Sample records for spin field effect

  1. The effect of inertia on the Dirac electron, the spin Hall current and the momentum space Berry curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-02-15

    We have studied the spin dependent force and the associated momentum space Berry curvature in an accelerating system. The results are derived by taking into consideration the non-relativistic limit of a generally covariant Dirac equation with an electromagnetic field present, where the methodology of the Foldy-Wouthuysen transformation is applied to achieve the non-relativistic limit. Spin currents appear due to the combined action of the external electric field, the crystal field and the induced inertial electric field via the total effective spin-orbit interaction. In an accelerating frame, the crucial role of momentum space Berry curvature in the spin dynamics has alsomore » been addressed from the perspective of spin Hall conductivity. For time dependent acceleration, the expression for the spin polarization has been derived. - Highlights: Black-Right-Pointing-Pointer We study the effect of acceleration on the Dirac electron in the presence of an electromagnetic field, where the acceleration induces an electric field. Black-Right-Pointing-Pointer Spin currents appear due to the total effective electric field via the total spin-orbit interaction. Black-Right-Pointing-Pointer We derive the expression for the spin dependent force and the spin Hall current, which is zero for a particular acceleration. Black-Right-Pointing-Pointer The role of the momentum space Berry curvature in an accelerating system is discussed. Black-Right-Pointing-Pointer An expression for the spin polarization for time dependent acceleration is derived.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Seonghwan, E-mail: Seonghwan.Yee@Beaumont.edu; Gao, Jia-Hong

    Purpose: To investigate whether the direction of spin-lock field, either parallel or antiparallel to the rotating magnetization, has any effect on the spin-lock MRI signal and further on the quantitative measurement of T1ρ, in a clinical 3 T MRI system. Methods: The effects of inverted spin-lock field direction were investigated by acquiring a series of spin-lock MRI signals for an American College of Radiology MRI phantom, while the spin-lock field direction was switched between the parallel and antiparallel directions. The acquisition was performed for different spin-locking methods (i.e., for the single- and dual-field spin-locking methods) and for different levels ofmore » clinically feasible spin-lock field strength, ranging from 100 to 500 Hz, while the spin-lock duration was varied in the range from 0 to 100 ms. Results: When the spin-lock field was inverted into the antiparallel direction, the rate of MRI signal decay was altered and the T1ρ value, when compared to the value for the parallel field, was clearly different. Different degrees of such direction-dependency were observed for different spin-lock field strengths. In addition, the dependency was much smaller when the parallel and the antiparallel fields are mixed together in the dual-field method. Conclusions: The spin-lock field direction could impact the MRI signal and further the T1ρ measurement in a clinical MRI system.« less

  3. Spin-dependent transport and current modulation in a current-in-plane spin-valve field-effect transistor

    NASA Astrophysics Data System (ADS)

    Kanaki, Toshiki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki

    2016-10-01

    We propose a current-in-plane spin-valve field-effect transistor (CIP-SV-FET), which is composed of a ferromagnet/nonferromagnet/ferromagnet trilayer structure and a gate electrode. This is a promising device alternative to spin metal-oxide-semiconductor field-effect transistors. Here, we fabricate a ferromagnetic-semiconductor GaMnAs-based CIP-SV-FET and demonstrate its basic operation of the resistance modulation both by the magnetization configuration and by the gate electric field. Furthermore, we present the electric-field-assisted magnetization reversal in this device.

  4. Radiation reaction for spinning bodies in effective field theory. II. Spin-spin effects

    NASA Astrophysics Data System (ADS)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at quadratic order in the spins to the radiation-reaction acceleration and spin evolution for binary systems, entering at four-and-a-half PN order. Our calculation includes the backreaction from finite-size spin effects, which is presented for the first time. The computation is carried out, from first principles, using the effective field theory framework for spinning extended objects. At this order, nonconservative effects in the spin-spin sector are independent of the spin supplementary conditions. A nontrivial consistency check is performed by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone. We find that, in contrast to the spin-orbit contributions (reported in a companion paper), the radiation reaction affects the evolution of the spin vectors once spin-spin effects are incorporated.

  5. The effect of fringe fields from patterned magnetic domains on the electroluminescence of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Harmon, Nicholas J.; Wohlgennant, Markus; Flatté, Michael E.

    2016-10-01

    Large magnetic field effects, either in conduction or luminescence, have been observed in organic light-emitting diodes (OLEDs) for over a decade now. The physical processes are largely understood when exciton formation and recombination lead to the magnetic field effects. Recently, magnetic field effects in some co-evaporated blends have shown that exciplexes deliver even larger responses. In either case, the magnetic field effects arise from some spin-mixing mechanism and spin-selective processes in either the exciton formation or the exciplex recombination. Precise control of light output is not possible when the spin mixing is either due to hyper-fine fields or differences in the Lande g-factor. We theoretically examine the optical output when a patterned magnetic film is deposited near the OLED. The fringe fields from the magnetic layers supply an additionally source of spin mixing that can be easily controlled. In the absence of other spin mixing mechanisms, the luminescence from exciplexes can be modified by 300%. When other spin-mixing mechanisms are present, fringe fields from remanent magnetic states act as a means to either boost or reduce light emission from those mechanisms. Lastly, we examine the influence of spin decoherence on the optical output.

