaging by spin echo in Earth's magnetic field.
Mohoric, A; Stepisnik, J; Kos, M; Planinsi
1999-01-01
The NMR of the Earth's magnetic field is used for diffusion-weighted imaging of phantoms. Due to a weak Larmor field, care needs to be taken regarding the use of the usual high field assumption in calculating the effect of the applied inhomogeneous magnetic field. The usual definition of the magnetic field gradient must be replaced by a generalized formula valid when the strength of a nonuniform magnetic field and a Larmor field are comparable (J. Stepisnik, Z. Phys. Chem. 190, 51-62 (1995)). It turns out that the expression for spin echo attenuation is identical to the well-known Torrey formula only when the applied nonuniform field has a proper symmetry. This kind of problem may occur in a strong Larmor field as well as when the slow diffusion rate of particles needs an extremely strong gradient to be applied. The measurements of the geomagnetic field NMR demonstrate the usefulness of the method for diffusion and flow-weighted imaging. Copyright 1999 Academic Press.
2011-01-01
Purpose To theoretically develop and experimentally validate a formulism based on a fractional order calculus (FC) diffusion model to characterize anomalous diffusion in brain tissues measured with a twice-refocused spin-echo (TRSE) pulse sequence. Materials and Methods The FC diffusion model is the fractional order generalization of the Bloch-Torrey equation. Using this model, an analytical expression was derived to describe the diffusion-induced signal attenuation in a TRSE pulse sequence. To experimentally validate this expression, a set of diffusion-weighted (DW) images was acquired at 3 Tesla from healthy human brains using a TRSE sequence with twelve b-values ranging from 0 to 2,600 s/mm2. For comparison, DW images were also acquired using a Stejskal-Tanner diffusion gradient in a single-shot spin-echo echo planar sequence. For both datasets, a Levenberg-Marquardt fitting algorithm was used to extract three parameters: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). Using adjusted R-squared values and standard deviations, D, β and μ values and the goodness-of-fit in three specific regions of interest (ROI) in white matter, gray matter, and cerebrospinal fluid were evaluated for each of the two datasets. In addition, spatially resolved parametric maps were assessed qualitatively. Results The analytical expression for the TRSE sequence, derived from the FC diffusion model, accurately characterized the diffusion-induced signal loss in brain tissues at high b-values. In the selected ROIs, the goodness-of-fit and standard deviations for the TRSE dataset were comparable with the results obtained from the Stejskal-Tanner dataset, demonstrating the robustness of the FC model across multiple data acquisition strategies. Qualitatively, the D, β, and μ maps from the TRSE dataset exhibited fewer artifacts, reflecting the improved immunity to eddy currents. Conclusion The diffusion-induced signal attenuation in a TRSE pulse sequence can be described by an FC diffusion model at high b-values. This model performs equally well for data acquired from the human brain tissues with a TRSE pulse sequence or a conventional Stejskal-Tanner sequence. PMID:21509877
Gao, Qing; Srinivasan, Girish; Magin, Richard L; Zhou, Xiaohong Joe
2011-05-01
To theoretically develop and experimentally validate a formulism based on a fractional order calculus (FC) diffusion model to characterize anomalous diffusion in brain tissues measured with a twice-refocused spin-echo (TRSE) pulse sequence. The FC diffusion model is the fractional order generalization of the Bloch-Torrey equation. Using this model, an analytical expression was derived to describe the diffusion-induced signal attenuation in a TRSE pulse sequence. To experimentally validate this expression, a set of diffusion-weighted (DW) images was acquired at 3 Tesla from healthy human brains using a TRSE sequence with twelve b-values ranging from 0 to 2600 s/mm(2). For comparison, DW images were also acquired using a Stejskal-Tanner diffusion gradient in a single-shot spin-echo echo planar sequence. For both datasets, a Levenberg-Marquardt fitting algorithm was used to extract three parameters: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). Using adjusted R-squared values and standard deviations, D, β, and μ values and the goodness-of-fit in three specific regions of interest (ROIs) in white matter, gray matter, and cerebrospinal fluid, respectively, were evaluated for each of the two datasets. In addition, spatially resolved parametric maps were assessed qualitatively. The analytical expression for the TRSE sequence, derived from the FC diffusion model, accurately characterized the diffusion-induced signal loss in brain tissues at high b-values. In the selected ROIs, the goodness-of-fit and standard deviations for the TRSE dataset were comparable with the results obtained from the Stejskal-Tanner dataset, demonstrating the robustness of the FC model across multiple data acquisition strategies. Qualitatively, the D, β, and μ maps from the TRSE dataset exhibited fewer artifacts, reflecting the improved immunity to eddy currents. The diffusion-induced signal attenuation in a TRSE pulse sequence can be described by an FC diffusion model at high b-values. This model performs equally well for data acquired from the human brain tissues with a TRSE pulse sequence or a conventional Stejskal-Tanner sequence. Copyright © 2011 Wiley-Liss, Inc.
Thermal imaging of spin Peltier effect
NASA Astrophysics Data System (ADS)
Daimon, Shunsuke; Iguchi, Ryo; Hioki, Tomosato; Saitoh, Eiji; Uchida, Ken-Ichi
2016-12-01
The Peltier effect modulates the temperature of a junction comprising two different conductors in response to charge currents across the junction, which is used in solid-state heat pumps and temperature controllers in electronics. Recently, in spintronics, a spin counterpart of the Peltier effect was observed. The `spin Peltier effect' modulates the temperature of a magnetic junction in response to spin currents. Here we report thermal imaging of the spin Peltier effect; using active thermography technique, we visualize the temperature modulation induced by spin currents injected into a magnetic insulator from an adjacent metal. The thermal images reveal characteristic distribution of spin-current-induced heat sources, resulting in the temperature change confined only in the vicinity of the metal/insulator interface. This finding allows us to estimate the actual magnitude of the temperature modulation induced by the spin Peltier effect, which is more than one order of magnitude greater than previously believed.
Kholmovski, Eugene G; Parker, Dennis L
2005-07-01
There is a considerable similarity between proton density-weighted (PDw) and T2-weighted (T2w) images acquired by dual echo fast spin-echo (FSE) sequences. The similarity manifests itself not only in image space as correspondence between intensities of PDw and T2w images, but also in phase space as consistency between phases of PDw and T2w images. Methods for improving the imaging efficiency and image quality of dual echo FSE sequences based on this feature have been developed. The total scan time of dual echo FSE acquisition may be reduced by as much as 25% by incorporating an estimate of the image phase from a fully sampled PDw image when reconstructing partially sampled T2w images. The quality of T2w images acquired using phased array coils may be significantly improved by using the developed noise reduction reconstruction scheme, which is based on the correspondence between the PDw and T2w image intensities and the consistency between the PDw and T2w image phases. Studies of phantom and human subject MRI data were performed to evaluate the effectiveness of the techniques.
X-PROP: a fast and robust diffusion-weighted propeller technique.
Li, Zhiqiang; Pipe, James G; Lee, Chu-Yu; Debbins, Josef P; Karis, John P; Huo, Donglai
2011-08-01
Diffusion-weighted imaging (DWI) has shown great benefits in clinical MR exams. However, current DWI techniques have shortcomings of sensitivity to distortion or long scan times or combinations of the two. Diffusion-weighted echo-planar imaging (EPI) is fast but suffers from severe geometric distortion. Periodically rotated overlapping parallel lines with enhanced reconstruction diffusion-weighted imaging (PROPELLER DWI) is free of geometric distortion, but the scan time is usually long and imposes high Specific Absorption Rate (SAR) especially at high fields. TurboPROP was proposed to accelerate the scan by combining signal from gradient echoes, but the off-resonance artifacts from gradient echoes can still degrade the image quality. In this study, a new method called X-PROP is presented. Similar to TurboPROP, it uses gradient echoes to reduce the scan time. By separating the gradient and spin echoes into individual blades and removing the off-resonance phase, the off-resonance artifacts in X-PROP are minimized. Special reconstruction processes are applied on these blades to correct for the motion artifacts. In vivo results show its advantages over EPI, PROPELLER DWI, and TurboPROP techniques. Copyright © 2011 Wiley-Liss, Inc.
Echoes from the abyss: Tentative evidence for Planck-scale structure at black hole horizons
NASA Astrophysics Data System (ADS)
Abedi, Jahed; Dykaar, Hannah; Afshordi, Niayesh
2017-10-01
In classical general relativity (GR), an observer falling into an astrophysical black hole is not expected to experience anything dramatic as she crosses the event horizon. However, tentative resolutions to problems in quantum gravity, such as the cosmological constant problem, or the black hole information paradox, invoke significant departures from classicality in the vicinity of the horizon. It was recently pointed out that such near-horizon structures can lead to late-time echoes in the black hole merger gravitational wave signals that are otherwise indistinguishable from GR. We search for observational signatures of these echoes in the gravitational wave data released by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), following the three black hole merger events GW150914, GW151226, and LVT151012. In particular, we look for repeating damped echoes with time delays of 8 M log M (+spin corrections, in Planck units), corresponding to Planck-scale departures from GR near their respective horizons. Accounting for the "look elsewhere" effect due to uncertainty in the echo template, we find tentative evidence for Planck-scale structure near black hole horizons at false detection probability of 1% (corresponding to 2.5 σ
GRE T2∗-Weighted MRI: Principles and Clinical Applications
Tang, Meng Yue; Chen, Tian Wu; Zhang, Xiao Ming; Huang, Xiao Hua
2014-01-01
The sequence of a multiecho gradient recalled echo (GRE) T2*-weighted imaging (T2*WI) is a relatively new magnetic resonance imaging (MRI) technique. In contrast to T2 relaxation, which acquires a spin echo signal, T2* relaxation acquires a gradient echo signal. The sequence of a GRE T2*WI requires high uniformity of the magnetic field. GRE T2*WI can detect the smallest changes in uniformity in the magnetic field and can improve the rate of small lesion detection. In addition, the T2* value can indirectly reflect changes in tissue biochemical components. Moreover, it can be used for the early diagnosis and quantitative diagnosis of some diseases. This paper reviews the principles and clinical applications as well as the advantages and disadvantages of GRE T2*WI. PMID:24987676
Corticofugal modulation of time-domain processing of biosonar information in bats.
Yan, J; Suga, N
1996-08-23
The Jamaican mustached bat has delay-tuned neurons in the inferior colliculus, medial geniculate body, and auditory cortex. The responses of these neurons to an echo are facilitated by a biosonar pulse emitted by the bat when the echo returns with a particular delay from a target located at a particular distance. Electrical stimulation of cortical delay-tuned neurons increases the delay-tuned responses of collicular neurons tuned to the same echo delay as the cortical neurons and decreases those of collicular neurons tuned to different echo delays. Cortical neurons improve information processing in the inferior colliculus by way of the corticocollicular projection.
Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature
NASA Astrophysics Data System (ADS)
Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi
2014-09-01
Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.
Quantum memory operations in a flux qubit - spin ensemble hybrid system
NASA Astrophysics Data System (ADS)
Saito, S.; Zhu, X.; Amsuss, R.; Matsuzaki, Y.; Kakuyanagi, K.; Shimo-Oka, T.; Mizuochi, N.; Nemoto, K.; Munro, W. J.; Semba, K.
2014-03-01
Superconducting quantum bits (qubits) are one of the most promising candidates for a future large-scale quantum processor. However for larger scale realizations the currently reported coherence times of these macroscopic objects (superconducting qubits) has not yet reached those of microscopic systems (electron spins, nuclear spins, etc). In this context, a superconductor-spin ensemble hybrid system has attracted considerable attention. The spin ensemble could operate as a quantum memory for superconducting qubits. We have experimentally demonstrated quantum memory operations in a superconductor-diamond hybrid system. An excited state and a superposition state prepared in the flux qubit can be transferred to, stored in and retrieved from the NV spin ensemble in diamond. From these experiments, we have found the coherence time of the spin ensemble is limited by the inhomogeneous broadening of the electron spin (4.4 MHz) and by the hyperfine coupling to nitrogen nuclear spins (2.3 MHz). In the future, spin echo techniques could eliminate these effects and elongate the coherence time. Our results are a significant first step in utilizing the spin ensemble as long-lived quantum memory for superconducting flux qubits. This work was supported by the FIRST program and NICT.
Sun, Yang; Zhao, Shukui; Dayton, Paul A; Ferrara, Katherine W
2006-06-01
Rayleigh-Plesset analysis, ultra-high speed photography, and single bubble acoustical recordings previously were applied independently to characterize the radial oscillation and resulting echoes from a microbubble in response to an ultrasonic pulse. In addition, high-speed photography has shown that microbubbles are destroyed over a single pulse or pulse train by diffusion and fragmentation. In order to develop a single model to characterize microbubble echoes based on oscillatory and destructive characteristics, an optical-acoustical system was developed to simultaneously record the optical image and backscattered echo from each microbubble. Combined observation provides the opportunity to compare predictions for oscillation and echoes with experimental results and identify discrepancies due to diffusion or fragmentation. Optimization of agents and insonating pulse parameters may be facilitated with this system. The mean correlation of the predicted and experimental radius-time curves and echoes exceeds 0.7 for the parameters studied here. An important application of this new system is to record and analyze microbubble response to a long pulse in which diffusion is shown to occur over the pulse duration. The microbubble response to an increasing or decreasing chirp is evaluated using this new tool. For chirp insonation beginning with the lower center frequency, low-frequency modulation of the oscillation envelope was obvious. However, low-frequency modulation was not observed in the radial oscillation produced by decreasing chirp insonation. Comparison of the echoes from similar sized microbubbles following increasing and decreasing chirp insonation demonstrated that the echoes were not time-reversed replicas. Using a transmission pressure of 620 kPa, the -6 dB echo length was 0.9 and 1.1 micros for increasing and decreasing chirp insonation, respectively (P = 0.02). The mean power in the low-frequency portion of the echoes was 8 (mV)2 and 13 (mV)2 for increasing and decreasing chirp insonation, respectively (P = 0.01).
Sun, Yang; Zhao, Shukui; Dayton, Paul A.; Ferrara, Katherine W.
2006-01-01
Rayleigh-Plesset analysis, ultra-high speed photography, and single bubble acoustical recordings have previously been applied independently to characterize the radial oscillation and resulting echoes from a microbubble in response to an ultrasonic pulse. In addition, high speed photography has shown that microbubbles are destroyed over a single pulse or pulse train by diffusion and fragmentation. In order to develop a single model to characterize microbubble echoes based on oscillatory and destructive characteristics, an optical-acoustical system was developed to simultaneously record the optical image and backscattered echo from each microbubble. Combined observation provides the opportunity to compare predictions for oscillation and echoes with experimental results and identify discrepancies due to diffusion or fragmentation. Optimization of agents and insonating pulse parameters may be facilitated with this system. The mean correlation of the predicted and experimental radius-time curves and echoes exceeds 0.7 for the parameters studied here. An important application of this new system is to record and analyze microbubble response to a long pulse where diffusion is shown to occur over the pulse duration. The microbubble response to an increasing or decreasing chirp is evaluated using this new tool. For chirp insonation beginning with the lower center frequency, low frequency modulation of the oscillation envelope was obvious. However, low frequency modulation was not observed in the radial oscillation produced by decreasing chirp insonation. Comparison of the echoes from similar sized microbubbles following increasing and decreasing chirp insonation demonstrated that the echoes were not time-reversed replicas. Using a transmission pressure of 620 kPa, the −6 dB echo length was 0.9 and 1.1 μs for increasing and decreasing chirp insonation, respectively (P = 0.02). The mean power in the low frequency portion of the echoes was 8 (mV)2 and 13 (mV)2 for increasing and decreasing chirp insonation, respectively, (P = 0.01). PMID:16846145
Tan, Ek T.; Lee, Seung-Kyun; Weavers, Paul T.; Graziani, Dominic; Piel, Joseph E.; Shu, Yunhong; Huston, John; Bernstein, Matt A.; Foo, Thomas K.F.
2016-01-01
Purpose To investigate the effects on echo planar imaging (EPI) distortion of using high gradient slew rates (SR) of up to 700 T/m/s for in-vivo human brain imaging, with a dedicated, head-only gradient coil. Materials and Methods Simulation studies were first performed to determine the expected echo spacing and distortion reduction in EPI. A head gradient of 42-cm inner diameter and with asymmetric transverse coils was then installed in a whole-body, conventional 3T MRI system. Human subject imaging was performed on five subjects to determine the effects of EPI on echo spacing and signal dropout at various gradient slew rates. The feasibility of whole-brain imaging at 1.5 mm-isotropic spatial resolution was demonstrated with gradient-echo and spin-echo diffusion-weighted EPI. Results As compared to a whole-body gradient coil, the EPI echo spacing in the head-only gradient coil was reduced by 48%. Simulation and in vivo results, respectively, showed up to 25-26% and 19% improvement in signal dropout. Whole-brain imaging with EPI at 1.5 mm spatial resolution provided good whole-brain coverage, spatial linearity, and low spatial distortion effects. Conclusion Our results of human brain imaging with EPI using the compact head gradient coil at slew rates higher than in conventional whole-body MR systems demonstrate substantially improved image distortion, and point to a potential for benefits to non-EPI pulse sequences. PMID:26921117
Yamada, Ichiro; Yoshino, Norio; Hikishima, Keigo; Miyasaka, Naoyuki; Yamauchi, Shinichi; Uetake, Hiroyuki; Yasuno, Masamichi; Saida, Yukihisa; Tateishi, Ukihide; Kobayashi, Daisuke; Eishi, Yoshinobu
2017-05-01
In this study, we aimed to evaluate the feasibility of determining the mural invasion depths of colorectal carcinomas using high-spatial-resolution (HSR) quantitative T2 mapping on a 3-T magnetic resonance (MR) scanner. Twenty colorectal specimens containing adenocarcinomas were imaged on a 3-T MR system equipped with a 4-channel phased-array surface coil. HSR quantitative T2 maps were acquired using a spin-echo sequence with a repetition time/echo time of 7650/22.6-361.6ms (16 echoes), 87×43.5-mm field of view, 2-mm section thickness, 448×224 matrix, and average of 1. HSR fast-spin-echo T2-weighted images were also acquired. Differences between the T2 values (ms) of the tumor tissue, colorectal wall layers, and fibrosis were measured, and the MR images and histopathologic findings were compared. In all specimens (20/20, 100%), the HSR quantitative T2 maps clearly depicted an 8-layer normal colorectal wall in which the T2 values of each layer differed from those of the adjacent layer(s) (P<0.001). Using this technique, fibrosis (73.6±9.4ms) and tumor tissue (104.2±6.4ms) could also be clearly differentiated (P<0.001). In 19 samples (95%), the HSR quantitative T2 maps and histopathologic data yielded the same findings regarding the tumor invasion depth. Our results indicate that 3-T HSR quantitative T2 mapping is useful for distinguishing colorectal wall layers and differentiating tumor and fibrotic tissues. Accordingly, this technique could be used to determine mural invasion by colorectal carcinomas with a high level of accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Kasaliwal, Rajeev; Sankhe, Shilpa S; Lila, Anurag R; Budyal, Sweta R; Jagtap, Varsha S; Sarathi, Vijaya; Kakade, Harshal; Bandgar, Tushar; Menon, Padmavathy S; Shah, Nalini S
2013-06-01
Various techniques have been attempted to increase the yield of magnetic resonance imaging (MRI) for localization of pituitary microadenomas in corticotropin (ACTH)-dependent Cushing's syndrome (CS). To compare the performance of dynamic contrast spin echo (DC-SE) and volume interpolated 3D-spoiled gradient echo (VI-SGE) MR sequences in the diagnostic evaluation of ACTH-dependent CS. Data was analysed retrospectively from a series of ACTH-dependent CS patients treated over 2-year period at a tertiary care referral centre (2009-2011). Thirty-six patients (24 female and 12 male) were diagnosed to have ACTH-dependent CS during the study period. All patients underwent MRI by both sequences during a single examination. Cases with negative and equivocal pituitary MR imaging underwent corticotropin-releasing hormone (CRH) stimulated bilateral inferior petrosal sinus sampling (BIPSS) to confirm pituitary origin of ACTH excess state. Thirty patients were finally diagnosed to have Cushing's disease (CD) [based on histopathology proof of adenoma and/or remission (partial/complete) of hypercortisolism postsurgery]. Six patients were diagnosed to have histopathologically proven ectopic CS. Of 30 patients with CD, 24 patients had microadenomas and 6 patients had macroadenomas. DC-SE MRI sequence was able to identify microadenomas in 16 of 24 patients, whereas postcontrast VI-SGE sequence was able to identify microadenomas in 21 of 24 patients. All six patients of ectopic CS had negative pituitary MR imaging by both techniques (specificity: 100%). VI-SGE MR sequence was better for localization of pituitary microadenomas particularly when DC-SE MR sequence is negative or equivocal and should be used in addition to DC-SE MR sequence for the evaluation of ACTH-dependent CS. © 2012 John Wiley & Sons Ltd.
Fundamental Study of Three-dimensional Fast Spin-echo Imaging with Spoiled Equilibrium Pulse.
Ogawa, Masashi; Kaji, Naoto; Tsuchihashi, Toshio
2017-01-01
Three-dimensional fast spin-echo (3D FSE) imaging with variable refocusing flip angle has been recently applied to pre- or post-enhanced T 1 -weighted imaging. To reduce the acquisition time, this sequence requires higher echo train length (ETL), which potentially causes decreased T 1 contrast. Spoiled equilibrium (SpE) pulse consists of a resonant +90° radiofrequency (RF) pulse and is applied at the end of the echo train. This +90° RF pulse brings residual transverse magnetization to the negative longitudinal axis, which makes it possible to increase T 1 contrast. The purpose of our present study was to examine factors that influence the effect of spoiled equilibrium pulse and the relationship between T 1 contrast improvement and imaging parameters and to understand the characteristics of spoiled equilibrium pulse. Phantom studies were conducted using an magnetic resonance imaging (MRI) phantom made of polyvinyl alcohol gel. To evaluate the effect of spoiled equilibrium pulse with changes in repetition time (TR), ETL, and refocusing flip angle, we measured the signal-to-noise ratio and contrast-to-noise ratio (CNR). The effect of spoiled equilibrium pulse was evaluated by calculating the enhancement rate of CNR. The factors that influence the effect of spoiled equilibrium pulse are TR, ETL, and relaxation time of tissues. Spoiled equilibrium pulse is effective with increasing TR and decreasing ETL. The shorter the T 1 value, the better the spoiled equilibrium pulse functions. However, for tissues in which the T 1 value is long (>600 ms), at a TR of 600 ms, improvement in T 1 contrast by applying spoiled equilibrium pulse cannot be expected.
MRI of the knees in asymptomatic adolescent soccer players: A case-control study.
Matiotti, Simone B; Soder, Ricardo B; Becker, Rafaela G; Santos, Francisco S; Baldisserotto, Matteo
2017-01-01
To determine the range of asymptomatic abnormal findings in adolescent soccer players at 3.0T MRI of the knee. In all, 87 knees of asymptomatic 14-17-year-old male adolescents were evaluated at 3T, using a standardized examination protocol comprising four sequences: two fat-suppressed T 2 -weighted fast spin-echo sequences (T 2 FSE), in the sagittal (repetition time / echo time [TR/TE], 5.300/71, echo train length [ETL] 17) and coronal planes (TR/TE, 4234/70, ETL 17), one fat-suppressed proton density (PD) sequence in the axial plane (TR/TE, 2.467/40, ETL 9), and one T 1 -weighted spin-echo (T 1 SE) sequence in the sagittal plane (TR/TE, 684/12.5). Soccer players (46 knees) were paired with controls (41 knees) by age and weight. Bone marrow, articular cartilage, meniscus, tendons, ligaments, fat pad abnormalities, and joint fluid were assessed. One or more abnormalities were detected in 31 knees (67.4%) in the soccer player group, compared to 20 knees (48.8%) in the control group. The prevalence of bone marrow edema was higher in the soccer group (19 knees, 41.3%) than in the control group (3 knees, 7.3%), P = 0.001. Other abnormalities found in this sample (joint effusion, cartilage lesions, tendinopathy, ganglion cysts, and infrapatellar fat pat edema) were not significantly different between the two study groups. Asymptomatic adolescents had a high prevalence of abnormal findings on knee imaging, especially bone marrow edema. This prevalence was higher among soccer players. 4 J. Magn. Reson. Imaging 2017;45:59-65. © 2016 International Society for Magnetic Resonance in Medicine.
Quantum teleportation from a propagating photon to a solid-state spin qubit
NASA Astrophysics Data System (ADS)
Gao, W. B.; Fallahi, P.; Togan, E.; Delteil, A.; Chin, Y. S.; Miguel-Sanchez, J.; Imamoğlu, A.
2013-11-01
A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.
Quantum teleportation from a propagating photon to a solid-state spin qubit.
Gao, W B; Fallahi, P; Togan, E; Delteil, A; Chin, Y S; Miguel-Sanchez, J; Imamoğlu, A
2013-01-01
A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.
Anderson, Stephan W; Jara, Hernan; Ozonoff, Al; O'Brien, Michael; Hamilton, James A; Soto, Jorge A
2012-01-01
To evaluate the effects of hepatic fibrosis on ADC and T(2) values of ex vivo murine liver specimens imaged using 11.7 Tesla (T) MRI. This animal study was IACUC approved. Seventeen male, C57BL/6 mice were divided into control (n = 2) and experimental groups (n = 15), the latter fed a 3, 5-dicarbethoxy-1, 4-dihydrocollidine (DDC) supplemented diet, inducing hepatic fibrosis. Ex vivo liver specimens were imaged using an 11.7T MRI scanner. Spin-echo pulsed field gradient and multi-echo spin-echo acquisitions were used to generate parametric ADC and T(2) maps, respectively. Degrees of fibrosis were determined by the evaluation of a pathologist as well as digital image analysis. Scatterplot graphs comparing ADC and T(2) to degrees of fibrosis were generated and correlation coefficients were calculated. Strong correlation was found between degrees of hepatic fibrosis and ADC with higher degrees of fibrosis associated with lower hepatic ADC values. Moderate correlation between hepatic fibrosis and T(2) values was seen with higher degrees of fibrosis associated with lower T(2) values. Inverse relationships between degrees of fibrosis and both ADC and T(2) are seen, highlighting the utility of these parameters in the ongoing development of an MRI methodology to quantify hepatic fibrosis. Copyright © 2011 Wiley Periodicals, Inc.
Sharma, Rakesh
2010-07-21
Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.
NASA Astrophysics Data System (ADS)
Sharma, Rakesh
2010-07-01
Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.
