Sample records for spin exchange interaction

  1. A spin exchange model for singlet fission

    NASA Astrophysics Data System (ADS)

    Yago, Tomoaki; Wakasa, Masanobu

    2018-03-01

    Singlet fission has been analyzed with the Dexter model in which electron exchange occurs between chromophores, conserving the spin for each electron. In the present study, we propose a spin exchange model for singlet fission. In the spin exchange model, spins are exchanged by the exchange interaction between two electrons. Our analysis with simple spin functions demonstrates that singlet fission is possible by spin exchange. A necessary condition for spin exchange is a variation in exchange interactions. We also adapt the spin exchange model to triplet fusion and triplet energy transfer, which often occur after singlet fission in organic solids.

  2. Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    Separate spin evolution quantum hydrodynamics is generalized to include the Coulomb exchange interaction, which is considered as interaction between the spin-down electrons being in quantum states occupied by one electron. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of concentration, spin polarization, and exchange interaction to the properties of the spin electron acoustic soliton are studied.

  3. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    NASA Astrophysics Data System (ADS)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  4. Phase transitions and thermal entanglement of the distorted Ising-Heisenberg spin chain: topology of multiple-spin exchange interactions in spin ladders

    NASA Astrophysics Data System (ADS)

    Arian Zad, Hamid; Ananikian, Nerses

    2017-11-01

    We consider a symmetric spin-1/2 Ising-XXZ double sawtooth spin ladder obtained from distorting a spin chain, with the XXZ interaction between the interstitial Heisenberg dimers (which are connected to the spins based on the legs via an Ising-type interaction), the Ising coupling between nearest-neighbor spins of the legs and rungs spins, respectively, and additional cyclic four-spin exchange (ring exchange) in the square plaquette of each block. The presented analysis supplemented by results of the exact solution of the model with infinite periodic boundary implies a rich ground state phase diagram. As well as the quantum phase transitions, the characteristics of some of the thermodynamic parameters such as heat capacity, magnetization and magnetic susceptibility are investigated. We prove here that among the considered thermodynamic and thermal parameters, solely heat capacity is sensitive versus the changes of the cyclic four-spin exchange interaction. By using the heat capacity function, we obtain a singularity relation between the cyclic four-spin exchange interaction and the exchange coupling between pair spins on each rung of the spin ladder. All thermal and thermodynamic quantities under consideration should be investigated by regarding those points which satisfy the singularity relation. The thermal entanglement within the Heisenberg spin dimers is investigated by using the concurrence, which is calculated from a relevant reduced density operator in the thermodynamic limit.

  5. Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine.

    PubMed

    Wu, Wei

    2014-06-14

    Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-½) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by the long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears.

  6. Exchange interaction between the triplet exciton and the localized spin in copper-phthalocyanine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei, E-mail: wei.wu@ucl.ac.uk

    2014-06-14

    Triplet excitonic state in the organic molecule may arise from a singlet excitation and the following inter-system crossing. Especially for a spin-bearing molecule, an exchange interaction between the triplet exciton and the original spin on the molecule can be expected. In this paper, such exchange interaction in copper-phthalocyanine (CuPc, spin-1/2 ) was investigated from first-principles by using density-functional theory within a variety of approximations to the exchange correlation, ranging from local-density approximation to long-range corrected hybrid-exchange functional. The magnitude of the computed exchange interaction is in the order of meV with the minimum value (1.5 meV, ferromagnetic) given by themore » long-range corrected hybrid-exchange functional CAM-B3LYP. This exchange interaction can therefore give rise to a spin coherence with an oscillation period in the order of picoseconds, which is much shorter than the triplet lifetime in CuPc (typically tens of nanoseconds). This implies that it might be possible to manipulate the localized spin on Cu experimentally using optical excitation and inter-system crossing well before the triplet state disappears.« less

  7. Monte Carlo simulations of the spin-2 Blume-Emery-Griffiths model with four-spin interactions

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.; Jetto, K.; Bahmad, L.; Benyoussef, A.; Hamedoun, M.

    2016-12-01

    The magnetic properties of a spin S = 2 Ising system with bilinear exchange interaction J1, the biquadratic exchange interaction K, four-spin exchange interactions J4 and crystal field Δ are discussed using the Monte Carlo simulation. The lattice is divided into two sublattices: A and B, for which we compute the magnetizations mA and mB. The phase obtained diagrams of this system are deduced in the planes: (T, Δ/J1), (K/J1, Δ/J1), (Δ/J1, J4/J1) and (J4/J1, K/J1). In addition to the usual phases, we found a new phase called nonmagnetic quadratic, for which the magnetizations are mA ≠ mB and the quadrupolar moments are so that are qA = qB. Furthermore, the behavior of the magnetizations as a function of temperature, crystal field, four-spin exchange interactions and biquadratic exchange interaction are deduced.

  8. Interacting quantum dot coupled to a kondo spin: a universal Hamiltonian study.

    PubMed

    Rotter, Stefan; Türeci, Hakan E; Alhassid, Y; Stone, A Douglas

    2008-04-25

    We study a Kondo spin coupled to a mesoscopic interacting quantum dot that is described by the "universal Hamiltonian." The problem is solved numerically by diagonalizing the system Hamiltonian in a good-spin basis and analytically in the weak and strong Kondo coupling limits. The ferromagnetic exchange interaction within the dot leads to a stepwise increase of the ground-state spin (Stoner staircase), which is modified nontrivially by the Kondo interaction. We find that the spin-transition steps move to lower values of the exchange coupling for weak Kondo interaction, but shift back up for sufficiently strong Kondo coupling. The interplay between Kondo and ferromagnetic exchange correlations can be probed with experimentally tunable parameters.

  9. Angular dependence of spin-orbit spin-transfer torques

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Seung; Go, Dongwook; Manchon, Aurélien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin

    2015-04-01

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  10. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Secchi, A.; Lichtenstein, A. I.; Katsnelson, M. I.

    2016-02-01

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as dipole-dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms.

  11. Exchange interactions in transition metal oxides: the role of oxygen spin polarization.

    PubMed

    Logemann, R; Rudenko, A N; Katsnelson, M I; Kirilyuk, A

    2017-08-23

    Magnetism of transition metal (TM) oxides is usually described in terms of the Heisenberg model, with orientation-independent interactions between the spins. However, the applicability of such a model is not fully justified for TM oxides because spin polarization of oxygen is usually ignored. In the conventional model based on the Anderson principle, oxygen effects are considered as a property of the TM ion and only TM interactions are relevant. Here, we perform a systematic comparison between two approaches for spin polarization on oxygen in typical TM oxides. To this end, we calculate the exchange interactions in NiO, MnO and hematite (Fe 2 O 3 ) for different magnetic configurations using the magnetic force theorem. We consider the full spin Hamiltonian including oxygen sites, and also derive an effective model where the spin polarization on oxygen renormalizes the exchange interactions between TM sites. Surprisingly, the exchange interactions in NiO depend on the magnetic state if spin polarization on oxygen is neglected, resulting in non-Heisenberg behavior. In contrast, the inclusion of spin polarization in NiO makes the Heisenberg model more applicable. Just the opposite, MnO behaves as a Heisenberg magnet when oxygen spin polarization is neglected, but shows strong non-Heisenberg effects when spin polarization on oxygen is included. In hematite, both models result in non-Heisenberg behavior. The general applicability of the magnetic force theorem as well as the Heisenberg model to TM oxides is discussed.

  12. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.

    2015-11-01

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.

  13. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films

    PubMed Central

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.

    2015-01-01

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ − d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of −4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials. PMID:26559337

  14. Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films.

    PubMed

    Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G; Headrick, Randall L; McGill, Stephen A; Furis, Madalina I

    2015-11-12

    The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.

  15. Spin-wave dynamics and exchange interactions in multiferroic NdFe3(BO3)4 explored by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Golosovsky, I. V.; Ovsyanikov, A. K.; Aristov, D. N.; Matveeva, P. G.; Mukhin, A. A.; Boehm, M.; Regnault, L.-P.; Bezmaternykh, L. N.

    2018-04-01

    Magnetic excitations and exchange interactions in multiferroic NdFe3(BO3)4 were studied by inelastic neutron scattering in the phase with commensurate antiferromagnetic structure. The observed spectra were analyzed in the frame of the linear spin-wave theory. It was shown that only the model, which includes the exchange interactions within eight coordination spheres, describes satisfactorily all observed dispersion curves. The calculation showed that the spin-wave dynamics is governed by the strongest antiferromagnetic intra-chain interaction and three almost the same inter-chain interactions. Other interactions, including ferromagnetic exchange, appeared to be insignificant. The overall energy balance of the antiferromagnetic inter-chain exchange interactions, which couple the moments from the adjacent ferromagnetic layers as well as within a layer, stabilizes ferromagnetic arrangement in the latter. It demonstrates that the pathway geometry plays a crucial role in forming of the magnetic structure.

  16. Search for exotic spin-dependent interactions with a spin-exchange relaxation-free magnetometer

    DOE PAGES

    Chu, Pinghan; Kim, Young Jin; Savukov, Igor Mykhaylovich

    2016-08-15

    We propose a novel experimental approach to explore exotic spin-dependent interactions using a spin-exchange relaxation-free (SERF) magnetometer, the most sensitive noncryogenic magnetic-field sensor. This approach studies the interactions between optically polarized electron spins located inside a vapor cell of the SERF magnetometer and unpolarized or polarized particles of external solid-state objects. The coupling of spin-dependent interactions to the polarized electron spins of the magnetometer induces the tilt of the electron spins, which can be detected with high sensitivity by a probe laser beam similarly as an external magnetic field. Lastly, we estimate that by moving unpolarized or polarized objects nextmore » to the SERF Rb vapor cell, the experimental limit to the spin-dependent interactions can be significantly improved over existing experiments, and new limits on the coupling strengths can be set in the interaction range below 10 –2 m.« less

  17. Anisotropic exchange interaction induced by a single photon in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Chiappe, G.; Fernández-Rossier, J.; Louis, E.; Anda, E. V.

    2005-12-01

    We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K : spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.

  18. Ultrafast optical modification of exchange interactions in iron oxides

    NASA Astrophysics Data System (ADS)

    Mikhaylovskiy, R. V.; Hendry, E.; Secchi, A.; Mentink, J. H.; Eckstein, M.; Wu, A.; Pisarev, R. V.; Kruglyak, V. V.; Katsnelson, M. I.; Rasing, Th.; Kimel, A. V.

    2015-09-01

    Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 103 Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm-2 acts as a pulsed effective magnetic field of 0.01 Tesla.

  19. Spin polarization transfer by the radical pair mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarea, Mehdi, E-mail: m-zarea@northwestern.edu; Ratner, Mark A.; Wasielewski, Michael R.

    2015-08-07

    In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies,more » the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.« less

  20. Scheme for Quantum Computing Immune to Decoherence

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.

  1. Tuning magnetic exchange interactions in crystalline thin films of substituted Cobalt Phthalocyanine

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Manning, Lane; Hua, Kim-Ngan; Headrick, Randall; Bishop, Michael; McGill, Stephen; Waterman, Rory; Furis, Madalina

    Magnetic exchange interactions in diluted organometallic crystalline thin film alloys of Phthalocyanines (Pcs) made of a organo-soluble derivatives of Cobalt Pc and metal-free (H2Pc) molecule and is investigated. To this end, we synthesized a organosoluble CoPc and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of different ratios ranging from 1:1 to 10:1 H2Pc:CoPc. Our previous magnetic circular dichroism (MCD) results on the parent CoPc crystalline thin films identified different electronic states mediating exchange interactions and indirect exchange interaction competing with superexchange interaction. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins along with the excitonic delocalization character enabled the further tuning of these interactions by essentially varying the spatial distance between the spins. Furthermore, high magnetic field (B < 25 T) MCD and magneto-photoluminescence show evidence of spin-polarized band-edge excitons in the same materials. This work was possible due to support by the National Science Foundation, Division of Materials Research MRI, CAREER and EPM program Awards: DMR-0722451, DMR-0821268, DMR-1307017 and DMR-1056589, DMR-1229217.

  2. Exchange interactions in two-state systems: rare earth pyrochlores.

    PubMed

    Curnoe, S H

    2018-06-13

    The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.

  3. Exchange interactions in two-state systems: rare earth pyrochlores

    NASA Astrophysics Data System (ADS)

    Curnoe, S. H.

    2018-06-01

    The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.

  4. Creation and Annihilation of Skyrmions in the Frustrated Magnets with Competing Exchange Interactions.

    PubMed

    Hu, Yong; Chi, Xiaodan; Li, Xuesi; Liu, Yan; Du, An

    2017-11-22

    In triangular-lattice magnets, the coexistence of third-neighbor antiferromagnetic and nearest-neighbor ferromagnetic exchange interactions can induce rich magnetic phases including noncoplanar skyrmion crystals. Based on Monte Carlo simulation, we studied the dependence of magnetic phase transition on exchange interaction strength. Under the consideration of uniaxial anisotropy and magnetic field both perpendicular to the film plane, a large antiferromagnetic exchange interaction induces a high frustration. When the value of antiferromagnetic exchange interaction is one and a half times larger than the ferromagnetic one, a magnetic phase composed of canting spin stripes, never observed in the chiral magnets, forms. Interestingly, different canting spin stripes along three 120 degree propagation directions may coexist randomly in a magnetic phase, attesting that the canting spin stripes are three-fold degenerate states akin to helices and the multiple state of canting spin stripes is a circular configuration with zero skyrmion charge number. Moreover, skyrmions and antiskyrmions can be observed simultaneously in the configuration at the low temperature nearly close to 0 K, and their configuration and diameter properties are discussed. Finally, the mechanisms of skyrmion creation and annihilation are properly interpreted by comparing exchange and Zeeman energy terms.

  5. Ultrafast optical modification of exchange interactions in iron oxides

    PubMed Central

    Mikhaylovskiy, R.V.; Hendry, E.; Secchi, A.; Mentink, J.H.; Eckstein, M.; Wu, A.; Pisarev, R.V.; Kruglyak, V.V.; Katsnelson, M.I.; Rasing, Th.; Kimel, A.V.

    2015-01-01

    Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 103 Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm−2 acts as a pulsed effective magnetic field of 0.01 Tesla. PMID:26373688

  6. Ultrafast optical modification of exchange interactions in iron oxides.

    PubMed

    Mikhaylovskiy, R V; Hendry, E; Secchi, A; Mentink, J H; Eckstein, M; Wu, A; Pisarev, R V; Kruglyak, V V; Katsnelson, M I; Rasing, Th; Kimel, A V

    2015-09-16

    Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 10(3) Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm(-2) acts as a pulsed effective magnetic field of 0.01 Tesla.

  7. Competition of Dzyaloshinskii-Moriya and Higher-Order Exchange Interactions in Rh /Fe Atomic Bilayers on Ir(111)

    NASA Astrophysics Data System (ADS)

    Romming, Niklas; Pralow, Henning; Kubetzka, André; Hoffmann, Markus; von Malottki, Stephan; Meyer, Sebastian; Dupé, Bertrand; Wiesendanger, Roland; von Bergmann, Kirsten; Heinze, Stefan

    2018-05-01

    Using spin-polarized scanning tunneling microscopy and density functional theory we demonstrate the occurrence of a novel type of noncollinear spin structure in Rh /Fe atomic bilayers on Ir(111). We find that higher-order exchange interactions depend sensitively on the stacking sequence. For fcc-Rh /Fe /Ir (111 ) , frustrated exchange interactions are dominant and lead to the formation of a spin spiral ground state with a period of about 1.5 nm. For hcp-Rh /Fe /Ir (111 ) , higher-order exchange interactions favor an up-up-down-down (↑↑↓↓) state. However, the Dzyaloshinskii-Moriya interaction at the Fe /Ir interface leads to a small angle of about 4° between adjacent magnetic moments resulting in a canted ↑↑↓↓ ground state.

  8. Magnetic properties of magnetic bilayer Kekulene structure: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.

    2018-06-01

    In the present work, we have studied the magnetic properties of magnetic bilayer Kekulene structure with mixed spin-5/2 and spin-2 Ising model using Monte Carlo study. The magnetic phase diagrams of mixed spins Ising model have been given. The thermal total, partial magnetization and magnetic susceptibilities of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure are obtained. The transition temperature has been deduced. The effect of crystal field and exchange interactions on the this bilayers has been studied. The partial and total magnetic hysteresis cycles of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure have been given. The superparamagnetism behavior is observed in magnetic bilayer Kekulene structure. The magnetic coercive field decreases with increasing the exchange interactions between σ-σ and temperatures values and increases with increasing the absolute value of exchange interactions between σ-S. The multiple hysteresis behavior appears.

  9. Mechanism of nuclear spin initiated para-H2 to ortho-H2 conversion.

    PubMed

    Buntkowsky, G; Walaszek, B; Adamczyk, A; Xu, Y; Limbach, H-H; Chaudret, B

    2006-04-28

    In this paper a quantitative explanation for a diamagnetic ortho/para H2 conversion is given. The description is based on the quantum-mechanical density matrix formalism originally developed by Alexander and Binsch for studies of exchange processes in NMR spectra. Only the nuclear spin system is treated quantum-mechanically. Employing the model of a three spin system, the reactions of the hydrogen gas with the catalysts are treated as a phenomenological rate process, described by a rate constant. Numerical calculations reveal that for nearly all possible geometrical arrangements of the three spin system an efficient spin conversion is obtained. Only in the chemically improbable case of a linear group H-X-H no spin conversion is obtained. The efficiency of the spin conversion depends strongly on the lifetime of the H-X-H complex and on the presence of exchange interactions between the two hydrogens. Even moderate exchange couplings cause a quench of the spin conversion. Thus a sufficiently strong binding of the dihydrogen to the S spin is necessary to render the quenching by the exchange interaction ineffective.

  10. Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

    DOE PAGES

    Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; ...

    2015-04-30

    Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spinmore » ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.« less

  11. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    NASA Astrophysics Data System (ADS)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  12. Peculiarities of magnetic and spin effects in a biradical/stable radical complex (three-spin system). Theory and comparison with experiment.

    PubMed

    Magin, Ilya M; Purtov, Petr A; Kruppa, Alexander I; Leshina, Tatiana V

    2005-08-25

    The field dependencies of biradical recombination probability in the presence of paramagnetic species with spins S(3) = 1 and S(3) = (1)/(2) have been calculated in the framework of the density matrix formalism. To describe the effect of the "third" spin on the spin evolution in biradical, we have also considered the spin exchange interaction between the added spin and one of the paramagnetic biradical centers. A characteristic feature of the calculated field dependencies is the existence of several extrema with positions and magnitudes depending on the signs and values of the exchange integrals in the system. The method proposed can be used to describe the effect of spin catalysis. It is shown that for the system with the third spin S(3) = 1 spin catalysis manifests itself stronger than in the case of spin S(3) = (1)/(2). The dependence of spin catalysis efficiency on the exchange interaction with the third spin has an extremum with position independent of the value of the spin added.

  13. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    PubMed Central

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; Lupton, John M.; Boehme, Christoph

    2015-01-01

    Weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices, which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair's zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm. PMID:25868686

  14. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    DOE PAGES

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; ...

    2015-04-14

    Here, weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices,more » which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair’s zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm.« less

  15. Strongly exchange-coupled triplet pairs in an organic semiconductor

    NASA Astrophysics Data System (ADS)

    Weiss, Leah R.; Bayliss, Sam L.; Kraffert, Felix; Thorley, Karl J.; Anthony, John E.; Bittl, Robert; Friend, Richard H.; Rao, Akshay; Greenham, Neil C.; Behrends, Jan

    2017-02-01

    From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors.

  16. Spin Hamiltonian Analysis of the SMM V15 Using High Field ESR

    NASA Astrophysics Data System (ADS)

    Martens, Mathew; van Tol, Hans; Bertaina, Sylvain; Barbara, Bernard; Muller, Achim; Chiorescu, Irinel

    2014-03-01

    We have studied molecular magnets using high field / high frequency Electron Spin Resonance. Such molecular structures contain many quantum spins linked by exchange interactions and consequently their energy structure is often complex and require a good understanding of the molecular spin Hamiltonian. In particular, we studied the V15 molecule, comprised of 15 spins 1/2 and a total spin 1/2, which is a system that recently showed quantum Rabi oscillations of its total quantum spin. This type of molecule is an essential system for advancing molecular structures into quantum computing. We used high frequency characterization techniques (of hundreds of GHz) to gain insight into the exchange anisotropy interactions, crystal field, and anti-symmetric interactions present in this system. We analyzed the data using a detailed numerical analysis of spin interactions and our findings regarding the V15 spin Hamiltonian will be discussed. Supported by the NSF Cooperative Agreement Grant No. DMR-0654118 and No. NHMFL UCGP 5059, NSF grant No. DMR-0645408.

  17. Chiral magnetism of magnetic adatoms generated by Rashba electrons

    NASA Astrophysics Data System (ADS)

    Bouaziz, Juba; dos Santos Dias, Manuel; Ziane, Abdelhamid; Benakki, Mouloud; Blügel, Stefan; Lounis, Samir

    2017-02-01

    We investigate long-range chiral magnetic interactions among adatoms mediated by surface states spin-splitted by spin-orbit coupling. Using the Rashba model, the tensor of exchange interactions is extracted wherein a thepseudo-dipolar interaction is found, in addition to the usual isotropic exchange interaction and the Dzyaloshinskii-Moriya interaction. We find that, despite the latter interaction, collinear magnetic states can still be stabilized by the pseudo-dipolar interaction. The interadatom distance controls the strength of these terms, which we exploit to design chiral magnetism in Fe nanostructures deposited on a Au(111) surface. We demonstrate that these magnetic interactions are related to superpositions of the out-of-plane and in-plane components of the skyrmionic magnetic waves induced by the adatoms in the surrounding electron gas. We show that, even if the interatomic distance is large, the size and shape of the nanostructures dramatically impacts on the strength of the magnetic interactions, thereby affecting the magnetic ground state. We also derive an appealing connection between the isotropic exchange interaction and the Dzyaloshinskii-Moriya interaction, which relates the latter to the first-order change of the former with respect to spin-orbit coupling. This implies that the chirality defined by the direction of the Dzyaloshinskii-Moriya vector is driven by the variation of the isotropic exchange interaction due to the spin-orbit interaction.

  18. Spin waves and magnetic exchange interactions in the spin-ladder compound RbFe 2 Se 3

    DOE PAGES

    Wang, Meng; Yi, Ming; Jin, Shangjian; ...

    2016-07-20

    In this paper, we report an inelastic neutron scattering study of the spin waves of the one-dimensional antiferromagnetic spin ladder compound RbFe 2Se 3. The results reveal that the products, SJ's, of the spin S and the magnetic exchange interaction J along the antiferromagnetic (leg) direction and the ferromagnetic (rung) direction are comparable with those for the stripe ordered phase of the parent compounds of the iron-based superconductors. Also, the universality of the SJ's implies nearly universal spin wave dynamics and the irrelevance of the fermiology for the existence of the stripe antiferromagnetic order among various Fe-based materials.

  19. Designing Kitaev Spin Liquids in Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Yamada, Masahiko G.; Fujita, Hiroyuki; Oshikawa, Masaki

    2017-08-01

    Kitaev's honeycomb lattice spin model is a remarkable exactly solvable model, which has a particular type of spin liquid (Kitaev spin liquid) as the ground state. Although its possible realization in iridates and α -RuCl3 has been vigorously discussed recently, these materials have substantial non-Kitaev direct exchange interactions and do not have a spin liquid ground state. We propose metal-organic frameworks (MOFs) with Ru3 + (or Os3 + ), forming the honeycomb lattice as promising candidates for a more ideal realization of Kitaev-type spin models, where the direct exchange interaction is strongly suppressed. The great flexibility of MOFs allows generalization to other three-dimensional lattices for the potential realization of a variety of spin liquids, such as a Weyl spin liquid.

  20. Spin nematics next to spin singlets

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  1. High-Nuclearity Magnetic Clusters: Generalized Spin Hamiltonian and Its Use for the Calculation of the Energy Levels, Bulk Magnetic Properties, and Inelastic Neutron Scattering Spectra.

    PubMed

    Borrás-Almenar, J. J.; Clemente-Juan, J. M.; Coronado, E.; Tsukerblat, B. S.

    1999-12-27

    A general solution of the exchange problem in the high-nuclearity spin clusters (HNSC) containing arbitrary number of exchange-coupled centers and topology is developed. All constituent magnetic centers are supposed to possess well-isolated orbitally non-degenerate ground states so that the isotropic Heisenberg-Dirac-Van Vleck (HDVV) term is the leading part of the exchange spin Hamiltonian. Along with the HDVV term, we consider higher-order isotropic exchange terms (biquadratic exchange), as well as the anisotropic terms (anisotropic and antisymmetric exchange interactions and local single-ion anisotropies). All these terms are expressed as irreducible tensor operators (ITO). This allows us to take full advantage of the spin symmetry of the system. At the same time, we have also benefitted by taking into account the point group symmetry of the cluster, which allows us to work with symmetrized spin functions. This results in an additional reduction of the matrices to diagonalize. The approach developed here is accompanied by an efficient computational procedure that allows us to calculate the bulk magnetic properties (magnetic susceptibility, magnetization, and magnetic specific heat) as well as the spectroscopic properties of HNSC. Special attention is paid to calculate the magnetic excitations observed by inelastic neutron scattering (INS), their intensities, and their Q and temperature dependencies. This spectroscopic technique provides direct access to the energies and wave functions of the different spin states of the cluster; thus, it can be applied to spin clusters in order to obtain deep and detailed information on the nature of the magnetic exchange phenomenon. The general expression for the INS cross-section of spin clusters interacting by all kinds of exchange interactions, including also the single-ion zero-field splitting term, is derived for the first time. A closed-form expression is also derived for the particular case in which only the isotropic exchange interactions are involved. Finally this approach has been used to model the magnetic properties as well as the INS spectra of the polyoxometalate anion [Ni(9)(OH)(3)(H(2)O)(6)(HPO(4))(2)(PW(9)O(34))(3)](16)(-), which contains a central magnetic cluster formed by nine exchange-coupled Ni(II) ions surrounded by diamagnetic phosphotungstate ligands (PW(9)O(34))(9)(-).

  2. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    DOE PAGES

    Ma, X.; Fang, F.; Li, Q.; ...

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recoverymore » time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.« less

  3. 1/Nc expansion and the spin-flavor structure of the quark interaction in the constituent quark model

    NASA Astrophysics Data System (ADS)

    Pirjol, Dan; Schat, Carlos

    2010-12-01

    We study the hierarchy of the coefficients in the 1/Nc expansion for the negative parity L=1 excited baryons from the perspective of the constituent quark model. This is related to the problem of determining the spin-flavor structure of the quark interaction. The most general two-body scalar interaction between quarks contains the spin-flavor structures t1at2a,s→1·s→2 and s→1·s→2t1at2a. We show that in the limit of a zero range interaction all these structures are matched onto the same hadronic mass operator Sc2, which gives a possible explanation for the dominance of this operator in the 1/Nc expansion for the L=1 states and implies that in this limit it is impossible to distinguish between these different spin-flavor structures. Modeling a finite range interaction through the exchange of a vector and pseudoscalar meson, we propose a test for the spin-flavor dependence of the quark forces. For the scalar part of the quark interaction, we find that both pion exchange and gluon exchange are compatible with the data.

  4. Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Shimahara, Hiroshi

    2018-04-01

    We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.

  5. Non-equilibrium magnetic interactions in strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Secchi, A.; Brener, S.; Lichtenstein, A. I.; Katsnelson, M. I.

    2013-06-01

    We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii-Moriya coupling, but is not due to spin-orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well.

  6. Magnetic properties and energy-mapping analysis.

    PubMed

    Xiang, Hongjun; Lee, Changhoon; Koo, Hyun-Joo; Gong, Xingao; Whangbo, Myung-Hwan

    2013-01-28

    The magnetic energy levels of a given magnetic solid are closely packed in energy because the interactions between magnetic ions are weak. Thus, in describing its magnetic properties, one needs to generate its magnetic energy spectrum by employing an appropriate spin Hamiltonian. In this review article we discuss how to determine and specify a necessary spin Hamiltonian in terms of first principles electronic structure calculations on the basis of energy-mapping analysis and briefly survey important concepts and phenomena that one encounters in reading the current literature on magnetic solids. Our discussion is given on a qualitative level from the perspective of magnetic energy levels and electronic structures. The spin Hamiltonian appropriate for a magnetic system should be based on its spin lattice, i.e., the repeat pattern of its strong magnetic bonds (strong spin exchange paths), which requires one to evaluate its Heisenberg spin exchanges on the basis of energy-mapping analysis. Other weaker energy terms such as Dzyaloshinskii-Moriya (DM) spin exchange and magnetocrystalline anisotropy energies, which a spin Hamiltonian must include in certain cases, can also be evaluated by performing energy-mapping analysis. We show that the spin orientation of a transition-metal magnetic ion can be easily explained by considering its split d-block levels as unperturbed states with the spin-orbit coupling (SOC) as perturbation, that the DM exchange between adjacent spin sites can become comparable in strength to the Heisenberg spin exchange when the two spin sites are not chemically equivalent, and that the DM interaction between rare-earth and transition-metal cations is governed largely by the magnetic orbitals of the rare-earth cation.

  7. Memory effect versus exchange bias for maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadeem, K.; Krenn, H.; Szabó, D. V.

    2015-11-01

    We studied the temperature dependence of memory and exchange bias effects and their dependence on each other in maghemite (γ-Fe2O3) nanoparticles by using magnetization studies. Memory effect in zero field cooled process in nanoparticles is a fingerprint of spin-glass behavior which can be due to i) surface disordered spins (surface spin-glass) and/or ii) randomly frozen and interacting nanoparticles core spins (super spin-glass). Temperature region (25-70 K) for measurements has been chosen just below the average blocking temperature (TB=75 K) of the nanoparticles. Memory effect (ME) shows a non-monotonous behavior with temperature. It shows a decreasing trend with decreasing temperature and nearly vanishes below 30 K. However it also decreased again near the blocking temperature of the nanoparticles e.g., 70 K. Exchange bias (EB) in these nanoparticles arises due to core/shell interface interactions. The EB increases sharply below 30 K due to increase in core/shell interactions, while ME starts vanishing below 30 K. We conclude that the core/shell interface interactions or EB have not enhanced the ME but may reduce it in these nanoparticles.

  8. Detection of multipartite entanglement in spin rings by use of exchange energy

    NASA Astrophysics Data System (ADS)

    Siloi, I.; Troiani, F.

    2014-10-01

    We investigate multipartite entanglement in rings of arbitrary spins with antiferromagnetic interactions between nearest neighbors. In particular, we show that the nondegenerate ground state of rings formed by an even number (N ) of spins is N -partite entangled, and exchange energy can thus be used as a multipartite-entanglement witness. We develop a general approach to compute the energy minima corresponding to biseparable states, and provide numerical results for a representative set of systems. Despite its global character, exchange energy also allows a spin-selective characterization of entanglement. In particular, in the presence of a magnetic defect, one can derive separability criteria for each individual spin, and use exchange energy for detecting entanglement between this and all the other spins.

  9. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    NASA Astrophysics Data System (ADS)

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-04-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.

  10. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    NASA Astrophysics Data System (ADS)

    Taillefumier, Mathieu; Benton, Owen; Yan, Han; Jaubert, L. D. C.; Shannon, Nic

    2017-10-01

    Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2 Ti2 O7 and Dy2 Ti2 O7 exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related "quantum spin-ice" materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  11. One-electron versus electron-electron interaction contributions to the spin-spin coupling mechanism in nuclear magnetic resonance spectroscopy: Analysis of basic electronic effects

    NASA Astrophysics Data System (ADS)

    Gräfenstein, Jürgen; Cremer, Dieter

    2004-12-01

    For the first time, the nuclear magnetic resonance (NMR) spin-spin coupling mechanism is decomposed into one-electron and electron-electron interaction contributions to demonstrate that spin-information transport between different orbitals is not exclusively an electron-exchange phenomenon. This is done using coupled perturbed density-functional theory in conjunction with the recently developed J-OC-PSP [=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization)] method. One-orbital contributions comprise Ramsey response and self-exchange effects and the two-orbital contributions describe first-order delocalization and steric exchange. The two-orbital effects can be characterized as external orbital, echo, and spin transport contributions. A relationship of these electronic effects to zeroth-order orbital theory is demonstrated and their sign and magnitude predicted using simple models and graphical representations of first order orbitals. In the case of methane the two NMR spin-spin coupling constants result from totally different Fermi contact coupling mechanisms. 1J(C,H) is the result of the Ramsey response and the self-exchange of the bond orbital diminished by external first-order delocalization external one-orbital effects whereas 2J(H,H) spin-spin coupling is almost exclusively mitigated by a two-orbital steric exchange effect. From this analysis, a series of prediction can be made how geometrical deformations, electron lone pairs, and substituent effects lead to a change in the values of 1J(C,H) and 2J(H,H), respectively, for hydrocarbons.

  12. Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α -RuCl3

    NASA Astrophysics Data System (ADS)

    Ran, Kejing; Wang, Jinghui; Wang, Wei; Dong, Zhao-Yang; Ren, Xiao; Bao, Song; Li, Shichao; Ma, Zhen; Gan, Yuan; Zhang, Youtian; Park, J. T.; Deng, Guochu; Danilkin, S.; Yu, Shun-Li; Li, Jian-Xin; Wen, Jinsheng

    2017-03-01

    Kitaev interactions underlying a quantum spin liquid have long been sought, but experimental data from which their strengths can be determined directly, are still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality single crystals of α -RuCl3 , we observe spin-wave spectra with a gap of ˜2 meV around the M point of the two-dimensional Brillouin zone. We derive an effective-spin model in the strong-coupling limit based on energy bands obtained from first-principles calculations, and find that the anisotropic Kitaev interaction K term and the isotropic antiferromagnetic off-diagonal exchange interaction Γ term are significantly larger than the Heisenberg exchange coupling J term. Our experimental data can be well fit using an effective-spin model with K =-6.8 meV and Γ =9.5 meV . These results demonstrate explicitly that Kitaev physics is realized in real materials.

  13. Manipulating molecule-substrate exchange interactions via graphene

    NASA Astrophysics Data System (ADS)

    Bhandary, Sumanta; Eriksson, Olle; Sanyal, Biplab

    2013-03-01

    Organometallic molecules with a 3d metal center carrying a spin offers many interesting properties, e.g., existence of multiple spin states. A recent interest has been in understanding the magnetic exchange interaction between these organometallic molecules and magnetic substrates both from experiments and theory. In this work, we will show by calculations based on density functional theory how the exchange interaction is mediated via graphene in a geometry containing iron porphyrin(FeP)/graphene/Ni(111). The exchange interaction varies from a ferromagnetic to an antiferromagnetic one depending on the lattice site and type of defect in the graphene lattice along with the switching of spin state of Fe in FeP between S=1 and S=2, which should be detectable by x-ray magnetic circular dichroism experiments. This scenario of complex magnetic couplings with large magnetic moments may offer a unique spintronic logic device. We acknowledge financial support from the Swedish Research Council, KAW foundation and the ERC(project 247062 - ASD).

  14. Exchange bias for core/shell magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lemos, C. G. O.; Figueiredo, W.; Santos, M.

    2015-09-01

    We study the properties of a finite magnetic system to model a magnetic nanoparticle, which is formed by a reduced number of magnetic dipole moments due to the spin of the atoms. The nanoparticle is of the type core/shell where the shell is formed by spins interacting through an antiferromagnetic exchange coupling while for the spins belonging to the core the coupling is ferromagnetic. The interaction between the spins at the interface core/shell can be either ferro or antiferromagnetic. To describe the states of the spins we used the XY model in which the spins are considered as continuous variables, free to point in any direction of the xy plane. We also consider a magnetocrystalline anisotropy, exchange anisotropy and the Zeeman effect. Our model is studied in a lattice with square symmetry, using the Monte Carlo method along with the Metropolis prescription. The results show that in the absence of an external magnetic field and exchange anisotropy, the system continuously goes to a disordered state from an ordered state at a well defined temperature. In the presence of external magnetic fields the system displays the exchange bias phenomenon, that is, the displacement of the hysteresis loops, due to the introduction of the exchange anisotropy term. However, this displacement depends on the core and shell sizes, as well as on the magnitude of the coupling between the shell and the core moments.

  15. Dynamics of a Cr spin in a semiconductor quantum dot: Hole-Cr flip-flops and spin-phonon coupling

    NASA Astrophysics Data System (ADS)

    Lafuente-Sampietro, A.; Utsumi, H.; Sunaga, M.; Makita, K.; Boukari, H.; Kuroda, S.; Besombes, L.

    2018-04-01

    A detailed analysis of the photoluminescence (PL) intensity distribution in singly Cr-doped CdTe/ZnTe quantum dots (QDs) is performed. First of all, we demonstrate that hole-Cr flip-flops induced by an interplay of the hole-Cr exchange interaction and the coupling with acoustic phonons are the main source of spin relaxation within the exciton-Cr complex. This spin flip mechanism appears in the excitation power dependence of the PL of the exciton as well as in the intensity distribution of the resonant PL. The resonant optical pumping of the Cr spin which was recently demonstrated can also be explained by these hole-Cr flip-flops. Despite the fast exciton-Cr spin dynamics, an analysis of the PL intensity under magnetic field shows that the hole-Cr exchange interaction in CdTe/ZnTe QDs is antiferromagnetic. In addition to the Cr spin dynamics induced by the interaction with carriers' spin, we finally demonstrate using time resolved optical pumping measurements that a Cr spin interacts with nonequilibrium acoustic phonons generated during the optical excitation inside or near the QD.

  16. Spin-waves in thin films with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Diep, H. T.; El Hog, Sahbi; Puszkarski, Henryk

    2018-05-01

    Using the Green's function method, we calculate the spin-wave (SW) spectrum in a thin film with quantum Heisenberg spins interacting with each other via an exchange interaction J and a Dzyaloshinskii-Moriya interaction of magnitude D. Due to the competition between J and D, the ground state is non collinear. We show that for large D, the first mode in the SW spectrum is proportional to the in plane wave-vector k at the limit k tending to zero. For small D, it is proportional to k2. We show that the surface modes may occur depending on the surface exchange interaction. We calculate the layer magnetizations at temperature T and the transition temperature as a function of the film thickness.

  17. First-principles study of the giant magnetic anisotropy energy in bulk Na4IrO4

    NASA Astrophysics Data System (ADS)

    Wang, Di; Tang, Feng; Du, Yongping; Wan, Xiangang

    2017-11-01

    In 5 d transition-metal oxides, novel properties arise from the interplay of electron correlations and spin-orbit interactions. Na4IrO4 , where the 5 d transition-metal Ir atom occupies the center of the square-planar coordination environment, has attracted research interest. Based on density functional theory, we present a comprehensive investigation of electronic and magnetic properties of Na4IrO4 . We propose the magnetic ground-state configuration, and find that the magnetic easy axis is perpendicular to the IrO4 plane. The magnetic anisotropy energy (MAE) of Na4IrO4 is found to be giant. We estimate the magnetic parameters in the generalized symmetry-allowed spin model, and find that the next-nearest-neighbor exchange interaction J2 is much larger than other intersite exchange interactions and results in the magnetic ground-state configuration. The numerical results reveal that the anisotropy of interatomic spin-exchange interaction is quite small and the huge MAE comes from the single-ion anisotropy. This compound has a large spin gap but very narrow spin-wave dispersion, due to the large single-ion anisotropy and quite small intersite exchange couplings. We clarify that these remarkable magnetic features are originated from its highly isolated and low-symmetry IrO4 moiety. We also explore the possibility to further enhance the MAE.

  18. High-field magnetization and magnetic phase diagram of α -Cu2V2O7

    NASA Astrophysics Data System (ADS)

    Gitgeatpong, G.; Suewattana, M.; Zhang, Shiwei; Miyake, A.; Tokunaga, M.; Chanlert, P.; Kurita, N.; Tanaka, H.; Sato, T. J.; Zhao, Y.; Matan, K.

    2017-06-01

    High-field magnetization of the spin-1 /2 antiferromagnet α -Cu2V2O7 was measured in pulsed magnetic fields of up to 56 T in order to study its magnetic phase diagram. When the field was applied along the easy axis (the a axis), two distinct transitions were observed at Hc 1=6.5 T and Hc 2=18.0 T. The former is a spin-flop transition typical for a collinear antiferromagnet and the latter is believed to be a spin-flip transition of canted moments. The canted moments, which are induced by the Dzyaloshinskii-Moriya interactions, anti-align for Hc 1

  19. The tight binding model study of the role of anisotropic AFM spin ordering in the charge ordered CMR manganites

    NASA Astrophysics Data System (ADS)

    Kar, J. K.; Panda, Saswati; Rout, G. C.

    2017-05-01

    We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.

  20. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    PubMed Central

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-01-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties. PMID:27033418

  1. Direct measurement of the long-range p -d exchange coupling in a ferromagnet-semiconductor Co/CdMgTe/CdTe quantum well hybrid structure

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Salewski, M.; Kalitukha, I. V.; Poltavtsev, S. V.; Debus, J.; Kudlacik, D.; Sapega, V. F.; Kopteva, N. E.; Kirstein, E.; Zhukov, E. A.; Yakovlev, D. R.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Korenev, V. L.; Kusrayev, Yu. G.; Bayer, M.

    2017-11-01

    The exchange interaction between magnetic ions and charge carriers in semiconductors is considered to be a prime tool for spin control. Here, we solve a long-standing problem by uniquely determining the magnitude of the long-range p -d exchange interaction in a ferromagnet-semiconductor (FM-SC) hybrid structure where a 10-nm-thick CdTe quantum well is separated from the FM Co layer by a CdMgTe barrier with a thickness on the order of 10 nm. The exchange interaction is manifested by the spin splitting of acceptor bound holes in the effective magnetic field induced by the FM. The exchange splitting is directly evaluated using spin-flip Raman scattering by analyzing the dependence of the Stokes shift ΔS on the external magnetic field B . We show that in a strong magnetic field, ΔS is a linear function of B with an offset of Δp d=50 -100 μ eV at zero field from the FM induced effective exchange field. On the other hand, the s -d exchange interaction between conduction band electrons and FM, as well as the p -d contribution for free valence band holes, are negligible. The results are well described by the model of indirect exchange interaction between acceptor bound holes in the CdTe quantum well and the FM layer mediated by elliptically polarized phonons in the hybrid structure.

  2. Bipolar magnetic semiconductor in silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Farghadan, Rouhollah

    2017-08-01

    A theoretical study was presented on generation of spin polarization in silicene nanoribbons using the single-band tight-binding approximation and the non-equilibrium Green's function formalism. We focused on the effect of electric and exchange magnetic fields on the spin-filter capabilities of zigzag-edge silicene nanoribbons in the presence of the intrinsic spin-orbit interaction. The results show that a robust bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps can be obtained when exchange magnetic and electric field strengths are both larger than the intrinsic spin-orbit interaction. Therefore, zigzag silicene nanoribbons could act as bipolar and perfect spin filter devices with a large spin-polarized current and a reversible spin polarization in the vicinity of the Fermi energy. We also investigated the effect of edge roughness and found that the bipolar magnetic semiconductor features are robust against edge disorder in silicene nanoribbon junctions. These results may be useful in multifunctional spin devices based on silicene nanoribbons.

  3. Spin Qubits in Germanium Structures with Phononic Gap

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Vasko, F. T.; Hafiychuk, V. V.; Dykman, M. I.; Petukhov, A. G.

    2014-01-01

    We propose qubits based on shallow donor electron spins in germanium structures with phononic gap. We consider a phononic crystal formed by periodic holes in Ge plate or a rigid cover / Ge layer / rigid substrate structure with gaps approximately a few GHz. The spin relaxation is suppressed dramatically, if the Zeeman frequency omegaZ is in the phononic gap, but an effective coupling between the spins of remote donors via exchange of virtual phonons remains essential. If omegaZ approaches to a gap edge in these structures, a long-range (limited by detuning of omegaZ) resonant exchange interaction takes place. We estimate that ratio of the exchange integral to the longitudinal relaxation rate exceeds 10(exp 5) and lateral scale of resonant exchange 0.1 mm. The exchange contribution can be verified under microwave pumping through oscillations of spin echo signal or through the differential absorption measurements. Efficient manipulation of spins due to the Rabi oscillations opens a new way for quantum information applications.

  4. Disparate ultrafast dynamics of itinerant and localized magnetic moments in gadolinium metal

    PubMed Central

    Frietsch, B.; Bowlan, J.; Carley, R.; Teichmann, M.; Wienholdt, S.; Hinzke, D.; Nowak, U.; Carva, K.; Oppeneer, P. M.; Weinelt, M.

    2015-01-01

    The Heisenberg–Dirac intra-atomic exchange coupling is responsible for the formation of the atomic spin moment and thus the strongest interaction in magnetism. Therefore, it is generally assumed that intra-atomic exchange leads to a quasi-instantaneous aligning process in the magnetic moment dynamics of spins in separate, on-site atomic orbitals. Following ultrashort optical excitation of gadolinium metal, we concurrently record in photoemission the 4f magnetic linear dichroism and 5d exchange splitting. Their dynamics differ by one order of magnitude, with decay constants of 14 versus 0.8 ps, respectively. Spin dynamics simulations based on an orbital-resolved Heisenberg Hamiltonian combined with first-principles calculations explain the particular dynamics of 5d and 4f spin moments well, and corroborate that the 5d exchange splitting traces closely the 5d spin-moment dynamics. Thus gadolinium shows disparate dynamics of the localized 4f and the itinerant 5d spin moments, demonstrating a breakdown of their intra-atomic exchange alignment on a picosecond timescale. PMID:26355196

  5. Microscopic theory of exchange and dipole-exchange spin waves in magnetic thin films

    NASA Astrophysics Data System (ADS)

    Pereira, Joao Milton, Jr.

    The aim of this work is to develop a microscopic theory of bulk and surface spin wave modes (or magnons) in thin films of some specific ordered magnetic materials, particularly antiferromagnets. Both exchange and magnetic dipole-dipole interactions are taken into account, depending on the material and the wavevector regime. First we study the dispersion relations of spin waves for situations in which the dominant interaction is the short-range exchange coupling between the magnetic sites. We begin by investigating ferromagnetic films with a cubic body centered (b.c.c.) crystal structure a surfaces corresponding to (111) crystal planes. The spin wave frequencies are calculated by a method that generalizes previous techniques used for simpler systems, which allows us to find analytical solutions. The results are then compared with recent experimental data for Ni films grown epitaxially on a W substrate. Then we investigate spin waves in antiferromagnetic systems. Calculations are made for the dispersion relations of exchange-dominated spin waves in antiferromagnetic thin films with simple cubic (s.c.) crystal structures, for three different surface orientations, namely (001), (101) and (111). The results are obtained by using a method similar to the one developed for the ferromagnetic film in the previous chapter. We calculate the effect of finite film thickness in coupling the spin wave modes localized near the two surfaces, leading to a splitting of several of the mode branches that occur in the semi-infinite limit. Another aspect that we consider is the influence, for the (101) orientation, of the direction of propagation on the spin wave frequencies, as well as the effect of non-equivalent sublattices in the (111) case. Next, we investigate the spin waves in antiferromagnetic films made of materials in which the long-range dipole-dipole interaction between the magnetic sites is included, along with the exchange coupling. In this case, we employ a Hamiltonian formalism that uses a transformation of the spin operators to creation and annihilation operators. Initially, we calculate the linear dipole-exchange spin wave spectrum, by considering only the bilinear terms in the transformed Hamiltonian. The theory is applied to antiferromagnetic films with s.c. and b.c.c. structures. The higher-order terms are later included by means of a diagrammatic perturbation technique, which allows us to obtain expressions for the damping and energy shift of the spin wave modes in b.c.c. antiferromagnetic films. Numerical results are then shown for ultrathin films of the antiferromagnet MnF2.

  6. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Subrata; Vijay, Amrendra, E-mail: avijay@iitm.ac.in

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, whichmore » is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.« less

  7. Extended magnetic exchange interactions in the high-temperature ferromagnet MnBi

    DOE PAGES

    Christianson, Andrew D.; Hahn, Steven E.; Fishman, Randy Scott; ...

    2016-05-09

    Here, the high-temperature ferromagnet MnBi continues to receive attention as a candidate to replace rare-earth-containing permanent magnets in applications above room temperature. This is due to a high Curie temperature, large magnetic moments, and a coercivity that increases with temperature. The synthesis of MnBi also allows for crystals that are free of interstitial Mn, enabling more direct access to the key interactions underlying the physical properties of binary Mn-based ferromagnets. In this work, we use inelastic neutron scattering to measure the spin waves of MnBi in order to characterize the magnetic exchange at low temperature. Consistent with the spin reorientationmore » that occurs below 140~K, we do not observe a spin gap in this system above our experimental resolution. A Heisenberg model was fit to the spin wave data in order to characterize the long-range nature of the exchange. It was found that interactions up to sixth nearest neighbor are required to fully parameterize the spin waves. Surprisingly, the nearest-neighbor term is antiferromagnetic, and the realization of a ferromagnetic ground state relies on the more numerous ferromagnetic terms beyond nearest neighbor, suggesting that the ferromagnetic ground state arises as a consequence of the long-ranged interactions in the system.« less

  8. Tuning exchange interactions in organometallic semiconductors

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Manning, Lane W.; Hua, Kim-Ngan; Headrick, Randall L.; Cherian, Judy G.; Bishop, Michael M.; McGill, Stephen A.; Furis, Madalina I.

    2015-09-01

    Organic semiconductors are emerging as a leading area of research as they are expected to overcome limitations of inorganic semiconductor devices for certain applications where low cost manufacturing, device transparency in the visible range or mechanical flexibility are more important than fast switching times. Solution processing methods produce thin films with millimeter sized crystalline grains at very low cost manufacturing prices, ideally suited for optical spectroscopy investigations of long range many-body effects in organic systems. To this end, we synthesized an entire family of organosoluble 3-d transition metal Pc's and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of metal-free (H2Pc) molecule and organometallic phthalocyanines (MPc's). Our previous studies on the parent MPc crystalline thin films identified different electronic states mediating exchange interactions in these materials. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins enabled the further tuning of these interactions by mixing CoPc and H2Pc in different ratios ranging from 1:1 to 1000:1 H2Pc:MPc. The magnitude of the exchange is also tunable as a function of the average distance between unpaired spins in these materials. Furthermore, high magnetic field (B < 25T) MCD and magneto-photoluminescence show evidence of spin-polarized band-edge excitons in the same materials.

  9. Tuning spin-spin interactions in radical dendrimers.

    PubMed

    Vidal-Gancedo, José; Lloveras, Vega; Liko, Flonja; Pinto, Luiz F; Muñoz-Gómez, Jose L

    2018-05-10

    Two generations of phosphorous dendrimers were synthesized and fully functionalized with TEMPO radicals via acrylamido or imino group linkers to evaluate the impact of the linker substitution on the radical-radical interactions. A drastic change in the way that the radicals interacted among them was observed by EPR and CV studies: while radicals in Gn-imino-TEMPO dendrimers presented a strong spin-spin interaction, in the Gn-acrylamido-TEMPO ones they acted mainly as independent radicals. This shows that these interactions could be tuned by the solely substitution of the radical linker, opening the perspective of controlling and modulating the extension of these interactions depending on each application. The chemical properties of the linker strongly influence the spin-spin exchange between pendant radicals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Optical Control of One and Two Hole Spins in Interacting Quantum Dots

    DTIC Science & Technology

    2011-11-01

    highly anisotropic , with an approximately Ising-like (ASzIz) form 15. This is predicted to greatly reduce dephasing in a transverse magnetic field16, even...spin Rabi oscillations) confirm that this pulse sequence can optically rotate the hole spin to any point on the Bloch sphere and thus satisfy the... anisotropic contribution of 10% to the isotropic Heisenberg exchange. This anisotropic exchange is another manifestation of the stronger spin–orbit char

  11. A new DFT functional based on spin-states and SN2 barriers

    NASA Astrophysics Data System (ADS)

    Swart, M.; Solà, M.; Bickelhaupt, F. M.

    2012-12-01

    We recently reported a study into what causes the dramatic differences between OPBE and PBE for reaction barriers, spin-state energies, hydrogen-bonding and π-π stacking energies.1 It was achieved by smoothly switching from OPBE to PBE at a predefined point P of the reduced density gradient s. By letting the point P run as function of the reduced density gradient s, with values from s=0.1 to s=10, we could determine which part of the exchange functional determines its behavior for the different interactions. Based on the thus obtained results, we created a new exchange functional that showed the good results of OPBE for reaction barriers and spin-state energies, and combined it with the good (H-bonds) and reasonable (π-stacking) results of PBE for weak interactions. In other words, it combined the best of OPBE with the best of PBE. Encouraged by these good results, we have further improved the new exchange functional and fine-tuned its parameters.2 Similar to the switched functional from ref. 1, our new SSB functional2 works well for SN2 barriers (see e.g. ref. 3), spin states and H-bonding interactions. Moreover, by including Grimme's dispersion corrections4,5 (to give our final SSB-D functional) it also works well for π-π stacking interactions.2 In summary, we have constructed a new GGA exchange functional that when combined with the sPBE correlation functional6 gives the correct spin ground-state of iron complexes, and small deviations for SN2 barriers (2.7 kcalṡmol-1), geometries (0.005 Å), Hbond distances (0.012 Å), weak interactions (S22 set, 0.5 kcalṡmol-1), and transition-metal ligand distances (0.008 Å).

  12. Magnonic waveguide based on exchange-spring magnetic structure

    NASA Astrophysics Data System (ADS)

    Wang, Lixiang; Gao, Leisen; Jin, Lichuan; Liao, Yulong; Wen, Tianlong; Tang, Xiaoli; Zhang, Huaiwu; Zhong, Zhiyong

    2018-05-01

    A soft/hard exchange-spring coupled bilayer magnetic structure is proposed to obtain a narrow channel for spin-wave propagation. Micromagnetic simulations show that broad-band Damon-Eshbach geometry spin waves are strongly constrained within the channel and propagate effectively with a high group velocity. The beam width of the bound spin waves is almost independent from the frequency and is smaller than 24nm. Two side spin beams appearing at the low-frequency excitation are demonstrated to be coupled with the channel spins by dipole-dipole interaction. In contrast to a domain wall, the channel formed by exchange-spring coupling is easier to be realized in experimental scenarios and holds stronger immunity to surroundings. This work is expected to open new possibilities for energy-efficient spin-wave guiding as well as to help shape the field of beam magnonics.