  6. Spin-orbit proximity effect in graphene

    NASA Astrophysics Data System (ADS)

    Avsar, A.; Tan, J. Y.; Taychatanapat, T.; Balakrishnan, J.; Koon, G. K. W.; Yeo, Y.; Lahiri, J.; Carvalho, A.; Rodin, A. S.; O'Farrell, E. C. T.; Eda, G.; Castro Neto, A. H.; Özyilmaz, B.

    2014-09-01

    The development of spintronics devices relies on efficient generation of spin-polarized currents and their electric-field-controlled manipulation. While observation of exceptionally long spin relaxation lengths makes graphene an intriguing material for spintronics studies, electric field modulation of spin currents is almost impossible due to negligible intrinsic spin-orbit coupling of graphene. In this work, we create an artificial interface between monolayer graphene and few-layer semiconducting tungsten disulphide. In these devices, we observe that graphene acquires spin-orbit coupling up to 17 meV, three orders of magnitude higher than its intrinsic value, without modifying the structure of the graphene. The proximity spin-orbit coupling leads to the spin Hall effect even at room temperature, and opens the door to spin field effect transistors. We show that intrinsic defects in tungsten disulphide play an important role in this proximity effect and that graphene can act as a probe to detect defects in semiconducting surfaces.

  7. Boson-mediated quantum spin simulators in transverse fields: X Y model and spin-boson entanglement

    NASA Astrophysics Data System (ADS)

    Wall, Michael L.; Safavi-Naini, Arghavan; Rey, Ana Maria

    2017-01-01

    The coupling of spins to long-wavelength bosonic modes is a prominent means to engineer long-range spin-spin interactions, and has been realized in a variety of platforms, such as atoms in optical cavities and trapped ions. To date, much of the experimental focus has been on the realization of long-range Ising models, but generalizations to other spin models are highly desirable. In this work, we explore a previously unappreciated connection between the realization of an X Y model by off-resonant driving of a single sideband of boson excitation (i.e., a single-beam Mølmer-Sørensen scheme) and a boson-mediated Ising simulator in the presence of a transverse field. In particular, we show that these two schemes have the same effective Hamiltonian in suitably defined rotating frames, and analyze the emergent effective X Y spin model through a truncated Magnus series and numerical simulations. In addition to X Y spin-spin interactions that can be nonperturbatively renormalized from the naive Ising spin-spin coupling constants, we find an effective transverse field that is dependent on the thermal energy of the bosons, as well as other spin-boson couplings that cause spin-boson entanglement not to vanish at any time. In the case of a boson-mediated Ising simulator with transverse field, we discuss the crossover from transverse field Ising-like to X Y -like spin behavior as a function of field strength.

  8. Unique spin-polarized transmission effects in a QD ring structure

    NASA Astrophysics Data System (ADS)

    Hedin, Eric; Joe, Yong

    2010-10-01

    Spintronics is an emerging field in which the spin of the electron is used for switching purposes and to communicate information. In order to obtain spin-polarized electron transmission, the Zeeman effect is employed to produce spin-split energy states in quantum dots which are embedded in the arms of a mesoscopic Aharonov-Bohm (AB) ring heterostructure. The Zeeman splitting of the QD energy levels can be induced by a parallel magnetic field, or by a perpendicular field which also produces AB-effects. The combination of these effects on the transmission resonances of the structure is studied analytically and several parameter regimes are identified which produce a high degree of spin-polarized output. Contour and line plots of the weighted spin polarization as a function of electron energy and magnetic field are presented to visualize the degree of spin-polarization. Taking advantage of these unique parameter regimes shows the potential promise of such devices for producing spin-polarized currents.

  9. Hyperfine interaction and its effects on spin dynamics in organic solids

    NASA Astrophysics Data System (ADS)

    Yu, Z. G.; Ding, Feizhi; Wang, Haobin

    2013-05-01

    Hyperfine interaction (HFI) and spin-orbit coupling are two major sources that affect electron spin dynamics. Here we present a systematic study of the HFI and its role in organic spintronic applications. For electron spin dynamics in disordered π-conjugated organics, the HFI can be characterized by an effective magnetic field whose modular square is a weighted sum of contact and dipolar contributions. We determine the effective HFI fields of some common π-conjugated organics studied in the literature via first-principles calculations. Most of them are found to be less than 2 mT. While the H atoms are the major source of the HFI in organics containing only the C and H atoms, many organics contain other nuclear spins, such as Al and N in tris-(8-hydroxyquinoline) aluminum, that contribute to the total HFI. Consequently, the deuteration effect on the HFI in the latter may be much weaker than in the former. The HFI gives rise to multiple resonance peaks in electron spin resonance. In disordered organic solids, these individual resonances are unresolved, leading to a broad peak whose width is proportional to the effective HFI field. As electrons hop among adjacent organic molecules, they experience a randomly varying local HFI field, inducing electron spin relaxation and diffusion. This is analyzed rigorously based on master equations. Electron spin relaxation undergoes a crossover along the ratio between the electron hopping rate η¯ and the Larmor frequency Ω of the HFI field. The spin relaxation rate increases (decreases) with η¯ when η¯≪Ω (η¯≫Ω). A coherent beating of electron spin at Ω is possible when the external field is small compared to the HFI. In this regime, the magnetic field is found to enhance the spin relaxation.