Naganawa, S; Ito, T; Fukatsu, H; Ishigaki, T; Nakashima, T; Ichinose, N; Kassai, Y; Miyazaki, M
1998-09-01
To prospectively evaluate the sensitivity and specificity of magnetic resonance (MR) imaging in the inner ear with a long echo train, three-dimensional (3D), asymmetric Fourier-transform, fast spin-echo (SE) sequence with use of a dedicated quadrature-surface phased-array coil to detect vestibular schwannoma in the cerebellopontine angle and the internal auditory canal. In 205 patients (410 ears) with ear symptoms, 1.5-T MR imaging was performed with unenhanced 3D asymmetric fast SE and gadolinium-enhanced 3D gradient-recalled (SPGR) sequences with use of a quadrature surface phased-array coil. The 3D asymmetric fast SE images were reviewed by two radiologists, with the gadolinium-enhanced 3D SPGR images used as the standard of reference. Nineteen lesions were detected in the 410 ears (diameter range, 2-30 mm; mean, 10.5 mm +/- 6.4 [standard deviation]; five lesions were smaller than 5 mm). With 3D asymmetric fast SE, sensitivity, specificity, and accuracy, respectively, were 100%, 99.5%, and 99.5% for observer 1 and 100%, 99.7%, and 99.8% for observer 2. The unenhanced 3D asymmetric fast SE sequence with a quadrature-surface phased-array coli allows the reliable detection of vestibular schwannoma in the cerebellopontine angle and internal auditory canal.
Evaluation of pleural and pericardial effusions by magnetic resonance imaging.
Tscholakoff, D; Sechtem, U; de Geer, G; Schmidt, H; Higgins, C B
1987-08-01
MR examinations of 36 patients with pleural and/or pericardial effusions were retrospectively evaluated. The purpose of this study was to determine of MR imaging is capable of differentiating between pleural and pericardial effusions of different compositions using standard electrocardiogram (ECG)-gated and non-gated spin echo pulse sequences. Additional data was obtained from experimental pleural effusions in 10 dogs. The results of this study indicate that old hemorrhages into the pleural or pericardial space can be differentiated from other pleural or pericardial effusions. However, further differentiation between transudates, exudates and sanguinous effusions is not possible on MR images acquired with standard spin echo pulse sequences. Respiratory and cardiac motion are responsible for signal loss, particularly on first echo images. This was documented in experiments in dogs with induced effusions of known composition; "negative" T2 values consistent with fluid motion during imaging sequences were observed in 80% of cases. However, postmortem studies of the dogs with experimental effusions showed differences between effusions with low protein concentrations and higher protein concentrations. We conclude from our study that characterization of pleural and pericardial effusions on standard ECG-gated and non-gated MR examinations is limited to the positive identification of hemorrhage. Motion of the fluid due to cardiac and respiratory activity causes artifactual and unpredictable changes in intensity values negating the more subtle differences in intensity associated with increasing protein content.
An MRI system for imaging neonates in the NICU: initial feasibility study.
Tkach, Jean A; Hillman, Noah H; Jobe, Alan H; Loew, Wolfgang; Pratt, Ron G; Daniels, Barret R; Kallapur, Suhas G; Kline-Fath, Beth M; Merhar, Stephanie L; Giaquinto, Randy O; Winter, Patrick M; Li, Yu; Ikegami, Machiko; Whitsett, Jeffrey A; Dumoulin, Charles L
2012-11-01
Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate.
NASA Astrophysics Data System (ADS)
Sanderson, Mark I.; Simmons, James A.
2005-11-01
Echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals whose duration, repetition rate, and sweep structure change systematically during interception of prey. When stimulated with a 2.5-s sequence of 54 FM pulse-echo pairs that mimic sounds received during search, approach, and terminal stages of pursuit, single neurons (N=116) in the bat's inferior colliculus (IC) register the occurrence of a pulse or echo with an average of <1 spike/sound. Individual IC neurons typically respond to only a segment of the search or approach stage of pursuit, with fewer neurons persisting to respond in the terminal stage. Composite peristimulus-time-histogram plots of responses assembled across the whole recorded population of IC neurons depict the delay of echoes and, hence, the existence and distance of the simulated biosonar target, entirely as on-response latencies distributed across time. Correlated changes in pulse duration, repetition rate, and pulse or echo amplitude do modulate the strength of responses (probability of the single spike actually occurring for each sound), but registration of the target itself remains confined exclusively to the latencies of single spikes across cells. Modeling of echo processing in FM biosonar should emphasize spike-time algorithms to explain the content of biosonar images.
Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Z.; Ratner, D.; Stupakov, G.
2009-02-23
We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp.
Wirth, Wolfgang; Maschek, Susanne; Eckstein, Felix
2016-01-01
SUMMARY Compositional measures of articular cartilage are accessible in vivo by magnetic resonance imaging (MRI) based relaxometry and cartilage spin-spin transverse relaxation time (T2) has been related to tissue hydration, collagen content and orientation, and mechanical (functional) properties of articular cartilage. The objective of the current study was therefore to evaluate subregional variation, and sex- and age-differences, in laminar (deep and superficial) femorotibial cartilage T2 relaxation time in healthy adults. To this end, we studied the right knees of 92 healthy subjects from the Osteoarthritis Initiative reference cohort (55 women, 37 men; age range 45–78 years; BMI 24.4±3.1) without knee pain, radiographic signs, or risk factors of knee osteoarthritis in either knee. T2 of the deep and superficial femorotibial cartilages was determined in 16 femorotibial subregions, using a multi-echo spin-echo (MESE) MRI sequence. Significant subregional variation in femorotibial cartilage T2 was observed for the superficial and for the deep (both p<0.001) cartilage layer (Friedman test). Yet, layer- and region-specific femorotibial T2 did not differ between men and women, or between healthy adults below and above the median age (54y). In conclusion, this first study to report subregional (layer-specific) compositional variation of femorotibial cartilage T2 in healthy adults identifies significant differences in both superficial and deep cartilage T2 between femorotibial subregions. However, no relevant sex- or age-dependence of cartilage T2 was observed between age 45–78y. The findings suggest that a common, non-sex-specific set of layer-and region-specific T2 reference values can be used to identify compositional pathology in joint disease for this age group. PMID:27836800
Kanaki, Toshiki; Yamasaki, Hiroki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki
2018-05-08
A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current I DS modulation by a gate-source voltage V GS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large I DS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that I DS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by V GS . This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.
Demonstration of improved sensitivity of echo interferometers to gravitational acceleration
NASA Astrophysics Data System (ADS)
Mok, C.; Barrett, B.; Carew, A.; Berthiaume, R.; Beattie, S.; Kumarakrishnan, A.
2013-08-01
We have developed two configurations of an echo interferometer that rely on standing-wave excitation of a laser-cooled sample of rubidium atoms. Both configurations can be used to measure acceleration a along the axis of excitation. For a two-pulse configuration, the signal from the interferometer is modulated at the recoil frequency and exhibits a sinusoidal frequency chirp as a function of pulse spacing. In comparison, for a three-pulse stimulated-echo configuration, the signal is observed without recoil modulation and exhibits a modulation at a single frequency as a function of pulse spacing. The three-pulse configuration is less sensitive to effects of vibrations and magnetic field curvature, leading to a longer experimental time scale. For both configurations of the atom interferometer (AI), we show that a measurement of acceleration with a statistical precision of 0.5% can be realized by analyzing the shape of the echo envelope that has a temporal duration of a few microseconds. Using the two-pulse AI, we obtain measurements of acceleration that are statistically precise to 6 parts per million (ppm) on a 25 ms time scale. In comparison, using the three-pulse AI, we obtain measurements of acceleration that are statistically precise to 0.4 ppm on a time scale of 50 ms. A further statistical enhancement is achieved by analyzing the data across the echo envelope so that the statistical error is reduced to 75 parts per billion (ppb). The inhomogeneous field of a magnetized vacuum chamber limited the experimental time scale and resulted in prominent systematic effects. Extended time scales and improved signal-to-noise ratio observed in recent echo experiments using a nonmagnetic vacuum chamber suggest that echo techniques are suitable for a high-precision measurement of gravitational acceleration g. We discuss methods for reducing systematic effects and improving the signal-to-noise ratio. Simulations of both AI configurations with a time scale of 300 ms suggest that an optimized experiment with improved vibration isolation and atoms selected in the mF=0 state can result in measurements of g statistically precise to 0.3 ppb for the two-pulse AI and 0.6 ppb for the three-pulse AI.
Research on Radar Micro-Doppler Feature Parameter Estimation of Propeller Aircraft
NASA Astrophysics Data System (ADS)
He, Zhihua; Tao, Feixiang; Duan, Jia; Luo, Jingsheng
2018-01-01
The micro-motion modulation effect of the rotated propellers to radar echo can be a steady feature for aircraft target recognition. Thus, micro-Doppler feature parameter estimation is a key to accurate target recognition. In this paper, the radar echo of rotated propellers is modelled and simulated. Based on which, the distribution characteristics of the micro-motion modulation energy in time, frequency and time-frequency domain are analyzed. The micro-motion modulation energy produced by the scattering points of rotating propellers is accumulated using the Inverse-Radon (I-Radon) transform, which can be used to accomplish the estimation of micro-modulation parameter. Finally, it is proved that the proposed parameter estimation method is effective with measured data. The micro-motion parameters of aircraft can be used as the features of radar target recognition.
Spin Qubits in Germanium Structures with Phononic Gap
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Vasko, F. T.; Hafiychuk, V. V.; Dykman, M. I.; Petukhov, A. G.
2014-01-01
We propose qubits based on shallow donor electron spins in germanium structures with phononic gap. We consider a phononic crystal formed by periodic holes in Ge plate or a rigid cover / Ge layer / rigid substrate structure with gaps approximately a few GHz. The spin relaxation is suppressed dramatically, if the Zeeman frequency omegaZ is in the phononic gap, but an effective coupling between the spins of remote donors via exchange of virtual phonons remains essential. If omegaZ approaches to a gap edge in these structures, a long-range (limited by detuning of omegaZ) resonant exchange interaction takes place. We estimate that ratio of the exchange integral to the longitudinal relaxation rate exceeds 10(exp 5) and lateral scale of resonant exchange 0.1 mm. The exchange contribution can be verified under microwave pumping through oscillations of spin echo signal or through the differential absorption measurements. Efficient manipulation of spins due to the Rabi oscillations opens a new way for quantum information applications.
Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells
NASA Astrophysics Data System (ADS)
McGuinness, L. P.; Yan, Y.; Stacey, A.; Simpson, D. A.; Hall, L. T.; MacLaurin, D.; Prawer, S.; Mulvaney, P.; Wrachtrup, J.; Caruso, F.; Scholten, R. E.; Hollenberg, L. C. L.
2011-06-01
Fluorescent particles are routinely used to probe biological processes. The quantum properties of single spins within fluorescent particles have been explored in the field of nanoscale magnetometry, but not yet in biological environments. Here, we demonstrate optically detected magnetic resonance of individual fluorescent nanodiamond nitrogen-vacancy centres inside living human HeLa cells, and measure their location, orientation, spin levels and spin coherence times with nanoscale precision. Quantum coherence was measured through Rabi and spin-echo sequences over long (>10 h) periods, and orientation was tracked with effective 1° angular precision over acquisition times of 89 ms. The quantum spin levels served as fingerprints, allowing individual centres with identical fluorescence to be identified and tracked simultaneously. Furthermore, monitoring decoherence rates in response to changes in the local environment may provide new information about intracellular processes. The experiments reported here demonstrate the viability of controlled single spin probes for nanomagnetometry in biological systems, opening up a host of new possibilities for quantum-based imaging in the life sciences.
Phase diagram and quench dynamics of the cluster-XY spin chain
NASA Astrophysics Data System (ADS)
Montes, Sebastián; Hamma, Alioscia
2012-08-01
We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.
Phase diagram and quench dynamics of the cluster-XY spin chain.
Montes, Sebastián; Hamma, Alioscia
2012-08-01
We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.
Pipe, J G
1999-11-01
Magnetic resonance imaging is fundamentally a measurement of the magnetism inherent in some nuclear isotopes; of these the proton, or hydrogen atom, is of particular interest for clinical applications. The magnetism in each nucleus is often referred to as spin. A strong, static magnetic field B0 is used to align spins, forming a magnetic density within the patient. A second, rotating magnetic field B1 (RF pulse) is applied for a short duration, which rotates the spins away from B0 in a process called excitation. After the spins are rotated away from B0, the RF pulse is turned off, and the spins precess about B0. As long as the spins are all pointing in the same direction at any one time (have phase coherence), they act in concert to create rapidly oscillating magnetic fields. These fields in turn create a current in an appropriately placed receiver coil, in a manner similar to that of an electrical generator. The precessing magnetization decays rapidly in a duration roughly given by the T2 time constant. At the same time, but at a slower rate, magnetization forms again along the direction of B0; the duration of this process is roughly expressed by the T1 time constant. The precessional frequency of each spin is proportional to the magnetic field experienced at the nucleus. Small variations in this magnetic field can have dramatic effects on the MR image, caused in part by loss of phase coherence. These magnetic field variations can arise because of magnet design, the magnetic properties (susceptibility) of tissues and other materials, and the nuclear environment unique to various sites within any given molecule. The loss of phase coherence can be effectively eliminated by the use of RF refocusing pulses. Conventional MR imaging experiments can be characterized as either gradient echo or spin echo, the latter indicating the use of a RF refocusing pulse, and by the parameters TR, TE, and flip angle alpha. Tissues, in turn, are characterized by their individual spin density, M0, and by the T1, T2, and T2* time constants. Knowledge of these parameters allows one to calculate the resulting signal from a given tissue for a given MR imaging experiment.
CW- and pulsed-EPR of carbonaceous matter in primitive meteorites: solving a lineshape paradox.
Delpoux, Olivier; Gourier, Didier; Binet, Laurent; Vezin, Hervé; Derenne, Sylvie; Robert, François
2008-05-01
Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4x10(19) spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S=1/2, and centres with S=0 ground state and thermally accessible triple state S=1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and (13)C nuclei indicates that IOM* centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H approximately 1.5+/-0.5x10(-2) of the order of values existing in interstellar medium.
Measuring the labeling efficiency of pseudocontinuous arterial spin labeling.
Chen, Zhensen; Zhang, Xingxing; Yuan, Chun; Zhao, Xihai; van Osch, Matthias J P
2017-05-01
Optimization and validation of a sequence for measuring the labeling efficiency of pseudocontinuous arterial spin labeling (pCASL) perfusion MRI. The proposed sequence consists of a labeling module and a single slice Look-Locker echo planar imaging readout. A model-based algorithm was used to calculate labeling efficiency from the signal acquired from the main brain-feeding arteries. Stability of the labeling efficiency measurement was evaluated with regard to the use of cardiac triggering, flow compensation and vein signal suppression. Accuracy of the measurement was assessed by comparing the measured labeling efficiency to mean brain pCASL signal intensity over a wide range of flip angles as applied in the pCASL labeling. Simulations show that the proposed algorithm can effectively calculate labeling efficiency when correcting for T1 relaxation of the blood spins. Use of cardiac triggering and vein signal suppression improved stability of the labeling efficiency measurement, while flow compensation resulted in little improvement. The measured labeling efficiency was found to be linearly (R = 0.973; P < 0.001) related to brain pCASL signal intensity over a wide range of pCASL flip angles. The optimized labeling efficiency sequence provides robust artery-specific labeling efficiency measurement within a short acquisition time (∼30 s), thereby enabling improved accuracy of pCASL CBF quantification. Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Echolocation of insects using intermittent frequency-modulated sounds.
Matsuo, Ikuo; Takanashi, Takuma
2015-09-01
Using echolocation influenced by Doppler shift, bats can capture flying insects in real three-dimensional space. On the basis of this principle, a model that estimates object locations using frequency modulated (FM) sound was proposed. However, no investigation was conducted to verify whether the model can localize flying insects from their echoes. This study applied the model to estimate the range and direction of flying insects by extracting temporal changes from the time-frequency pattern and interaural range difference, respectively. The results obtained confirm that a living insect's position can be estimated using this model with echoes measured while emitting intermittent FM sounds.
McAleavey, Stephen A
2014-05-01
Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.
Interactive signal analysis and ultrasonic data collection system user's manual
NASA Technical Reports Server (NTRS)
Smith, G. R.
1978-01-01
The interactive signal analysis and ultrasonic data collection system (ECHO1) is a real time data acquisition and display system. ECHO1 executed on a PDP-11/45 computer under the RT11 real time operating system. Extensive operator interaction provided the requisite parameters to the data collection, calculation, and data modules. Data were acquired in real time from a pulse echo ultrasonic system using a Biomation Model 8100 transient recorder. The data consisted of 2084 intensity values representing the amplitude of pulses transmitted and received by the ultrasonic unit.
NASA Astrophysics Data System (ADS)
Cornelissen, L. J.; Liu, J.; van Wees, B. J.; Duine, R. A.
2018-03-01
Efficient manipulation of magnon spin transport is crucial for developing magnon-based spintronic devices. In this Letter, we provide proof of principle of a method for modulating the diffusive transport of thermal magnons in an yttrium iron garnet channel between injector and detector contacts. The magnon spin conductance of the channel is altered by increasing or decreasing the magnon chemical potential via spin Hall injection of magnons by a third modulator electrode. We obtain a modulation efficiency of 1.6 %/mA at T =250 K . Finite element modeling shows that this could be increased to well above 10 %/mA by reducing the thickness of the channel, providing interesting prospects for the development of thermal-magnon-based logic circuits.
Han, S H; Cho, J H; Jung, H S; Suh, J Y; Kim, J K; Kim, Y R; Cho, G; Cho, H
2015-05-15
Intravascular superparamagnetic iron oxide nanoparticles (SPION)-enhanced MR transverse relaxation rates (∆R2(⁎) and ∆R2) are widely used to investigate in vivo vascular parameters, such as the cerebral blood volume (CBV), microvascular volume (MVV), and mean vessel size index (mVSI, ∆R2(⁎)/∆R2). Although highly efficient, regional comparison of vascular parameters acquired using gradient-echo based ∆R2(⁎) is hampered by its high sensitivity to magnetic field perturbations arising from air-tissue interfaces and large vessels. To minimize such demerits, we took advantage of the dual contrast property of SPION and both theoretically and experimentally verified the direct benefit of replacing gradient-echo based ∆R2(⁎) measurement with ultra-short echo time (UTE)-based ∆R1 contrast to generate the robust CBV and mVSI maps. The UTE acquisition minimized the local measurement errors from susceptibility perturbations and enabled dose-independent CBV measurement using the vessel/tissue ∆R1 ratio, while independent spin-echo acquisition enabled simultaneous ∆R2 measurement and mVSI calculation of the cortex, cerebellum, and olfactory bulb, which are animal brain regions typified by significant susceptibility-associated measurement errors. Copyright © 2015 Elsevier Inc. All rights reserved.
In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI
Mainero, C; Benner, T; Radding, A; van der Kouwe, A; Jensen, R; Rosen, B R.; Kinkel, R P.
2009-01-01
Objective: We used ultra-high field MRI to visualize cortical lesion types described by neuropathology in 16 patients with multiple sclerosis (MS) compared with 8 age-matched controls; to characterize the contrast properties of cortical lesions including T2*, T2, T1, and phase images; and to investigate the relationship between cortical lesion types and clinical data. Methods: We collected, on a 7-T scanner, 2-dimensional fast low-angle shot (FLASH)-T2*-weighted spoiled gradient-echo, T2-weighted turbo spin-echo (TSE) images (0.33 × 033 × 1 mm3), and a 3-dimensional magnetization-prepared rapid gradient echo. Results: Overall, 199 cortical lesions were detected in patients on both FLASH-T2* and T2-TSE scans. Seven-tesla MRI allowed for characterization of cortical plaques into type I (leukocortical), type II (intracortical), and type III/IV (subpial extending partly or completely through the cortical width) lesions as described histopathologically. Types III and IV were the most frequent type of cortical plaques (50.2%), followed by type I (36.2%) and type II (13.6%) lesions. Each lesion type was more frequent in secondary progressive than in relapsing–remitting MS. This difference, however, was significant only for type III/IV lesions. T2*-weighted images showed the highest, while phase images showed the lowest, contrast-to-noise ratio for all cortical lesion types. In patients, the number of type III/IV lesions was associated with greater disability (p < 0.02 by Spearman test) and older age (p < 0.04 by Spearman test). Conclusions: Seven-tesla MRI detected different histologic cortical lesion types in our small multiple sclerosis (MS) sample, suggesting, if validated in a larger population, that it may prove a valuable tool to assess the contribution of cortical MS pathology to clinical disability. GLOSSARY ANOVA = analysis of variance; BN = background noise; CNR = contrast-to-noise ratio; DIR = double-inversion recovery; EDSS = Expanded Disability Status Scale; FLAIR = fluid-attenuated inversion recovery; FLASH = fast low-angle shot; GM = gray matter; MPRAGE = magnetization-prepared rapid gradient echo; MR = magnetic resonance; MS = multiple sclerosis; NACGM = normal-appearing cortical gray matter; RF = radiofrequency; ROI = region of interest; RRMS = relapsing–remitting multiple sclerosis; SNR = signal-to-noise ratio; SPMS = secondary progressive multiple sclerosis; TA = time of acquisition; TE = echo time; TR = repetition time; TSE = turbo spin-echo; WM = white matter. PMID:19641168
Serai, Suraj D; Dillman, Jonathan R; Trout, Andrew T
2017-03-01
Purpose To compare two-dimensional (2D) gradient-recalled echo (GRE) and 2D spin-echo (SE) echo-planar imaging (EPI) magnetic resonance (MR) elastography for measurement of hepatic stiffness in pediatric and young adult patients suspected of having liver disease. Materials and Methods In this institutional review board-approved, HIPAA-compliant study, 58 patients underwent both 2D GRE and 2D SE-EPI MR elastography at 1.5 T during separate breath holds. Liver stiffness (mean of means; in kilopascals) was measured by five blinded reviewers. Pooled mean liver stiffness and region-of-interest (ROI) size were compared by using paired t tests. Intraclass correlation coefficients (ICCs) were used to assess agreement between techniques. Respiratory motion artifacts were compared across sequences by using the Fisher exact test. Results Mean patient age was 14.7 years ± 5.2 (standard deviation; age range, 0.7-20.5 years), and 55.2% (32 of 58) of patients were male. Mean liver stiffness was 2.92 kPa ± 1.29 measured at GRE MR elastography and 2.76 kPa ± 1.39 at SE-EPI MR elastography (n = 290; P = .15). Mean ROI sizes were 8495 mm 2 ± 4482 for 2D GRE MR elastography and 15 176 mm 2 ± 7609 for 2D SE-EPI MR elastography (n = 290; P < .001). Agreement was excellent for measured stiffness between five reviewers for both 2D GRE (ICC, 0.97; 95% confidence interval: 0.95, 0.98) and 2D SE-EPI (ICC, 0.98; 95% confidence interval: 0.96, 0.99). Mean ICC (n = 5) for agreement between 2D GRE and 2D SE-EPI MR elastography was 0.93 (range, 0.91-0.95). Moderate or severe breathing artifacts were observed on 27.5% (16 of 58) of 2D GRE images versus 0% 2D SE-EPI images (P < .001). Conclusion There is excellent agreement on measured hepatic stiffness between 2D GRE and 2D SE-EPI MR elastography across multiple reviewers. SE-EPI MR elastography allowed for stiffness measurement across larger areas of the liver and can be performed in a single breath hold. © RSNA, 2016.
Increasing sensitivity of pulse EPR experiments using echo train detection schemes.
Mentink-Vigier, F; Collauto, A; Feintuch, A; Kaminker, I; Tarle, V; Goldfarb, D
2013-11-01
Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo--either primary, stimulated or refocused--a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion. Copyright © 2013 Elsevier Inc. All rights reserved.
Tan, Ek T; Lee, Seung-Kyun; Weavers, Paul T; Graziani, Dominic; Piel, Joseph E; Shu, Yunhong; Huston, John; Bernstein, Matt A; Foo, Thomas K F
2016-09-01
To investigate the effects on echo planar imaging (EPI) distortion of using high gradient slew rates (SR) of up to 700 T/m/s for in vivo human brain imaging, with a dedicated, head-only gradient coil. Simulation studies were first performed to determine the expected echo spacing and distortion reduction in EPI. A head gradient of 42-cm inner diameter and with asymmetric transverse coils was then installed in a whole-body, conventional 3T magnetic resonance imaging (MRI) system. Human subject imaging was performed on five subjects to determine the effects of EPI on echo spacing and signal dropout at various gradient slew rates. The feasibility of whole-brain imaging at 1.5 mm-isotropic spatial resolution was demonstrated with gradient-echo and spin-echo diffusion-weighted EPI. As compared to a whole-body gradient coil, the EPI echo spacing in the head-only gradient coil was reduced by 48%. Simulation and in vivo results, respectively, showed up to 25-26% and 19% improvement in signal dropout. Whole-brain imaging with EPI at 1.5 mm spatial resolution provided good whole-brain coverage, spatial linearity, and low spatial distortion effects. Our results of human brain imaging with EPI using the compact head gradient coil at slew rates higher than in conventional whole-body MR systems demonstrate substantially improved image distortion, and point to a potential for benefits to non-EPI pulse sequences. J. Magn. Reson. Imaging 2016;44:653-664. © 2016 International Society for Magnetic Resonance in Medicine.
Evolution of Spin and Superorbital Modulation in 4U 0114+650
NASA Astrophysics Data System (ADS)
Hu, Chin-Ping; Ng, Chi-Yung; Chou, Yi
2016-09-01
We report on a systematic analysis of the spin and superorbital modulations of the high-mass X-ray binary 4U 0114+650, which consists of the slowest spinning neutron star known. Utilizing dynamic power spectra, we found that the spin period varied dramatically during the RXTE ASM and Swift BAT observations. This variation consists of a long-term spin-up trend, and two ~1,000 day and one ~600 day random walk epochs previously, MJD 51,000, ~MJD 51,400-52,000, and ~MJD 55,100-56,100. We further found that the events appear together with depressions of superorbital modulation amplitude. This provides evidence of the existence of an accretion disk, although the physical mechanism of superorbital modulation remains unclear. Furthermore, the decrease of the superorbital modulation amplitude may be associated with the decrease of mass accretion rate from the disk, and may distribute the accretion torque of the neutron star randomly in time.
Participation of Bell Telephone Laboratories in Project Echo and Experimental Results
NASA Technical Reports Server (NTRS)
Jakes, William C., Jr.