  13. Nonlocal spin-confinement of electrons in graphene with proximity exchange interaction

    NASA Astrophysics Data System (ADS)

    Ang, Yee Sin; Liang, Shi-Jun; Ooi, Kelvin J. A.; Zhang, Chao; Ma, Zhongshui; Ang, Lay Kee

    In graphene-magnetic-insulator hybrid structure such as graphene-Europium-oxide (EuO-G), proximity induced exchange interaction opens up a spin-dependent bandgap and spin splitting in the Dirac band. We study the bound state formation in a hetero-interface composed of EuO-G. We theoretically predict a remarkable nonlocal spin-confinement effect in EuO-G and show that spin-polarized quasi-1D electron interface state can be generated in a magnetic-field-free channel. Quasiparticle transport mediated by the interface state can be efficiently controlled by the channel width and electrostatic gating. Our results suggest a pathway to further reduce the dimensionality of graphene quasiparticles from 2D to 1D, thus offering an exciting graphene-based platform for the search of exotic 1D physics and spintronic applications.

  14. Pressure-tuning of bond-directional exchange interactions and magnetic frustration in hyperhoneycomb iridate β-Li 2IrO 3

    DOE PAGES

    Veiga, L. S. I.; Etter, M.; Glazyrin, K.; ...

    2017-10-10

    Here, we explore the response of Ir 5d orbitals to pressure in β-Li 2IrO 3, a hyperhoneycomb iridate in proximity to a Kitaev quantum spin-liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit interaction in 5d orbitals, pushes β-Li 2IrO 3 further away from the pure J eff = 1/2 limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows amore » highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to the realization of a QSL state in this hyperhoneycomb iridate at high pressures.« less

  15. Pressure tuning of bond-directional exchange interactions and magnetic frustration in the hyperhoneycomb iridate β -Li2IrO3

    NASA Astrophysics Data System (ADS)

    Veiga, L. S. I.; Etter, M.; Glazyrin, K.; Sun, F.; Escanhoela, C. A.; Fabbris, G.; Mardegan, J. R. L.; Malavi, P. S.; Deng, Y.; Stavropoulos, P. P.; Kee, H.-Y.; Yang, W. G.; van Veenendaal, M.; Schilling, J. S.; Takayama, T.; Takagi, H.; Haskel, D.

    2017-10-01

    We explore the response of Ir 5 d orbitals to pressure in β -Li2IrO3 , a hyperhoneycomb iridate in proximity to a Kitaev quantum spin-liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit interaction in 5 d orbitals, pushes β -Li2IrO3 further away from the pure Jeff=1 /2 limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows a highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to the realization of a QSL state in this hyperhoneycomb iridate at high pressures.

  16. Chiral Spin Order in Kondo-Heisenberg Systems

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.; Yevtushenko, O. M.

    2017-12-01

    We demonstrate that low dimensional Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel-Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates, the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our finding paves the way towards pioneering experimental realizations of the chiral spin liquid in systems with spontaneously broken time-reversal symmetry.

  17. One-dimensional magnetic fluctuations in the spin-2 triangular lattice alpha-NaMnO2.

    PubMed

    Stock, C; Chapon, L C; Adamopoulos, O; Lappas, A; Giot, M; Taylor, J W; Green, M A; Brown, C M; Radaelli, P G

    2009-08-14

    The S=2 anisotropic triangular lattice alpha-NaMnO2 is studied by neutron inelastic scattering. Antiferromagnetic order occurs at T< or =45 K with opening of a spin gap. The spectral weight of the magnetic dynamics above the gap (Delta approximately equal to 7.5 meV) has been analyzed by the single-mode approximation. Excellent agreement with the experiment is achieved when a dominant exchange interaction (|J|/k(B) approximately 73 K), along the monoclinic b axis and a sizable easy-axis magnetic anisotropy (|D|/k(B) approximately 3 K) are considered. Despite earlier suggestions for two-dimensional spin interactions, the dynamics illustrate strongly coupled antiferromagnetic S=2 chains and cancellation of the interchain exchange due to the lattice topology. alpha-NaMnO2 therefore represents a model system where the geometric frustration is resolved through the lowering of the dimensionality of the spin interactions.

  18. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.

    PubMed

    Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A

    2001-05-28

    Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.

  19. The optimized effective potential and the self-interaction correction in density functional theory: Application to molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.

    2000-05-08

    The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation,more » the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work. (c) 2000 American Institute of Physics.« less

  20. Barrier versus tilt exchange gate operations in spin-based quantum computing

    NASA Astrophysics Data System (ADS)

    Shim, Yun-Pil; Tahan, Charles

    2018-04-01

    We present a theory for understanding the exchange interaction between electron spins in neighboring quantum dots, either by changing the detuning of the two quantum dots or independently tuning the tunneling barrier between quantum dots. The Hubbard model and a more realistic confining-potential model are used to investigate how the tilting and barrier control affect the effective exchange coupling and thus the gate fidelity in both the detuning and symmetric regimes. We show that the exchange coupling is less sensitive to the charge noise through tunnel barrier control (while allowing for exchange coupling operations on a sweet spot where the exchange interaction has zero derivative with respect to the detuning). Both GaAs and Si quantum dots are considered, and we compare our results with experimental data showing qualitative agreements. Our results answer the open question of why barrier gates are preferable to tilt gates for exchange-based gate operations.

  1. Localized Magnetic Moments with Tunable Spin Exchange in a Gas of Ultracold Fermions

    NASA Astrophysics Data System (ADS)

    Riegger, L.; Darkwah Oppong, N.; Höfer, M.; Fernandes, D. R.; Bloch, I.; Fölling, S.

    2018-04-01

    We report on the experimental realization of a state-dependent lattice for a two-orbital fermionic quantum gas with strong interorbital spin exchange. In our state-dependent lattice, the ground and metastable excited electronic states of 173Yb take the roles of itinerant and localized magnetic moments, respectively. Repulsive on-site interactions in conjunction with the tunnel mobility lead to spin exchange between mobile and localized particles, modeling the coupling term in the well-known Kondo Hamiltonian. In addition, we find that this exchange process can be tuned resonantly by varying the on-site confinement. We attribute this to a resonant coupling to center-of-mass excited bound states of one interorbital scattering channel.

  2. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  3. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  4. Magnetic phase diagram of a frustrated spin ladder

    NASA Astrophysics Data System (ADS)

    Sugimoto, Takanori; Mori, Michiyasu; Tohyama, Takami; Maekawa, Sadamichi

    2018-04-01

    Frustrated spin ladders show magnetization plateaux depending on the rung-exchange interaction and frustration defined by the ratio of first and second neighbor exchange interactions in each chain. This paper reports on its magnetic phase diagram. Using the variational matrix-product state method, we accurately determine phase boundaries. Several kinds of magnetization plateaux are induced by the frustration and the strong correlation among quasiparticles on a lattice. The appropriate description of quasiparticles and their relevant interactions are changed by a magnetic field. We find that the frustration differentiates the triplet quasiparticle from the singlet one in kinetic energy.

  5. Giant spin torque in hybrids with anisotropic p-d exchange interaction

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2014-03-01

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here, I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the domain wall motion by current density 104 A/cm2 in ferromagnet/semiconductor hybrids. The experimental observation of the anisotropic torque will facilitate the integration of ferromagnetism into semiconductor electronics.

  6. Electronic and magnetic properties of magnetoelectric compound Ca2CoSi2O7: An ab initio study

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayita

    2018-05-01

    The detailed first principle density functional theory calculations are carried out to investigate the electronic and magnetic properties of magnetoelectric compound Ca2CoSi2O7. The magnetic properties of this system are analyzed by calculating various hopping integrals as well as exchange interactions and deriving the relevant spin Hamiltonian. The dominant exchange path is visualized with Wannier functions plotting. Only intra planer nearest neighbor exchange interaction is strong in this system. The magnetocrystalline anisotropy is calculated for this system, and the results of the calculation reveal that the spin quantization axis lies in the ab plane.

  7. Spin-exchange-induced spin-orbit coupling in a superfluid mixture

    NASA Astrophysics Data System (ADS)

    Chen, Li; Zhu, Chuanzhou; Zhang, Yunbo; Pu, Han

    2018-03-01

    We investigate the ground-state properties of a dual-species spin-1/2 Bose-Einstein condensate. One of the species is subjected to a pair of Raman laser beams that induces spin-orbit (SO) coupling, whereas the other species is not coupled to the Raman laser. In certain limits, analytical results can be obtained. It is clearly shown that, through the interspecies spin-exchange interaction, the second species also exhibits SO coupling. This mixture system displays a very rich phase diagram, with many of the phases not present in an SO-coupled single-species condensate. Our work provides a way of creating SO coupling in atomic quantum gases, and opens up an avenue of research in SO-coupled superfluid mixtures. From a practical point of view, the spin-exchange-induced SO coupling may overcome the heating issue for certain atomic species when subjected to Raman beams.

  8. Exchange-mediated spin-lattice relaxation of Fe3+ ions in borate glasses.

    PubMed

    Misra, Sushil K; Pilbrow, John R

    2007-03-01

    Spin-lattice relaxation times (T1) of two borate glasses doped with different concentrations of Fe2O3 were measured using the Electron Spin-Echo (ESE) technique at X-band (9.630 GHz) in the temperature range 2-6K. In comparison with a previous investigation of Fe3+-doped silicate glasses, the relaxation rates were comparable and differed by no more than a factor of two. The data presented here extend those previously reported for borate glasses in the 10-250K range but measured using the amplitude-modulation technique. The T1 values were found to depend on temperature (T) as T(n) with n approximately 1 for the 1% and 0.1% Fe2O3-doped glass samples. These results are consistent with spin-lattice relaxation as effected by exchange interaction of a Fe3+ spin exchange-coupled to another Fe3+ spin in an amorphous material.

  9. Studies on entanglement entropy for Hubbard model with hole-doping and external magnetic field [rapid communication

    NASA Astrophysics Data System (ADS)

    Yao, K. L.; Li, Y. C.; Sun, X. Z.; Liu, Q. M.; Qin, Y.; Fu, H. H.; Gao, G. Y.

    2005-10-01

    By using the density matrix renormalization group (DMRG) method for the one-dimensional (1D) Hubbard model, we have studied the von Neumann entropy of a quantum system, which describes the entanglement of the system block and the rest of the chain. It is found that there is a close relation between the entanglement entropy and properties of the system. The hole-doping can alter the charge charge and spin spin interactions, resulting in charge polarization along the chain. By comparing the results before and after the doping, we find that doping favors increase of the von Neumann entropy and thus also favors the exchange of information along the chain. Furthermore, we calculated the spin and entropy distribution in external magnetic filed. It is confirmed that both the charge charge and the spin spin interactions affect the exchange of information along the chain, making the entanglement entropy redistribute.

  10. Energy levels and exchange interactions of spin clusters

    NASA Astrophysics Data System (ADS)

    Belorizky, E.

    1993-02-01

    We first describe a simple method for diagonalizing the isotropic exchange Hamiltonian of a cluster of N spins in the most general case where all the exchange constants are different. The technique, based on the rotation invariance of the system, leads to a considerable reduction of the total matrix. Simple expressions of the magnetization and susceptibility are provided and an example of the determination of the exchange constants of a complex with five Cu^{2+} ions is given. It is also shown that for a large variety of spin configurations occuring in metal complexes, it is possible to diagonalize the dominant isotropic exchange spin hamiltonian in a straightforward way by using recoupling techniques. This allows to solve problems up to a nine spin cluster with spins having different g values. This survey is pursued by the theoretical approach of the magnetic properties of interacting spins on a finite ring with a detailed study of an oligonuclear metal nitroxide complex formed by six Mn^{2+}(S = 5/2) and six free radicals (s = 1/2). The temperature behaviour of the susceptibility is interpreted with a semi-classical model of a cyclic alternate finite chain. Finally we give a procedure for determining the three exchange constants of three spin 1/2 coupled by isotropic exchange constants in the unsolved case where these constants are all dilferent. Nous décrivons d'abord une méthode simple pour diagonaliser l'Hamiltonien d'échange isotrope d'un cluster de N spins dans le cas le plus général où toutes les constantes d'échange sont différentes. La technique, basée sur l'invariance rotationnelle du système, conduit à une réduction considérable de la matrice totale. On donne des expressions simples de l'aimantation et de la susceptibilité et la méthode est appliquée à la détermination des interactions d'échange d'un complexe comprenant cinq ions Cu^{2+}. On montre également que pour une assez grande variété de configurations de spins présentes dans les complexes métalliques, on peut résoudre l'Hamiltonien de spin d'échange isotrope dominant de manière directe par des techniques de recouplage. Ceci permet de traiter des clusters jusqu'à neuf spins, ces derniers pouvant avoir des facteurs g différents. Nous poursuivons cette revue par une étude théorique des propriétés magnétiques de spins en interaction sur un anneau avec une étude détaillée d'un complexe oligonucléaire métal-nitroxyde formé de six ions Mn^{2+}(S = 5/2) et de six radicaux libres (s = 1/2). Le comportement en fonction de la température de la susceptibilité est interprété à l'aide d'un modèle semi-classique de chaine alternée cyclique. Enfin, nous donnons un procédé pour déterminer les trois constantes d'échange d'un système de trois spins 1/2 couplés par échange isotrope dans le cas non résolu où ces trois constantes sont toutes différentes.

  11. Graphene-based half-metal and spin-semiconductor for spintronic applications.

    PubMed

    Qi, Jingshan; Chen, Xiaofang; Hu, Kaige; Feng, Ji

    2016-03-31

    In this letter we propose a strategy to make graphene become a half-metal or spin-semiconductor by combining the magnetic proximity effects and sublattice symmetry breaking in graphone/graphene and graphone/graphene/BN heterostructures. Exchange interactions lift the spin degeneracy and sublattice symmetry breaking opens a band gap in graphene. More interestingly, the gap opening depends on the spin direction and the competition between the sublattice asymmetry and exchange field determines the system is a half-metal or a spin-semiconductor. By first-principles calculations and a low-energy effective model analysis, we elucidate the underlying physical mechanism of spin-dependent gap opening and spin degeneracy splitting. This offers an alternative practical platform for graphene-based spintronics.

  12. Dzyaloshinskii-Moriya interaction in the presence of Rashba and Dresselhaus spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Valizadeh, Mohammad M.; Satpathy, S.

    2018-03-01

    Chiral order in magnetic structures is currently an area of considerable interest and leads to skyrmion structures and domain walls with certain chirality. The chiral structure originates from the Dzyaloshinskii-Moriya interaction caused by broken inversion symmetry and the spin-orbit interaction. In addition to the Rashba or Dresselhaus interactions, there may also exist substantial spin polarization in magnetic thin films. Here, we study the exchange interaction between two localized magnetic moments in the spin-polarized electron gas with both Rashba and Dresselhaus spin-orbit interaction present. Analytical expressions are found in certain limits in addition to what is known in the literature. The stability of the Bloch and Néel domain walls in magnetic thin films is discussed in light of our results.

  13. Chiral Spin Order in Kondo-Heisenberg systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsvelik, A. M.; Yevtushenko, O. M.

    We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less

  14. Chiral Spin Order in Kondo-Heisenberg systems

    DOE PAGES

    Tsvelik, A. M.; Yevtushenko, O. M.

    2017-12-15

    We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less

  15. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.

    PubMed

    Altintas, Ferdi; Müstecaplıoğlu, Özgür E

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  16. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1 /2 coupled to an arbitrary spin

    NASA Astrophysics Data System (ADS)

    Altintas, Ferdi; Müstecaplıoǧlu, Ã.-zgür E.

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1 /2 and the other with an arbitrary spin (spin s ), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  17. Effect of ferromagnetic exchange field on band gap and spin polarisation of graphene on a TMD substrate

    NASA Astrophysics Data System (ADS)

    Goswami, Partha

    2018-03-01

    We calculate the electronic band dispersion of graphene monolayer on a two-dimensional transition metal dichalcogenide substrate (GrTMD) around K and K^' } points by taking into account the interplay of the ferromagnetic impurities and the substrate-induced interactions. The latter are (strongly enhanced) intrinsic spin-orbit interaction (SOI), the extrinsic Rashba spin-orbit interaction (RSOI) and the one related to the transfer of the electronic charge from graphene to substrate. We introduce exchange field ( M) in the Hamiltonian to take into account the deposition of magnetic impurities on the graphene surface. The cavalcade of the perturbations yield particle-hole symmetric band dispersion with an effective Zeeman field due to the interplay of the substrate-induced interactions with RSOI as the prime player. Our graphical analysis with extremely low-lying states strongly suggests the following: The GrTMDs, such as graphene on WY2, exhibit (direct) band-gap narrowing / widening (Moss-Burstein (MB) gap shift) including the increase in spin polarisation ( P) at low temperature due to the increase in the exchange field ( M) at the Dirac points. The polarisation is found to be electric field tunable as well. Finally, there is anticrossing of non-parabolic bands with opposite spins, the gap closing with same spins, etc. around the Dirac points. A direct electric field control of magnetism at the nanoscale is needed here. The magnetic multiferroics, like BiFeO3 (BFO), are useful for this purpose due to the coupling between the magnetic and electric order parameters.

  18. Highly anisotropic exchange interactions of j eff = 1 2 iridium moments on the fcc lattice in La 2 B IrO 6   ( B = Mg , Zn )

    DOE PAGES

    Aczel, A. A.; Cook, A. M.; Williams, T. J.; ...

    2016-06-20

    Here we have performed inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites Lamore » $$_2$$ZnIrO$$_6$$ and La$$_2$$MgIrO$$_6$$, which are characterized by A-type antiferromagnetic ground states. The powder inelastic neutron scattering data on these geometrically frustrated $$j_{\\rm eff}=1/2$$ Mott insulators provide clear evidence for gapped spin wave excitations with very weak dispersion. The INS results and thermodynamic data on these materials can be reproduced by conventional Heisenberg-Ising models with significant uniaxial Ising anisotropy and sizeable second-neighbor ferromagnetic interactions. Such a uniaxial Ising exchange interaction is symmetry-forbidden on the ideal fcc lattice, so that it can only arise from the weak crystal distortions away from the ideal fcc limit. This may suggest that even weak distortions in $$j_{\\rm eff}=1/2$$ Mott insulators might lead to strong exchange anisotropies. More tantalizingly, however, we find an alternative viable explanation of the INS results in terms of spin models with a dominant Kitaev interaction. In contrast to the uniaxial Ising exchange, the highly-directional Kitaev interaction is a type of exchange anisotropy which is symmetry-allowed even on the ideal fcc lattice. The Kitaev model has a magnon gap induced by quantum order-by-disorder, while weak anisotropies of the Kitaev couplings generated by the symmetry-lowering due to lattice distortions can pin the order and enhance the magnon gap. In conclusion, our findings highlight how even conventional magnetic orders in heavy transition metal oxides may be driven by highly-directional exchange interactions rooted in strong spin-orbit coupling.« less

  19. Spin fine structure of optically excited quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  20. Measurement of the Parity-Violating Neutron Spin Rotation in 4He

    PubMed Central

    Bass, C. D.; Dawkins, J. M.; Luo, D.; Micherdzinska, A.; Sarsour, M.; Snow, W. M.; Mumm, H. P.; Nico, J. S.; Huffman, P. R.; Markoff, D. M.; Heckel, B. R.; Swanson, H. E.

    2005-01-01

    In the meson exchange model of weak nucleon-nucleon (NN) interactions, the exchange of virtual mesons between the nucleons is parameterized by a set of weak meson exchange amplitudes. The strengths of these amplitudes from theoretical calculations are not well known, and experimental measurements of parity-violating (PV) observables in different nuclear systems have not constrained their values. Transversely polarized cold neutrons traveling through liquid helium experience a PV spin rotation due to the weak interaction with an angle proportional to a linear combination of these weak meson exchange amplitudes. A measurement of the PV neutron spin rotation in helium (φPV (n,α)) would provide information about the relative strengths of the weak meson exchange amplitudes, and with the longitudinal analyzing power measurement in the p + α system, allow the first comparison between isospin mirror systems in weak NN interaction. An earlier experiment performed at NIST obtained a result consistent with zero: φPV (n,α) = (8.0 ±14(stat) ±2.2(syst)) ×10−7 rad / m[1]. We describe a modified apparatus using a superfluid helium target to increase statistics and reduce systematic effects in an effort to reach a sensitivity goal of 10−7 rad/m. PMID:27308122

  1. Ultracoherent operation of spin qubits with superexchange coupling

    NASA Astrophysics Data System (ADS)

    Rančić, Marko J.; Burkard, Guido

    2017-11-01

    With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits) have evolved to become among the most coherent systems for quantum information processing. The new frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange, as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the existence of "supersweet spots", in which the qubit operations implemented by superexchange interaction are simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.

  2. Kobayashi-Kondo-Maskawa-'t Hooft interaction in pentaquarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitrasinovic, V.

    2005-05-01

    We review critically the predictions of pentaquarks in the quark model, in particular, those based on the flavor-spin-dependent (Glozman-Riska) hyperfine interaction and the color-spin (one-gluon-exchange Fermi-Breit) one. We include the antiquark interactions and find that: (1) the exotic SU(3) multiplets are not substantially affected in the flavor-spin model, whereas some of the nonexotic multiplets are; and (2) the variational upper bound on the {xi}{sup --}-{theta}{sup +} mass difference in the color-spin hyperfine interaction model is substantially reduced. This leads us to the U{sub A}(1) symmetry breaking Kobayashi-Kondo-Maskawa-'tHooft interaction. We discuss some of its phenomenological consequences for pentaquarks.

  3. Ultrafast Magnetism of Multi-component Ferromagnets and Ferrimagnets on the Time Scale of the Exchange Interaction

    NASA Astrophysics Data System (ADS)

    Radu, Ilie

    2012-02-01

    Revealing the ultimate speed limit at which magnetic order can be controlled, is a fundamental challenge of modern magnetism having far reaching implications for the magnetic recording industry [1]. Exchange interaction is the strongest force in magnetism, being ultimately responsible for ferromagnetic or antiferromagnetic spin order. How do spins react after being optically excited on a timescale of or even faster than the exchange interaction? Here, we demonstrate that femtosecond (fs) measurements of ferrimagnetic and ferromagnetic alloys using X-ray magnetic circular dichroism provide revolutionary new insights into the problem of ultrafast magnetism on timescales pertinent to the exchange interaction. In particular, we show that upon fs optical excitation the ultrafast spin reversal of GdFeCo - a material with antiferromagnetic coupling of spins - occurs via a transient ferromagnetic state [2]. The latter emerges due to different dynamics of the Gd and Fe magnetic moments: Gd switches within 1.5 ps while it takes only 300 fs for Fe. Thus, by using a single fs laser pulse one can force the spin system to evolve via an energetically unfavorable way and temporarily switch from an antiferromagnetic to a ferromagnetic type of ordering. In order to understand whether the observation of this temporarily decoupled and element-specific dynamics is a general phenomenon or just something strictly related to the case of ferrimagnetic GdFeCo, we have investigated the demagnetization of the archetypal ferromagnetic NiFe alloys. Essentially, we observe the same distinct magnetization dynamics of the constituent magnetic moments: Ni demagnetizes within ˜300 fs being much faster than the demagnetization of Fe of ˜800 fs. This distinct demagnetization behavior leads to an apparent decoupling of the Fe and Ni magnetic moments on a few hundreds of fs time scale, despite the strong exchange interaction of 260meV (˜16 fs) that couples them. These observations supported by atomistic simulations, present a novel concept of manipulating magnetic order on different classes of magnetic materials on timescales of the exchange interaction [3]. [4pt] [1] A. Kirilyuk, A.V. Kimel and Th. Rasing, Rev. Mod. Phys. 82, 2731 (2010). [0pt] [2] I. Radu et al., Nature 472, 205 (2011). [0pt] [3] I. Radu et al., submitted (2011).

  4. Ultrafast Photoinduced Multimode Antiferromagnetic Spin Dynamics in Exchange-Coupled Fe/RFeO3 (R = Er or Dy) Heterostructures.

    PubMed

    Tang, Jin; Ke, Yajiao; He, Wei; Zhang, Xiangqun; Zhang, Wei; Li, Na; Zhang, Yongsheng; Li, Yan; Cheng, Zhaohua

    2018-05-25

    Antiferromagnetic spin dynamics is important for both fundamental and applied antiferromagnetic spintronic devices; however, it is rarely explored by external fields because of the strong exchange interaction in antiferromagnetic materials. Here, the photoinduced excitation of ultrafast antiferromagnetic spin dynamics is achieved by capping antiferromagnetic RFeO 3 (R = Er or Dy) with an exchange-coupled ferromagnetic Fe film. Compared with antiferromagnetic spin dynamics of bare RFeO 3 orthoferrite single crystals, which can be triggered effectively by ultrafast laser heating just below the phase transition temperature, the ultrafast photoinduced multimode antiferromagnetic spin dynamic modes, for exchange-coupled Fe/RFeO 3 heterostructures, including quasiferromagnetic resonance, impurity, coherent phonon, and quasiantiferromagnetic modes, are observed in a temperature range of 10-300 K. These experimental results not only offer an effective means to trigger ultrafast antiferromagnetic spin dynamics of rare-earth orthoferrites, but also shed light on the ultrafast manipulation of antiferromagnetic magnetization in Fe/RFeO 3 heterostructures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Field-induced States and Excitations in the Quasicritical Spin-1 /2 Chain Linarite

    NASA Astrophysics Data System (ADS)

    Cemal, Eron; Enderle, Mechthild; Kremer, Reinhard K.; Fâk, Björn; Ressouche, Eric; Goff, Jon P.; Gvozdikova, Mariya V.; Zhitomirsky, Mike E.; Ziman, Tim

    2018-02-01

    The mineral linarite, PbCuSO4(OH )2 , is a spin-1 /2 chain with frustrating nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic exchange interactions. Our inelastic neutron scattering experiments performed above the saturation field establish that the ratio between these exchanges is such that linarite is extremely close to the quantum critical point between spin-multipolar phases and the ferromagnetic state. We show that the predicted quantum multipolar phases are fragile and actually suppressed by a tiny orthorhombic exchange anisotropy and weak interchain interactions in favor of a dipolar fan phase. Including this anisotropy in classical simulations of a nearly critical model explains the field-dependent phase sequence of the phase diagram of linarite, its strong dependence of the magnetic field direction, and the measured variations of the wave vector as well as the staggered and the uniform magnetizations in an applied field.

  6. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na 2IrO 3

    DOE PAGES

    Hwan Chun, Sae; Kim, Jong-Woo; Kim, Jungho; ...

    2015-05-11

    We show that heisenberg interactions are ubiquitous in magnetic materials and play a central role in modelling and designing quantum magnets. Bond-directional interactions offer a novel alternative to Heisenberg exchange and provide the building blocks of the Kitaev model, which has a quantum spin liquid as its exact ground state. Honeycomb iridates, A 2IrO 3 (A = Na, Li), offer potential realizations of the Kitaev magnetic exchange coupling, and their reported magnetic behaviour may be interpreted within the Kitaev framework. However, the extent of their relevance to the Kitaev model remains unclear, as evidence for bond-directional interactions has so farmore » been indirect. Here we present direct evidence for dominant bond-directional interactions in antiferromagnetic Na 2IrO 3 and show that they lead to strong magnetic frustration. Diffuse magnetic X-ray scattering reveals broken spin-rotational symmetry even above the Néel temperature, with the three spin components exhibiting short-range correlations along distinct crystallographic directions. Lastly, this spin- and real-space entanglement directly uncovers the bond-directional nature of these interactions, thus providing a direct connection between honeycomb iridates and Kitaev physics.« less

  7. Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.

    2018-04-01

    Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.

  8. Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot.

    PubMed

    Ware, M E; Stinaff, E A; Gammon, D; Doty, M F; Bracker, A S; Gershoni, D; Korenev, V L; Bădescu, S C; Lyanda-Geller, Y; Reinecke, T L

    2005-10-21

    We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.

  9. Effect of the strong coupling on the exchange bias field in IrMn/Py/Ru/Co spin valves

    NASA Astrophysics Data System (ADS)

    Tarazona, H. S.; Alayo, W.; Landauro, C. V.; Quispe-Marcatoma, J.

    2018-01-01

    The IrMn/Py/Ru/Co (Py = Ni81Fe19) spin valves have been produced by sputtering deposition and analyzed by magnetization measurements and a theoretical modelling of their exchange interactions, based on the macro-spin model. The Ru thickness was grown between 6 and 22 Å, which is small enough to promote strong indirect coupling between Py and Co. Results of measurements showed a large and gradual change in the shape of hysteresis loops when the Ru thickness was varied. The theoretical analysis, using numerical calculations based on the gradient conjugate method, provides the exchange coupling constants (bilinear and biquadratic), the exchange anisotropy fields and the magnetic anisotropy fields (uniaxial and rotatable). The exchange bias fields of spin valves were compared to that of a IrMn/Py bilayer. We found that the difference between these fields oscillates with Ru thickness in the same manner as the bilinear coupling constants.

  10. Coherent spin-exchange via a quantum mediator.

    PubMed

    Baart, Timothy Alexander; Fujita, Takafumi; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven Mark Koenraad

    2017-01-01

    Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.

  11. Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.

    PubMed

    Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P

    2017-12-01

    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.

  12. Engineering the Eigenstates of Coupled Spin-1 /2 Atoms on a Surface

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D.; Willke, Philip; Lado, Jose L.; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J.; Lutz, Christopher P.

    2017-12-01

    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1 /2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1 /2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1 /2 atoms on surfaces.

  13. Development of a Silicon Metal-Oxide-Semiconductor-Based Qubit Using Spin Exchange Interactions Alone

    DTIC Science & Technology

    2016-03-31

    Electron spin resonance and spin–valley physics in a silicon double quantum dot, Nature Communications, (05 2014): 0. doi: 10.1038/ncomms4860 Ming...new scheme to better manipulate the exchange-only qubit using a pulsed RF source [5], known as a resonant -exchange-qubit [6,7], in GaAs further...triple points into a quadruple point [10], as shown in Fig. 1. We can also gate control the tunnel coupling over a broad energy range. The

  14. Magnetic Susceptibility and Spin Exchange Interactions of the Hexagonal Perovskite-Type Oxides Sr 4/3(Mn 2/3Ni 1/3)O 3

    NASA Astrophysics Data System (ADS)

    El Abed, A.; Gaudin, E.; Darriet, J.; Whangbo, M.-H.

    2002-02-01

    Magnetic susceptibility measurements were carried out for two hexagonal perovskite-type oxides Sr1+x(Mn1-xNix)O3 with slightly different compositions (i.e., x={1}/{3} and 0.324). A significant difference in the susceptibilities of the two phases demonstrates the need to control phase compositions accurately. Sr4/3(Mn2/3Ni1/3)O3 consists of two spin sublattices, i.e., the Mn4+ and the Ni2+ ion sublattices. Spin dimer analysis was carried out to examine the relative strengths in the spin exchange interactions of the Mn4+ ion sublattice. The temperature dependence of the magnetic susceptibility of Sr4/3(Mn2/3Ni1/3)O3 was found consistent with a picture in which the Mn4+ ion sublattice has weakly interacting antiferromagnetically coupled (Mn4+)2 dimers, the Ni2+ ion sublattice acts as a paramagnetic system, and the two sublattices are nearly independent.

  15. Thermally induced magnonic spin current, thermomagnonic torques, and domain-wall dynamics in the presence of Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Wang, X.-G.; Chotorlishvili, L.; Guo, G.-H.; Sukhov, A.; Dugaev, V.; Barnaś, J.; Berakdar, J.

    2016-09-01

    Thermally activated domain-wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a consequence of the magnonic spin current due to the applied thermal bias. In addition to the exchange magnonic spin current and the exchange adiabatic and the entropic spin transfer torques, we also consider the DMI-induced magnonic spin current, thermomagnonic DMI fieldlike torque, and the DMI entropic torque. Analytical estimations are supported by numerical calculations. We found that the DMI has a substantial influence on the size and the geometry of DWs, and that the DWs become oriented parallel to the long axis of the nanostrip. Increasing the temperature smoothes the DWs. Moreover, the thermally induced magnonic current generates a torque on the DWs, which is responsible for their motion. From our analysis it follows that for a large enough DMI the influence of DMI-induced fieldlike torque is much stronger than that of the DMI and the exchange entropic torques. By manipulating the strength of the DMI constant, one can control the speed of the DW motion, and the direction of the DW motion can be switched, as well. We also found that DMI not only contributes to the total magnonic current, but also it modifies the exchange magnonic spin current, and this modification depends on the orientation of the steady-state magnetization. The observed phenomenon can be utilized in spin caloritronics devices, for example in the DMI based thermal diodes. By switching the magnetization direction, one can rectify the total magnonic spin current.

  16. Cavity Exciton-Polariton mediated, Single-Shot Quantum Non-Demolition measurement of a Quantum Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa

    2014-03-01

    The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

  17. First-Principles Evaluation of the Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Koretsune, Takashi; Kikuchi, Toru; Arita, Ryotaro

    2018-04-01

    We review recent developments of formulations to calculate the Dzyaloshinskii-Moriya (DM) interaction from first principles. In particular, we focus on three approaches. The first one evaluates the energy change due to the spin twisting by directly calculating the helical spin structure. The second one employs the spin gauge field technique to perform the derivative expansion with respect to the magnetic moment. This gives a clear picture that the DM interaction can be represented as the spin current in the equilibrium within the first order of the spin-orbit couplings. The third one is the perturbation expansion with respect to the exchange couplings and can be understood as the extension of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction to the noncentrosymmetric spin-orbit systems. By calculating the DM interaction for the typical chiral ferromagnets Mn1-xFexGe and Fe1-xCoxGe, we discuss how these approaches work in actual systems.

  18. Quantum spin dynamics with pairwise-tunable, long-range interactions

    PubMed Central

    Hung, C.-L.; González-Tudela, Alejandro; Cirac, J. Ignacio; Kimble, H. J.

    2016-01-01

    We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in 1D and 2D lattices. In our scheme, two internal atomic states represent a pseudospin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin–spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom–atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom–atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce nontrivial Berry phases in the spin lattice, thus opening new avenues for realizing topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well-known spin models. PMID:27496329

  19. Hierarchy of low-energy models of the electronic structure of cuprate HTSCs: The role of long-range spin-correlated hops

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Mitskan, V. A.; Dzebisashvili, D. M.; Barabanov, A. F.

    2018-02-01

    It is shown that for the three-band Emery p-d-model that reflects the real structure of the CuO2-plane of high-temperature superconductors in the regime of strong electron correlations, it is possible to carry out a sequence of reductions to the effective models reproducing low-energy features of elementary excitation spectrum and revealing the spin-polaron nature of the Fermi quasiparticles. The first reduction leads to the spin-fermion model in which the subsystem of spin moments, coupled by the exchange interaction and localized on copper ions, strongly interacts with oxygen holes. The second reduction deals with the transformation from the spin-fermion model to the φ-d-exchange model. An important feature of this transformation is the large energy of the φ-d-exchange coupling, which leads to the formation of spin polarons. The use of this fact allows us to carry out the third reduction, resulting in the t ˜-J˜ *-I -model. Its distinctive feature is the importance of spin-correlated hops as compared to the role of such processes in the commonly used t-J*-model derived from the Hubbard model. Based on the comparative analysis of the spectrum of Fermi excitations calculated for the obtained effective models of the CuO2-plane of high-temperature superconductors, the important role of the usually ignored long-range spin-correlated hops is determined.

  20. Observation of Dipolar Spin-Exchange Interactions with Polar Molecules in a Lattice

    DTIC Science & Technology

    2013-01-01

    extend beyond nearest neighbours. This allows coherent spin dynamics to persist even for gases with relatively high entropy and low lattice filling...dynamics to persist even for gases with relatively high entropy and low lat- tice filling. While measured effects of dipolar interactions in ultracold...limits superexchange to nearest-neighbor interactions and requires extremely low temperature and entropy . In contrast, long-range dipolar

  1. Novel insights into the mechanism of the ortho/para spin conversion of hydrogen pairs: implications for catalysis and interstellar water.

    PubMed

    Limbach, Hans-Heinrich; Buntkowsky, Gerd; Matthes, Jochen; Gründemann, Stefan; Pery, Tal; Walaszek, Bernadeta; Chaudret, Bruno

    2006-03-13

    The phenomenon of exchange coupling is taken into account in the description of the magnetic nuclear spin conversion between bound ortho- and para-dihydrogen. This conversion occurs without bond breaking, in contrast to the chemical spin conversion. It is shown that the exchange coupling needs to be reduced so that the corresponding exchange barrier can increase and the given magnetic interaction can effectively induce a spin conversion. The implications for related molecules such as water are discussed. For ice, a dipolar magnetic conversion and for liquid water a chemical conversion are predicted to occur within the millisecond timescale. It follows that a separation of water into its spin isomers, as proposed by Tikhonov and Volkov (Science 2002, 296, 2363), is not feasible. Nuclear spin temperatures of water vapor in comets, which are smaller than the gas-phase equilibrium temperatures, are proposed to be diagnostic for the temperature of the ice or the dust surface from which the water was released.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veiga, L. S. I.; Etter, M.; Glazyrin, K.

    Here, we explore the response of Ir 5d orbitals to pressure in β-Li 2IrO 3, a hyperhoneycomb iridate in proximity to a Kitaev quantum spin-liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit interaction in 5d orbitals, pushes β-Li 2IrO 3 further away from the pure J eff = 1/2 limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows amore » highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to the realization of a QSL state in this hyperhoneycomb iridate at high pressures.« less

  3. Spin-controlled negative magnetoresistance resulting from exchange interactions

    NASA Astrophysics Data System (ADS)

    Agrinskaya, N. V.; Kozub, V. I.; Mikhailin, N. Yu.; Shamshur, D. V.

    2017-04-01

    We studied conductivity of AlGaAs-GaAs quantum well structures (where centers of the wells were doped by Be) at temperatures higher than 4 K in magnetic fields up 10 T. Throughout all the temperature region considered the conductivity demonstrated activated behavior. At moderate magnetic fields 0.1 T < H < 1 T, we observed negative isotropic magnetoresistance, which was linear in magnetic field while for magnetic field normal with respect to the plane of the wells the magnetoresistance was positive at H > 2T. To the best of our knowledge, it was the first observation of linear negative magnetoresistance, which would be isotropic with respect to the direction of magnetic field. While the isotropic character of magnetoresistance apparently evidences role of spins, the existing theoretical considerations concerning spin effects in conductance fail to explain our experimental results. We believe that such a behavior can be attributed to spin effects supported by exchange interactions between localized states.

  4. Defect controlled magnetism in FeP/graphene/Ni(111)

    PubMed Central

    Bhandary, Sumanta; Eriksson, Olle; Sanyal, Biplab

    2013-01-01

    Spin switching of organometallic complexes by ferromagnetic surfaces is an important topic in the area of molecular nanospintronics. Moreover, graphene has been shown as a 2D surface for physisorption of molecular magnets and strain engineering on graphene can tune the spin state of an iron porphyrin (FeP) molecule from S = 1 to S = 2. Our ab initio density functional calculations suggest that a pristine graphene layer placed between a Ni(111) surface and FeP yields an extremely weak exchange interaction between FeP and Ni whereas the introduction of defects in graphene shows a variety of ferromagnetic and antiferromagnetic exchange interactions. Moreover, these defects control the easy axes of magnetization, strengths of magnetic anisotropy energies and spin-dipolar contributions. Our study suggests a new way of manipulating molecular magnetism by defects in graphene and hence has the potential to be explored in designing spin qubits to realize logic operations in molecular nanospintronics. PMID:24296980

  5. Competition between Bose-Einstein Condensation and Spin Dynamics.

    PubMed

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  6. Entangling two transportable neutral atoms via local spin exchange.

    PubMed

    Kaufman, A M; Lester, B J; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A

    2015-11-12

    To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

  7. On the temperature-dependent exchange splitting in the quasiparticle bandstructure of Ni

    NASA Astrophysics Data System (ADS)

    Borgiel, W.; Nolting, W.; Donath, M.

    1989-11-01

    A theoretical model for the bandferromagnet Ni is proposed, which takes into account the intraatomic electron interactions within the d band complex. After introducing effective spin operators the model-Hamiltonian consists of a one-particle part, an intraband interaction of Hubbard-type, and an interband exchange, formally describing electron magnon scattering (s-f model). The one particle energies are taken from a realistic bandstructure calculation for paramagnetic Ni. We use a many body procedure for a detailed inspection of the quasiparticle bandstructure in KX and XW directions, present the corresponding spectral densities, and compare the temperature dependent exchange splittings near the X and W point with recent results from spin resolved photoemission (PE) - and inverse photoemission (IPE) - experiments.

  8. Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot

    NASA Astrophysics Data System (ADS)

    Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Bădescu, Ş. C.; Lyanda-Geller, Y.; Reinecke, T. L.

    2005-10-01

    We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.

  9. The effect of external magnetic field on the Raman peaks in manganites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, A. K., E-mail: ajitsahu@seemantaengg.ac.in; Rout, G. C.

    2014-04-24

    We report here a microscopic theoretical model study exhibiting the effect of external magnetic field on the Raman excitation peaks in the CMR manganite system. The Hamiltonian consists of Jahn-Teller (J-T) distortion in e{sub g} band, the double exchange interaction and the Heisenberg spin-spin interaction. Further the phonons are coupled to e{sub g} band electrons, J-T distorted e{sub g} band and the double exchange interaction. The Raman spectral intensity is calculated from the imaginary part of the phonon Green function. The spectra exhibits three peaks besides a very weak high energy peak. The magnetic field effect on these peaks aremore » reported.« less

  10. Exact-exchange spin-density functional theory of Wigner localization and phase transitions in quantum rings

    NASA Astrophysics Data System (ADS)

    Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg

    2011-08-01

    We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter rS is increased, we observe—at a fixed spin magnetic moment—the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing rS. We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical rSc at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing rS the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid.

  11. Exact-exchange spin-density functional theory of Wigner localization and phase transitions in quantum rings.

    PubMed

    Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg

    2011-08-24

    We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid. © 2011 IOP Publishing Ltd

  12. Studies of spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Chann, Bien

    Although we still do not understand fully the alkali-alkali relaxation at pressures of an atmosphere or more, an important part of the spin-relaxation comes from the classical dipole-dipole anisotropic spin-axis interaction acting in triplet dimer molecules. The key observation is the existence of magnetic resonances in the magnetic decoupling curves which are predicted from the spin-axis interaction. We identified a new gas-phase, room temperature spin relaxation that is due to the spin-rotation coupling in bound 129Xe-Xe van der Waals molecules. This 129Xe-Xe molecular spin-relaxation is more than an order of magnitude stronger than the well-known 129 Xe-Xe binary spin-relaxation and is the fundamental spin-relaxation process at gas densities below 14 amagat. With external cavity diode laser array bar, we find, based on tests of several cells, that the power required to reach the same polarization is typically three times lower for the spectrally narrowed laser as compared to the unnarrowed diode array bar. This last result indicates that spectrally narrowed lasers are critical to obtaining the highest noble gas polarizations. Furthermore, we find, circularly polarized light propagating at an angle as small as a few degrees to the external magnetic field does not optically pump the atoms to full transparency and causes excess absorption of the pump beam. We measured the Rb-3He spin-exchange rate coefficients using three different methods. We obtained 6.73 +/- 0.12 x 10 -20 cm3/s for the repolarization method. We deduced the spin-exchange rate coefficient to be 6.61 +/- 0.12 x 10 -20 cm3/s for the rate balance method. The third method uses a temperature dependence relaxation of 3He and the deduced value is 8.85 +/- 0.32 x 10-20 cm3/s. This is about 30% higher than the other two methods. This implies a temperature-dependence wall-relaxation or a large value of anisotropic spin-exchange rate coefficient for Rb-3He and would explain the shortfall 3He measured polarization.

  13. Control of single-spin magnetic anisotropy by exchange coupling

    NASA Astrophysics Data System (ADS)

    Oberg, Jenny C.; Calvo, M. Reyes; Delgado, Fernando; Moro-Lagares, María; Serrate, David; Jacob, David; Fernández-Rossier, Joaquín; Hirjibehedin, Cyrus F.

    2014-01-01

    The properties of quantum systems interacting with their environment, commonly called open quantum systems, can be affected strongly by this interaction. Although this can lead to unwanted consequences, such as causing decoherence in qubits used for quantum computation, it can also be exploited as a probe of the environment. For example, magnetic resonance imaging is based on the dependence of the spin relaxation times of protons in water molecules in a host's tissue. Here we show that the excitation energy of a single spin, which is determined by magnetocrystalline anisotropy and controls its stability and suitability for use in magnetic data-storage devices, can be modified by varying the exchange coupling of the spin to a nearby conductive electrode. Using scanning tunnelling microscopy and spectroscopy, we observe variations up to a factor of two of the spin excitation energies of individual atoms as the strength of the spin's coupling to the surrounding electronic bath changes. These observations, combined with calculations, show that exchange coupling can strongly modify the magnetic anisotropy. This system is thus one of the few open quantum systems in which the energy levels, and not just the excited-state lifetimes, can be renormalized controllably. Furthermore, we demonstrate that the magnetocrystalline anisotropy, a property normally determined by the local structure around a spin, can be tuned electronically. These effects may play a significant role in the development of spintronic devices in which an individual magnetic atom or molecule is coupled to conducting leads.

  14. Entanglement of Electron Spins in Two Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Chen, Yuanzhen; Webb, Richard

    2004-03-01

    We study the entanglement of electron spins in a coupled quantum dots system at 70 mK. Two quantum dots are fabricated in a GaAs/AlGaAs heterostructure containing a high mobility 2-D electron gas. The two dots can be tuned independently and the electron spins in the dots are coupled through an exchange interaction between them. An exchange gate is used to vary the height and width of a potential barrier between the two dots, thus controlling the strength of the exchange interaction. Electrons are injected to the coupled dots by two independent DC currents and the output of the dots is incident on a beam splitter, which introduces quantum interferences. Cross-correlations of the shot noise of currents from the two output channels are measured and compared with theory (1). *Work supported by LPS and ARDA under MDA90401C0903 and NSF under DMR 0103223. (1) Burkard, Loss, & Sukhorukov, Phys. Rev. B61, R16303 (2000).

  15. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    NASA Astrophysics Data System (ADS)

    Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.

    2015-11-01

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the anisotropic exchange models conventionally used for the analysis of this system and, with the results of the experimental XANES spectra, shows that our complex investigations provide a good description of the pattern of the spin levels and the spin structures of the nanomagnetic Ni7 qubit. The results are discussed in the view of the general problem of the solid-state spin qubits and the spin structure of the Ni cluster.

  16. Interplay between the Dzyaloshinskii-Moriya term and external fields on spin transport in the spin-1/2 one-dimensional antiferromagnet

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2018-05-01

    We study the effect of the uniform Dzyaloshinskii-Moriya interaction (symmetric exchange anisotropy) and arbitrary oriented external magnetic fields on spin conductivity in the spin-1/2 one-dimensional Heisenberg antiferromagnet. The spin conductivity is calculated employing abelian bosonization and the Kubo formalism of transport. We investigate the influence of three competing phases at zero-temperature, (Néel phase, dimerized phase and gapless Luttinger liquid phase) on the AC spin conductivity.

  17. Transition metal ions in ZnO: Effects of intrashell coulomb repulsion on electronic properties

    NASA Astrophysics Data System (ADS)

    Ciechan, A.; Bogusławski, P.

    2018-05-01

    Electronic structure of the transition metal (TM) dopants in ZnO is calculated by first principles approach. Analysis of the results is focused on the properties determined by the intrashell Coulomb coupling. The role of both direct and exchange interaction channel is analyzed. The coupling is manifested in the strong charge state dependence of the TM gap levels, which leads to the metastability of photoexcited Mn, and determines the accessible equilibrium charge states of TM ions. The varying magnitude of the exchange coupling is reflected in the dependence of the spin splitting energy on the chemical identity across the 3d series, as well as the charge state dependence of spin-up spin-down exchange splitting.

  18. High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.

    PubMed

    Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar

    2011-04-21

    Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.

  19. Temperature Ddependence of Anomalous Hall Conductivity in Rashba-type Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sakuma, Akimasa

    2018-03-01

    We theoretically investigated the anomalous Hall conductivity (AHC) of Rashba-type ferromagnets at a finite temperature, taking into account spin fluctuation. We observed that the intrinsic AHC increases with increasing temperature. This can be understood from the characteristic nature of the spin chirality in the k-space, which increases with decreasing exchange splitting (EXS) when the spin-orbit interaction is much smaller than the EXS. The extrinsic part of the AHC also increases with temperature owing to the enhancement of the scattering strength of electrons due to the thermal fluctuation of the exchange field.

  20. Electron Spin Resonance in CuSO45H2O down to 100 mK

    NASA Astrophysics Data System (ADS)

    Kadowaki, Kazuo; Chiba, Yoshiaki; Kindo, Koichi; Date, Muneyuki

    1988-12-01

    Copper sulfate pentahydrate CuSO45H2O is investigated by ESR at 9, 17, 24, 35 and 50 GHz regions down to about 100 mK using a combined cryostat of 3He and adiabatic demagnetization. The temperature dependent exchange interaction JAB between inequivalent site spins A and B is found. It is about 0.11 K at room temperature and increases with decreasing temperature up to 0.24 K. Temperature dependent resonance shifts are attributed to the exchange shift coming from non-resonant dissimilar spins. Partial order effect below 1 K is discussed.

  1. Gigantic Dzyaloshinskii-Moriya interaction in the MnBi ultrathin films

    NASA Astrophysics Data System (ADS)

    Yu, Jie-Xiang; Zang, Jiadong; Zang's Team

    The magnetic skyrmion, a swirling-like spin texture with nontrivial topology, is driven by strong Dzyaloshinskii-Moriya (DM) interaction originated from the spin-orbit coupling in inversion symmetry breaking systems. Here, based on first-principles calculations, we predict a new material, MnBi ultrathin film, with gigantic DM interactions. The ratio of the DM interaction to the Heisenberg exchange is about 0.3, exceeding any values reported so far. Its high Curie temperature, high coercivity, and large perpendicular magnetoanisotropy make MnBi a good candidate for future spintronics studies. Topologically nontrivial spin textures are emergent in this system. We expect further experimental efforts will be devoted into this systems.

  2. Dynamical Reduction of the Dimensionality of Exchange Interactions and the "Spin-Liquid" Phase of κ-(BEDT-TTF)_{2}X.

    PubMed

    Powell, B J; Kenny, E P; Merino, J

    2017-08-25

    We show that the anisotropy of the effective spin model for the dimer Mott insulator phase of κ-(BEDT-TTF)_{2}X salts is dramatically different from that of the underlying tight-binding model. Intradimer quantum interference results in a model of coupled spin chains, where frustrated interchain interactions suppress long-range magnetic order. Thus, we argue, the "spin liquid" phase observed in some of these materials is a remnant of the Tomonaga-Luttinger physics of a single chain. This is consistent with previous experiments and resolves some outstanding puzzles.

  3. Magnetic spiral induced by strong correlations in MnAu2

    NASA Astrophysics Data System (ADS)

    Glasbrenner, J. K.; Bussmann, K. M.; Mazin, I. I.

    2014-10-01

    The compound MnAu2 is one of the oldest known spin-spiral materials, yet the nature of the spiral state is still not clear. The spiral cannot be explained via relativistic effects due to the short pitch of the spiral and the weakness of the spin-orbit interaction in Mn, and another common mechanism, nesting, is ruled out as direct calculations show no features at the relevant wave vector. We propose that the spiral state is induced by a competition between the short-range antiferromagnetic exchange and a long-range interaction induced by the polarization of Au bands, similar to double exchange. We find that, contrary to earlier reports, the ground state in standard density functional theory is ferromagnetic, i.e., the latter interaction dominates. However, an accounting for Coulomb correlations via a Hubbard U suppresses the Schrieffer-Wolff-type s-d magnetic interaction between Mn and Au faster than the superexchange interaction, favoring a spin-spiral state. For realistic values of U, the resulting spiral wave vector is in close agreement with experiment.

  4. Fast and robust control of two interacting spins

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Tong; Zhang, Qi; Ban, Yue; Chen, Xi

    2018-06-01

    Rapid preparation, manipulation, and correction of spin states with high fidelity are requisite for quantum information processing and quantum computing. In this paper, we propose a fast and robust approach for controlling two spins with Heisenberg and Ising interactions. By using the concept of shortcuts to adiabaticity, we first inverse design the driving magnetic fields for achieving fast spin flip or generating the entangled Bell state, and further optimize them with respect to the error and fluctuation. In particular, the designed shortcut protocols can efficiently suppress the unwanted transition or control error induced by anisotropic antisymmetric Dzyaloshinskii-Moriya exchange. Several examples and comparisons are illustrated, showing the advantages of our methods. Finally, we emphasize that the results can be naturally extended to multiple interacting spins and other quantum systems in an analogous fashion.

  5. Evolution of magnetic Dirac bosons in a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Boyko, D.; Balatsky, A. V.; Haraldsen, J. T.

    2018-01-01

    We examine the presence and evolution of magnetic Dirac nodes in the Heisenberg honeycomb lattice. Using linear spin theory, we evaluate the collinear phase diagram as well as the change in the spin dynamics with various exchange interactions. We show that the ferromagnetic structure produces bosonic Dirac and Weyl points due to the competition between the interactions. Furthermore, it is shown that the criteria for magnetic Dirac nodes are coupled to the magnetic structure and not the overall crystal symmetry, where the breaking of inversion symmetry greatly affects the antiferromagnetic configurations. The tunability of the nodal points through variation of the exchange parameters leads to the possibility of controlling Dirac symmetries through an external manipulation of the orbital interactions.

  6. Structure and magnetic properties of oxychalcogenides A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se) with Fe2O square planar layers representing an antiferromagnetic checkerboard spin lattice.

    PubMed

    Kabbour, Houria; Janod, Etienne; Corraze, Benoît; Danot, Michel; Lee, Changhoon; Whangbo, Myung-Hwan; Cario, Laurent

    2008-07-02

    The oxychalcogenides A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se), which contain Fe2O square planar layers of the anti-CuO2 type, were predicted using a modular assembly of layered secondary building units and subsequently synthesized. The physical properties of these compounds were characterized using magnetic susceptibility, electrical resistivity, specific heat, (57)Fe Mossbauer, and powder neutron diffraction measurements and also by estimating their exchange interactions on the basis of first-principles density functional theory electronic structure calculations. These compounds are magnetic semiconductors that undergo a long-range antiferromagnetic ordering below 83.6-106.2 K, and their magnetic properties are well-described by a two-dimensional Ising model. The dominant antiferromagnetic spin exchange interaction between S = 2 Fe(2+) ions occurs through corner-sharing Fe-O-Fe bridges. Moreover, the calculated spin exchange interactions show that the A2F2Fe2OQ2 (A = Sr, Ba; Q = S, Se) compounds represent a rare example of a frustrated antiferromagnetic checkerboard lattice.