  10. Temperature dependence of spin-orbit torques in Pt/Co/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Chen, Shiwei; Li, Dong; Cui, Baoshan; Xi, Li; Si, Mingsu; Yang, Dezheng; Xue, Desheng

    2018-03-01

    We studied the current-induced spin-orbit torques in a perpendicularly magnetized Pt (1 nm)/Co (0.8 nm)/Pt (5 nm) heterojunction by harmonic Hall voltage measurements. Owing to similar Pt/Co/Pt interfaces, the spin-orbit torques originated from the Rashba effect are reduced, but the contribution from the spin Hall effect is still retained because of asymmetrical Pt thicknesses. When the temperature increases from 50 to 300 K, two orthogonal components of the effective field, induced by spin-orbit torques, reveal opposite temperature dependencies: the field-like term (transverse effective field) decreases from 2.3 to 2.1 (10-6 Oe (A cm-2)-1), whereas the damping-like term (longitudinal effective field) increases from 3.7 to 4.8 (10-6 Oe (A cm-2)-1). It is noticed that the damping-like term, usually smaller than the field-like term in the similar Pt/Co interfaces, is twice as large as the field-like term. As a result, the damping-like spin-orbit torque reaches an efficiency of 0.15 at 300 K. Such a temperature-dependent damping-like term in a Pt/Co/Pt heterojunction can efficiently reduce the switching current density which is 2.30  ×  106 A cm-2 at 300 K, providing an opportunity to further improve and understand spin-orbit torques induced by spin Hall effect.

  11. Laser-induced polarization of a quantum spin system in the steady-state regime

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2016-05-01

    The effect of the circularly polarized laser field on quantum spin systems in the steady-state regime, in which relaxation plays the central role, has been studied. The dynamical mean-field-like theory predicts several general results for the behavior of the time-average magnetization caused by the laser field. The induced magnetization oscillates with the frequency of the laser field (while Rabi-like oscillations, which modulate the latter in the dynamical regime, are damped by the relaxation in the steady-state regime). At high frequencies, that magnetization is determined by the value to which the relaxation process is directed. At low frequencies the slope of that magnetization as a function of the frequency is determined by the strength of the laser field. The anisotropy determines the resonance behavior of the time-averaged magnetization in both the ferromagnetic and antiferromagnetic cases with nonzero magnetic anisotropy. Nonlinear effects (in the magnitude of the laser field) have been considered. The effect of the laser field on quantum spin systems is maximal in resonance, where the time-averaged magnetization, caused by the laser field, is changed essentially. Out of resonance the changes in the magnetization are relatively small. The resonance effect is caused by the nonzero magnetic anisotropy. The resonance frequency is small (proportional to the anisotropy value) for spin systems with ferromagnetic interactions and enhanced by exchange interactions in the spin systems with antiferromagnetic couplings. We show that it is worthwhile to study the laser-field-induced magnetization of quantum spin systems caused by the high-frequency laser field in the steady-state regime in "easy-axis" antiferromagnetic spin systems (e.g., in Ising-like antiferromagnetic spin-chain materials). The effects of the Dzyaloshinskii-Moriya interaction and the spin-frustration couplings (in the case of the zigzag spin chain) have been analyzed.

  12. Antiferromagnetic spin Seebeck effect.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M.; Zhang, Wei; KC, Amit

    2016-03-03

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in themore » spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.« less

  13. Antiferromagnetic Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand

    2016-03-01

    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2 . A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30 nm )/Pt (4 nm) grown by molecular beam epitaxy on a MgF2 (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9 T ) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.

  14. Non-perturbative calculation of orbital and spin effects in molecules subject to non-uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Sen, Sangita; Tellgren, Erik I.

    2018-05-01

    External non-uniform magnetic fields acting on molecules induce non-collinear spin densities and spin-symmetry breaking. This necessitates a general two-component Pauli spinor representation. In this paper, we report the implementation of a general Hartree-Fock method, without any spin constraints, for non-perturbative calculations with finite non-uniform fields. London atomic orbitals are used to ensure faster basis convergence as well as invariance under constant gauge shifts of the magnetic vector potential. The implementation has been applied to investigate the joint orbital and spin response to a field gradient—quantified through the anapole moments—of a set of small molecules. The relative contributions of orbital and spin-Zeeman interaction terms have been studied both theoretically and computationally. Spin effects are stronger and show a general paramagnetic behavior for closed shell molecules while orbital effects can have either direction. Basis set convergence and size effects of anapole susceptibility tensors have been reported. The relation of the mixed anapole susceptibility tensor to chirality is also demonstrated.