1961-01-01
On August 12, 1960, Echo I, a 100-foot-diameter spherical balloon, was placed in orbit around the earth by the National Aeronautics and Space Administration. The objective was to demonstrate the feasibility of long-distance communication by microwave reflection from a satellite. A two-way coast-to-coast voice circuit was to be established between the Jet Propulsion Laboratory (JPL) facility in California and a station provided by Bell Telephone Laboratories (STL) in New Jersey. Similar tests were also planned with the Naval Research Laboratory and other stations. This paper describes the general organization and operation of the Holmdel, New Jersey, station, and discusses the results of the experiments performed between the balloon launching and March 1, 1961. Successful voice communication was achieved through a variety of modulation methods including frequency modulation with feedback, amplitude modulation, single-sideband modulation, and narrow-band phase modulation. Careful measurements were also made of the loss in the transmission path.
Tamhane, Ashish A; Arfanakis, Konstantinos
2009-07-01
Periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and Turboprop MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo (FSE) and gradient and spin-echo (GRASE), respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction are discussed for PROPELLER and Turboprop MRI. (c) 2009 Wiley-Liss, Inc.
Clustering Effects on Dynamics in Ionomer Solutions: A Neutron Spin Echo Insight
NASA Astrophysics Data System (ADS)
Perahia, Dvora; Wijesinghe, Sidath; Senanayake, Manjula; Wickramasinghe, Anuradhi; Mohottalalage, Supun S.; Ohl, Michael
Ionizable blocks in ionomers associate into aggregates serving as physical cross-links and concurrently form transport pathways. The dynamics of ionomers underline their functionality. Incorporating small numbers of ionic groups into polymers significantly constraint their dynamics. Recent computational studies demonstrated a direct correlation between ionic cluster morphology and polymer dynamics. Here using neutron spin echo, we probe the segmental dynamics of polystyrene sulfonate (PSS) as the degree of sulfonation of the PSS and the solution dielectrics are varied. Specifically, 20Wt% PSS of 11,000 g/mol with polydispersity of 1.02 with 3% and 9% sulfonation were studies in toluene (dielectric constant ɛ = 2.8), a good solvent for polystyrene, and with 5Wt% of ethanol (ɛ = 24.3l) added. The dynamic structure factor S(q,t) was analyzed with a single exponential except for a limited q range where two time constants associated with constraint and mobile segments were detected. S(q,t) exhibits several distinctive time and length scales for the dynamics with a crossover appearing at the length scale of the ionic clusters. NSF DMR 1611136.
Solvent signal suppression for high-resolution MAS-DNP
NASA Astrophysics Data System (ADS)
Lee, Daniel; Chaudhari, Sachin R.; De Paëpe, Gaël
2017-05-01
Dynamic nuclear polarization (DNP) has become a powerful tool to substantially increase the sensitivity of high-field magic angle spinning (MAS) solid-state NMR experiments. The addition of dissolved hyperpolarizing agents usually results in the presence of solvent signals that can overlap and obscure those of interest from the analyte. Here, two methods are proposed to suppress DNP solvent signals: a Forced Echo Dephasing experiment (FEDex) and TRAnsfer of Populations in DOuble Resonance Echo Dephasing (TRAPDORED) NMR. These methods reintroduce a heteronuclear dipolar interaction that is specific to the solvent, thereby forcing a dephasing of recoupled solvent spins and leaving acquired NMR spectra free of associated resonance overlap with the analyte. The potency of these methods is demonstrated on sample types common to MAS-DNP experiments, namely a frozen solution (of L-proline) and a powdered solid (progesterone), both containing deuterated glycerol as a DNP solvent. The proposed methods are efficient, simple to implement, compatible with other NMR experiments, and extendable past spectral editing for just DNP solvents. The sensitivity gains from MAS-DNP in conjunction with FEDex or TRAPDORED then permits rapid and uninterrupted sample analysis.
Cho, Herman; de Jong, Wibe A; Soderquist, Chuck Z
2010-02-28
A combined theoretical and solid-state (17)O nuclear magnetic resonance (NMR) study of the electronic structure of the uranyl ion UO(2)(2+) in (NH(4))(4)UO(2)(CO(3))(3) and rutherfordine (UO(2)CO(3)) is presented, the former representing a system with a hydrogen-bonding environment around the uranyl oxygens and the latter exemplifying a uranyl environment without hydrogens. Relativistic density functional calculations reveal unique features of the U-O covalent bond, including the finding of (17)O chemical shift anisotropies that are among the largest for oxygen ever reported (>1200 ppm). Computational results for the oxygen electric field gradient tensor are found to be consistently larger in magnitude than experimental solid-state (17)O NMR measurements in a 7.05 T magnetic field indicate. A modified version of the Solomon theory of the two-spin echo amplitude for a spin-5/2 nucleus is developed and applied to the analysis of the (17)O echo signal of U (17)O(2)(2+).
Study of translational dynamics in molten polymer by variation of gradient pulse-width of PGSE.
Stepišnik, Janez; Lahajnar, Gojmir; Zupančič, Ivan; Mohorič, Aleš
2013-11-01
Pulsed gradient spin echo is a method of measuring molecular translation. Changing Δ makes it sensitive to diffusion spectrum. Spin translation effects the buildup of phase structure during the application of gradient pulses as well. The time scale of the self-diffusion measurement shortens if this is taken into account. The method of diffusion spectrometry with variable δ is also less sensitive to artifacts caused by spin relaxation and internal gradient fields. Here the method is demonstrated in the case of diffusion spectrometry of molten polyethylene. The results confirm a model of constraint release in a system of entangled polymer chains as a sort of tube Rouse motion. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hirayama, Shigeyuki; Mitani, Seiji; Otani, YoshiChika; Kasai, Shinya
2018-06-01
We examined the spin-Hall-induced spin torque ferromagnetic resonance (ST-FMR) in platinum/permalloy bilayer thin films under bias direct current (DC). The bias DC modulated the symmetric components of the ST-FMR spectra, while no dominant modulation was found in the antisymmetric components. A detailed analysis in combination with simple model calculations clarified that the major origin of the modulation can be attributed to the DC resistance change under the precessional motion of magnetization. This effect is the second order contribution for the precession angle, even though the contribution can be comparable to the rectification voltage under some specific conditions.
Bunching phase and constraints on echo enabled harmonic generation
NASA Astrophysics Data System (ADS)
Hemsing, E.
2018-05-01
A simple mathematical description is developed for the bunching spectrum in echo enabled harmonic generation (EEHG) that incorporates the effect of additional electron beam energy modulations. Under common assumptions, they are shown to contribute purely through the phase of the longitudinal bunching factor, which allows the spectral moments of the bunching to be calculated directly from the known energy modulations. In particular, the second moment (spectral bandwidth) serves as simple constraint on the amplitude of the energy modulations to maintain a transform-limited seed. We show that, in general, the impact on the spectrum of energy distortions that develop between the EEHG chicanes scales like the harmonic number compared to distortions that occur upstream. This may limit the parameters that will allow EEHG to reach short wavelengths in high brightness FELs.
35-GHz radar sensor for automotive collision avoidance
NASA Astrophysics Data System (ADS)
Zhang, Jun
1999-07-01
This paper describes the development of a radar sensor system used for automotive collision avoidance. Because the heavy truck may have great larger radar cross section than a motorcyclist has, the radar receiver may have a large dynamic range. And multi-targets at different speed may confuse the echo spectrum causing the ambiguity between range and speed of target. To get more information about target and background and to adapt to the large dynamic range and multi-targets, a frequency modulated and pseudo- random binary sequences phase modulated continuous wave radar system is described. The analysis of this double- modulation system is given. A high-speed signal processing and data processing component are used to process and combine the data and information from echo at different direction and at every moment.
Cornelissen, L J; Liu, J; van Wees, B J; Duine, R A
2018-03-02
Efficient manipulation of magnon spin transport is crucial for developing magnon-based spintronic devices. In this Letter, we provide proof of principle of a method for modulating the diffusive transport of thermal magnons in an yttrium iron garnet channel between injector and detector contacts. The magnon spin conductance of the channel is altered by increasing or decreasing the magnon chemical potential via spin Hall injection of magnons by a third modulator electrode. We obtain a modulation efficiency of 1.6%/mA at T=250 K. Finite element modeling shows that this could be increased to well above 10%/mA by reducing the thickness of the channel, providing interesting prospects for the development of thermal-magnon-based logic circuits.
B0 concomitant field compensation for MRI systems employing asymmetric transverse gradient coils.
Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Frigo, Louis M; Shu, Yunhong; Frick, Matthew A; Lee, Seung-Kyun; Foo, Thomas K-F; Bernstein, Matt A
2018-03-01
Imaging gradients result in the generation of concomitant fields, or Maxwell fields, which are of increasing importance at higher gradient amplitudes. These time-varying fields cause additional phase accumulation, which must be compensated for to avoid image artifacts. In the case of gradient systems employing symmetric design, the concomitant fields are well described with second-order spatial variation. Gradient systems employing asymmetric design additionally generate concomitant fields with global (zeroth-order or B 0 ) and linear (first-order) spatial dependence. This work demonstrates a general solution to eliminate the zeroth-order concomitant field by applying the correct B 0 frequency shift in real time to counteract the concomitant fields. Results are demonstrated for phase contrast, spiral, echo-planar imaging (EPI), and fast spin-echo imaging. A global phase offset is reduced in the phase-contrast exam, and blurring is virtually eliminated in spiral images. The bulk image shift in the phase-encode direction is compensated for in EPI, whereas signal loss, ghosting, and blurring are corrected in the fast-spin echo images. A user-transparent method to compensate the zeroth-order concomitant field term by center frequency shifting is proposed and implemented. This solution allows all the existing pulse sequences-both product and research-to be retained without any modifications. Magn Reson Med 79:1538-1544, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Retinotopic mapping with Spin Echo BOLD at 7 Tesla
Olman, Cheryl A.; Van de Moortele, Pierre-Francois; Schumacher, Jennifer F.; Guy, Joe; Uğurbil, Kâmil; Yacoub, Essa
2010-01-01
For blood oxygenation level-dependent (BOLD) functional MRI experiments, contrast-to-noise ratio (CNR) increases with increasing field strength for both gradient echo (GE) and spin echo (SE) BOLD techniques. However, susceptibility artifacts and non-uniform coil sensitivity profiles complicate large field-of-view fMRI experiments (e.g., experiments covering multiple visual areas instead of focusing on a single cortical region). Here, we use SE BOLD to acquire retinotopic mapping data in early visual areas, testing the feasibility of SE BOLD experiments spanning multiple cortical areas at 7 Tesla. We also use a recently developed method for normalizing signal intensity in T1-weighted anatomical images to enable automated segmentation of the cortical gray matter for scans acquired at 7T with either surface or volume coils. We find that the CNR of the 7T GE data (average single-voxel, single-scan stimulus coherence: 0.41) is almost twice that of the 3T GE BOLD data (average coherence: 0.25), with the CNR of the SE BOLD data (average coherence: 0.23) comparable to that of the 3T GE data. Repeated measurements in individual subjects find that maps acquired with 1.8 mm resolution at 3T and 7T with GE BOLD and at 7T with SE BOLD show no systematic differences in either the area or the boundary locations for V1, V2 and V3, demonstrating the feasibility of high-resolution SE BOLD experiments with good sensitivity throughout multiple visual areas. PMID:20656431
Roebuck, Joseph R.; Haker, Steven J.; Mitsouras, Dimitris; Rybicki, Frank J.; Tempany, Clare M.; Mulkern, Robert V.
2009-01-01
Quantitative, apparent T2 values of suspected prostate cancer and healthy peripheral zone tissue in men with prostate cancer were measured using a Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence in order to assess the cancer discrimination potential of tissue T2 values. The CPMG imaging sequence was used to image the prostates of 18 men with biopsy proven prostate cancer. Whole gland coverage with nominal voxel volumes of 0.54 × 1.1 × 4 mm3 was obtained in 10.7 minutes, resulting in data sets suitable for generating high quality images with variable T2-weighting and for evaluating quantitative T2 values on a pixel-by-pixel basis. Region-of-interest analysis of suspected healthy peripheral zone tissue and suspected cancer, identified on the basis of both T1- and T2-weighted signal intensities and available histopathology reports, yielded significantly (p < 0.0001) longer apparent T2 values in suspected healthy tissue (193 ± 49 ms) vs. suspected cancer (100 ± 26 ms), suggesting potential utility of this method as a tissue specific discrimination index for prostate cancer. We conclude that CPMG imaging of the prostate can be performed in reasonable scan times and can provide advantages over T2-weighted fast spin echo imaging alone, including quantitative T2 values for cancer discrimination as well as proton density maps without the point spread function degradation associated with short effective echo time fast spin echo (FSE) sequences. PMID:18823731
Loschmidt echo in many-spin systems: a quest for intrinsic decoherence and emergent irreversibility
NASA Astrophysics Data System (ADS)
Zangara, Pablo R.; Pastawski, Horacio M.
2017-03-01
If a magnetic polarization excess is locally injected in a crystal of interacting spins in thermal equilibrium, this ‘excitation’ would spread as consequence of spin-spin interactions. Such an apparently irreversible process is known as spin diffusion and it can lead the system back to ‘equilibrium’. Even so, a unitary quantum dynamics would ensure a precise memory of the non-equilibrium initial condition. Then, if at a certain time, say t/2, an experimental protocol reverses the many-body dynamics by changing the sign of the effective Hamiltonian, it would drive the system back to the initial non-equilibrium state at time t. As a matter of fact, the reversal is always perturbed by small experimental imperfections and/or uncontrolled internal or environmental degrees of freedom. This limits the amount of signal M(t) recovered locally at time t. The degradation of M(t) accounts for these perturbations, which can also be seen as the sources of decoherence. This general idea defines the Loschmidt echo (LE), which embodies the various time-reversal procedures implemented in nuclear magnetic resonance. Here, we present an invitation to the study of the LE following the pathway induced by the experiments. With such a purpose, we provide a historical and conceptual overview that briefly revisits selected phenomena that underlie the LE dynamics including chaos, decoherence, localization and equilibration. This guiding thread ultimately leads us to the discussion of decoherence and irreversibility as an emergent phenomenon. In addition, we introduce the LE formalism by means of spin-spin correlation functions in a manner suitable for presentation in a broad scope physics journal. Last, but not least, we present new results that could trigger new experiments and theoretical ideas. In particular, we propose to transform an initially localized excitation into a more complex initial state, enabling a dynamically prepared LE. This induces a global definition of the LE in terms of the raw overlap between many-body wave functions. Our results show that as the complexity of the prepared state increases, it becomes more fragile towards small perturbations.
Pumphrey, Ashley; Yang, Zhengshi; Ye, Shaojing; Powell, David K.; Thalman, Scott; Watt, David S.; Abdel-Latif, Ahmed; Unrine, Jason; Thompson, Katherine; Fornwalt, Brandon; Ferrauto, Giuseppe; Vandsburger, Moriel
2016-01-01
An improved pre-clinical cardiac chemical exchange saturation transfer (CEST) pulse sequence (cardioCEST) was used to selectively visualize paramagnetic CEST (paraCEST)-labeled cells following intramyocardial implantation. In addition, cardioCEST was used to examine the effect of diet-induced obesity upon myocardial creatine CEST contrast. CEST pulse sequences were designed from standard turbo-spin-echo and gradient-echo sequences, and a cardiorespiratory-gated steady-state cine gradient-echo sequence. In vitro validation studies performed in phantoms composed of 20mM Eu-HPDO3A, 20mM Yb-HPDO3A, or saline demonstrated similar CEST contrast by spin-echo and gradient-echo pulse sequences. Skeletal myoblast cells (C2C12) were labeled with either Eu-HPDO3A or saline using a hypotonic swelling procedure and implanted into the myocardium of C57B6/J mice. Inductively coupled plasma mass spectrometry confirmed cellular levels of Eu of 2.1 × 10−3 ng/cell in Eu-HPDO3A-labeled cells and 2.3 × 10−5 ng/cell in saline-labeled cells. In vivo cardioCEST imaging of labeled cells at ±15ppm was performed 24 h after implantation and revealed significantly elevated asymmetric magnetization transfer ratio values in regions of Eu-HPDO3A-labeled cells when compared with surrounding myocardium or saline-labeled cells. We further utilized the cardioCEST pulse sequence to examine changes in myocardial creatine in response to diet-induced obesity by acquiring pairs of cardioCEST images at ±1.8 ppm. While ventricular geometry and function were unchanged between mice fed either a high-fat diet or a corresponding control low-fat diet for 14 weeks, myocardial creatine CEST contrast was significantly reduced in mice fed the high-fat diet. The selective visualization of paraCEST-labeled cells using cardioCEST imaging can enable investigation of cell fate processes in cardioregenerative medicine, or multiplex imaging of cell survival with imaging of cardiac structure and function and additional imaging of myocardial creatine. PMID:26684053
Miquel, M E; Hill, D L G; Baker, E J; Qureshi, S A; Simon, R D B; Keevil, S F; Razavi, R S
2003-06-01
The present study was designed to evaluate the feasibility and clinical usefulness of three-dimensional (3D) reconstruction of intra-cardiac anatomy from a series of two-dimensional (2D) MR images using commercially available software. Sixteen patients (eight with structurally normal hearts but due to have catheter radio-frequency ablation of atrial tachyarrhythmias and eight with atrial septal defects (ASD) due for trans-catheter closure) and two volunteers were imaged at 1T. For each patient, a series of ECG-triggered images (5 mm thick slices, 2-3 mm apart) were acquired during breath holding. Depending on image quality, T1- or T2-weighted spin-echo images or gradient-echo cine images were used. The 3D reconstruction was performed off-line: the blood pools within cardiac chambers and great vessels were semi-automatically segmented, their outer surface was extracted using a marching cube algorithm and rendered. Intra- and inter-observer variability, effect of breath-hold position and differences between pulse sequences were assessed by imaging a volunteer. The 3D reconstructions were assessed by three cardiologists and compared with the 2D MR images and with 2D and 3D trans-esophagal and intra-cardiac echocardiography obtained during interventions. In every case, an anatomically detailed 3D volume was obtained. In the two patients where a 3 mm interval between slices was used, the resolution was not as good but it was still possible to visualize all the major anatomical structures. Spin-echo images lead to reconstructions more detailed than those obtained from gradient-echo images. However, gradient-echo images are easier to segment due to their greater contrast. Furthermore, because images were acquired at least at ten points in the cardiac cycles for every slice it was possible to reconstruct a cine loop and, for example, to visualize the evolution of the size and margins of the ASD during the cardiac cycle. 3D reconstruction proved to be an effective way to assess the relationship between the different parts of the cardiac anatomy. The technique was useful in planning interventions in these patients.
Kumar, Dushyant; Hariharan, Hari; Faizy, Tobias D; Borchert, Patrick; Siemonsen, Susanne; Fiehler, Jens; Reddy, Ravinder; Sedlacik, Jan
2018-05-12
We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1 + -inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. The proposed algorithm provides more noise-robust fits to T2-decay data and improves MWF-quantifications in white matter structures especially in the sub-cortical white matter and major white matter tract regions. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan
2013-01-01
A consecutive series of 50 patients (28 males and 22 females) who underwent hepatic magnetic resonance imaging (MRI) from August to December 2011 were enrolled in this study. The appropriate parameters for abdominal MRI scans were determined by comparing the images (TE = 90 and 128 msec) produced using the half-Fourier acquisition single-shot turbo spin-echo (HASTE) technique at different signal acquisition times. The patients consisted of 15 normal patients, 25 patients with a hepatoma and 10 patients with a hemangioma. The TE in a single patient was set to either 90 msec or 128 msec. This was followed by measurements using the four normal rendering methods of the biliary tract system and the background signal intensity using the maximal signal intensity techniques in the liver, spleen, pancreas, gallbladder, fat, muscles and hemangioma. The signal-to-noise and the contrast-to-noise ratios were obtained. The image quality was assessed subjectively, and the results were compared. The signal-to-noise and the contrast-to-noise ratios were significantly higher at TE = 128 msec than at TE = 90 when diseases of the liver, spleen, pancreas, gallbladder, and fat and muscles, hepatocellular carcinomas and hemangiomas, and rendering the hepatobiliary tract system based on the maximum signal intensity technique were involved (p < 0.05). In addition, the presence of artifacts, the image clarity and the overall image quality were excellent at TE = 128 msec (p < 0.05). In abdominal MRI, the breath-hold half-Fourier acquisition single-shot turbo spin-echo (HASTE) was found to be effective in illustrating the abdominal organs for TE = 128 msec. Overall, the image quality at TE = 128 msec was better than that at TE = 90 msec due to the improved signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Overall, the HASTE technique for abdominal MRI based on a high-magnetic field (3.0 T) at a TE of 128 msec can provide useful data.
Diffusion-weighted magnetic resonance imaging of uterine cervical cancer.
Liu, Ying; Bai, Renju; Sun, Haoran; Liu, Haidong; Wang, Dehua
2009-01-01
To determine the feasibility of diffusion-weighted magnetic resonance (MR) imaging (DWI) of uterine cervical cancer and to investigate whether the apparent diffusion coefficient (ADC) values of cervical cancer differ from those of normal cervix and whether they could indicate the histologic type and the pathologic grade of tumor. Forty-two female patients with histopathologically proven uterine cervical cancer and 15 female patients with uterine leiomyomas underwent preoperative MR examinations using a 1.5-T clinical scanner (GE 1.5T Twin-Speed Infinity with Excite II scanner; GE Healthcare, Waukesha, Wis). Scanning sequences included T2-weighted fast spin-echo imaging, T2-weighted fast spin-echo with fat suppression imaging, T1-weighted spin-echo imaging, and DWI with diffusion factors of 0 and 1000 s/mm2. Parameters evaluated consisted of ADC values of uterine cervical cancer and normal cervix. Histologic specimens were stained with hematoxylin and eosin. The cellular densities of 32 uterine cervical cancers were calculated, which were regarded as the ratio of the total area of tumor cell nuclei divided by the area of sample image. Apparent diffusion coefficient value was statistically different (P = 0.000) between normal and cancerous tissue in the uterine cervix; the former one was (mean [SD], 1.50 [0.16]) x 10(-3) mm2/s, and the latter one was (0.88 [0.15]) x 10(-3) mm2/s. Apparent diffusion coefficient value of squamous carcinoma was statistically lower than that of adenocarcinoma (P = 0.040). The ADC value of uterine cervical cancer correlated negatively with cellular density (r = -0.711, P = 0.000) and the grading of tumor (r = -0.778, P = 0.000). Diffusion-weighted MR imaging has a potential ability to differentiate between normal and cancerous tissue in the uterine cervix, and it can indicate the histologic type of uterine cervical cancer as well. The ADC value of uterine cervical cancer represents tumor cellular density, thus providing a new method for evaluating the pathologic grading of tumor.
Lee, Young Han; Hahn, Seok; Lim, Daekeon; Suh, Jin-Suck
2017-02-01
Background Conventionally, two-dimensional (2D) fast spin-echo (FSE) sequences have been widely used for clinical cartilage imaging as well as gradient (GRE) sequences. Recently, three-dimensional (3D) volumetric magnetic resonance imaging (MRI) has been introduced with one 3D volumetric scan, and this is replacing slice-by-slice 2D MR scans. Purpose To evaluate the image quality and diagnostic performance of two 3D sequences for abnormalities of knee cartilage: fat-suppressed (FS) FSE-based 3D volume isotropic turbo spin-echo acquisition (VISTA) and GRE-based 3D T1 high-resolution isovolumetric examination (THRIVE). Material and Methods The institutional review board approved the protocol of this retrospective review. This study enrolled 40 patients (41 knees) with arthroscopically confirmed abnormalities of cartilage. All patients underwent isovoxel 3D-VISTA and 3D-THRIVE MR sequences on 3T MRI. We assessed the cartilage grade on the two 3D sequences using arthroscopy as a gold standard. Inter-observer agreement for each technique was evaluated with the intraclass correlation coefficient (ICC). Differences in the area under the curve (AUC) were compared between the 3D-THRIVE and 3D-VISTA. Results Although inter-observer agreement for both sequences was excellent, the inter-observer agreement for 3D-VISTA was higher than for 3D-THRIVE for cartilage grading in all regions of the knee. There was no significant difference in the diagnostic performance ( P > 0.05) between the two sequences for detecting cartilage grade. Conclusion FSE-based 3D-VISTA images had good diagnostic performance that was comparable to GRE-based 3D-THRIVE images in the evaluation of knee cartilage, and can be used in routine knee MR protocols for the evaluation of cartilage.
Mercredi, Morgan; Vincent, Trevor J; Bidinosti, Christopher P; Martin, Melanie
2017-02-01
Current magnetic resonance imaging (MRI) axon diameter measurements rely on the pulsed gradient spin-echo sequence, which is unable to provide diffusion times short enough to measure small axon diameters. This study combines the AxCaliber axon diameter fitting method with data generated from Monte Carlo simulations of oscillating gradient spin-echo sequences (OGSE) to infer micron-sized axon diameters, in order to determine the feasibility of using MRI to infer smaller axon diameters in brain tissue. Monte Carlo computer simulation data were synthesized from tissue geometries of cylinders of different diameters using a range of gradient frequencies in the cosine OGSE sequence . Data were fitted to the AxCaliber method modified to allow the new pulse sequence. Intra- and extra-axonal water were studied separately and together. The simulations revealed the extra-axonal model to be problematic. Rather than change the model, we found that restricting the range of gradient frequencies such that the measured apparent diffusion coefficient was constant over that range resulted in more accurate fitted diameters. Thus a careful selection of frequency ranges is needed for the AxCaliber method to correctly model extra-axonal water, or adaptations to the method are needed. This restriction helped reduce the necessary gradient strengths for measurements that could be performed with parameters feasible for a Bruker BG6 gradient set. For these experiments, the simulations inferred diameters as small as 0.5 μm on square-packed and randomly packed cylinders. The accuracy of the inferred diameters was found to be dependent on the signal-to-noise ratio (SNR), with smaller diameters more affected by noise, although all diameter distributions were distinguishable from one another for all SNRs tested. The results of this study indicate the feasibility of using MRI with OGSE on preclinical scanners to infer small axon diameters.
Ultrafast MR imaging of the pelvic floor.