  7. Spin-lattice relaxation of coupled metal-radical spin-dimers in proteins: application to Fe(2+)-cofactor (Q(A)(-.), Q(B)(-.), phi(-.)) dimers in reaction centers from photosynthetic bacteria.

    PubMed Central

    Calvo, Rafael; Isaacson, Roger A; Abresch, Edward C; Okamura, Melvin Y; Feher, George

    2002-01-01

    The spin-lattice relaxation times (T(1)) for the reduced quinone acceptors Q(A)(-.) and Q(B)(-.), and the intermediate pheophytin acceptor phi(-.), were measured in native photosynthetic reaction centers (RC) containing a high spin Fe(2+) (S = 2) and in RCs in which Fe(2+) was replaced by diamagnetic Zn(2+). From these data, the contribution of the Fe(2+) to the spin-lattice relaxation of the cofactors was determined. To relate the spin-lattice relaxation rate to the spin-spin interaction between the Fe(2+) and the cofactors, we developed a spin-dimer model that takes into account the zero field splitting and the rhombicity of the Fe(2+) ion. The relaxation mechanism of the spin-dimer involves a two-phonon process that couples the fast relaxing Fe(2+) spin to the cofactor spin. The process is analogous to the one proposed by R. Orbach (Proc. R. Soc. A. (Lond.). 264:458-484) for rare earth ions. The spin-spin interactions are, in general, composed of exchange and dipolar contributions. For the spin dimers studied in this work the exchange interaction, J(o), is predominant. The values of J(o) for Q(A)(-.)Fe(2+), Q(B)(-.)Fe(2+), and phi(-.)Fe(2+) were determined to be (in kelvin) -0.58, -0.92, and -1.3 x 10(-3), respectively. The |J(o)| of the various cofactors (obtained in this work and those of others) could be fitted with the relation exp(-beta(J)d), where d is the distance between cofactor spins and beta(J) had a value of (0.66-0.86) A(-1). The relation between J(o) and the matrix element |V(ij)|(2) involved in electron transfer rates is discussed. PMID:12414679

  8. First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys

    NASA Astrophysics Data System (ADS)

    Khatta, Swati; Tripathi, S. K.; Prakash, Satya

    2017-09-01

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.

  9. Critical and compensation behavior of a mixed spin-3/2 and spin-5/2 Ising ferrimagnetic system in a graphene layer

    NASA Astrophysics Data System (ADS)

    Alzate-Cardona, J. D.; Sabogal-Suárez, D.; Restrepo-Parra, E.

    2017-05-01

    We have studied the magnetic properties of the mixed spin σ = ± 3/2, ± 1/2 and spin S = ± 5/2, ± 3/2, ± 1/2 Ising ferrimagnetic system in a graphene layer by means of Monte Carlo simulations. The effects of next-nearest neighbors exchange interactions and crystal field anisotropy on the critical and compensation behavior of the system have been investigated. The results show that, for a system with given values of the crystal field anisotropy and exchange interaction constants, a compensation point only exists if the values of the spins in the ground state are such that | S | > | σ | and Jσ is higher than a certain value Jσmin . It was shown that the relationship between Jσmin and JS is linear for a given value of the crystal field constant. The compensation and the critical temperature are very sensitive to the change of JS and Jσ, respectively, while the crystal field anisotropy affects both temperatures to a large extent.

  10. Ferroelectricity and competing interactions in Ho-deficient non-stoichiometric orthorhombic HoMnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J. X.; Yan, Z. B.; Xie, Y. L.

    2015-05-07

    We investigate the consequences of the Ho-deficient non-stoichiometry in orthorhombic HoMnO{sub 3} in terms of microscopic mechanisms for ferroelectricity modulation. It is suggested that the Ho-deficiency (then Mn excess) results in Ho-vacancies and then Mn occupation of the Ho-site with increasing non-stoichiometry. The Ho-deficiency enhances the Mn-Mn symmetric exchange striction by suppressing the independent Ho-Ho interaction, and thus benefits to the induced Ho spin ordering against the independent Ho spin ordering. The symmetric Ho-Mn exchange striction is thus enhanced by this induced Ho spin ordering, leading to remarkably enhanced ferroelectric polarization as observed. This work presents an alternative scheme tomore » modulate the multiferroicity in rare-earth manganites of strong 4f-3d coupling.« less

  11. Spin dynamics and Kondo physics in optical tweezers

    NASA Astrophysics Data System (ADS)

    Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.

    2016-05-01

    We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  12. Transfer of Magnetic Order and Anisotropy through Epitaxial Integration of 3d and 4f Spin Systems.

    PubMed

    Bluschke, M; Frano, A; Schierle, E; Minola, M; Hepting, M; Christiani, G; Logvenov, G; Weschke, E; Benckiser, E; Keimer, B

    2017-05-19

    Resonant x-ray scattering at the Dy M_{5} and Ni L_{3} absorption edges was used to probe the temperature and magnetic field dependence of magnetic order in epitaxial LaNiO_{3}-DyScO_{3} superlattices. For superlattices with 2 unit cell thick LaNiO_{3} layers, a commensurate spiral state develops in the Ni spin system below 100 K. Upon cooling below T_{ind}=18  K, Dy-Ni exchange interactions across the LaNiO_{3}-DyScO_{3} interfaces induce collinear magnetic order of interfacial Dy moments as well as a reorientation of the Ni spins to a direction dictated by the strong magnetocrystalline anisotropy of Dy. This transition is reversible by an external magnetic field of 3 T. Tailored exchange interactions between rare-earth and transition-metal ions thus open up new perspectives for the manipulation of spin structures in metal-oxide heterostructures and devices.

  13. Lattice spin models for non-Abelian chiral spin liquids

    DOE PAGES

    Lecheminant, P.; Tsvelik, A. M.

    2017-04-26

    Here, we suggest a class of two-dimensional lattice spin Hamiltonians describing non-Abelian SU(2) chiral spin liquids—spin analogs of fractional non-Abelian quantum Hall states—with gapped bulk and gapless chiral edge excitations described by the SU(2) n Wess-Zumino-Novikov-Witten conformal field theory. The models are constructed from an array of generalized spin-n/2 ladders with multi-spin-exchange interactions which are coupled by isolated spins. Such models allow a controllable analytic treatment starting from the one-dimensional limit and are characterized by a bulk gap and non-Abelian SU(2) n gapless edge excitations.

  14. Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction

    NASA Astrophysics Data System (ADS)

    Kumar, Punit; Singh, Shiv; Ahmad, Nafees

    2018-05-01

    Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.

  15. First-order symmetry-adapted perturbation theory for multiplet splittings.

    PubMed

    Patkowski, Konrad; Żuchowski, Piotr S; Smith, Daniel G A

    2018-04-28

    We present a symmetry-adapted perturbation theory (SAPT) for the interaction of two high-spin open-shell molecules (described by their restricted open-shell Hartree-Fock determinants) resulting in low-spin states of the complex. The previously available SAPT formalisms, except for some system-specific studies for few-electron complexes, were restricted to the high-spin state of the interacting system. Thus, the new approach provides, for the first time, a SAPT-based estimate of the splittings between different spin states of the complex. We have derived and implemented the lowest-order SAPT term responsible for these splittings, that is, the first-order exchange energy. We show that within the so-called S 2 approximation commonly used in SAPT (neglecting effects that vanish as fourth or higher powers of intermolecular overlap integrals), the first-order exchange energies for all multiplets are linear combinations of two matrix elements: a diagonal exchange term that determines the spin-averaged effect and a spin-flip term responsible for the splittings between the states. The numerical factors in this linear combination are determined solely by the Clebsch-Gordan coefficients: accordingly, the S 2 approximation implies a Heisenberg Hamiltonian picture with a single coupling strength parameter determining all the splittings. The new approach is cast into both molecular-orbital and atomic-orbital expressions: the latter enable an efficient density-fitted implementation. We test the newly developed formalism on several open-shell complexes ranging from diatomic systems (Li⋯H, Mn⋯Mn, …) to the phenalenyl dimer.

  16. First-order symmetry-adapted perturbation theory for multiplet splittings

    NASA Astrophysics Data System (ADS)

    Patkowski, Konrad; Żuchowski, Piotr S.; Smith, Daniel G. A.

    2018-04-01

    We present a symmetry-adapted perturbation theory (SAPT) for the interaction of two high-spin open-shell molecules (described by their restricted open-shell Hartree-Fock determinants) resulting in low-spin states of the complex. The previously available SAPT formalisms, except for some system-specific studies for few-electron complexes, were restricted to the high-spin state of the interacting system. Thus, the new approach provides, for the first time, a SAPT-based estimate of the splittings between different spin states of the complex. We have derived and implemented the lowest-order SAPT term responsible for these splittings, that is, the first-order exchange energy. We show that within the so-called S2 approximation commonly used in SAPT (neglecting effects that vanish as fourth or higher powers of intermolecular overlap integrals), the first-order exchange energies for all multiplets are linear combinations of two matrix elements: a diagonal exchange term that determines the spin-averaged effect and a spin-flip term responsible for the splittings between the states. The numerical factors in this linear combination are determined solely by the Clebsch-Gordan coefficients: accordingly, the S2 approximation implies a Heisenberg Hamiltonian picture with a single coupling strength parameter determining all the splittings. The new approach is cast into both molecular-orbital and atomic-orbital expressions: the latter enable an efficient density-fitted implementation. We test the newly developed formalism on several open-shell complexes ranging from diatomic systems (Li⋯H, Mn⋯Mn, …) to the phenalenyl dimer.

  17. Ground-state phase diagram in the Kugel-Khomskii model with finite spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji

    2018-05-01

    We study ground-state properties in the Kugel-Khomskii model on the two-dimensional honeycomb lattice. Using the cluster mean-field approximations, we deal with the exchange and spin-orbit couplings on an equal footing. We then discuss the stability of the ferromagnetically ordered states against the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit.

  18. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  19. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Lapas, Panteleimon; Stamokostas, Georgios; Fiete, Gregory

    2015-03-01

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  20. Exchange and spin-orbit induced phenomena in diluted (Ga,Mn)As from first principles

    NASA Astrophysics Data System (ADS)

    Kudrnovský, J.; Drchal, V.; Turek, I.

    2016-08-01

    Physical properties induced by exchange interactions (Curie temperature and spin stiffness) and spin-orbit coupling (anomalous Hall effect, anisotropic magnetoresistance, and Gilbert damping) in the diluted (Ga,Mn)As ferromagnetic semiconductor are studied from first principles. Recently developed Kubo-Bastin transport theory and nonlocal torque operator formulation of the Gilbert damping as formulated in the tight-binding linear muffin-tin orbital method are used. The first-principles Liechtenstein mapping is employed to construct an effective Heisenberg Hamiltonian and to estimate Curie temperature and spin stiffness in the real-space random-phase approximation. Good agreement of calculated physical quantities with experiments on well-annealed samples containing only a small amount of compensating defects is obtained.

  1. Electric-field-induced modification in Curie temperature of Co monolayer on Pt(111)

    NASA Astrophysics Data System (ADS)

    Nakamura, Kohji; Oba, Mikito; Akiyama, Toru; Ito, Tomonori; Weinert, Michael

    2015-03-01

    Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Curie temperature for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. An applied E-field modifies the magnon (spin-spiral formation) energies by a few meV, which leads to a modification of the exchange pair interaction parameters within the classical Heisenberg model. With inclusion of the spin-orbit coupling (SOC), the magnetocrystalline anisotropy and the Dzyaloshinskii-Morita interaction are obtained by the second variation SOC method. An E-field-induced modification of the Curie temperature is demonstrated by Monte Carlo simulations, in which a change in the exchange interaction is found to play a key role.

  2. Competing exchange interactions in multiferroic and ferrimagnetic CaBaCo 4 O 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, Randy Scott; Bordacs, S.; Kocsis, Vilmos

    Competing exchange interactions can produce complex magnetic states together with spin-induced electric polarizations. With competing interactions on alternating triangular and kagome layers, the swedenborgite CaBaCo 4O 7 may have one of the largest measured spin-induced polarizations of ~1700 nC/cm 2 below its ferrimagnetic transition temperature at 70 K. Upon rotating our sample about c = [0,0,1] while the magnetic field is fixed along [1,0,0], the threefold splitting of the spin-wave frequencies indicates that our sample is hexagonally twinned. In addition, magnetization measurements then suggest that roughly 20% of the sample is in a domain with the a axis along [1,0,0]more » and that 80% of the sample is in one of two other domains with the a axis along either [-1/2,√3/2, 0] or [-1/2, -√3/2, 0] . Powder neutron-diffraction data, magnetization measurements, and terahertz (THz) absorption spectroscopy reveal that the complex spin order in each domain can be described as a triangular array of bitetrahedral c-axis chains ferrimagnetically coupled to each other in the ab plane. In conclusion, the electric-field dependence of bonds coupling those chains produces the large spin-induced polarization of CaBaCo 4O 7 .« less

  3. Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.

    Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Slotted rotatable target assembly and systematic error analysis for a search for long range spin dependent interactions from exotic vector boson exchange using neutron spin rotation

    NASA Astrophysics Data System (ADS)

    Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.

    2018-03-01

    We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.

  5. Competing exchange interactions in multiferroic and ferrimagnetic CaBaCo 4 O 7

    DOE PAGES

    Fishman, Randy Scott; Bordacs, S.; Kocsis, Vilmos; ...

    2017-01-23

    Competing exchange interactions can produce complex magnetic states together with spin-induced electric polarizations. With competing interactions on alternating triangular and kagome layers, the swedenborgite CaBaCo 4O 7 may have one of the largest measured spin-induced polarizations of ~1700 nC/cm 2 below its ferrimagnetic transition temperature at 70 K. Upon rotating our sample about c = [0,0,1] while the magnetic field is fixed along [1,0,0], the threefold splitting of the spin-wave frequencies indicates that our sample is hexagonally twinned. In addition, magnetization measurements then suggest that roughly 20% of the sample is in a domain with the a axis along [1,0,0]more » and that 80% of the sample is in one of two other domains with the a axis along either [-1/2,√3/2, 0] or [-1/2, -√3/2, 0] . Powder neutron-diffraction data, magnetization measurements, and terahertz (THz) absorption spectroscopy reveal that the complex spin order in each domain can be described as a triangular array of bitetrahedral c-axis chains ferrimagnetically coupled to each other in the ab plane. In conclusion, the electric-field dependence of bonds coupling those chains produces the large spin-induced polarization of CaBaCo 4O 7 .« less

  6. Towards spinning Mellin amplitudes

    NASA Astrophysics Data System (ADS)

    Chen, Heng-Yu; Kuo, En-Jui; Kyono, Hideki

    2018-06-01

    We construct the Mellin representation of four point conformal correlation function with external primary operators with arbitrary integer spacetime spins, and obtain a natural proposal for spinning Mellin amplitudes. By restricting to the exchange of symmetric traceless primaries, we generalize the Mellin transform for scalar case to introduce discrete Mellin variables for incorporating spin degrees of freedom. Based on the structures about spinning three and four point Witten diagrams, we also obtain a generalization of the Mack polynomial which can be regarded as a natural kinematical polynomial basis for computing spinning Mellin amplitudes using different choices of interaction vertices.

  7. Microscopic theory for coupled atomistic magnetization and lattice dynamics

    NASA Astrophysics Data System (ADS)

    Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.

    2017-12-01

    A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for the discussed exchanges in terms of integrals over the electronic structure and, moreover, analogous expressions for the damping within and between the subsystems are provided. The proposed formalism and types of couplings enable a step forward in the microscopic first principles modeling of coupled spin and lattice quantities in a consistent format.

  8. Asymmetric band gaps in a Rashba film system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbone, C.; Moras, P.; Sheverdyaeva, P. M.

    The joint effect of exchange and Rashba spin-orbit interactions is examined on the surface and quantum well states of Ag 2 Bi -terminated Ag films grown on ferromagnetic Fe(110). The system displays a particular combination of time-reversal and translational symmetry breaking that strongly influences its electronic structure. Angle-resolved photoemission reveals asymmetric band-gap openings, due to spin-selective hybridization between Rashba-split surface states and exchange-split quantum well states. This results in an unequal number of states along positive and negative reciprocal space directions. We suggest that the peculiar asymmetry of the discovered electronic structure can have significant influence on spin-polarized transport properties.

  9. Magnitude of the magnetic exchange interaction in the heavy-fermion antiferromagnet CeRhIn 5

    DOE PAGES

    Das, Pinaki; Lin, S. -Z.; Ghimire, N. J.; ...

    2014-12-08

    We have used high-resolution neutron spectroscopy experiments to determine the complete spin wave spectrum of the heavy-fermion antiferromagnet CeRhIn₅. The spin wave dispersion can be quantitatively reproduced with a simple frustrated J₁-J₂ model that also naturally explains the magnetic spin-spiral ground state of CeRhIn₅ and yields a dominant in-plane nearest-neighbor magnetic exchange constant J₀=0.74(3) meV. Our results lead the way to a quantitative understanding of the rich low-temperature phase diagram of the prominent CeTIn₅ (T = Co, Rh, Ir) class of heavy-fermion materials.

  10. Ultrafast probes of nonequilibrium hole spin relaxation in the ferromagnetic semiconductor GaMnAs

    NASA Astrophysics Data System (ADS)

    Patz, Aaron; Li, Tianqi; Liu, Xinyu; Furdyna, Jacek K.; Perakis, Ilias E.; Wang, Jigang

    2015-04-01

    We report direct measurements of hole spin lifetimes in ferromagnetic GaMnAs carried out by time- and polarization-resolved spectroscopy. Below the Curie temperature, ultrafast photoexcitation of GaMnAs with linearly polarized light is shown to create a nonequilibrium hole spin population via dynamical polarization of the holes through p -d exchange scattering with ferromagnetically ordered Mn spins. The system is then observed to relax in a distinct three-step recovery process: (i) a femtosecond hole spin relaxation, on the scale of 160-200 fs; (ii) a picosecond hole energy relaxation, on the scale of 1-2 ps; and (iii) a coherent, damped Mn spin precession with a period of 250 ps. The transient amplitude of the hole spin relaxation component diminishes with increasing temperature, directly following the ferromagnetic order of GaMnAs, while the hole energy amplitude shows negligible temperature change. Our results serve to establish the hole spin lifetimes in the ferromagnetic semiconductor GaMnAs, at the same time demonstrating a spectroscopic method for studying nonequilibrium hole spins in the presence of magnetic order and spin-exchange interaction.

  11. S=2 quasi-one-dimensional spin waves in CrCl2

    NASA Astrophysics Data System (ADS)

    Stone, M. B.; Ehlers, G.; Granroth, G. E.

    2013-09-01

    We examine the magnetic excitation spectrum in the S=2 Heisenberg antiferromagnet CrCl2. Inelastic neutron scattering measurements on powder samples are able to determine the significant exchange interactions in this system. A large anisotropy gap is observed in the spectrum below the Néel temperature and the ratio of the two largest exchange constants is Jc/Jb=9.1±2.2. However, no sign of a gapped quantum spin liquid excitation was found in the paramagnetic phase.

  12. Electronic structure and microscopic model of CoNb2O6

    NASA Astrophysics Data System (ADS)

    Molla, Kaimujjaman; Rahaman, Badiur

    2018-05-01

    We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.

  13. Signatures of a quantum dynamical phase transition in a three-spin system in presence of a spin environment

    NASA Astrophysics Data System (ADS)

    Álvarez, Gonzalo A.; Levstein, Patricia R.; Pastawski, Horacio M.

    2007-09-01

    We have observed an environmentally induced quantum dynamical phase transition in the dynamics of a two-spin experimental swapping gate [G.A. Álvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124 (2006) 194507]. There, the exchange of the coupled states |↑,↓> and |↓,↑> gives an oscillation with a Rabi frequency b/ℏ (the spin-spin coupling). The interaction, ℏ/τSE with a spin-bath degrades the oscillation with a characteristic decoherence time. We showed that the swapping regime is restricted only to bτSE≳ℏ. However, beyond a critical interaction with the environment the swapping freezes and the system enters to a Quantum Zeno dynamical phase where relaxation decreases as coupling with the environment increases. Here, we solve the quantum dynamics of a two-spin system coupled to a spin-bath within a Liouville-von Neumann quantum master equation and we compare the results with our previous work within the Keldysh formalism. Then, we extend the model to a three interacting spin system where only one is coupled to the environment. Beyond a critical interaction the two spins not coupled to the environment oscillate with the bare Rabi frequency and relax more slowly. This effect is more pronounced when the anisotropy of the system-environment (SE) interaction goes from a purely XY to an Ising interaction form.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romera, M.; Monteblanco, E.; Garcia-Sanchez, F.

    The influence of dynamic coupling in between magnetic layers of a standard spin torque nano-oscillator composed of a synthetic antiferromagnet (SyF) as a polarizer and an in-plane magnetized free layer has been investigated. Experiments on spin valve nanopillars reveal non-continuous features such as kinks in the frequency field dependence that cannot be explained without such interactions. Comparison of experiments to numerical macrospin simulations shows that this is due to non-linear interaction between the spin torque (STT) driven mode and a damped mode that is mediated via the third harmonics of the STT mode. It only occurs at large applied currentsmore » and thus at large excitation amplitudes of the STT mode. Under these conditions, a hybridized mode characterized by a strong reduction of the linewidth appears. The reduced linewidth can be explained by a reduction of the non-linear contribution to the linewidth via an enhanced effective damping. Interestingly, the effect depends also on the exchange interaction within the SyF. An enhancement of the current range of reduced linewidth by a factor of two and a reduction of the minimum linewidth by a factor of two are predicted from simulation when the exchange interaction strength is reduced by 30%. These results open directions to optimize the design and microwave performances of spin torque nano-oscillators taking advantage of the coupling mechanisms.« less

  15. Correlated states in β-Li 2IrO 3 driven by applied magnetic fields

    DOE PAGES

    Ruiz, Alejandro; Frano, Alex; Breznay, Nicholas P.; ...

    2017-10-16

    Magnetic honeycomb iridates are thought to show strongly spin-anisotropic exchange interactions which, when highly frustrated, lead to an exotic state of matter known as the Kitaev quantum spin liquid. However, in all known examples these materials magnetically order at finite temperatures, the scale of which may imply weak frustration. Here we show that the application of a relatively small magnetic field drives the three-dimensional magnet β-Li 2IrO 3 from its incommensurate ground state into a quantum correlated paramagnet. Interestingly, this paramagnetic state admixes a zig-zag spin mode analogous to the zig-zag order seen in other Mott-Kitaev compounds. The rapid onsetmore » of the field-induced correlated state implies the exchange interactions are delicately balanced, leading to strong frustration and a near degeneracy of different ground states.« less

  16. Monte Carlo simulation of magnetic properties of mixed spin (3/2, 1) ferromagnetic and ferrimagnetic disordered binary alloys with amorphous structure

    NASA Astrophysics Data System (ADS)

    Motlagh, H. Nakhaei; Rezaei, G.

    2018-01-01

    Monte Carlo simulation is used to study the magnetic properties of mixed spin (3/2, 1) disordered binary alloys on simple cubic, hexagonal and amorphous magnetic ultra-thin films with 18 × 18 × 2 atoms. To this end, at the first approximation, the exchange coupling interaction between the spins is considered as a constant value and at the second one, the Ruderman-Kittel-Kasuya-Yosida (RKKY) model is used. Effects of concentration, structure, exchange interaction, single ion-anisotropy and the film size on the magnetic properties of disordered ferromagnetic and ferrimagnetic binary alloys are investigated. Our results indicate that the spontaneous magnetization and critical temperatures of rare earth-3d transition binary alloys are affected by these parameters. It is also found that in the ferrimagnetic state, the compensation temperature (Tcom) and the magnetic rearrangement temperature (TR) appear for some concentrations.

  17. Role of magnetic exchange interaction due to magnetic anisotropy on inverse spin Hall voltage at FeSi3%/Pt thin film bilayer interface

    NASA Astrophysics Data System (ADS)

    Shah, Jyoti; Ahmad, Saood; Chaujar, Rishu; Puri, Nitin K.; Negi, P. S.; Kotnala, R. K.

    2017-12-01

    In our recent studies inverse spin Hall voltage (ISHE) was investigated by ferromagnetic resonance (FMR) using bilayer FeSi3%/Pt thin film prepared by pulsed laser deposition (PLD) technique. In ISHE measurement microwave signal was applied on FeSi3% film along with DC magnetic field. Higher magnetization value along the film-plane was measured by magnetic hysteresis (M-H) loop. Presence of magnetic anisotropy has been obtained by M-H loop which showed easy direction of magnetization when applied magnetic field is parallel to the film plane. The main result of this study is that FMR induced inverse spin Hall voltage 12.6 μV at 1.0 GHz was obtained across Pt layer. Magnetic exchange field at bilayer interface responsible for field torque was measured 6 × 1014 Ω-1 m-2 by spin Hall magnetoresistance. The damping torque and spin Hall angle have been evaluated as 0.084 and 0.071 respectively. Presence of Si atom in FeSi3% inhomogenize the magnetic exchange field among accumulated spins at bilayer interface and feebly influenced by spin torque of FeSi3% layer. Weak field torque suppresses the spin pumping to Pt layer thus low value of inverse spin Hall voltage is obtained. This study provides an excellent opportunity to investigate spin transfer torque effect, thus motivating a more intensive experimental effort for its utilization at maximum potential. The improvement in spin transfer torque may be useful in spin valve, spin battery and spin transistor application.

  18. Strong ferromagnetic exchange interaction under ambient pressure in BaFe 2 S 3

    DOE PAGES

    Wang, Meng; Jin, S. J.; Yi, Ming; ...

    2017-02-03

    Inelastic neutron scattering measurements have been performed to investigate the spin waves of the quasi-one-dimensional antiferromagnetic ladder compound BaFe 2 S 3 , where a superconducting transition was observed under pressure [H. Takahashi et al., Nat. Mater. 14, 1008 (2015); T. Yamauchi et al., Phys. Rev. Lett. 115, 246402 (2015)]. By fitting the spherically averaged experimental data collected on a powder sample to a Heisenberg Hamiltonian, we find that the one-dimensional antiferromagnetic ladder exhibits a strong nearest-neighbor ferromagnetic exchange interaction (SJ R = - 71 ± 4 meV) along the rung direction, an antiferromagnetic SJ L = 49 ± 3more » meV along the leg direction, and a ferromagnetic SJ 2 = - 15 ± 2 meV along the diagonal direction. Finally, our data demonstrate that the antiferromagnetic spin excitations are a common characteristic for the iron-based superconductors, while specific relative values for the exchange interactions do not appear to be unique for the parent states of the superconducting materials.« less

  19. Monte Carlo Study of Magnetic Properties of Mixed Spins in a Fullerene X 30 Y 30-Like Structure

    NASA Astrophysics Data System (ADS)

    Mhirech, A.; Aouini, S.; Alaoui-Ismaili, A.; Bahmad, L.

    2018-03-01

    In this work, inspiring form of the fullerene-C60 structures, we study the mixed X_{30} Y_{30} fullerene-like structure and investigate its magnetic properties. In a such a structure, the carbons are assumed to be replaced by magnetic atoms having spin moments σ = 1/2 and S = 1. Firstly, we elaborate the ground-state phase diagrams in different physical parameter planes. In a second stage, we investigate the exchange coupling interaction effects in the absence or presence of both external magnetic and crystal fields. Using the Monte Carlo method, we carried out a study of the system magnetic properties and the thermal behavior of such a system for the ferromagnetic case. It is found that the critical temperature increases when increasing the coupling exchange interactions. On the other hand, the coercive magnetic field increases also when increasing the coupling exchange interactions. However, this physical parameter decreases when increasing the reduced temperature.

  20. UNO DMRG CASCI calculations of effective exchange integrals for m-phenylene-bis-methylene spin clusters

    NASA Astrophysics Data System (ADS)

    Kawakami, Takashi; Sano, Shinsuke; Saito, Toru; Sharma, Sandeep; Shoji, Mitsuo; Yamada, Satoru; Takano, Yu; Yamanaka, Shusuke; Okumura, Mitsutaka; Nakajima, Takahito; Yamaguchi, Kizashi

    2017-09-01

    Theoretical examinations of the ferromagnetic coupling in the m-phenylene-bis-methylene molecule and its oligomer were carried out. These systems are good candidates for exchange-coupled systems to investigate strong electronic correlations. We studied effective exchange integrals (J), which indicated magnetic coupling between interacting spins in these species. First, theoretical calculations based on a broken-symmetry single-reference procedure, i.e. the UHF, UMP2, UMP4, UCCSD(T) and UB3LYP methods, were carried out with a GAUSSIAN program code under an SR wave function. From these results, the J value by the UHF method was largely positive because of the strong ferromagnetic spin polarisation effect. The J value by the UCCSD(T) and UB3LYP methods improved an overestimation problem by correcting the dynamical electronic correlation. Next, magnetic coupling among these spins was studied using the CAS-based method of the symmetry-adapted multireference methods procedure. Thus, the UNO DMRG CASCI (UNO, unrestricted natural orbital; DMRG, density matrix renormalised group; CASCI, complete active space configuration interaction) method was mainly employed with a combination of ORCA and BLOCK program codes. DMRG CASCI calculations in valence electron counting, which included all orbitals to full valence CI, provided the most reliable result, and support the UB3LYP method for extended systems.

  1. Improving Limits on Exotic Spin Dependent Long Range Forces using Double Boson Exchange

    NASA Astrophysics Data System (ADS)

    Aldaihan, Sheakha; Snow, William Michael; Krause, Dennis; Long, Joshua

    2016-03-01

    The existence of very light weakly interacting particles that mediate new long range forces has been suggested in many extensions of the Standard Model. Such particles span a length scale between a μm and a few meters and include axions, familons, Majorons,and arions. Parameterizations of forces in this range show that they are composite-dependent, have a Yukawa shape, and have both spin-dependent as well as spin independent components. Very stringent limits on spin-independent couplings exist. For long range spin dependent forces, limits are weaker by 20 orders of magnitude compared to their spin independent analogs. The disparity in the limits raises the question of whether interesting limits on spin dependent couplings can be inferred from spin independent searches for long range forces. We show that this is possible using higher order contributions corresponding to double boson exchange and report the limits placed on spin dependent couplings using this method. We gratefully acknowledge the support of Indiana University and the National Science Foundation. The first author also acknowdges King Abdullah scholarship program.

  2. Influence of quantum phase transition on spin transport in the quantum antiferromagnet in the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2017-06-01

    We use the SU(3) Schwinger boson theory to study the spin transport properties of the two-dimensional anisotropic frustrated Heisenberg model in a honeycomb lattice at T = 0 with single ion anisotropy and third neighbor interactions. We have investigated the behavior of the spin conductivity for this model that presents exchange interactions J1 , J2 and J3 . We study the spin transport in the Bose-Einstein condensation regime where the bosons tz are condensed. Our results show an influence of the quantum phase transition point on the spin conductivity behavior. We also have made a diagrammatic expansion for the Green-function and did not obtain any significant change of the results.

  3. Coherent ultrafast spin-dynamics probed in three dimensional topological insulators

    PubMed Central

    Boschini, F.; Mansurova, M.; Mussler, G.; Kampmeier, J.; Grützmacher, D.; Braun, L.; Katmis, F.; Moodera, J. S.; Dallera, C.; Carpene, E.; Franz, C.; Czerner, M.; Heiliger, C.; Kampfrath, T.; Münzenberg, M.

    2015-01-01

    Topological insulators are candidates to open up a novel route in spin based electronics. Different to traditional ferromagnetic materials, where the carrier spin-polarization and magnetization are based on the exchange interaction, the spin properties in topological insulators are based on the coupling of spin- and orbit interaction connected to its momentum. Specific ways to control the spin-polarization with light have been demonstrated: the energy momentum landscape of the Dirac cone provides spin-momentum locking of the charge current and its spin. We investigate a spin-related signal present only during the laser excitation studying real and imaginary part of the complex Kerr angle by disentangling spin and lattice contributions. This coherent signal is only present at the time of the pump-pulses’ light field and can be described in terms of a Raman coherence time. The Raman transition involves states at the bottom edge of the conduction band. We demonstrate a coherent femtosecond control of spin-polarization for electronic states at around the Dirac cone. PMID:26510509

  4. Phase transitions and magnetization of the mixed-spin Ising–Heisenberg double sawtooth frustrated ladder

    NASA Astrophysics Data System (ADS)

    Arian Zad, Hamid; Ananikian, Nerses

    2018-04-01

    The mixed spin-(1,1/2) Ising–Heisenberg double sawtooth ladder containing a mixture of both spin-1 and spin-1/2 nodal atoms, and the spin-1/2 interstitial dimers are approximately solved by the transfer-matrix method. Here, we study in detail the ground-state phase diagrams, also influences of the bilinear exchange coupling on the rungs and cyclic four-spin exchange interaction in square plaquette of each block on the magnetization and magnetic susceptibility of the suggested ladder at low temperature. Such a double sawtooth ladder may be found in a Shastry-Sutherland lattice-type. In spite of the spin ordering of odd and even blocks being different from each other, due to the commutation relation between all different block Hamiltonians, phase diagrams, magnetization behavior and thermodynamic properties of the model are the same for odd and even blocks. We show that at low temperature, both exchange couplings can change the quality and quantity of the magnetization plateaus versus the magnetic field changes. Specially, we find a new magnetization plateau M/Ms= 5/6 for this model. Besides, we examine the magnetic susceptibility and specific heat of the model in detail. It is proven that behaviors of the magnetization and the magnetic susceptibility coincide at low temperature. The specific heat displays diverse temperature dependencies, which include a Schottky-type peak at a special temperature interval. We observe that with increase of the bilinear exchange coupling on the rungs, second peak temperature dependence grows.

  5. Suppression of electron spin relaxation in Mn-doped GaAs.

    PubMed

    Astakhov, G V; Dzhioev, R I; Kavokin, K V; Korenev, V L; Lazarev, M V; Tkachuk, M N; Kusrayev, Yu G; Kiessling, T; Ossau, W; Molenkamp, L W

    2008-08-15

    We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.

  6. Suppression of Electron Spin Relaxation in Mn-Doped GaAs

    NASA Astrophysics Data System (ADS)

    Astakhov, G. V.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Lazarev, M. V.; Tkachuk, M. N.; Kusrayev, Yu. G.; Kiessling, T.; Ossau, W.; Molenkamp, L. W.

    2008-08-01

    We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.

  7. Reinventing atomic magnetic simulations with spin-orbit coupling

    DOE PAGES

    Perera, Meewanage Dilina N.; Eisenbach, Markus; Nicholson, Don M.; ...

    2016-02-10

    We propose a powerful extension to the combined molecular and spin dynamics method that fully captures the coupling between the atomic and spin subsystems via spin-orbit interactions. Moreover, the foundation of this method lies in the inclusion of the local magnetic anisotropies that arise as a consequence of the lattice symmetry breaking due to phonons or crystallographic defects. By using canonical simulations of bcc iron with the system coupled to a phonon heat bath, we show that our extension enables the previously unachievable angular momentum exchange between the atomic and spin degrees of freedom.

  8. Theoretical Modeling of the Magnetic Behavior of Thiacalix[4]arene Tetranuclear Mn(II)2Gd(III)2 and Co(II)2Eu(III)2 Complexes.

    PubMed

    Aldoshin, Sergey M; Sanina, Nataliya A; Palii, Andrew V; Tsukerblat, Boris S

    2016-04-04

    In view of a wide perspective of 3d-4f complexes in single-molecule magnetism, here we propose an explanation of the magnetic behavior of the two thiacalix[4]arene tetranuclear heterometallic complexes Mn(II)2Gd(III)2 and Co(II)2Eu(III)2. The energy pattern of the Mn(II)2Gd(III)2 complex evaluated in the framework of the isotropic exchange model exhibits a rotational band of the low-lying spin excitations within which the Landé intervals are affected by the biquadratic spin-spin interactions. The nonmonotonic temperature dependence of the χT product observed for the Mn(II)2Gd(III)2 complex is attributed to the competitive influence of the ferromagnetic Mn-Gd and antiferromagnetic Mn-Mn exchange interactions, the latter being stronger (J(Mn, Mn) = -1.6 cm(-1), Js(Mn, Gd) = 0.8 cm(-1), g = 1.97). The model for the Co(II)2Eu(III)2 complex includes uniaxial anisotropy of the seven-coordinate Co(II) ions and an isotropic exchange interaction in the Co(II)2 pair, while the Eu(III) ions are diamagnetic in their ground states. Best-fit analysis of χT versus T showed that the anisotropic contribution (arising from a large zero-field splitting in Co(II) ions) dominates (weak-exchange limit) in the Co(II)2Eu(III)2 complex (D = 20.5 cm(-1), J = -0.4 cm(-1), gCo = 2.22). This complex is concluded to exhibit an easy plane of magnetization (arising from the Co(II) pair). It is shown that the low-lying part of the spectrum can be described by a highly anisotropic effective spin-(1)/2 Hamiltonian that is deduced for the Co(II)2 pair in the weak-exchange limit.

  9. Quantum interference measurement of spin interactions in a bio-organic/semiconductor device structure

    DOE PAGES

    Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...

    2015-03-30

    Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less

  10. Circuit quantum electrodynamics with a spin qubit.

    PubMed

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  11. Robust antiferromagnetic spin waves across the metal-insulator transition in hole-doped BaMn2As2

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, M.; Sapkota, A.; Pandey, Abhishek; Lamsal, J.; Abernathy, D. L.; Niedziela, J. L.; Stone, M. B.; Kreyssig, A.; Goldman, A. I.; Johnston, D. C.; McQueeney, R. J.

    2017-06-01

    BaMn2As2 is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the Néel temperature (TN) and the ordered moment, suggesting that doped holes interact weakly with the Mn spin system. Powder inelastic neutron scattering measurements were performed on three different samples of Ba1 -xKxMn2As2 with x =0 , 0.125, and 0.25 to study the effect of hole doping and metallization on the spin dynamics. We compare the neutron intensities to a linear spin-wave theory approximation to the J1-J2-Jc Heisenberg model. Hole doping is found to introduce only minor modifications to the exchange energies and spin gap. The changes observed in the exchange constants are consistent with the small drop of TN with doping.

  12. Magnetism of a Co monolayer on Pt(111) capped by overlayers of 5 d elements: A spin-model study

    NASA Astrophysics Data System (ADS)

    Simon, E.; Rózsa, L.; Palotás, K.; Szunyogh, L.

    2018-04-01

    Using first-principles calculations, we study the magnetic properties of a Co monolayer on a Pt(111) surface with a capping monolayer of selected 5 d elements (Re, Os, Ir, Pt, and Au). First we determine the tensorial exchange interactions and magnetic anisotropies characterizing the Co monolayer for all considered systems. We find a close relationship between the magnetic moment of the Co atoms and the nearest-neighbor isotropic exchange interaction, which is attributed to the electronic hybridization between the Co and the capping layers, in the spirit of the Stoner picture of ferromagnetism. The Dzyaloshinskii-Moriya interaction is decreased for all overlayers compared to the uncapped Co/Pt(111) system, while even the sign of the Dzyaloshinskii-Moriya interaction changes in the case of the Ir overlayer. We conclude that the variation of the Dzyaloshinskii-Moriya interaction is well correlated with the change of the magnetic anisotropy energy and of the orbital moment anisotropy. The unique influence of the Ir overlayer on the Dzyaloshinskii-Moriya interaction is traced by scaling the strength of the spin-orbit coupling of the Ir atoms in Ir/Co/Pt(111) and by changing the Ir concentration in the Au1 -xIrx /Co/Pt(111) system. Our spin dynamics simulations indicate that the magnetic ground state of Re/Co/Pt(111) thin film is a spin spiral with a tilted normal vector, while the other systems are ferromagnetic.

  13. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time.

    PubMed

    Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G

    2016-08-12

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.

  14. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time

    NASA Astrophysics Data System (ADS)

    Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.

    2016-08-01

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.

  15. Spin accumulation in thin Cs salts on contact with optically polarized Cs vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Kiyoshi

    2011-09-15

    The spin angular momentum accumulates in the Cs nuclei of salt on contact with optically pumped Cs vapor. The spin polarization in stable chloride as well as dissociative hydride indicates that nuclear dipole interaction works in spin transferring with a lesser role of atom exchange. In the solid film, not only the spin buildup but also the decay of enhanced polarization is faster than the thermal recovery rate for the bulk salt. Eliminating the signal of thick salt, we find that the nuclear spin polarization in the chloride film reaches over 100 times the thermal equilibrium.

  16. Orbital Dimer Model for the Spin-Glass State in Y 2 Mo 2 O 7

    DOE PAGES

    Thygesen, Peter M. M.; Paddison, Joseph A. M.; Zhang, Ronghuan; ...

    2017-02-08

    The formation of a spin glass generally requires that magnetic exchange interactions are both frustrated and disordered. Consequently, the origin of spin-glass behavior in Y 2Mo 2O 7-in which magnetic Mo 4+ ions occupy a frustrated pyrochlore lattice with minimal compositional disorder-has been a longstanding question. Here, we use neutron and x-ray pair-distribution function (PDF) analysis to develop a disorder model that resolves apparent incompatibilities between previously reported PDF, extended x-rayabsorption fine structure spectroscopy, and NMR studies, and provides a new and physical explanation of the exchange disorder responsible for spin-glass formation. We show that Mo 4+ ions displace accordingmore » to a local "two-in-two-out" rule on each Mo 4 tetrahedron, driven by orbital dimerization of Jahn-Teller active Mo 4+ ions. Long-range orbital order is prevented by the macroscopic degeneracy of dimer coverings permitted by the pyrochlore lattice. Cooperative O 2- displacements yield a distribution of Mo-O-Mo angles, which in turn introduces disorder into magnetic interactions. In conclusion, our study demonstrates experimentally how frustration of atomic displacements can assume the role of compositional disorder in driving a spin-glass transition.« less

  17. Orbital Dimer Model for the Spin-Glass State in Y_{2}Mo_{2}O_{7}.

    PubMed

    Thygesen, Peter M M; Paddison, Joseph A M; Zhang, Ronghuan; Beyer, Kevin A; Chapman, Karena W; Playford, Helen Y; Tucker, Matthew G; Keen, David A; Hayward, Michael A; Goodwin, Andrew L

    2017-02-10

    The formation of a spin glass generally requires that magnetic exchange interactions are both frustrated and disordered. Consequently, the origin of spin-glass behavior in Y_{2}Mo_{2}O_{7}-in which magnetic Mo^{4+} ions occupy a frustrated pyrochlore lattice with minimal compositional disorder-has been a longstanding question. Here, we use neutron and x-ray pair-distribution function (PDF) analysis to develop a disorder model that resolves apparent incompatibilities between previously reported PDF, extended x-ray-absorption fine structure spectroscopy, and NMR studies, and provides a new and physical explanation of the exchange disorder responsible for spin-glass formation. We show that Mo^{4+} ions displace according to a local "two-in-two-out" rule on each Mo_{4} tetrahedron, driven by orbital dimerization of Jahn-Teller active Mo^{4+} ions. Long-range orbital order is prevented by the macroscopic degeneracy of dimer coverings permitted by the pyrochlore lattice. Cooperative O^{2-} displacements yield a distribution of Mo-O-Mo angles, which in turn introduces disorder into magnetic interactions. Our study demonstrates experimentally how frustration of atomic displacements can assume the role of compositional disorder in driving a spin-glass transition.

  18. Solvable multistate model of Landau-Zener transitions in cavity QED

    DOE PAGES

    Sinitsyn, Nikolai; Li, Fuxiang

    2016-06-29

    We consider the model of a single optical cavity mode interacting with two-level systems (spins) driven by a linearly time-dependent field. When this field passes through values at which spin energy level splittings become comparable to spin coupling to the optical mode, a cascade of Landau-Zener (LZ) transitions leads to co-flips of spins in exchange for photons of the cavity. We derive exact transition probabilities between different diabatic states induced by such a sweep of the field.

  19. Optical Orientation of Mn2+ Ions in GaAs in Weak Longitudinal Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.

    2011-04-01

    We report on optical orientation of Mn2+ ions in bulk GaAs subject to weak longitudinal magnetic fields (B≤100mT). A manganese spin polarization of 25% is directly evaluated by using spin-flip Raman scattering. The dynamical Mn2+ polarization occurs due to the s-d exchange interaction with optically oriented conduction band electrons. Time-resolved photoluminescence reveals a nontrivial electron spin dynamics, where the oriented Mn2+ ions tend to stabilize the electron spins.

  20. Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields.

    PubMed

    Akimov, I A; Dzhioev, R I; Korenev, V L; Kusrayev, Yu G; Sapega, V F; Yakovlev, D R; Bayer, M

    2011-04-08

    We report on optical orientation of Mn2+ ions in bulk GaAs subject to weak longitudinal magnetic fields (B≤100  mT). A manganese spin polarization of 25% is directly evaluated by using spin-flip Raman scattering. The dynamical Mn2+ polarization occurs due to the s-d exchange interaction with optically oriented conduction band electrons. Time-resolved photoluminescence reveals a nontrivial electron spin dynamics, where the oriented Mn2+ ions tend to stabilize the electron spins.

  1. Interplay of Dzyaloshinsky-Moriya and dipole-dipole interactions and their joint effects upon vortical structures on nanodisks

    NASA Astrophysics Data System (ADS)

    Liu, Zhaosen; Ciftja, Orion; Ian, Hou

    2017-06-01

    In transition metal oxides, magnetic dipole-dipole (DD) and chiral Dzyaloshinsky-Moriya (DM) interactions between nearest neighboring spins are comparable in magnitude. In particular, the effects of the DD interaction on the physical properties of magnetic nanosystems cannot be simply neglected due to its long-range character. For these reasons, we employed here a new quantum simulation approach in order to investigate the interplay of these two interactions and study their combined effects upon the magnetic vortical structures of monolayer nanodisks. Consequently, we found out from our computational results that, in the presence of Heisenberg exchange interaction, a sufficiently strong DD interaction is also able to induce a single magnetic vortex on a small nanodisk; a strong DM interaction usually gives rise to a multi-domain structure which evolves with changing temperature; In this circumstance, if a weak DD interaction is further considered, the multi-domains merge to form a single vortex in the whole magnetic phase. Moreover, if only the Heisenberg exchange and chiral DM interactions are considered in simulations, our results from calculations with different spin values show that the transition temperature TM is simply proportional to S (S + 1) ; if the temperature is scaled with TM, and the calculated magnetizations are divided by the spin value S, their curves exhibit very similar features in the whole temperature region below TM.

  2. Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets

    NASA Astrophysics Data System (ADS)

    Mochizuki, Masahito; Kobayashi, Masaya; Okabe, Reoya; Yamamoto, Daisuke

    2018-02-01

    Nontrivial magnetic orders in the inverse-perovskite manganese nitrides are theoretically studied by constructing a classical spin model describing the magnetic anisotropy and frustrated exchange interactions inherent in specific crystal and electronic structures of these materials. With a replica-exchange Monte Carlo technique, a theoretical analysis of this model reproduces the experimentally observed triangular Γ5 g and Γ4 g spin-ordered patterns and the systematic evolution of magnetic orders. Our Rapid Communication solves a 40-year-old problem of nontrivial magnetism for the inverse-perovskite manganese nitrides and provides a firm basis for clarifying the magnetism-driven negative thermal expansion phenomenon discovered in this class of materials.

  3. Dynamic spin injection into a quantum well coupled to a spin-split bound state

    NASA Astrophysics Data System (ADS)

    Maslova, N. S.; Rozhansky, I. V.; Mantsevich, V. N.; Arseyev, P. I.; Averkiev, N. S.; Lähderanta, E.

    2018-05-01

    We present a theoretical analysis of dynamic spin injection due to spin-dependent tunneling between a quantum well (QW) and a bound state split in spin projection due to an exchange interaction or external magnetic field. We focus on the impact of Coulomb correlations at the bound state on spin polarization and sheet density kinetics of the charge carriers in the QW. The theoretical approach is based on kinetic equations for the electron occupation numbers taking into account high order correlation functions for the bound state electrons. It is shown that the on-site Coulomb repulsion leads to an enhanced dynamic spin polarization of the electrons in the QW and a delay in the carriers tunneling into the bound state. The interplay of these two effects leads to nontrivial dependence of the spin polarization degree, which can be probed experimentally using time-resolved photoluminescence experiments. It is demonstrated that the influence of the Coulomb interactions can be controlled by adjusting the relaxation rates. These findings open a new way of studying the Hubbard-like electron interactions experimentally.

  4. Magnetic field tunability of spin polarized excitations in a high temperature magnet

    NASA Astrophysics Data System (ADS)

    Holinsworth, Brian; Sims, Hunter; Cherian, Judy; Mazumdar, Dipanjan; Harms, Nathan; Chapman, Brandon; Gupta, Arun; McGill, Steve; Musfeldt, Janice

    Magnetic semiconductors are at the heart of modern device physics because they naturally provide a non-zero magnetic moment below the ordering temperature, spin-dependent band gap, and spin polarization that originates from exchange-coupled magnetization or an applied field creating a spin-split band structure. Strongly correlated spinel ferrites are amongst the most noteworthy contenders for semiconductor spintronics. NiFe2O4, in particular, displays spin-filtering, linear magnetoresistance, and wide application in the microwave regime. To unravel the spin-charge interaction in NiFe2O4, we bring together magnetic circular dichroism, photoconductivity, and prior optical absorption with complementary first principles calculations. Analysis uncovers a metamagnetic transition modifying electronic structure in the minority channel below the majority channel gap, exchange splittings emerging from spin-split bands, anisotropy of excitons surrounding the indirect gap, and magnetic-field dependent photoconductivity. These findings open the door for the creation and control of spin-polarized excitations from minority channel charge charge transfer in NiFe2O4 and other members of the spinel ferrite family.

  5. Magnetic anisotropy in binuclear complexes in the weak-exchange limit: From the multispin to the giant-spin Hamiltonian

    NASA Astrophysics Data System (ADS)

    Maurice, Rémi; de Graaf, Coen; Guihéry, Nathalie

    2010-06-01

    This paper studies the physical basis of the giant-spin Hamiltonian, which is usually used to describe the anisotropy of single-molecule magnets. A rigorous extraction of the model has been performed in the weak-exchange limit of a binuclear centrosymmetric Ni(II) complex, using correlated ab initio calculations and effective Hamiltonian theory. It is shown that the giant-spin Hamiltonian is not appropriate to describe polynuclear complexes as soon as spin mixing becomes non-negligible. A relevant model is proposed involving fourth-order operators, different from the traditionally used Stevens operators. The new giant-spin Hamiltonian correctly reproduces the effects of the spin mixing in the weak-exchange limit. A procedure to switch on and off the spin mixing in the extraction has been implemented in order to separate this effect from other anisotropic effects and to numerically evaluate both contributions to the tunnel splitting. Furthermore, the new giant-spin Hamiltonian has been derived analytically from the multispin Hamiltonian at the second order of perturbation and the theoretical link between the two models is studied to gain understanding concerning the microscopic origin of the fourth-order interaction in terms of axial, rhombic, or mixed (axial-rhombic) character. Finally, an adequate method is proposed to extract the proper magnetic axes frame for polynuclear anisotropic systems.

  6. Spin-1 Heisenberg ferromagnet using pair approximation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mert, Murat; Mert, Gülistan; Kılıç, Ahmet

    2016-06-08

    Thermodynamic properties for Heisenberg ferromagnet with spin-1 on the simple cubic lattice have been calculated using pair approximation method. We introduce the single-ion anisotropy and the next-nearest-neighbor exchange interaction. We found that for negative single-ion anisotropy parameter, the internal energy is positive and heat capacity has two peaks.

  7. 4-spin plaquette singlet state in the Shastry-Sutherland compound SrCu2(BO3)2

    NASA Astrophysics Data System (ADS)

    Zayed, M. E.; Rüegg, Ch.; Larrea J., J.; Läuchli, A. M.; Panagopoulos, C.; Saxena, S. S.; Ellerby, M.; McMorrow, D. F.; Strässle, Th.; Klotz, S.; Hamel, G.; Sadykov, R. A.; Pomjakushin, V.; Boehm, M.; Jiménez-Ruiz, M.; Schneidewind, A.; Pomjakushina, E.; Stingaciu, M.; Conder, K.; Rønnow, H. M.

    2017-10-01

    The study of interacting spin systems is of fundamental importance for modern condensed-matter physics. On frustrated lattices, magnetic exchange interactions cannot be simultaneously satisfied, and often give rise to competing exotic ground states. The frustrated two-dimensional Shastry-Sutherland lattice realized by SrCu2(BO3)2 (refs ,) is an important test case for our understanding of quantum magnetism. It was constructed to have an exactly solvable 2-spin dimer singlet ground state within a certain range of exchange parameters and frustration. While the exact dimer state and the antiferromagnetic order at both ends of the phase diagram are well known, the ground state and spin correlations in the intermediate frustration range have been widely debated. We report here the first experimental identification of the conjectured plaquette singlet intermediate phase in SrCu2(BO3)2. It is observed by inelastic neutron scattering after pressure tuning to 21.5 kbar. This gapped singlet state leads to a transition to long-range antiferromagnetic order above 40 kbar, consistent with the existence of a deconfined quantum critical point.

  8. Scattering of charge and spin excitations and equilibration of a one-dimensional Wigner crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matveev, K. A.; Andreev, A. V.; Klironomos, A. D.

    2014-07-01

    We study scattering of charge and spin excitations in a system of interacting electrons in one dimension. At low densities, electrons form a one-dimensional Wigner crystal. To a first approximation, the charge excitations are the phonons in the Wigner crystal, and the spin excitations are described by the Heisenberg model with nearest-neighbor exchange coupling. This model is integrable and thus incapable of describing some important phenomena, such as scattering of excitations off each other and the resulting equilibration of the system. We obtain the leading corrections to this model, including charge-spin coupling and the next-nearest-neighbor exchange in the spin subsystem.more » We apply the results to the problem of equilibration of the one-dimensional Wigner crystal and find that the leading contribution to the equilibration rate arises from scattering of spin excitations off each other. We discuss the implications of our results for the conductance of quantum wires at low electron densities« less

  9. Fourier's law of heat conduction: quantum mechanical master equation analysis.

    PubMed

    Wu, Lian-Ao; Segal, Dvira

    2008-06-01

    We derive the macroscopic Fourier's Law of heat conduction from the exact gain-loss time convolutionless quantum master equation under three assumptions for the interaction kernel. To second order in the interaction, we show that the first two assumptions are natural results of the long time limit. The third assumption can be satisfied by a family of interactions consisting of an exchange effect. The pure exchange model directly leads to energy diffusion in a weakly coupled spin- 12 chain.