  15. Spin Seebeck effect and thermoelectric phenomena in superconducting hybrids with magnetic textures or spin-orbit coupling

    PubMed Central

    Bathen, Marianne Etzelmüller; Linder, Jacob

    2017-01-01

    We theoretically consider the spin Seebeck effect, the charge Seebeck coefficient, and the thermoelectric figure of merit in superconducting hybrid structures including either magnetic textures or intrinsic spin-orbit coupling. We demonstrate that large magnitudes for all these quantities are obtainable in Josephson-based systems with either zero or a small externally applied magnetic field. This provides an alternative to the thermoelectric effects generated in high-field (~1 T) superconducting hybrid systems, which were recently experimentally demonstrated. The systems studied contain either conical ferromagnets, spin-active interfaces, or spin-orbit coupling. We present a framework for calculating the linear thermoelectric response for both spin and charge of a system upon applying temperature and voltage gradients based on quasiclassical theory which allows for arbitrary spin-dependent textures and fields to be conveniently incorporated. PMID:28139667

  16. Spin Seebeck effect and thermoelectric phenomena in superconducting hybrids with magnetic textures or spin-orbit coupling.

    PubMed

    Bathen, Marianne Etzelmüller; Linder, Jacob

    2017-01-31

    We theoretically consider the spin Seebeck effect, the charge Seebeck coefficient, and the thermoelectric figure of merit in superconducting hybrid structures including either magnetic textures or intrinsic spin-orbit coupling. We demonstrate that large magnitudes for all these quantities are obtainable in Josephson-based systems with either zero or a small externally applied magnetic field. This provides an alternative to the thermoelectric effects generated in high-field (~1 T) superconducting hybrid systems, which were recently experimentally demonstrated. The systems studied contain either conical ferromagnets, spin-active interfaces, or spin-orbit coupling. We present a framework for calculating the linear thermoelectric response for both spin and charge of a system upon applying temperature and voltage gradients based on quasiclassical theory which allows for arbitrary spin-dependent textures and fields to be conveniently incorporated.

  17. Resonant spin Hall effect in two dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Shen, Shun-Qing

    2005-03-01

    Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169

  18. Effects of electric field on the maximum electro-spinning rate of silk fibroin solutions.

    PubMed

    Park, Bo Kyung; Um, In Chul

    2017-02-01

    Owing to the excellent cyto-compatibility of silk fibroin (SF) and the simple fabrication of nano-fibrous webs, electro-spun SF webs have attracted much research attention in numerous biomedical fields. Because the production rate of electro-spun webs is strongly dependent on the electro-spinning rate used, the electro-spinning rate becomes more important. In the present study, to improve the electro-spinning rate of SF solutions, various electric fields were applied during electro-spinning of SF, and its effects on the maximum electro-spinning rate of SF solution as well as diameters and molecular conformations of the electro-spun SF fibers were examined. As the electric field was increased, the maximum electro-spinning rate of the SF solution also increased. The maximum electro-spinning rate of a 13% SF solution could be increased 12×by increasing the electric field from 0.5kV/cm (0.25mL/h) to 2.5kV/cm (3.0mL/h). The dependence of the fiber diameter on the present electric field was not significant when using less-concentrated SF solutions (7-9% SF). On the other hand, at higher SF concentrations the electric field had a greater effect on the resulting fiber diameter. The electric field had a minimal effect of the molecular conformation and crystallinity index of the electro-spun SF webs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Dyakonov-Perel Effect on Spin Dephasing in n-Type GaAs

    NASA Technical Reports Server (NTRS)

    Ning, C. Z.; Wu, M. W.

    2003-01-01

    A paper presents a study of the contribution of the Dyakonov-Perel (DP) effect to spin dephasing in electron-donor-doped bulk GaAs in the presence of an applied steady, moderate magnetic field perpendicular to the growth axis of the GaAs crystal. (The DP effect is an electron-wave-vector-dependent spin-state splitting of the conduction band, caused by a spin/orbit interaction in a crystal without an inversion center.) The applicable Bloch equations of kinetics were constructed to include terms accounting for longitudinal optical and acoustic phonon scattering as well as impurity scattering. The contributions of the aforementioned scattering mechanisms to spin-dephasing time in the presence of DP effect were examined by solving the equations numerically. Spin-dephasing time was obtained from the temporal evolution of the incoherently summed spin coherence. Effects of temperature, impurity level, magnetic field, and electron density on spin-dephasing time were investigated. Spin-dephasing time was found to increase with increasing magnetic field. Contrary to predictions of previous simplified treatments of the DP effect, spin-dephasing time was found to increase with temperature in the presence of impurity scattering. These results were found to agree qualitatively with results of recent experiments.