Unterweger, M; Marincek, B; Gottstein-Aalame, N; Debatin, J F; Seifert, B; Ochsenbein-Imhof, N; Perucchini, D; Kubik-Huch, R A
2001-04-01
The aim of this study was to compare pelvic floor anatomy and laxity at rest and on straining (Valsalva's maneuver) using dynamic ultrafast MR imaging in women who were continent versus those with stress incontinence differing in obstetric history. Thirty continent women were divided into three equal groups (nulliparous, previous cesarean delivery, previous vaginal delivery) and compared with 10 women with stress-incontinence with a history of at least one vaginal delivery. MR imaging of the pelvic floor at rest and on maximal strain was performed, using axial T2-weighted fast spin-echo images followed by sagittal ultrafast T2-weighted single-shot fast spin-echo sequences. Mean population age (age range, 22-45 years; mean +/- SD, 36 +/- 5.4 years), was similar in the four groups, as was parity in the three parous groups. Mean distances between the bladder floor and pubococcygeal line at rest did not differ between the four groups. On straining, bladder floor descent was 1.1 +/- 0.9, 1.0 +/- 1.1, and 1.9 +/- 0.9 cm in continent nulliparous, cesarean delivery, and vaginal delivery women, respectively, versus 3.2 +/- 1.0 cm in incontinent women (p = 0.0005). Cervical descent was greater in incontinent versus nulliparous women (p = 0.0019). Bladder floor descent was greater in the continent vaginal delivery group than in continent cesarean delivery control patients (p = 0.04). In patients with stress incontinence, symptoms did not correlate with amplitude of descent. The right levator muscle was thinner overall than the left, regardless of frequency direction (p = 0.001). Ultrafast MR imaging using the T2-weighted single-shot fast spin-echo sequence allows dynamic evaluation of the pelvic compartments at maximal strain with no need for contrast medium. Pelvic floor laxity and supporting fascia abnormalities were most common in patients with stress incontinence followed by continent women with a history of vaginal delivery. The results are therefore compatible with the hypothesis of vaginal delivery as a contributory factor to stress incontinence in older parous women.
Electrical Spin Driving by g -Matrix Modulation in Spin-Orbit Qubits
NASA Astrophysics Data System (ADS)
Crippa, Alessandro; Maurand, Romain; Bourdet, Léo; Kotekar-Patil, Dharmraj; Amisse, Anthony; Jehl, Xavier; Sanquer, Marc; Laviéville, Romain; Bohuslavskyi, Heorhii; Hutin, Louis; Barraud, Sylvain; Vinet, Maud; Niquet, Yann-Michel; De Franceschi, Silvano
2018-03-01
In a semiconductor spin qubit with sizable spin-orbit coupling, coherent spin rotations can be driven by a resonant gate-voltage modulation. Recently, we have exploited this opportunity in the experimental demonstration of a hole spin qubit in a silicon device. Here we investigate the underlying physical mechanisms by measuring the full angular dependence of the Rabi frequency, as well as the gate-voltage dependence and anisotropy of the hole g factor. We show that a g -matrix formalism can simultaneously capture and discriminate the contributions of two mechanisms so far independently discussed in the literature: one associated with the modulation of the g factor, and measurable by Zeeman energy spectroscopy, the other not. Our approach has a general validity and can be applied to the analysis of other types of spin-orbit qubits.
Delayed entanglement echo for individual control of a large number of nuclear spins
Wang, Zhen-Yu; Casanova, Jorge; Plenio, Martin B.
2017-01-01
Methods to selectively detect and manipulate nuclear spins by single electrons of solid-state defects play a central role for quantum information processing and nanoscale nuclear magnetic resonance (NMR). However, with standard techniques, no more than eight nuclear spins have been resolved by a single defect centre. Here we develop a method that improves significantly the ability to detect, address and manipulate nuclear spins unambiguously and individually in a broad frequency band by using a nitrogen-vacancy (NV) centre as model system. On the basis of delayed entanglement control, a technique combining microwave and radio frequency fields, our method allows to selectively perform robust high-fidelity entangling gates between hardly resolved nuclear spins and the NV electron. Long-lived qubit memories can be naturally incorporated to our method for improved performance. The application of our ideas will increase the number of useful register qubits accessible to a defect centre and improve the signal of nanoscale NMR. PMID:28256508
Delayed entanglement echo for individual control of a large number of nuclear spins.
Wang, Zhen-Yu; Casanova, Jorge; Plenio, Martin B
2017-03-03
Methods to selectively detect and manipulate nuclear spins by single electrons of solid-state defects play a central role for quantum information processing and nanoscale nuclear magnetic resonance (NMR). However, with standard techniques, no more than eight nuclear spins have been resolved by a single defect centre. Here we develop a method that improves significantly the ability to detect, address and manipulate nuclear spins unambiguously and individually in a broad frequency band by using a nitrogen-vacancy (NV) centre as model system. On the basis of delayed entanglement control, a technique combining microwave and radio frequency fields, our method allows to selectively perform robust high-fidelity entangling gates between hardly resolved nuclear spins and the NV electron. Long-lived qubit memories can be naturally incorporated to our method for improved performance. The application of our ideas will increase the number of useful register qubits accessible to a defect centre and improve the signal of nanoscale NMR.
Coherent manipulation of mononuclear lanthanide-based single-molecule magnets
NASA Astrophysics Data System (ADS)
Datta, Saiti; Ghosh, Sanhita; Krzystek, Jurek; Hill, Stephen; Del Barco, Enrique; Cardona-Serra, Salvador; Coronado, Eugenio
2010-03-01
Using electron spin echo (ESE) spectroscopy, we report measurements of the longitudinal (T1) and transverse (T2) relaxation times of diluted single-crystals containing recently discovered mononuclear lanthanide-based single-molecule magnets (SMMs) encapsulated in polyoxometallate cages [AlDamen et al. J. Am. Chem. Soc. 130, 8874 -- 8875 (2008)]. This encapsulation offers the potential for preserving bulk SMM properties outside of a crystal, e.g. in molecular spintronic devices. The magnetic anisotropy in these complexes arises from the spin-orbit splitting of the ground state J multiplet of the lanthanide ion in the presence of a ligand field. At low frequencies only hyperfine-split transitions within the lowest ground state ±mJ doublet are observed. Spin relaxation times were measured for a holmium complex, and the results were compared for different hyperfine transitions and crystal dilutions. Clear Rabi oscillations were also observed, indicating that one can manipulate the spin coherently in these complexes.
Real-time monitoring of Lévy flights in a single quantum system
NASA Astrophysics Data System (ADS)
Issler, M.; Höller, J.; Imamoǧlu, A.
2016-02-01
Lévy flights are random walks where the dynamics is dominated by rare events. Even though they have been studied in vastly different physical systems, their observation in a single quantum system has remained elusive. Here we analyze a periodically driven open central spin system and demonstrate theoretically that the dynamics of the spin environment exhibits Lévy flights. For the particular realization in a single-electron charged quantum dot driven by periodic resonant laser pulses, we use Monte Carlo simulations to confirm that the long waiting times between successive nuclear spin-flip events are governed by a power-law distribution; the corresponding exponent η =-3 /2 can be directly measured in real time by observing the waiting time distribution of successive photon emission events. Remarkably, the dominant intrinsic limitation of the scheme arising from nuclear quadrupole coupling can be minimized by adjusting the magnetic field or by implementing spin echo.
A new detection scheme for ultrafast 2D J-resolved spectroscopy
NASA Astrophysics Data System (ADS)
Giraudeau, Patrick; Akoka, Serge
2007-06-01
Recent ultrafast techniques enable 2D NMR spectra to be obtained in a single scan. A modification of the detection scheme involved in this technique is proposed, permitting the achievement of 2D 1H J-resolved spectra in 500 ms. The detection gradient echoes are substituted by spin echoes to obtain spectra where the coupling constants are encoded along the direct ν2 domain. The use of this new J-resolved detection block after continuous phase-encoding excitation schemes is discussed in terms of resolution and sensitivity. J-resolved spectra obtained on cinnamic acid and 3-ethyl bromopropionate are presented, revealing the expected 2D J-patterns with coupling constants as small as 2 Hz.
7 Tesla compatible in-bore display for functional magnetic resonance imaging.
Groebner, Jens; Berger, Moritz Cornelius; Umathum, Reiner; Bock, Michael; Rauschenberg, Jaane
2013-08-01
A liquid crystal display was modified for use inside a 7 T MR magnet. SNR measurements were performed using different imaging sequences with the monitor absent, present, or activated. fMRI with a volunteer was conducted using a visual stimulus. SNR was reduced by 3.7%/7.9% in echo planar/fast-spin echo images when the monitor was on which can be explained by the limited shielding of the coated front window (40 dB). In the fMRI experiments, activated regions in the visual cortex were clearly visible. The monitor provided excellent resolution at minor SNR reduction in EPI images, and is thus suitable for fMRI at ultra-high field.
Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David
2016-07-01
The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both sequences are limited by the scan time required. In addition, pTSE-DWI has limitations on the number of slices due to specific absorption rate. Overall, rsEPI-DWI is a favorable imaging sequence, taking into account the SNR and image quality at 7 T.
Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface
NASA Astrophysics Data System (ADS)
Christle, David J.; Klimov, Paul V.; de las Casas, Charles F.; Szász, Krisztián; Ivády, Viktor; Jokubavicius, Valdas; Ul Hassan, Jawad; Syväjärvi, Mikael; Koehl, William F.; Ohshima, Takeshi; Son, Nguyen T.; Janzén, Erik; Gali, Ádám; Awschalom, David D.
2017-04-01
The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a high-fidelity spin-photon interface, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here, we demonstrate that such an interface exists in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have a millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on Si shows promise for future quantum networks based on SiC defects.
MR Fingerprinting Using The Quick Echo Splitting NMR Imaging Technique
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A.
2016-01-01
Purpose The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining Magnetic Resonance Fingerprinting (MRF) technique with Quick Echo Splitting NMR Imaging Technique (QUEST). Methods A QUEST-based MRF sequence was implemented to acquire high order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T1 and T2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The SAR of QUEST-MRF was compared to the clinically available methods. Results MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head Specific Absorption Rate (SAR) of 0.03 W/kg. T1 and T2 values estimated by MRF-QUEST are in good agreement with the traditional methods. Conclusion The combination of the MRF and the QUEST provides an accurate quantification of T1 and T2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. PMID:26924639
Echoes of the Vision: When the Rest of the Organization Talks Total Quality.
ERIC Educational Resources Information Center
Fairhurst, Gail T.
1993-01-01
Describes a case study of an organization that recently began implementing W. E. Deming's Total Quality (TQ). Finds and discusses five framing devices used in routine work conversations between leaders and members to implement the TQ vision: communicated predicaments, possible futures, jargon and vision themes, positive spin, and agenda setting.…
Damping of collective modes and the echo effect in a confined Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Kuklov, A. B.; Chencinski, N.
1998-04-01
We discuss the reversible nature of two mechanisms of the apparent damping of the collective modes of a confined Bose-Einstein condensate -- Landau Damping (LD) and a dephasing caused by thermal fluctuations of the normal component. The reversibility of the damping in both cases can be tested by the echo effect, when two consecutive external pulses modulate the potential trapping the condensate and induce a third pulse -- the echo -- at the time approximately equal to twice the time interval between the first two pulses. This effect is similar to the phonon echo in powders (Koji Kajimura in Physical Acoustics), ed. W.P. Mason, V.XVI, Academic Press, NY, Toronto 1982.. Parameters of the echo for the isotropic condensate are calculated analytically in the adiabatic approximation for the case of the small external pulses. Numerical simulations for the arbitrary pulses are also presented. The echo in an anisotropic condensate, where the adaibatic approximation is not valid because of the LD, is described in terms of the model of a single oscillator interacting with a quasi-continuum of modes which constitutes the normal component. In both cases in the weak echo limit the echo amplitude turns out to be proportional to the amplitudes of the external pulses. We suggest to test these predictions experimentally.
NASA Astrophysics Data System (ADS)
Chekhovich, Evgeny A.
2017-06-01
Dynamics of nuclear spin decoherence and nuclear spin flip-flops in self-assembled InGaAs/GaAs quantum dots are studied experimentally using optically detected nuclear magnetic resonance (NMR). Nuclear spin-echo decay times are found to be in the range 1-4 ms. This is a factor of ~3 longer than in strain-free GaAs/AlGaAs structures and is shown to result from strain-induced quadrupolar effects that suppress nuclear spin flip-flops. The correlation times of the flip-flops are examined using a novel frequency-comb NMR technique and are found to exceed 1 s, a factor of ~1000 longer than in strain-free structures. These findings complement recent studies of electron spin coherence and reveal the paradoxical dual role of the quadrupolar effects in self-assembled quantum dots: large increase of the nuclear spin bath coherence and at the same time significant reduction of the electron spin-qubit coherence. Approaches to increasing electron spin coherence are discussed. In particular the nanohole filled GaAs/AlGaAs quantum dots are an attractive option: while their optical quality matches the self-assembled dots the quadrupolar effects measured in NMR spectra are a factor of 1000 smaller.
NASA Astrophysics Data System (ADS)
Nayfeh, O. M.; Chao, D.; Djapic, N.; Sims, P.; Liu, B.; Sharma, S.; Lerum, L.; Fahem, M.; Dinh, V.; Zlatanovic, S.; Lynn, B.; Torres, C.; Higa, B.; Moore, J.; Upchurch, A.; Cothern, J.; Tukeman, M.; Barua, R.; Davidson, B.; Ramirez, A. D.; Rees, C. D.; Anant, V.; Kanter, G. S.
2017-08-01
Optically active rare-earth Neodymium (Nd) ions are integrated in Niobium (Nb) thin films forming a new quantum memory device (Nd:Nb) targeting long-lived coherence times and multi-functionality enabled by both spin and photon storage properties. Nb is implanted with Nd spanning 10-60 keV energy and 1013-1014 cm-2 dose producing a 1- 3% Nd:Nb concentration as confirmed by energy-dispersive X-ray spectroscopy. Scanning confocal photoluminescence (PL) at 785 nm excitation are made and sharp emission peaks from the 4F3/2 -< 4I11/2 Nd3+ transition at 1064-1070 nm are examined. In contrast, un-implanted Nb is void of any peaks. Line-shapes at room temperature are fit with Lorentzian profiles with line-widths of 4-5 nm and 1.3 THz bandwidth and the impacts of hyperfine splitting via the metallic crystal potential are apparent and the co-contribution of implant induced defects. With increasing Nd from 1% to 3%, there is a 0.3 nm red shift and increased broadening to a 4.8 nm linewidth. Nd:Nb is photoconductive and responds strongly to applied fields. Furthermore, optically detected magnetic resonance (ODMR) measurements are presented spanning near-infrared telecom band. The modulation of the emission intensity with magnetic field and microwave power by integration of these magnetic Kramer type Nd ions is quantified along with spin echoes under pulsed microwave π-π/2 excitation. A hybrid system architecture is proposed using spin and photon quantum information storage with the nuclear and electron states of the Nd3+ and neighboring Nb atoms that can couple qubit states to hyperfine 7/2 spin states of Nd:Nb and onto NIR optical levels excitable with entangled single photons, thus enabling implementation of computing and networking/internet protocols in a single platform.
MTR and In-vivo 1H-MRS studies on mouse brain with parkinson's disease
NASA Astrophysics Data System (ADS)
Yoon, Moon-Hyun; Kim, Hyeon-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young
2012-12-01
The aim of this study was to investigate whether the changes in the magnetization transfer ratio (MTR) histogram are related to specific characteristics of Parkinson's disease (PD) and to investigate whether the MTR histogram parameters are associated with neurochemical dysfunction by performing in vivo proton magnetic resonance spectroscopy (1H-MRS). MTR and in vivo 1H-MRS studies were performed on control mice (n = 10) and 1-methyl-1,2,3,6-tetrahydropyridine intoxicated mice (n = 10). All the MTR and in vivo 1H-MRS experiments were performed on a 9.4 T MRI/MRS system (Bruker Biospin, Germany) using a standard head coil. The protondensity fast spin echo (FSE) images and the T2-weighted spin echo (SE) images were acquired with no gap. Outer volume suppression (OVS), combined with the ultra-short echo-time stimulated echo acquisition mode (STEAM), was used for the localized in-vivo 1H-MRS. The quantitative analysis of metabolites was performed from the 1H spectra obtained in vivo on the striatum (ST) by using jMRUI (Lyon, France). The peak height of the MTR histograms in the PD model group was significantly lower than that in the control group (p < 0.05). The midbrain MTR values for volume were lower in the PD group than the control group(p < 0.05). The complex peak (Glx: glutamine+glutamate+ GABA)/creatine (Cr) ratio of the right ST in the PD group was significantly increased as compared to that of the control group. The present study revealed that the peak height of the MTR histogram was significantly decreased in the ST and substantia nigra, and a significant increase in the Gl x /Cr ratio was found in the ST of the PD group, as compared with that of the control group. These findings could reflect the early phase of neuronal dysfunction of neurotransmitters.
Aliotta, Eric; Moulin, Kévin; Zhang, Zhaohuan; Ennis, Daniel B.
2018-01-01
Purpose To evaluate a technique for simultaneous quantitative T2 and apparent diffusion coefficient (ADC) mapping in the heart (T2+ADC) using spin echo (SE) diffusion-weighted imaging (DWI). Theory and Methods T2 maps from T2+ADC were compared with single-echo SE in phantoms and with T2-prepared (T2-prep) balanced steady-state free precession (bSSFP) in healthy volunteers. ADC maps from T2+ADC were compared with conventional DWI in phantoms and in vivo. T2+ADC was also demonstrated in a patient with acute myocardial infarction (MI). Results Phantom T2 values from T2+ADC were closer to a single-echo SE reference than T2-prep bSSFP (−2.3 ± 6.0% vs 22.2 ± 16.3%; P < 0.01), and ADC values were in excellent agreement with DWI (0.28 ± 0.4%). In volunteers, myocardial T2 values from T2+ADC were significantly shorter than T2-prep bSSFP (35.8 ± 3.1 vs 46.8 ± 3.8 ms; P < 0.01); myocardial ADC was not significantly (N.S.) different between T2+ADC and conventional motion-compensated DWI (1.39 ± 0.18 vs 1.38 ± 0.18 mm2/ms; P = N.S.). In the patient, T2 and ADC were both significantly elevated in the infarct compared with remote myocardium (T2: 40.4 ± 7.6 vs 56.8 ± 22.0; P < 0.01; ADC: 1.47 ± 0.59 vs 1.65 ± 0.65 mm2/ms; P < 0.01). Conclusion T2+ADC generated coregistered, free-breathing T2 and ADC maps in healthy volunteers and a patient with acute MI with no cost in accuracy, precision, or scan time compared with DWI. PMID:28516485
TU-H-CAMPUS-IeP2-01: Quantitative Evaluation of PROPELLER DWI Using QIBA Diffusion Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, J; Ai, H; Liu, H
Purpose: The purpose of this study is to determine the quantitative variability of apparent diffusion coefficient (ADC) values when varying imaging parameters in a diffusion-weighted (DW) fast spin echo (FSE) sequence with Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) k-space trajectory. Methods: Using a 3T MRI scanner, a NIST traceable, quantitative magnetic resonance imaging (MRI) diffusion phantom (High Precision Devices, Inc, Boulder, Colorado) consisting of 13 vials filled with various concentrations of polymer polyvinylpyrrolidone (PVP) in aqueous solution was imaged with a standard Quantitative Imaging Biomarkers Alliance (QIBA) DWI spin echo, echo planar imaging (SE EPI) acquisition. Themore » same phantom was then imaged with a DWI PROPELLER sequence at varying echo train lengths (ETL) of 8, 20, and 32, as well as b-values of 400, 900, and 2000. QIBA DWI phantom analysis software was used to generate ADC maps and create region of interests (ROIs) for quantitative measurements of each vial. Mean and standard deviations of the ROIs were compared. Results: The SE EPI sequence generated ADC values that showed very good agreement with the known ADC values of the phantom (r2 = 0.9995, slope = 1.0061). The ADC values measured from the PROPELLER sequences were inflated, but were highly correlated with an r2 range from 0.8754 to 0.9880. The PROPELLER sequence with an ETL=20 and b-value of 0 and 2000 showed the closest agreement (r2 = 0.9034, slope = 0.9880). Conclusion: The DW PROPELLER sequence is promising for quantitative evaluation of ADC values. A drawback of the PROPELLER sequence is the longer acquisition time. The 180° refocusing pulses may also cause the observed increase in ADC values compared to the standard SE EPI DW sequence. However, the FSE sequence offers an advantage with in-plane motion and geometric distortion which will be investigated in future studies.« less
Imaging of pediatric great vessel stents: Computed tomography or magnetic resonance imaging?
van Hamersvelt, R. W.; Budde, R. P. J.; de Jong, P. A.; Schilham, A. M. R.; Bos, C.; Breur, J. M. P. J.; Leiner, T.
2017-01-01
Background Complications might occur after great vessel stent implantation in children. Therefore follow-up using imaging is warranted. Purpose To determine the optimal imaging modality for the assessment of stents used to treat great vessel obstructions in children. Material and methods Five different large vessel stents were evaluated in an in-vitro setting. All stents were expanded to the maximal vendor recommended diameter (20mm; n = 4 or 10mm; n = 1), placed in an anthropomorphic chest phantom and imaged with a 256-slice CT-scanner. MRI images were acquired at 1.5T using a multi-slice T2-weighted turbo spin echo, an RF-spoiled three-dimensional T1-weighted Fast Field Echo and a balanced turbo field echo 3D sequence. Two blinded observers assessed stent lumen visibility (measured diameter/true diameter *100%) in the center and at the outlets of the stent. Reproducibility of diameter measurements was evaluated using the intraclass correlation coefficient for reliability and 95% limits of agreement for agreement analysis. Results Median stent lumen visibility was 88 (IQR 86–90)% with CT for all stents at both the center and outlets. With MRI, the T2-weighted turbo spin echo sequence was preferred which resulted in 82 (78–84%) stent lumen visibility. Interobserver reliability and agreement was good for both CT (ICC 0.997, mean difference -0.51 [-1.07–0.05] mm) and MRI measurements (ICC 0.951, mean difference -0.05 [-2.52 –-2.41] mm). Conclusion Good in-stent lumen visibility was achievable in this in-vitro study with both CT and MRI in different great vessel stents. Overall reliability was good with clinical acceptable limits of agreement for both CT and MRI. However, common conditions such as in-stent stenosis and associated aneurysms were not tested in this in-vitro study, limiting the value of the in-vitro study. PMID:28141852
Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla
Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns
2015-01-01
Purpose The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. Methods and materials One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. Results It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. Conclusion This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant. PMID:26604836
Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Rigato, Cristina; Eeg-Olofsson, Måns
2015-01-01
The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant.
Lau, Condon; Zhou, Iris Y; Cheung, Matthew M; Chan, Kevin C; Wu, Ed X
2011-04-29
The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN's response temporal dynamics following short duration (1 s) visual stimulation. Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC. The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different.
Imaging of pediatric great vessel stents: Computed tomography or magnetic resonance imaging?
den Harder, A M; Suchá, D; van Hamersvelt, R W; Budde, R P J; de Jong, P A; Schilham, A M R; Bos, C; Breur, J M P J; Leiner, T
2017-01-01
Complications might occur after great vessel stent implantation in children. Therefore follow-up using imaging is warranted. To determine the optimal imaging modality for the assessment of stents used to treat great vessel obstructions in children. Five different large vessel stents were evaluated in an in-vitro setting. All stents were expanded to the maximal vendor recommended diameter (20mm; n = 4 or 10mm; n = 1), placed in an anthropomorphic chest phantom and imaged with a 256-slice CT-scanner. MRI images were acquired at 1.5T using a multi-slice T2-weighted turbo spin echo, an RF-spoiled three-dimensional T1-weighted Fast Field Echo and a balanced turbo field echo 3D sequence. Two blinded observers assessed stent lumen visibility (measured diameter/true diameter *100%) in the center and at the outlets of the stent. Reproducibility of diameter measurements was evaluated using the intraclass correlation coefficient for reliability and 95% limits of agreement for agreement analysis. Median stent lumen visibility was 88 (IQR 86-90)% with CT for all stents at both the center and outlets. With MRI, the T2-weighted turbo spin echo sequence was preferred which resulted in 82 (78-84%) stent lumen visibility. Interobserver reliability and agreement was good for both CT (ICC 0.997, mean difference -0.51 [-1.07-0.05] mm) and MRI measurements (ICC 0.951, mean difference -0.05 [-2.52 --2.41] mm). Good in-stent lumen visibility was achievable in this in-vitro study with both CT and MRI in different great vessel stents. Overall reliability was good with clinical acceptable limits of agreement for both CT and MRI. However, common conditions such as in-stent stenosis and associated aneurysms were not tested in this in-vitro study, limiting the value of the in-vitro study.
Reichert, Miriam; Morelli, John N; Runge, Val M; Tao, Ai; von Ritschl, Ruediger; von Ritschl, Andreas; Padua, Abraham; Dix, James E; Marra, Michael J; Schoenberg, Stefan O; Attenberger, Ulrike I
2013-01-01
The aim of this study was to compare the detection of brain metastases at 3 T using a 32-channel head coil with 2 different 3-dimensional (3D) contrast-enhanced sequences, a T1-weighted fast spin-echo-based (SPACE; sampling perfection with application-optimized contrasts using different flip angle evolutions) sequence and a conventional magnetization-prepared rapid gradient-echo (MP-RAGE) sequence. Seventeen patients with 161 brain metastases were examined prospectively using both SPACE and MP-RAGE sequences on a 3-T magnetic resonance system. Eight healthy volunteers were similarly examined for determination of signal-to-noise ratio (SNR) values. Parameters were adjusted to equalize acquisition times between the sequences (3 minutes and 30 seconds). The order in which sequences were performed was randomized. Two blinded board-certified neuroradiologists evaluated the number of detectable metastatic lesions with each sequence relative to a criterion standard reading conducted at the Gamma Knife facility by a neuroradiologist with access to all clinical and imaging data. In the volunteer assessment with SPACE and MP-RAGE, SNR (10.3 ± 0.8 vs 7.7 ± 0.7) and contrast-to-noise ratio (0.8 ± 0.2 vs 0.5 ± 0.1) were statistically significantly greater with the SPACE sequence (P < 0.05). Overall, lesion detection was markedly improved with the SPACE sequence (99.1% of lesions for reader 1 and 96.3% of lesions for reader 2) compared with the MP-RAGE sequence (73.6% of lesions for reader 1 and 68.5% of lesions for reader 2; P < 0.01). A 3D T1-weighted fast spin echo sequence (SPACE) improves detection of metastatic lesions relative to 3D T1-weighted gradient-echo-based scan (MP-RAGE) imaging when implemented with a 32-channel head coil at identical scan acquisition times (3 minutes and 30 seconds).