  10. Spin wave propagation spectra in Octonacci one-dimensional magnonic quasicrystals

    NASA Astrophysics Data System (ADS)

    Valeriano, Analine P.; Costa, Carlos H.; Bezerra, Claudionor G.

    2018-06-01

    In this paper, we study spin wave propagation in quasiperiodic magnonic superlattices that follow the so-called Octonacci quasiperiodic sequence, where the N-th stage can be obtained through the recurrence rule SN =SN-1SN-2SN-1 , for N ⩾ 3 , and starting with S1 = A and S2 = B . The multilayered magnonic nanostructure is composed of two simple cubic ferromagnetic materials, labeled A and B, which interact through bilinear and biquadratic exchange couplings at their interfaces. The ferromagnetic materials are described by the Heisenberg model, and a transfer matrix treatment is employed, with the calculations performed for the exchange-dominated regime, taking the random phase approximation (RPA) into account. The obtained numerical results show the effects of both (i) the Octonacci quasiperiodic sequence and (ii) the biquadratic exchange coupling on the band structure and transmission spectra of spin waves. Comparisons are also performed with the spectra found in other periodic and quasiperiodic structures.

  11. Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.

    PubMed

    Udalov, O G; Beloborodov, I S

    2017-05-04

    We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.

  12. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    NASA Astrophysics Data System (ADS)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-01

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.

  13. Modelling magnetic anisotropy of single-chain magnets in |d/J| ≥ 1 regime

    NASA Astrophysics Data System (ADS)

    Haldar, Sumit; Raghunathan, Rajamani; Sutter, Jean-Pascal; Ramasesha, S.

    2017-11-01

    Single-molecule magnets (SMMs) with single-ion anisotropies comparable to exchange interactions J between spins have recently been synthesised. Here, we provide theoretical insights into the magnetism of such systems. We study spin chains with site-spins, s = 1, 3/2 and 2 and strength of on-site anisotropy comparable to the exchange constants between the spins. We find that large on-site anisotropies lead to crossing of the states with different MS values in the same spin manifold to which they belong in the absence of anisotropy. When on-site anisotropy is increased further, we also find that the MS states of the higher energy spin states descend below the MS states of the ground spin manifold. Giant spin in this limit is no longer conserved and describing the axial and rhombic anisotropies of the molecule, DM and EM, respectively, is not possible. However, the giant spin of the low-lying large MS states is very nearly an integer and, using this spin value, it is possible to construct an effective spin-Hamiltonian and compute the molecular magnetic anisotropy constants DM and EM. We report effect of finite sizes, rotations of site anisotropies and chain dimerisation on the effective anisotropy of the spin chains.

  14. Spin excitations used to probe the nature of exchange coupling in the magnetically ordered ground state of Pr 0.5 Ca 0.5 MnO 3

    DOE PAGES

    Ewings, R. A.; Perring, T. G.; Sikora, O.; ...

    2016-07-06

    We have used time-of-flight inelastic neutron scattering to measure the spin wave spectrum of the canonical half-doped manganite Pr 0.5Ca 0.5MnO 3 in its magnetic and orbitally ordered phase. Comparison of the data, which cover multiple Brillouin zones and the entire energy range of the excitations, with several different models shows that only the CE-type ordered state provides an adequate description of the magnetic ground state, provided interactions beyond nearest neighbor are included. We are able to rule out a ground state in which there exist pairs of dimerized spins which interact only with their nearest neighbors. The Zener polaronmore » ground state, which comprises strongly bound magnetic dimers, can be ruled out on the basis of gross features of the observed spin wave spectrum. A model with weaker dimerization reproduces the observed dispersion but can be ruled out on the basis of subtle discrepancies between the calculated and observed structure factors at certain positions in reciprocal space. Adding further neighbor interactions results in almost no dimerization, i.e. interpolating back to the CE model. These results are consistent with theoretical analysis of the degenerate double exchange model for half-doping.« less

  15. Strong Dzyaloshinskii-Moriya Interaction and Origin of Ferroelectricity in Cu2OSeO3

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hui; Li, Zheng-Lu; Lu, Xuezeng; Gong, X. G.; Xiang, Hongjun; Whangbo, M.-H.; Wei, Su-Huai

    2013-03-01

    In this work, we try to understand the skyrmions recently observed experimentally in Cu2OSeO3 system, as well as its origin of ferroelectricity. Based on the spin Hamiltonian, we developed four-state-energy-mapping method to derive these spin interaction parameters. For this system, we found a very large ratio between the DM term and the symmetric exchange interaction. Besides, the spin arrangements in the ground state are found degenerate and the spin energy is independent of the propagation vector q. Taking these two factors into account, we explained the experimental observation of skyrmions to some extent. Then we built a model to describe the polarization of this system. By the symmetry analysis, the ferroelectricity is supposed to result from the spin single-site term, as is confirmed by direct calculations of our model. Using this model, we analyzed its ferroelectricity dependence of the spin arrangement and find the largest polarization happens when the spins are along <111> direction, in excellent agreement with the experimental results. NSFC, Special Funds for Major State Basic Research, Pujiang plan, FANEDD

  16. Suppression of spin and optical gaps in phosphorene quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Sheng, Weidong

    2018-05-01

    Electronic structure and optical properties of triangular phosphorene quantum dots have been investigated theoretically. Based on systematic configuration interaction calculations, the ground and excited states of the interacting many-electron system together with its optical absorption spectrum are obtained. For the nanodot with 60 phosphorus atoms in various dielectric environments, it is found that the spin gap of the correlated system surprisingly overlaps its optical gap over a large range of the effective dielectric constant. The overlapping of the spin and optical gaps can be attributed to the fact that the extra correlation energy in the spin singlet almost compensates the exchange energy in the spin triplet in the presence of strong long-range electron-electron interactions. Moreover, both the spin and optical gaps are shown to be greatly suppressed as the screening effect becomes strong. When the dielectric constant decreases below 2.65, it is seen that the spin gap becomes negative and the quantum dot undergoes a phase transition from nonmagnetic to ferromagnetic. Our results are compared with the previous experimental and theoretical works.

  17. Switching effects and spin-valley Andreev resonant peak shifting in silicene superconductor

    NASA Astrophysics Data System (ADS)

    Soodchomshom, Bumned; Niyomsoot, Kittipong; Pattrawutthiwong, Eakkarat

    2018-03-01

    The magnetoresistance and spin-valley transport properties in a silicene-based NM/FB/SC junction are investigated, where NM, FB and SC are normal, ferromagnetic and s-wave superconducting silicene, respectively. In the FB region, perpendicular electric and staggered exchange fields are applied. The quasiparticles may be described by Dirac Bogoliubov-de Gennes equation due to Cooper pairs formed by spin-valley massive fermions. The spin-valley conductances are calculated based on the modified Blonder-Tinkham-Klapwijk formalism. We find the spin-valley dependent Andreev resonant peaks in the junction shifted by applying exchange field. Perfect conductance switch generated by interplay of intrinsic spin orbit interaction and superconducting gap has been predicted. Spin and valley polarizations are almost linearly dependent on biased voltage near zero bias and then turn into perfect switch at biased voltage approaching the superconducting gap. The perfect switching of large magnetoresistance has been also predicted at biased energy near the superconducting gap. These switching effects may be due to the presence of spin-valley Andreev resonant peak near the superconducting gap. Our work reveals potential of silicene as applications of electronic switching devices and linear control of spin and valley polarizations.

  18. Single-shot quantum nondemolition measurement of a quantum-dot electron spin using cavity exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa

    2014-10-01

    We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.

  19. Electronic structure, magnetism, and exchange integrals in transition-metal oxides: Role of the spin polarization of the functional in DFT+U calculations

    NASA Astrophysics Data System (ADS)

    Keshavarz, Samara; Schött, Johan; Millis, Andrew J.; Kvashnin, Yaroslav O.

    2018-05-01

    Density functional theory augmented with Hubbard-U corrections (DFT+U ) is currently one of the most widely used methods for first-principles electronic structure modeling of insulating transition-metal oxides (TMOs). Since U is relatively large compared to bandwidths, the magnetic excitations in TMOs are expected to be well described by a Heisenberg model. However, in practice the calculated exchange parameters Ji j depend on the magnetic configuration from which they are extracted and on the functional used to compute them. In this work we investigate how the spin polarization dependence of the underlying exchange-correlation functional influences the calculated magnetic exchange constants of TMOs. We perform a systematic study of the predictions of calculations based on the local density approximation plus U (LDA+U ) and the local spin density approximation plus U (LSDA+U ) for the electronic structures, total energies, and magnetic exchange interactions Ji j extracted from ferromagnetic (FM) and antiferromagnetic (AFM) configurations of several transition-metal oxide materials. We report that for realistic choices of Hubbard U and Hund's J parameters, LSDA+U and LDA+U calculations result in different values of the magnetic exchange constants and band gap. The dependence of the band gap on the magnetic configuration is stronger in LDA+U than in LSDA+U and we argue that this is the main reason why the configuration dependence of Ji j is found to be systematically more pronounced in LDA+U than in LSDA+U calculations. We report a very good correspondence between the computed total energies and the parametrized Heisenberg model for LDA+U calculations, but not for LSDA+U , suggesting that LDA+U is a more appropriate method for estimating exchange interactions.

  20. A state interaction spin-orbit coupling density matrix renormalization group method

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2016-06-01

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.

  1. Negative exchange interactions in coupled few-electron quantum dots

    NASA Astrophysics Data System (ADS)

    Deng, Kuangyin; Calderon-Vargas, F. A.; Mayhall, Nicholas J.; Barnes, Edwin

    2018-06-01

    It has been experimentally shown that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin tripletlike rather than singletlike ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both tripletlike and singletlike ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that tripletlike ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons.

  2. Accurate spin-orbit and spin-other-orbit contributions to the g-tensor for transition metal containing systems.

    PubMed

    Van Yperen-De Deyne, A; Pauwels, E; Van Speybroeck, V; Waroquier, M

    2012-08-14

    In this paper an overview is presented of several approximations within Density Functional Theory (DFT) to calculate g-tensors in transition metal containing systems and a new accurate description of the spin-other-orbit contribution for high spin systems is suggested. Various implementations in a broad variety of software packages (ORCA, ADF, Gaussian, CP2K, GIPAW and BAND) are critically assessed on various aspects including (i) non-relativistic versus relativistic Hamiltonians, (ii) spin-orbit coupling contributions and (iii) the gauge. Particular attention is given to the level of accuracy that can be achieved for codes that allow g-tensor calculations under periodic boundary conditions, as these are ideally suited to efficiently describe extended condensed-phase systems containing transition metals. In periodic codes like CP2K and GIPAW, the g-tensor calculation schemes currently suffer from an incorrect treatment of the exchange spin-orbit interaction and a deficient description of the spin-other-orbit term. In this paper a protocol is proposed, making the predictions of the exchange part to the g-tensor shift more plausible. Focus is also put on the influence of the spin-other-orbit interaction which becomes of higher importance for high-spin systems. In a revisited derivation of the various terms arising from the two-electron spin-orbit and spin-other-orbit interaction (SOO), new insight has been obtained revealing amongst other issues new terms for the SOO contribution. The periodic CP2K code has been adapted in view of this new development. One of the objectives of this study is indeed a serious enhancement of the performance of periodic codes in predicting g-tensors in transition metal containing systems at the same level of accuracy as the most advanced but time consuming spin-orbit mean-field approach. The methods are first applied on rhodium carbide but afterwards extended to a broad test set of molecules containing transition metals from the fourth, fifth and sixth row of the periodic table. The set contains doublets as well as high-spin molecules.

  3. CaMn 2Sb 2: Spin waves on a frustrated antiferromagnetic honeycomb lattice

    DOE PAGES

    McNally, D. E.; Simonson, J. W.; Kistner-Morris, J. J.; ...

    2015-05-22

    Here we presenmore » t inelastic neutron scattering measurements of the antiferromagnetic insulator CaMn 2 Sb 2 , which consists of corrugated honeycomb layers of Mn. The dispersion of magnetic excitations has been measured along the H and L directions in reciprocal space, with a maximum excitation energy of ≈ 24 meV. These excitations are well described by spin waves in a Heisenberg model, including first-and second-neighbor exchange interactions J 1 and J 2 in the Mn plane and also an exchange interaction between planes. The determined ratio J 2/J 1 ≈ 1/6 suggests that CaMn 2 Sb 2 is an example of a compound that lies very close to the mean field tricritical point, known for the classical Heisenberg model on the honeycomb lattice, where the Néel phase and two different spiral phases coexist. Lastly, the magnitude of the determined exchange interactions reveals a mean field ordering temperature ≈ 4 times larger than the reported Néel temperature T N = 85 K, suggesting significant frustration arising from proximity to the tricritical point.« less

  4. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S.; Del Bianco, L.

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence ofmore » the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.« less

  5. Meissner mechanism for the spin supercurrent and interplay between quantum phase transition and spin transport in the frustrated Heisenberg model

    NASA Astrophysics Data System (ADS)

    Lima, Leonardo S.

    2018-04-01

    We have propose the Meissner mechanism for the spin supercurrent in quantum spin systems. Besides, we study the behavior of the AC spin conductivity in neighborhood of quantum phase transition in a frustrated spin model such as the antiferromagnet in the union jack lattice with single ion anisotropy at T = 0 . We investigate the spin conductivity for this model that presents exchange interactions J1 and J2 . Our results show a single peak for the conductivity with the height varying with the behavior of critical anisotropy Dc with J2 . We obtain the conductivity tending to zero in the limit ω → 0 .

  6. The effects of the one-step replica symmetry breaking on the Sherrington-Kirkpatrick spin glass model in the presence of random field with a joint Gaussian probability density function for the exchange interactions and random fields

    NASA Astrophysics Data System (ADS)

    Hadjiagapiou, Ioannis A.; Velonakis, Ioannis N.

    2018-07-01

    The Sherrington-Kirkpatrick Ising spin glass model, in the presence of a random magnetic field, is investigated within the framework of the one-step replica symmetry breaking. The two random variables (exchange integral interaction Jij and random magnetic field hi) are drawn from a joint Gaussian probability density function characterized by a correlation coefficient ρ, assuming positive and negative values. The thermodynamic properties, the three different phase diagrams and system's parameters are computed with respect to the natural parameters of the joint Gaussian probability density function at non-zero and zero temperatures. The low temperature negative entropy controversy, a result of the replica symmetry approach, has been partly remedied in the current study, leading to a less negative result. In addition, the present system possesses two successive spin glass phase transitions with characteristic temperatures.

  7. Quantum Monte Carlo analysis of a charge ordered insulating antiferromagnet: The Ti 4O 7 Magneli phase

    DOE PAGES

    Benali, Anouar; Shulenburger, Luke; Krogel, Jaron T.; ...

    2016-06-07

    The Magneli phase Ti 4O 7 is an important transition metal oxide with a wide range of applications because of its interplay between charge, spin, and lattice degrees of freedom. At low temperatures, it has non-trivial magnetic states very close in energy, driven by electronic exchange and correlation interactions. We have examined three low- lying states, one ferromagnetic and two antiferromagnetic, and calculated their energies as well as Ti spin moment distributions using highly accurate Quantum Monte Carlo methods. We compare our results to those obtained from density functional theory- based methods that include approximate corrections for exchange and correlation.more » Our results confirm the nature of the states and their ordering in energy, as compared with density-functional theory methods. However, the energy differences and spin distributions differ. Here, a detailed analysis suggests that non-local exchange-correlation functionals, in addition to other approximations such as LDA+U to account for correlations, are needed to simultaneously obtain better estimates for spin moments, distributions, energy differences and energy gaps.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirac, J. Ignacio; Sierra, German; Instituto de Fisica Teorica, UAM-CSIC, Madrid

    We generalize the matrix product states method using the chiral vertex operators of conformal field theory and apply it to study the ground states of the XXZ spin chain, the J{sub 1}-J{sub 2} model and random Heisenberg models. We compute the overlap with the exact wave functions, spin-spin correlators, and the Renyi entropy, showing that critical systems can be described by this method. For rotational invariant ansatzs we construct an inhomogenous extension of the Haldane-Shastry model with long-range exchange interactions.

  9. Current-induced damping of nanosized quantum moments in the presence of spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Mahfouzi, Farzad; Kioussis, Nicholas

    2017-05-01

    Motivated by the need to understand current-induced magnetization dynamics at the nanoscale, we have developed a formalism, within the framework of Keldysh Green function approach, to study the current-induced dynamics of a ferromagnetic (FM) nanoisland overlayer on a spin-orbit-coupling (SOC) Rashba plane. In contrast to the commonly employed classical micromagnetic LLG simulations the magnetic moments of the FM are treated quantum mechanically. We obtain the density matrix of the whole system consisting of conduction electrons entangled with the local magnetic moments and calculate the effective damping rate of the FM. We investigate two opposite limiting regimes of FM dynamics: (1) The precessional regime where the magnetic anisotropy energy (MAE) and precessional frequency are smaller than the exchange interactions and (2) the local spin-flip regime where the MAE and precessional frequency are comparable to the exchange interactions. In the former case, we show that due to the finite size of the FM domain, the "Gilbert damping" does not diverge in the ballistic electron transport regime, in sharp contrast to Kambersky's breathing Fermi surface theory for damping in metallic FMs. In the latter case, we show that above a critical bias the excited conduction electrons can switch the local spin moments resulting in demagnetization and reversal of the magnetization. Furthermore, our calculations show that the bias-induced antidamping efficiency in the local spin-flip regime is much higher than that in the rotational excitation regime.

  10. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  11. Spin effects in transport through single-molecule magnets in the sequential and cotunneling regimes

    NASA Astrophysics Data System (ADS)

    Misiorny, Maciej; Weymann, Ireneusz; Barnaś, Józef

    2009-06-01

    We analyze the stationary spin-dependent transport through a single-molecule magnet weakly coupled to external ferromagnetic leads. Using the real-time diagrammatic technique, we calculate the sequential and cotunneling contributions to current, tunnel magnetoresistance, and Fano factor in both linear and nonlinear response regimes. We show that the effects of cotunneling are predominantly visible in the blockade regime and lead to enhancement of tunnel magnetoresistance (TMR) above the Julliere value, which is accompanied with super-Poissonian shot noise due to bunching of inelastic cotunneling processes through different virtual spin states of the molecule. The effects of external magnetic field and the role of type and strength of exchange interaction between the LUMO level and the molecule’s spin are also considered. When the exchange coupling is ferromagnetic, we find an enhanced TMR, while in the case of antiferromagnetic coupling we predict a large negative TMR effect.

  12. Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy

    DOE PAGES

    Hayami, Satoru; Lin, Shi-Zeng; Batista, Cristian D.

    2016-05-12

    We clarify the conditions for the emergence of multiple-Q structures out of lattice and easy-axis spin anisotropy in frustrated magnets. By considering magnets whose exchange interaction has multiple global minima in momentum space, we find that both types of anisotropy stabilize triple-Q orderings. Moderate anisotropy leads to a magnetic field-induced skyrmion crystal, which evolves into a bubble crystal for increasing spatial and spin anisotropy. Finally, the bubble crystal exhibits a quasi-continuous (devil’s staircase) temperature dependent ordering wave-vector, characteristic of the competition between frustrated exchange and strong easy-axis anisotropy.

  13. Interfacial exchange interactions and magnetism of Ni2MnAl /Fe bilayers

    NASA Astrophysics Data System (ADS)

    Yanes, R.; Simon, E.; Keller, S.; Nagyfalusi, B.; Khmelevsky, S.; Szunyogh, L.; Nowak, U.

    2017-08-01

    Based on multiscale calculations combining ab initio methods with spin dynamics simulations, we perform a detailed study of the magnetic behavior of Ni2MnAl /Fe bilayers. Our simulations show that such a bilayer exhibits a small exchange bias effect when the Ni2MnAl Heusler alloy is in a disordered B2 phase. Additionally, we present an effective way to control the magnetic structure of the Ni2MnAl antiferromagnet, in the pseudo-ordered B2-I as well as the disordered B2 phases, via a spin-flop coupling to the Fe layer.

  14. Combined Molecular and Spin Dynamics Simulation of Lattice Vacancies in BCC Iron

    NASA Astrophysics Data System (ADS)

    Mudrick, Mark; Perera, Dilina; Eisenbach, Markus; Landau, David P.

    Using an atomistic model that treats translational and spin degrees of freedom equally, combined molecular and spin dynamics simulations have been performed to study dynamic properties of BCC iron at varying levels of defect impurity. Atomic interactions are described by an empirical many-body potential, and spin interactions with a Heisenberg-like Hamiltonian with a coordinate dependent exchange interaction. Equations of motion are solved numerically using the second-order Suzuki-Trotter decomposition for the time evolution operator. We analyze the spatial and temporal correlation functions for atomic displacements and magnetic order to obtain the effect of vacancy defects on the phonon and magnon excitations. We show that vacancy clusters in the material cause splitting of the characteristic transverse spin-wave excitations, indicating the production of additional excitation modes. Additionally, we investigate the coupling of the atomic and magnetic modes. These modes become more distinct with increasing vacancy cluster size. This material is based upon work supported by the U.S. Department of Energy Office of Science Graduate Student Research (SCGSR) program.

  15. Robust antiferromagnetic spin waves across the metal-insulator transition in hole-doped BaMn 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramazanoglu, M.; Sapkota, A.; Pandey, Abhishek

    BaMn 2 As 2 is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the Néel temperature (T N) and the ordered moment, suggesting that doped holes interact weakly with the Mn spin system. Powder inelastic neutron scattering measurements were performed on three different samples of Ba 1 - xK xMn 2 As 2 with x = 0 , 0.125, and 0.25 to study the effect of hole doping and metallization on the spin dynamics. We compare the neutron intensities to amore » linear spin-wave theory approximation to the J 1 $-$ J 2 $-$ J c Heisenberg model. Hole doping is found to introduce only minor modifications to the exchange energies and spin gap. Lastly, the changes observed in the exchange constants are consistent with the small drop of T N with doping.« less

  16. Improper magnetic ferroelectricity of nearly pure electronic nature in helicoidal spiral CaMn7O12

    NASA Astrophysics Data System (ADS)

    Lim, Jin Soo; Saldana-Greco, Diomedes; Rappe, Andrew M.

    2018-01-01

    Helicoidal magnetic order breaks inversion symmetry in quadruple perovskite CaMn7O12 , generating one of the largest spin-induced ferroelectric polarizations measured to date. Here, the microscopic origin of the polarization, including exchange interactions, coupling to the spin helicity, and charge density redistribution, is explored via first-principles calculations. The B -site Mn4 + (Mn3) spin adopts a noncentrosymmetric configuration, stabilized not only by spin-orbit coupling (SOC), but also by the fully anisotropic Hubbard J parameter in the absence of SOC, to break inversion symmetry and generate polarization. Berry phase computed polarization (Pelec=2169 μ C /m2 ) exhibits nearly pure electronic behavior, with negligible Mn displacements (≈0.7 m Å ). Orbital-resolved density of states shows that p -d orbital mixing is microscopically driven by nonrelativistic exchange striction within the commensurate ionic structure. Persistent electronic polarization induced by helical spin order in the nearly inversion-symmetric ionic crystal lattice suggests opportunities for ultrafast magnetoelectric response.

  17. Robust antiferromagnetic spin waves across the metal-insulator transition in hole-doped BaMn 2 As 2

    DOE PAGES

    Ramazanoglu, M.; Sapkota, A.; Pandey, Abhishek; ...

    2017-06-01

    BaMn 2 As 2 is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the Néel temperature (T N) and the ordered moment, suggesting that doped holes interact weakly with the Mn spin system. Powder inelastic neutron scattering measurements were performed on three different samples of Ba 1 - xK xMn 2 As 2 with x = 0 , 0.125, and 0.25 to study the effect of hole doping and metallization on the spin dynamics. We compare the neutron intensities to amore » linear spin-wave theory approximation to the J 1 $-$ J 2 $-$ J c Heisenberg model. Hole doping is found to introduce only minor modifications to the exchange energies and spin gap. Lastly, the changes observed in the exchange constants are consistent with the small drop of T N with doping.« less

  18. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    DOE PAGES

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-10

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less

  19. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less

  20. CONDUCTION ELECTRON-MAGNETIC ION INTERACTION IN RARE EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, G.S.; Legvold, S.

    1958-11-01

    The proposal is maade that there is an additional effective electron- electron interaction in the rare earths which results from the conduction electron-magnetic ion exchange. The strength of the net electron-electron interaction should tnen be expected to be a function of spin as well as solute concentrations. (W.D.M.)

  1. Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State

    NASA Astrophysics Data System (ADS)

    Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon

    2016-10-01

    Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.

  2. Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1996-01-01

    Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.

  3. Quantum fluctuations in anisotropic triangular lattices with ferromagnetic and antiferromagnetic exchange

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Thalmeier, Peter

    2014-05-01

    The Heisenberg model on a triangular lattice is a prime example of a geometrically frustrated spin system. However most experimentally accessible compounds have spatially anisotropic exchange interactions. As a function of this anisotropy, ground states with different magnetic properties can be realized. Motivated by recent experimental findings on Cs2CuCl4-xBrx, we discuss the full phase diagram of the anisotropic model with two exchange constants J1 and J2, including possible ferromagnetic exchange. Furthermore a comparison with the related square lattice model is carried out. We discuss the zero-temperature phase diagram, ordering vector, ground-state energy, and ordered moment on a classical level and investigate the effect of quantum fluctuations within the framework of spin-wave theory. The field dependence of the ordered moment is shown to be nonmonotonic with field and control parameter.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thygesen, Peter M. M.; Paddison, Joseph A. M.; Zhang, Ronghuan

    The formation of a spin glass generally requires that magnetic exchange interactions are both frustrated and disordered. Consequently, the origin of spin-glass behavior in Y 2Mo 2O 7-in which magnetic Mo 4+ ions occupy a frustrated pyrochlore lattice with minimal compositional disorder-has been a longstanding question. Here, we use neutron and x-ray pair-distribution function (PDF) analysis to develop a disorder model that resolves apparent incompatibilities between previously reported PDF, extended x-rayabsorption fine structure spectroscopy, and NMR studies, and provides a new and physical explanation of the exchange disorder responsible for spin-glass formation. We show that Mo 4+ ions displace accordingmore » to a local "two-in-two-out" rule on each Mo 4 tetrahedron, driven by orbital dimerization of Jahn-Teller active Mo 4+ ions. Long-range orbital order is prevented by the macroscopic degeneracy of dimer coverings permitted by the pyrochlore lattice. Cooperative O 2- displacements yield a distribution of Mo-O-Mo angles, which in turn introduces disorder into magnetic interactions. In conclusion, our study demonstrates experimentally how frustration of atomic displacements can assume the role of compositional disorder in driving a spin-glass transition.« less

  5. Vindication of Yb2Ti2O7 as a model exchange quantum spin ice.

    PubMed

    Applegate, R; Hayre, N R; Singh, R R P; Lin, T; Day, A G R; Gingras, M J P

    2012-08-31

    We use numerical linked-cluster expansions to compute the specific heat C(T) and entropy S(T) of a quantum spin ice Hamiltonian for Yb2Ti2O7 using anisotropic exchange interactions, recently determined from inelastic neutron scattering measurements, and find good agreement with experimental calorimetric data. This vindicates Yb2Ti2O7 as a model quantum spin ice. We find that in the perturbative weak quantum regime, such a system has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signaling the paramagnetic to spin ice crossover, followed at a lower temperature by a sharp peak accompanying a first-order phase transition to the ordered state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We anticipate that the conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.

  6. Strong Electron Correlation in Photoionization of Spin-Orbit Doublets

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Chernsheva, L. V.; Mnason, S. T.; Msezane, A. Z.; Radojevic, V.

    2002-05-01

    A new and explicitly many-body aspect of the "leveraging" of the spin-orbit interaction is demonstrated, spin-orbit activated interchannel coupling, which can significantly alter the photoionization cross section of a spin-orbit doublet. As an example, using a modified version of the Spin-Polarized Random-Phase-Approximation with Exchange methodology, a recently observed structure in the photoionization of Xe 3d(A. Kivimaki et al, Phys. Rev. A 63), 012716 (2000) has been explained both qualitatively and quantitatively. The structure is entirely due to this new spin-orbit activated interchannel coupling effect, which should be a general feature of inner-shell photoionization. This work was supported by NSF, NASA, DOE and ISTC.

  7. Characterizing the Dynamic Response of the Estrogen Receptor to Agonists and Antagonists by Multifrequency Electron Spin Resonance Spin-Labeling

    DTIC Science & Technology

    2008-05-01

    Engen , for corroborative studies of ER dynamics using hydrogen deuterium exchange mass spectrometry (HDXMS). The more detailed mass spectroscopic...American Chemical Society, New Orleans, LA, April 6-10, 2008 3. Stefano V Gulla1, Kalman Hideg,2 David E. Budil, Characterization of spin labeled...estradiol as a probe for Estrogen Receptor binding interactions, 235th National Meeting of the American Chemical Society, New Orleans, LA, April 6-10, 2008

  8. Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet.

    PubMed

    Ulloa, Camilo; Duine, R A

    2018-04-27

    Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.

  9. Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet

    NASA Astrophysics Data System (ADS)

    Ulloa, Camilo; Duine, R. A.

    2018-04-01

    Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.

  10. Small-angle neutron scattering study of magnetic ordering and inhomogeneity across the martensitic phase transformation in Ni 50–xCo xMn₄₀Sn₁₀ alloys

    DOE PAGES

    Bhatti, Kanwal Preet; El-Khatib, S.; Srivastava, Vijay; ...

    2012-04-27

    The Heusler-derived multiferroic alloy Ni 50–xCo xMn₄₀Sn₁₀ has recently been shown to exhibit, at just above room temperature, a highly reversible martensitic phase transformation with an unusually large magnetization change. In this work the nature of the magnetic ordering above and below this transformation has been studied in detail in the critical composition range x = 6–8 via temperature-dependent (5–600 K) magnetometry and small-angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420–430 K, with the expected critical spin fluctuations, followed by first-order martensitic phase transformations to a nonferromagnetic state below 360–390more » K. The static magnetization reveals complex magnetism in this low-temperature nonferromagnetic phase, including a Langevin-like field dependence, distinct spin freezing near 60 K, and significant exchange bias effects, consistent with superparamagnetic blocking of ferromagnetic clusters of nanoscopic dimensions. We demonstrate that these spin clusters, whose existence has been hypothesized in a variety of martensitic alloys exhibiting competition between ferromagnetic and antiferromagnetic exchange interactions, can be directly observed by SANS. The scattering data are consistent with a liquidlike spatial distribution of interacting magnetic clusters with a mean center-to-center spacing of 12 nm. Considering the behavior of the superparmagnetism, cooling-field and temperature-dependent exchange bias, and magnetic SANS, we discuss in detail the physical form and origin of these spin clusters, their intercluster interactions, the nature of the ground-state magnetic ordering in the martensitic phase, and the implications for our understanding of such alloy systems.« less

  11. Electric-field-induced modification of the magnon energy, exchange interaction, and curie temperature of transition-metal thin films.

    PubMed

    Oba, M; Nakamura, K; Akiyama, T; Ito, T; Weinert, M; Freeman, A J

    2015-03-13

    The electric-field-induced modification in the Curie temperature of prototypical transition-metal thin films with the perpendicular magnetic easy axis, a freestanding Fe(001) monolayer and a Co monolayer on Pt(111), is investigated by first-principles calculations of spin-spiral structures in an external electric field (E field). An applied E field is found to modify the magnon (spin-spiral formation) energy; the change arises from the E-field-induced screening charge density in the spin-spiral states due to p-d hybridizations. The Heisenberg exchange parameters obtained from the magnon energy suggest an E-field-induced modification of the Curie temperature, which is demonstrated via Monte Carlo simulations that take the magnetocrystalline anisotropy into account.

  12. Spin-flop coupling and exchange anisotropy in ferromagnetic/antiferromagnetic bilayers

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Yong; Hu, Jing-Guo

    2009-03-01

    By investigating the antiferromagnetic spin configuration, the exchange anisotropy and the interfacial spin-flop coupling in ferromagnetic/antiferromagnetic (FM/AF) bilayers have been discussed in detail. The results show that there are four possible cases for the AF spins, namely the reversible recovering case, irreversible half-rotating case, irreversible reversing and irreversible half-reversing cases. Moreover, the realization of the cases strongly depends on interface quadratic coupling, interface spin-flop (biquadratic) coupling and AF thickness. The magnetic phase diagram in terms of the AF thickness tAF, the interfacial bilinear coupling J1 and the spin-flop coupling J2 has been constructed. The corresponding critical parameters in which the exchange bias will occur or approach saturation have been also presented. Specially, the small spin-flop exchange coupling may result in an exchange bias without the interfacial bilinear exchange coupling. However, in general, the spin-flop exchange coupling can weaken or eliminate the exchange bias, but always enhances the coercivity greatly.

  13. Spin-polarized current injection induced magnetic reconstruction at oxide interface

    DOE PAGES

    Fang, F.; Yin, Y. W.; Li, Qi; ...

    2017-01-04

    Electrical manipulation of magnetism presents a promising way towards using the spin degree of freedom in very fast, low-power electronic devices. Though there has been tremendous progress in electrical control of magnetic properties using ferromagnetic (FM) nanostructures, an opportunity of manipulating antiferromagnetic (AFM) states should offer another route for creating a broad range of new enabling technologies. Here we selectively probe the interface magnetization of SrTiO 3/La 0.5Ca 0.5MnO 3/La 0.7Sr 0.3MnO 3 heterojunctions and discover a new spin-polarized current injection induced interface magnetoelectric (ME) effect. The accumulation of majority spins at the interface causes a sudden, reversible transition ofmore » the spin alignment of interfacial Mn ions from AFM to FM exchange-coupled, while the injection of minority electron spins alters the interface magnetization from C-type to A-type AFM state. In contrast, the bulk magnetization remains unchanged. We attribute the current-induced interface ME effect to modulations of the strong double-exchange interaction between conducting electron spins and local magnetic moments. As a result, the effect is robust and may serve as a viable route for electronic and spintronic applications.« less

  14. Spin-polarized current injection induced magnetic reconstruction at oxide interface

    NASA Astrophysics Data System (ADS)

    Fang, F.; Yin, Y. W.; Li, Qi; Lüpke, G.

    2017-01-01

    Electrical manipulation of magnetism presents a promising way towards using the spin degree of freedom in very fast, low-power electronic devices. Though there has been tremendous progress in electrical control of magnetic properties using ferromagnetic (FM) nanostructures, an opportunity of manipulating antiferromagnetic (AFM) states should offer another route for creating a broad range of new enabling technologies. Here we selectively probe the interface magnetization of SrTiO3/La0.5Ca0.5MnO3/La0.7Sr0.3MnO3 heterojunctions and discover a new spin-polarized current injection induced interface magnetoelectric (ME) effect. The accumulation of majority spins at the interface causes a sudden, reversible transition of the spin alignment of interfacial Mn ions from AFM to FM exchange-coupled, while the injection of minority electron spins alters the interface magnetization from C-type to A-type AFM state. In contrast, the bulk magnetization remains unchanged. We attribute the current-induced interface ME effect to modulations of the strong double-exchange interaction between conducting electron spins and local magnetic moments. The effect is robust and may serve as a viable route for electronic and spintronic applications.

  15. Measurement of the magnetic interaction between two bound electrons of two separate ions.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee

    2014-06-19

    Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two (88)Sr(+) ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons' weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of -0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d(-3.0(4)) distance dependence for the coupling, consistent with the inverse-cube law.

  16. Hybrid spin and valley quantum computing with singlet-triplet qubits.

    PubMed

    Rohling, Niklas; Russ, Maximilian; Burkard, Guido

    2014-10-24

    The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.

  17. Ultrafast spin dynamics and switching via spin transfer torque in antiferromagnets with weak ferromagnetism

    PubMed Central

    Kim, Tae Heon; Grünberg, Peter; Han, Song Hee; Cho, Beongki

    2016-01-01

    The spin-torque driven dynamics of antiferromagnets with Dzyaloshinskii-Moriya interaction (DMI) were investigated based on the Landau-Lifshitz-Gilbert-Slonczewski equation with antiferromagnetic and ferromagnetic order parameters (l and m, respectively). We demonstrate that antiferromagnets including DMI can be described by a 2-dimensional pendulum model of l. Because m is coupled with l, together with DMI and exchange energy, close examination of m provides fundamental understanding of its dynamics in linear and nonlinear regimes. Furthermore, we discuss magnetization reversal as a function of DMI and anisotropy energy induced by a spin current pulse. PMID:27713522

  18. A Non-Perturbative Treatment of Quantum Impurity Problems in Real Lattices

    NASA Astrophysics Data System (ADS)

    Allerdt, Andrew C.

    Historically, the RKKY or indirect exchange, interaction has been accepted as being able to be described by second order perturbation theory. A typical universal expression is usually given in this context. This approach, however, fails to incorporate many body effects, quantum fluctuations, and other important details. In Chapter 2, a novel numerical approach is developed to tackle these problems in a quasi-exact, non-perturbative manner. Behind the method lies the main concept of being able to exactly map an n-dimensional lattice problem onto a 1-dimensional chain. The density matrix renormalization group algorithm is then employed to solve the newly cast Hamiltonian. In the following chapters, it is demonstrated that conventional RKKY theory does not capture the crucial physics. It is found that the Kondo effect, i.e. the screening of an impurity spin, tends to dominate over a ferromagnetic interaction between impurity spins. Furthermore, it is found that the indirect exchange interaction does not decay algebraically. Instead, there is a crossover upon increasing JK, where impurities favor forming their own independent Kondo states after just a few lattice spacings. This is not a trivial result, as one may naively expect impurities to interact when their conventional Kondo clouds overlap. The spin structure around impurities coupled to the edge of a 2D topological insulator is investigated in Chapter 7. Modeled after materials such as silicine, germanene, and stanene, it is shown with spatial resolution of the lattice that the specific impurity placement plays a key role. Effects of spin-orbit interactions are also discussed. Finally, in the last chapter, transition metal complexes are studied. This really shows the power and versatility of the method developed throughout the work. The spin states of an iron atom in the molecule FeN4C 10 are calculated and compared to DFT, showing the importance of inter-orbital coulomb interactions. Using dynamical DMRG, the density of states for the 3d-orbitals can also be obtained.

  19. Unveiling magnetic interactions of ruthenium trichloride via constraining direction of orbital moments: Potential routes to realize a quantum spin liquid

    NASA Astrophysics Data System (ADS)

    Hou, Y. S.; Xiang, H. J.; Gong, X. G.

    2017-08-01

    Recent experiments reveal that the honeycomb ruthenium trichloride α -RuC l3 is a prime candidate of the Kitaev quantum spin liquid (QSL). However, there is no theoretical model which can properly describe its experimental dynamical response due to the lack of a full understanding of its magnetic interactions. Here, we propose a general scheme to calculate the magnetic interactions in systems (e.g., α -RuC l3 ) with nonnegligible orbital moments by constraining the directions of orbital moments. With this scheme, we put forward a minimal J1-K1-Γ1-J3-K3 model for α -RuC l3 and find that: (I) The third nearest neighbor (NN) antiferromagnetic Heisenberg interaction J3 stabilizes the zigzag antiferromagnetic order; (II) The NN symmetric off-diagonal exchange Γ1 plays a pivotal role in determining the preferred direction of magnetic moments and generating the spin wave gap. An exact diagonalization study on this model shows that the Kitaev QSL can be realized by suppressing the NN symmetric off-diagonal exchange Γ1 and the third NN Heisenberg interaction J3. Thus, we not only propose a powerful general scheme for investigating the intriguing magnetism of Jeff=1 /2 magnets, but also point out future directions for realizing the Kitaev QSL in the honeycomb ruthenium trichloride α -RuC l3 .

  20. An electron spin polarization study of the interaction of photoexcited triplet molecules with mono- and polynitroxyl stable free radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turro, N.J.; Khudyakov, I.V.; Bossmann, S.H.

    1993-02-11

    Time-resolved electron spin resonance (TR ESR) has been used to investigate the chemically induced dynamic electron polarization (CIDEP) generated by the interaction of stable free radicals with the triplet states of benzophenone, benzil, and 2-acetylnaphthalene. The stable radicals were mono-, di-, tri-, and tetranitroxyl free radicals possessing the 2,2,6,6-tetramethylpiperidine-N-oxyl moiety. All of the stable radical systems investigated were found to be emissively polarized by interaction with the triplet states, and the phase of polarization was independent of the sign of zero-field splitting (D) of the interacting triple molecule. Possible and likely mechanisms of polarization transfer (creation) resulting from the interactionmore » of photoexcited triplet molecules with nitroxyls in the strong electron exchange are discussed. The emissive CIDEP of nitroxyls observed in the interactions with triplet benzil, which has D > 0, provides strong support for the operation of the radical-triplet pair mechanism. Within the time scale of TR ESR experiments ([approximately]10[sup [minus]7]--10[sup [minus]6] s) no significant variation in the shape of the CIDEP spectra of the nitroxyls was observed, either in viscous media or in micelles. It is concluded that intramolecular spin exchange (or conformational change) of polynitroyls occurs much faster than the time resolution of the experiment. 24 refs., 6 figs., 1 tab.« less

  1. 3d-4f magnetic interaction with density functional theory plus u approach: local Coulomb correlation and exchange pathways.

    PubMed

    Zhang, Yachao; Yang, Yang; Jiang, Hong

    2013-12-12

    The 3d-4f exchange interaction plays an important role in many lanthanide based molecular magnetic materials such as single-molecule magnets and magnetic refrigerants. In this work, we study the 3d-4f magnetic exchange interactions in a series of Cu(II)-Gd(III) (3d(9)-4f(7)) dinuclear complexes based on the numerical atomic basis-norm-conserving pseudopotential method and density functional theory plus the Hubbard U correction approach (DFT+U). We obtain improved description of the 4f electrons by including the semicore 5s5p states in the valence part of the Gd-pseudopotential. The Hubbard U correction is employed to treat the strongly correlated Cu-3d and Gd-4f electrons, which significantly improve the agreement of the predicted exchange constants, J, with experiment, indicating the importance of accurate description of the local Coulomb correlation. The high efficiency of the DFT+U approach enables us to perform calculations with molecular crystals, which in general improve the agreement between theory and experiment, achieving a mean absolute error smaller than 2 cm(-1). In addition, through analyzing the physical effects of U, we identify two magnetic exchange pathways. One is ferromagnetic and involves an interaction between the Cu-3d, O-2p (bridge ligand), and the majority-spin Gd-5d orbitals. The other one is antiferromagnetic and involves Cu-3d, O-2p, and the empty minority-spin Gd-4f orbitals, which is suppressed by the planar Cu-O-O-Gd structure. This study demonstrates the accuracy of the DFT+U method for evaluating the 3d-4f exchange interactions, provides a better understanding of the exchange mechanism in the Cu(II)-Gd(III) complexes, and paves the way for exploiting the magnetic properties of the 3d-4f compounds containing lanthanides other than Gd.

  2. TMRG studies on spin alignment in molecule-based ferrimagnetics [rapid communication

    NASA Astrophysics Data System (ADS)

    Liu, Q. M.; Yao, K. L.; Liu, Z. L.

    2005-05-01

    A physical picture of spin alignment in organic molecule-based ferrimagnets is presented from studying the thermal effective magnetic moment of the sublattice by use of the transfer matrix renormalization group. We conclude that the classical antiparallel spin alignment is not the most stable state. The three-spin system tends to parallel alignment when the exchange interaction between the biradical and the monoradical molecules is much weaker than that within the biradical, which can result in the decrease of the effective magnetic moment upon lowering the temperature. More importantly, we give the theoretical evidence that even the antiparallel spin alignment in the biradical monoradical alternating chain does not necessarily lead to ferrimagnetic spin ordering due to the formation of the spin singlet pairs, which suppresses the ferrimagnetic spin alignment.

  3. Two-electron states of a group-V donor in silicon from atomistic full configuration interactions

    NASA Astrophysics Data System (ADS)

    Tankasala, Archana; Salfi, Joseph; Bocquel, Juanita; Voisin, Benoit; Usman, Muhammad; Klimeck, Gerhard; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.; Rogge, Sven; Rahman, Rajib

    2018-05-01

    Two-electron states bound to donors in silicon are important for both two-qubit gates and spin readout. We present a full configuration interaction technique in the atomistic tight-binding basis to capture multielectron exchange and correlation effects taking into account the full band structure of silicon and the atomic-scale granularity of a nanoscale device. Excited s -like states of A1 symmetry are found to strongly influence the charging energy of a negative donor center. We apply the technique on subsurface dopants subjected to gate electric fields and show that bound triplet states appear in the spectrum as a result of decreased charging energy. The exchange energy, obtained for the two-electron states in various confinement regimes, may enable engineering electrical control of spins in donor-dot hybrid qubits.

  4. Exchange interactions and magnetic properties of hexagonal rare-earth-cobalt compounds

    NASA Astrophysics Data System (ADS)

    Burzo, E.

    2018-03-01

    The magnetic properties of some GdxY1-xCo4A compounds with A = Co, Si or B are analysed including the pressure effects. Isomorphous structure transitions, parallelly with changes of cobalt moments from high spin states to low spin states, were shown as pressure increases. The magnetic data, obtained from band structures, were compared with those predicted by the mean field model.

  5. Magnetism of metallacrown single-molecule magnets: From a simplest model to realistic systems

    NASA Astrophysics Data System (ADS)

    Pavlyukh, Y.; Rentschler, E.; Elmers, H. J.; Hübner, W.; Lefkidis, G.

    2018-06-01

    Electronic and magnetic properties of molecular nanomagnets are determined by competing energy scales due to the crystal field splitting, the exchange interactions between transition metal atoms, and relativistic effects. We present a comprehensive theory embracing all these phenomena based on first-principles calculations. In order to achieve this goal, we start from the FeNi4 cluster as a paradigm. The system can be accurately described on the ab initio level yielding all expected electronic states in a range of multiplicities from 1 to 9, with a ferromagnetic ground state. By adding the spin-orbit coupling between them we obtain the zero-field splitting. This allows to introduce a spin Hamiltonian of a giant spin model, which operates on a smaller energy scale. We compare the computed parameters of this Hamiltonian with the experimental and theoretical magnetic anisotropy energies of the monolayer Ni/Cu(001). In line with them, we find that the anisotropy almost entirely originates from the second-order spin-orbit coupling, the spin-spin coupling constitutes only a small fraction. Finally, we include the ligand atoms in our consideration. This component has a decisive role for the stabilization of molecules in experimental synthesis and characterization, and also substantially complicates the theory by bringing the superexchange mechanisms into play. Since they are higher-order effects involving two hopping matrix elements, not every theory can describe them. Our generalization of the corresponding perturbation theory substantiates the use of complete active space methods for the description of superexchange. At the same time, our numerical results for the {CuFe4} system demonstrate that the Goodenough-Kanamori rules, which are often used to determine the sign of these exchange interactions, cannot deliver quantitative predictions due to the interplay of other mechanisms, e. g., involving multicenter Coulomb integrals. We conclude by comparing ab initio values of the exchange interaction constants for the {CuCu4} and {CuFe4} metallacrown magnetic molecules with experimental values determined by fitting of the magnetic susceptibility curves χMT (T ) , and attribute the remaining discrepancy between them to the role of virtual electron excitations into and out of the active space (dynamical correlations).

  6. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates.

    PubMed

    Banerjee-Ghosh, Koyel; Ben Dor, Oren; Tassinari, Francesco; Capua, Eyal; Yochelis, Shira; Capua, Amir; Yang, See-Hun; Parkin, Stuart S P; Sarkar, Soumyajit; Kronik, Leeor; Baczewski, Lech Tomasz; Naaman, Ron; Paltiel, Yossi

    2018-06-22

    It is commonly assumed that recognition and discrimination of chirality, both in nature and in artificial systems, depend solely on spatial effects. However, recent studies have suggested that charge redistribution in chiral molecules manifests an enantiospecific preference in electron spin orientation. We therefore reasoned that the induced spin polarization may affect enantiorecognition through exchange interactions. Here we show experimentally that the interaction of chiral molecules with a perpendicularly magnetized substrate is enantiospecific. Thus, one enantiomer adsorbs preferentially when the magnetic dipole is pointing up, whereas the other adsorbs faster for the opposite alignment of the magnetization. The interaction is not controlled by the magnetic field per se, but rather by the electron spin orientations, and opens prospects for a distinct approach to enantiomeric separations. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Magnon and phonon dispersion, lifetime, and thermal conductivity of iron from spin-lattice dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Xufei; Liu, Zeyu; Luo, Tengfei

    2018-02-01

    In recent years, the fundamental physics of spin-lattice (e.g., magnon-phonon) interaction has attracted significant experimental and theoretical interests given its potential paradigm-shifting impacts in areas like spin-thermoelectrics, spin-caloritronics, and spintronics. Modelling studies of the transport of magnons and phonons in magnetic crystals are very rare. In this paper, we use spin-lattice dynamics (SLD) simulations to model ferromagnetic crystalline iron, where the spin and lattice systems are coupled through the atomic position-dependent exchange function, and thus the interaction between magnons and phonons is naturally considered. We then present a method combining SLD simulations with spectral energy analysis to calculate the magnon and phonon harmonic (e.g., dispersion, specific heat, and group velocity) and anharmonic (e.g., scattering rate) properties, based on which their thermal conductivity values are calculated. This work represents an example of using SLD simulations to understand the transport properties involving coupled magnon and phonon dynamics.

  8. A state interaction spin-orbit coupling density matrix renormalization group method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe{submore » 2}S{sub 2}(SCH{sub 3}){sub 4}]{sup 3−}, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.« less

  9. Spin-current emission governed by nonlinear spin dynamics.

    PubMed

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-16

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.

  10. Spin-current emission governed by nonlinear spin dynamics

    PubMed Central

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-01-01

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712

  11. Possibility of Cooper-pair formation controlled by multi-terminal spin injection

    NASA Astrophysics Data System (ADS)

    Ohnishi, K.; Sakamoto, M.; Ishitaki, M.; Kimura, T.

    2018-03-01

    A multi-terminal lateral spin valve consisting of three ferromagnetic nanopillars on a Cu/Nb bilayer has been fabricated. We investigated the influence of the spin injection on the superconducting properties at the Cu/Nb interface. The non-local spin valve signal exhibits a clear spin insulation signature due to the superconducting gap of the Nb. The magnitude of the spin signal is found to show the probe configuration dependence. From the careful analysis of the bias current dependence, we found the suppression of the superconductivity due to the exchange interaction between the Cooper pair and accumulated spin plays an important role in the multi-terminal spin injections. We also discuss about the possibility of the Cooper-pair formation due to the spin injection from the two injectors with the anti-parallel alignment.

  12. Antiferromagnetic interaction between A'-site Mn spins in A-site-ordered perovskite YMn3Al4O12.

    PubMed

    Tohyama, Takenori; Saito, Takashi; Mizumaki, Masaichiro; Agui, Akane; Shimakawa, Yuichi

    2010-03-01

    The A-site-ordered perovskite YMn(3)Al(4)O(12) was prepared by high-pressure synthesis. Structural analysis with synchrotron powder X-ray diffraction data and the Mn L-edges X-ray absorption spectrum revealed that the compound has a chemical composition Y(3+)Mn(3+)(3)Al(3+)(4)O(2-)(12) with magnetic Mn(3+) at the A' site and non-magnetic Al(3+) at the B site. An antiferromagnetic interaction between the A'-site Mn(3+) spins is induced by the nearest neighboring Mn-Mn direct exchange interaction and causes an antiferromagnetic transition at 34.3 K.

  13. Exchange interaction and tunneling-induced transparency in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Borges, H. S.; Alcalde, A. M.; Ulloa, Sergio E.

    2014-11-01

    We investigate the optical response of quantum dot molecules coherently driven by polarized laser light. Our description includes the splitting in excitonic levels caused by isotropic and anisotropic exchange interactions. We consider interdot transitions mediated by hole tunneling between states with the same total angular momentum and between bright and dark exciton states as allowed by spin-flip hopping between the dots in the molecule. Using realistic experimental parameters we demonstrate that the excitonic states coupled by tunneling exhibit a rich and controllable optical response. We show that through the appropriate control of an external electric field and light polarization, the tunneling coupling establishes an efficient destructive quantum interference path that creates a transparency window in the absorption spectra whenever states of appropriate symmetry are mixed by the carrier tunneling. We explore the relevant parameter space that allows probing this phenomenon in experiments. Controlled variation in applied field and laser detuning would allow the optical characterization of spin-preserving and spin-flip hopping amplitudes in such systems by measuring the width of the tunneling-induced transparency windows.

  14. Intra- and inter-shell Kondo effects in carbon nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Krychowski, Damian; Lipiński, Stanisław

    2018-01-01

    The linear response transport properties of carbon nanotube quantum dot in the strongly correlated regime are discussed. The finite-U mean field slave boson approach is used to study many-body effects. Magnetic field can rebuilt Kondo correlations, which are destroyed by the effect of spin-orbit interaction or valley mixing. Apart from the field induced revivals of SU(2) Kondo effects of different types: spin, valley or spin-valley, also more exotic phenomena appear, such as SU(3) Kondo effect. Threefold degeneracy occurs due to the effective intervalley exchange induced by short-range part of Coulomb interaction or due to the intershell mixing. In narrow gap nanotubes the full spin-orbital degeneracy might be recovered in the absence of magnetic field opening the condition for a formation of SU(4) Kondo resonance.

  15. Cooling field and temperature dependent exchange bias in Gd substituted YFe0.5Cr0.5O3

    NASA Astrophysics Data System (ADS)

    Singh, Karan; Mukherjee, K.

    2018-04-01

    We report the results of our investigation of cooling field and temperature dependence of exchange bias on Gd substituted mixed metal oxide YFe0.5Cr0.5O3. A negative exchange bias is observed in the Gd-substituted compounds, in contrast to the positive exchange bias in parent compound, YFe0.5Cr0.5O3 [1]. With the increase in Gd concentration it is noted that the exchange bias decreases. It was noted that the paramagnetic contribution from Gd ions plays the leading role in comparison to the antiferromagnetic type correlations among spins as is observed for the parent compound. Due to magnetic rare earth ion, additional exchange interaction of the form Gd-O-Fe/Cr dominates the magnetic interaction arising due to the transition metal ions, resulting in the reduction in exchange bias value.