  20. Spin-Mechatronics

    NASA Astrophysics Data System (ADS)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  1. Polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a flat-bottomed optical trap with a weak magnetic field

    NASA Astrophysics Data System (ADS)

    Zheng, Gong-Ping; Li, Pin; Li, Ting; Xue, Ya-Jie

    2018-02-01

    Motivated by the recent experiments realized in a flat-bottomed optical trap (Navon et al., 2015; Chomaz et al., 2015), we study the ground state of polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a finite-size homogeneous trap with a weak magnetic field. The exact spatial distribution of local spin is obtained with a variational method. Unlike the fully-magnetized planar spin texture with a zero-spin core, which was schematically demonstrated in previous studies for the ideal polar-core spin vortex in a homogeneous trap with infinitely large boundary, some plateaus and two-cores structure emerge in the distribution curves of spin magnitude in the polar-core spin vortex we obtained for the larger effective spin-dependent interaction. More importantly, the spin values of the plateaus are not 1 as expected in the fully-magnetized spin texture, except for the sufficiently large spin-dependent interaction and the weak-magnetic-field limit. We attribute the decrease of spin value to the effect of finite size of the system. The spin values of the plateaus can be controlled by the quadratic Zeeman energy q of the weak magnetic field, which decreases with the increase of q.

  2. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatara, Gen, E-mail: gen.tatara@riken.jp; Nakabayashi, Noriyuki; Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  3. Ultrafast optical modification of exchange interactions in iron oxides

    NASA Astrophysics Data System (ADS)

    Mikhaylovskiy, R. V.; Hendry, E.; Secchi, A.; Mentink, J. H.; Eckstein, M.; Wu, A.; Pisarev, R. V.; Kruglyak, V. V.; Katsnelson, M. I.; Rasing, Th.; Kimel, A. V.

    2015-09-01

    Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 103 Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm-2 acts as a pulsed effective magnetic field of 0.01 Tesla.

  4. Large current modulation and tunneling magnetoresistance change by a side-gate electric field in a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor.

    PubMed

    Kanaki, Toshiki; Yamasaki, Hiroki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki

    2018-05-08

    A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current I DS modulation by a gate-source voltage V GS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large I DS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that I DS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by V GS . This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.

  5. Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levi, Michele; Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de

    2016-01-01

    The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there ismore » an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.« less

  6. Radiation reaction for spinning bodies in effective field theory. I. Spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at linear order in the spin to the radiation-reaction acceleration and spin evolution for binary systems, which enter at fourth PN order. The calculation is carried out, from first principles, using the effective field theory framework for spinning compact objects, in both the Newton-Wigner and covariant spin supplementary conditions. A nontrivial consistency check is performed on our results by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone, up to so-called "Schott terms." We also find that, at this order, the radiation reaction has no net effect on the evolution of the spins. The spin-spin contributions to radiation reaction are reported in a companion paper.

  7. Artifacts correction for T1rho imaging with constant amplitude spin-lock

    NASA Astrophysics Data System (ADS)

    Chen, Weitian

    2017-01-01

    T1rho imaging with constant amplitude spin-lock is prone to artifacts in the presence of B1 RF and B0 field inhomogeneity. Despite significant technological progress, improvements on the robustness of constant amplitude spin-lock are necessary in order to use it for routine clinical practice. This work proposes methods to simultaneously correct for B1 RF and B0 field inhomogeneity in constant amplitude spin-lock. By setting the maximum B1 amplitude of the excitation adiabatic pulses equal to the expected constant amplitude spin-lock frequency, the spins become aligned along the effective field throughout the spin-lock process. This results in T1rho-weighted images free of artifacts, despite the spatial variation of the effective field caused by B1 RF and B0 field inhomogeneity. When the pulse is long, the relaxation effect during the adiabatic half passage may result in a non-negligible error in the mono-exponential relaxation model. A two-acquisition approach is presented to solve this issue. Simulation, phantom, and in-vivo scans demonstrate the proposed methods achieve superior image quality compared to existing methods, and that the two-acquisition method is effective in resolving the relaxation effect during the adiabatic half passage.

  8. Physics and application of persistent spin helix state in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Kohda, Makoto; Salis, Gian

    2017-07-01

    In order to utilize the spin degree of freedom in semiconductors, control of spin states and transfer of the spin information are fundamental requirements for future spintronic devices and quantum computing. Spin orbit (SO) interaction generates an effective magnetic field for moving electrons and enables spin generation, spin manipulation and spin detection without using external magnetic field and magnetic materials. However, spin relaxation also takes place due to a momentum dependent SO-induced effective magnetic field. As a result, SO interaction is considered to be a double-edged sword facilitating spin control but preventing spin transport over long distances. The persistent spin helix (PSH) state solves this problem since uniaxial alignment of the SO field with SU(2) symmetry enables the suppression of spin relaxation while spin precession can still be controlled. Consequently, understanding the PSH becomes an important step towards future spintronic technologies for classical and quantum applications. Here, we review recent progress of PSH in semiconductor heterostructures and its device application. Fundamental physics of SO interaction and the conditions of a PSH state in semiconductor heterostructures are discussed. We introduce experimental techniques to observe a PSH and explain both optical and electrical measurements for detecting a long spin relaxation time and the formation of a helical spin texture. After emphasizing the bulk Dresselhaus SO coefficient γ, the application of PSH states for spin transistors and logic circuits are discussed.