Lee, D K; Song, Y K; Park, B W; Cho, H P; Yeom, J S; Cho, G; Cho, H
2018-04-15
To evaluate the robustness of MR transverse relaxation times of trabecular bone from spin-echo and gradient-echo acquisitions at multiple spatial resolutions of 7 T. The effects of MRI resolutions to T 2 and T2* of trabecular bone were numerically evaluated by Monte Carlo simulations. T 2 , T2*, and trabecular structural indices from multislice multi-echo and UTE acquisitions were measured in defatted human distal femoral condyles on a 7 T scanner. Reference structural indices were extracted from high-resolution microcomputed tomography images. For bovine knee trabecular samples with intact bone marrow, T 2 and T2* were measured by degrading spatial resolutions on a 7 T system. In the defatted trabecular experiment, both T 2 and T2* values showed strong ( |r| > 0.80) correlations with trabecular spacing and number, at a high spatial resolution of 125 µm 3 . The correlations for MR image-segmentation-derived structural indices were significantly degraded ( |r| < 0.50) at spatial resolutions of 250 and 500 µm 3 . The correlations for T2* rapidly dropped ( |r| < 0.50) at a spatial resolution of 500 µm 3 , whereas those for T 2 remained consistently high ( |r| > 0.85). In the bovine trabecular experiments with intact marrow, low-resolution (approximately 1 mm 3 , 2 minutes) T 2 values did not shorten ( |r| > 0.95 with respect to approximately 0.4 mm 3 , 11 minutes) and maintained consistent correlations ( |r| > 0.70) with respect to trabecular spacing (turbo spin echo, 22.5 minutes). T 2 measurements of trabeculae at 7 T are robust with degrading spatial resolution and may be preferable in assessing trabecular spacing index with reduced scan time, when high-resolution 3D micro-MRI is difficult to obtain. © 2018 International Society for Magnetic Resonance in Medicine.
Bruegel, Melanie; Gaa, Jochen; Waldt, Simone; Woertler, Klaus; Holzapfel, Konstantin; Kiefer, Berthold; Rummeny, Ernst J
2008-11-01
The purpose of this study was to compare the value of respiration-triggered diffusion-weighted (DW) single-shot echo-planar MRI (EPI) and five variants of T2-weighted turbo spin-echo (TSE) sequences in the diagnosis of hepatic metastasis. Fifty-two patients with extrahepatic primary malignant tumors underwent 1.5-T MRI that included DW EPI and the following variants of T2-weighted TSE techniques: breath-hold fat-suppressed HASTE, breath-hold fat-supressed TSE, respiration-triggered fat-suppressed TSE, breath-hold STIR, and respiration-triggered STIR. Images were reviewed independently by two blinded observers who used a 5-point confidence scale to identify lesions. Results were correlated with surgical and histopathologic findings and follow-up imaging findings. The accuracy of each technique was measured with free-response receiver operating characteristic analysis. A total of 118 hepatic metastatic lesions (mean diameter, 12.8 mm; range, 3-84 mm) were evaluated. Accuracy values were higher (p < 0.001) with DW EPI (0.91-0.92) than with the T2-weighted TSE techniques (0.47-0.67). Imaging with the HASTE sequence (0.47-0.52) was less accurate (p < 0.05) than imaging with the breath-hold TSE, breath-hold STIR, respiration-triggered TSE, and respiration-triggered STIR sequences (0.59-0.67). Sensitivity was higher (p < 0.001) with DW EPI (0.88-0.91) than with T2-weighted TSE techniques (0.45-0.62). For small (< or = 10 mm) metastatic lesions only, the differences in sensitivity between DW EPI (0.85) and T2-weighted TSE techniques (0.26-0.44) were even more pronounced. DW EPI was more sensitive and more accurate than imaging with T2-weighted TSE techniques. Because of the black-blood effect on vessels and low susceptibility to motion artifacts, DW EPI was particularly useful for the detection of small (< or = 10 mm) metastatic lesions.
Kamthan, Shweta; Gomes, James; Roychoudhury, Pradip K
2014-08-01
Spin-filters have been primarily used for producing therapeutic proteins from mammalian cells. However, disposability and/or high filter clogging of the existing spin-filter systems affect the process economy and productivity. Hence, to address these drawbacks a reusable dual spin-filter module for perfusion culture of adherent and non-adherent mammalian cells was designed. Two non-woven Bombyx mori silk layers were used as filter screen; the outer layer was conducive to cell attachment whilst the inner was non-conducive. Adherent cells can be cultured either in suspended mode using its inner single module or as monolayer of cells using its dual concentric module. We achieved 30 % higher urokinase productivity as compared to the stainless-steel spin-filter during perfusion experiments of adherent human kidney cells in suspended mode. This was due to the hydrophobic and negatively-charged silk screen that allows clog-free perfusion culture for prolonged periods.
NASA Astrophysics Data System (ADS)
Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan
2012-08-01
EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.
T2 relaxation time is related to liver fibrosis severity
Siqueira, Luiz; Uppal, Ritika; Alford, Jamu; Fuchs, Bryan C.; Yamada, Suguru; Tanabe, Kenneth; Chung, Raymond T.; Lauwers, Gregory; Chew, Michael L.; Boland, Giles W.; Sahani, Duhyant V.; Vangel, Mark; Hahn, Peter F.; Caravan, Peter
2016-01-01
Background The grading of liver fibrosis relies on liver biopsy. Imaging techniques, including elastography and relaxometric, techniques have had varying success in diagnosing moderate fibrosis. The goal of this study was to determine if there is a relationship between the T2-relaxation time of hepatic parenchyma and the histologic grade of liver fibrosis in patients with hepatitis C undergoing both routine, liver MRI and liver biopsy, and to validate our methodology with phantoms and in a rat model of liver fibrosis. Methods This study is composed of three parts: (I) 123 patients who underwent both routine, clinical liver MRI and biopsy within a 6-month period, between July 1999 and January 2010 were enrolled in a retrospective study. MR imaging was performed at 1.5 T using dual-echo turbo-spin echo equivalent pulse sequence. T2 relaxation time of liver parenchyma in patients was calculated by mono-exponential fit of a region of interest (ROI) within the right lobe correlating to histopathologic grading (Ishak 0–6) and routine serum liver inflammation [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)]. Statistical comparison was performed using ordinary logistic and ordinal logistic regression and ANOVA comparing T2 to Ishak fibrosis without and using AST and ALT as covariates; (II) a phantom was prepared using serial dilutions of dextran coated magnetic iron oxide nanoparticles. T2 weighed imaging was performed by comparing a dual echo fast spin echo sequence to a Carr-Purcell-Meigboom-Gill (CPMG) multi-echo sequence at 1.5 T. Statistical comparison was performed using a paired t-test; (III) male Wistar rats receiving weekly intraperitoneal injections of phosphate buffer solution (PBS) control (n=4 rats); diethylnitrosamine (DEN) for either 5 (n=5 rats) or 8 weeks (n=4 rats) were MR imaged on a Bruker Pharmascan 4.7 T magnet with a home-built bird-cage coil. T2 was quantified by using a mono-exponential fitting algorithm on multi-slice multi echo T2 weighted data. Statistical comparison was performed using ANOVA. Results (I) Histopathologic evaluation of both rat and human livers demonstrated no evidence of steatosis or hemochromatosis There was a monotonic increase in mean T2 value with increasing degree of fibrosis (control 65.4±2.9 ms, n=6 patients); mild (Ishak 1–2) 66.7±1.9 ms (n=30); moderate (Ishak 3–4) 71.6±1.7 ms (n=26); severe (Ishak 5–6) 72.4±1.4 ms (n=61); with relatively low standard error (~2.9 ms). There was a statistically significant difference between degrees of mild (Ishak <4) vs. moderate to severe fibrosis (Ishak >4) (P=0.03) based on logistic regression of T2 and Ishak, which became insignificant (P=0.07) when using inflammatory markers as covariates. Expanding on this model using ordinal logistic regression, there was significance amongst all 4 groups comparing T2 to Ishak (P=0.01), with significance using inflammation as a covariate (P=0.03) and approaching statistical significance amongst all groups by ANOVA (P=0.07); (II) there was a monotonic increase in T2 and statistical significance (ANOVA P<0.0001) between each rat subgroup [phosphate buffer solution (PBS) 25.2±0.8, DEN 5-week (31.1±1.5), and DEN 9-week (49.4±0.4) ms]; (III) the phantoms that had T2 values within the relevant range for the human liver (e.g., 20–100 ms), demonstrated no statistical difference between two point fits on turbo spin echo (TSE) data and multi-echo CPMG data (P=0.9). Conclusions The finding of increased T2 with liver fibrosis may relate to inflammation that may be an alternative or adjunct to other noninvasive MR imaging based approaches for assessing liver fibrosis. PMID:27190762
NASA Astrophysics Data System (ADS)
Lu, Mao-Wang; Chen, Sai-Yan; Zhang, Gui-Lian; Huang, Xin-Hong
2018-04-01
We theoretically investigate Goos-Hänchen (GH) displacement by modelling the spin transport in an archetypal device structure—a magnetically confined GaAs/Al x Ga1-x As nanostructure modulated by spin-orbit coupling (SOC). Both Rashba and Dresselhaus SOCs are taken into account. The degree of spin-polarized GH displacement can be tuned by Rashba or Dresselhaus SOC, i.e. interfacial confining electric field or strain engineering. Based on such a semiconductor nanostructure, a controllable spatial spin splitter can be proposed for spintronics applications.
Lu, Mao-Wang; Chen, Sai-Yan; Zhang, Gui-Lian; Huang, Xin-Hong
2018-04-11
We theoretically investigate Goos-Hänchen (GH) displacement by modelling the spin transport in an archetypal device structure-a magnetically confined GaAs/Al x Ga 1-x As nanostructure modulated by spin-orbit coupling (SOC). Both Rashba and Dresselhaus SOCs are taken into account. The degree of spin-polarized GH displacement can be tuned by Rashba or Dresselhaus SOC, i.e. interfacial confining electric field or strain engineering. Based on such a semiconductor nanostructure, a controllable spatial spin splitter can be proposed for spintronics applications.
Micko, B; Lusceac, S A; Zimmermann, H; Rössler, E A
2013-02-21
We study the main (α-) and secondary (β-) relaxation in the plastically crystalline (PC) phase of cyanocyclohexane by various 2H nuclear magnetic resonance (NMR) methods (line-shape, spin-lattice relaxation, stimulated echo, and two-dimensional spectra) above and below the glass transition temperature T(g) = 134 K. Our results regarding the α-process demonstrate that molecular motion is not governed by the symmetry of the lattice. Rather it is similar to the one reported for structural glass formers and can be modeled by a reorientation proceeding via a distribution of small and large angular jumps. A solid-echo line-shape analysis regarding the β-process below T(g) yields again very similar results when compared to those of the structural glass formers ethanol and toluene. Hence we cannot confirm an intramolecular origin for the β-process in cyanocyclohexane. The fast β-process in the PC phase allows for the first time a detailed 2H NMR study of the process also at T > T(g): an additional minimum in the spin-lattice relaxation time reflecting the β-process is found. Furthermore the solid-echo spectra show a distinct deviation from the rigid limit Pake pattern, which allows a direct determination of the temperature dependent spatial restriction of the process. In Part II of this work, a quantitative analysis is carried out, where we demonstrate that within the model of a "wobbling in a cone" the mean cone angle increases above T(g) and the corresponding relaxation strength is compared to dielectric results.
Full analytical solution of the bloch equation when using a hyperbolic-secant driving function.
Zhang, Jinjin; Garwood, Michael; Park, Jang-Yeon
2017-04-01
The frequency-swept pulse known as the hyperbolic-secant (HS) pulse is popular in NMR for achieving adiabatic spin inversion. The HS pulse has also shown utility for achieving excitation and refocusing in gradient-echo and spin-echo sequences, including new ultrashort echo-time imaging (e.g., Sweep Imaging with Fourier Transform, SWIFT) and B 1 mapping techniques. To facilitate the analysis of these techniques, the complete theoretical solution of the Bloch equation, as driven by the HS pulse, was derived for an arbitrary state of initial magnetization. The solution of the Bloch-Riccati equation for transverse and longitudinal magnetization for an arbitrary initial state was derived analytically in terms of HS pulse parameters. The analytical solution was compared with the solutions using both the Runge-Kutta method and the small-tip approximation. The analytical solution was demonstrated on different initial states at different frequency offsets with/without a combination of HS pulses. Evolution of the transverse magnetization was influenced significantly by the choice of HS pulse parameters. The deviation of the magnitude of the transverse magnetization, as obtained by comparing the small-tip approximation to the analytical solution, was < 5% for flip angles < 30 °, but > 10% for the flip angles > 40 °. The derived analytical solution provides insights into the influence of HS pulse parameters on the magnetization evolution. Magn Reson Med 77:1630-1638, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Evaluation of chondromalacia of the patella with axial inversion recovery-fast spin-echo imaging.
Lee, S H; Suh, J S; Cho, J; Kim, S J; Kim, S J
2001-03-01
The purpose of our study was to assess the accuracy of inversion recovery-fast spin-echo (IR-FSE) imaging for the evaluation of chondromalacia of the patella. Eighty-six patients were included, they underwent magnetic resonance (MR) examination and subsequent knee arthroscopy. Medial and lateral facets of the patella were evaluated separately. Axial images were obtained by using IR-FSE (TR/TE/TI = 3000/25/150 msec; echo train length, 8; 4-mm thickness; 12-cm field of view; 512 x 256 matrix; two, number of excitations) with a 1.5-T MR machine. MR interpretation of chondromalacia was made on the basis of the arthroscopic grading system. Of a total of 172 facets graded, arthroscopy revealed chondromalacia in 14 facets with various grades (G0, 158; G1, 1; G2, 3; G3, 6; G4, 4). Sensitivity, specificity, and accuracy in the chondromalacia grades were 57.1%, 93.0%, and 90.1%, respectively. There was one false-negative case (G4) and 11 false-positive cases (G1, eight; G2, two; G3, one). Sensitivity and specificity corrected by one grade difference were improved to 85.7% and 98.1%, respectively. When cartilage changes were grouped into early (corresponding to grade 1 and 2) and advanced (grade 3 and 4) diseases, sensitivity and specificity of the early and advanced diseases were 75% and 94% and 80% and 99%, respectively. IR-FSE imaging of the knee revealed high specificity but low sensitivity for the evaluation of chondromalacia of the patella.
Mulkern, Robert; Haker, Steven; Mamata, Hatsuho; Lee, Edward; Mitsouras, Dimitrios; Oshio, Koichi; Balasubramanian, Mukund; Hatabu, Hiroto
2014-03-01
Lung parenchyma is challenging to image with proton MRI. The large air space results in ~l/5th as many signal-generating protons compared to other organs. Air/tissue magnetic susceptibility differences lead to strong magnetic field gradients throughout the lungs and to broad frequency distributions, much broader than within other organs. Such distributions have been the subject of experimental and theoretical analyses which may reveal aspects of lung microarchitecture useful for diagnosis. Their most immediate relevance to current imaging practice is to cause rapid signal decays, commonly discussed in terms of short T 2 * values of 1 ms or lower at typical imaging field strengths. Herein we provide a brief review of previous studies describing and interpreting proton lung spectra. We then link these broad frequency distributions to rapid signal decays, though not necessarily the exponential decays generally used to define T 2 * values. We examine how these decays influence observed signal intensities and spatial mapping features associated with the most prominent torso imaging sequences, including spoiled gradient and spin echo sequences. Effects of imperfect refocusing pulses on the multiple echo signal decays in single shot fast spin echo (SSFSE) sequences and effects of broad frequency distributions on balanced steady state free precession (bSSFP) sequence signal intensities are also provided. The theoretical analyses are based on the concept of explicitly separating the effects of reversible and irreversible transverse relaxation processes, thus providing a somewhat novel and more general framework from which to estimate lung signal intensity behavior in modern imaging practice.
MULKERN, ROBERT; HAKER, STEVEN; MAMATA, HATSUHO; LEE, EDWARD; MITSOURAS, DIMITRIOS; OSHIO, KOICHI; BALASUBRAMANIAN, MUKUND; HATABU, HIROTO
2014-01-01
Lung parenchyma is challenging to image with proton MRI. The large air space results in ~l/5th as many signal-generating protons compared to other organs. Air/tissue magnetic susceptibility differences lead to strong magnetic field gradients throughout the lungs and to broad frequency distributions, much broader than within other organs. Such distributions have been the subject of experimental and theoretical analyses which may reveal aspects of lung microarchitecture useful for diagnosis. Their most immediate relevance to current imaging practice is to cause rapid signal decays, commonly discussed in terms of short T2* values of 1 ms or lower at typical imaging field strengths. Herein we provide a brief review of previous studies describing and interpreting proton lung spectra. We then link these broad frequency distributions to rapid signal decays, though not necessarily the exponential decays generally used to define T2* values. We examine how these decays influence observed signal intensities and spatial mapping features associated with the most prominent torso imaging sequences, including spoiled gradient and spin echo sequences. Effects of imperfect refocusing pulses on the multiple echo signal decays in single shot fast spin echo (SSFSE) sequences and effects of broad frequency distributions on balanced steady state free precession (bSSFP) sequence signal intensities are also provided. The theoretical analyses are based on the concept of explicitly separating the effects of reversible and irreversible transverse relaxation processes, thus providing a somewhat novel and more general framework from which to estimate lung signal intensity behavior in modern imaging practice. PMID:25228852
Mueller-Lisse, U G; Thoma, M; Faber, S; Heuck, A F; Muschter, R; Schneede, P; Weninger, E; Hofstetter, A G; Reiser, M F
1999-02-01
To determine if hypointense lesions clearly outline on T2-weighted fast spin-echo (SE) magnetic resonance (MR) images obtained during coagulative interstitial laser-induced thermotherapy (LITT) of a prostate with benign hyperplasia. In six patients with benign prostatic hyperplasia (BPH), 12 LITT treatments were followed online with repetitive axial T2-weighted fast SE imaging (repetition time, 3,700 msec; echo time, 138 msec; acquisition time, 19 seconds). Development, time course, correlation with interstitial tissue temperature, and diameters of hypointense lesions around the laser diffusor tip were investigated. Lesion diameters on T2-weighted images acquired during LITT were compared with diameters of final lesions on T2-weighted images and unperfused lesions on enhanced T1-weighted SE images obtained at the end of therapy. Hypointense lesions developed within 20-40 seconds of LITT. Average correlation coefficients between interstitial temperature development and signal intensity development were 0.92 during LITT and 0.90 after LITT. Regression slopes were significantly steeper during LITT (0.67% signal intensity change per degree Celsius) than after LITT (0.47% per degree Celsius; P = .038). Lesions remained visible after LITT for all procedures. Average maximum diameters of lesions were 1-3 mm larger during LITT than after LITT (P = .0006-.019). Repetitive T2-weighted fast SE MR imaging during interstitial coagulative LITT of BPH demonstrates the development of permanent hypointense prostate lesions. However, posttherapeutic lesion diameters tend to be overestimated during LITT.
Targeted Single-Shot Methods for Diffusion-Weighted Imaging in the Kidneys
Jin, Ning; Deng, Jie; Zhang, Longjiang; Zhang, Zhuoli; Lu, Guangming; Omary, Reed A.; Larson, Andrew C.
2011-01-01
Purpose To investigate the feasibility of combining the inner-volume-imaging (IVI) technique with single-shot diffusion-weighted (DW) spin-echo echo-planar imaging (SE-EPI) and DW-SPLICE (split acquisition of fast spin-echo) sequences for renal DW imaging. Materials and Methods Renal DW imaging was performed in 10 healthy volunteers using single-shot DW-SE-EPI, DW-SPLICE, targeted-DW-SE-EPI and targeted-DW-SPLICE. We compared the quantitative diffusion measurement accuracy and image quality of these targeted-DW-SE-EPI and targeted DW-SPLICE methods with conventional full FOV DW-SE-EPI and DW-SPLICE measurements in phantoms and normal volunteers. Results Compared with full FOV DW-SE-EPI and DW-SPLICE methods, targeted-DW-SE-EPI and targeted-DW-SPLICE approaches produced images of superior overall quality with fewer artifacts, less distortion and reduced spatial blurring in both phantom and volunteer studies. The ADC values measured with each of the four methods were similar and in agreement with previously published data. There were no statistically significant differences between the ADC values and intra-voxel incoherent motion (IVIM) measurements in the kidney cortex and medulla using single-shot DW-SE-EPI, targeted-DW-EPI and targeted-DW-SPLICE (p > 0.05). Conclusion Compared with full-FOV DW imaging methods, targeted-DW-SE-EPI and targeted-DW-SPLICE techniques reduced image distortion and artifacts observed in the single-shot DW-SE-EPI images, reduced blurring in DW-SPLICE images and produced comparable quantitative DW and IVIM measurements to those produced with conventional full-FOV approaches. PMID:21591023
MR Imaging with Metal-suppression Sequences for Evaluation of Total Joint Arthroplasty.
Talbot, Brett S; Weinberg, Eric P
2016-01-01
Metallic artifact at orthopedic magnetic resonance (MR) imaging continues to be an important problem, particularly in the realm of total joint arthroplasty. Complications often follow total joint arthroplasty and can be expected for a small percentage of all implanted devices. Postoperative complications involve not only osseous structures but also adjacent soft tissues-a highly problematic area at MR imaging because of artifacts from metallic prostheses. Without special considerations, susceptibility artifacts from ferromagnetic implants can unacceptably degrade image quality. Common artifacts include in-plane distortions (signal loss and signal pileup), poor or absent fat suppression, geometric distortion, and through-section distortion. Basic methods to reduce metallic artifacts include use of spin-echo or fast spin-echo sequences with long echo train lengths, short inversion time inversion-recovery (STIR) sequences for fat suppression, a high bandwidth, thin section selection, and an increased matrix. With care and attention to the alloy type (eg, titanium, cobalt-chromium, stainless steel), orientation of the implant, and magnetic field strength, as well as use of proprietary and nonproprietary metal-suppression techniques, previously nondiagnostic studies can yield key diagnostic information. Specifically, sequences such as the metal artifact reduction sequence (MARS), WARP (Siemens Healthcare, Munich, Germany), slice encoding for metal artifact correction (SEMAC), and multiacquisition with variable-resonance image combination (MAVRIC) can be optimized to reveal pathologic conditions previously hidden by periprosthetic artifacts. Complications of total joint arthroplasty that can be evaluated by using MR imaging with metal-suppression sequences include pseudotumoral conditions such as metallosis and particle disease, infection, aseptic prosthesis loosening, tendon injury, and muscle injury. ©RSNA, 2015.
NASA Astrophysics Data System (ADS)
Maramraju, Sri Harsha; Smith, S. David; Rescia, Sergio; Stoll, Sean; Budassi, Michael; Vaska, Paul; Woody, Craig; Schlyer, David
2012-10-01
We previously integrated a magnetic resonance-(MR-) compatible small-animal positron emission tomograph (PET) in a Bruker 9.4 T microMRI system to obtain simultaneous PET/MR images of a rat's brain and of a gated mouse-heart. To minimize electromagnetic interactions in our MR-PET system, viz., the effect of radiofrequency (RF) pulses on the PET, we tested our modular front-end PET electronics with various shield configurations, including a solid aluminum shield and one of thin segmented layers of copper. We noted that the gradient-echo RF pulses did not affect PET data when the PET electronics were shielded with either the aluminum- or the segmented copper-shields. However, there were spurious counts in the PET data resulting from high-intensity fast spin-echo RF pulses. Compared to the unshielded condition, they were attenuated effectively by the aluminum shield ( 97%) and the segmented copper shield ( 90%). We noted a decline in the noise rates as a function of increasing PET energy-discriminator threshold. In addition, we observed a notable decrease in the signal-to-noise ratio in spin-echo MR images with the segmented copper shields in place; however, this did not substantially degrade the quality of the MR images we obtained. Our results demonstrate that by surrounding a compact PET scanner with thin layers of segmented copper shields and integrating it inside a 9.4 T MR system, we can mitigate the impact of the RF on PET, while acquiring good-quality MR images.
A spin-modulated telescope for measurement of cosmic microwave background anisotropy
NASA Astrophysics Data System (ADS)
Staren, John William
The measurement of anisotropy in the Cosmic Microwave Background (CMB) advances our knowledge of the early Universe from which the radiation originated. The angular power spectrum of CMB anisotropy at sub-degree scales depends heavily on comsological parameters such as Ob, O 0 and H0. In pursuit of critical power spectrum measurements over a range of angular scales, a spin-modulated telescope with a single cryogenic amplifier used in a total power radiometer is designed, built and tested. The new technique of spin-modulation with a spinning flat mirror canted 2.5° relative to its spin axis modulates the beam in a 10° oval pattern on the sky at 2.5 Hz. This rapid two-dimensional modulation of the beam is tested at balloon altitudes to minimize the atmospheric offset and determine the efficacy of the scan and telescope design. Maps of over 600 and 400 square degrees are made of regions observed using the spin-modulation and a 20° azimuth scan. These maps yield a 95% confidence level flat band power upper limit of DeltaTℓ = Tcmb(ℓ(ℓ + 1)Cℓ/2pi)0.5 < 77 muK at ℓ = 38 and are free of systematics effects and striping due to long-term drifts in our amplifier to the levels tested here. Planning for the next telescope, with multiple amplifiers, is performed to ensure its success.
Image domain propeller fast spin echo☆
Skare, Stefan; Holdsworth, Samantha J.; Lilja, Anders; Bammer, Roland
2013-01-01
A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed –image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15–20%, a receiver bandwidth of ±32–63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times –without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. PMID:23200683
NASA Astrophysics Data System (ADS)
Pourfallah T, A.; Alam N, Riahi; M, Allahverdi; M, Ay; M, Zahmatkesh
2009-05-01
Polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. MRI Polymer gel dosimeters are tissue equivalent and can act as a phantom material. Because of high dose response sensitivity, the MRI was chosen as readout device. In this study dose profiles calculated with treatment-planning software (LGP) and measurements with the MR polymer gel dosimeter for single-shot irradiations were compared. A custom-built 16 cm diameter spherical plexiglas head phantom was used in this study. Inside the phantom, there is a cubic cutout for insertion of gel phantoms and another cutout for inserting the inhomogeneities. The phantoms were scanned with a 1.5T MRI (Siemens syngo MR 2004A 4VA25A) scanner. The multiple spin-echo sequence with 32 echoes was used for the MRI scans. Calibration relations between the spin-spin relaxation rate and the absorbed dose were obtained by using small cylindrical vials, which were filled with the PAGAT polymer gel from the same batch as for the spherical phantom. 1D and 2D data obtained using gel dosimeter for homogeneous and inhomogeneous phantoms were compared with dose obtained using LGP calculation. The distance between relative isodose curves obtained for homogeneous phantom and heterogeneous phantoms exceed the accepted total positioning error (>±2mm). The findings of this study indicate that dose measurement using PAGAT gel dosimeter can be used for verifying dose delivering accuracy in GK unit in presence of inhomogeneities.
Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.
Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J
2009-06-25
A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.
Do we understand what creates 150-km echoes and gives them their distinct structure?
NASA Astrophysics Data System (ADS)
Oppenheim, M. M.; Kudeki, E.; Salas Reyes, P.; Dimant, Y. S.
2017-12-01
Researchers first discovered 150-km echoes over 50 years ago using the first large VHF radars near the geomagnetic equator. However, the underlying mechanism that creates and modulates them remains largely a mystery. Despite this lack of understanding the aeronomy community uses them to monitor daytime vertical plasma drifts between 130 and 160 km altitude. In a 2016 paper, Oppenheim and Dimant used simulations to show that photoelectrons can generate the type of echoes seen by the radars but this theory doesn't explain any of the detailed structures. This paper will show the modern observations of 150 km echoes using simultaneous radar and ionosonde measurements. It will then describe the latest analysis to attempt to explain these features using large-scale kinetic simulations of photoelectrons interacting with the ambient ionospheric plasma under a range of conditions.
Evaluation of muscle injury using magnetic resonance imaging
NASA Technical Reports Server (NTRS)
LeBlanc, A. D.; Jaweed, M.; Evans, H.
1993-01-01
The objective of this study was to investigate spin echo T2 relaxation time changes in thigh muscles after intense eccentric exercise in healthy men. Spin echo and calculated T2 relaxation time images of the thighs were obtained on several occasions after exercise of one limb; the contralateral limb served as control. Muscle damage was verified by elevated levels of serum creatine kinase (CK). Thirty percent of the time no exercise effect was discernible on the magnetic resonance (MR) images. In all positive MR images (70%) the semitendinosus muscle was positive, while the biceps femoris, short head, and gracilis muscles were also positive in 50% and 25% of the total cases, respectively. The peak T2 relaxation time and serum CK were correlated (r = 0.94, p<0.01); temporal changes in muscle T2 relaxation time and serum CK were similar, although T2 relaxation time remained positive after serum CK returned to background levels. We conclude that magnetic resonance imaging can serve as a useful tool in the evaluation of eccentric exercise muscle damage by providing a quantitative indicator of damage and its resolution as well as the specific areas and muscles.
Correlated displacement-T2 MRI by means of a Pulsed Field Gradient-Multi Spin Echo Method.
Windt, Carel W; Vergeldt, Frank J; Van As, Henk
2007-04-01
A method for correlated displacement-T2 imaging is presented. A Pulsed Field Gradient-Multi Spin Echo (PFG-MSE) sequence is used to record T2 resolved propagators on a voxel-by-voxel basis, making it possible to perform single voxel correlated displacement-T2 analyses. In spatially heterogeneous media the method thus gives access to sub-voxel information about displacement and T2 relaxation. The sequence is demonstrated using a number of flow conducting model systems: a tube with flowing water of variable intrinsic T2's, mixing fluids of different T2's in an "X"-shaped connector, and an intact living plant. PFG-MSE can be applied to yield information about the relation between flow, pore size and exchange behavior, and can aid volume flow quantification by making it possible to correct for T2 relaxation during the displacement labeling period Delta in PFG displacement imaging methods. Correlated displacement-T2 imaging can be of special interest for a number of research subjects, such as the flow of liquids and mixtures of liquids or liquids and solids moving through microscopic conduits of different sizes (e.g., plants, porous media, bioreactors, biomats).
NASA Astrophysics Data System (ADS)
Bhowmik, Debsindhu; Shrestha, Utsab; Dhindsa, Gurpreet; Sharp, Melissa; Stingaciu, Laura R.; Chu, Xiang-Qiang; Xiang-Qiang Chu Team
Deep-sea microorganisms have the ability to survive under extreme conditions, such as high pressure and high temperature. In this work, we used the combination of the neutron spin-echo (NSE) and the small angle neutron scattering (SANS) techniques to study the inter-domain motions of the inorganic pyrophosphate (IPPase) enzyme derived from thermostable microorganisms Thermococcus thioreducens. The IPPase has hexameric quaternary structure with molecular mass of approx. 120kDa (each subunit of 20kDa), which is a large oligomeric structure. The understanding of its slow inter-domain motions can be the key to explain how they are able to perform catalytic activity at higher temperature compared to mesophilic enzymes, thus leading to adapt to extreme environment present at the seabed. The NSE can probe these slow motions directly in the time domain up to several tens of nanoseconds at the nanometers length scales, while the corresponding structural change can be explored by the SANS. Our results provide a better picture of the local flexibility and conformational substates unique to these types of proteins, which will help us better understandthe relation between protein dynamics and their biological activities
Steiner, S; Vogl, T J; Fischer, P; Steger, W; Neuhaus, P; Keck, H
1995-08-01
The aim of our study was to evaluate a T2-weighted turbo-spinecho sequence in comparison to a T2-weighted spinecho sequence in imaging focal liver lesions. In our study 35 patients with suspected focal liver lesions were examined. Standardised imaging protocol included a conventional T2-weighted SE sequence (TR/TE = 2000/90/45, acquisition time = 10.20) as well as a T2-weighted TSE sequence (TR/TE = 4700/90, acquisition time = 6.33). Calculation of S/N and C/N ratio as a basis of quantitative evaluation was done using standard methods. A diagnostic score was implemented to enable qualitative assessment. In 7% (n = 2) the TSE sequence enabled detection of further liver lesions showing a size of less than 1 cm in diameter. Comparing anatomical details the TSE sequence was superior. S/N and C/N ratio of anatomic and pathologic structures of the TSE sequence were higher compared to results of the SE sequence. Our results indicate that the T2-weighted turbo-spinecho sequence is well appropriate for imaging focal liver lesions, and leads to reduction of imaging time.
Nuclear relaxation and critical fluctuations in membranes containing cholesterol
NASA Astrophysics Data System (ADS)
McConnell, Harden
2009-04-01
Nuclear resonance frequencies in bilayer membranes depend on lipid composition. Our calculations describe the combined effects of composition fluctuations and diffusion on nuclear relaxation near a miscibility critical point. Both tracer and gradient diffusion are included. The calculations involve correlation functions and a correlation length ξ =ξ0T/(T -Tc), where T -Tc is temperature above the critical temperature and ξ0 is a parameter of molecular length. Several correlation functions are examined, each of which is related in some degree to the Ising model correlation function. These correlation functions are used in the calculation of transverse deuterium relaxation rates in magic angle spinning and quadrupole echo experiments. The calculations are compared with experiments that report maxima in deuterium and proton nuclear relaxation rates at the critical temperature [Veatch et al., Proc. Nat. Acad. Sci. U.S.A. 104, 17650 (2007)]. One Ising-model-related correlation function yields a maximum 1/T2 relaxation rate at the critical temperature for both magic angle spinning and quadrupole echo experiments. The calculated rates at the critical temperature are close to the experimental rates. The rate maxima involve relatively rapid tracer diffusion in a static composition gradient over distances of up to 10-100 nm.
NASA Astrophysics Data System (ADS)
Yearley, Eric; Zarraga, Isidro (Dan); Godfrin, Paul (Doug); Perevozchikova, Tatiana; Wagner, Norman; Liu, Yun
2013-03-01
Concentrated therapeutic protein formulations offer numerous delivery and stability challenges. In particular, it has been found that several therapeutic proteins exhibit a large increase in viscosity as a function of concentration that may be dependent on the protein-protein interactions. Small-Angle Neutron Scattering (SANS) and Neutron Spin Echo (NSE) investigations have been performed to probe the protein-protein interactions and diffusive properties of highly concentrated MAbs. The SANS data demonstrate that the inter-particle interactions for a highly viscous MAb at high concentrations (MAb1) are highly attractive, anisotropic and change significantly with concentration while the viscosity and interactions do not differ considerably for MAb2. The NSE results furthermore indicate that MAb1 and MAb2 have strong concentration dependencies of dynamics at high Q that are correlated to the translational motion of the proteins. Finally, it has also been revealed that the individual MAb1 proteins form small clusters at high concentrations in contrast to the MAb2 proteins, which are well-dispersed. It is proposed that the formation of these clusters is the primary cause of the dramatic increase in viscosity of MAb1 in crowded or concentrated environments.
MR imaging of ore for heap bioleaching studies using pure phase encode acquisition methods
NASA Astrophysics Data System (ADS)
Fagan, Marijke A.; Sederman, Andrew J.; Johns, Michael L.
2012-03-01
Various MRI techniques were considered with respect to imaging of aqueous flow fields in low grade copper ore. Spin echo frequency encoded techniques were shown to produce unacceptable image distortions which led to pure phase encoded techniques being considered. Single point imaging multiple point acquisition (SPI-MPA) and spin echo single point imaging (SESPI) techniques were applied. By direct comparison with X-ray tomographic images, both techniques were found to be able to produce distortion-free images of the ore packings at 2 T. The signal to noise ratios (SNRs) of the SESPI images were found to be superior to SPI-MPA for equal total acquisition times; this was explained based on NMR relaxation measurements. SESPI was also found to produce suitable images for a range of particles sizes, whereas SPI-MPA SNR deteriorated markedly as particles size was reduced. Comparisons on a 4.7 T magnet showed significant signal loss from the SPI-MPA images, the effect of which was accentuated in the case of unsaturated flowing systems. Hence it was concluded that SESPI was the most robust imaging method for the study of copper ore heap leaching hydrology.
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2011-06-01
The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. The same physics underlie the frequency-locking effect for two-color and mode-locked excitations. However, the pulsed excitation with mode-locked laser brings about the multitudes of stable states in ENSS in a quantum dot. The resulting precession frequencies of the electron spin differ in these states by the multiple of the modulation frequency. Under such conditions ENSS represents a digital frequency converter with more than 100 stable channels.
Neural time course of visually enhanced echo suppression.
Bishop, Christopher W; London, Sam; Miller, Lee M
2012-10-01
Auditory spatial perception plays a critical role in day-to-day communication. For instance, listeners utilize acoustic spatial information to segregate individual talkers into distinct auditory "streams" to improve speech intelligibility. However, spatial localization is an exceedingly difficult task in everyday listening environments with numerous distracting echoes from nearby surfaces, such as walls. Listeners' brains overcome this unique challenge by relying on acoustic timing and, quite surprisingly, visual spatial information to suppress short-latency (1-10 ms) echoes through a process known as "the precedence effect" or "echo suppression." In the present study, we employed electroencephalography (EEG) to investigate the neural time course of echo suppression both with and without the aid of coincident visual stimulation in human listeners. We find that echo suppression is a multistage process initialized during the auditory N1 (70-100 ms) and followed by space-specific suppression mechanisms from 150 to 250 ms. Additionally, we find a robust correlate of listeners' spatial perception (i.e., suppressing or not suppressing the echo) over central electrode sites from 300 to 500 ms. Contrary to our hypothesis, vision's powerful contribution to echo suppression occurs late in processing (250-400 ms), suggesting that vision contributes primarily during late sensory or decision making processes. Together, our findings support growing evidence that echo suppression is a slow, progressive mechanism modifiable by visual influences during late sensory and decision making stages. Furthermore, our findings suggest that audiovisual interactions are not limited to early, sensory-level modulations but extend well into late stages of cortical processing.
Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650
NASA Astrophysics Data System (ADS)
Hu, Chin-Ping; Chou, Yi; Ng, C.-Y.; Lin, Lupin Chun-Che; Yen, David Chien-Chang
2017-07-01
We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparable to the local spin-up rate of OAO 1657-415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ˜1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.
Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Chin-Ping; Ng, C.-Y.; Chou, Yi
2017-07-20
We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparablemore » to the local spin-up rate of OAO 1657−415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ∼1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.« less
High Frequency QPOs due to Black Hole Spin
NASA Technical Reports Server (NTRS)
Kazanas, Demos; Fukumura, K.
2009-01-01
We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pines, D.; Wrobel, P.
1996-03-01
We report on calculations of the Knight shift and spin-echo decay time, {ital T}{sub 2{ital G}}, in the superconducting state which are based on a nearly antiferromagnetic Fermi-liquid description of the spin-fluctuation spectrum, in which a single spin component is responsible for the dynamic spin behavior and the magnetic interaction between the planar quasiparticles brings the system close to antiferromagnetic behavior. The dynamic spin susceptibility is described by a random-phase-approximation-like expression, with a restoring force which is unchanged from the normal state, and an irreducible particle-hole susceptibility which reflects the {ital d}{sub {ital x}{sup 2}{minus}{ital y}{sup 2}} symmetry of themore » gap parameter and a quasiparticle Fermi surface consistent with photoemission experiments. We obtain a quantitative fit to the Knight shift results for YBa{sub 2}Cu{sub 4}O{sub 8} with a {ital d}{sub {ital x}{sup 2}{minus}{ital y}{sup 2}} strong coupling gap of maximum magnitude 2.8{ital k}{sub {ital BT}}{sub {ital c}}, and show that quantitative agreement with the recent measurements of {ital T}{sub 2{ital G}} by Corey {ital et al}. may be obtained with this {ital d}{sub {ital x}{sup 2}-{ital y}{sup 2}} pairing state and a quite substantial antiferromagnetic enhancement ({approximately}140) of the static {open_quote}{open_quote}band structure{close_quote}{close_quote} spin susceptibility at wave vectors in the vicinity of {bold Q}=({pi},{pi}). We demonstrate that the experimental results of Corey {ital et al}. rule out an anisotropic {ital s}-wave state. Analogous calculations for the Knight shift of YBa{sub 2}Cu{sub 3}O{sub 7} suggest that the {ital d}{sub {ital x}{sup 2}-{ital y}{sup 2}} strong coupling gap possesses a maximum magnitude, 2.6{ital k}{sub {ital BT}}{sub {ital c}}, and on this basis, we predict a reduction in {ital T}{sup -1}{sub 2{ital G}} of some 5% for the smaller antiferromagnetic enhancement ({approximately}38) expected for this system.« less
Current-induced modulation of backward spin-waves in metallic microstructures
NASA Astrophysics Data System (ADS)
Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji
2017-03-01
We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m-2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m-2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.
Attenberger, Ulrike I; Runge, Val M; Stemmer, Alto; Williams, Kenneth D; Naul, L Gill; Michaely, Henrik J; Schoenberg, Stefan O; Reiser, Maximilian F; Wintersperger, Bernd J
2009-10-01
To evaluate the signal-to-noise ratio (SNR) and diagnostic quality of diffusion weighted imaging (DWI) using a fast spin echo (FSE) sequence with BLADE k-space trajectory at 3 T in combination with a 32-channel head coil. The scan was compared with a standard spin echo (SE) echo-planar imaging (EPI) DWI and a high resolution SE EPI DWI sequence. Fourteen patients with acute brain ischemia were included in this Institutional Review Board approved study. All patients were evaluated with 3 different image sequences, using a 3 T scanner and a 32-channel head coil: (a) a standard SE EPI DWI (matrix size 192 x 192), (b) a high resolution SE EPI DWI (matrix size of 256 x 256) and (c) a FSE DWI BLADE (matrix size 192 x 192). The SNR of the 3 scans was compared in 10 healthy volunteers by a paired student t test. Image quality was evaluated with 4 dedicated questions in a blinded read: (1) The scans were ranked in terms of bulk susceptibility artifact. (2) The scan preference for diagnosis of any diffusion abnormality that might occur and (3) the preference for visualization of the diffusion abnormality actually present was determined. (4) The influence of bulk susceptibility on image evaluation for the diffusion abnormality present was assessed. For visualization of the diffusion abnormality present, BLADE DWI was the scan sequence preferred most by both readers (reader 1: 41.7%, reader 2: 35.7%). For visualization of any diffusion abnormality present, BLADE DWI was the preferred scan in 13 of 14 cases for reader 1 (93%) and in 11 of 14 cases for reader 2 (78.6%). No high resolution SE EPI DWI scan was rated best by reader 1. Reader 2 rated the high resolution SE EPI DWI scan superior in only 1 of 56 judgments. The standard EPI DWI sequence (21.8 +/- 5.3) had in comparison to the high resolution EPI DWI (11.9 +/- 2.6) and the BLADE DWI scans (11.3 +/- 3.8) significantly higher SNR mean values. Our preliminary data demonstrates the feasibility of a FSE EPI DWI scan with radial-like k-space sampling, using a 32-channel coil at 3 T in acute brain ischemia. The BLADE DWI was the preferred scan for the detection of acute diffusion abnormalities because of the lack of bulk susceptibility artifacts.
Independent gate control of injected and detected spin currents in CVD graphene nonlocal spin valves
NASA Astrophysics Data System (ADS)
Anugrah, Yoska; Hu, Jiaxi; Stecklein, Gordon; Crowell, Paul A.; Koester, Steven J.
2018-01-01
Graphene is an ideal material for spintronic devices due to its low spin-orbit coupling and high mobility. One of the most important potential applications of graphene spintronics is for use in neuromorphic computing systems, where the tunable spin resistance of graphene can be used to apply analog weighting factors. A key capability needed to achieve spin-based neuromorphic computing systems is to achieve distinct regions of control, where injected and detected spin currents can be tuned independently. Here, we demonstrate the ability to achieve such independent control using a graphene spin valve geometry where the injector and detector regions are modulated by two separate bottom gate electrodes. The spin transport parameters and their dependence on each gate voltage are extracted from Hanle precession measurements. From this analysis, local spin transport parameters and their dependence on the local gate voltage are found, which provide a basis for a spatially-resolved spin resistance network that simulates the device. The data and model are used to calculate the spin currents flowing into, through, and out of the graphene channel. We show that the spin current flowing through the graphene channel can be modulated by 30% using one gate and that the spin current absorbed by the detector can be modulated by 50% using the other gate. This result demonstrates that spin currents can be controlled by locally tuning the spin resistance of graphene. The integration of chemical vapor deposition (CVD) grown graphene with local gates allows for the implementation of large-scale integrated spin-based circuits.
Attenuation of the NMR signal in a field gradient due to stochastic dynamics with memory
NASA Astrophysics Data System (ADS)
Lisý, Vladimír; Tóthová, Jana
2017-03-01
The attenuation function S(t) for an ensemble of spins in a magnetic-field gradient is calculated by accumulation of the phase shifts in the rotating frame resulting from the displacements of spin-bearing particles. The found S(t), expressed through the particle mean square displacement, is applicable for any kind of stationary stochastic motion of spins, including their non-markovian dynamics with memory. The known expressions valid for normal and anomalous diffusion are obtained as special cases in the long time approximation. The method is also applicable to the NMR pulse sequences based on the refocusing principle. This is demonstrated by describing the Hahn spin echo experiment. The attenuation of the NMR signal is also evaluated providing that the random motion of particle is modeled by the generalized Langevin equation with the memory kernel exponentially decaying in time. The models considered in our paper assume massive particles driven by much smaller particles.
Dynamic and Inherent B0 Correction for DTI Using Stimulated Echo Spiral Imaging
Avram, Alexandru V.; Guidon, Arnaud; Truong, Trong-Kha; Liu, Chunlei; Song, Allen W.
2013-01-01
Purpose To present a novel technique for high-resolution stimulated echo (STE) diffusion tensor imaging (DTI) with self-navigated interleaved spirals (SNAILS) readout trajectories that can inherently and dynamically correct for image artifacts due to spatial and temporal variations in the static magnetic field (B0) resulting from eddy currents, tissue susceptibilities, subject/physiological motion, and hardware instabilities. Methods The Hahn spin echo formed by the first two 90° radio-frequency pulses is balanced to consecutively acquire two additional images with different echo times (TE) and generate an inherent field map, while the diffusion-prepared STE signal remains unaffected. For every diffusion-encoding direction, an intrinsically registered field map is estimated dynamically and used to effectively and inherently correct for off-resonance artifacts in the reconstruction of the corresponding diffusion-weighted image (DWI). Results After correction with the dynamically acquired field maps, local blurring artifacts are specifically removed from individual STE DWIs and the estimated diffusion tensors have significantly improved spatial accuracy and larger fractional anisotropy. Conclusion Combined with the SNAILS acquisition scheme, our new method provides an integrated high-resolution short-TE DTI solution with inherent and dynamic correction for both motion-induced phase errors and off-resonance effects. PMID:23630029
NASA Astrophysics Data System (ADS)
Cudalbu, C.; Mlynárik, V.; Xin, L.; Gruetter, Rolf
2009-10-01
Reliable quantification of the macromolecule signals in short echo-time 1H MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. 1H spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.
MR fingerprinting using the quick echo splitting NMR imaging technique.
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A
2017-03-01
The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST). A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T 1 and T 2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The specific absorption rate (SAR) of MRF-QUEST was compared with the clinically available methods. MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head SAR of 0.03 W/kg. T 1 and T 2 values estimated by MRF-QUEST are in good agreement with the traditional methods. The combination of the MRF and the QUEST provides an accurate quantification of T 1 and T 2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. Magn Reson Med 77:979-988, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Fehr, Niklas; Dietz, Carsten; Polyhach, Yevhen; von Hagens, Tona; Jeschke, Gunnar; Paulsen, Harald
2015-01-01
The major light harvesting complex II (LHCII) of green plants plays a key role in the absorption of sunlight, the regulation of photosynthesis, and in preventing photodamage by excess light. The latter two functions are thought to involve the lumenal loop and the N-terminal domain. Their structure and mobility in an aqueous environment are only partially known. Electron paramagnetic resonance (EPR) has been used to measure the structure of these hydrophilic protein domains in detergent-solubilized LHCII. A new technique is introduced to prepare LHCII trimers in which only one monomer is spin-labeled. These heterogeneous trimers allow to measure intra-molecular distances within one LHCII monomer in the context of a trimer by using double electron-electron resonance (DEER). These data together with data from electron spin echo envelope modulation (ESEEM) allowed to model the N-terminal protein section, which has not been resolved in current crystal structures, and the lumenal loop domain. The N-terminal domain covers only a restricted area above the superhelix in LHCII, which is consistent with the “Velcro” hypothesis to explain thylakoid grana stacking (Standfuss, J., van Terwisscha Scheltinga, A. C., Lamborghini, M., and Kühlbrandt, W. (2005) EMBO J. 24, 919–928). The conformation of the lumenal loop domain is surprisingly different between LHCII monomers and trimers but not between complexes with and without neoxanthin bound. PMID:26316535
Chemical modulation of electronic structure at the excited state
NASA Astrophysics Data System (ADS)
Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.
2017-12-01
Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.
Wang, Fu-Nien; Huang, Teng-Yi; Lin, Fa-Hsuan; Chuang, Tzu-Chao; Chen, Nan-Kuei; Chung, Hsiao-Wen; Chen, Cheng-Yu; Kwong, Kenneth K.
2013-01-01
A technique suitable for diffusion tensor imaging (DTI) at high field strengths is presented in this work. The method is based on a periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) k-space trajectory using EPI as the signal readout module, and hence is dubbed PROPELLER EPI. The implementation of PROPELLER EPI included a series of correction schemes to reduce possible errors associated with the intrinsically higher sensitivity of EPI to off-resonance effects. Experimental results on a 3.0 Tesla MR system showed that the PROPELLER EPI images exhibit substantially reduced geometric distortions compared with single-shot EPI, at a much lower RF specific absorption rate (SAR) than the original version of the PROPELLER fast spin-echo (FSE) technique. For DTI, the self-navigated phase-correction capability of the PROPELLER EPI sequence was shown to be effective for in vivo imaging. A higher signal-to-noise ratio (SNR) compared to single-shot EPI at an identical total scan time was achieved, which is advantageous for routine DTI applications in clinical practice. PMID:16206142
Wang, Fu-Nien; Huang, Teng-Yi; Lin, Fa-Hsuan; Chuang, Tzu-Chao; Chen, Nan-Kuei; Chung, Hsiao-Wen; Chen, Cheng-Yu; Kwong, Kenneth K
2005-11-01
A technique suitable for diffusion tensor imaging (DTI) at high field strengths is presented in this work. The method is based on a periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) k-space trajectory using EPI as the signal readout module, and hence is dubbed PROPELLER EPI. The implementation of PROPELLER EPI included a series of correction schemes to reduce possible errors associated with the intrinsically higher sensitivity of EPI to off-resonance effects. Experimental results on a 3.0 Tesla MR system showed that the PROPELLER EPI images exhibit substantially reduced geometric distortions compared with single-shot EPI, at a much lower RF specific absorption rate (SAR) than the original version of the PROPELLER fast spin-echo (FSE) technique. For DTI, the self-navigated phase-correction capability of the PROPELLER EPI sequence was shown to be effective for in vivo imaging. A higher signal-to-noise ratio (SNR) compared to single-shot EPI at an identical total scan time was achieved, which is advantageous for routine DTI applications in clinical practice. (c) 2005 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharkov, B. B.; Chizhik, V. I.; Dvinskikh, S. V., E-mail: sergeid@kth.se
2016-01-21
Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental datamore » obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees.« less
Controllable activation of nanoscale dynamics in a disordered protein alters binding kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callaway, David J. E.; Matsui, Tsutomu; Weiss, Thomas
The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The “tip of the whip” that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the bindingmore » of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. Furthermore NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.« less
Controllable activation of nanoscale dynamics in a disordered protein alters binding kinetics
Callaway, David J. E.; Matsui, Tsutomu; Weiss, Thomas; ...
2017-03-08
The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The “tip of the whip” that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the bindingmore » of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. Furthermore NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.« less
ESEEM of industrial quartz powders: insights into crystal chemistry of Al defects
NASA Astrophysics Data System (ADS)
Romanelli, Maurizio; Di Benedetto, Francesco; Bartali, Laura; Innocenti, Massimo; Fornaciai, Gabriele; Montegrossi, Giordano; Pardi, Luca A.; Zoleo, Alfonso; Capacci, Fabio
2012-06-01
A set of raw industrial materials, that is, pure quartz and quartz-rich mixtures, were investigated through electron paramagnetic resonance and electron spin echo-envelope modulation spectroscopies, with the aim of evaluating the effective role played by defect centres and of assessing whether they can be used to monitor changes in the physical properties of quartz powders with reference to their health effects. The obtained results point to two interactions of the Al defect centres with H+, hosted in sites within the channels parallel and perpendicular to the c axis of quartz, respectively. These two Al/H+ (hAl) centres exhibit a weak chemical bond, and their relative amounts appear to be modified/controlled by the thermo-mechanical processes underwent by powders. Indeed, a mechanically promoted inter-conversion between the two kinds of site is suggested. As a consequence, the hAl centres are effective in monitoring even modest activations of powders, through thermal or mechanical processes, and they are also supposed to play a specific, relevant role in quartz reactivity during the considered industrial processes.
Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods
NASA Astrophysics Data System (ADS)
Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua
2010-03-01
This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.
Magnetic modulation of inverse spin Hall effect in lateral spin-valves
NASA Astrophysics Data System (ADS)
Andrianov, T.; Vedyaev, A.; Dieny, B.
2018-05-01
We analytically investigated the spin-dependent transport properties in a lateral spin-valve device comprising pinned ferromagnetic electrodes allowing the injection of a spin current in a spin conducting channel where spin orbit scattering takes place. This produces an inverse spin Hall (ISHE) voltage across the thickness of the spin conducting channel. It is shown that by adding an extra soft ferromagnetic electrode with rotatable magnetization along the spin conducting channel, the ISHE generated voltage can be magnetically modulated by changing the magnetization orientation of this additional electrode. The dependence of the ISHE voltage on the direction of magnetization of the ferromagnetic electrode with rotatable magnetization was calculated in various configurations. Our results suggest that such structures could be considered as magnetic field sensors in situations where the total thickness of the sensor is constrained such as in hard disk drive readers.
Simultaneous quantification of glutamate and glutamine by J-modulated spectroscopy at 3 Tesla.
Zhang, Yan; Shen, Jun
2016-09-01
The echo time (TE) averaged spectrum is the one-dimensional (1D) cross-section of the J-resolved spectrum at J = 0. In multiecho TE-averaged spectroscopy, glutamate (Glu) is differentiated from glutamine (Gln) at 3 Tesla (T). This method, however, almost entirely suppresses Gln resonance lines around 2.35 ppm, leaving Gln undetermined. This study presents a novel method for quantifying both Glu and Gln using multi-echo spectral data. A 1D cross-section of J-resolved spectroscopy at J = 7.5 Hz-referred to as J-modulated spectroscopy-was developed to simultaneously quantify Glu and Gln levels in the human brain. The transverse relaxation times (T2 s) of metabolites were first determined using conventional TE-averaged spectroscopy with different starting echo time and then incorporated into the spectral model for fitting J-modulated data. Simulation and in vivo data showed that the resonance signals of Glu and Gln were clearly separated around 2.35 ppm in J-modulated spectroscopy. In the anterior cingulate cortex, both Glu and Gln levels were found to be significantly higher in gray matter than in white matter in healthy subjects (P < 10(-10) and < 10(-5) , respectively). Gln resonances can be clearly separated from Glu and N-acetyl-aspartate around 2.35 ppm using J-modulated spectroscopy. This method can be used to quantitatively measure Glu and Gln simultaneously at 3T. Magn Reson Med 76:725-732, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Method And Apparatus For High Resolution Ex-Situ Nmr Spectroscopy
Pines, Alexander; Meriles, Carlos A.; Heise, Henrike; Sakellariou, Dimitrios; Moule, Adam
2004-01-06
A method and apparatus for ex-situ nuclear magnetic resonance spectroscopy for use on samples outside the physical limits of the magnets in inhomogeneous static and radio-frequency fields. Chemical shift spectra can be resolved with the method using sequences of correlated, composite z-rotation pulses in the presence of spatially matched static and radio frequency field gradients producing nutation echoes. The amplitude of the echoes is modulated by the chemical shift interaction and an inhomogeneity free FID may be recovered by stroboscopically sampling the maxima of the echoes. In an alternative embodiment, full-passage adiabatic pulses are consecutively applied. One embodiment of the apparatus generates a static magnetic field that has a variable saddle point.
NASA Astrophysics Data System (ADS)
Hirayama, Shigeyuki; Mitani, Seiji; Otani, YoshiChika; Kasai, Shinya
2018-01-01
We systematically investigated the spin-torque ferromagnetic resonance (ST-FMR) in permalloy/Pt bilayer thin films under bias direct currents. According to the conventional ST-FMR theory, the half widths of the resonant peaks in the spectra can be modulated by bias currents, which give a reliable value of the spin injection efficiency of the spin Hall effect. On the other hand, the symmetric components of the spectra show an unexpected strong bias current dependence, while the asymmetric components are free from the modulation. These findings suggest that some contributions are missing in the ST-FMR analysis of the ferromagnetic/nonmagnetic metal bilayer thin films.
Optimization of multiply acquired magnetic flux density B(z) using ICNE-Multiecho train in MREIT.
Nam, Hyun Soo; Kwon, Oh In
2010-05-07
The aim of magnetic resonance electrical impedance tomography (MREIT) is to visualize the electrical properties, conductivity or current density of an object by injection of current. Recently, the prolonged data acquisition time when using the injected current nonlinear encoding (ICNE) method has been advantageous for measurement of magnetic flux density data, Bz, for MREIT in the signal-to-noise ratio (SNR). However, the ICNE method results in undesirable side artifacts, such as blurring, chemical shift and phase artifacts, due to the long data acquisition under an inhomogeneous static field. In this paper, we apply the ICNE method to a gradient and spin echo (GRASE) multi-echo train pulse sequence in order to provide the multiple k-space lines during a single RF pulse period. We analyze the SNR of the measured multiple B(z) data using the proposed ICNE-Multiecho MR pulse sequence. By determining a weighting factor for B(z) data in each of the echoes, an optimized inversion formula for the magnetic flux density data is proposed for the ICNE-Multiecho MR sequence. Using the ICNE-Multiecho method, the quality of the measured magnetic flux density is considerably increased by the injection of a long current through the echo train length and by optimization of the voxel-by-voxel noise level of the B(z) value. Agarose-gel phantom experiments have demonstrated fewer artifacts and a better SNR using the ICNE-Multiecho method. Experimenting with the brain of an anesthetized dog, we collected valuable echoes by taking into account the noise level of each of the echoes and determined B(z) data by determining optimized weighting factors for the multiply acquired magnetic flux density data.
Giugni, Elisabetta; Sabatini, Umberto; Hagberg, Gisela E; Formisano, Rita; Castriota-Scanderbeg, Alessandro
2005-05-01
Diffuse axonal injury (DAI) is a common type of primary neuronal injury in patients with severe traumatic brain injury (TBI), and is frequently accompanied by tissue tear hemorrhage. T2-weighted gradient-recalled echo (GRE) sequences are more sensitive than T2-weighted spin-echo images for detection of hemorrhage. The purpose of this study is to compare turbo Proton Echo Planar Spectroscopic Imaging (t-PEPSI), an extremely fast sequence, with GRE sequence in the detection of DAI. Twenty-one patients (mean age 26.8 years) with severe TBI occurred at least 3 months earlier, underwent a brain MR Imaging study on a 1.5-T scanner. A qualitative evaluation of the t-PEPSI sequences was performed by identifying the optimal echo time and in-plane resolution. The number and size of DAI lesions, as well as the signal intensity contrast ratio (SI CR), were computed for each set of GRE and t-PEPSI images, and divided according to their anatomic location as lobar and/or deep brain. There was no significant difference between GRE and t-PEPSI sequences in the detection of the total number of DAI lesions (291 vs. 230, respectively). GRE sequence delineated a higher number of DAI in the temporal lobe compared to the t-PEPSI sequence (74 vs. 37, P < .004), while no differences were found for the other regions. The SI CR was significantly lower with the t-PEPSI than the GRE sequence (P < .00001). Owing to its very short scan time and high sensitivity to the hemorrhage foci, the t-PEPSI sequence may be used as an alternative to the GRE to assess brain DAI in severe TBI patients, especially if uncooperative and medically unstable.
Antidamping spin-orbit torques in epitaxial-Py(100)/β-Ta
NASA Astrophysics Data System (ADS)
Tiwari, Dhananjay; Behera, Nilamani; Kumar, Akash; Dürrenfeld, Philipp; Chaudhary, Sujeet; Pandya, D. K.; Åkerman, Johan; Muduli, P. K.
2017-12-01
We perform spin torque ferromagnetic resonance measurements on the Si(100)/TiN(100)/epi-Py(100)/β-Ta system. We demonstrate current induced modulation of the Gilbert damping constant, which is about 30% for a current density of 6.25 × 109 A/m2. We show that the observed modulation of the Gilbert damping constant cannot be explained by spin transfer torques arising from the spin Hall effect of the β-Ta layer. An additional mechanism such as antidamping spin-orbit torque resulting from the interface or the crystalline structure of Py thin films needs to be considered.
Heuft-Dorenbosch, Liesbeth; Weijers, René; Landewé, Robert; van der Linden, Sjef; van der Heijde, Désirée
2006-01-01
To study the inter-reader reliability of detecting abnormalities of sacroiliac (SI) joints in patients with recent-onset inflammatory back pain by magnetic resonance imaging (MRI), and to study the prevalence of inflammation and structural changes at various sites of the SI joints. Sixty-eight patients with inflammatory back pain (at least four of the five following criteria: symptom onset before age 40, insidious onset, morning stiffness, duration >3 months, improvement with exercise--or three out of five of these plus night pain) were included (38% male; mean age, 34.9 years [standard deviation 10.3]; 46% HLA-B27-positive; mean symptom duration, 18 months), with symptom duration <2 years. A MRI scan of the SI joints was made in the coronal plane with the following sequences: T1-weighted spin echo, short-tau inversion recovery, T2-weighted fast-spin echo with fat saturation, and T1-spin echo with fat saturation after the administration of gadolinium. Both SI joints were scored for inflammation (separately for subchondral bone and bone marrow, joint space, joint capsule, ligaments) as well as for structural changes (erosions, sclerosis, ankylosis), by two observers independently. Agreement between the two readers was analysed by concordance and discordance rates and by kappa statistics. Inflammation was present in 32 SI joints of 22 patients, most frequently located in bone marrow and/or subchondral bone (29 joints in 21 patients). Readers agreed on the presence of inflammation in 85% of the cases in the right SI joint and in 78% of the cases in the left SI joint. Structural changes on MRI were present in 11 patients. Ten of these 11 patients also showed signs of inflammation. Agreement on the presence or absence of inflammation and structural changes of SI joints by MRI was acceptable, and was sufficiently high to be useful in ascertaining inflammatory and structural changes due to sacroiliitis. About one-third of patients with recent-onset inflammatory back pain show inflammation, and about one-sixth show structural changes in at least one SI joint.
Modulation of spatial spin polarization at organic spinterface by side groups
NASA Astrophysics Data System (ADS)
Qiu, Shuai; Zhang, Zhao; Miao, Yuan-yuan; Zhang, Guang-ping; Ren, Jun-feng; Wang, Chuan-kui; Hu, Gui-chao
2018-01-01
Spin polarization at benzene/Ni organic/ferromagnetic interface is investigated by applying different substituting side groups. Based on first-principle calculations, it is demonstrated that the spin polarization of the states may be tuned in magnitude and sign by the side groups, which depends on the type of side groups as well as their position in the aromatic ring. Especially, a spatial spin polarization modulation is realized at the surface with the utilization of electron donating group sbnd NH2 or electron accepting group sbnd NO2. The analysis of projected density of states onto the pz orbital of carbon atoms indicates that the side group reduces the structural symmetry of the molecule and changes the pz orbital of carbon atom at different position, which further modifies the pz-d orbital hybridization as well as the spin transfer between the molecule and the ferromagnet. This work indicates a feasible way to modulate the spatial spin polarization at organic spinterface by side groups, which deserves to be measured by spin-polarized scanning tunneling microscopy.
Spatial-mode storage in a gradient-echo memory
NASA Astrophysics Data System (ADS)
Higginbottom, D. B.; Sparkes, B. M.; Rancic, M.; Pinel, O.; Hosseini, M.; Lam, P. K.; Buchler, B. C.
2012-08-01
Three-level atomic gradient echo memory (Λ-GEM) is a proposed candidate for efficient quantum storage and for linear optical quantum computation with time-bin multiplexing [Hosseini , Nature (London)NATUAS0028-083610.1038/nature08325 461, 241 (2009)]. In this paper we investigate the spatial multimode properties of a Λ-GEM system. Using a high-speed triggered CCD, we demonstrate the storage of complex spatial modes and images. We also present an in-principle demonstration of spatial multiplexing by showing selective recall of spatial elements of a stored spin wave. Using our measurements, we consider the effect of diffusion within the atomic vapor and investigate its role in spatial decoherence. Our measurements allow us to quantify the spatial distortion due to both diffusion and inhomogeneous control field scattering and compare these to theoretical models.
NASA Astrophysics Data System (ADS)
Xia, Y.-Y.; Yuan, R.-Y.; Yang, Q.-J.; Sun, Q.; Zheng, J.; Guo, Y.
In this paper, with the three-band tight-binding model and non-equilibrium Green’s function technique, we investigate spin transport in electric-barrier-modulated Ferromagnetic/Normal/Ferromagnetic (F/N/F) monolayer (ML) zigzag MoS2 nanoribbon junction. The results demonstrate that once the double electric barriers structure emerges, the oscillations of spin conductances become violent, especially for spin-down conductance, the numbers of resonant peaks increase obviously, thus we can obtain 100% spin polarization in the low energy region. It is also found that with the intensity of the exchange field enhancement, the resonant peaks of spin-up and spin-down conductances move in the opposite direction in a certain energy region. As a consequence, the spin-down conductance can be filtered out completely. The findings here indicate that the present structure may be considered as a good candidate for spin filter.
Taljanovic, Mihra S; Graham, Anna R; Benjamin, James B; Gmitro, Arthur F; Krupinski, Elizabeth A; Schwartz, Stephanie A; Hunter, Tim B; Resnick, Donald L
2008-05-01
To correlate the amount of bone marrow edema (BME) calculated by magnetic resonance imaging(MRI) with clinical findings, histopathology, and radiographic findings, in patients with advanced hip osteoarthritis(OA). The study was approved by The Institutional Human Subject Protection Committee. Coronal MRI of hips was acquired in 19 patients who underwent hip replacement. A spin echo (SE) sequence with four echoes and separate fast spin echo (FSE) proton density (PD)-weighted SE sequences of fat (F) and water (W) were acquired with water and fat suppression, respectively. T2 and water:fat ratio calculations were made for the outlined regions of interest. The calculated MRI values were correlated with the clinical, radiographic, and histopathologic findings. Analyses of variance were done on the MRI data for W/(W + F) and for T2 values (total and focal values) for the symptomatic and contralateral hips. The values were significantly higher in the study group. Statistically significant correlations were found between pain and total W/(W + F), pain and focal T2 values, and the number of microfractures and calculated BME for the focal W/(W + F) in the proximal femora. Statistically significant correlations were found between the radiographic findings and MRI values for total W/(W + F), focal W/(W + F) and focal T2 and among the radiographic findings, pain, and hip movement. On histopathology, only a small amount of BME was seen in eight proximal femora. The amount of BME in the OA hip, as measured by MRI, correlates with the severity of pain, radiographic findings, and number of microfractures.
Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David
2018-06-01
Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.
Oner, A Y; Tali, T; Celikyay, F; Celik, A; Le Roux, P
2007-03-01
To prospectively evaluate the signal-to-noise ratio (SNR) improvement in diffusion-weighted imaging (DWI) of the spine with the use of a newly developed non-Carr-Purcell-Meiboom-Gill (non-CPMG) single-shot fast spin-echo (SS-FSE) sequence and its effect on apparent diffusion coefficient (ADC) measurements. Twenty-four patients were enrolled after written informed consent. DWI of the spine was obtained with an echo-planar imaging (EPI)-based sequence followed by a non-CPMG SS-FSE technique. SNR and ADC values were measured over a lesion-free vertebral corpus. A quality score was assigned for each set of images to assess the image quality. When a spinal lesion was present, contrast-to-noise ratio (CNR) and ADC were also measured. Student t tests were used for statistical analysis. Mean SNR values were 5.83 +/- 2.2 and 11.68 +/- 2.87 for EPI and non-CPMG SS-FSE DWI, respectively. SNR values measured in DWI using parallel imaging were found to be significantly higher (P < .01). Mean ADCs of the spine were 0.53 +/- 0.15 and 0.35 +/- 0.15 x 10(-3) mm(2)/s for EPI and non-CPMG SS-FSE DWI, respectively. Quality scores were found to be higher for the non-CPMG SS-FSE DWI technique (P < .05). Overall lesion CNR was found to be higher in DWI with non-CPMG SS-FSE. The non-CPMG SS-FSE technique provides a significant improvement to current EPI-based DWI of the spine. A study including a larger number of patients is required to determine the use of this DWI sequence as a supplementary tool to conventional MR imaging for increasing diagnostic confidence in spinal pathologic conditions.
Vogel, M; Herbers, C; Koch, B
2008-09-11
We use (2)H NMR to investigate the segmental motion of poly(ethylene oxide) (PEO) in neat and nanocomposite materials that do and do not contain salt. Specifically, in addition to a neat low-molecular-weight PEO, we study mixtures of this polymer with TiO 2 nanoparticles and LiClO 4. To characterize the polymer dynamics over a wide range of time scales, we combine (2)H NMR spin-lattice relaxation, line-shape, and stimulated-echo analyses. The results consistently show that the presence of nanoparticles hardly affects the behavior of the polymer, while addition of salt leads to substantial changes; e.g., it reduces the crystallinity. For neat PEO and a PEO-TiO 2 mixture, stimulated-echo spectroscopy enables measurement of rotational correlation functions for the crystalline phase. Analysis of the decays allows us to determine correlation times, to demonstrate the existence of a nonexponential relaxation, which implies a high complexity of the polymer dynamics in the crystal, and to show that the reorientation can be described as a large-angle jump. For a PEO-TiO 2-LiClO 4 mixture, we use (2)H and (7)Li NMR to study the polymer and the lithium dynamics, respectively. Analysis of the (7)Li spin-lattice relaxation reveals a high lithium ionic mobility in this nanocomposite polymer electrolyte. The (7)Li stimulated-echo decay is well described by a stretched exponential extending over about 6 orders of magnitude, indicating that a broad and continuous distribution of correlation times characterizes the fluctuations of the local lithium ionic environments.
Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki
2018-06-01
Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P < 0.05). Tractography with TSE-DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.
Inoue, Yuji; Yoneyama, Masami; Nakamura, Masanobu; Ozaki, Satoshi; Ito, Kenjiro; Hiura, Mikio
2012-01-01
Vulnerable plaque can be attributed to induction of ischemic symptoms and magnetic resonance imaging of carotid artery is valuable to detect the plaque. Magnetization prepared rapid acquisition with gradient echo (MPRAGE) method could detect hemorrhagic vulnerable plaque as high intensity signal; however, blood flow is not sufficiently masked by this method. The contrast for plaque in T
Spin-controlled ultrafast vertical-cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Höpfner, Henning; Lindemann, Markus; Gerhardt, Nils C.; Hofmann, Martin R.
2014-05-01
Spin-controlled semiconductor lasers are highly attractive spintronic devices providing characteristics superior to their conventional purely charge-based counterparts. In particular, spin-controlled vertical-cavity surface emitting lasers (spin-VCSELs) promise to offer lower thresholds, enhanced emission intensity, spin amplification, full polarization control, chirp control and ultrafast dynamics. Most important, the ability to control and modulate the polarization state of the laser emission with extraordinarily high frequencies is very attractive for many applications like broadband optical communication and ultrafast optical switches. We present a novel concept for ultrafast spin-VCSELs which has the potential to overcome the conventional speed limitation for directly modulated lasers by the relaxation oscillation frequency and to reach modulation frequencies significantly above 100 GHz. The concept is based on the coupled spin-photon dynamics in birefringent micro-cavity lasers. By injecting spin-polarized carriers in the VCSEL, oscillations of the coupled spin-photon system can by induced which lead to oscillations of the polarization state of the laser emission. These oscillations are decoupled from conventional relaxation oscillations of the carrier-photon system and can be much faster than these. Utilizing these polarization oscillations is thus a very promising approach to develop ultrafast spin-VCSELs for high speed optical data communication in the near future. Different aspects of the spin and polarization dynamics, its connection to birefringence and bistability in the cavity, controlled switching of the oscillations, and the limitations of this novel approach will be analysed theoretically and experimentally for spin-polarized VCSELs at room temperature.
Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Takemura, Atsushi; Obara, Makoto; Sawano, Seishi
2012-01-01
Detailed information on anatomy and hemodynamics in cerebrovascular disorders such as AVM and Moyamoya disease is mandatory for defined diagnosis and treatment planning. Arterial spin labeling technique has come to be applied to magnetic resonance angiography (MRA) and perfusion imaging in recent years. However, those non-contrast techniques are mostly limited to single frame images. Recently we have proposed a non-contrast time-resolved MRA technique termed contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency (CINEMA-STAR). CINEMA-STAR can extract the blood flow in the major intracranial arteries at an interval of 70 ms and thus permits us to observe vascular construction in full by preparing MIP images of axial acquisitions with high spatial resolution. This preliminary study demonstrates the usefulness of the CINEMA-STAR technique in evaluating the cerebral vasculature.
NASA Astrophysics Data System (ADS)
Hou, Guangjin; Lu, Xingyu; Vega, Alexander J.; Polenova, Tatyana
2014-09-01
We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear 1H-X (X = 13C, 15N, 31P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the 1H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the 1H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from 1H chemical shift anisotropy, while keeping the 1H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [15N]-N-acetyl-valine and [U-13C,15N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate 1H-15N dipolar couplings in the context of 3D experiments is presented on U-13C,15N-enriched dynein light chain protein LC8.
Plant Classification from Bat-Like Echolocation Signals
Yovel, Yossi; Franz, Matthias Otto; Stilz, Peter; Schnitzler, Hans-Ulrich
2008-01-01
Classification of plants according to their echoes is an elementary component of bat behavior that plays an important role in spatial orientation and food acquisition. Vegetation echoes are, however, highly complex stochastic signals: from an acoustical point of view, a plant can be thought of as a three-dimensional array of leaves reflecting the emitted bat call. The received echo is therefore a superposition of many reflections. In this work we suggest that the classification of these echoes might not be such a troublesome routine for bats as formerly thought. We present a rather simple approach to classifying signals from a large database of plant echoes that were created by ensonifying plants with a frequency-modulated bat-like ultrasonic pulse. Our algorithm uses the spectrogram of a single echo from which it only uses features that are undoubtedly accessible to bats. We used a standard machine learning algorithm (SVM) to automatically extract suitable linear combinations of time and frequency cues from the spectrograms such that classification with high accuracy is enabled. This demonstrates that ultrasonic echoes are highly informative about the species membership of an ensonified plant, and that this information can be extracted with rather simple, biologically plausible analysis. Thus, our findings provide a new explanatory basis for the poorly understood observed abilities of bats in classifying vegetation and other complex objects. PMID:18369425
Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar
Bates, Mary E.; Simmons, James A.
2011-01-01
Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets. PMID:21228198
Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar.
Bates, Mary E; Simmons, James A
2011-02-01
Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets.
Sine-squared shifted pulses for recoupling interactions in solid-state NMR
NASA Astrophysics Data System (ADS)
Jain, Mukul G.; Rajalakshmi, G.; Equbal, Asif; Mote, Kaustubh R.; Agarwal, Vipin; Madhu, P. K.
2017-06-01
Rotational-Echo DOuble-Resonance (REDOR) is a versatile experiment for measuring internuclear distance between two heteronuclear spins in solid-state NMR. At slow to intermediate magic-angle spinning (MAS) frequencies, the measurement of distances between strongly coupled spins is challenging due to rapid dephasing of magnetisation. This problem can be remedied by employing the pulse-shifted version of REDOR known as Shifted-REDOR (S-REDOR) that scales down the recoupled dipolar coupling. In this study, we propose a new variant of the REDOR sequence where the positions of the π pulses are determined by a sine-squared function. This new variant has scaling properties similar to S-REDOR. We use theory, numerical simulations, and experiments to compare the dipolar recoupling efficiencies and the experimental robustness of the three REDOR schemes. The proposed variant has advantages in terms of radiofrequency field requirements at fast MAS frequencies.
Haines, David E; Wong, Wilson; Canby, Robert; Jewell, Coty; Houmsse, Mahmoud; Pederson, David; Sugeng, Lissa; Porterfield, John; Kottam, Anil; Pearce, John; Valvano, Jon; Michalek, Joel; Trevino, Aron; Sagar, Sandeep; Feldman, Marc D
2017-10-01
There is increasing evidence that using frequent invasive measures of pressure in patients with heart failure results in improved outcomes compared to traditional measures. Admittance, a measure of volume derived from preexisting defibrillation leads, is proposed as a new technique to monitor cardiac hemodynamics in patients with an implantable defibrillator. The purpose of this study was to evaluate the accuracy of a new ventricular volume sensor (VVS, CardioVol) compared with 3-dimenssional echocardiography (echo) in patients with an implantable defibrillator. Twenty-two patients referred for generator replacement had their defibrillation lead attached to VVS to determine the level of agreement to a volume measurement standard (echo). Two opposite hemodynamic challenges were sequentially applied to the heart (overdrive pacing and dobutamine administration) to determine whether real changes in hemodynamics could be reliably and repeatedly assessed with VVS. Equivalence of end-diastolic volume (EDV) and stroke volume (SV) determined by both methods was also assessed. EDV and SV were compared using VVS and echo. VVS tracked expected physiologic trends. EDV was modulated -10% by overdrive pacing (14 mL). SV was modulated -13.7% during overdrive pacing (-6 mL) and increased over baseline +14.6% (+8 mL) with dobutamine. VVS and echo mean EDVs were found statistically equivalent, with margin of equivalence 13.8 mL (P <.05). Likewise, mean SVs were found statistically equivalent with margin of equivalence 15.8 mL (P <.05). VVS provides an accurate method for ventricular volume assessment using chronically implanted defibrillator leads and is statistically equivalent to echo determination of mean EDV and SV. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Discrimination of Amplitude-Modulated Synthetic Echo Trains by an Echolocating Bottlenose Dolphin
2002-07-09
resulted in improved echo categorization (Moore FIG. 1. (A) Enlargement of a single stimulus pulse (left) and its spectrum eta!., 1991; Roitblat eta!., 1991...Floyd, 1980; Moore et aL., 1991; Roitblat J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002 Dankiewicz et al.: Discrimination of AM by an...Those studies were designed to elu- Harley, H. E., Roitblat , H. L., and Nachtigall, P. E. (1996). "Object repre- cidate the possible mechanisms by which
NASA Astrophysics Data System (ADS)
Gräfenstein, Jürgen; Cremer, Dieter
2004-12-01
For the first time, the nuclear magnetic resonance (NMR) spin-spin coupling mechanism is decomposed into one-electron and electron-electron interaction contributions to demonstrate that spin-information transport between different orbitals is not exclusively an electron-exchange phenomenon. This is done using coupled perturbed density-functional theory in conjunction with the recently developed J-OC-PSP [=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization)] method. One-orbital contributions comprise Ramsey response and self-exchange effects and the two-orbital contributions describe first-order delocalization and steric exchange. The two-orbital effects can be characterized as external orbital, echo, and spin transport contributions. A relationship of these electronic effects to zeroth-order orbital theory is demonstrated and their sign and magnitude predicted using simple models and graphical representations of first order orbitals. In the case of methane the two NMR spin-spin coupling constants result from totally different Fermi contact coupling mechanisms. 1J(C,H) is the result of the Ramsey response and the self-exchange of the bond orbital diminished by external first-order delocalization external one-orbital effects whereas 2J(H,H) spin-spin coupling is almost exclusively mitigated by a two-orbital steric exchange effect. From this analysis, a series of prediction can be made how geometrical deformations, electron lone pairs, and substituent effects lead to a change in the values of 1J(C,H) and 2J(H,H), respectively, for hydrocarbons.