  16. Low temperature nano-spin filtering using a diluted magnetic semiconductor core-shell quantum dot

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Saikat; Sen, Pratima; Andrews, Joshep Thomas; Sen, Pranay Kumar

    2014-07-01

    The spin polarized electron transport properties and spin polarized tunneling current have been investigated analytically in a diluted magnetic semiconductor core-shell quantum dot in the presence of applied electric and magnetic fields. Assuming the electron wave function to satisfy WKB approximation, the electron energy eigenvalues have been calculated. The spin polarized tunneling current and the spin dependent tunneling coefficient are obtained by taking into account the exchange interaction and Zeeman splitting. Numerical estimates made for a specific diluted magnetic semiconductor, viz., Zn1-xMnxSe/ZnS core-shell quantum dot establishes the possibility of a nano-spin filter for a particular biasing voltage and applied magnetic field. Influence of applied voltage on spin polarized electron transport has been investigated in a CSQD.

  17. Adding remnant magnetization and anisotropic exchange to propeller-like single-molecule magnets through chemical design.

    PubMed

    Westrup, Kátia Cristina M; Boulon, Marie-Emmanuelle; Totaro, Pasquale; Nunes, Giovana G; Back, Davi F; Barison, Andersson; Jackson, Martin; Paulsen, Carley; Gatteschi, Dante; Sorace, Lorenzo; Cornia, Andrea; Soares, Jaísa F; Sessoli, Roberta

    2014-10-13

    The selective replacement of the central iron(III) ion with vanadium(III) in a tetrairon(III) propeller-shaped single-molecule magnet has allowed us to increase the ground spin state from S=5 to S=13/2. As a consequence of the pronounced anisotropy of vanadium(III), the blocking temperature for the magnetization has doubled. Moreover, a significant remnant magnetization, practically absent in the parent homometallic molecule, has been achieved owing to the suppression of zero-field tunneling of the magnetization for the half-integer molecular spin. Interestingly, the contribution of vanadium(III) to the magnetic anisotropy barrier occurs through the anisotropic exchange interaction with iron(III) spins and not through single ion anisotropy as in most single-molecule magnets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tricriticality of the Blume-Emery-Griffiths model in thin films of stacked triangular lattices

    NASA Astrophysics Data System (ADS)

    El Hog, Sahbi; Diep, H. T.

    2016-03-01

    We study in this paper the Blume-Emery-Griffiths model in a thin film of stacked triangular lattices. The model is described by three parameters: bilinear exchange interaction between spins J, quadratic exchange interaction K and single-ion anisotropy D. The spin Si at the lattice site i takes three values (-1, 0, +1). This model can describe the mixing phase of He-4 (Si = +1,-1) and He-3 (Si = 0) at low temperatures. Using Monte Carlo simulations, we show that there exists a critical value of D below (above) which the transition is of second-(first-)order. In general, the temperature dependence of the concentrations of He-3 is different from layer by layer. At a finite temperature in the superfluid phase, the film surface shows a deficit of He-4 with respect to interior layers. However, effects of surface interaction parameters can reverse this situation. Effects of the film thickness on physical properties will be also shown as functions of temperature.

  19. Spin dynamics and magnetoelectric coupling mechanism of C o4N b2O9

    NASA Astrophysics Data System (ADS)

    Deng, Guochu; Cao, Yiming; Ren, Wei; Cao, Shixun; Studer, Andrew J.; Gauthier, Nicolas; Kenzelmann, Michel; Davidson, Gene; Rule, Kirrily C.; Gardner, Jason S.; Imperia, Paolo; Ulrich, Clemens; McIntyre, Garry J.

    2018-02-01

    Neutron powder diffraction experiments reveal that C o4N b2O9 forms a noncollinear in-plane magnetic structure with C o2 + moments lying in the a b plane. The spin-wave excitations of this magnet were measured by using inelastic neutron scattering and soundly simulated by a dynamic model involving nearest- and next-nearest-neighbor exchange interactions, in-plane anisotropy, and the Dzyaloshinskii-Moriya interaction. The in-plane magnetic structure of C o4N b2O9 is attributed to the large in-plane anisotropy, while the noncollinearity of the spin configuration is attributed to the Dzyaloshinskii-Moriya interaction. The high magnetoelectric coupling effect of C o4N b2O9 in fields can be explained by its special in-plane magnetic structure.

  20. Spin dynamics and exchange interactions in CuO measured by neutron scattering

    NASA Astrophysics Data System (ADS)

    Jacobsen, H.; Gaw, S. M.; Princep, A. J.; Hamilton, E.; Tóth, S.; Ewings, R. A.; Enderle, M.; Wheeler, E. M. Hétroy; Prabhakaran, D.; Boothroyd, A. T.

    2018-04-01

    The magnetic properties of CuO encompass several contemporary themes in condensed-matter physics, including quantum magnetism, magnetic frustration, magnetically-induced ferroelectricity, and orbital currents. Here we report polarized and unpolarized neutron inelastic scattering measurements which provide a comprehensive map of the cooperative spin dynamics in the low-temperature antiferromagnetic (AFM) phase of CuO throughout much of the Brillouin zone. At high energies (E ≳100 meV ), the spectrum displays continuum features consistent with the des Cloizeax-Pearson dispersion for an ideal S =1/2 Heisenberg AFM chain. At lower energies, the spectrum becomes more three dimensional, and we find that a linear spin-wave model for a Heisenberg AFM provides a very good description of the data, allowing for an accurate determination of the relevant exchange constants in an effective spin Hamiltonian for CuO. In the high-temperature helicoidal phase, there are features in the measured low-energy spectrum that we could not reproduce with a spin-only model. We discuss how these might be associated with the magnetically-induced multiferroic behavior observed in this phase.

  1. Finite temperature magnon spectra in yttrium iron garnet from a mean field approach in a tight-binding model

    NASA Astrophysics Data System (ADS)

    Shen, Ka

    2018-04-01

    We study magnon spectra at finite temperature in yttrium iron garnet using a tight-binding model with nearest-neighbor exchange interaction. The spin reduction due to thermal magnon excitation is taken into account via the mean field approximation to the local spin and is found to be different at two sets of iron atoms. The resulting temperature dependence of the spin wave gap shows good agreement with experiment. We find that only two magnon modes are relevant to the ferromagnetic resonance.

  2. Spin manipulation with magnetic semiconductor barriers.

    PubMed

    Miao, Guo-Xing; Moodera, Jagadeesh S

    2015-01-14

    Magnetic semiconductors are a class of materials with special spin-filtering capabilities with magnetically tunable energy gaps. Many of these materials also possess another intrinsic property: indirect exchange interaction between the localized magnetic moments and the adjacent free electrons, which manifests as an extremely large effective magnetic field applying only on the spin degrees of freedom of the free electrons. Novel device concepts can be created by taking advantage of these properties. We discuss in the article the basic principles of these phenomena, and potential ways of applying them in constructing spintronic devices.

  3. Electric-field-induced modification in Dzyaloshinskii-Moriya interaction of Co monolayer on Pt(111)

    NASA Astrophysics Data System (ADS)

    Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori; Ono, Teruo; Weinert, Michael

    Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Dzyaloshinskii-Moriya interaction (DMI) for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. With inclusion of the spin-orbit coupling (SOC) by the second variational method for commensurate spin-spiral structures, the DMI constants were estimated from an asymmetric contribution in the total energy with respect to the spin-spiral wavevector. The results predicted that the DMI is modified by the E-field, but the change is found to be small compared to that in the exchange interaction (a symmetric contribution in the total energy) by a factor of ten.

  4. Two-electron spin correlations in precision placed donors in silicon.

    PubMed

    Broome, M A; Gorman, S K; House, M G; Hile, S J; Keizer, J G; Keith, D; Hill, C D; Watson, T F; Baker, W J; Hollenberg, L C L; Simmons, M Y

    2018-03-07

    Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.

  5. Phase Diagram in a Random Mixture of Two Antiferromagnets with Competing Spin Anisotropies. I

    NASA Astrophysics Data System (ADS)

    Someya, Yoshiko

    1981-12-01

    The phase diagram of a random mixture of two antiferromagnets with competing spin anisotropies (A1-xBx) has been analyzed by extending the theory of Matsubara and Inawashiro, and Oguchi and Ishikawa. In the model assumed, the anisotropy energies are expressed by the anisotropic exchange interactions. According to this formulation, it has been shown that the concentration dependence of TN becomes a function of \\includegraphics{dummy.eps}, where P, Q=A, B; SP is a magnitude of P-spin, and JPQη is a η component of exchange integral between P- and Q-spin). Further, the phase boundary between an AF phase and an OAF (oblique antiferromagnetic) phase at T{=}0 K has been shown to be determined by α({\\equiv}SB/SA), if \\includegraphics{dummy.eps} are given. The obtained phase diagrams for Fe1-xCoxCl2, K2Mn1-xFexF4 and Fe1-xCoxCl2\\cdot2H2O are compared with the experimental ones.

  6. Lipid-protein interaction in the phosphatidylcholine exchange protein.

    PubMed Central

    Devaux, P F; Moonen, P; Bienvenue, A; Wirtz, K W

    1977-01-01

    Incorporation of 2-acyl spin-labeled lecithin into the phosphatidylcholine protein from bovine liver results in an immobilization of the spin-label at the methyl and the carboxyl terminal end of the acyl chain. The nitroxide group on the protein-bound lecithin molecule is not accessible to ascorbate. This suggests that lecithin is buried in a pocket on the protein, which effectively shields the acyl chains from the medium. PMID:194240

  7. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3

    NASA Astrophysics Data System (ADS)

    Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu

    2016-11-01

    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general.

  8. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3.

    PubMed

    Yadav, Ravi; Bogdanov, Nikolay A; Katukuri, Vamshi M; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu

    2016-11-30

    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d 5 honeycomb halide α-RuCl 3 . From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d 5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d 5 halides and oxides in general.

  9. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3

    PubMed Central

    Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu

    2016-01-01

    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general. PMID:27901091

  10. Spin-Orbit Coupled Quantum Magnetism in the 3D-Honeycomb Iridates

    NASA Astrophysics Data System (ADS)

    Kimchi, Itamar

    In this doctoral dissertation, we consider the significance of spin-orbit coupling for the phases of matter which arise for strongly correlated electrons. We explore emergent behavior in quantum many-body systems, including symmetry-breaking orders, quantum spin liquids, and unconventional superconductivity. Our study is cemented by a particular class of Mott-insulating materials, centered around a family of two- and three-dimensional iridium oxides, whose honeycomb-like lattice structure admits peculiar magnetic interactions, the so-called Kitaev exchange. By analyzing recent experiments on these compounds, we show that this unconventional exchange is the key ingredient in describing their magnetism, and then use a combination of numerical and analytical techniques to investigate the implications for the phase diagram as well as the physics of the proximate three-dimensional quantum spin liquid phases. These long-ranged-entangled fractionalized phases should exhibit special features, including finite-temperature stability as well as unconventional high-Tc superconductivity upon charge-doping, which should aid future experimental searches for spin liquid physics. Our study explores the nature of frustration and fractionalization which can arise in quantum systems in the presence of strong spin-orbit coupling.

  11. Spin orbital singlet system FeSc2S4 under pressure

    NASA Astrophysics Data System (ADS)

    Biffin, Alun; Chernyshov, Dmitry; Canevet, Emmanuel; Fennell, Tom; White, Jonathan S.; Khasanov, Rustem; Luetkens, Hubertus; Loidl, Alois; Tsurkan, Vladimir; Rüegg, Christian

    The role of orbital degrees of freedom in quantum magnets is receiving intense focus recently, with the understanding that spin-orbit coupled systems can display physics qualitatively different from their spin only counter parts. An example is the spin-orbital singlet (SOS) state, which can provide an alternative to the conventional spin and orbitally ordered groundstates of quantum magnets. In such a scenario, the relative strengths of the exchange interaction and spin orbit coupling parameters determine the low temperature structure, with the former preferring ordered moments and the latter a non-magnetic singlet. Moreover the quantum critical point separating these two phases is rather unique in that it marks the onset of criticality in both the spin and orbital sectors. This SOS picture has recently been applied to FeSc2S4, where despite strong antiferromagnetic exchange between Jahn-Teller active Fe2+ ions no experimental signature of spin or orbital order has been detected. Building on our previous neutron scattering measurements, we have used hydrostatic pressure in neutron scattering, muon spin rotation and x-ray diffraction measurements to probe the unique phase diagram of FeSc2S4. My talk will focus on the results and interpretation of these experiments SNF SCOPES project IZ73Z0_152734/1, the Marie Curie FP7 COFUND PSI Fellowship program, Swiss National Science Foundation.

  12. The nature of the exchange coupling between high-spin Fe(III) heme o3 and CuBII in Escherichia coli quinol oxidase, cytochrome bo3: MCD and EPR studies.

    PubMed

    Cheesman, Myles R; Oganesyan, Vasily S; Watmough, Nicholas J; Butler, Clive S; Thomson, Andrew J

    2004-04-07

    Fully oxidized cytochrome bo3 from Escherichia coli has been studied in its oxidized and several ligand-bound forms using electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopies. In each form, the spin-coupled high-spin Fe(III) heme o3 and CuB(II) ion at the active site give rise to similar fast-relaxing broad features in the dual-mode X-band EPR spectra. Simulations of dual-mode spectra are presented which show that this EPR can arise only from a dinuclear site in which the metal ions are weakly coupled by an anisotropic exchange interaction of J 1 cm-1. A variable-temperature and magnetic field (VTVF) MCD study is also presented for the cytochrome bo3 fluoride and azide derivatives. New methods are used to extract the contribution to the MCD of the spin-coupled active site in the presence of strong transitions from low-spin Fe(III) heme b. Analysis of the MCD data, independent of the EPR study, also shows that the spin-coupling within the active site is weak with J approximately 1 cm-1. These conclusions overturn a long-held view that such EPR signals in bovine cytochrome c oxidase arise from an S' = 2 ground state resulting from strong exchange coupling (J > 10(2) cm-1) within the active site.

  13. Effect of Dangling Bond Spins on the Dark Exciton Recombination and Spin Polarization in CdSe Colloidal Nanostructures

    NASA Astrophysics Data System (ADS)

    Rodina, A. V.; Golovatenko, A. A.; Shornikova, E. V.; Yakovlev, D. R.; Efros, Al. L.

    2018-04-01

    We present theoretical aspects of the exchange interaction between the ground optically-forbidden "dark" exciton state and surface dangling bonds in colloidal CdSe spherical nanocrystals and nanoplatelets. The influence of the dangling bond spins on the radiative recombination and spin splitting of the dark exciton is shown. Processes of optically-driven and external magnetic field-driven formation of the dangling bond magnetic polaron (DBMP) are considered. Thermodynamic and dynamic polarization mechanisms of the DBMP formation within these two processes and corresponding critical temperatures are compared. Experimental manifestations of the DBMP formation in CdSe nanocrystals and nanoplatelets are discussed.

  14. Magnetic End States in a Strongly Interacting One-Dimensional Topological Kondo Insulator

    DOE PAGES

    Lobos, Alejandro M.; Dobry, Ariel O.; Galitski, Victor

    2015-05-22

    Topological Kondo insulators are strongly correlated materials where itinerant electrons hybridize with localized spins, giving rise to a topologically nontrivial band structure. Here, we use nonperturbative bosonization and renormalization-group techniques to study theoretically a one-dimensional topological Kondo insulator, described as a Kondo-Heisenberg model, where the Heisenberg spin-1/2 chain is coupled to a Hubbard chain through a Kondo exchange interaction in the p-wave channel (i.e., a strongly correlated version of the prototypical Tamm-Schockley model).We derive and solve renormalization-group equations at two-loop order in the Kondo parameter, and find that, at half filling, the charge degrees of freedom in the Hubbard chainmore » acquire a Mott gap, even in the case of a noninteracting conduction band (Hubbard parameter U = 0). Furthermore, at low enough temperatures, the system maps onto a spin-1/2 ladder with local ferromagnetic interactions along the rungs, effectively locking the spin degrees of freedom into a spin-1 chain with frozen charge degrees of freedom. This structure behaves as a spin-1 Haldane chain, a prototypical interacting topological spin model, and features two magnetic spin-1/2 end states for chains with open boundary conditions. In conclusion, our analysis allows us to derive an insightful connection between topological Kondo insulators in one spatial dimension and the well-known physics of the Haldane chain, showing that the ground state of the former is qualitatively different from the predictions of the naive mean-field theory.« less

  15. Magnetism in thin transition metal alloys

    NASA Astrophysics Data System (ADS)

    Janke-Gilman, Nathaniel; Reade

    Magnetic linear dichroism measurements allowed us to measure atomic moments and spin order in alloy magnetic systems with chemical specificity and surface sensitivity. The width of the dichroism spectrum is a measure of the atomic moment via the local exchange, while the dichroism amplitude is a measure of the elemental contribution to magnetic order in the alloy via the dipole selection rules. A novel method has been introduced to systematically determine the dichroism width and amplitude. Changing magnetic moments have been tracked with changing alloy composition, along with changes in the magnetic easy axis and Curie temperature. Measurements have been made of the bandstructure and band topology near the Fermi energy. Well defined spin and k states are selected using high energy and k resolution. The 'Stoner gap' in d bands near the Fermi energy is equal to the minimum energy spin-flip excitation available to d electrons in particular symmetry states. The size and shape of the sp band Fermi surface in momentum space determines the periodicity of oscillatory magnetic coupling. The exchange splitting in the sp bands is one measure of changing magnetization in a magnetic alloy, while the spin dependent mean free path is the inverse of the band width dk. The strong variation of these effects from one magnetic impurity to another supports the concept of magnetic impurity doping in magnetoelectronic devices. When the thickness of a magnetic system is sufficiently reduced, the finite size effect leads to reduction in the critical temperature Tc with decreasing thickness n according to the power law 1 - Tc(n)/Tc(bulk) = b n^lambda.Deviations from this power law have been observed by many authors in the ultrathin film limit (2--3 monolayers or less). We have shown that these deviations from power law behavior arise when the film thickness becomes less than the mean range of spin-spin interactions in the magnetic film, at which point the reduced surface free energy term dominates. The quantity b provides a measure of this range of spin-spin interactions. The range of magnetic interactions scales with the mean free path of minority spins.

  16. Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions

    NASA Astrophysics Data System (ADS)

    Prinari, Barbara; Demontis, Francesco; Li, Sitai; Horikis, Theodoros P.

    2018-04-01

    The inverse scattering transform (IST) with non-zero boundary conditions at infinity is developed for an m × m matrix nonlinear Schrödinger-type equation which, in the case m = 2, has been proposed as a model to describe hyperfine spin F = 1 spinor Bose-Einstein condensates with either repulsive interatomic interactions and anti-ferromagnetic spin-exchange interactions (self-defocusing case), or attractive interatomic interactions and ferromagnetic spin-exchange interactions (self-focusing case). The IST for this system was first presented by Ieda et al. (2007) , using a different approach. In our formulation, both the direct and the inverse problems are posed in terms of a suitable uniformization variable which allows to develop the IST on the standard complex plane, instead of a two-sheeted Riemann surface or the cut plane with discontinuities along the cuts. Analyticity of the scattering eigenfunctions and scattering data, symmetries, properties of the discrete spectrum, and asymptotics are derived. The inverse problem is posed as a Riemann-Hilbert problem for the eigenfunctions, and the reconstruction formula of the potential in terms of eigenfunctions and scattering data is provided. In addition, the general behavior of the soliton solutions is analyzed in detail in the 2 × 2 self-focusing case, including some special solutions not previously discussed in the literature.

  17. A quantum dot close to Stoner instability: The role of the Berry phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Arijit, E-mail: arijitsahahri@gmail.com; Gefen, Yuval; Burmistrov, Igor

    2012-10-15

    The physics of a quantum dot with electron-electron interactions is well captured by the so called 'Universal Hamiltonian' if the dimensionless conductance of the dot is much higher than unity. Within this scheme interactions are represented by three spatially independent terms which describe the charging energy, the spin-exchange and the interaction in the Cooper channel. In this paper we concentrate on the exchange interaction and generalize the functional bosonization formalism developed earlier for the charging energy. This turned out to be challenging as the effective bosonic action is formulated in terms of a vector field and is non-abelian due tomore » the non-commutativity of the spin operators. Here we develop a geometric approach which is particularly useful in the mesoscopic Stoner regime, i.e., when the strong exchange interaction renders the system close to the Stoner instability. We show that it is sufficient to sum over the adiabatic paths of the bosonic vector field and, for these paths, the crucial role is played by the Berry phase. Using these results we were able to calculate the magnetic susceptibility of the dot. The latter, in close vicinity of the Stoner instability point, matches very well with the exact solution [I.S. Burmistrov, Y. Gefen, M.N. Kiselev, JETP Lett. 92 (2010) 179]. - Highlights: Black-Right-Pointing-Pointer We consider a conducting QD whose dynamics is governed by exchange interaction. Black-Right-Pointing-Pointer We study the model within the 'Universal Hamiltonian' framework. Black-Right-Pointing-Pointer The ensuing bosonic action is non-abelian (hence non-trivial). Black-Right-Pointing-Pointer We find that the low energy dynamics is governed by a fluctuating Berry phase term. Black-Right-Pointing-Pointer We calculate the partition function and the zero frequency magnetic susceptibility.« less

  18. Electrical control of spin dynamics in finite one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Pertsova, A.; Stamenova, M.; Sanvito, S.

    2011-10-01

    We investigate the possibility of the electrical control of spin transfer in monoatomic chains incorporating spin impurities. Our theoretical framework is the mixed quantum-classical (Ehrenfest) description of the spin dynamics, in the spirit of the s-d model, where the itinerant electrons are described by a tight-binding model while localized spins are treated classically. Our main focus is on the dynamical exchange interaction between two well-separated spins. This can be quantified by the transfer of excitations in the form of transverse spin oscillations. We systematically study the effect of an electrostatic gate bias Vg on the interconnecting channel and we map out the long-range dynamical spin transfer as a function of Vg. We identify regions of Vg giving rise to significant amplification of the spin transmission at low frequencies and relate this to the electronic structure of the channel.

  19. A spin-frustrated trinuclear copper complex based on triaminoguanidine with an energetically well-separated degenerate ground state.

    PubMed

    Spielberg, Eike T; Gilb, Aksana; Plaul, Daniel; Geibig, Daniel; Hornig, David; Schuch, Dirk; Buchholz, Axel; Ardavan, Arzhang; Plass, Winfried

    2015-04-06

    We present the synthesis and crystal structure of the trinuclear copper complex [Cu3(saltag)(bpy)3]ClO4·3DMF [H5saltag = tris(2-hydroxybenzylidene)triaminoguanidine; bpy = 2,2'-bipyridine]. The complex crystallizes in the trigonal space group R3̅, with all copper ions being crystallographically equivalent. Analysis of the temperature dependence of the magnetic susceptibility shows that the triaminoguanidine ligand mediates very strong antiferromagnetic interactions (JCuCu = -324 cm(-1)). Detailed analysis of the magnetic susceptibility and magnetization data as well as X-band electron spin resonance spectra, all recorded on both powdered samples and single crystals, show indications of neither antisymmetric exchange nor symmetry lowering, thus indicating only a very small splitting of the degenerate S = (1)/2 ground state. These findings are corroborated by density functional theory calculations, which explain both the strong isotropic and negligible antisymmetric exchange interactions.

  20. Calculation of the exchange coupling constants of copper binuclear systems based on spin-flip constricted variational density functional theory.

    PubMed

    Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2011-11-14

    We have recently developed a methodology for the calculation of exchange coupling constants J in weakly interacting polynuclear metal clusters. The method is based on unrestricted and restricted second order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) and is here applied to eight binuclear copper systems. Comparison of the SF-CV(2)-DFT results with experiment and with results obtained from other DFT and wave function based methods has been made. Restricted SF-CV(2)-DFT with the BH&HLYP functional yields consistently J values in excellent agreement with experiment. The results acquired from this scheme are comparable in quality to those obtained by accurate multi-reference wave function methodologies such as difference dedicated configuration interaction and the complete active space with second-order perturbation theory. © 2011 American Institute of Physics

  1. Existence of diproton-like particles in 3+1 lattice QCD with two flavors and strong coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, A. Francisco

    2011-02-01

    Starting from quarks, gluons, and their dynamics, we consider the existence of two-baryon bound states of total isospin I=1 in an imaginary-time formulation of a strongly coupled 3+1-dimensional SU(3){sub c} lattice QCD with two flavors and 4x4 spin matrices, defined using the Wilson action. For a small hopping parameter {kappa}>0 and a much smaller gauge coupling 0<{beta}<<{kappa}<<1 (heavy quarks and large glueball mass), using a ladder approximation to a lattice Bethe-Salpeter equation, diproton-like bound states are found in the I=1 isospin sector, with asymptotic masses -6ln{kappa} and binding energies of order {kappa}{sup 2}. By isospin symmetry, for each diproton theremore » is also a dineutron bound state with the same mass and binding energy. The dominant two-baryon interaction is an energy-independent spatial range-one potential with an O({kappa}{sup 2}) strength. There is also an attraction arising from gauge field correlations associated with six overlapping bonds, but it is subdominant. The overall range-one potential results from a quark-antiquark exchange with no meson exchange interpretation (wrong spin indices). The repulsive or attractive nature of the interaction does depend on the isospin and spin of the two-baryon states. A novel representation in term of permanents is obtained for the spin, isospin interaction between the baryons, which is valid for any isospin sector.« less

  2. Spin transfer torque in non-collinear magnetic tunnel junctions exhibiting quasiparticle bands: a non-equilibrium Green's function study

    NASA Astrophysics Data System (ADS)

    Jaya, Selvaraj Mathi

    2017-06-01

    A non-equilibrium Green's function formulation to study the spin transfer torque (STT) in non-collinear magnetic tunnel junctions (MTJs) exhibiting quasiparticle bands is developed. The formulation can be used to study the magnetoresistance and spin current too. The formulation is used to study the STT in model tunnel junctions exhibiting multiple layers and quasiparticle bands. The many body interaction that gives rise to quasiparticle bands is assumed to be a s - f exchange interaction at the electrode regions of the MTJ. The quasiparticle bands are obtained using a many body procedure and the single particle band structure is obtained using the tight binding model. The bias dependence of the STT as well as the influence of band occupancy and s - f exchange coupling strength on the STT are studied. We find from our studies that the band occupancy plays a significant role in deciding the STT and the s - f interaction strength too influences the STT significantly. Anomalous behavior in both the parallel and perpendicular components of the STT is obtained from our studies. Our results obtained for certain values of the band occupation are found to show the trend observed from the experimental measurements of STT.

  3. Ab initio and DFT studies of the spin-orbit and spin-spin contributions to the zero-field splitting tensors of triplet nitrenes with aryl scaffolds.

    PubMed

    Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji

    2011-04-21

    Spin-orbit and spin-spin contributions to the zero-field splitting (ZFS) tensors (D tensors) of spin-triplet phenyl-, naphthyl-, and anthryl-nitrenes in their ground state are investigated by quantum chemical calculations, focusing on the effects of the ring size and substituted position of nitrene on the D tensor. A hybrid CASSCF/MRMP2 approach to the spin-orbit term of the D tensor (D(SO) tensor), which was recently proposed by us, has shown that the spin-orbit contribution to the entire D value, termed the ZFS parameter or fine-structure constant, is about 10% in all the arylnitrenes under study and less depends on the size and connectivity of the aryl groups. Order of the absolute values for D(SO) can be explained by the perturbation on the energy level and spatial distributions of π-SOMO through the orbital interaction between SOMO of the nitrene moiety and frontier orbitals of the aryl scaffolds. Spin-spin contribution to the D tensor (D(SS) tensor) has been calculated in terms of the McWeeny-Mizuno equation with the DFT/EPR-II spin densities. The D(SS) value calculated with the RO-B3LYP spin density agrees well with the D(Exptl) -D(SO) reference value in phenylnitrene, but agreement with the reference value gradually becomes worse as the D value decreases. Exchange-correlation functional dependence on the D(SS) tensor has been explored with standard 23 exchange-correlation functionals in both RO- and U-DFT methodologies, and the RO-HCTH/407 method gives the best agreement with the D(Exptl) -D(SO) reference value. Significant exchange-correlation functional dependence is observed in spin-delocalized systems such as 9-anthrylnitrene (6). By employing the hybrid CASSCF/MRMP2 approach and the McWeeny-Mizuno equation combined with the RO-HCTH/407/EPR-II//U-HCTH/407/6-31G* spin densities for D(SO) and D(SS), respectively, a quantitative agreement with the experiment is achieved with errors less than 10% in all the arylnitrenes under study. Guidelines to the putative approaches to D(SS) tensor calculations are given.

  4. (1)H-(13)C Hetero-nuclear dipole-dipole couplings of methyl groups in stationary and magic angle spinning solid-state NMR experiments of peptides and proteins.

    PubMed

    Wu, Chin H; Das, Bibhuti B; Opella, Stanley J

    2010-02-01

    (13)C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure (1)H-(13)C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the (1)H-(13)C hetero-nuclear dipolar interactions of (13)C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of (13)C(3) labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Exchange interactions in a dinuclear manganese (II) complex with cyanopyridine-N-oxide bridging ligands

    NASA Astrophysics Data System (ADS)

    Markosyan, A. S.; Gaidukova, I. Yu.; Ruchkin, A. V.; Anokhin, A. O.; Irkhin, V. Yu.; Ryazanov, M. V.; Kuz'mina, N. P.; Nikiforov, V. N.

    2014-01-01

    The magnetic properties of dinuclear manganese(II) complex [Mn(hfa)2cpo]2 (where hfa is hexafluoroacetylacetonate anion and cpo is 4-cyanopyridine-N-oxide) are presented. The non-monotonous dependence of magnetic susceptibility is explained in terms of the hierarchy of exchange parameters by using exact diagonalization. The thermodynamic behavior of pure cpo and [Mn(hfa)2(cpo)]2 is simulated numerically by an extrapolation to spin S=5/2. The Mn-Mn exchange integral is evaluated.

  6. Theory of disordered Heisenberg ferromagnets

    NASA Technical Reports Server (NTRS)

    Stubbs, R. M.

    1973-01-01

    A Green's function technique is used to calculate the magnetic properties of Heisenberg ferromagnets in which the exchange interactions deviate randomly in strength from the mean interaction. Systems of sc, bcc, and fcc topologies and of general spin values are treated. Disorder produces marked effects in the density of spin wave states, in the form of enhancement of the low-energy density and extension of the energy band to higher values. The spontaneous magnetization and the Curie temperature decrease with increasing disorder. The effects of disorder are shown to be more pronounced in the ferromagnetic than in the paramagnetic phase.

  7. Phase transition in the spin- 3 / 2 Blume-Emery-Griffiths model with antiferromagnetic second neighbor interactions

    NASA Astrophysics Data System (ADS)

    Yezli, M.; Bekhechi, S.; Hontinfinde, F.; EZ-Zahraouy, H.

    2016-04-01

    Two nonperturbative methods such as Monte-Carlo simulation (MC) and Transfer-Matrix Finite-Size-Scaling calculations (TMFSS) have been used to study the phase transition of the spin- 3 / 2 ​Blume-Emery-Griffiths model (BEG) with quadrupolar and antiferromagnetic next-nearest-neighbor exchange interactions. Ground state and finite temperature phase diagrams are obtained by means of these two methods. New degenerate phases are found and only second order phase transitions occur for all values of the parameter interactions. No sign of the intermediate phase is found from both methods. Critical exponents are also obtained from TMFSS calculations. Ising criticality and nonuniversal behaviors are observed depending on the strength of the second neighbor interaction.

  8. S=2 quasi-one-dimensional spin waves in CrCl2

    NASA Astrophysics Data System (ADS)

    Stone, Matthew; Ehlers, Georg; Granroth, Garrett

    2014-03-01

    We examine the magnetic excitation spectrum in the S = 2 Heisenberg antiferromagnet CrCl2. Inelastic neutron scattering measurements on powder samples are able to determine the significant exchange interactions in this system. A large anisotropy gap is observed in the spectrum below the Néel temperature and the ratio of the two largest exchange constants is Jc /Jb = 9 . 1 +/- 2 . 2 . However, no sign of a gapped quantum spin liquid excitation was found in the paramagnetic phase. The research was performed at Oak Ridge National Laboratory's Spallation Neutron Source and was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

  9. Long-range spin-singlet proximity effect for a Josephson system with a single-crystal ferromagnet due to its band-structure features

    NASA Astrophysics Data System (ADS)

    Avdeev, M. V.; Proshin, Yu. N.

    2018-03-01

    A possible explanation for the long-range proximity effect observed in single-crystalline cobalt nanowires sandwiched between two tungsten superconducting electrodes [Nat. Phys. 6, 389 (2010), 10.1038/nphys1621] is proposed. The theoretical model uses properties of a ferromagnet band structure. Specifically, to connect the exchange field with the momentum of quasiparticles the distinction between the effective masses in majority and minority spin subbands and the Fermi-surface anisotropy are considered. The derived Eilenberger-like equations allowed us to obtain a renormalized exchange interaction that is completely compensated for some crystallographic directions under certain conditions. The proposed theoretical model is compared with previous approaches.

  10. Two band model for the cuprates

    NASA Astrophysics Data System (ADS)

    Liu, Shiu; White, Steven

    2009-03-01

    We use a numerical canonical transformation approach to derive an effective two-band model for the hole-doped cuprates, which keeps both oxygen and copper orbitals but removes double occupancy from each. A similar model was considered previously by Frenkel, Gooding, Shraiman, and Siggia (PRB 41, number 1, page 350). We compare the numerically derived model with previously obtained analytical results. In addition to the usual hopping terms between oxygens tpp and Cu-Cu exchange terms Jdd, the model also includes a strong copper-oxygen exchange interaction Jpd and a Kondo-like spin-flip oxygen-oxygen hopping term Kpdp. We use the density matrix renormalization group to study the charge, spin, and pairing properties of the derived model on ladder systems.

  11. Strong electron-hole exchange in coherently coupled quantum dots.

    PubMed

    Fält, Stefan; Atatüre, Mete; Türeci, Hakan E; Zhao, Yong; Badolato, Antonio; Imamoglu, Atac

    2008-03-14

    We have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole-spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where a conditional exciton energy shift in one dot identifies the charging state of the coupled partner.

  12. Electrostatically defined isolated domain wall in integer quantum Hall regime as precursor for reconfigurable Majorana network

    NASA Astrophysics Data System (ADS)

    Kazakov, Alexander; Simion, George; Kolkovsky, Valery; Adamus, Zbigniew; Karczewski, Grzegorz; Wojtowicz, Tomasz; Lyanda-Geller, Yuli; Rokhinson, Leonid

    Development of a two-dimensional systems with reconfigurable one-dimensional topological superconductor channels became primary direction in experimental branch of Majorana physics. Such system would allow to probe non-Abelian properties of Majorana quasiparticles and realize the ultimate goal of Majorana research - topological qubit for topologically protected quantum computations. In order to create and exchange Majorana quasiparticles desired system may be spin-full, but fermion doubling should be lifted. These requirements may be fulfilled in domain walls (DW) which are formed during quantum Hall ferromagnet (QHF) transition when two Landau levels with opposite spin polarization become degenerate. We developed a system based on CdMnTe quantum well with engineered placement of Mn ions where exchange interaction and, consequently, QHF transition can be controlled by electrostatic gating. Using electrostatic control of exchange we create conductive channels of DWs which, unlike conventional edge channels, are not chiral and should contain both spin polarizations. We will present results on the formation of isolated DWs of various widths and discuss their transport properties. Department of Defence Office of Naval research Award N000141410339.

  13. Tunneling measurement of quantum spin oscillations

    NASA Astrophysics Data System (ADS)

    Bulaevskii, L. N.; Hruška, M.; Ortiz, G.

    2003-09-01

    We consider the problem of tunneling between two leads via a localized spin 1/2 or any other microscopic system (e.g., a quantum dot) which can be modeled by a two-level Hamiltonian. We assume that a constant magnetic field B0 acts on the spin, that electrons in the leads are in a voltage driven thermal equilibrium, and that the tunneling electrons are coupled to the spin through exchange and spin-orbit interactions. Using the nonequilibrium Keldysh formalism we find the dependence of the spin-spin and current-current correlation functions on the applied voltage between leads V, temperature T, B0, and on the degree and orientation mα of spin polarization of the electrons in the right (α=R) and left (α=L) leads. We show the following (a) The spin-spin correlation function exhibits a peak at the Larmor frequency, ωL, corresponding to the effective magnetic field B acting upon the spin as determined by B0 and the exchange field induced by tunneling of spin-polarized electrons. (b) If the mα’s are not parallel to B the second-order derivative of the average tunneling current I(V) with respect to V is proportional to the spectral density of the spin-spin correlation function, i.e., exhibits a peak at the voltage V=ħωL/e. (c) In the same situation when V>B the current-current correlation function exhibits a peak at the same frequency. (d) The signal-to-noise (shot-noise) ratio R for this peak reaches a maximum value of order unity, R⩽4, at large V when the spin is decoupled from the environment and the electrons in both leads are fully polarized in the direction perpendicular to B. (e) R≪1 if the electrons are weakly polarized, or if they are polarized in a direction close to B0, or if the spin interacts with the environment stronger than with the tunneling electrons. Our results of a full quantum-mechanical treatment of the tunneling-via-spin model when V≫B are in agreement with those previously obtained in the quasiclassical approach. We discuss also the experimental results observed using scanning tunneling microscopy dynamic probes of the localized spin.

  14. Radiation enhanced antiferromagnetic exchange between spins in a superconducting host

    NASA Astrophysics Data System (ADS)

    Akkaravarawong, Kamphol; Vayrynen, Jukka; Sau, Jay; Glazman, Leonid; Yao, Norman

    2017-04-01

    A magnetic impurity on a conventional superconductor can host a localized bound state whose energy lies inside the superconducting gap. If the distance between two such impurities is smaller than the coherence length, the presence of these so-called Yu-Shiba-Rusinov (YSR) bound states can induce an antiferromagnetic exchange interaction between the impurities, falling off as 1 /r2 . Although the YSR interaction exhibits a slower decay than conventional RKKY interactions, its strength is significantly weaker, making it extremely challenging to experimentally observe. We demonstrate that the strength of the YSR interaction can be enhanced via radiation assisted virtual occupation, and that the signature of this coupling can naturally be observed through spectroscopy.

  15. Interaction of Spin-Labeled Lipid Membranes with Transition Metal Ions

    PubMed Central

    2015-01-01

    The large values of spin relaxation enhancement (RE) for PC spin-labels in the phospholipid membrane induced by paramagnetic metal salts dissolved in the aqueous phase can be explained by Heisenberg spin exchange due to conformational fluctuations of the nitroxide group as a result of membrane fluidity, flexibility of lipid chains, and, possibly, amphiphilic nature of the nitroxide label. Whether the magnetic interaction occurs predominantly via Heisenberg spin exchange (Ni) or by the dipole–dipole (Gd) mechanism, it is essential for the paramagnetic ion to get into close proximity to the nitroxide moiety for efficient RE. For different salts of Ni the RE in phosphatidylcholine membranes follows the anionic Hofmeister series and reflects anion adsorption followed by anion-driven attraction of paramagnetic cations on the choline groups. This adsorption is higher for chaotropic ions, e.g., perchlorate. (A chaotropic agent is a molecule in water solution that can disrupt the hydrogen bonding network between water molecules.) However, there is no anionic dependence of RE for model membranes made from negatively charged lipids devoid of choline groups. We used Ni-induced RE to study the thermodynamics and electrostatics of ion/membrane interactions. We also studied the effect of membrane composition and the phase state on the RE values. In membranes with cholesterol a significant difference is observed between PC labels with nitroxide tethers long enough vs not long enough to reach deep into the membrane hydrophobic core behind the area of fused cholesterol rings. This study indicates one must be cautious in interpreting data obtained by PC labels in fluid membranes in terms of probing membrane properties at different immersion depths when it can be affected by paramagnetic species at the membrane surface. PMID:26490692

  16. Random Blume-Emery-Griffiths model on the Bethe lattice

    NASA Astrophysics Data System (ADS)

    Albayrak, Erhan

    2015-12-01

    The random phase transitions of the Blume-Emery-Griffiths (BEG) model for the spin-1 system are investigated on the Bethe lattice and the phase diagrams of the model are obtained. The biquadratic exchange interaction (K) is turned on, i.e. the BEG model, with probability p either attractively (K > 0) or repulsively (K < 0) and turned off, which leads to the BC model, with the probability (1 - p) throughout the Bethe lattice. By taking the bilinear exchange interaction parameter J as a scaling parameter, the effects of the competitions between the reduced crystal fields (D / J), reduced biquadratic exchange interaction parameter (K / J) and the reduced temperature (kT / J) for given values of the probability when the coordination number is q=4, i.e. on a square lattice, are studied in detail.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae Wook; Artyukhin, Sergei; Mun, Eun Deok

    In this paper, we report the discovery of a metamagnetic phase transition in a polar antiferromagnet Ni 3TeO 6 that occurs at 52 T. The new phase transition accompanies a colossal magnetoelectric effect, with a magnetic-field-induced polarization change of 0.3 μC/cm 2, a value that is 4 times larger than for the spin-flop transition at 9 T in the same material, and also comparable to the largest magnetically induced polarization changes observed to date. Via density-functional calculations we construct a full microscopic model that describes the data. We model the spin structures in all fields and clarify the physics behindmore » the 52 T transition. The high-field transition involves a competition between multiple different exchange interactions which drives the polarization change through the exchange-striction mechanism. Finally, the resultant spin structure is rather counterintuitive and complex, thus providing new insights on design principles for materials with strong magnetoelectric coupling.« less

  18. Non-conserved magnetization operator and 'fire-and-ice' ground states in the Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Torrico, Jordana; Ohanyan, Vadim; Rojas, Onofre

    2018-05-01

    We consider the diamond chain with S = 1/2 XYZ vertical dimers which interact with the intermediate sites via the interaction of the Ising type. We also suppose all four spins form the diamond-shaped plaquette to have different g-factors. The non-uniform g-factors within the quantum spin dimer as well as the XY-anisotropy of the exchange interaction lead to the non-conserving magnetization for the chain. We analyze the effects of non-conserving magnetization as well as the effects of the appearance of negative g-factors among the spins from the unit cell. A number of unusual frustrated states for ferromagnetic couplings and g-factors with non-uniform signs are found out. These frustrated states generalize the "half-fire-half-ice" state introduced in reference Yin et al. (2015). The corresponding zero-temperature ground state phase diagrams are presented.

  19. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  20. Quasi-two-dimensional Bose-Einstein condensation of spin triplets in the dimerized quantum magnet Ba 2 CuSi 2 O 6 Cl 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Makiko; Tanaka, Hidekazu; Kurita, Nobuyuki

    We synthesized single crystals of composition Ba 2CuSi 2O 6Cl 2 and investigated their quantum magnetic properties. The crystal structure is closely related to that of the quasi-two-dimensional (2D) dimerized magnet BaCuSi 2O 6 also known as Han purple. Ba 2CuSi 2O 6Cl 2 has a singlet ground state with an excitation gap of Δ/k B = 20.8 K. The magnetization curves for two different field directions almost perfectly coincide when normalized by the g factor except for a small jump anomaly for a magnetic field perpendicular to the c axis. The magnetization curve with a nonlinear slope above themore » critical field is in excellent agreement with exact-diagonalization calculations based on a 2D coupled spin-dimer model. Individual exchange constants are also evaluated using density functional theory (DFT). The DFT results demonstrate a 2D exchange network and weak frustration between interdimer exchange interactions, supported by weak spin-lattice coupling implied from our magnetostriction data. Lastly, the magnetic-field-induced spin ordering in Ba 2CuSi 2O 6Cl 2 is described as the quasi-2D Bose-Einstein condensation of triplets.« less

  1. Quasi-two-dimensional Bose-Einstein condensation of spin triplets in the dimerized quantum magnet Ba 2 CuSi 2 O 6 Cl 2

    DOE PAGES

    Okada, Makiko; Tanaka, Hidekazu; Kurita, Nobuyuki; ...

    2016-09-20

    We synthesized single crystals of composition Ba 2CuSi 2O 6Cl 2 and investigated their quantum magnetic properties. The crystal structure is closely related to that of the quasi-two-dimensional (2D) dimerized magnet BaCuSi 2O 6 also known as Han purple. Ba 2CuSi 2O 6Cl 2 has a singlet ground state with an excitation gap of Δ/k B = 20.8 K. The magnetization curves for two different field directions almost perfectly coincide when normalized by the g factor except for a small jump anomaly for a magnetic field perpendicular to the c axis. The magnetization curve with a nonlinear slope above themore » critical field is in excellent agreement with exact-diagonalization calculations based on a 2D coupled spin-dimer model. Individual exchange constants are also evaluated using density functional theory (DFT). The DFT results demonstrate a 2D exchange network and weak frustration between interdimer exchange interactions, supported by weak spin-lattice coupling implied from our magnetostriction data. Lastly, the magnetic-field-induced spin ordering in Ba 2CuSi 2O 6Cl 2 is described as the quasi-2D Bose-Einstein condensation of triplets.« less

  2. Breakdown of Spin-Waves in Anisotropic Magnets: Spin Dynamics in α-RuCl3

    NASA Astrophysics Data System (ADS)

    Winter, Stephen; Riedl, Kira; Honecker, Andreas; Valenti, Roser

    α -RuCl3 has recently emerged as a promising candidate for realizing the hexagonal Kitaev model in a real material. Similar to the related iridates (e.g. Na2IrO3), complex magnetic interactions arise from a competition between various similar energy scales, including spin-orbit coupling (SOC), Hund's coupling, and crystal-field splitting. Due to this complexity, the correct spin Hamiltonians for such systems remain hotly debated. For α-RuCl3, a combination of ab-initio calculations, microscopic considerations, and analysis of the static magnetic response have suggested off-diagonal couplings (Γ ,Γ') and long-range interactions in addition to the expected Kitaev exchange. However, the effect of such additional terms on the dynamic response remains unclear. In this contribution, we discuss the recently measured inelastic neutron scattering response in the context of realistic proposals for the microscopic spin Hamiltonian. We conclude that the observed scattering continuum, which has been taken as a signature of Kitaev spin liquid physics, likely persists over a broad range of parameters.

  3. Monte Carlo modeling the phase diagram of magnets with the Dzyaloshinskii - Moriya interaction

    NASA Astrophysics Data System (ADS)

    Belemuk, A. M.; Stishov, S. M.

    2017-11-01

    We use classical Monte Carlo calculations to model the high-pressure behavior of the phase transition in the helical magnets. We vary values of the exchange interaction constant J and the Dzyaloshinskii-Moriya interaction constant D, which is equivalent to changing spin-spin distances, as occurs in real systems under pressure. The system under study is self-similar at D / J = constant , and its properties are defined by the single variable J / T , where T is temperature. The existence of the first order phase transition critically depends on the ratio D / J . A variation of J strongly affects the phase transition temperature and width of the fluctuation region (the ;hump;) as follows from the system self-similarity. The high-pressure behavior of the spin system depends on the evolution of the interaction constants J and D on compression. Our calculations are relevant to the high pressure phase diagrams of helical magnets MnSi and Cu2OSeO3.

  4. Exchange stiffness of Ca-doped YIG

    NASA Astrophysics Data System (ADS)

    Avgin, I.; Huber, D. L.

    1994-05-01

    An effective medium theory for the zero-temperature exchange stiffness of uncompensated Ca-doped YIG is presented. The theory is based on the assumption that the effect of the Ca impurities is to produce strong, random ferromagnetic interactions between spins on the a and d sublattices. In the simplest version of the theory, a fraction, x, of the ad exchange integrals are large and positive, x being related to the Ca concentration. The stiffness is calculated as function of x for arbitrary perturbed ad exchange integral, Jxad. For Jxad≳(1/5)‖8Jaa+3Jdd‖, with Jaa and Jdd denoting the aa and dd exchange integrals, respectively, there is a critical concentration, Xc, such that when x≳Xc, the stiffness is complex. It is suggested that Xc delineates the region where there are significant departures from colinearity in the ground state of the Fe spins. Extension of the theory to a model where the Ca doping is assumed to generate Fe4+ ions on the tetrahedral sites is discussed. Possible experimental tests of the theory are mentioned.

  5. Effective S =2 antiferromagnetic spin chain in the salt (o -MePy-V)FeCl4

    NASA Astrophysics Data System (ADS)

    Iwasaki, Y.; Kida, T.; Hagiwara, M.; Kawakami, T.; Hosokoshi, Y.; Tamekuni, Y.; Yamaguchi, H.

    2018-02-01

    We present a model compound for the S =2 antiferromagnetic (AF) spin chain composed of the salt (o -MePy-V ) FeCl4 . Ab initio molecular-orbital calculations indicate the formation of a partially stacked two-dimensional (2D) spin model comprising five types of exchange interactions between S =1 /2 and S =5 /2 spins, which locate on verdazyl radical and Fe ion, respectively. The magnetic properties of the synthesized crystals indicate that the dominant interaction between the S =1 /2 and S =5 /2 spins stabilizes an S =2 spin in the low-temperature region, and an effective S =2 AF chain is formed for T ≪10 K and H <4 T. We explain the magnetization curve and electron-spin-resonance modes quantitatively based on the S =2 AF chain. At higher fields above quantitatively 4 T, the magnetization curve assumes two-thirds of the full saturation value for fields between 4 and 20 T, and approaches saturation at ˜40 T. The spin model in the high-field region can be considered as a quasi-2D S =1 /2 honeycomb lattice under an effective internal field caused by the fully polarized S =5 /2 spin.

  6. Spin power and efficiency in an Aharnov-Bohm ring with an embedded magnetic impurity quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Guo, Yong, E-mail: guoy66@tsinghua.edu.cn; Collaborative Innovation Center of Quantum Matter, Beijing

    2015-05-11

    Spin thermoelectric effects in an Aharnov-Bohm ring with a magnetic impurity quantum dot (QD) are theoretically investigated by using the nonequilibrium Green's function method. It is found that due to the exchange coupling between the impurity and the electrons in QD, spin output power, and efficiency can be significant and be further modulated by the gate voltage. The spin thermoelectric effect can be modulated effectively by adjusting the Rashba spin-orbit interaction (RSOI) and the magnetic flux. The spin power and efficiency show zigzag oscillations, and thus spin thermoelectric effect can be switched by adjusting the magnetic flux phase factor andmore » RSOI ones. In addition, the spin efficiency can be significantly enhanced by the coexistence of the RSOI and the magnetic flux, and the maximal value of normalized spin efficiency η{sub max}/η{sub C} = 0.35 is obtained. Our results show that such a QD ring device may be used as a manipulative spin thermoelectric generator.« less

  7. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R, Lisha; P, Geetha; B, Aravind P.

    2015-06-24

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness andmore » composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.« less

  8. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    NASA Astrophysics Data System (ADS)

    R, Lisha; T, Hysen; P, Geetha; B, Aravind P.; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.

    2015-06-01

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  9. Spin-orbit torques in magnetic bilayers

    NASA Astrophysics Data System (ADS)

    Haney, Paul

    2015-03-01

    Spintronics aims to utilize the coupling between charge transport and magnetic dynamics to develop improved and novel memory and logic devices. Future progress in spintronics may be enabled by exploiting the spin-orbit coupling present at the interface between thin film ferromagnets and heavy metals. In these systems, applying an in-plane electrical current can induce magnetic dynamics in single domain ferromagnets, or can induce rapid motion of domain wall magnetic textures. There are multiple effects responsible for these dynamics. They include spin-orbit torques and a chiral exchange interaction (the Dzyaloshinskii-Moriya interaction) in the ferromagnet. Both effects arise from the combination of ferromagnetism and spin-orbit coupling present at the interface. There is additionally a torque from the spin current flux impinging on the ferromagnet, arising from the spin hall effect in the heavy metal. Using a combination of approaches, from drift-diffusion to Boltzmann transport to first principles methods, we explore the relative contributions to the dynamics from these different effects. We additionally propose that the transverse spin current is locally enhanced over its bulk value in the vicinity of an interface which is oriented normal to the charge current direction.

  10. Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design

    NASA Astrophysics Data System (ADS)

    Wang, X. S.; Zhang, H. W.; Wang, X. R.

    2018-02-01

    Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device geometry and the details of magnetization structure, so the design and the scalability of the device or circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are used as information carriers, that do not suffer from conventional problems of magnonic devices with additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya interaction) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam splitters, and spin-wave interferometers are designed by using sample edges and domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust, reconfigurable and scalable spin-wave circuitry.

  11. Synthesis, characterization, and modeling of new molecule-based magnets

    NASA Astrophysics Data System (ADS)

    Olson, Christopher Samuel

    The chemical bond and its role as a mediator of magnetic exchange interaction remains an important aspect in the study of magnetic insulators and semiconductors. The M[TCNE] (M = transition metal, TCNE = tetracyanoethylene) class of organic-based magnets has attracted considerable interest since V II[TCNE]x (x ˜ 2) exhibits one of the highest critical temperatures for its class -- Tc ˜ 400 K -- in addition to highly spin-polarized conduction and valance bands (Eg ˜ 0.5 eV), thus foreseeing potential spintronic application. The magneto-structural factors underlying this exceptional behavior remain elusive, however, due to the amorphous nature of the material. To address this, a novel synthetic route was utilized to produce new polycrystalline M[TCNE] solids (whose crystal structures have been resolved) with varying transition metal centers (Ni, Mn, Fe) and lattice dimensionality (2D-3D), exhibiting a wide range of Tc (40-170 K). Spectroscopic and magnetometric studies were performed and demonstrate that in 2D [M II(TCNE)(NCMe)2]X structures (M = Ni, Mn, Fe; X = diamagnetic anion), strong ligand-to-metal transfer of electron density from the organic TCNE radical plays a significant role in the formation of magnetic exchange pathways, while single-ion anisotropy strongly influences the critical temperature and below-Tc spin disorder for magnets in this material class. Additionally, using quantum-computational modeling, magnetic spin-density transfer trends, spin-polarized electronic structures, and electronic exchange coupling constants have been identified and interpreted in terms of 3d-orbital filling and dimensionality of magnetic interaction. These findings offer new perspectives on the stabilization of magnetic order in M[TCNE] solids.