  9. Nonlinear spin current generation in noncentrosymmetric spin-orbit coupled systems

    NASA Astrophysics Data System (ADS)

    Hamamoto, Keita; Ezawa, Motohiko; Kim, Kun Woo; Morimoto, Takahiro; Nagaosa, Naoto

    2017-06-01

    Spin current plays a central role in spintronics. In particular, finding more efficient ways to generate spin current has been an important issue and has been studied actively. For example, representative methods of spin-current generation include spin-polarized current injections from ferromagnetic metals, the spin Hall effect, and the spin battery. Here, we theoretically propose a mechanism of spin-current generation based on nonlinear phenomena. By using Boltzmann transport theory, we show that a simple application of the electric field E induces spin current proportional to E2 in noncentrosymmetric spin-orbit coupled systems. We demonstrate that the nonlinear spin current of the proposed mechanism is supported in the surface state of three-dimensional topological insulators and two-dimensional semiconductors with the Rashba and/or Dresselhaus interaction. In the latter case, the angular dependence of the nonlinear spin current can be manipulated by the direction of the electric field and by the ratio of the Rashba and Dresselhaus interactions. We find that the magnitude of the spin current largely exceeds those in the previous methods for a reasonable magnitude of the electric field. Furthermore, we show that application of ac electric fields (e.g., terahertz light) leads to the rectifying effect of the spin current, where dc spin current is generated. These findings will pave a route to manipulate the spin current in noncentrosymmetric crystals.

  10. Classical spin glass system in external field with taking into account relaxation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorkyan, A. S., E-mail: g_ashot@sci.am; Abajyan, H. G.

    2013-08-15

    We study statistical properties of disordered spin systems under the influence of an external field with taking into account relaxation effects. For description of system the spatial 1D Heisenberg spin-glass Hamiltonian is used. In addition, we suppose that interactions occur between nearest-neighboring spins and they are random. Exact solutions which define angular configuration of the spin in nodes were obtained from the equations of stationary points of Hamiltonian and the corresponding conditions for the energy local minimum. On the basis of these recurrent solutions an effective parallel algorithm is developed for simulation of stabile spin-chains of an arbitrary length. Itmore » is shown that by way of an independent order of N{sup 2} numerical simulations (where N is number of spin in each chain) it is possible to generate ensemble of spin-chains, which is completely ergodic which is equivalent to full self-averaging of spin-chains' vector polarization. Distributions of different parameters (energy, average polarization by coordinates, and spin-spin interaction constant) of unperturbed system are calculated. In particular, analytically is proved and numerically is shown, that for the Heisenberg nearest-neighboring Hamiltonian model, the distribution of spin-spin interaction constants as opposed to widely used Gauss-Edwards-Anderson distribution satisfies Levy alpha-stable distribution law. This distribution is nonanalytic function and does not have variance. In the work we have in detail studied critical properties of an ensemble depending on value of external field parameters (from amplitude and frequency) and have shown that even at weak external fields the spin-glass systemis strongly frustrated. It is shown that frustrations have fractal behavior, they are selfsimilar and do not disappear at scale decreasing of area. By the numerical computation is shown that the average polarization of spin-glass on a different coordinates can have values which can lead to catastrophes in the equation ofClausius-Mossotti for dielectric constant. In other words, for some values of external field parameter, a critical phenomenon occurs in the system which is impossible to describe by the real-valued Heisenberg spin-glass Hamiltonian. For the solution of this problem at first the complex-valued disordered Hamiltonian is used. Physically this type of extension of Hamiltonian allows to consider relaxation effects which occur in the system under the influence of an external field. On the basis of developed approach an effective parallel algorithm is developed for simulation of statistic parameters of spin-glass system under the influence of an external field.« less

  11. Evaluation Method for Fieldlike-Torque Efficiency by Modulation of the Resonance Field

    NASA Astrophysics Data System (ADS)

    Kim, Changsoo; Kim, Dongseuk; Chun, Byong Sun; Moon, Kyoung-Woong; Hwang, Chanyong

    2018-05-01

    The spin Hall effect has attracted a lot of interest in spintronics because it offers the possibility of a faster switching route with an electric current than with a spin-transfer-torque device. Recently, fieldlike spin-orbit torque has been shown to play an important role in the magnetization switching mechanism. However, there is no simple method for observing the fieldlike spin-orbit torque efficiency. We suggest a method for measuring fieldlike spin-orbit torque using a linear change in the resonance field in spectra of direct-current (dc)-tuned spin-torque ferromagnetic resonance. The fieldlike spin-orbit torque efficiency can be obtained in both a macrospin simulation and in experiments by simply subtracting the Oersted field from the shifted amount of resonance field. This method analyzes the effect of fieldlike torque using dc in a normal metal; therefore, only the dc resistivity and the dimensions of each layer are considered in estimating the fieldlike spin-torque efficiency. The evaluation of fieldlike-torque efficiency of a newly emerging material by modulation of the resonance field provides a shortcut in the development of an alternative magnetization switching device.