Spin power and efficiency in an Aharnov-Bohm ring with an embedded magnetic impurity quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi; Guo, Yong, E-mail: guoy66@tsinghua.edu.cn; Collaborative Innovation Center of Quantum Matter, Beijing
2015-05-11
Spin thermoelectric effects in an Aharnov-Bohm ring with a magnetic impurity quantum dot (QD) are theoretically investigated by using the nonequilibrium Green's function method. It is found that due to the exchange coupling between the impurity and the electrons in QD, spin output power, and efficiency can be significant and be further modulated by the gate voltage. The spin thermoelectric effect can be modulated effectively by adjusting the Rashba spin-orbit interaction (RSOI) and the magnetic flux. The spin power and efficiency show zigzag oscillations, and thus spin thermoelectric effect can be switched by adjusting the magnetic flux phase factor andmore » RSOI ones. In addition, the spin efficiency can be significantly enhanced by the coexistence of the RSOI and the magnetic flux, and the maximal value of normalized spin efficiency η{sub max}/η{sub C} = 0.35 is obtained. Our results show that such a QD ring device may be used as a manipulative spin thermoelectric generator.« less
NASA Astrophysics Data System (ADS)
Kanaki, Toshiki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki
2016-10-01
We propose a current-in-plane spin-valve field-effect transistor (CIP-SV-FET), which is composed of a ferromagnet/nonferromagnet/ferromagnet trilayer structure and a gate electrode. This is a promising device alternative to spin metal-oxide-semiconductor field-effect transistors. Here, we fabricate a ferromagnetic-semiconductor GaMnAs-based CIP-SV-FET and demonstrate its basic operation of the resistance modulation both by the magnetization configuration and by the gate electric field. Furthermore, we present the electric-field-assisted magnetization reversal in this device.
Dengg, S; Kneissl, S
2013-01-01
Ferromagnetic material in microchips, used for animal identification, causes local signal increase, signal void or distortion (susceptibility artifact) on MR images. To measure the impact of microchip geometry on the artifact's size, an MRI phantom study was performed. Microchips of the labels Datamars®, Euro-I.D.® and Planet-ID® (n = 15) were placed consecutively in a phantom and examined with respect to the ASTM Standard Test Method F2119-07 using spin echo (TR 500 ms, TE 20 ms), gradient echo (TR 300 ms, TE 15 ms, flip angel 30°) and otherwise constant imaging parameters (slice thickness 3 mm, field of view 250 x 250 mm, acquisition matrix 256 x 256 pixel, bandwidth 32 kHz) at 1.5 Tesla. Image acquisition was undertaken with a microchip positioned in the x- and z-direction and in each case with a phase-encoding direction in the y- and z-direction. The artifact size was determined with a) a measurement according to the test method F2119-07 using a homogeneous point operation, b) signal intensity measurement according to Matsuura et al. and c) pixel counts in the artifact according to Port and Pomper. There was a significant difference in artifact size between the three microchips tested (Wilcoxon p = 0.032). A two- to three-fold increase in microchip volume generated an up to 76% larger artifact, depending on the sequence type, phase-encoding direction and chip position to B0. The smaller the microchip geometry, the less is the susceptibility artifact. Spin echoes (SE) generated smaller artifacts than gradient echoes (GE). In relation to the spatial measurement of the artifact, the switch in phase-encoding direction had less influence on the artifact size in GE- than in SE-sequences. However, the artifact shape and direction of SE-sequences can be changed by altering the phase. The artifact size, caused by the microchip, plays a major clinical role in the evaluation of MRI from the head, shoulder and neck regions.
Tsukimura, Itsuko; Murakami, Hideki; Sasaki, Makoto; Endo, Hirooki; Yamabe, Daisuke; Oikawa, Ryosuke; Doita, Minoru
2017-08-01
The safety of metallic spinal implants in magnetic resonance imaging (MRI) performed using ultrahigh fields has not been established. Hence, we examined whether the displacement forces caused by a static magnetic field and the heating induced by radiofrequency radiation are substantial for spinal implants in a 7 T field. We investigated spinal rods of various lengths and materials, a screw, and a cross-linking bridge in accordance with the American Society for Testing and Materials guidelines. The displacement forces of the metallic implants in static 7 T and 3 T static magnetic fields were measured and compared. The temperature changes of the implants during 15-min-long fast spin-echo and balanced gradient-echo image acquisition sequences were measured in the 7 T field. The deflection angles of the metallic spinal materials in the 7 T field were 5.0-21.0° [median: 6.7°], significantly larger than those in the 3 T field (1.0-6.3° [2.2°]). Among the metallic rods, the cobalt-chrome rods had significantly larger deflection angles (17.8-21.0° [19.8°]) than the pure titanium and titanium alloy rods (5.0-7.7° [6.2°]). The temperature changes of the implants, including the cross-linked rods, were 0.7-1.0°C [0.8°C] and 0.6-1.0°C [0.7°C] during the fast spin-echo and balanced gradient-echo sequences, respectively; these changes were slightly larger than those of the controls (0.4-1.1°C [0.5°C] and 0.3-0.9°C [0.6°C], respectively). All of the metallic spinal implants exhibited small displacement forces and minimal heating, indicating that MRI examinations using 7 T fields may be performed safely on patients with these implants. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1831-1837, 2017. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.
[Signal loss in magnetic resonance imaging caused by intraoral anchored dental magnetic materials].
Blankenstein, F H; Truong, B; Thomas, A; Schröder, R J; Naumann, M
2006-08-01
To measure the maximum extent of the signal loss areas in the center of the susceptibility artifacts generated by ferromagnetic dental magnet attachments using three different sequences in the 1.5 and 3.0 Tesla MRI. Five different pieces of standard dental magnet attachments with volumes of 6.5 to 31.4 mm(3) were used: a NdFeB magnet with an open magnetic field, a NdFeB magnet with a closed magnetic field, a SmCo magnet with an open magnetic field, a stainless steel keeper (AUM-20) and a PdCo piece. The attachments were placed between two cylindrical phantoms and examined in 1.5 and 3.0 Tesla MRI using gradient echo and T1- and T2-weighted spin echoes. We measured the maximum extent of the generated signal loss areas parallel and perpendicular to the direction of B (O). In gradient echoes the artifacts were substantially larger and symmetrically adjusted around the object. The areas with total signal loss were mushroom-like with a maximum extent of 7.4 to 9.7 cm parallel to the direction of B (O) and 6.7 to 7.4 cm perpendicular to B (O). In spin echoes the signal loss areas were obviously smaller, but not centered. The maximum values ranged between 4.9 and 7.2 cm (parallel B (O)) and 3.6 and 7.0 cm (perpendicular B (O)). The different ferromagnetic attachments had no clinically relevant influence on the signal loss neither in 1.5 T nor 3.0 T MRI. Ferromagnetic materials used in dentistry are not intraorally standardized. To ensure, that the area of interest is not affected by the described artifacts, the maximum extent of the signal loss area should be assumed: a radius of up to 7 cm in 1.5 and 3.0 T MRI by T1 and T2 sequences, and a radius of up to 10 cm in T2* sequences. To decide whether magnet attachments have to be removed before MR imaging, physicians should consider both the intact retention of the keepers and the safety distance between the ferromagnetic objects and the area of interest.
All-electric spin modulator based on a two-dimensional topological insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xianbo; Ai, Guoping; Liu, Ying
2016-01-18
We propose and investigate a spin modulator device consisting of two ferromagnetic leads connected by a two-dimensional topological insulator as the channel material. It exploits the unique features of the topological spin-helical edge states, such that the injected carriers with a non-collinear spin-polarization direction would travel through both edges and show interference effect. The conductance of the device can be controlled in a simple and all-electric manner by a side-gate voltage, which effectively rotates the spin-polarization of the carrier. At low voltages, the rotation angle is linear in the gate voltage, and the device can function as a good spin-polarizationmore » rotator by replacing the drain electrode with a non-magnetic material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soliman, A; Safigholi, H; Sunnybrook Health Sciences Centre, Toronto, ON
2016-06-15
Purpose: To assess image quality and artifact extent of a novel direction modulated brachytherapy (DMBT) tandem applicator on a 3T MRI using various clinical imaging sequences. Methods: The tandem applicator is composed of a tungsten alloy with 6 peripheral grooves covered with a PEEK tip. An MR-compatible phantom with similar dimensions to the female pelvis was manufactured. To visually assess the spatial shift of the applicator’s tip, a mountable radial-fiducial with 4 plastic rods, each of 3mm diameter, was designed to tightly fit on the applicator. The rods are separated by 16 mm and mounted at 90-degree relative to onemore » another. The pelvis phantom was filled with a solution of MnCl2 to mimic T2 relaxation time of the cervix (60-80 ms at 3T).Imaging was performed on a 3T Philips Achieva using a 16-channel Torso coil array. Four MR sequences were tested: T2-weighted fast spin-echo (T2w-FSE), proton density weighted FSE (PDw-FSE), T1-weighted FSE (T1w-FSE) and T1 weighted spoiled gradient echo (T1w-GE). The spatial resolution was kept the same between all sequences: 0.6 × 0.6 × 3 mm{sup 3} with no slice gaps. Para-sagittal images were acquired with the applicator fixed at a 30-degree angle anterior to the B0- field to mimic clinical settings. Results: Minimal artifacts were observed on T2w-FSE, PDw-FSE and T1-FSE, while significant artifacts were seen on T1w-GE images. Artifacts induced in all 3 FSE sequences did not hinder accurate localisation of the tip and the applicator boundaries. The drift of the applicator’s centreline from the radial fiducials was measured and found to be < 1 mm for the 3 FSE sequences. Conclusion: The tungsten–based DMBT applicator can be potentially used on 3T with various clinical sequences without inducing significant artifacts. Further validation on patients as well as the evaluation of relative SNR among the different sequences is required.« less
Foucher, Jack R; Roquet, Daniel; Marrer, Corinne; Pham, Bich-Thuy; Gounot, Daniel
2011-10-01
To take into account the echo time (TE) influence on arterial spin labeling (ASL) signal when converting it in regional cerebral blood flow (rCBF). Gray matter ASL signal decrease with increasing TE as a consequence of the difference in the apparent transverse relaxation rates between labeled water in capillaries and nonlabeled water in the tissue (δR 2*). We aimed to measure ASL/rCBF changes in different parts of the brain and correct them. Fifteen participants underwent ASL measurements at TEs of 9.7-30 ms. Decreases in ASL values were localized by statistical parametric mapping. The corrections assessed were a subject-per-subject adjustment, an average δR 2* value adjustment, and a two-compartment model adjustment. rCBF decreases associated with increasing TEs were found for gray matter and were corrected using an average δR 2* value of 20 s(-1) . Conversely, for white matter, rCBF values increased with increasing TEs (δR 2* = -23 s(-1)). Our correction was as good as using a two-compartment model. However, it must be done separately for the gray and white matter rCBF values because the capillary R 2* values are, respectively, larger and smaller than those of surrounding tissues. Copyright © 2011 Wiley-Liss, Inc.
Elucidation of spin echo small angle neutron scattering correlation functions through model studies.
Shew, Chwen-Yang; Chen, Wei-Ren
2012-02-14
Several single-modal Debye correlation functions to approximate part of the overall Debey correlation function of liquids are closely examined for elucidating their behavior in the corresponding spin echo small angle neutron scattering (SESANS) correlation functions. We find that the maximum length scale of a Debye correlation function is identical to that of its SESANS correlation function. For discrete Debye correlation functions, the peak of SESANS correlation function emerges at their first discrete point, whereas for continuous Debye correlation functions with greater width, the peak position shifts to a greater value. In both cases, the intensity and shape of the peak of the SESANS correlation function are determined by the width of the Debye correlation functions. Furthermore, we mimic the intramolecular and intermolecular Debye correlation functions of liquids composed of interacting particles based on a simple model to elucidate their competition in the SESANS correlation function. Our calculations show that the first local minimum of a SESANS correlation function can be negative and positive. By adjusting the spatial distribution of the intermolecular Debye function in the model, the calculated SESANS spectra exhibit the profile consistent with that of hard-sphere and sticky-hard-sphere liquids predicted by more sophisticated liquid state theory and computer simulation. © 2012 American Institute of Physics
Pedersen, T V; Olsen, D R; Skretting, A
1997-08-01
A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm2 h-1, at the cost of significantly lower Rl sensitivity. The addition of benzoic acid to the latter gel did not increase the Rl sensitivity.
Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
Kim, Seong-Gi; Ogawa, Seiji
2012-07-01
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.
NASA Astrophysics Data System (ADS)
Lin, Jyh-Miin; Patterson, Andrew J.; Chao, Tzu-Cheng; Zhu, Chengcheng; Chang, Hing-Chiu; Mendes, Jason; Chung, Hsiao-Wen; Gillard, Jonathan H.; Graves, Martin J.
2017-05-01
The paper reports a free-breathing black-blood CINE fast-spin echo (FSE) technique for measuring abdominal aortic wall motion. The free-breathing CINE FSE includes the following MR techniques: (1) variable-density sampling with fast iterative reconstruction; (2) inner-volume imaging; and (3) a blood-suppression preparation pulse. The proposed technique was evaluated in eight healthy subjects. The inner-volume imaging significantly reduced the intraluminal artifacts of respiratory motion (p = 0.015). The quantitative measurements were a diameter of 16.3 ± 2.8 mm and wall distensibility of 2.0 ± 0.4 mm (12.5 ± 3.4%) and 0.7 ± 0.3 mm (4.1 ± 1.0%) for the anterior and posterior walls, respectively. The cyclic cross-sectional distensibility was 35 ± 15% greater in the systolic phase than in the diastolic phase. In conclusion, we developed a feasible CINE FSE method to measure the motion of the abdominal aortic wall, which will enable clinical scientists to study the elasticity of the abdominal aorta.
Patronas, Nicholas; Bulakbasi, Nail; Stratakis, Constantine A; Lafferty, Antony; Oldfield, Edward H; Doppman, John; Nieman, Lynnette K
2003-04-01
Recent studies show that the standard T1-weighted spin echo (SE) technique for magnetic resonance imaging (MRI) fails to identify 40% of corticotrope adenomas. We hypothesized that the superior soft tissue contrast and thinner sections obtained with spoiled gradient recalled acquisition in the steady state (SPGR) would improve tumor detection. We compared the performance of SE and SPGR MRI in 50 patients (age, 7-67 yr) with surgically confirmed corticotrope adenoma. Coronal SE and SPGR MR images were obtained before and after administration of gadolinium contrast, using a 1.5 T scanner. SE scans were obtained over 5.1 min (12-cm field of view; interleaved sections, 3 mm). SPGR scans were obtained over 3.45 min (12- or 18-cm field of view, contiguous 1- or 2-mm slices). The MRI interpretations of two radiologists were compared with findings at surgical resection. Compared with SE for detection of tumor, SPGR had superior sensitivity (80%; confidence interval, 68-91; vs. 49%; confidence interval, 34-63%), but a higher false positive rate (2% vs. 4%). We recommend the addition of SPGR to SE sequences using pituitary-specific technical parameters to improve the MRI detection of ACTH-secreting pituitary tumors.
NASA Astrophysics Data System (ADS)
Piroli, Lorenzo; Pozsgay, Balázs; Vernier, Eric
2017-02-01
We consider the computation of the Loschmidt echo after quantum quenches in the interacting XXZ Heisenberg spin chain both for real and imaginary times. We study two-site product initial states, focusing in particular on the Néel and tilted Néel states. We apply the quantum transfer matrix (QTM) approach to derive generalized TBA equations, which follow from the fusion hierarchy of the appropriate QTM’s. Our formulas are valid for arbitrary imaginary time and for real times at least up to a time t 0, after which the integral equations have to be modified. In some regimes, t 0 is seen to be either very large or infinite, allowing to explore in detail the post-quench dynamics of the system. As an important part of our work, we show that for the Néel state our imaginary time results can be recovered by means of the quench action approach, unveiling a direct connection with the quantum transfer matrix formalism. In particular, we show that in the zero-time limit, the study of our TBA equations allows for a simple alternative derivation of the recently obtained Bethe ansatz distribution functions for the Néel, tilted Néel and tilted ferromagnet states.
Ho, J T; Yap, C K
1999-05-01
The purpose of this study was to evaluate the accuracy of magnetic resonance cholangiopancreatography (MRCP) for visualisation and diagnosis of pancreatico-biliary diseases. Our results of 35 case studies, correlating with results from endoscopic, percutaneous cholangiopancreatography or laparotomy, showed that MRCP performed using the half-Fourier acquisition single-shot turbo spin echo (HASTE) sequences was fast and accurate for depiction of the biliary and pancreatic system, with a diagnostic value comparable to that of direct cholangiography. The presence of biliary obstruction was accurately diagnosed in all but one patient. In hilar strictures, MR cholangiogram was able to depict the intrahepatic biliary tree proximal to the level of obstruction which was not readily displayed by endoscopic retrograde cholangiopancreatography (ERCP) (Figs. 1 & 2). This overview of the entire biliary system was found to be advantageous for preprocedural planning. However, the accuracy for stone detection was limited by the presence of aerobilia from previous sphincterotomy or biliary-enteric anastomosis. Ductal stones less than 3 mm in size within a non-dilated system may be missed due to inadequate spatial resolution. This occurred in a patient with pancreatic duct stones. It is hoped that the accuracy of HASTE magnetic resonance cholangiopancreatography in evaluation of pancreatico-biliary disease would obviate the need for diagnostic invasive cholangiography in selected patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Herman M.; De Jong, Wibe A.; Soderquist, Chuck Z.
A combined theoretical and solid-state O-17 NMR study of the electronic structure of the uranyl ion UO22+ in (NH4)4UO2(CO3)3 and rutherfordine UO2CO3 is presented, the former representing a system with a hydrogen-bonding environment around the uranyl oxygens, and the latter exemplifying a uranyl environment without hydrogens. A fully relativistic ab initio treatment reveals unique features of the U-O covalent bond, including the finding of O-17 chemical shift anisotropies that are among the largest ever reported (>1200 ppm). Computational results for the oxygen electric field gradient tensor are found to be consistently larger in magnitude than experimental solid-state O-17 NMR measurementsmore » in a 7.05 T magnetic field indicate. A modified version of the Solomon theory of the two-spin echo amplitude for a spin-5/2 nucleus is developed and applied to the analysis of the O-17 echo signal of UO22+. The William R. Wiley environmental Molecular Sciences Laboratory is a US Department of Energy national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is operated by Battelle for the US Department of Energy.« less
Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals
Kim, Seong-Gi; Ogawa, Seiji
2012-01-01
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207
NASA Astrophysics Data System (ADS)
Monkenbusch, M.; Holderer, O.; Frielinghaus, H.; Byelov, D.; Allgaier, J.; Richter, D.
2005-08-01
The properties of bicontinuous microemulsions, consisting of water, oil and a surfactant, depend to a large extent on the bending moduli of the surfactant containing oil-water interface. In systems with CiEj as surfactant these moduli can be modified by the addition of diblock copolymers (boosting effect) and homopolymers (inverse boosting effect) or a combination of both. The influence of the addition of homopolymers (PEPX and PEOX, X = 5 or 10 kg/mol molecular weight) on the structure, bending modulus and dynamics of the surfactant layer is studied with small angle neutron scattering (SANS) and neutron spin-echo spectroscopy (NSE). Besides providing information on the microemulsion structure, neutron scattering is a microscopic probe that can be used to measure the local bending modulus κ. The polymer addition gives access to a homologous series of microemulsions with changing κ values. We relate the results obtained by analysis of SANS to those from NSE experiments. Comparison of the bending moduli obtained sheds light on the different renormalization length scales for NSE and SANS. Comparison of SANS and NSE derived κ values yields a consistent picture if renormalization properties are observed. Finally a ready to use method for converting NSE data into reliable values for κ is presented.
Hodel, Jérôme; Silvera, Jonathan; Bekaert, Olivier; Rahmouni, Alain; Bastuji-Garin, Sylvie; Vignaud, Alexandre; Petit, Eric; Durning, Bruno; Decq, Philippe
2011-02-01
To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus.
Dental MRI using a dedicated RF-coil at 3 Tesla.
Prager, Marcel; Heiland, Sabine; Gareis, Daniel; Hilgenfeld, Tim; Bendszus, Martin; Gaudino, Chiara
2015-12-01
To assess the benefit of a dedicated surface coil to visualize dental structures in comparison to standard head/neck coil. Measurements were performed using the standard head/neck coil and a dedicated array coil for dental MRI at 3 T. As MRI methods, we used a T1-weighted spin-echo sequence with and without spectral fat saturation, a T2-weighted turbo-spin-echo sequence and a 3-dimensional T2-weighted SPACE sequence. Measurements were performed in a phantom to examine sensitivity profiles. Then the signal gain in dental structures was examined in volunteers and in a patient. As expected for a surface coil, the signal gain of the dental coil was highest at the surface of the phantom and decreased with increasing distance to the coil; it was >120% even at a depth of 30 mm, measured from the centre of the coil. The signal gain within the pulp of the volunteers ranged between 236 and 413%. The dedicated array coil offers a significantly higher signal within the region of interest for dental MR imaging thus allowing for better depiction of pathologies within the periodontium and for delineation and tracking of the branches of the maxillary and mandibular nerves. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Reduction of Diffusion-Weighted Imaging Contrast of Acute Ischemic Stroke at Short Diffusion Times.
Baron, Corey Allan; Kate, Mahesh; Gioia, Laura; Butcher, Kenneth; Emery, Derek; Budde, Matthew; Beaulieu, Christian
2015-08-01
Diffusion-weighted imaging (DWI) of tissue water is a sensitive and specific indicator of acute brain ischemia, where reductions of the diffusion of tissue water are observed acutely in the stroke lesion core. Although these diffusion changes have been long attributed to cell swelling, the precise nature of the biophysical mechanisms remains uncertain. The potential cause of diffusion reductions after stroke was investigated using an advanced DWI technique, oscillating gradient spin-echo DWI, that enables much shorter diffusion times and can improve specificity for alterations of structure at the micron level. Diffusion measurements in the white matter lesions of patients with acute ischemic stroke were reduced by only 8% using oscillating gradient spin-echo DWI, in contrast to a 37% decrease using standard DWI. Neurite beading has recently been proposed as a mechanism for the diffusion changes after ischemic stroke with some ex vivo evidence. To explore whether beading could cause such differential results, simulations of beaded cylinders and axonal swelling were performed, yielding good agreement with experiment. Short diffusion times result in dramatically reduced diffusion contrast of human stroke. Simulations implicate a combination of neuronal beading and axonal swelling as the key structural changes leading to the reduced apparent diffusion coefficient after stroke. © 2015 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Lin, Liangjie; Wei, Zhiliang; Yang, Jian; Lin, Yanqin; Chen, Zhong
2014-11-01
The spatial encoding technique can be used to accelerate the acquisition of multi-dimensional nuclear magnetic resonance spectra. However, with this technique, we have to make trade-offs between the spectral width and the resolution in the spatial encoding dimension (F1 dimension), resulting in the difficulty of covering large spectral widths while preserving acceptable resolutions for spatial encoding spectra. In this study, a selective shifting method is proposed to overcome the aforementioned drawback. This method is capable of narrowing spectral widths and improving spectral resolutions in spatial encoding dimensions by selectively shifting certain peaks in spectra of the ultrafast version of spin echo correlated spectroscopy (UFSECSY). This method can also serve as a powerful tool to obtain high-resolution correlated spectra in inhomogeneous magnetic fields for its resistance to any inhomogeneity in the F1 dimension inherited from UFSECSY. Theoretical derivations and experiments have been carried out to demonstrate performances of the proposed method. Results show that the spectral width in spatial encoding dimension can be reduced by shortening distances between cross peaks and axial peaks with the proposed method and the expected resolution improvement can be achieved. Finally, the shifting-absent spectrum can be recovered readily by post-processing.
Modified echo peak correction for radial acquisition regime (RADAR).
Takizawa, Masahiro; Ito, Taeko; Itagaki, Hiroyuki; Takahashi, Tetsuhiko; Shimizu, Kanichirou; Harada, Junta
2009-01-01
Because radial sampling imposes many limitations on magnetic resonance (MR) imaging hardware, such as on the accuracy of the gradient magnetic field or the homogeneity of B(0), some correction of the echo signal is usually needed before image reconstruction. In our previous study, we developed an echo-peak-shift correction (EPSC) algorithm not easily affected by hardware performance. However, some artifacts remained in lung imaging, where tissue is almost absent, or in cardiac imaging, which is affected by blood flow. In this study, we modified the EPSC algorithm to improve the image quality of the radial aquisition regime (RADAR) and expand its application sequences. We assumed the artifacts were mainly caused by errors in the phase map for EPSC and used a phantom on a 1.5-tesla (T) MR scanner to investigate whether to modify the EPSC algorithm. To evaluate the effectiveness of EPSC, we compared results from T(1)- and T(2)-weighted images of a volunteer's lung region using the current and modified EPSC. We then applied the modified EPSC to RADAR spin echo (SE) and RADAR balanced steady-state acquisition with rewound gradient echo (BASG) sequence. The modified EPSC reduced phase discontinuity in the reference data used for EPSC and improved visualization of blood vessels in the lungs. Motion and blood flow caused no visible artifacts in the resulting images in either RADAR SE or RADAR BASG sequence. Use of the modified EPSC eliminated artifacts caused by signal loss in the reference data for EPSC. In addition, the modified EPSC was applied to RADAR SE and RADAR BASG sequences.
BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients
NASA Astrophysics Data System (ADS)
Xiao, Dan; Balcom, Bruce J.
2017-12-01
MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.
Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.
Allodi, Marco A; Dahlberg, Peter D; Mazuski, Richard J; Davis, Hunter C; Otto, John P; Engel, Gregory S
2016-12-21
We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f /2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.