  12. Metastability in the Spin-1 Blume-Emery-Griffiths Model within Constant Coupling Approximation

    NASA Astrophysics Data System (ADS)

    Ekiz, C.

    2017-02-01

    In this paper, the equilibrium properties of spin-1 Blume-Emery-Griffiths model are studied by using constant-coupling approximation. The dipolar and quadrupolar order parameters, the stable, metastable and unstable states and free energy of the model are investigated. The states are defined in terms of local minima of the free energy of system. The numerical calculations are presented for several values of exchange interactions on the simple cubic lattice with q = 6.

  13. Colloquium: Herbertsmithite and the search for the quantum spin liquid

    DOE PAGES

    Norman, M. R.

    2016-12-02

    Quantum spin liquids form a novel class of matter where, despite the existence of strong exchange interactions, spins do not order down to the lowest measured temperature. Typically, these occur in lattices that act to frustrate the appearance of magnetism. In two dimensions, the classic example is the kagome lattice composed of corner sharing triangles. There are a variety of minerals whose transition metal ions form such a lattice. Hence, a number of them have been studied and were then subsequently synthesized in order to obtain more pristine samples. Of particular note was the report in 2005 by Dan Nocera'smore » group of the synthesis of herbertsmithite, composed of a lattice of copper ions sitting on a kagome lattice, which indeed does not order down to the lowest measured temperature despite the existence of a large exchange interaction of 17 meV. Over the past decade, this material has been extensively studied, yielding a number of intriguing surprises that have in turn motivated a resurgence of interest in the theoretical study of the spin 1/2 Heisenberg model on a kagome lattice. In this paper, this Colloquium reviews these developments and then discusses potential future directions, both experimental and theoretical, as well as the challenge of doping these materials with the hope that this could lead to the discovery of novel topological and superconducting phases.« less

  14. Gd3+ spin-lattice relaxation via multi-band conduction electrons in Y(1-x)Gd(x)In3: an electron spin resonance study.

    PubMed

    Cabrera-Baez, M; Iwamoto, W; Magnavita, E T; Osorio-Guillén, J M; Ribeiro, R A; Avila, M A; Rettori, C

    2014-04-30

    Interest in the electronic structure of the intermetallic compound YIn3 has been renewed with the recent discovery of superconductivity at T ∼ 1 K, which may be filamentary in nature. In this work we perform electron spin resonance (ESR) experiments on Gd(3+) doped YIn3 (Y1-xGdxIn3; 0.001 ⪅ x ⩽̸ 0.08), showing that the spin-lattice relaxation of the Gd(3+) ions, due to the exchange interaction between the Gd(3+) localized magnetic moment and the conduction electrons (ce), is processed via the presence of s-, p- and d-type ce at the YIn3 Fermi level. These findings are revealed by the Gd(3+) concentration dependence of the Korringa-like relaxation rate d(ΔH)/dT and g-shift (Δg = g - 1.993), that display bottleneck relaxation behavior for the s-electrons and unbottleneck behavior for the p- and d-electrons. The Korringa-like relaxation rates vary from 22(2) Oe/K for x ⪅ 0.001 to 8(2) Oe/K for x = 0.08 and the g-shift values change, respectively, from a positive Δg = +0.047(10) to a negative Δg = -0.008(4). Analysis in terms of a three-band ce model allows the extraction of the corresponding exchange interaction parameters Jfs, Jfp and Jfd.

  15. Interplay between the spin transfer and spin orbit torques on domain walls at the 5d/3d-alloy interfaces

    NASA Astrophysics Data System (ADS)

    Kalitsov, Alan; Okatov, Sergey; Zarzhitsky, Pavel; Chshiev, Mairbek; Velev, Julian; Butler, William; Mryasov, Oleg

    2014-03-01

    The manipulations of domain wall (DW) in thin ferromagnetic layers by current and the spin-orbit coupling (SOC) have attracted significant interest. We report two band model calculations of the spin torque (ST) and the spin current (SC) at 5d/3d interfaces with head-to-head, Bloch and Neel DWs. These calculations are based on the non-equilibrium Green Function formalism and the tight binding Hamiltonian including the s-d exchange interactions and the Rashba SOC parameterized on the basis of ab-initio calculations for Fe/W, FeCo/Ta and Co/Pt interfaces. We find that SOC significantly modifies the ST and violates relations between the spin transfer torque and the divergence of the spin current. This work was supported in part by a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  16. Spin-orbit coupling controlled ground state in Sr 2 ScOsO 6

    DOE PAGES

    Taylor, A. E.; Morrow, R.; Fishman, R. S.; ...

    2016-06-27

    In this paper, we report neutron scattering experiments which reveal a large spin gap in the magnetic excitation spectrum of weakly-monoclinic double perovskite Sr 2ScOsO 6. The spin gap is demonstrative of appreciable spin-orbit-induced anisotropy, despite nominally orbitally-quenched 5d 3Os 5+ ions. The system is successfully modeled including nearest neighbor interactions in a Heisenberg Hamiltonian with exchange anisotropy. We find that the presence of the spin-orbit-induced anisotropy is essential for the realization of the type I antiferromagnetic ground state. Finally, this demonstrates that physics beyond the LS or JJ coupling limits plays an active role in determining the collective propertiesmore » of 4d 3 and 5d 3 systems and that theoretical treatments must include spin-orbit coupling.« less

  17. Spin-orbit coupling controlled ground state in Sr 2 ScOsO 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, A. E.; Morrow, R.; Fishman, R. S.

    In this paper, we report neutron scattering experiments which reveal a large spin gap in the magnetic excitation spectrum of weakly-monoclinic double perovskite Sr 2ScOsO 6. The spin gap is demonstrative of appreciable spin-orbit-induced anisotropy, despite nominally orbitally-quenched 5d 3Os 5+ ions. The system is successfully modeled including nearest neighbor interactions in a Heisenberg Hamiltonian with exchange anisotropy. We find that the presence of the spin-orbit-induced anisotropy is essential for the realization of the type I antiferromagnetic ground state. Finally, this demonstrates that physics beyond the LS or JJ coupling limits plays an active role in determining the collective propertiesmore » of 4d 3 and 5d 3 systems and that theoretical treatments must include spin-orbit coupling.« less

  18. Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    NASA Astrophysics Data System (ADS)

    Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.

    2018-03-01

    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.

  19. Spin crossover in Fe(phen)2(NCS)2 complexes on metallic surfaces

    NASA Astrophysics Data System (ADS)

    Gruber, Manuel; Miyamachi, Toshio; Davesne, Vincent; Bowen, Martin; Boukari, Samy; Wulfhekel, Wulf; Alouani, Mebarek; Beaurepaire, Eric

    2017-03-01

    In this review, we give an overview on the spin crossover of Fe(phen)2(NCS)2 complexes adsorbed on Cu(100), Cu2N/Cu(100), Cu(111), Co/Cu(111), Co(100), Au(100), and Au(111) surfaces. Depending on the strength of the interaction of the molecules with the substrates, the spin crossover behavior can be drastically changed. Molecules in direct contact with non-magnetic metallic surfaces coexist in both the high- and low-spin states but cannot be switched between the two. Our analysis shows that this is due to a strong interaction with the substrate in the form of a chemisorption that dictates the spin state of the molecules through its adsorption geometry. Upon reducing the interaction to the surface either by adding a second molecular layer or inserting an insulating thin film of Cu2N, the spin crossover behavior is restored and molecules can be switched between the two states with the help of scanning tunneling microscopy. Especially on Cu2N, the two states of single molecules are stable at low temperature and thus allow the realization of a molecular memory. Similarly, the molecules decoupled from metallic substrates in the second or higher layers display thermally driven spin crossover as has been revealed by X-ray absorption spectroscopy. Finally, we discuss the situation when the complex is brought into contact with a ferromagnetic substrate. This leads to a strong exchange coupling between the Fe spin in the high-spin state and the magnetization of the substrate as deduced from spin-polarized scanning tunneling spectroscopy and ab initio calculation.

  20. Hyperfine spin interactions between polarons and nuclei in organic light emitting diodes: Magneto-EL measurements

    NASA Astrophysics Data System (ADS)

    Crooker, S. A.; Kelley, M. R.; Martinez, N.; Nie, W.; Mohite, A. D.; Smith, D. L.; Tretiak, S.; Ruden, P. P.

    2014-03-01

    Considerable attention in recent years has focused on the effects of applied magnetic fields on the conductance, photocurrent, electroluminescence (EL), and photoluminescence of nominally nonmagnetic organic semiconductor materials and devices. These magnetic field effects have proven useful in revealing the underlying physical mechanisms and relevant spin interactions that influence the electrical and optical properties in these organic systems (e.g., hyperfine coupling, exchange interactions, and spin-orbit coupling). Here we study the field-dependent properties of organic light-emitting diode (OLEDs) based on MTDATA/LiF/Bphen layered structures, in which exciplex recombination at the interface dominates the EL spectra. Small applied magnetic fields (~10 mT) are found to boost the net EL yield by up to 10%, due to a suppression of the mixing between singlet and triplet polaron pairs which, in turn, arises from hyperfine spin coupling of the polarons to the underlying nuclei of the host molecules. We discuss the dependence of these field-induced effects on the LiF barrier thickness, device bias, and on the orientation of the applied magnetic field, as well as the mechanisms responsible.

  1. Intramolecular and Lattice Dynamics in V6-nIVVnV O7(OCH3)12 Crystal

    NASA Astrophysics Data System (ADS)

    Yablokov, Yu. V.; Augustyniak-Jabłokow, M. A.; Borshch, S.; Daniel, C.; Hartl, H.

    2006-08-01

    Multi-nuclear mixed-valence clusters V4IVV2VO7(OCH3)12 were studied by X-band EPR in the temperature range 4.2-300 K. An isotropic exchange interactions between four VIV ions with individual spin Si=1/2 determine the energy levels structure of the compound with the total spin states S=0, 1, and 2, which are doubled and split due to the extra electron transfer. The spin-Hamiltonian approach was used for the analysis of the temperature dependences of the EPR spectra parameters and the cluster dynamics. Two types of the electron transfer are assumed: the single jump transfer leading to the splitting of the total spin states by intervals comparable in magnitude with the exchange parameter J≈100-150cm-1 and the double jump one resulting in dynamics. The dependence of the transition ratesνtr on the energy of the total spin states was observed. In particular, in the range 300-220 K the νtr ≈0.7×1010 cm-1 and below 180 K the νtr≈1×1010 cm-1 was estimated. The g-factors of the spin states were shown to depend on the values of the intermediate spins. A phase transition in the T-range 210-180 K leading to the change in the initial VIV ions localization was discovered.

  2. Dyon proliferation in interacting quantum spin Hall edges

    NASA Astrophysics Data System (ADS)

    Lee, Shu-Ping; Maciejko, Joseph

    We show that a quantum spin Hall system with intra-edge multiparticle backscattering and inter-edge exchange interactions exhibits a modular invariant zero-temperature phase diagram. We establish this through mapping to a classical 2D Coulomb gas with electrically and magnetically charged particles; strong coupling phases in the quantum edge problem correspond to the proliferation of various dyons in the Coulomb gas. Distinct dyon proliferated phases can be accessed by tuning the edge Luttinger parameters, for example using a split gate geometry. This research was supported by NSERC Grant #RGPIN-2014-4608, the Canada Research Chair Program (CRC) and the Canadian Institute for Advanced Research (CIFAR).

  3. Surface spin-electron acoustic waves in magnetically ordered metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz'menkov, L. S., E-mail: lsk@phys.msu.ru

    2016-05-09

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma, we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area, the dispersion branches are located close to each other. In this area, there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuirmore » waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the spin-electron acoustic waves.« less

  4. The direct exchange mechanism of induced spin polarization of low-dimensional π-conjugated carbon- and h-BN fragments at LSMO(001) MnO-terminated interfaces

    NASA Astrophysics Data System (ADS)

    Kuklin, Artem V.; Kuzubov, Alexander A.; Kovaleva, Evgenia A.; Lee, Hyosun; Sorokin, Pavel B.; Sakai, Seiji; Entani, Shiro; Naramoto, Hiroshi; Avramov, Paul

    2017-10-01

    Induced spin polarization of π-conjugated carbon and h-BN low dimensional fragments at the interfaces formed by deposition of pentacene molecule and narrow zigzag graphene and h-BN nanoribbons on MnO2-terminated LSMO(001) thin film was studied using GGA PBE+U PAW D3-corrected approach. Induced spin polarization of π-conjugated low-dimensional fragments is caused by direct exchange with Mn ions of LSMO(001) MnO-derived surface. Due to direct exchange, the pentacene molecule changes its diamagnetic narrow-band gap semiconducting nature to the ferromagnetic semiconducting state with 0.15 eV energy shift between spin-up and spin-down valence bands and total magnetic moment of 0.11 μB. Direct exchange converts graphene nanoribbon to 100% spin-polarized half-metal with large amplitude of spin-up electronic density at the Fermi level. The direct exchange narrows the h-BN nanoribbon band gap from 4.04 to 1.72 eV in spin-up channel and converts the h-BN ribbon semiconducting diamagnetic nature to a semiconducting magnetic one. The electronic structure calculations demonstrate a possibility to control the spin properties of low-dimensional π-conjugated carbon and h-BN fragments by direct exchange with MnO-derived LSMO(001) surface for spin-related applications.

  5. Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics.

    PubMed

    Gani, Terry Z H; Kulik, Heather J

    2017-11-14

    Accurate predictions of spin-state ordering, reaction energetics, and barrier heights are critical for the computational discovery of open-shell transition-metal (TM) catalysts. Semilocal approximations in density functional theory, such as the generalized gradient approximation (GGA), suffer from delocalization error that causes them to overstabilize strongly bonded states. Descriptions of energetics and bonding are often improved by introducing a fraction of exact exchange (e.g., erroneous low-spin GGA ground states are instead correctly predicted as high-spin with a hybrid functional). The degree of spin-splitting sensitivity to exchange can be understood based on the chemical composition of the complex, but the effect of exchange on reaction energetics within a single spin state is less well-established. Across a number of model iron complexes, we observe strong exchange sensitivities of reaction barriers and energies that are of the same magnitude as those for spin splitting energies. We rationalize trends in both reaction and spin energetics by introducing a measure of delocalization, the bond valence of the metal-ligand bonds in each complex. The bond valence thus represents a simple-to-compute property that unifies understanding of exchange sensitivity for catalytic properties and spin-state ordering in TM complexes. Close agreement of the resulting per-metal-organic-bond sensitivity estimates, together with failure of alternative descriptors demonstrates the utility of the bond valence as a robust descriptor of how differences in metal-ligand delocalization produce differing relative energetics with exchange tuning. Our unified description explains the overall effect of exact exchange tuning on the paradigmatic two-state FeO + /CH 4 reaction that combines challenges of spin-state and reactivity predictions. This new descriptor-sensitivity relationship provides a path to quantifying how predictions in transition-metal complex screening are sensitive to the method used.

  6. REVIEW ARTICLE: Phonons and magnetoelectric interactions in Ni3V2O8

    NASA Astrophysics Data System (ADS)

    Yildirim, T.; Vergara, L. I.; Íñiguez, Jorge; Musfeldt, J. L.; Harris, A. B.; Rogado, N.; Cava, R. J.; Yen, F.; Chaudhury, R. P.; Lorenz, B.

    2008-10-01

    We present a detailed study of the zone-center phonons and magnetoelectric interactions in Ni3V2O8. Using combined neutron scattering, polarized infrared (IR) measurements and first-principles LDA+U calculations, we successfully assigned all IR-active modes, including eleven B2u phonons which can induce the observed spontaneous electric polarization. We also calculated the Born-effective charges and the IR intensities which are in surprisingly good agreement with the experimental data. Among the eleven B2u phonons, we find that only a few of them can actually induce a significant dipole moment. The exchange interactions up to a cutoff of 6.5 Å are also calculated within the LDA+U approach with different values of U for Ni, V and O atoms. We find that LSDA (i.e. U = 0) gives excellent results concerning the optimized atomic positions, bandgap and phonon energies. However, the magnitudes of the exchange constants are too large compared to the experimental Curie-Weiss constant, Θ. Including U for Ni corrects the magnitude of the superexchange constants but opens a too large electronic bandgap. We observe that including correlation at the O site is very important to get simultaneously the correct phonon energies, bandgap and exchange constants. In particular, the nearest and next-nearest exchange constants along the Ni-spine sites result in incommensurate spin ordering with a wavevector that is consistent with the experimental data. Our results also explain how the antiferromagnetic coupling between sublattices in the b and c directions is consistent with the relatively small observed value of Θ. We also find that, regardless of the values of U used, we always get the same five exchange constants that are significantly larger than the rest. Finally, we discuss how the B2u phonons and the spin structure combine to yield the observed spontaneous polarization. We present a simple phenomenological model which shows how trilinear (and quartic) couplings of one (or two) phonons to two spin operators perturbatively affects the magnon (i.e. electromagnon) and phonon energies.

  7. Double perovskites with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Cook, Ashley M.

    We first present theoretical analysis of powder inelastic neutron scattering experiments in Ba2FeReO6 performed by our experimental collaborators. Ba2FeReO6, a member of the double perovskite family of materials, exhibits half-metallic behavior and high Curie temperatures Tc, making it of interest for spintronics applications. To interpret the experimental data, we develop a local moment model, which incorporates the interaction of Fe spins with spin-orbital locked magnetic moments on Re, and show that it captures the experimental observations. We then develop a tight-binding model of the double perovskite Ba 2FeReO6, a room temperature ferrimagnet with correlated and spin-orbit coupled Re t2g electrons moving in the background of Fe moments stabilized by Hund's coupling. We show that for such 3d/5d double perovskites, strong correlations on the 5d-element (Re) are essential in driving a half-metallic ground state. Incorporating both strong spin-orbit coupling and the Hubbard repulsion on Re leads to a band structure consistent with ab initio calculations. The uncovered interplay of strong correlations and spin-orbit coupling lends partial support to our previous work, which used a local moment description to capture the spin wave dispersion found in neutron scattering measurements. We then adapt this tight-binding model to study {111}-grown bilayers of half-metallic double perovskites such as Sr2FeMoO6. The combination of spin-orbit coupling, inter-orbital hybridization and symmetry-allowed trigonal distortion leads to a rich phase diagram with tunable ferromagnetic order, topological C= +/-1, +/-2 Chern bands, and a C = +/-2 quantum anomalous Hall insulator regime. We have also performed theoretical analysis of inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO 6 and La2MgIrO6. Models with dominant Kitaev exchange seem to most naturally account for the neutron data as well as the measured frustration parameters of these materials, while the uniaxial Ising anisotropy does not. Our findings highlight how even seemingly conventional magnetic orders in oxide materials containing heavy transition metal ions may be driven by highly-directional exchange interactions rooted in strong spin-orbit coupling. Motivated by experiments on the double perovskites La2ZnIrO 6 and La2MgIrO6, we lastly study the magnetism of spin-orbit coupled jeff =1/2 iridium moments on the three-dimensional, geometrically frustrated, facecentered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. A Luttinger-Tisza analysis shows a rich variety of orders, including collinear AII type antiferromagnetism, stripe order with moments along the {111}-direction, and incommensurate non-coplanar spirals, and we use Monte Carlo simulations to determine their magnetic ordering temperatures.

  8. Spin properties of charged Mn-doped quantum dota)

    NASA Astrophysics Data System (ADS)

    Besombes, L.; Léger, Y.; Maingault, L.; Mariette, H.

    2007-04-01

    The optical properties of individual quantum dots doped with a single Mn atom and charged with a single carrier are analyzed. The emission of the neutral, negatively and positively charged excitons coupled with a single magnetic atom (Mn) are observed in the same individual quantum dot. The spectrum of the charged excitons in interaction with the Mn atom shows a rich pattern attributed to a strong anisotropy of the hole-Mn exchange interaction slightly perturbed by a small valence-band mixing. The anisotropy in the exchange interaction between a single magnetic atom and a single hole is revealed by comparing the emission of a charged Mn-doped quantum dot in longitudinal and transverse magnetic field.

  9. Exact Mapping from Many-Spin Hamiltonians to Giant-Spin Hamiltonians.

    PubMed

    Ghassemi Tabrizi, Shadan; Arbuznikov, Alexei V; Kaupp, Martin

    2018-03-26

    Thermodynamic and spectroscopic data of exchange-coupled molecular spin clusters (e.g. single-molecule magnets) are routinely interpreted in terms of two different models: the many-spin Hamiltonian (MSH) explicitly considers couplings between individual spin centers, while the giant-spin Hamiltonian (GSH) treats the system as a single collective spin. When isotropic exchange coupling is weak, the physical compatibility between both spin Hamiltonian models becomes a serious concern, due to mixing of spin multiplets by local zero-field splitting (ZFS) interactions ('S-mixing'). Until now, this effect, which makes the mapping MSH→GSH ('spin projection') non-trivial, had only been treated perturbationally (up to third order), with obvious limitations. Here, based on exact diagonalization of the MSH, canonical effective Hamiltonian theory is applied to construct a GSH that exactly matches the energies of the relevant (2S+1) states comprising an effective spin multiplet. For comparison, a recently developed strategy for the unique derivation of effective ('pseudospin') Hamiltonians, now routinely employed in ab initio calculations of mononuclear systems, is adapted to the problem of spin projection. Expansion of the zero-field Hamiltonian and the magnetic moment in terms of irreducible tensor operators (or Stevens operators) yields terms of all ranks k (up to k=2S) in the effective spin. Calculations employing published MSH parameters illustrate exact spin projection for the well-investigated [Ni(hmp)(dmb)Cl] 4 ('Ni 4 ') single-molecule magnet, which displays weak isotropic exchange (dmb=3,3-dimethyl-1-butanol, hmp - is the anion of 2-hydroxymethylpyridine). The performance of the resulting GSH in finite field is assessed in terms of EPR resonances and diabolical points. The large tunnel splitting in the M=± 4 ground doublet of the S=4 multiplet, responsible for fast tunneling in Ni 4 , is attributed to a Stevens operator with eightfold rotational symmetry, marking the first quantification of a k=8 term in a spin cluster. The unique and exact mapping MSH→GSH should be of general importance for weakly-coupled systems; it represents a mandatory ultimate step for comparing theoretical predictions (e.g. from quantum-chemical calculations) to ZFS, hyperfine or g-tensors from spectral fittings. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Feedback-tuned, noise resilient gates for encoded spin qubits

    NASA Astrophysics Data System (ADS)

    Bluhm, Hendrik

    Spin 1/2 particles form native two level systems and thus lend themselves as a natural qubit implementation. However, encoding a single qubit in several spins entails benefits, such as reducing the resources necessary for qubit control and protection from certain decoherence channels. While several varieties of such encoded spin qubits have been implemented, accurate control remains challenging, and leakage out of the subspace of valid qubit states is a potential issue. Optimal performance typically requires large pulse amplitudes for fast control, which is prone to systematic errors and prohibits standard control approaches based on Rabi flopping. Furthermore, the exchange interaction typically used to electrically manipulate encoded spin qubits is inherently sensitive to charge noise. I will discuss all-electrical, high-fidelity single qubit operations for a spin qubit encoded in two electrons in a GaAs double quantum dot. Starting from a set of numerically optimized control pulses, we employ an iterative tuning procedure based on measured error syndromes to remove systematic errors.Randomized benchmarking yields an average gate fidelity exceeding 98 % and a leakage rate into invalid states of 0.2 %. These gates exhibit a certain degree of resilience to both slow charge and nuclear spin fluctuations due to dynamical correction analogous to a spin echo. Furthermore, the numerical optimization minimizes the impact of fast charge noise. Both types of noise make relevant contributions to gate errors. The general approach is also adaptable to other qubit encodings and exchange based two-qubit gates.

  11. Rolf Landauer and Charles H. Bennett Award Talk: Experimental development of spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Morello, Andrea

    The modern information era is built on silicon nanoelectronic devices. The future quantum information era might be built on silicon too, if we succeed in controlling the interactions between individual spins hosted in silicon nanostructures. Spins in silicon constitute excellent solid-state qubits, because of the weak spin-orbit coupling and the possibility to remove nuclear spins from the environment through 28Si isotopic enrichment. Substitutional 31P atoms in silicon behave approximately like hydrogen in vacuum, providing two spin 1/2 qubits - the donor-bound electron and the 31P nucleus - that can be coherently controlled, read out in single-shot, and are naturally coupled through the hyperfine interaction. In isotopically-enriched 28Si, these single-atom qubits have demonstrated outstanding coherence times, up to 35 seconds for the nuclear spin, and 1-qubit gate fidelities well above 99.9% for both the electron and the nucleus. The hyperfine coupling provides a built-in interaction to entangle the two qubits within one atom. The combined initialization, control and readout fidelities result in a violation of Bell's inequality with S = 2 . 70 , a record value for solid-state qubits. Despite being identical atomic systems, 31P atoms can be addressed individually by locally modifying the hyperfine interaction through electrostatic gating. Multi-qubit logic gates can be mediated either by the exchange interaction or by electric dipole coupling. Scaling up beyond a single atom presents formidable challenges, but provides a pathway to building quantum processors that are compatible with standard semiconductor fabrication, and retain a nanometric footprint, important for truly large-scale quantum computers. Work supported by US Army Research Office (W911NF-13-1-0024) and Australian Research Council (CE110001027).

  12. Inverse spin Hall and spin rectification effects in NiFe/FeMn exchange-biased thin films

    NASA Astrophysics Data System (ADS)

    Garcia, W. J. S.; Seeger, R. L.; da Silva, R. B.; Harres, A.

    2017-11-01

    Materials presenting high spin-orbit coupling are able to convert spin currents in charge currents. The phenomenon, known as inverse spin Hall effect, promises to revolutionize spintronic technology enabling the electrical detection of spin currents. It has been observed in a variety of systems, usually non-magnetic metals. We study the voltage emerging in exchange biased Ta/NiFe/FeMn/Ta thin films near the ferromagnetic resonance. Measured signals are related to both inverse spin Hall and spin rectification effects, and two distinct protocols were employed to separate their contributions.The curve shift due to the exchange bias effect may enable high frequency applications without an external applied magnetic field.

  13. Magnetic compensation and critical properties of a mixed spin-(2, 3/2) Heisenberg single-walled nanotube superlattice

    NASA Astrophysics Data System (ADS)

    Mi, Bin-Zhou; Feng, Cui-Ju; Luo, Jian-Guo; Hu, De-Zhi

    2018-01-01

    In recent years, some theoretical interests have been focused on the binary alloy nanotubes and nanowires with mixed spins. Compared with ferrimagnetic nanowires, few studies have been done on ferrimagnetic nanotubes. In this paper, the magnetic properties of a mixed spin-(2, 3/2) Heisenberg single-walled nanotube superlattice are calculated by use of the double-time Green's function method within the random phase approximation and the Anderson and Callen's decoupling. Magnetic compensation and critical properties are obtained for a wide range of parameters in the Hamiltonian, and magnetic phase diagrams are plotted in the related planes. For Heisenberg single-walled nanotube superlattice model with Néel-type magnetic structure, anisotropy must be taken into account, and the easy-axis single-ion anisotropy is considered in this paper. The next nearest neighbor exchange interactions Jbb and/or single-ion anisotropy strength Db of the smaller spin sublattice were necessary in order to obtain a compensation point. The influence of the wall diameter number of the tubes, m, an important parameter of the system, on the compensation behavior is considered. Calculation shows that as Jbb and Db are fixed, only when m is beyond a certain minimum value, mmin, can compensation temperature Tcom appears, where the next nearest neighbor exchange interactions Jaa and single-ion anisotropy strength Da of the larger spin sublattice are absent. The compensation temperature and critical temperature increase with m rising, which indicates that the longitudinal correlation effect is enhanced and the fluctuation effect is weakened with the increase of m.

  14. Disappearance of Ising nature in Ca3ZnMnO6 studied by high-field ESR.

    PubMed

    Ruan, M Y; Ouyang, Z W; Guo, Y M; Cheng, J J; Sun, Y C; Xia, Z C; Rao, G H; Okubo, S; Ohta, H

    2014-06-11

    High-field electron spin resonance measurements of an antiferromagnet Ca3ZnMnO6 isostructure, with the Ising-chain multiferroic Ca3CoMnO6, have been carried out. Two distinct resonance modes were observed below TN = 25 K, which is well explained by conventional antiferromagnetic resonance theory with easy-plane anisotropy. The zero-field spin gap is derived to be about 166 GHz, originating from the easy-plane anisotropy and exchange interaction. Our result suggests that the Dzyaloshinsky-Moriya interaction, which may induce spin canting, is absent. Disappearance of Ising anisotropy in Ca3ZnMnO6 suggests that the Co(4+) ion, as well as the Co-Mn superexchange, plays an important role for the Ising nature in Ca3CoMnO6.

  15. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Zaim, A.; Kerouad, M.

    2017-02-01

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.

  16. A LDA + U study of the photoemission spectra of the double hexagonal close packed phases of Am and Cm

    NASA Astrophysics Data System (ADS)

    Islam, M. Fhokrul; Ray, Asok K.

    2010-05-01

    We have investigated the photoemission spectra and other electronic structure properties such as equilibrium volume and bulk modulus of double hexagonal close packed (dhcp) americium and the density of states (DOS) and magnetic properties of dhcp curium using the LDA+U method. Our calculations show that spin polarized americium is energetically favorable but spin degenerate configuration produces experimental quantities significantly better than those calculated using the spin polarized configuration. The density of states calculated using LDA+U with both non-magnetic and spin polarized configurations is compared and the non-magnetic DOS is shown to be in good agreement with experimental photoemission spectra when U=4.5 eV. In spin polarized case, the onsite interaction parameter, U, is observed to increase the splitting between occupied and unoccupied bands by enhancing the Stoner parameter. The DOS of both non-magnetic americium and anti-ferromagnetic curium are shown to be in good agreement with that calculated using dynamical mean field theory for these two heavy actinides. For curium exchange interaction appears to play a dominant role in magnetic stability.

  17. Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.

    2017-09-01

    The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cable, J.W.

    The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recentmore » neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs.« less

  19. Spin-state transfer in laterally coupled quantum-dot chains with disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Song; Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026; Bayat, Abolfazl

    2010-08-15

    Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even whenmore » time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.« less

  20. Anisotropic exchange and spin-wave damping in pure and electron-doped Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Pincini, D.; Vale, J. G.; Donnerer, C.; de la Torre, A.; Hunter, E. C.; Perry, R.; Moretti Sala, M.; Baumberger, F.; McMorrow, D. F.

    2017-08-01

    The collective magnetic excitations in the spin-orbit Mott insulator (Sr1-xLax) 2IrO4 (x =0 ,0.01 ,0.04 ,0.1 ) were investigated by means of resonant inelastic x-ray scattering. We report significant magnon energy gaps at both the crystallographic and antiferromagnetic zone centers at all doping levels, along with a remarkably pronounced momentum-dependent lifetime broadening. The spin-wave gap is accounted for by a significant anisotropy in the interactions between Jeff=1 /2 isospins, thus marking the departure of Sr2IrO4 from the essentially isotropic Heisenberg model appropriate for the superconducting cuprates.

  1. Low Energy Spectrum of Proximate Kitaev Spin Liquid α -RuCl3 by Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Little, Arielle; Wu, Liang; Kelley, Paige; Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Orenstein, Joseph

    A Quantum Spin Liquid (QSL) is an ultra-quantum state of matter with no ordered ground state. Recently, a route to a QSL identified by Kitaev has received a great deal of attention. The compound α -RuCl3, in which Ru atoms form a honeycomb lattice, has been shown to possess Kitaev exchange interactions, although a smaller Heisenberg interaction exists and leads to a zig-zag antiferromagnetic state below 7 K. Because of proximity to the exactly-solvable Kitaev spin-liquid model, this material is considered a potential host for Majorana-like modes. In this work, we use time-domain terahertz (THz) Spectroscopy to probe the low-energy excitations of α -RuCl3. We observe the emergence of a sharp magnetic spin-wave absorption peak below the AFM ordering temperature at 7 K on top of a broad continuum that persists up to room temperature. Additionally we report the polarization dependence of the THz absorption, which reveals optical birefringence, indicating the presence of large monoclinic domains.

  2. Spin-orbit coupling induced two-electron relaxation in silicon donor pairs

    NASA Astrophysics Data System (ADS)

    Song, Yang; Das Sarma, S.

    2017-09-01

    We unravel theoretically a key intrinsic relaxation mechanism among the low-lying singlet and triplet donor-pair states in silicon, an important element in the fast-developing field of spintronics and quantum computation. Despite the perceived weak spin-orbit coupling (SOC) in Si, we find that our discovered relaxation mechanism, combined with the electron-phonon and interdonor interactions, drives the transitions in the two-electron states over a large range of donor coupling regimes. The scaling of the relaxation rate with interdonor exchange interaction J goes from J5 to J4 at the low to high temperature limits. Our analytical study draws on the symmetry analysis over combined band, donor envelope, and valley configurations. It uncovers naturally the dependence on the donor-alignment direction and triplet spin orientation, and especially on the dominant SOC source from donor impurities. While a magnetic field is not necessary for this relaxation, unlike in the single-donor spin relaxation, we discuss the crossover behavior with increasing Zeeman energy in order to facilitate comparison with experiments.

  3. Thermal properties of the mixed spin-1 and spin-3/2 Ising ferrimagnetic system with two different random single-ion anisotropies

    NASA Astrophysics Data System (ADS)

    Pereira, J. R. V.; Tunes, T. M.; de Arruda, A. S.; Godoy, M.

    2018-06-01

    In this work, we have performed Monte Carlo simulations to study a mixed spin-1 and spin-3/2 Ising ferrimagnetic system on a square lattice with two different random single-ion anisotropies. This lattice is divided in two interpenetrating sublattices with spins SA = 1 in the sublattice A and SB = 3 / 2 in the sublattice B. The exchange interaction between the spins on the sublattices is antiferromagnetic (J < 0). We used two random single-ion anisotropies, DiA and DjB , on the sublattices A and B, respectively. We have determined the phase diagram of the model in the critical temperature Tc versus strength of the random single-ion anisotropy D plane and we shown that it exhibits only second-order phase transition lines. We also shown that this system displays compensation temperatures for some cases of the random single-ion distribution.

  4. Heat capacity reveals the physics of a frustrated spin tube.

    PubMed

    Ivanov, Nedko B; Schnack, Jürgen; Schnalle, Roman; Richter, Johannes; Kögerler, Paul; Newton, Graham N; Cronin, Leroy; Oshima, Yugo; Nojiri, Hiroyuki

    2010-07-16

    We report on theoretical and experimental results concerning the low-temperature specific heat of the frustrated spin-tube material [(CuCl(2)tachH(3)Cl]Cl(2) (tach denotes 1,3,5-triaminocyclohexane). This substance turns out to be an unusually perfect spin-tube system which allows to study the physics of quasi-one-dimensional antiferromagnetic structures in rather general terms. An analysis of the specific-heat data demonstrates that at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg chain with short-range exchange interactions. On the other hand, around 2 K the composite spin structure of the chain is revealed through a Schottky-type peak in the specific heat. We argue that the dominating contribution to the peak originates from gapped magnon-type excitations related to the internal degrees of freedom of the rung spins.

  5. Frustrated Magnetism of Dipolar Molecules on a Square Optical Lattice: Prediction of a Quantum Paramagnetic Ground State

    NASA Astrophysics Data System (ADS)

    Zou, Haiyuan; Zhao, Erhai; Liu, W. Vincent

    2017-08-01

    Motivated by the experimental realization of quantum spin models of polar molecule KRb in optical lattices, we analyze the spin 1 /2 dipolar Heisenberg model with competing anisotropic, long-range exchange interactions. We show that, by tilting the orientation of dipoles using an external electric field, the dipolar spin system on square lattice comes close to a maximally frustrated region similar, but not identical, to that of the J1-J2 model. This provides a simple yet powerful route to potentially realize a quantum spin liquid without the need for a triangular or kagome lattice. The ground state phase diagrams obtained from Schwinger-boson and spin-wave theories consistently show a spin disordered region between the Néel, stripe, and spiral phase. The existence of a finite quantum paramagnetic region is further confirmed by an unbiased variational ansatz based on tensor network states and a tensor renormalization group.

  6. Heat Capacity Reveals the Physics of a Frustrated Spin Tube

    NASA Astrophysics Data System (ADS)

    Ivanov, Nedko B.; Schnack, Jürgen; Schnalle, Roman; Richter, Johannes; Kögerler, Paul; Newton, Graham N.; Cronin, Leroy; Oshima, Yugo; Nojiri, Hiroyuki

    2010-07-01

    We report on theoretical and experimental results concerning the low-temperature specific heat of the frustrated spin-tube material [(CuCl2tachH)3Cl]Cl2 (tach denotes 1,3,5-triaminocyclohexane). This substance turns out to be an unusually perfect spin-tube system which allows to study the physics of quasi-one-dimensional antiferromagnetic structures in rather general terms. An analysis of the specific-heat data demonstrates that at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg chain with short-range exchange interactions. On the other hand, around 2 K the composite spin structure of the chain is revealed through a Schottky-type peak in the specific heat. We argue that the dominating contribution to the peak originates from gapped magnon-type excitations related to the internal degrees of freedom of the rung spins.

  7. Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains

    NASA Astrophysics Data System (ADS)

    Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian

    2017-11-01

    We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.

  8. MBE growth and FMR, BLS and MOKE studies of exchange coupling in Fe whisker/Cr/Fe(001) and in Fe/Cu/Fe(001) 'loose spin' structures

    NASA Astrophysics Data System (ADS)

    Heinrich, B.; From, M.; Cochran, J. F.; Kowalewski, M.; Atlan, D.; Celinski, Z.; Myrtle, K.

    1995-02-01

    The exchange coupling has been studied in structures which consist of two ferromagnetic layers separated by non-ferromagnetic spacers (trilayers). The exchange coupling was measured using FMR and BLS techniques in the temperature range 77-400 K. Two systems were investigated: (a) Fe whisker/Cr/Fe(001) and (b) Fe/Cr/Fe(001). The oscillatory thickness dependence of the exchange coupling through a spin-density wave Cr spacer will be discussed and compared with recent data obtained by other groups. Cu interlayers were deposited either in a pure form, or a single monolayer of {Cu}/{Fe} alloy ('loose spins') was inserted between two pure bcc Cu(001) layers. Several such 'loose spin' structures were engineered to test the behavior of 'loose spin' structures. It was found that the presence of Fe impurity atoms has a strong tendency to decrease the direct bilinear exchange coupling. The contribution of 'loose spins' to the exchange coupling can be made significant, and even dominant, by a suitable choice of the RKKY coupling energy between the 'loose spins' and the surrounding ferromagnetic layers.

  9. Successive Magnetic-Field-Induced Transitions and Colossal Magnetoelectric Effect in Ni 3 TeO 6

    DOE PAGES

    Kim, Jae Wook; Artyukhin, Sergei; Mun, Eun Deok; ...

    2015-09-24

    In this paper, we report the discovery of a metamagnetic phase transition in a polar antiferromagnet Ni 3TeO 6 that occurs at 52 T. The new phase transition accompanies a colossal magnetoelectric effect, with a magnetic-field-induced polarization change of 0.3 μC/cm 2, a value that is 4 times larger than for the spin-flop transition at 9 T in the same material, and also comparable to the largest magnetically induced polarization changes observed to date. Via density-functional calculations we construct a full microscopic model that describes the data. We model the spin structures in all fields and clarify the physics behindmore » the 52 T transition. The high-field transition involves a competition between multiple different exchange interactions which drives the polarization change through the exchange-striction mechanism. Finally, the resultant spin structure is rather counterintuitive and complex, thus providing new insights on design principles for materials with strong magnetoelectric coupling.« less

  10. Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons.

    PubMed

    Bossini, D; Dal Conte, S; Hashimoto, Y; Secchi, A; Pisarev, R V; Rasing, Th; Cerullo, G; Kimel, A V

    2016-02-05

    The understanding of how the sub-nanoscale exchange interaction evolves in macroscale correlations and ordered phases of matter, such as magnetism and superconductivity, requires to bridging the quantum and classical worlds. This monumental challenge has so far only been achieved for systems close to their thermodynamical equilibrium. Here we follow in real time the ultrafast dynamics of the macroscale magnetic order parameter in the Heisenberg antiferromagnet KNiF3 triggered by the impulsive optical generation of spin excitations with the shortest possible nanometre wavelength and femtosecond period. Our magneto-optical pump-probe experiments also demonstrate the coherent manipulation of the phase and amplitude of these femtosecond nanomagnons, whose frequencies are defined by the exchange energy. These findings open up opportunities for fundamental research on the role of short-wavelength spin excitations in magnetism and strongly correlated materials; they also suggest that nanospintronics and nanomagnonics can employ coherently controllable spin waves with frequencies in the 20 THz domain.

  11. Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons

    NASA Astrophysics Data System (ADS)

    Bossini, D.; Dal Conte, S.; Hashimoto, Y.; Secchi, A.; Pisarev, R. V.; Rasing, Th.; Cerullo, G.; Kimel, A. V.

    2016-02-01

    The understanding of how the sub-nanoscale exchange interaction evolves in macroscale correlations and ordered phases of matter, such as magnetism and superconductivity, requires to bridging the quantum and classical worlds. This monumental challenge has so far only been achieved for systems close to their thermodynamical equilibrium. Here we follow in real time the ultrafast dynamics of the macroscale magnetic order parameter in the Heisenberg antiferromagnet KNiF3 triggered by the impulsive optical generation of spin excitations with the shortest possible nanometre wavelength and femtosecond period. Our magneto-optical pump-probe experiments also demonstrate the coherent manipulation of the phase and amplitude of these femtosecond nanomagnons, whose frequencies are defined by the exchange energy. These findings open up opportunities for fundamental research on the role of short-wavelength spin excitations in magnetism and strongly correlated materials; they also suggest that nanospintronics and nanomagnonics can employ coherently controllable spin waves with frequencies in the 20 THz domain.

  12. Large exchange anisotropy in quasi-one-dimensional spin-1/2 fluoride antiferromagnets with a d (z2)1 ground state

    NASA Astrophysics Data System (ADS)

    Kurzydłowski, D.; Grochala, W.

    2017-10-01

    Hybrid density functional calculations are performed for a variety of systems containing d9 ions (C u2 + and A g2 + ) and exhibiting quasi-one-dimensional magnetic properties. In particular, we study fluorides containing these ions in a rarely encountered compressed octahedral coordination that forces the unpaired electron into the local d (z2) orbital. We predict that such systems should exhibit exchange anisotropies surpassing that of S r2Cu O3 , one of the best realizations of a one-dimensional system known to date. In particular, we predict that the interchain coupling in the A g2 + -containing [AgF ] [B F4 ] system should be nearly four orders of magnitude smaller than the intrachain interaction. Our results indicate that quasi-one-dimensional spin-1/2 systems containing chains with spin sites in the d (z2)1 local ground state could constitute a versatile model for testing modern theories of quantum many-body physics in the solid state.

  13. Magnetization and isothermal magnetic entropy change of a mixed spin-1 and spin-2 Heisenberg superlattice

    NASA Astrophysics Data System (ADS)

    Xu, Ping; Du, An

    2017-09-01

    A superlattice composed of spin-1 and spin-2 with ABAB … structure was described with Heisenberg model. The magnetizations and magnetic entropy changes under different magnetic fields were calculated by the Green's function method. The magnetization compensation phenomenon could be observed by altering the intralayer exchange interactions and the single-ion anisotropies of spins. Along with the temperature increasing, the system in the absence of magnetization compensation shows normal magnetic entropy change and displays a peak near the critical temperature, and yet the system with magnetization compensation shows normal magnetic entropy change near the compensation temperature but inverse magnetic entropy change near the critical temperature. Finally, we illustrated the reasons of different behaviors of magnetic entropy change by analyzing the contributions of two sublattices to the total magnetic entropy change.

  14. SU (N ) spin-wave theory: Application to spin-orbital Mott insulators

    NASA Astrophysics Data System (ADS)

    Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin

    2018-05-01

    We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    San Fabián, J.; Omar, S.; García de la Vega, J. M., E-mail: garcia.delavega@uam.es

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP.more » Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF){sub n}]{sup −} and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.« less

  16. Domain-wall motion at an ultrahigh speed driven by spin-orbit torque in synthetic antiferromagnets.

    PubMed

    Yu, Ziyang; Zhang, Yue; Zhang, Zhenhua; Cheng, Ming; Lu, Zhihong; Yang, Xiaofei; Shi, Jing; Xiong, Rui

    2018-04-27

    In this article, we present our numerical investigation about the spin-orbit-torque induced domain-wall (DW) motion in a synthetic antiferromagnetic multilayer nanotrack. This nanotrack was composed by two ferromagnetic (FM) layers with a RKKY inter-layer antiferromagnetic (AFM) exchange coupling. The velocity of DW was well manipulated by varying parameters including inter-layer exchange constant, the Dzyaloshinskii-Moriya interaction (DMI) strength, the current density and the magnetic anisotropy. The DW velocity was found to be strictly related to the orientation of the moments in the two FM layers. When the interlayer exchange constant or the DMI constant were larger than a critical value, there was a large angle between the moments in one FM layer and that in the other one under the current, and the DW was driven to move at an ultrahigh speed (around 10 000 m s -1 ). However, when the DMI or the AFM exchange coupling was weaker than the critical value, the moments in one FM layer were parallel to that in the other one under the current, and the velocity was significantly reduced.

  17. Multiplet Splitting Effects on Core-Level Photoemission and Inverse-Photoemission Spectra of Uranium Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Okada, Kozo

    1999-03-01

    The present paper discusses the role of U 5f-5f exchange interaction (J) in the inverse photoemission spectrum (IPES) and the U 4f x-ray photoemission spectrum (XPS) of uranium intermetallic compounds. The origin of the broad main peak in the IPES of UPd3 and UPd2Al3, for instance, is ascribed to the exchange coupling effects of 5f electrons. In other words, whether the ground state is of high-spin or of low-spin is directly reflected in the width of the IPES. On the other hand, the interpretation for the U 4f photoemission spectrum is not so greatly influenced by J. The full-multiplet calculations are also performed for an U4+ ion for comparison.

  18. Spin relaxation in geometrically frustrated pyrochlores

    NASA Astrophysics Data System (ADS)

    Dunsiger, Sarah Ruth

    This thesis describes muSR experiments which focus on systems where the magnetic ions occupy the vertices of edge or corner sharing triangular units, in particular the pyrochlores A2B2O7. The scientific interest in pyrochlores is based on the fact that they display novel magnetic behaviour at low temperatures due to geometrical frustration. The ground state of these systems is sensitively dependent on such factors as the range of the spin-spin interactions, disorder, anisotropy, thermal and quantum fluctuations. For example, Y2Mo2O7 shows many features reminiscent of a conventional spin glass, even though this material has nominally zero chemical disorder. It is found that the muon spin polarisation obeys a time-field scaling relation which indicates that the spin-spin autocorrelation function has a power law form in time, in stark contrast with the exponential form often assumed for conventional magnets above their transition temperature. Gd2Ti2O7 shows long range order, but only at a temperature much lower than its Curie-Weiss temperature, a signature of a frustrated system. In the paramagnetic regime, it is well described by an isotropic Heisenberg Hamiltonian with nearest neighbour couplings in the presence of a Zeeman interaction, from which the spin-spin autocorrelation function may be calculated as a power series in time. The muon spin relaxation rate decreases with magnetic field as the Zeeman energy becomes comparable with the exchange coupling between Gd spins. Thus, an independent measure of the exchange coupling or equivalently the Gd spin fluctuation rate is extracted. By contrast, Tb2Ti2O7 has been identified as a type of cooperative paramagnet. Short range correlations develop below 50 K. However, there is no long range ordering down to very low temperatures (0.075 K). The Tb3+ ion is subject to strong crystal electric field effects: point charge calculations indicate that this system is Ising like at low temperatures. Thus this system may be analogous to water ice, a system theoretically predicted to have finite entropy at zero temperature. It is possible to qualitatively explain the unusual changes in T1-1 as a function of applied magnetic field which are also observed using muSR.

  19. Control of Wannier orbitals for generating tunable Ising interactions of ultracold atoms in an optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaba, Kensuke; Tamaki, Kiyoshi; Igeta, Kazuhiro

    2014-12-04

    In this study, we propose a method for generating cluster states of atoms in an optical lattice. By utilizing the quantum properties of Wannier orbitals, we create an tunable Ising interaction between atoms without inducing the spin-exchange interactions. We investigate the cause of errors that occur during entanglement generations, and then we propose an error-management scheme, which allows us to create high-fidelity cluster states in a short time.

  20. Neutron-Proton Scattering Experiments at ANKE-COSY

    NASA Astrophysics Data System (ADS)

    Kacharava, A.; Chiladze, D.; Chiladze, B.; Keshelashvili, I.; Lomidze, N.; Macharashvili, G.; McHedlishvili, D.; Nioradze, M.; Rathmann, F.; Ströher, H.; Wilkin, C.

    2010-04-01

    The nucleon-nucleon interaction (NN) is fundamental for the whole of nuclear physics and hence to the composition of matter as we know it. It has been demonstrated that stored, polarised beams and polarised internal targets are experimental tools of choice to probe spin effects in NN-scattering experiments. While the EDDA experiment has dramatically improved the proton-proton date base, information on spin observables in neutron-proton scattering is very incomplete above 800 MeV, resulting in large uncertainties in isoscalar n p phase shifts. Experiments at COSY, using a polarised deuteron beam or target, can lead to significant improvements in the situation through the study of quasi-free reactions on the neutron in the deuteron. Such a measurements has already been started at ANKE by using polarised deuterons on an unpolarised target to study the dp → ppn deuteron charge-exchange reaction and the full program with a polarised storage cell target just has been conducted. At low excitation energies of the final pp system, the spin observables are directly related to the spin- dependent parts of the neutron-proton charge-exchange amplitudes. Our measurement of the deuteron-proton spin correlations will allow us to determine the relative phases of these amplitudes in addition to their overall magnitudes.

  1. Microscopic theory of longitudinal sound velocity in charge ordered manganites.

    PubMed

    Rout, G C; Panda, S

    2009-10-14

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e(g) band, an exchange interaction between spins of the itinerant e(g) band electrons and the core t(2g) electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  2. Electron-electron interaction and spin-orbit coupling in InAs/AlSb heterostructures with a two-dimensional electron gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrilenko, V. I.; Krishtopenko, S. S., E-mail: ds_a-teens@mail.ru; Goiran, M.

    2011-01-15

    The effect of electron-electron interaction on the spectrum of two-dimensional electron states in InAs/AlSb (001) heterostructures with a GaSb cap layer with one filled size-quantization subband. The energy spectrum of two-dimensional electrons is calculated in the Hartree and Hartree-Fock approximations. It is shown that the exchange interaction decreasing the electron energy in subbands increases the energy gap between subbands and the spin-orbit splitting of the spectrum in the entire region of electron concentrations, at which only the lower size-quantization band is filled. The nonlinear dependence of the Rashba splitting constant at the Fermi wave vector on the concentration of two-dimensionalmore » electrons is demonstrated.« less

  3. Carrier-induced ferromagnetism in half-metallic Co-doped ZnS-diluted magnetic semiconductor: a DFT study

    NASA Astrophysics Data System (ADS)

    Saikia, D.; Borah, J. P.

    2018-03-01

    Systematic experimental and theoretical calculations have been performed to investigate the origin of the carrier-induced ferromagnetism in the Co-doped ZnS-diluted magnetic semiconductors. The crystalline structure, morphology of the chemically synthesized Co-doped ZnS nanoparticles are evaluated using X-ray diffraction (XRD) and transmission electron microscopy (TEM) and obtained the average crystallite size in the range 5-8 nm. Fourier transform-infrared spectra reveal the characteristic Zn-S vibrations of cubic ZnS and also show the splitting of peaks with increasing Co concentration which indicates that the Co-doping level beyond 3% affects the structure of ZnS. The room temperature ferromagnetic behavior analyzed by M- H curve exhibited up to the doping level 5%, achieving due to the indirect ` p- d' exchange interactions between the localized ` d' spins of Co2+ ion and the free-delocalized carriers in the host lattice. The existence of the antiferromagnetic coupling is discernable beyond the 5% doping level, owing to the short-range super-exchange interactions between the characteristic ` d' spins of the Co2+ ions which minimize the ferromagnetic ordering. Band structure and density of states (DOS) calculations demonstrate the p- d hybridization mechanism in Co-doped ZnS system which is the main cause of realizing ferromagnetic ordering in the system and also shows the half-metallic characteristics with the combination of semiconducting and metallic nature in the spin-up and spin-down states, respectively.

  4. The exchange interaction effects on magnetic properties of the nanostructured CoPt particles

    NASA Astrophysics Data System (ADS)

    Komogortsev, S. V.; Iskhakov, R. S.; Zimin, A. A.; Filatov, E. Yu.; Korenev, S. V.; Shubin, Yu. V.; Chizhik, N. A.; Yurkin, G. Yu.; Eremin, E. V.

    2016-03-01

    Various manifestations of the exchange interaction effects in magnetization curves of the CoPt nanostructured particles are demonstrated and discussed. The inter-grain exchange constant A in the sponge-like agglomerates of crystallites is estimated as A=(7±1) pJ/m from the approach magnetization to saturation curves that is in good agreement with A=(6.6±0.5) pJ/m obtained from Bloch T 3/2 law. The fractal dimensionality of the exchange coupled crystallite system in the porous media of the disordered CoPt alloy d=(2.60±0.18) was estimated from the approach magnetization to saturation curve. Coercive force decreases with temperature as Hc T 3/2 which is assumed to be a consequence of the magnetic anisotropy energy reduction due to the thermal spin wave excitations in the investigated CoPt particles.