  12. Next-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levi, Michele; Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de

    2016-01-01

    We implement the effective field theory for gravitating spinning objects in the post-Newtonian scheme at the next-to-next-to-leading order level to derive the gravitational spin-orbit interaction potential at the third and a half post-Newtonian order for rapidly rotating compact objects. From the next-to-next-to-leading order interaction potential, which we obtain here in a Lagrangian form for the first time, we derive straightforwardly the corresponding Hamiltonian. The spin-orbit sector constitutes the most elaborate spin dependent sector at each order, and accordingly we encounter a proliferation of the relevant Feynman diagrams, and a significant increase of the computational complexity. We present in detail themore » evaluation of the interaction potential, going over all contributing Feynman diagrams. The computation is carried out in terms of the ''nonrelativistic gravitational'' fields, which are advantageous also in spin dependent sectors, together with the various gauge choices included in the effective field theory for gravitating spinning objects, which also optimize the calculation. In addition, we automatize the effective field theory computations, and carry out the automated computations in parallel. Such automated effective field theory computations would be most useful to obtain higher order post-Newtonian corrections. We compare our Hamiltonian to the ADM Hamiltonian, and arrive at a complete agreement between the ADM and effective field theory results. Finally, we provide Hamiltonians in the center of mass frame, and complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to third and a half post-Newtonian order. The derivation presented here is essential to obtain further higher order post-Newtonian corrections, and to reach the accuracy level required for the successful detection of gravitational radiation.« less

  13. Spin-orbit induced electronic spin separation in semiconductor nanostructures.

    PubMed

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.

  14. Optical transverse spin coupling through a plasmonic nanoparticle for particle-identification and field-mapping.

    PubMed

    Yang, A P; Du, L P; Meng, F F; Yuan, X C

    2018-05-17

    Electromagnetic fields at near-field exhibit distinctive properties with respect to their free-space counterparts. In particular, an optical transverse spin appearing in a confined electromagnetic field provides the foundation for many intriguing physical effects and applications. We present a transverse spin coupling configuration where plasmonic nanoparticles are employed to couple the transverse spin in a focused beam to that of a surface plasmon polariton. The plasmonic resonance of nanoparticles on a metal film plays a significant role in transverse spin coupling. We demonstrate in experiments that Ag and Au nanoparticles yield distinct imaging patterns when scanned over a focused field, because of their different plasmonic responses to the transverse and longitudinal electric fields. Such resonance-dependent spin-coupling enables the identification of nanoparticles using a focused field, as well as electric field mapping of a specific field component of a focused beam using a plasmonic nanoparticle. These interesting findings regarding the transverse spin coupling with a plasmonic nanoparticle may find valuable applications in near-field and nano-optics.

  15. Field tuning the g factor in InAs nanowire double quantum dots.

    PubMed

    Schroer, M D; Petersson, K D; Jung, M; Petta, J R

    2011-10-21

    We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control. © 2011 American Physical Society

  16. A new effective correlation mean-field theory for the ferromagnetic spin-1 Blume-Capel model in a transverse crystal field

    NASA Astrophysics Data System (ADS)

    Roberto Viana, J.; Rodriguez Salmon, Octavio D.; Neto, Minos A.; Carvalho, Diego C.

    2018-02-01

    A new approximation technique is developed so as to study the quantum ferromagnetic spin-1 Blume-Capel model in the presence of a transverse crystal field in the square lattice. Our proposal consists of approaching the spin system by considering islands of finite clusters whose frontiers are surrounded by noninteracting spins that are treated by the effective-field theory. The resulting phase diagram is qualitatively correct, in contrast to most effective-field treatments, in which the first-order line exhibits spurious behavior by not being perpendicular to the anisotropy axis at low-temperatures. The effect of the transverse anisotropy is also verified by the presence of quantum phase transitions. The possibility of using larger sizes constitutes an advantage to other approaches where the implementation of larger sizes is computationally costly.

  17. Electric control of emergent magnonic spin current and dynamic multiferroicity in magnetic insulators at finite temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Xi-guang; Chotorlishvili, L.; Guo, Guang-hua; Berakdar, J.

    2018-04-01

    Conversion of thermal energy into magnonic spin currents and/or effective electric polarization promises new device functionalities. A versatile approach is presented here for generating and controlling open circuit magnonic spin currents and an effective multiferroicity at a uniform temperature with the aid of spatially inhomogeneous, external, static electric fields. This field applied to a ferromagnetic insulator with a Dzyaloshinskii-Moriya type coupling changes locally the magnon dispersion and modifies the density of thermally excited magnons in a region of the scale of the field inhomogeneity. The resulting gradient in the magnon density can be viewed as a gradient in the effective magnon temperature. This effective thermal gradient together with local magnon dispersion result in an open-circuit, electric field controlled magnonic spin current. In fact, for a moderate variation in the external electric field the predicted magnonic spin current is on the scale of the spin (Seebeck) current generated by a comparable external temperature gradient. Analytical methods supported by full-fledge numerics confirm that both, a finite temperature and an inhomogeneous electric field are necessary for this emergent non-equilibrium phenomena. The proposal can be integrated in magnonic and multiferroic circuits, for instance to convert heat into electrically controlled pure spin current using for example nanopatterning, without the need to generate large thermal gradients on the nanoscale.