  5. Spin exchange optical pumping of neon and its applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Rajat K.

    Hyperpolarized noble gases are used in a variety of applications including medical diagnostic lung imaging, tests of fundamental symmetries, spin filters, atomic gyroscopes, and atomic magnetometers. Typically 3He is utilized because large 3He polarizations on the order of 80% can be achieved. This is accomplished by optically pumping an alkali vapour which polarizes a noble gas nucleus via spin exchange optical pumping. One hyperpolarized noble gas application of particular importance is the K-3He co-magnetometer. Here, the alkali atoms optically pump a diamagnetic noble gas. The magnetic holding field for the alkali and noble gas is reduced until both species are brought into hybrid magnetic resonance. The co-magnetometer exhibits many useful attributes which make it ideal for tests of fundamental physics, such as insensitivity to magnetic fields. The co-magnetometer would demonstrate increased sensitivity by replacing 3He with polarized 21Ne gas. Tests of CPT violation using co-magnetometers would be greatly improved if one utilizes polarized 21Ne gas. The sensitivity of the nuclear spin gyroscope is inversely proportional to the gyromagnetic ratio of the noble gas. Switching to neon would instigate an order of magnitude gain in sensitivity over 3He. In order to realize these applications the interaction parameters of 21Ne with alkali metals must be measured. The spin-exchange cross section sigmase, and magnetic field enhancement factor kappa0 are unknown, and have only been theoretically calculated. There are no quantitative predictions of the neon-neon quadrupolar relaxation rate Gammaquad. In this thesis I test the application of a K-3He co-magnetometer as a navigational gyroscope. I discuss the advantages of switching the buffer gas to 21Ne. I discuss the feasibility of utilizing polarized 21Ne for operation in a co-magnetometer, and construct a prototype 21Ne co-magnetometer. I investigate polarizing 21Ne with optical pumping via spin exchange collisions and measure the spin exchange rate coefficient of K and Rb with Ne to be 2.9 x 10-20cm 3/s and 0.81 x 10-19cm3/s. We measure the magnetic field enhancement factor kappa0 to be 30.8 +/- 2.7, and 35.7 +/- 3.7 for the K-Ne, and the Rb-Ne pair. We measure the quadrupolar relaxation coefficient to be 214 +/- 10 Amagat˙s. Furthermore the spin destruction cross section of Rb, and K with 21 Ne is measured to be 1.9 x 10-23cm2 and 1.1 x 10-23cm2.

  6. Micromagnetic analysis of current-induced domain wall motion in a bilayer nanowire with synthetic antiferromagnetic coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komine, Takashi, E-mail: komine@mx.ibaraki.ac.jp; Aono, Tomosuke

    We demonstrate current-induced domain wall motion in bilayer nanowire with synthetic antiferromagnetic (SAF) coupling by modeling two body problems for motion equations of domain wall. The influence of interlayer exchange coupling and magnetostatic interactions on current-induced domain wall motion in SAF nanowires was also investigated. By assuming the rigid wall model for translational motion, the interlayer exchange coupling and the magnetostatic interaction between walls and domains in SAF nanowires enhances domain wall speed without any spin-orbit-torque. The enhancement of domain wall speed was discussed by energy distribution as a function of wall angle configuration in bilayer nanowires.

  7. Spin-lock imaging of exogenous exchange-based contrast agents to assess tissue pH.

    PubMed

    Zu, Zhongliang; Li, Hua; Jiang, Xiaoyu; Gore, John C

    2018-01-01

    Some X-ray contrast agents contain exchangeable protons that give rise to exchange-based effects on MRI, including chemical exchange saturation transfer (CEST). However, CEST has poor specificity to explicit exchange parameters. Spin-lock sequences at high field are also sensitive to chemical exchange. Here, we evaluate whether spin-locking techniques can detect the contrast agent iohexol in vivo after intravenous administration, and their potential for measuring changes in tissue pH. Two metrics of contrast based on R 1ρ , the spin lattice relaxation rate in the rotating frame, were derived from the behavior of R 1ρ at different locking fields. Solutions containing iohexol at different concentrations and pH were used to evaluate the ability of the two metrics to quantify exchange effects. Images were also acquired from rat brains bearing tumors before and after intravenous injections of iohexol to evaluate the potential of spin-lock techniques for detecting the agent and pH variations. The two metrics were found to depend separately on either agent concentration or pH. Spin-lock imaging may therefore provide specific quantification of iohexol concentration and the iohexol-water exchange rate, which reports on pH. Spin-lock techniques may be used to assess the dynamics of intravenous contrast agents and detect extracellular acidification. Magn Reson Med 79:298-305, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Büttner, Felix; Lemesh, Ivan; Schneider, Michael; Pfau, Bastian; Günther, Christian M.; Hessing, Piet; Geilhufe, Jan; Caretta, Lucas; Engel, Dieter; Krüger, Benjamin; Viefhaus, Jens; Eisebitt, Stefan; Beach, Geoffrey S. D.

    2017-11-01

    Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii-Moriya interaction (DMI). The last favours homochiral skyrmions, whose motion is driven by spin-orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin-orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect. This leads to torques that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field. Although spin-orbit torques led to domain nucleation in continuous films and to stochastic nucleation of skyrmions in magnetic tracks, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs.

  9. Spin and charge ordering in organic conductors investigated by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Tokumoto, Takahisa D.

    This dissertation presents systematic studies on ordered states of organic conductors investigated mainly by Electron Spin Resonance (ESR). First, we describe an introduction to organic conductors. Organic conductors are based on conducting layers of highly planar donor molecules, separated by insulating layers of acceptors. The donor arrangements in the conducting layers determine the three simple parameters, transfer integral t between the donor molecules, onsite Coulomb interaction U and next neighboring Coulomb interaction V. Depending on the values of the above three parameters, a variety of ground states is realized and hence the organic conductors has become a main stream of condensed matter physics. Among many ground states, the main focus is on magnetic orders in this dissertation. Therefore we have employed ESR to probe local magnetic structures. And we cover a basic theory of ESR in paramagnetic/antiferromagnetically ordered states and the experimental realizations. Next, after an introduction to a system with an exchange interaction between d magnetic moments embedded at acceptor sites and pi spins at donor molecules is given, we discuss the effectiveness of systematic studies on isostructural magnetic and non-magnetic acceptor based organic conductors. Then, we go over one of the "exchange coupled" materials, beta-(BDA-TTP)2MCl 4 (M=Fe3+,Ga3+). We examine the origins of the Metal-Insulator transition and the long range antiferromangetic order in the magnetic acceptor based material, where we found the critical importance of the quantum fluctuations of pi spins. Finally, we delineate the magnetic order of alternating easy axes of a class of an organic conductor, tau-(P-(S,S)-DMEDT)2(AuBr2) 1+y, at low temperature/field by ESR. We briefly discuss the origin of this unprecedented magnetic structure in terms of the unstoichiometric ratio of donors to acceptors and the tetragonal symmetry of the unit cell. Then, we report the results of the ultra high field ESR to probe the magnetic structure changes around a hysteretic field induced metal insulator transition.

  10. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  11. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  12. New limit on possible long-range parity-odd interactions of the neutron from neutron-spin rotation in liquid 4He.

    PubMed

    Yan, H; Snow, W M

    2013-02-22

    Various theories beyond the standard model predict new particles with masses in the sub-eV range with very weak couplings to ordinary matter. A parity-odd interaction between polarized nucleons and unpolarized matter proportional to g(V)g(A)s · p is one such possibility, where s[over →] and p[over →] are the spin and the momentum of the polarized nucleon, and g(V) and g(A) are the vector and axial vector couplings of an interaction induced by the exchange of a new light vector boson. We report a new experimental upper bound on such possible long-range parity-odd interactions of the neutron with nucleons and electrons from a recent search for parity violation in neutron spin rotation in liquid ^{4}He. Our constraint on the product of vector and axial vector couplings of a possible new light vector boson is g(V) g(A)(n) ≤ 10(-32) for an interaction range of 1 m. This upper bound is more than 7 orders of magnitude more stringent than the existing laboratory constraints for interaction ranges below 1 m, corresponding to a broad range of vector boson masses above 10(-6) eV. More sensitive searches for a g(V) g(A)(n) coupling could be performed using neutron spin rotation measurements in heavy nuclei or through analysis of experiments conducted to search for nucleon-nucleon weak interactions and nuclear anapole moments.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan

    Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La 2/3Sr 1/3MnO 3 (LSMO) and the correlated metal LaNiO 3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependencemore » of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni 2+ states. In conclusion, our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.« less

  14. Oscillatory noncollinear magnetism induced by interfacial charge transfer in superlattices composed of metallic oxides

    DOE PAGES

    Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan; ...

    2016-11-22

    Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La 2/3Sr 1/3MnO 3 (LSMO) and the correlated metal LaNiO 3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependencemore » of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni 2+ states. In conclusion, our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.« less

  15. Vortex jump behavior in coupled nanomagnetic heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Phatak, C., E-mail: cd@anl.gov; Petford-Long, A. K.

    2014-11-24

    The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy terms were elucidated andmore » the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. The work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications.« less

  16. Vortex jump behavior in coupled nanomagnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Petford-Long, A. K.; Heinonen, O.; Phatak, C.

    2014-11-01

    The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy terms were elucidated and the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. The work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications.

  17. A Metastability-Exchange Optical Pumping and Compression System using Polarized 3 He for a Proposed Laboratory Search for Neutron Monopole-Dipole Interactions

    NASA Astrophysics Data System (ADS)

    Smith, Erick; Ariadne Collaboration

    2015-04-01

    3 He nuclei polarized using the metastability-exchange optical pumping (MEOP) method have been used for scientific applications such as magnetometry in space, neutron polarization and analysis, and medical imaging. In this talk we explain how this technique is also well-suited for a proposed experiment to search for possible monopole-dipole interactions of polarized 3 He nuclei with matter. The P-odd and T-odd monopole-dipole potential proposed by Moody and Wilczek is proportional to s-> . r-> where s-> is the 3 He spin and r-> is the separation between the particles. It can be induced by axions, and ARIADNE proposes to perform NMR on a polarized 3 He ensemble at 4K with a radially-slotted tungsten disk spinning at a multiple of the 3 He Larmour frequency to induce a resonant monopole-dipole perturbation. The radial slot length variations are chosen to maximize sensitivity to a monopole-dipole interaction range corresponding to the axion window. We describe the advantages that MEOP presents for this experiment and describe the MEOP-based polarized 3 He gas compression system at Indiana University.

  18. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems.

    PubMed

    Chang, Zhiwei; Halle, Bertil

    2016-02-28

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  19. Nuclear magnetic relaxation by the dipolar EMOR mechanism: General theory with applications to two-spin systems

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2016-02-01

    In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

  20. Three-electron spin qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    2017-10-01

    The goal of this article is to review the progress of three-electron spin qubits from their inception to the state of the art. We direct the main focus towards the exchange-only qubit (Bacon et al 2000 Phys. Rev. Lett. 85 1758-61, DiVincenzo et al 2000 Nature 408 339) and its derived versions, e.g. the resonant exchange (RX) qubit, but we also discuss other qubit implementations using three electron spins. For each three-spin qubit we describe the qubit model, the envisioned physical realization, the implementations of single-qubit operations, as well as the read-out and initialization schemes. Two-qubit gates and decoherence properties are discussed for the RX qubit and the exchange-only qubit, thereby completing the list of requirements for quantum computation for a viable candidate qubit implementation. We start by describing the full system of three electrons in a triple quantum dot, then discuss the charge-stability diagram, restricting ourselves to the relevant subsystem, introduce the qubit states, and discuss important transitions to other charge states (Russ et al 2016 Phys. Rev. B 94 165411). Introducing the various qubit implementations, we begin with the exchange-only qubit (DiVincenzo et al 2000 Nature 408 339, Laird et al 2010 Phys. Rev. B 82 075403), followed by the RX qubit (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502), the spin-charge qubit (Kyriakidis and Burkard 2007 Phys. Rev. B 75 115324), and the hybrid qubit (Shi et al 2012 Phys. Rev. Lett. 108 140503, Koh et al 2012 Phys. Rev. Lett. 109 250503, Cao et al 2016 Phys. Rev. Lett. 116 086801, Thorgrimsson et al 2016 arXiv:1611.04945). The main focus will be on the exchange-only qubit and its modification, the RX qubit, whose single-qubit operations are realized by driving the qubit at its resonant frequency in the microwave range similar to electron spin resonance. Two different types of two-qubit operations are presented for the exchange-only qubits which can be divided into short-ranged and long-ranged interactions. Both of these interaction types are expected to be necessary in a large-scale quantum computer. The short-ranged interactions use the exchange coupling by placing qubits next to each other and applying exchange-pulses (DiVincenzo et al 2000 Nature 408 339, Fong and Wandzura 2011 Quantum Inf. Comput. 11 1003, Setiawan et al 2014 Phys. Rev. B 89 085314, Zeuch et al 2014 Phys. Rev. B 90 045306, Doherty and Wardrop 2013 Phys. Rev. Lett. 111 050503, Shim and Tahan 2016 Phys. Rev. B 93 121410), while the long-ranged interactions use the photons of a superconducting microwave cavity as a mediator in order to couple two qubits over long distances (Russ and Burkard 2015 Phys. Rev. B 92 205412, Srinivasa et al 2016 Phys. Rev. B 94 205421). The nature of the three-electron qubit states each having the same total spin and total spin in z-direction (same Zeeman energy) provides a natural protection against several sources of noise (DiVincenzo et al 2000 Nature 408 339, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Kempe et al 2001 Phys. Rev. A 63 042307, Russ and Burkard 2015 Phys. Rev. B 91 235411). The price to pay for this advantage is an increase in gate complexity. We also take into account the decoherence of the qubit through the influence of magnetic noise (Ladd 2012 Phys. Rev. B 86 125408, Mehl and DiVincenzo 2013 Phys. Rev. B 87 195309, Hung et al 2014 Phys. Rev. B 90 045308), in particular dephasing due to the presence of nuclear spins, as well as dephasing due to charge noise (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434), fluctuations of the energy levels on each dot due to noisy gate voltages or the environment. Several techniques are discussed which partly decouple the qubit from magnetic noise (Setiawan et al 2014 Phys. Rev. B 89 085314, West and Fong 2012 New J. Phys. 14 083002, Rohling and Burkard 2016 Phys. Rev. B 93 205434) while for charge noise it is shown that it is favorable to operate the qubit on the so-called ‘(double) sweet spots’ (Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434, Malinowski et al 2017 arXiv: 1704.01298), which are least susceptible to noise, thus providing a longer lifetime of the qubit.

  1. Exchange magnon induced resistance asymmetry in permalloy spin-Hall oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenfeld, S.; Walter Schottky Institut and Physik-Department, Technische Universität München, 85748 Garching; Tshitoyan, V.

    2016-05-09

    We investigate magnetization dynamics in a spin-Hall oscillator using a direct current measurement as well as conventional microwave spectrum analysis. When the current applies an anti-damping spin-transfer torque, we observe a change in resistance which we ascribe mainly to the excitation of incoherent exchange magnons. A simple model is developed based on the reduction of the effective saturation magnetization, quantitatively explaining the data. The observed phenomena highlight the importance of exchange magnons on the operation of spin-Hall oscillators.

  2. Effects of spin-orbit coupling and many-body correlations in STM transport through copper phthalocyanine.

    PubMed

    Siegert, Benjamin; Donarini, Andrea; Grifoni, Milena

    2015-01-01

    The interplay of exchange correlations and spin-orbit interaction (SOI) on the many-body spectrum of a copper phtalocyanine (CuPc) molecule and their signatures in transport are investigated. We first derive a minimal model Hamiltonian in a basis of frontier orbitals that is able to reproduce experimentally observed singlet-triplet splittings. In a second step SOI effects are included perturbatively. Major consequences of the SOI are the splitting of former degenerate levels and a magnetic anisotropy, which can be captured by an effective low-energy spin Hamiltonian. We show that scanning tunneling microscopy-based magnetoconductance measurements can yield clear signatures of both these SOI-induced effects.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aczel, A. A.; Zhao, Z.; Calder, S.

    With this study, we have performed magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation experiments to investigate the magnetic ground states of the 5more » $d^2$ double perovskites Sr$$_2$$YReO$$_6$$ and Sr$$_2$$InReO$$_6$$. We find that Sr$$_2$$YReO$$_6$$ is a spin glass, while Sr$$_2$$InReO$$_6$$ hosts a non-magnetic singlet state. By making detailed comparisons with other 5$d^2$ double perovskites, we argue that a delicate interplay between spin-orbit coupling, non-cubic crystal fields, and exchange interactions plays a key role in the great variation of magnetic ground states observed for this family of materials.« less

  4. The effect of band Jahn-Teller distortion on the magnetoresistivity of manganites: a model study.

    PubMed

    Rout, G C; Panda, Saswati; Behera, S N

    2011-10-05

    We present a model study of magnetoresistance through the interplay of magnetisation, structural distortion and external magnetic field for the manganite systems. The manganite system is described by the Hamiltonian which consists of the s-d type double exchange interaction, Heisenberg spin-spin interaction among the core electrons, and the static and dynamic band Jahn-Teller (JT) interaction in the e(g) band. The relaxation time of the e(g) electron is found from the imaginary part of the Green's function using the total Hamiltonian consisting of the interactions due to the electron and phonon. The calculated resistivity exhibits a peak in the pure JT distorted insulating phase separating the low temperature metallic ferromagnetic phase and the high temperature paramagnetic phase. The resistivity is suppressed with the increase of the external magnetic field. The e(g) electron band splitting and its effect on magnetoresistivity is reported here. © 2011 IOP Publishing Ltd

  5. Correlated lateral phase separations in stacks of lipid membranes

    NASA Astrophysics Data System (ADS)

    Hoshino, Takuma; Komura, Shigeyuki; Andelman, David

    2015-12-01

    Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, Tc, for larger inter-layer interaction. When the temperature ratio, T/Tc, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.

  6. Dark matter self-interactions from a general spin-0 mediator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Wild, Sebastian, E-mail: felix.kahlhoefer@desy.de, E-mail: kai.schmidt-hoberg@desy.de, E-mail: sebastian.wild@desy.de

    2017-08-01

    Dark matter particles interacting via the exchange of very light spin-0 mediators can have large self-interaction rates and obtain their relic abundance from thermal freeze-out. At the same time, these models face strong bounds from direct and indirect probes of dark matter as well as a number of constraints on the properties of the mediator. We investigate whether these constraints can be consistent with having observable effects from dark matter self-interactions in astrophysical systems. For the case of a mediator with purely scalar couplings we point out the highly relevant impact of low-threshold direct detection experiments like CRESST-II, which essentiallymore » rule out the simplest realization of this model. These constraints can be significantly relaxed if the mediator has CP-violating couplings, but then the model faces strong constraints from CMB measurements, which can only be avoided in special regions of parameter space.« less

  7. An electron transfer driven magnetic switch: ferromagnetic exchange and spin delocalization in iron verdazyl complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brook, David J. R.; Fleming, Connor; Chung, Dorothy

    A single electron reduction of an iron bis(verdazyl) complex results in a large change in spin multiplicity resulting from a combination of spin crossover and exceptionally strong ferromagnetic exchange.

  8. An electron transfer driven magnetic switch: ferromagnetic exchange and spin delocalization in iron verdazyl complexes

    DOE PAGES

    Brook, David J. R.; Fleming, Connor; Chung, Dorothy; ...

    2018-01-01

    A single electron reduction of an iron bis(verdazyl) complex results in a large change in spin multiplicity resulting from a combination of spin crossover and exceptionally strong ferromagnetic exchange.

  9. Magnetic Ordering under Strain and Spin-Peierls Dimerization in GeCuO3

    NASA Astrophysics Data System (ADS)

    Filippetti, Alessio; Fiorentini, Vincenzo

    2007-05-01

    Studying from first principles the competition between ferromagnetic (FM) and antiferromagnetic (AF) interactions in the charge-transfer-insulator GeCuO3, we predict that a small external pressure should switch the uniform AF ground state to FM, and estimate (using exchange parameters computed as a function of strain) the competing AF couplings and the transition temperature to the dimerized spin-Peierls state. Although idealized as a one-dimensional Heisenberg antiferromagnet, GeCuO3 is found to be influenced by nonideal geometry and side groups.

  10. A comprehensive study of magnetic exchanges in the layered oxychalcogenides Sr 3 Fe 2 O 5 Cu 2 Q 2 ( Q = S, Se)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Minfeng; Mentré, Olivier; Gordon, Elijah E.

    2017-12-01

    The layered oxysulfide Sr3Fe2O5Cu2S2 was prepared, and its crystal structure and magnetic properties were characterized by synchrotron X-ray diffraction (XRD), powder neutron diffraction (PND), Mössbauer spectroscopy measurements and by density functional theory (DFT) calculations. In addition, the spin exchange interactions leading to the ordered magnetic structure of Sr3Fe2O5Cu2S2 were compared with those of its selenium analogue Sr3Fe2O5Cu2Se2. The oxysulfide Sr3Fe2O5Cu2S2 adopts a G-type antiferromagnetic (AFM) structure at a temperature in the range 485–512 K, which is comparable with the three-dimensional (3D) AFM ordering temperature, TN ≈ 490 K, found for Sr3Fe2O5Cu2Se2. Consistent with this observation, the spin exchange interactions ofmore » the magnetic (Sr3Fe2O5)2+ layers are slightly greater (but comparable) for oxysulfide than for the oxyselenide. Attempts to reduce or oxidize Sr3Fe2O5Cu2S2 using topochemical routes yield metallic Fe.« less

  11. Magnetic properties of checkerboard lattice: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.; Hamedoun, M.; Benyoussef, A.

    2017-12-01

    The magnetic properties of ferrimagnetic mixed-spin Ising model in the checkerboard lattice are studied using Monte Carlo simulations. The variation of total magnetization and magnetic susceptibility with the crystal field has been established. We have obtained a transition from an order to a disordered phase in some critical value of the physical variables. The reduced transition temperature is obtained for different exchange interactions. The magnetic hysteresis cycles have been established. The multiples hysteresis cycle in checkerboard lattice are obtained. The multiples hysteresis cycle have been established. The ferrimagnetic mixed-spin Ising model in checkerboard lattice is very interesting from the experimental point of view. The mixed spins system have many technological applications such as in domain opto-electronics, memory, nanomedicine and nano-biological systems. The obtained results show that that crystal field induce long-range spin-spin correlations even bellow the reduced transition temperature.

  12. Bonding in the first-row diatomic molecules within the local spin-density approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Painter, G.S.; Averill, F.W.

    1982-08-15

    The Hohenberg-Kohn-Sham density-functional equations in the local spin-density approximation (LSDA) have been solved with essentially no loss of accuracy for dimers of the first row of the Periodic Table with the use of a fully-self-consistent spin-polarized Gaussian-orbital approach. Spectroscopic constants (binding energies, equilibrium separations, and ground-state vibrational frequencies) have been derived from the calculated potential-energy curves. Intercomparison of results obtained using the exchange-correlation functionals of Slater (scaled exchange or X..cap alpha..), Gunnarsson and Lundqvist (GL), and Vosko, Wilk, and Nusair (VWN) permits assessment of the relative merits of each and serves to identify general shortcomings in the LSDA. Basic trendsmore » are similar for each functional, but the treatment of the spin dependence of the exchange-correlation energy in the GL and VWN functionals yields a variation of the binding energy across the series which is more systematic than that in the X..cap alpha.. approximation. Agreement between the present results and those of Dunlap, Connolly, and Sabin in the X..cap alpha.., approximation confirms the accuracy of the variational charge-density-fit procedure used in the latter work. The refinements in correlation treatment within the VWN functional are reflected in improvements in binding energies which are only slight for most dimers in the series. This behavior is attributed to the error remaining in the exchange channel within the LSDA and demonstrates the necessity for self-interaction corrections for more accurate binding-energy determinations. Within the current LSDA, absolute accuracies of the VWN functional for the first-row dimers are within 2.3 eV for binding energies, 0.07 a.u. for bond lengths, and approx.200 cm/sup -1/ for vibrational frequencies.« less

  13. WIMP capture by the Sun in the effective theory of dark matter self-interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Widmark, Axel, E-mail: catena@chalmers.se, E-mail: axel.widmark@fysik.su.se

    We study the capture of WIMP dark matter by the Sun in the non-relativistic effective theory of dark matter self-interactions. The aim is to assess how self-interactions affect the expected neutrino flux coming from WIMP annihilation in the Sun, and to do so in a model independent manner. We consider all non-relativistic Galilean invariant self-interaction operators that can arise from the exchange of a heavy particle of spin less than or equal to 1 for WIMPs of spin equal to 0, 1/2 and 1. We show that for interaction operators depending at most linearly on the momentum transfer, the WIMP-inducedmore » neutrino flux can be enhanced by several orders of magnitude compared to the same flux in absence of self-interactions. This is true even for standard values of the thermally averaged annihilation cross-section. This conclusion impacts the analysis of present and future observations performed at neutrino telescopes.« less

  14. Highly anisotropic exchange interactions in a trigonal bipyramidal cyanide-bridged Ni(II)3Os(III)2 cluster.

    PubMed

    Palii, Andrei V; Reu, Oleg S; Ostrovsky, Sergei M; Klokishner, Sophia I; Tsukerblat, Boris S; Hilfiger, Matthew; Shatruk, Michael; Prosvirin, Andrey; Dunbar, Kim R

    2009-06-25

    This article is a part of our efforts to control the magnetic anisotropy in cyanide-based exchange-coupled systems with the eventual goal to obtain single-molecule magnets with higher blocking temperatures. We give the theoretical interpretation of the magnetic properties of the new pentanuclear complex {[Ni(II)(tmphen)(2)](3)[Os(III)(CN)(6)](2)} x 6 CH(3)CN (Ni(II)(3)Os(III)(2) cluster). Because the system contains the heavy Os(III) ions, spin-orbit coupling considerably exceeds the contributions from the low-symmetry crystal field and exchange coupling. The magnetic properties of the Ni(II)(3)Os(III)(2) cluster are described in the framework of a highly anisotropic pseudo-spin Hamiltonian that corresponds to the limit of strong spin-orbital coupling and takes into account the complex molecular structure. The model provides a good fit to the experimental data and allows the conclusion that the trigonal axis of the bipyramidal Ni(II)(3)Os(III)(2) cluster is a hard axis of magnetization. This explains the fact that in contrast with the isostructural trigonal bipyramidal Mn(III)(2)Mn(II)(3) cluster, the Ni(II)(3)Os(III)(2) system does not exhibit the single-molecule magnetic behavior.

  15. Non-Markovian dynamics in chiral quantum networks with spins and photons

    NASA Astrophysics Data System (ADS)

    Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter

    2016-06-01

    We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.

  16. Scanning Probe Microscopy for Spin Mapping and Spin Manipulation on the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Wiesendanger, Roland

    2008-03-01

    A fundamental understanding of magnetic and spin-dependent phenomena requires the determination of spin structures and spin excitations down to the atomic scale. The direct visualization of atomic-scale spin structures [1-4] has first been accomplished for magnetic metals by combining the atomic resolution capability of Scanning Tunnelling Microscopy (STM) with spin sensitivity, based on vacuum tunnelling of spin-polarized electrons [5]. The resulting technique, Spin-Polarized Scanning Tunnelling Microscopy (SP-STM), nowadays provides unprecedented insight into collinear and non-collinear spin structures at surfaces of magnetic nanostructures and has already led to the discovery of new types of magnetic order at the nanoscale [6,7]. More recently, the detection of spin-dependent exchange and correlation forces has allowed a first direct real-space observation of spin structures at surfaces of antiferromagnetic insulators [8]. This new type of scanning probe microscopy, called Magnetic Exchange Force Microscopy (MExFM), offers a powerful new tool to investigate different types of spin-spin interactions based on direct-, super-, or RKKY-type exchange down to the atomic level. By combining MExFM with high-precision measurements of damping forces, localized or confined spin excitations in magnetic systems of reduced dimensions now become experimentally accessible. Moreover, the combination of spin state read-out and spin state manipulation, based on spin-current induced switching across a vacuum gap by means of SP-STM [9], provides a fascinating novel type of approach towards ultra-high density magnetic recording without the use of magnetic stray fields. [1] R. Wiesendanger, I. V. Shvets, D. Bürgler, G. Tarrach, H.-J. Güntherodt, J. M. D. Coey, and S. Gräser, Science 255, 583 (1992) [2] S. Heinze, M. Bode, O. Pietzsch, A. Kubetzka, X. Nie, S. Blügel, and R. Wiesendanger, Science 288, 1805 (2000) [3] A. Kubetzka, P. Ferriani, M. Bode, S. Heinze, G. Bihlmayer, K. von Bergmann, O. Pietzsch, S. Blügel, and R. Wiesendanger, Phys. Rev. Lett. 94, 087204 (2005) [4] M. Bode, E. Y. Vedmedenko, K. von Bergmann, A. Kubetzka, P. Ferriani, S. Heinze, and R. Wiesendanger, Nature Materials 5, 477 (2006) [5] R. Wiesendanger, H.-J. Güntherodt, G. Güntherodt, R. J. Gambino, and R. Ruf, Phys. Rev. Lett. 65, 247 (1990) [6] K. von Bergmann, S. Heinze, M. Bode, E. Y. Vedmedenko, G. Bihlmayer, S. Blügel, and R. Wiesendanger, Phys. Rev. Lett. 96, 167203 (2006) [7] M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger, Nature 447, 190 (2007) [8] U. Kaiser, A. Schwarz, and R. Wiesendanger, Nature 446, 522 (2007) [9] S. Krause, L. Berbil-Bautista, G. Herzog, M. Bode, and R. Wiesendanger, Science 317, 1537 (2007)

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. H. Schimmel; Tsvelik, A. M.; Yevtushenko, O. M.

    We study the Kondo chain in the regime of high spin concentration where the low energy physics is dominated by the Ruderman–Kittel–Kasuya–Yosida interaction. As has been recently shown (Tsvelik and Yevtushenko 2015 Phys. Rev. Lett. 115 216402), this model has two phases with drastically different transport properties depending on the anisotropy of the exchange interaction. In particular, the helical symmetry of the fermions is spontaneously broken when the anisotropy is of the easy plane type. This leads to a parametrical suppression of the localization effects. In the present paper we substantially extend the previous theory, in particular, by analyzing amore » competition of forward- and backward- scattering, including into the theory short range electron interactions and calculating spin correlation functions. In conclusion, we discuss applicability of our theory and possible experiments which could support the theoretical findings.« less

  18. Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators

    PubMed Central

    Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno

    2016-01-01

    Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516

  19. DARPA-URI Consortium Meetings on Submicron Heterostructures of Diluted Magnetic Semiconductors.

    DTIC Science & Technology

    1987-01-01

    Acta Physica Polonica (to be published). 89. B.E. Larson, K.C. Hass, H. Ehrenreich and A.E. Carlsson, "Theory of Exchange Interactions and Chemical...Rodriguez, "Parity Violation and Electron-Spin Resonance of Donors in Semiconductors" (to appear in Physica ). 45. Z. Barticevic, M. Dobrowolska, J.K. Furdyna

  20. Long-range p-d exchange interaction in a ferromagnet-semiconductor hybrid structure

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.; Salewski, M.; Akimov, I. A.; Sapega, V. F.; Langer, L.; Kalitukha, I. V.; Debus, J.; Dzhioev, R. I.; Yakovlev, D. R.; Müller, D.; Schröder, C.; Hövel, H.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Kusrayev, Yu. G.; Bayer, M.

    2016-01-01

    Hybrid structures synthesized from different materials have attracted considerable attention because they may allow not only combination of the functionalities of the individual constituents but also mutual control of their properties. To obtain such a control an interaction between the components needs to be established. For coupling the magnetic properties, an exchange interaction has to be implemented which typically depends on wavefunction overlap and is therefore short-ranged, so that it may be compromised across the hybrid interface. Here we study a hybrid structure consisting of a ferromagnetic Co layer and a semiconducting CdTe quantum well, separated by a thin (Cd, Mg)Te barrier. In contrast to the expected p-d exchange that decreases exponentially with the wavefunction overlap of quantum well holes and magnetic atoms, we find a long-ranged, robust coupling that does not vary with barrier width up to more than 30 nm. We suggest that the resulting spin polarization of acceptor-bound holes is induced by an effective p-d exchange that is mediated by elliptically polarized phonons.

  1. Exchange coupling and magnetic anisotropy of exchanged-biased quantum tunnelling single-molecule magnet Ni3Mn2 complexes using theoretical methods based on Density Functional Theory.

    PubMed

    Gómez-Coca, Silvia; Ruiz, Eliseo

    2012-03-07

    The magnetic properties of a new family of single-molecule magnet Ni(3)Mn(2) complexes were studied using theoretical methods based on Density Functional Theory (DFT). The first part of this study is devoted to analysing the exchange coupling constants, focusing on the intramolecular as well as the intermolecular interactions. The calculated intramolecular J values were in excellent agreement with the experimental data, which show that all the couplings are ferromagnetic, leading to an S = 7 ground state. The intermolecular interactions were investigated because the two complexes studied do not show tunnelling at zero magnetic field. Usually, this exchange-biased quantum tunnelling is attributed to the presence of intermolecular interactions calculated with the help of theoretical methods. The results indicate the presence of weak intermolecular antiferromagnetic couplings that cannot explain the ferromagnetic value found experimentally for one of the systems. In the second part, the goal is to analyse magnetic anisotropy through the calculation of the zero-field splitting parameters (D and E), using DFT methods including the spin-orbit effect.

  2. Superdense neutron matter

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Datta, B.; Kalman, G.

    1978-01-01

    A relativistic theory of high-density matter is presented which takes into account the short-range interaction due to the exchange of spin-2 mesons. An equation of state is derived and used to compute neutron-star properties. The prediction of the theory for the values of maximum mass and moment of inertia for a stable neutron star are 1.75 solar masses and 1.68 by 10 to the 45th power g-sq cm, in very good agreement with the presently known observational bounds. The corresponding radius is found to be 10.7 km. It is found that the inclusion of the spin-2 interaction reduces the disagreement between the relativistic and nonrelativistic theories in their predictions of masses and moments of inertia.

  3. Spin-1/2 Heisenberg antiferromagnet on an anisotropic triangular lattice

    NASA Astrophysics Data System (ADS)

    Starykh, Oleg

    2007-03-01

    The Triangular lattice spin-1/2 Heisenberg AntiFerromagnet (TAF) is a prototypical model of frustrated quantum magnetism. While it is believed to exhibit long-range order in the isotropic limit, changes such as spatial anisotropy can alter the delicate balance amongst competing ground states. I will describe the static and dynamic properties of the spatially anisotropic TAF, with inter-chain diagonal exchange J' much weaker than the intrachain exchange J. Treating J' as a perturbation of decoupled Heisenberg spin-1/2 chains, I find that the ground state is spontaneously dimerized in a four-fold degenerate zig-zag pattern. This dimerization instability is driven by quantum fluctuations, which are dramatically enhanced here by the frustrated nature of inter-chain exchange. A magnetic field partially relieves frustration, by canting the spins along the field direction, and causes a quantum phase transition into a magnetically-ordered spin-density-wave phase. This is followed by cone and, finally, fully polarized (saturated) phases, as a function of increasing magnetic field. I show that many of these features are in fact observed in experiments on the celebrated material Cs2CuCl4 (J'/J =1/3). I will also discuss the significant modification of the phase diagram by symmetry-breaking anisotropic Dzyaloshinskii-Moriya (DM) interactions, present in this interesting magnet. In addition to static and thermodynamic properties, the proposed ``one-dimensional'' approach offers a compelling explanation of the unusual experimentally measured dynamical structure factor of Cs2CuCl4 in terms of descendants of one-dimensional spinons. Quite generally, I find characteristic features of a momentum-dependent spinon bound state and a dispersing incoherent excitation in the structure factor, in agreement with experiments.

  4. Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien; Waintal, Xavier

    2014-05-01

    Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green's function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.

  5. Studies on Electronic Structure and Magnetic Properties of an Organic Magnet with Metallic Mn2+ and Cu2+ Ions

    NASA Astrophysics Data System (ADS)

    Yao, Jian-Guo; Peng, Guang-Xiong

    2004-11-01

    The electronic structure and the magnetic properties of the non-pure organic ferromagnetic compound MnCu(pbaOH)(H2O)3 with pbaOH = 2-hydroxy-1, 3-propylenebis (oxamato) are studied by using the density-functional theory with local-spin-density approximation. The density of states, total energy, and the spin magnetic moment are calculated. The calculations reveal that the compound MnCu(pbaOH)(H20)3 has a stable metal-ferromagnetic ground state, and the spin magnetic moment per molecule is 2.208 μB, and the spin magnetic moment is mainly from Mn ion and Cu ion. An antiferromagnetic order is expected and the antiferromagnetic exchange interaction of d-electrons of Cu and Mn passes through the antiferromagnetic interaction between the adjacent C, O, and N atoms along the path linking the atoms Cu and Mn. The project supported by National Natural Science Foundation of China under Grant No. 10375074 and Hubei Automotive Industries Institute Foundation under Grant No. QY2002-16

  6. CNOT sequences for heterogeneous spin qubit architectures in a noisy environment

    NASA Astrophysics Data System (ADS)

    Ferraro, Elena; Fanciulli, Marco; de Michielis, Marco

    Explicit CNOT gate sequences for two-qubits mixed architectures are presented in view of applications for large-scale quantum computation. Different kinds of coded spin qubits are combined allowing indeed the favorable physical properties of each to be employed. The building blocks for such composite systems are qubit architectures based on the electronic spin in electrostatically defined semiconductor quantum dots. They are the single quantum dot spin qubit, the double quantum dot singlet-triplet qubit and the double quantum dot hybrid qubit. The effective Hamiltonian models expressed by only exchange interactions between pair of electrons are exploited in different geometrical configurations. A numerical genetic algorithm that takes into account the realistic physical parameters involved is adopted. Gate operations are addressed by modulating the tunneling barriers and the energy offsets between different couple of quantum dots. Gate infidelities are calculated considering limitations due to unideal control of gate sequence pulses, hyperfine interaction and unwanted charge coupling. Second affiliation: Dipartimento di Scienza dei Materiali, University of Milano Bicocca, Via R. Cozzi, 55, 20126 Milano, Italy.

  7. Magnetic and metal-insulator transitions in coupled spin-fermion systems

    DOE PAGES

    Mondaini, R.; Paiva, T.; Scalettar, R. T.

    2014-10-14

    We use quantum Monte Carlo to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intra-layer exchange constant J interact with the electronic spins of several adjoining metallic sheets via a coupling JH. When the chemical potential cuts across the band center, that is, at half-filling, the Neel temperature of antiferromagnetic (J > 0) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case (J < 0) the metallic degrees of freedom reduce the ordering temperature.more » In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a non-monotonic dependence on JH. For doped lattices an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.« less

  8. Spin Transfer torques in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed; Waintal, Xavier; Manchon, Aurelien; Spsms, Cea, Grenoble France Collaboration

    2013-03-01

    Spin Transfer Torque (STT) has attracted tremendously growing interest in the past two decades. Consisting on the transfer of spin angular momentum of a spin polarized current to local magnetic moments, the STT gives rise to a complex dynamics of the magnetization. Depending on the the structure, the STT shows a dominated In plane component for spin valves, whereas both components coexist for magnetic tunneling junctions (MTJ). For latter case the symmetry of the structure is considered to be decisive in identifying the nature and behavior of the torque. In the present study we are interested in magnetic structures where we substitute either one or both of the magnetic layers by antiferromagnets (AF). We use Non-equilibrium Green's function formalism applied on a tight-binding model to investigate the nature of the spin torque. We notice the presence of two types of torque exerted on (AF), a torque which tends to rotate the order parameter and another one that competes with the exchange interaction. We conclude by comparison with previous works.

  9. Kondo effect in systems with dynamical symmetries

    NASA Astrophysics Data System (ADS)

    Kuzmenko, T.; Kikoin, K.; Avishai, Y.

    2004-05-01

    This paper is devoted to a systematic exposure of the Kondo physics in quantum dots for which the low-energy spin excitations consist of a few different spin multiplets |SiMi>. Under certain conditions (to be explained below), some of the lowest energy levels ESi are nearly degenerate. The dot in its ground state cannot then be regarded as a simple quantum top, in the sense that beside its spin operator other dot (vector) operators Rn are needed (in order to fully determine its quantum states), which have nonzero matrix elements between states of different spin multiplets ≠0. These Runge-Lenz operators do not appear in the isolated dot Hamiltonian (so in some sense they are “hidden”). Yet, they are exposed when tunneling between dot and leads is switched on. The effective spin Hamiltonian which couples the metallic electron spin s with the operators of the dot then contains exchange terms JnsṡRn besides the ubiquitous ones JisṡSi. The operators Si and Rn generate a dynamical group [usually SO(n)]. Remarkably, the value of n can be controlled by gate voltages, indicating that abstract concepts such as dynamical symmetry groups are experimentally realizable. Moreover, when an external magnetic field is applied, under favorable circumstances the exchange interaction involves solely the Runge-Lenz operators Rn and the corresponding dynamical symmetry group is SU(n). For example, the celebrated group SU(3) is realized in a triple quantum dot with four electrons.

  10. Spin-exchange effects in elastic electron-radical collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimoto, M. M.; Michelin, S. E.; Iga, I.

    2006-01-15

    This work presents a theoretical investigation on the spin-exchange effects in the low-energy elastic electron-C{sub 2}O radical collisions. Spin-polarization differential and integral cross sections calculated in the 1-10-eV energy range are reported. Our calculation has shown that the exchange between the scattering and unpaired target electron is strongly influenced by the occurrence of shape resonances. More specifically, our calculated rotationally summed spin-polarization fractions show significant deviation from unity in the resonance region. An analysis of the contributions from individual rotational transitions is also made.

  11. Microscopic origin of electric-field-induced modulation of Curie temperature in cobalt

    NASA Astrophysics Data System (ADS)

    Ando, Fuyuki; Yamada, Kihiro T.; Koyama, Tomohiro; Ishibashi, Mio; Shiota, Yoichi; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-07-01

    The Curie temperature T C is one of the most fundamental physical properties of ferromagnetic materials and can be described by the Weiss molecular field theory with the exchange interaction of neighboring atoms. Here, we demonstrate the electrical control of exchange coupling in cobalt films through direct magnetization measurements. We find that the reduction in magnetization with temperature, which is caused by thermal spin wave excitation and scales with Bloch’s law, clearly depends on the applied electric field. Furthermore, we confirm that the correlation between the electric-field-induced modulation of T C and that of exchange coupling follows the Weiss molecular field theory.

  12. Electronic structure and exchange interactions in diluted semimagnetic semiconductors (Zn,Co)Se and (Zn,Mn)Se

    NASA Astrophysics Data System (ADS)

    Mašek, J.

    1991-05-01

    A comparative study of the electronic structure of (Zn,Co)Se and (Zn,Mn)Se is done by using a tight-binding version of the coherent potential approximation. The densities of states, relevant for a photoemission experiment, are calculated for a magnetically disordered phase. The exchange constant Jpd is obtained from the splitting of the valence band top in the ferromagnetic phase of the mixed crystal; Jdd is estimated from the energy of a spin reversal. We explain the large exchange constant in the Co-based systems as a result of efficient hybridization of the d-states with the valence band.

  13. Exchange bias effect and glassy-like behavior of EuCrO{sub 3} and CeCrO{sub 3} nano-powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taheri, M., E-mail: maryam.taheri@brocku.ca; Razavi, F. S.; Kremer, R. K.

    2015-09-28

    The magnetic properties of nano-sized EuCrO{sub 3} and CeCrO{sub 3} powders, synthesized by a solution combustion method, were investigated using DC/AC magnetization measurements. An exchange bias effect, magnetization irreversibility and AC susceptibility dispersion in these samples provided evidence for the presence of the spin disorder magnetic phase. The exchange bias phenomenon, which is assigned to the exchange coupling between the glassy-like shell and canted antiferromagnetic core, showed the opposite sign in EuCrO{sub 3} and CeCrO{sub 3} at low temperatures, suggesting different exchange interactions at the interfaces in these compounds. We also observed a sign reversal of exchange bias in CeCrO{submore » 3} at different temperatures.« less

  14. Interface roughness induced asymmetric magnetic property in sputter-deposited Co/CoO/Co exchange coupled trilayers

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sannomiya, T.; Shi, J.; Nakamura, Y.

    2012-04-01

    The effect of interface roughness on magnetic properties of exchange coupled polycrystalline Co/CoO(tAF)/Co trilayers has been investigated by varying antiferromagnetic layer (CoO) thickness. It has been found that the upper CoO/Co interface becomes rougher with increasing CoO layer thickness, resulting in stronger exchange bias of the upper interface than the lower one. The interfacial exchange coupling is strengthened by the increase of defect-generated uncompensated antiferromagnetic spins; such spins form coupling with spins in the Co layer at the interface. As a result, the CoO layer thickness dependence of exchange bias is much enhanced for the upper Co layer. The transition from anisotropic magnetoresistance to isotropic magnetoresistance for the top Co layer has also been found. This could be attributed to the defects, probably partial thin oxide layers, between Co grains in the top Co layer that leads a switch from spin-orbit scattering related magnetoresistance to spin-dependent electron scattering dominated magnetoresistance.

  15. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light

    PubMed Central

    Hernández, R. J.; Mazzulla, A.; Provenzano, C.; Pagliusi, P.; Cipparrone, G.

    2015-01-01

    Linearly polarized (LP) and unpolarized (UP) light are racemic entities since they can be described as superposition of opposite circularly polarized (CP) components of equal amplitude. As a consequence they do not carry spin angular momentum. Chiral resolution of a racemate, i.e. separation of their chiral components, is usually performed via asymmetric interaction with a chiral entity. In this paper we provide an experimental evidence of the chiral resolution of linearly polarized and unpolarized Gaussian beams through the transfer of spin angular momentum to chiral microparticles. Due to the interplay between linear and angular momentum exchange, basic manipulation tasks, as trapping, spinning or orbiting of micro-objects, can be performed by light with zero helicity. The results might broaden the perspectives for development of miniaturized and cost-effective devices. PMID:26585284

  16. Local electronic structure and ferromagnetic interaction in La(Co,Ni)O3

    NASA Astrophysics Data System (ADS)

    Schuppler, S.; Nagel, P.; Fuchs, D.; Löhneysen, H. V.; Merz, M.; Huang, M.-J.

    Perovskite-related transition-metal oxides exhibit properties ranging from insulating to superconducting as well as unusual magnetic phases, and cobaltates, in particular, have been known for their propensity for spin-state transitions. Nonmagnetic LaCoO3 and paramagnetic LaNiO3 are parent compounds for the La(Co1-xNix) O3 (LCNO) family, which, for intermediate Ni content x, exhibits ferromagnetism. The local electronic structure and the ferromagnetic interaction in LCNO have been studied by x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD). XAS indicates a mixed-valence state for both Co and Ni, with both valences changing systematically with increasing x. Simultaneously, a spin-state redistribution towards HS (Co site) and LS (Ni site) occurs, and temperature-dependent spin-state transitions are increasingly suppressed. XMCD identifies the element-specific contributions to the magnetic moment and interactions. A simple model based on a double-exchange-like mechanism between Co3+ HS and Ni3+HS can qualitatively account for the evolution of ferromagnetism in the LCNO series.

  17. Quantum statistics for a two-mode magnon system with microwave pumping: application to coupled ferromagnetic nanowires.

    PubMed

    Haghshenasfard, Zahra; Cottam, M G

    2017-05-17

    A microscopic (Hamiltonian-based) method for the quantum statistics of bosonic excitations in a two-mode magnon system is developed. Both the exchange and the dipole-dipole interactions, as well as the Zeeman term for an external applied field, are included in the spin Hamiltonian, and the model also contains the nonlinear effects due to parallel pumping and four-magnon interactions. The quantization of spin operators is achieved through the Holstein-Primakoff formalism, and then a coherent magnon state representation is used to study the occupation magnon number and the quantum statistical behaviour of the system. Particular attention is given to the cross correlation between the two coupled magnon modes in a ferromagnetic nanowire geometry formed by two lines of spins. Manipulation of the collapse-and-revival phenomena for the temporal evolution of the magnon number as well as the control of the cross correlation between the two magnon modes is demonstrated by tuning the parallel pumping field amplitude. The role of the four-magnon interactions is particularly interesting and leads to anti-correlation in some cases with coherent states.

  18. Anisotropic magnetic interactions and spin dynamics in the spin-chain compound Cu (py) 2Br2 : An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Zeisner, J.; Brockmann, M.; Zimmermann, S.; Weiße, A.; Thede, M.; Ressouche, E.; Povarov, K. Yu.; Zheludev, A.; Klümper, A.; Büchner, B.; Kataev, V.; Göhmann, F.

    2017-07-01

    We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu (py) 2Br2 (CPB). Our measurements were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature dependence of static susceptibilities, we extract the strength of the exchange coupling (J /kB=52.0 K ) and the anisotropy parameter (δ ≈-0.02 ) of the model Hamiltonian. An independent compatible value of δ is obtained by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data recorded at 4 K . The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic component J δ from the isotropic exchange J in these systems.

  19. Single-spin observables and orbital structures in hadronic distributions

    NASA Astrophysics Data System (ADS)

    Sivers, Dennis

    2006-11-01

    Single-spin observables in scattering processes (either analyzing powers or polarizations) are highly constrained by rotational invariance and finite symmetries. For example, it is possible to demonstrate that all single-spin observables are odd under the finite transformation O=PAτ where P is parity and Aτ is a finite symmetry that can be designated “artificial time reversal”. The operators P, O and Aτ all have eigenvalues ±1 so that all single-spin observables can be classified into two distinct categories: (1) P-odd and Aτ-even, (2) P-even and Aτ-odd. Within the light-quark sector of the standard model, P-odd observables are generated from pointlike electroweak processes while Aτ-odd observables (neglecting quark mass parameters) come from dynamic spin-orbit correlations within hadrons or within larger composite systems, such as nuclei. The effects of Aτ-odd dynamics can be inserted into transverse-momentum dependent constituent distribution functions and, in this paper, we construct the contribution from an orbital quark to the Aτ-odd quark parton distribution ΔNGq/p↑front(x,kTN;μ2). Using this distribution, we examine the crucial role of initial- and final-state interactions in the observation of the scattering asymmetries in different hard-scattering processes. This construction provides a geometrical and dynamical interpretation of the Collins conjugation relation between single-spin asymmetries in semi-inclusive deep inelastic scattering and the asymmetries in Drell-Yan production. Finally, our construction allows us to display a significant difference between the calculation of a spin asymmetry generated by a hard-scattering mechanism involving color-singlet exchange (such as a photon) and a calculation of an asymmetry with a hard-scattering exchange involving gluons. This leads to an appreciation of the process-dependence inherent in measurements of single-spin observables.

  20. MkMRCC, APUCC and APUBD approaches to 1,n-didehydropolyene diradicals: the nature of through-bond exchange interactions

    NASA Astrophysics Data System (ADS)

    Nishihara, Satomichi; Saito, Toru; Yamanaka, Shusuke; Kitagawa, Yasutaka; Kawakami, Takashi; Okumura, Mitsutaka; Yamaguchi, Kizashi

    2010-10-01

    Mukherjee-type (Mk) state specific (SS) multi-reference (MR) coupled-cluster (CC) calculations of 1,n-didehydropolyene diradicals were carried out to elucidate singlet-triplet energy gaps via through-bond coupling between terminal radicals. Spin-unrestricted Hartree-Fock (UHF) based coupled-cluster (CC) computations of these diradicals were also performed. Comparison between symmetry-adapted MkMRCC and broken-symmetry (BS) UHF-CC computational results indicated that spin-contamination error of UHF-CC solutions was left at the SD level, although it had been thought that this error was negligible for the CC scheme in general. In order to eliminate the spin contamination error, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed eliminated the error to yield good agreement with MRCC in energy. The CCD with spin-unrestricted Brueckner's orbital (UB) was also employed for these polyene diradicals, showing that large spin-contamination errors at UHF solutions are dramatically improved, and therefore AP scheme for UBD removed easily the rest of spin-contaminations. Pure- and hybrid-density functional theory (DFT) calculations of the species were also performed. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid DFT. The AP DFT calculations yielded the singlet-triplet energy gaps that were in good agreement with those of MRCC, AP UHF-CC and AP UB-CC. Chemical indices such as the diradical character were calculated with all these methods. Implications of the present computational results are discussed in relation to previous RMRCC calculations of diradical species and BS calculations of large exchange coupled systems.

  1. Control of the third dimension in copper-based square-lattice antiferromagnets

    DOE PAGES

    Goddard, Paul A.; Singleton, John; Franke, Isabel; ...

    2016-03-25

    Using a mixed-ligand synthetic scheme, we create a family of quasi-two-dimensional antiferromagnets, namely, [Cu(HF 2)(pyz) 2]ClO 4 [pyz = pyrazine], [CuL 2(pyz) 2](ClO 4) 2 [L = pyO = pyridine-N-oxide and 4-phpy-O = 4-phenylpyridine-N-oxide. These materials are shown to possess equivalent two-dimensional [Cu(pyz) 2] 2+ nearly square layers, but exhibit interlayer spacings that vary from 6.5713 to 16.777 Å, as dictated by the axial ligands. We present the structural and magnetic properties of this family as determined via x-ray diffraction, electron-spin resonance, pulsed- and quasistatic-field magnetometry and muon-spin rotation, and compare them to those of the prototypical two-dimensional magnetic polymermore » Cu(pyz) 2(ClO 4) 2. We find that, within the limits of the experimental error, the two-dimensional, intralayer exchange coupling in our family of materials remains largely unaffected by the axial ligand substitution, while the observed magnetic ordering temperature (1.91 K for the material with the HF 2 axial ligand, 1.70 K for the pyO and 1.63 K for the 4-phpy-O) decreases slowly with increasing layer separation. Despite the structural motifs common to this family and Cu(pyz) 2(ClO 4) 2, the latter has significantly stronger two-dimensional exchange interactions and hence a higher ordering temperature. Here, we discuss these results, as well as the mechanisms that might drive the long-range order in these materials, in terms of departures from the ideal S = 1/2 two-dimensional square-lattice Heisenberg antiferromagnet. In particular, we find that both spin-exchange anisotropy in the intralayer interaction and interlayer couplings (exchange, dipolar, or both) are needed to account for the observed ordering temperatures, with the intralayer anisotropy becoming more important as the layers are pulled further apart.« less

  2. Control of the third dimension in copper-based square-lattice antiferromagnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddard, Paul A.; Singleton, John; Franke, Isabel

    Using a mixed-ligand synthetic scheme, we create a family of quasi-two-dimensional antiferromagnets, namely, [Cu(HF 2)(pyz) 2]ClO 4 [pyz = pyrazine], [CuL 2(pyz) 2](ClO 4) 2 [L = pyO = pyridine-N-oxide and 4-phpy-O = 4-phenylpyridine-N-oxide. These materials are shown to possess equivalent two-dimensional [Cu(pyz) 2] 2+ nearly square layers, but exhibit interlayer spacings that vary from 6.5713 to 16.777 Å, as dictated by the axial ligands. We present the structural and magnetic properties of this family as determined via x-ray diffraction, electron-spin resonance, pulsed- and quasistatic-field magnetometry and muon-spin rotation, and compare them to those of the prototypical two-dimensional magnetic polymermore » Cu(pyz) 2(ClO 4) 2. We find that, within the limits of the experimental error, the two-dimensional, intralayer exchange coupling in our family of materials remains largely unaffected by the axial ligand substitution, while the observed magnetic ordering temperature (1.91 K for the material with the HF 2 axial ligand, 1.70 K for the pyO and 1.63 K for the 4-phpy-O) decreases slowly with increasing layer separation. Despite the structural motifs common to this family and Cu(pyz) 2(ClO 4) 2, the latter has significantly stronger two-dimensional exchange interactions and hence a higher ordering temperature. Here, we discuss these results, as well as the mechanisms that might drive the long-range order in these materials, in terms of departures from the ideal S = 1/2 two-dimensional square-lattice Heisenberg antiferromagnet. In particular, we find that both spin-exchange anisotropy in the intralayer interaction and interlayer couplings (exchange, dipolar, or both) are needed to account for the observed ordering temperatures, with the intralayer anisotropy becoming more important as the layers are pulled further apart.« less

  3. Control of the third dimension in copper-based square-lattice antiferromagnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddard, Paul A.; Singleton, John; Franke, Isabel

    Using a mixed-ligand synthetic scheme, we create a family of quasi-two-dimensional antiferromagnets, namely, [Cu(HF2)(pyz)(2)]ClO4 [pyz = pyrazine], [CuL2(pyz)(2)](ClO4)(2) [L = pyO = pyridine-N-oxide and 4-phpy-O = 4-phenylpyridine-N-oxide. These materials are shown to possess equivalent two-dimensional [Cu(pyz)(2)](2+) nearly square layers, but exhibit interlayer spacings that vary from 6.5713 to 16.777 angstrom, as dictated by the axial ligands. We present the structural and magnetic properties of this family as determined via x-ray diffraction, electron-spin resonance, pulsed-and quasistatic-field magnetometry and muon-spin rotation, and compare them to those of the prototypical two-dimensional magnetic polymer Cu(pyz)(2)(ClO4)(2). We find that, within the limits of the experimentalmore » error, the two-dimensional, intralayer exchange coupling in our family of materials remains largely unaffected by the axial ligand substitution, while the observed magnetic ordering temperature (1.91 K for the material with the HF2 axial ligand, 1.70 K for the pyO and 1.63 K for the 4-phpy-O) decreases slowly with increasing layer separation. Despite the structural motifs common to this family and Cu(pyz)(2)(ClO4)(2), the latter has significantly stronger two-dimensional exchange interactions and hence a higher ordering temperature. We discuss these results, as well as the mechanisms that might drive the long-range order in these materials, in terms of departures from the ideal S = 1/2 two-dimensional square-lattice Heisenberg antiferromagnet. In particular, we find that both spin-exchange anisotropy in the intralayer interaction and interlayer couplings (exchange, dipolar, or both) are needed to account for the observed ordering temperatures, with the intralayer anisotropy becoming more important as the layers are pulled further apart.« less

  4. Suppression of Magnetic Quantum Tunneling in a Chiral Single-Molecule Magnet by Ferromagnetic Interactions.

    PubMed

    Lippert, Kai-Alexander; Mukherjee, Chandan; Broschinski, Jan-Philipp; Lippert, Yvonne; Walleck, Stephan; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Glaser, Thorsten

    2017-12-18

    Single-molecule magnets (SMMs) retain a magnetization without applied magnetic field for a decent time due to an energy barrier U for spin-reversal. Despite the success to increase U, the difficult to control magnetic quantum tunneling often leads to a decreased effective barrier U eff and a fast relaxation. Here, we demonstrate the influence of the exchange coupling on the tunneling probability in two heptanuclear SMMs hosting the same spin-system with the same high spin ground state S t = 21/2. A chirality-induced symmetry reduction leads to a switch of the Mn III -Mn III exchange from antiferromagnetic in the achiral SMM [Mn III 6 Cr III ] 3+ to ferromagnetic in the new chiral SMM RR [Mn III 6 Cr III ] 3+ . Multispin Hamiltonian analysis by full-matrix diagonalization demonstrates that the ferromagnetic interactions in RR [Mn III 6 Cr III ] 3+ enforce a well-defined S t = 21/2 ground state with substantially less mixing of M S substates in contrast to [Mn III 6 Cr III ] 3+ and no tunneling pathways below the top of the energy barrier. This is experimentally verified as U eff is smaller than the calculated energy barrier U in [Mn III 6 Cr III ] 3+ due to tunneling pathways, whereas U eff equals U in RR [Mn III 6 Cr III ] 3+ demonstrating the absence of quantum tunneling.

  5. Ising lattices with +/-J second-nearest-neighbor interactions

    NASA Astrophysics Data System (ADS)

    Ramírez-Pastor, A. J.; Nieto, F.; Vogel, E. E.

    1997-06-01

    Second-nearest-neighbor interactions are added to the usual nearest-neighbor Ising Hamiltonian for square lattices in different ways. The starting point is a square lattice where half the nearest-neighbor interactions are ferromagnetic and the other half of the bonds are antiferromagnetic. Then, second-nearest-neighbor interactions can also be assigned randomly or in a variety of causal manners determined by the nearest-neighbor interactions. In the present paper we consider three causal and three random ways of assigning second-nearest-neighbor exchange interactions. Several ground-state properties are then calculated for each of these lattices:energy per bond ɛg, site correlation parameter pg, maximal magnetization μg, and fraction of unfrustrated bonds hg. A set of 500 samples is considered for each size N (number of spins) and array (way of distributing the N spins). The properties of the original lattices with only nearest-neighbor interactions are already known, which allows realizing the effect of the additional interactions. We also include cubic lattices to discuss the distinction between coordination number and dimensionality. Comparison with results for triangular and honeycomb lattices is done at specific points.

  6. Quantum dust magnetosonic waves with spin and exchange correlation effects

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Mushtaq, A.; Qamar, A.

    2016-01-01

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).

  7. WKB calculation of multiple spin exchange in monolayer solid 3He

    NASA Astrophysics Data System (ADS)

    Ashizawa, Hisayuki; Hirashima, D. S.

    2000-10-01

    An insight is given into the multiple spin exchange in the registered 3×3 phase of solid 3He adsorbed on graphite with a WKB calculation taking account of the corrugation of the substrate potential. The corrugation is essential for this phase to be realized, and is found to suppress the exchange processes of many (>=4) particles to make only the two- and the three-spin exchanges relevant. When the magnitude of the corrugation is modest, the exchange can be ferromagnetic, in agreement with the experiment by Ikegami et al. [Phys. Rev. Lett. 81, 2478 (1998)]. Validity and limitation of the WKB approximation are also discussed.

  8. Thermal contact through a two-temperature kinetic Ising chain

    NASA Astrophysics Data System (ADS)

    Bauer, M.; Cornu, F.

    2018-05-01

    We consider a model for thermal contact through a diathermal interface between two macroscopic bodies at different temperatures: an Ising spin chain with nearest neighbor interactions is endowed with a Glauber dynamics with different temperatures and kinetic parameters on alternating sites. The inhomogeneity of the kinetic parameter is a novelty with respect to the model of Racz and Zia (1994 Phys. Rev. E 49 139), and we exhibit its influence upon the stationary non equilibrium values of the two-spin correlations at any distance. By mapping to the dynamics of spin domain walls and using free fermion techniques, we determine the scaled generating function for the cumulants of the exchanged heat amounts per unit of time in the long time limit.

  9. Spin-isospin excitation of 3He with three-proton final state

    NASA Astrophysics Data System (ADS)

    Ishikawa, Souichi

    2018-01-01

    Spin-isospin excitation of the {}^3He nucleus by a proton-induced charge exchange reaction, {}^3He(p,n)ppp, at forward neutron scattering angle is studied in a plane wave impulse approximation (PWIA). In PWIA, cross sections of the reaction are written in terms of proton-neutron scattering amplitudes and response functions of the transition from {}3He to the three-proton state by spin-isospin transition operators. The response functions are calculated with realistic nucleon-nucleon potential models using a Faddeev three-body method. Calculated cross sections agree with available experimental data in substance. Possible effects arising from the uncertainty of proton-neutron amplitudes and three-nucleon interactions in the three-proton system are examined.

  10. Monte Carlo study of electron relaxation in graphene with spin polarized, degenerate electron gas in presence of electron-electron scattering

    NASA Astrophysics Data System (ADS)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-12-01

    The Monte Carlo simulation method is applied to study the relaxation of excited electrons in monolayer graphene. The presence of spin polarized background electrons population, with density corresponding to highly degenerate conditions is assumed. Formulas of electron-electron scattering rates, which properly account for electrons presence in two energetically degenerate, inequivalent valleys in this material are presented. The electron relaxation process can be divided into two phases: thermalization and cooling, which can be clearly distinguished when examining the standard deviation of electron energy distribution. The influence of the exchange effect in interactions between electrons with parallel spins is shown to be important only in transient conditions, especially during the thermalization phase.

  11. Laser-induced polarization of a quantum spin system in the steady-state regime

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2016-05-01

    The effect of the circularly polarized laser field on quantum spin systems in the steady-state regime, in which relaxation plays the central role, has been studied. The dynamical mean-field-like theory predicts several general results for the behavior of the time-average magnetization caused by the laser field. The induced magnetization oscillates with the frequency of the laser field (while Rabi-like oscillations, which modulate the latter in the dynamical regime, are damped by the relaxation in the steady-state regime). At high frequencies, that magnetization is determined by the value to which the relaxation process is directed. At low frequencies the slope of that magnetization as a function of the frequency is determined by the strength of the laser field. The anisotropy determines the resonance behavior of the time-averaged magnetization in both the ferromagnetic and antiferromagnetic cases with nonzero magnetic anisotropy. Nonlinear effects (in the magnitude of the laser field) have been considered. The effect of the laser field on quantum spin systems is maximal in resonance, where the time-averaged magnetization, caused by the laser field, is changed essentially. Out of resonance the changes in the magnetization are relatively small. The resonance effect is caused by the nonzero magnetic anisotropy. The resonance frequency is small (proportional to the anisotropy value) for spin systems with ferromagnetic interactions and enhanced by exchange interactions in the spin systems with antiferromagnetic couplings. We show that it is worthwhile to study the laser-field-induced magnetization of quantum spin systems caused by the high-frequency laser field in the steady-state regime in "easy-axis" antiferromagnetic spin systems (e.g., in Ising-like antiferromagnetic spin-chain materials). The effects of the Dzyaloshinskii-Moriya interaction and the spin-frustration couplings (in the case of the zigzag spin chain) have been analyzed.

  12. Heteronuclear transverse and longitudinal relaxation in AX4 spin systems: Application to 15N relaxations in 15NH4+

    PubMed Central

    Werbeck, Nicolas D.; Hansen, D. Flemming

    2014-01-01

    The equations that describe the time-evolution of transverse and longitudinal 15N magnetisations in tetrahedral ammonium ions, 15NH4+, are derived from the Bloch-Wangsness-Redfield density operator relaxation theory. It is assumed that the relaxation of the spin-states is dominated by (1) the intra-molecular 15N–1H and 1H–1H dipole–dipole interactions and (2) interactions of the ammonium protons with remote spins, which also include the contribution to the relaxations that arise from the exchange of the ammonium protons with the bulk solvent. The dipole–dipole cross-correlated relaxation mechanisms between each of the 15N–1H and 1H–1H interactions are explicitly taken into account in the derivations. An application to 15N-ammonium bound to a 41 kDa domain of the protein DnaK is presented, where a comparison between experiments and simulations show that the ammonium ion rotates rapidly within its binding site with a local correlation time shorter than approximately 1 ns. The theoretical framework provided here forms the basis for further investigations of dynamics of AX4 spin systems, with ammonium ions in solution and bound to proteins of particular interest. PMID:25128779

  13. The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.

    PubMed

    Sorce, Dennis J; Michaeli, Shalom; Garwood, Michael

    2006-03-01

    The problem of the relaxation of identical spins 1/2 induced by chemical exchange between spins with different chemical shifts in the presence of time-dependent RF irradiation (in the first rotating frame) is considered for the fast exchange regime. The solution for the time evolution under the chemical exchange Hamiltonian in the tilted doubly rotating frame (TDRF) is presented. Detailed derivation is specified to the case of a two-site chemical exchange system with complete randomization between jumps of the exchanging spins. The derived theory can be applied to describe the modulation of the chemical exchange relaxation rate constants when using a train of adiabatic pulses, such as the hyperbolic secant pulse. Theory presented is valid for quantification of the exchange-induced time-dependent rotating frame longitudinal T1rho,ex and transverse T2rho,ex relaxations in the fast chemical exchange regime.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno

    Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less

  15. 133Cs-NMR study on aligned powder of competing spin chain compound Cs2Cu2Mo3O12

    NASA Astrophysics Data System (ADS)

    Yagi, A.; Matsui, K.; Goto, T.; Hase, M.; Sasaki, T.

    2018-03-01

    S = 1/2 competing spin chain compound Cs2Cu2Mo3O12 has two dominant exchange interactions of the nearest neighbouring ferromagnetic J 1 = 93 K and the second nearest neighbouring antiferromagnetic J 2 = +33 K, and is expected to show the nematic Tomonaga-Luttinger liquid (TLL) state under high magnetic field region. The recent theoretical study by Sato et al. has shown that in the nematic TLL state, the spin fluctuations are expected to be highly anisotropic, that is, its transverse component is suppressed. Our previous NMR study on the present system showed that the dominant contribution to nuclear spin relaxation comes from the longitudinal component. In order to conclude that the transverse component of spin fluctuations is suppressed, the knowledge of hyperfine coupling is indispensable. This article is solely devoted to investigate the hyperfine coupling of 133Cs-NMR site to prove that the anisotropic part of hyperfine coupling, which connects the nuclear spin relaxation with the transverse spin fluctuations is considerably large to be A an = +770 Oe/μB.

  16. Langmuir instability in partially spin polarized bounded degenerate plasma

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Jamil, M.; Murtaza, G.

    2018-04-01

    Some new features of waves inside the cylindrical waveguide on employing the separated spin evolution quantum hydrodynamic model are evoked. Primarily, the instability of Langmuir wave due to the electron beam in a partially spin polarized degenerate plasma considering a nano-cylindrical geometry is discussed. Besides, the evolution of a new spin-dependent wave (spin electron acoustic wave) due to electron spin polarization effects in the real wave spectrum is elaborated. Analyzing the growth rate, it is found that in the absence of Bohm potential, the electron spin effects or exchange interaction reduce the growth rate as well as k-domain but the inclusion of Bohm potential increases both the growth rate and k-domain. Further, we investigate the geometry effects expressed by R and pon and find that they have opposite effects on the growth rate and k-domain of the instability. Additionally, how the other parameters like electron beam density or streaming speed of beam electrons influence the growth rate is also investigated. This study may find its applications for the signal analysis in solid state devices at nanoscales.

  17. Theory of Intrinsic Spin Torque Due to Interface Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Kalitsov, Alan; Chshiev, Mairbek; Butler, William; Mryasov, Oleg

    2014-03-01

    The effect of intrinsic spin torque due to spin-orbit coupling (SOC) at the interface between thin ferromagnetic film and non-magnetic metal has attracted significant fundamental and applied research interest. We report quantum theory of SOC driven spin torque (SOT) within the Rashba model of SOC and two-band tight binding (TB) Hamiltonian including s-d exchange interactions (J). We employ the non-equilibrium Green Function formalism and find that SOT to the first order in SOC has symmetry consistent with the earlier quasi-classical diffusive theory. An obvious benefit of the proposed approach is the expression for the SOT given in terms of TB parameters which enables a physically transparent analysis of the dependencies of SOT on material specific parameters such as Rashba SOC constant, hopping integral, Fermi level and J. On the basis of analytical and numerical results we discuss trends in strength of SOT and its correlation with the Spin Hall conductivity. This work was supported in part by C-SPIN, STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  18. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90 L of liquid nitrogen per day

    NASA Astrophysics Data System (ADS)

    Albert, Brice J.; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L.; Rand, Peter W.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Barnes, Alexander B.

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90 L per day to perform magic-angle spinning (MAS) DNP experiments below 85 K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328 ± 3 at 81 ± 2 K, and 276 ± 4 at 105 ± 2 K.

  19. Hydrogen bonding and spin density distribution in the QB semiquinone of bacterial reaction centers and comparison with the QA site

    PubMed Central

    Martin, Erik; Samoilova, Rimma I.; Narasimhulu, Kupala V.; Lin, Tzu-Jen; O’Malley, Patrick J.; Wraight, Colin A.; Dikanov, Sergei A.

    2011-01-01

    In the photosynthetic reaction center from Rhodobacter sphaeroides, the primary (QA) and secondary (QB) electron acceptors are both ubiquinone-10, but with very different properties and functions. To investigate the protein environment that imparts these functional differences, we have applied X-band HYSCORE, a 2D pulsed EPR technique, to characterize the exchangeable protons around the semiquinone (SQ) in the QA and QB sites, using samples of 15N-labeled reaction centers, with the native high spin Fe2+ exchanged for diamagnetic Zn2+, prepared in 1H2O and 2H2O solvent. The powder HYSCORE method is first validated against the orientation-selected Q-band ENDOR study of the QA SQ by Flores et al. (Biophys. J. 2007, 92, 671–682), with good agreement for two exchangeable protons with anisotropic hyperfine tensor components, T, both in the range 4.6–5.4 MHz. HYSCORE was then applied to the QB SQ where we found proton lines corresponding to T~5.2, 3.7 MHz and T~1.9 MHz. Density functional-based quantum mechanics/molecular mechanics (QM/MM) calculations, employing a model of the QB site, were used to assign the observed couplings to specific hydrogen bonding interactions with the QB SQ. These calculations allow us to assign the T=5.2 MHz proton to the His-L190 NδH…O4 (carbonyl) hydrogen bonding interaction. The T =3.7 MHz spectral feature most likely results from hydrogen bonding interactions of O1 (carbonyl) with both Gly-L225 peptide NH and Ser-L223 hydroxyl OH, which possess calculated couplings very close to this value. The smaller 1.9 MHz coupling is assigned to a weakly bound peptide NH proton of Ile-L224. The calculations performed with this structural model of the QB site show less asymmetric distribution of unpaired spin density over the SQ than seen for the QA site, consistent with available experimental data for 13C and 17O carbonyl hyperfine couplings. The implications of these interactions for QB function and comparisons with the QA site are discussed. PMID:21417328

  20. Spin-phonon coupling and exchange interaction in Gd substituted YFe0.5Cr0.5O3

    NASA Astrophysics Data System (ADS)

    Singh, Karan; Sharma, Mohit K.; Mukherjee, K.

    2018-02-01

    We report the evolution of physical properties due to partial substitution of Gd on the Y site in a mixed metal oxide YFe0.5Cr0.5O3. This compound exhibits negative magnetization at low applied fields. Our investigations on Y1-xGdxFe0.5Cr0.5O3 (x = 0.0, 0.2, 0.4 and 0.6) compounds is carried out through magnetization and Raman spectroscopy studies. It is observed that even with 20% Gd substitution, the negative magnetization observed in YFe0.5Cr0.5O3 is suppressed. Due to magnetic rare earth ion Gd3+, additional exchange interaction of the form Gd-O-Fe/Cr dominates the magnetic interaction arising due to the transition metal ions. This results in positive magnetization in Gd-substituted compounds. Temperature dependent Raman spectroscopy along with magnetization studies revealed that the observed shifts of Raman mode is due to spin-phonon coupling. Hardening of Raman mode observed below 240 K in YFe0.5Cr0.5O3 weakens and softening of phonon modes was observed for Y0.4Gd0.6Fe0.5Cr0.5O3 compound. This implies that additional magnetic interactions due to Gd ions play a dominating role in dictating the behavior of the Gd-substituted compounds.

  1. Energy as a witness of multipartite entanglement in chains of arbitrary spins

    NASA Astrophysics Data System (ADS)

    Troiani, F.; Siloi, I.

    2012-09-01

    We develop a general approach for deriving the energy minima of biseparable states in chains of arbitrary spins s, and we report numerical results for spin values s≤5/2 (with N≤8). The minima provide a set of threshold values for exchange energy that allow us to detect different degrees of multipartite entanglement in one-dimensional spin systems. We finally demonstrate that the Heisenberg exchange Hamiltonian of N spins has a nondegenerate N-partite entangled ground state, and it can thus witness such correlations in all finite spin chains.

  2. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya

    2016-05-01

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.

  3. Theoretical study of the Raman active CDW gap mode in manganites.

    PubMed

    Rout, G C; Panda, Saswati; Behera, S N

    2010-09-22

    We report here the microscopic theory of the Raman spectra of the colossal magnetoresistive (CMR) manganite systems. The system is described by a model Hamiltonian consisting of the double exchange interaction in addition to the charge ordering interaction in the e(g) band and spin-spin interaction among the t(2g) core electrons. Further the phonon coupling to the conduction electron density is incorporated in the model for phonons in the harmonic approximation. The spectral density function for the Raman spectra is calculated from the imaginary part of the phonon Green's function. The calculated spectra display the Raman active bare phonon peak along with the charge ordering peak. The magnetic field and temperature dependence of the charge ordering peak agrees with the 480 cm(-1) JT mode observed in the experiments. The evolution of this mode is investigated in the report.

  4. Evidence of solvent-gelator interaction in sugar-based organogel studied by field-cycling NMR relaxometry.

    PubMed

    Bielejewski, Michal; Tritt-Goc, Jadwiga

    2010-11-16

    The dynamics of bulk toluene and toluene confined in the 1,2-O-(1-ethylpropylidene)-α-D-glucofuranose gel was studied using (1)H field-cycling nuclear magnetic resonance relaxometry. The proton spin-lattice relaxation time T(1) was measured as a function of the magnetic field strength and temperature. The observed dispersion in the frequency range 10(4)-10(6) Hz for the relaxation rate of toluene in the gel system give evidence of the interaction between the toluene and the gelator aggregates. The data were interpreted in terms of the two-fraction fast-exchange model. Additionally it was also shown that a cooling rate during gel preparation process influences the gel microstructure and leads to different gelator-solvent interactions as reflected in a different behavior of the proton spin-lattice relaxation rate of toluene within the gel observed at the low frequency range.

  5. Low energy properties of the Kondo chain in the RKKY regime

    DOE PAGES

    D. H. Schimmel; Tsvelik, A. M.; Yevtushenko, O. M.

    2016-05-03

    We study the Kondo chain in the regime of high spin concentration where the low energy physics is dominated by the Ruderman–Kittel–Kasuya–Yosida interaction. As has been recently shown (Tsvelik and Yevtushenko 2015 Phys. Rev. Lett. 115 216402), this model has two phases with drastically different transport properties depending on the anisotropy of the exchange interaction. In particular, the helical symmetry of the fermions is spontaneously broken when the anisotropy is of the easy plane type. This leads to a parametrical suppression of the localization effects. In the present paper we substantially extend the previous theory, in particular, by analyzing amore » competition of forward- and backward- scattering, including into the theory short range electron interactions and calculating spin correlation functions. In conclusion, we discuss applicability of our theory and possible experiments which could support the theoretical findings.« less

  6. Polyanion Driven Antiferromagnetic and Insulating Ground State of Olivine Phosphates: LiMPO4

    NASA Astrophysics Data System (ADS)

    Jena, Ajit Kumar; Nanda, B. R. K.; Condensed Matter Theory; Computation Team

    Through density functional calculations we have investigated the electronic and magnetic properties of LiMPO4, where M is a 3d transition metal element. We find that contrary to many transition metal oxides, in these Olivine phosphates the band gap is originated due to crystal field anisotropy as well as weak O-p - M-d covalent interaction. Both of them are attributed to the presence of PO43- polyanion. The anisotropic crystal field, in the absence of covalent interactions, creates atomically localized non-degenerate M-d states and therefore the gap is a natural outcome. Onsite repulsion, due to strong correlation effect, further enhances the gap. These localized d states favor high-spin configuration which leads to antiferromagnetic ordering due to Hund's coupling. Experimentally observed low Neel temperature of this family of compounds is explained from the DFT obtained spin exchange interaction parameters. Work supported by Nissan Research Program.

  7. Effect of shell thickness on the exchange bias blocking temperature and coercivity in Co-CoO core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Reethu, K.; Thanveer, T.; Myint, M. T. Z.; Al-Harthi, S. H.

    2017-08-01

    The exchange bias blocking temperature distribution of naturally oxidized Co-CoO core-shell nanoparticles exhibits two distinct signatures. These are associated with the existence of two magnetic entities which are responsible for the temperature dependence of an exchange bias field. One is from the CoO grains which undergo thermally activated magnetization reversal. The other is from the disordered spins at the Co-CoO interface which exhibits spin-glass-like behavior. We investigated the oxide shell thickness dependence of the exchange bias effect. For particles with a 3 nm thick CoO shell, the predominant contribution to the temperature dependence of exchange bias is the interfacial spin-glass layer. On increasing the shell thickness to 4 nm, the contribution from the spin-glass layer decreases, while upholding the antiferromagnetic grain contribution. For samples with a 4 nm CoO shell, the exchange bias training was minimal. On the other hand, 3 nm samples exhibited both the training effect and a peak in coercivity at an intermediate set temperature Ta. This is explained using a magnetic core-shell model including disordered spins at the interface.

  8. Relaxation dispersion in MRI induced by fictitious magnetic fields.

    PubMed

    Liimatainen, Timo; Mangia, Silvia; Ling, Wen; Ellermann, Jutta; Sorce, Dennis J; Garwood, Michael; Michaeli, Shalom

    2011-04-01

    A new method entitled Relaxation Along a Fictitious Field (RAFF) was recently introduced for investigating relaxations in rotating frames of rank ≥ 2. RAFF generates a fictitious field (E) by applying frequency-swept pulses with sine and cosine amplitude and frequency modulation operating in a sub-adiabatic regime. In the present work, MRI contrast is created by varying the orientation of E, i.e. the angle ε between E and the z″ axis of the second rotating frame. When ε > 45°, the amplitude of the fictitious field E generated during RAFF is significantly larger than the RF field amplitude used for transmitting the sine/cosine pulses. Relaxation during RAFF was investigated using an invariant-trajectory approach and the Bloch-McConnell formalism. Dipole-dipole interactions between identical (like) spins and anisochronous exchange (e.g., exchange between spins with different chemical shifts) in the fast exchange regime were considered. Experimental verifications were performed in vivo in human and mouse brain. Theoretical and experimental results demonstrated that changes in ε induced a dispersion of the relaxation rate constants. The fastest relaxation was achieved at ε ≈ 56°, where the averaged contributions from transverse components during the pulse are maximal and the contribution from longitudinal components are minimal. RAFF relaxation dispersion was compared with the relaxation dispersion achieved with off-resonance spin lock T(₁ρ) experiments. As compared with the off-resonance spin lock T(₁ρ) method, a slower rotating frame relaxation rate was observed with RAFF, which under certain experimental conditions is desirable. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Probing α -RuCl3 Beyond Magnetic Order: Effects of Temperature and Magnetic Field

    NASA Astrophysics Data System (ADS)

    Winter, Stephen M.; Riedl, Kira; Kaib, David; Coldea, Radu; Valentí, Roser

    2018-02-01

    Recent studies have brought α -RuCl3 to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4 d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α -RuCl3 . These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.

  10. Silicon CMOS architecture for a spin-based quantum computer.

    PubMed

    Veldhorst, M; Eenink, H G J; Yang, C H; Dzurak, A S

    2017-12-15

    Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.

  11. Space charge in nanostructure resonances

    NASA Astrophysics Data System (ADS)

    Price, Peter J.

    1996-10-01

    In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.

  12. Weak ferromagnetic order breaking the threefold rotational symmetry of the underlying kagome lattice in CdC u3(OH) 6(NO3)2.H2O

    NASA Astrophysics Data System (ADS)

    Okuma, Ryutaro; Yajima, Takeshi; Nishio-Hamane, Daisuke; Okubo, Tsuyoshi; Hiroi, Zenji

    2017-03-01

    Novel magnetic phases are expected to occur in highly frustrated spin systems. Here, we study the structurally perfect kagome antiferromagnet CdC u3(OH) 6(NO3)2.H2O by magnetization, magnetic torque, and heat capacity measurements using single crystals. An antiferromagnetic order accompanied by a small spontaneous magnetization that surprisingly is confined in the kagome plane sets in at TN˜4 K , well below the nearest-neighbor exchange interaction J /kB=45 K . This suggests that a unique "q =0 " type 120∘ spin structure with "negative" (downward) vector chirality, which breaks the underlying threefold rotational symmetry of the kagome lattice and thus allows a spin canting within the plane, is exceptionally realized in this compound rather than a common one with "positive" (upward) vector chirality. The origin is discussed in terms of the Dzyaloshinskii-Moriya interaction.

  13. Pairing Instability and Quasiparticle Properties of an Unconventional Superconductor with a Skyrmion Texture of Localized Spins

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Xin; Tai, Yuan-Yen

    Majorana fermions are believed to perform better than regular fermions in keeping quantum coherence, which is an important factor for quantum computation. Recently there has been intensive interest in their realization in solid-state systems. Zero-energy quasiparticle modes in a superconductor serve as a promising candidate. We present a theoretical study on the influence of a two-dimensional (2D) skyrmion texture of localized spins on the pairing instability and quasiparticle properties in an unconventional superconductor. By solving the Bogoliubov-de Gennes equations for an effective BCS model Hamiltonian with nearest-neighbor pairing interaction on a 2D square lattice, we analyze the spatial dependence of superconducting order parameter for varying strength of spin-exchange interaction. The quasiparticle properties are studied by calculating local density of states and its spatial dependence. This work was supported by U.S. DOE NNSA through the LANL LDRD Program, and by Center for Integrated Nanotechnologies, a U.S. DOE BES user facility.

  14. Vortex jump behavior in coupled nanomagnetic heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Petford-Long, A. K.; Heinonen, O.

    2014-11-26

    The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here in this article, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy termsmore » were elucidated and the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. In conclusion, the work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications.« less

  15. Spin degeneracy of Hadronic molecules in the heavy quark region

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yasuhiro

    2018-03-01

    Hadronic molecules have been considered to appear close to the hadron-hadron threshold. For the heavy mesons, \\bar D and B, the one pion exchange potential is enhanced by the mass degeneracy of heavy pseudoscalar and vector mesons, caused by the heavy quark spin symmetry. In this study, we investigate new hadronic molecules formed by the heavy meson {P≤ft( * \\right)} = {\\bar D≤ft( * \\right)},{B≤ft( * \\right)} and a nucleon N, being P (*) N. As the interaction between P (*) and N, the pion and vector meson (ρ and ω) exchanges are considered. By solving the coupled-channel Schrödinger equations for P N and P*N, we obtain the bound and resonant states in the charm and bottom sectors, and in the in nite heavy quark mass limit. In the molecular states, the PN - P*N mixing effect is important, where the tensor force of the one pion exchange potential generates the strong attraction. In the heavy quark limit, we obtain the degeneracy of the states for J P = 1/2- and 3/2-.

  16. Presence of glassy state and large exchange bias in nanocrystalline BiFeO3

    NASA Astrophysics Data System (ADS)

    Srivastav, Simant Kumar; Johari, Anima; Patel, S. K. S.; Gajbhiye, N. S.

    2017-11-01

    We investigated the static and dynamic aspects of the magnetic properties for single phase nanocrystalline BiFeO3 with average crystallite size of 35 nm. The frequency dependence of the peak is observed in the real part of ac susceptibility χ‧ac vs T measurement and described well by the Vogel-Fulcher law as well as the power law. These analyses indicated the existence of cluster glass state with significant interaction among the spin clusters and results in cluster-glass like cooperative freezing at low temperature. The influence of temperature and magnetic field cooling on the exchange bias effect is investigated. A training effect is also observed. We have reported a significantly high ZFC & FC exchange bias of 200 Oe & 450 Oe at 300 K and 900 Oe & 2100 Oe at 5 K. The obtained results are interpreted in the framework of core-shell model, where the core of the BFO nanoparticles shows antiferromagnetic behavior and surrounded by CG-like ferromagnetic (FM) shell associated to uncompensated surface spins.

  17. Nearly Deconfined Spinon Excitations in the Square-Lattice Spin-1 /2 Heisenberg Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Shao, Hui; Qin, Yan Qi; Capponi, Sylvain; Chesi, Stefano; Meng, Zi Yang; Sandvik, Anders W.

    2017-10-01

    We study the spin-excitation spectrum (dynamic structure factor) of the spin-1 /2 square-lattice Heisenberg antiferromagnet and an extended model (the J -Q model) including four-spin interactions Q in addition to the Heisenberg exchange J . Using an improved method for stochastic analytic continuation of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the sharp (δ -function) contribution to the structure factor expected from spin-wave (magnon) excitations, in addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in excellent agreement with recent neutron-scattering experiments on Cu (DCOO )2.4 D2O , where a broad spectral-weight continuum at wave vector q =(π ,0 ) was interpreted as deconfined spinons, i.e., fractional excitations carrying half of the spin of a magnon. Our results at (π ,0 ) show a similar reduction of the magnon weight and a large continuum, while the continuum is much smaller at q =(π /2 ,π /2 ) (as also seen experimentally). We further investigate the reasons for the small magnon weight at (π ,0 ) and the nature of the corresponding excitation by studying the evolution of the spectral functions in the J -Q model. Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized state. Based on these results, we reinterpret the picture of deconfined spinons at (π ,0 ) in the experiments as nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture of a fragile (π ,0 )-magnon pole in the Heisenberg model and its depletion in the J -Q model, we introduce an effective model of the excitations in which a magnon can split into two spinons that do not separate but fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle-hole pair in the exciton-polariton problem). The model can reproduce the reduction of magnon weight and lowered excitation energy at (π ,0 ) in the Heisenberg model, as well as the energy maximum and smaller continuum at (π /2 ,π /2 ). It can also account for the rapid loss of the (π ,0 ) magnon with increasing Q and the remarkable persistence of a large magnon pole at q =(π /2 ,π /2 ) even at the deconfined critical point. The fragility of the magnons close to (π ,0 ) in the Heisenberg model suggests that various interactions that likely are important in many materials—e.g., longer-range pair exchange, ring exchange, and spin-phonon interactions—may also destroy these magnons and lead to even stronger spinon signatures than in Cu (DCOO )2.4 D2O .

  18. Two-Magnon Raman Scattering and Pseudospin-Lattice Interactions in Sr_{2}IrO_{4} and Sr_{3}Ir_{2}O_{7}.

    PubMed

    Gretarsson, H; Sung, N H; Höppner, M; Kim, B J; Keimer, B; Le Tacon, M

    2016-04-01

    We have used Raman scattering to investigate the magnetic excitations and lattice dynamics in the prototypical spin-orbit Mott insulators Sr_{2}IrO_{4} and Sr_{3}Ir_{2}O_{7}. Both compounds exhibit pronounced two-magnon Raman scattering features with different energies, line shapes, and temperature dependencies, which in part reflect the different influence of long-range frustrating exchange interactions. Additionally, we find strong Fano asymmetries in the line shapes of low-energy phonon modes in both compounds, which disappear upon cooling below the antiferromagnetic ordering temperatures. These unusual phonon anomalies indicate that the spin-orbit coupling in Mott-insulating iridates is not sufficiently strong to quench the orbital dynamics in the paramagnetic state.

  19. Nonlinear spin susceptibility in topological insulators

    NASA Astrophysics Data System (ADS)

    Shiranzaei, Mahroo; Fransson, Jonas; Cheraghchi, Hosein; Parhizgar, Fariborz

    2018-05-01

    We revise the theory of the indirect exchange interaction between magnetic impurities beyond the linear response theory to establish the effect of impurity resonances in the surface states of a three-dimensional topological insulator. The interaction is composed of isotropic Heisenberg, anisotropic Ising, and Dzyaloshinskii-Moriya types of couplings. We find that all three contributions are finite at the Dirac point, which is in stark contrast to the linear response theory which predicts a vanishing Dzyaloshinskii-Moriya-type contribution. We show that the spin-independent component of the impurity scattering can generate large values of the Dzyaloshinskii-Moriya-type coupling in comparison with the Heisenberg and Ising types of couplings, while these latter contributions drastically reduce in magnitude and undergo sign changes. As a result, both collinear and noncollinear configurations are allowed magnetic configurations of the impurities.

  20. ``Loose spins'' in Fe/Cu/Fe(001) structures

    NASA Astrophysics Data System (ADS)

    Heinrich, B.; Celinski, Z.; Liao, L. X.; From, M.; Cochran, J. F.

    1994-05-01

    Slonczewski recently proposed a model for the exchange coupling between ferromagnetic layers separated by a nonferromagnetic spacer based on the concept of ``loose spins.'' ``Loose spins'' contribute to the total exchange energy. We have studied the role of ``loose spins'' in bcc Fe/Cu/Fe(001) structures. bcc Fe/Cu/Fe(001) trilayers deposited at room temperature were investigated extensively in our previous studies. In our ``loose spin'' studies, the Fe was added inside the Cu interlayer. Several structures were atomically engineered in order to test the behavior of ``loose spins:'' One additional atomic layer of an (Fe+Cu) alloy were located in appropriate positions in a Cu spacer. The bilinear and biquadratic exchange coupling in the above structures was quantitatively studied with FMR in the temperature range 77-370 K and with MOKE at RT.

  1. Absence of exchange interaction between localized magnetic moments and conduction-electrons in diluted Er{sup 3+} gold-nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesseux, G. G., E-mail: lesseux@ifi.unicamp.br; Urbano, R. R.; Iwamoto, W.

    2014-05-07

    The Electron Spin Resonance (ESR) of diluted Er{sup 3+} magnetic ions in Au nanoparticles (NPs) is reported. The NPs were synthesized by reducing chloro triphenyl-phosphine gold(I) and erbium(III) trifluoroacetate. The Er{sup 3+} g-value along with the observed hyperfine splitting indicate that the Er{sup 3+} impurities are in a local cubic symmetry. Furthermore, the Er{sup 3+} ESR spectra show that the exchange interaction between the 4f and the conduction electrons (ce) is absent or negligible in Au{sub 1–x}Er{sub x} NPs, in contrast to the ESR results in bulk Au{sub 1–x}Er{sub x}. Therefore, the nature of this interaction needs to be reexaminedmore » at the nano scale range.« less

  2. Antisite disorder induced spin glass and exchange bias effect in Nd2NiMnO6 epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Singh, Amit Kumar; Chauhan, Samta; Chandra, Ramesh

    2017-03-01

    We report the observation of the exchange bias effect and spin glass behaviour at low temperature in a ferromagnetic Nd2NiMnO6 epitaxial thin film. Along with the ferromagnetic transition at ˜194 K, an additional transition is observed at lower temperature (˜55 K) as seen from M-T curves of the sample. A shift in the ac susceptibility peak with frequency has been observed at low temperature, which is a signature of a glassy phase within the sample. The detailed investigation of the memory effect and time dependent magnetic relaxation measurements reveals the presence of a spin glass phase in the Nd2NiMnO6 thin film. The exchange bias effect observed at low temperature in the sample has been associated with an antisite disorder induced spin glass phase, which results in a ferromagnetic/spin glass interface at low temperature. The exchange bias behaviour has been further confirmed by performing cooling field and temperature dependence of exchange bias along with training effect measurements.

  3. Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, D.-B.; Goan, H.-S.

    2008-11-07

    In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10{sup -6} that ismore » below the error threshold of 10{sup -4} required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.« less

  4. PNR studies of spin-flop and spin-flip processes in magnetic multilayer, NiFeCo/Cu system

    NASA Astrophysics Data System (ADS)

    Ambaye, Hailemariam; Sato, Hideo; Mankey, Gary; Lauter, Valeria; Goyette, Richard

    2010-03-01

    Early GMR devices relied on antiferromagnetic interlayer coupling to work and it was shown that the interlayer coupling is in fact oscillatory, with both ferromagnetic and antiferromagnetic interlayer exchange depending on the thickness of the nonmagnetic layer [1,2]. Different competing interactions such as magnetic anisotropy and interlayer afm coupling occur in multilayer systems. Distinguishing the individual contributions is one of the major challenges in the study of multilayered systems. We used polarized neutron reflectivity with full polarization analysis to understand how the magnetization is distributed through the system and how deep the flipping process of the magnetization goes into the system. The easy axis field dependence of occurrence of spin-flop and spin-flip events in the system will be reported. [4pt] [1] S. S. P. Parkin, Phys. Rev. Lett. 71, 1641 (1993).[0pt] [2] D. Elefant, et al., Phys. Rev. B 77, 014426 (2008).

  5. Spin-flop and magnetodielectric reversal in Yb substituted GdMnO3

    NASA Astrophysics Data System (ADS)

    Pal, A.; Prellier, W.; Murugavel, P.

    2018-03-01

    The evolution of various spin structures in Yb doped GdMnO3 distorted orthorhombic perovskite system was investigated from their magnetic, dielectric and magnetodielectric characteristics. The Gd1-x Yb x MnO3 (0  ⩽  x  ⩽  0.15) revealed an enhanced magnetodielectric coupling when their magnetic structure is guided from ab to the bc-cycloidal spin structure upon Yb doping. The compounds exhibit magnetic field and temperature controlled spin-flop from c to a-axis. Additionally, magnetodielectric reversal is observed for the x  =  0.1 sample which depends on both magnetic field and temperature. The resultant correlation between magnetic and electric orderings is discussed in the frame of symmetric and antisymmetric exchange interaction models. These findings provide further insight in understanding the magnetoelectric materials and importantly show a way to tune the magnetic and magnetodielectric properties towards better application potential.

  6. Rb-NMR study of the quasi-one-dimensional competing spin-chain compound R b2C u2M o3O12

    NASA Astrophysics Data System (ADS)

    Matsui, Kazuki; Yagi, Ayato; Hoshino, Yukihiro; Atarashi, Sochiro; Hase, Masashi; Sasaki, Takahiko; Goto, Takayuki

    2017-12-01

    A Rb-NMR study has been performed on the quasi-one-dimensional competing spin chain R b2C u2M o3O12 with ferromagnetic and antiferromagnetic exchange interactions on nearest-neighboring and next-nearest neighboring spins, respectively. The system changes from a gapped ground state at zero field to a gapless state at HC≃2 T , where the existence of magnetic order below 1 K was demonstrated by a broadening of the NMR spectrum, associated with a critical divergence of 1 /T1 . In the higher-temperature region, T1-1 showed a power-law-type temperature dependence, from which the field dependence of the Luttinger parameter K was obtained and compared with theoretical calculations based on the spin nematic Tomonaga-Luttinger liquid (TLL) state.

  7. EuCo 2P 2: A Model Molecular-Field Helical Heisenberg Antiferromagnet

    DOE PAGES

    Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek; ...

    2016-07-19

    The metallic compound EuCo 2P 2 with the body-centered tetragonal ThCr 2Si 2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below T N=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the ab plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo 2P 2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ, high-field magnetization, and magnetic heat capacitymore » of EuCo 2P 2 single crystals at temperature T≤TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ~T 3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo 2P 2 and the related compound BaCo 2P 2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo 2P 2 and BaCo 2P 2, respectively. These values are enhanced by a factor of ~2.5 above those found from DFT electronic structure calculations for the two compounds. Additionally, the calculations also find ferromagnetic Eu–Eu exchange interactions within the ab plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χ ab(T≤TN).« less

  8. EuCo 2P 2: A Model Molecular-Field Helical Heisenberg Antiferromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek

    The metallic compound EuCo 2P 2 with the body-centered tetragonal ThCr 2Si 2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below T N=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the ab plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo 2P 2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ, high-field magnetization, and magnetic heat capacitymore » of EuCo 2P 2 single crystals at temperature T≤TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ~T 3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo 2P 2 and the related compound BaCo 2P 2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo 2P 2 and BaCo 2P 2, respectively. These values are enhanced by a factor of ~2.5 above those found from DFT electronic structure calculations for the two compounds. Additionally, the calculations also find ferromagnetic Eu–Eu exchange interactions within the ab plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χ ab(T≤TN).« less

  9. J1-J2 square lattice antiferromagnetism in the orbitally quenched insulator MoOPO4

    NASA Astrophysics Data System (ADS)

    Yang, L.; Jeong, M.; Babkevich, P.; Katukuri, V. M.; Náfrádi, B.; Shaik, N. E.; Magrez, A.; Berger, H.; Schefer, J.; Ressouche, E.; Kriener, M.; Živković, I.; Yazyev, O. V.; Forró, L.; Rønnow, H. M.

    2017-07-01

    We report magnetic and thermodynamic properties of a 4 d1 (Mo5 +) magnetic insulator MoOPO4 single crystal, which realizes a J1-J2 Heisenberg spin-1 /2 model on a stacked square lattice. The specific-heat measurements show a magnetic transition at 16 K which is also confirmed by magnetic susceptibility, ESR, and neutron diffraction measurements. Magnetic entropy deduced from the specific heat corresponds to a two-level degree of freedom per Mo5 + ion, and the effective moment from the susceptibility corresponds to the spin-only value. Using ab initio quantum chemistry calculations, we demonstrate that the Mo5 + ion hosts a purely spin-1 /2 magnetic moment, indicating negligible effects of spin-orbit interaction. The quenched orbital moments originate from the large displacement of Mo ions inside the MoO6 octahedra along the apical direction. The ground state is shown by neutron diffraction to support a collinear Néel-type magnetic order, and a spin-flop transition is observed around an applied magnetic field of 3.5 T. The magnetic phase diagram is reproduced by a mean-field calculation assuming a small easy-axis anisotropy in the exchange interactions. Our results suggest 4 d molybdates as an alternative playground to search for model quantum magnets.

  10. Spin- and valley-dependent electronic band structure and electronic heat capacity of ferromagnetic silicene in the presence of strain, exchange field and Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Kazzaz, Houshang Araghi

    2017-10-01

    We studied how the strain, induced exchange field and extrinsic Rashba spin-orbit coupling (RSOC) enhance the electronic band structure (EBS) and electronic heat capacity (EHC) of ferromagnetic silicene in presence of external electric field (EF) by using the Kane-Mele Hamiltonian, Dirac cone approximation and the Green's function approach. Particular attention is paid to investigate the EHC of spin-up and spin-down bands at Dirac K and K‧ points. We have varied the EF, strain, exchange field and RSOC to tune the energy of inter-band transitions and consequently EHC, leading to very promising features for future applications. Evaluation of EF exhibits three phases: Topological insulator (TI), valley-spin polarized metal (VSPM) and band insulator (BI) at given aforementioned parameters. As a new finding, we have found a quantum anomalous Hall phase in BI regime at strong RSOCs. Interestingly, the effective mass of carriers changes with strain, resulting in EHC behaviors. Here, exchange field has the same behavior with EF. Finally, we have confirmed the reported and expected symmetry results for both Dirac points and spins with the study of valley-dependent EHC.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostylev, M.

    In this work, we derive the interface exchange boundary conditions for the classical linear dynamics of magnetization in ferromagnetic layers with the interface Dzyaloshinskii-Moriya interaction (IDMI). We show that IDMI leads to pinning of dynamic magnetization at the interface. An unusual peculiarity of the IDMI-based pinning is that its scales as the spin-wave wave number. We incorporate these boundary conditions into an existing numerical model for the dynamics of the Damon-Eshbach spin wave in ferromagnetic films. IDMI affects the dispersion and the frequency non-reciprocity of the travelling Damon-Eshbach spin wave. For a broad range of film thicknesses L and wavemore » numbers, the results of the numerical simulations of the spin wave dispersion are in a good agreement with a simple analytical expression, which shows that the contribution of IDMI to the dispersion scales as 1/L, similarly to the effect of other types of interfacial anisotropy. Suggestions to experimentalists how to detect the presence of IDMI in a spin wave experiment are given.« less

  12. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics

    DOE PAGES

    Zhong, Ding; Seyler, Kyle L.; Linpeng, Xiayu; ...

    2017-05-31

    The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI 3 and a monolayer of WSe 2. We observe unprecedented control of the spin and valley pseudospin in WSe 2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe 2 valley splitting and polarization via flipping of the CrI 3 magnetization. The WSe2 photoluminescence intensity strongly depends onmore » the relative alignment between photoexcited spins in WSe 2 and the CrI 3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.« less

  13. Spin-enhanced organic bulk heterojunction photovoltaic solar cells.

    PubMed

    Zhang, Ye; Basel, Tek P; Gautam, Bhoj R; Yang, Xiaomei; Mascaro, Debra J; Liu, Feng; Vardeny, Z Valy

    2012-01-01

    Recently, much effort has been devoted to improve the efficiency of organic photovoltaic solar cells based on blends of donors and acceptors molecules in bulk heterojunction architecture. One of the major losses in organic photovoltaic devices has been recombination of polaron pairs at the donor-acceptor domain interfaces. Here, we present a novel method to suppress polaron pair recombination at the donor-acceptor domain interfaces and thus improve the organic photovoltaic solar cell efficiency, by doping the device active layer with spin 1/2 radical galvinoxyl. At an optimal doping level of 3 wt%, the efficiency of a standard poly(3-hexylthiophene)/1-(3-(methoxycarbonyl)propyl)-1-1-phenyl)(6,6)C(61) solar cell improves by 18%. A spin-flip mechanism is proposed and supported by magneto-photocurrent measurements, as well as by density functional theory calculations in which polaron pair recombination rate is suppressed by resonant exchange interaction between the spin 1/2 radicals and charged acceptors, which convert the polaron pair spin state from singlet to triplet.

  14. Ground State of Quasi-One Dimensional Competing Spin Chain Cs2Cu2Mo3O12 at zero and Finite Fields

    NASA Astrophysics Data System (ADS)

    Matsui, Kazuki; Goto, Takayuki; Angel, Julia; Watanabe, Isao; Sasaki, Takahiko; Hase, Masashi

    The ground state of competing-spin-chain Cs2Cu2Mo3O12 with the ferromagnetic exchange interaction J1 = -93 K on nearest-neighboring spins and the antiferromagnetic one J2 = +33 K on next-nearest-neighboring spins was investigated by ZF/LF-μSR and 133Cs-NMR in the 3He temperature range. The zero-field μSR relaxation rate λ shows a significant increase below 1.85 K, suggesting the existence of magnetic order, which is consistent with the recent report on the specific heat. However, LF decoupling data at the lowest temperature 0.3 K indicate that the spins fluctuate dynamically, suggesting that the system is in a quasi-static ordered state under zero field. This idea is further supported by the fact that the broadening in NMR spectra below TN is weakened at low field below 2 T.

  15. Tailoring decoherence in nanomagnets by geometrical design

    NASA Astrophysics Data System (ADS)

    Delgado, Fernando; FernáNdez-Rossier, JoaquíN.

    Magnetic atoms on surfaces suffer relaxation and decoherence, which limit their possible applications in both classical storage and quantum computation. Kondo exchange interaction is usually the dominant source of relaxation. Hence, for a single magnetic impurity, the product of density of states at the Fermi level and the Kondo coupling controls relaxation and decoherence together with the renormalization of the magnetic anisotropy. Here we show that in the case of small arrays of magnetic adatoms, which can be build by STM manipulation, relaxation and decoherence are controlled in addition by the product of Fermi wavenumber and inter-spin distance, giving place to interesting interference phenomena similar to those appearing in optics. This is nothing else that the dissipative counterpart of the RKKY oscillation. In addition, we explore different configurations to reduce the spin decoherence of antiferromagnetic spin arrays opening a route to engineer spin relaxation and decoherence in atomically designed spin structures. Financial support by Spanish Government through Grants FIS2013-473228 and MAT2015-66888-C3-2-R.

  16. Observation of spontaneous spin-splitting in the band structure of an n-type zinc-blende ferromagnetic semiconductor

    PubMed Central

    Anh, Le Duc; Hai, Pham Nam; Tanaka, Masaaki

    2016-01-01

    Large spin-splitting in the conduction band and valence band of ferromagnetic semiconductors, predicted by the influential mean-field Zener model and assumed in many spintronic device proposals, has never been observed in the mainstream p-type Mn-doped ferromagnetic semiconductors. Here, using tunnelling spectroscopy in Esaki-diode structures, we report the observation of such a large spontaneous spin-splitting energy (31.7–50 meV) in the conduction band bottom of n-type ferromagnetic semiconductor (In,Fe)As, which is surprising considering the very weak s-d exchange interaction reported in several zinc-blende type semiconductors. The mean-field Zener model also fails to explain consistently the ferromagnetism and the spin-splitting energy of (In,Fe)As, because we found that the Curie temperature values calculated using the observed spin-splitting energies are much lower than the experimental ones by a factor of 400. These results urge the need for a more sophisticated theory of ferromagnetic semiconductors. PMID:27991502

  17. An LDA+U study of the photoemission spectra of ground state phase of americium and curium

    NASA Astrophysics Data System (ADS)

    Islam, Md; Ray, Asok

    2009-03-01

    We have investigated the photoemission spectra and other ground state properties such as equilibrium volume and bulk modulus of dhcp americium and the density of states and magnetic properties of dhcp curium using LDA+U method. Our calculations show that spin polarized americium is energetically favorable but spin degenerate configuration produces experimental quantities much better than that calculated using spin polarized configuration. The DOS calculated using LDA+U with both non-magnetic and spin polarized configurations is compared and the non-magnetic DOS is shown to be in good agreement with experimental photoemission spectra when U=4.5 eV. In spin polarized case, U is observed to increase the splitting between occupied and unoccupied bands by enhancing Stoner parameter. The results are shown to be in good agreement with that calculated using dynamical mean field theory for these two heavy actinides. For curium, exchange interaction appears to play the dominant role in its magnetic stability.

  18. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Ding; Seyler, Kyle L.; Linpeng, Xiayu

    The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI 3 and a monolayer of WSe 2. We observe unprecedented control of the spin and valley pseudospin in WSe 2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe 2 valley splitting and polarization via flipping of the CrI 3 magnetization. The WSe2 photoluminescence intensity strongly depends onmore » the relative alignment between photoexcited spins in WSe 2 and the CrI 3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.« less

  19. Spin–cavity interactions between a quantum dot molecule and a photonic crystal cavity

    PubMed Central

    Vora, Patrick M.; Bracker, Allan S.; Carter, Samuel G.; Sweeney, Timothy M.; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G.; Economou, Sophia E.; Gammon, Daniel

    2015-01-01

    The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin–cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet–triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network. PMID:26184654

  20. Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators

    DOE PAGES

    Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno

    2016-08-24

    Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less

Top