  18. Intra- and inter-shell Kondo effects in carbon nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Krychowski, Damian; Lipiński, Stanisław

    2018-01-01

    The linear response transport properties of carbon nanotube quantum dot in the strongly correlated regime are discussed. The finite-U mean field slave boson approach is used to study many-body effects. Magnetic field can rebuilt Kondo correlations, which are destroyed by the effect of spin-orbit interaction or valley mixing. Apart from the field induced revivals of SU(2) Kondo effects of different types: spin, valley or spin-valley, also more exotic phenomena appear, such as SU(3) Kondo effect. Threefold degeneracy occurs due to the effective intervalley exchange induced by short-range part of Coulomb interaction or due to the intershell mixing. In narrow gap nanotubes the full spin-orbital degeneracy might be recovered in the absence of magnetic field opening the condition for a formation of SU(4) Kondo resonance.

  19. Spin-orbit coupling effects in zinc-blende InSb and wurtzite InAs nanowires: Realistic calculations with multiband k .p method

    NASA Astrophysics Data System (ADS)

    Campos, Tiago; Faria Junior, Paulo E.; Gmitra, Martin; Sipahi, Guilherme M.; Fabian, Jaroslav

    2018-06-01

    A systematic numerical investigation of spin-orbit fields in the conduction bands of III-V semiconductor nanowires is performed. Zinc-blende (ZB) InSb nanowires are considered along [001], [011], and [111] directions, while wurtzite (WZ) InAs nanowires are studied along [0001] and [10 1 ¯0 ] or [11 2 ¯0 ] directions. Robust multiband k .p Hamiltonians are solved by using plane-wave expansions of real-space parameters. In all cases, the linear and cubic spin-orbit coupling parameters are extracted for nanowire widths from 30 to 100 nm. Typical spin-orbit energies are on the μ eV scale, except for WZ InAs nanowires grown along [10 1 ¯0 ] or [11 2 ¯0 ] , in which the spin-orbit energy is about meV, largely independent of the wire diameter. Significant spin-orbit coupling is obtained by applying a transverse electric field, causing the Rashba effect. For an electric field of about 4 mV/nm, the obtained spin-orbit energies are about 1 meV for both materials in all investigated growth directions. The most favorable system, in which the spin-orbit effects are maximal, are WZ InAs nanowires grown along [1010] or [11 2 ¯0 ] since here spin-orbit energies are giant (meV) already in the absence of electric field. The least favorable are InAs WZ nanowires grown along [0001] since here even the electric field does not increase the spin-orbit energies beyond 0.1 meV. The presented results should be useful for investigations of optical orientation, spin transport, weak localization, and superconducting proximity effects in semiconductor nanowires.

  20. Antiferromagnetic Spin Wave Field-Effect Transistor

    DOE PAGES

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; ...

    2016-04-06

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibilitymore » of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.« less

  1. Quantum ring with the Rashba spin-orbit interaction in the regime of strong light-matter coupling

    NASA Astrophysics Data System (ADS)

    Kozin, V. K.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.

    2018-04-01

    We developed the theory of electronic properties of semiconductor quantum rings with the Rashba spin-orbit interaction irradiated by an off-resonant high-frequency electromagnetic field (dressing field). Within the Floquet theory of periodically driven quantum systems, it is demonstrated that the dressing field drastically modifies all electronic characteristics of the rings, including spin-orbit coupling, effective electron mass, and optical response. In particular, the present effect paves the way to controlling the spin polarization of electrons with light in prospective ring-shaped spintronic devices.

  2. Assessment of bilayer silicene to probe as quantum spin and valley Hall effect

    NASA Astrophysics Data System (ADS)

    Rehman, Majeed Ur; Qiao, Zhenhua

    2018-02-01

    Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.

  3. Persistent spin helix manipulation by optical doping of a CdTe quantum well

    NASA Astrophysics Data System (ADS)

    Passmann, F.; Anghel, S.; Tischler, T.; Poshakinskiy, A. V.; Tarasenko, S. A.; Karczewski, G.; Wojtowicz, T.; Bristow, A. D.; Betz, M.

    2018-05-01

    Time-resolved Kerr-rotation microscopy explores the influence of optical doping on the persistent spin helix in a [001]-grown CdTe quantum well at cryogenic temperatures. Electron spin-diffusion dynamics reveal a momentum-dependent effective magnetic field providing SU(2) spin-rotation symmetry, consistent with kinetic theory. The Dresselhaus and Rashba spin-orbit coupling parameters are extracted independently from rotating the spin helix with external magnetic fields applied parallel and perpendicular to the effective magnetic field. Most importantly, a nonuniform spatiotemporal precession pattern is observed. The kinetic-theory framework of spin diffusion allows for modeling of this finding by incorporating the photocarrier density into the Rashba (α) and the Dresselhaus (β3) parameters. Corresponding calculations are further validated by an excitation-density-dependent measurement. This work shows universality of the persistent spin helix by its observation in a II-VI compound and the ability to fine-tune it by optical doping.

  4. Ultrafast optical modification of exchange interactions in iron oxides

    PubMed Central

    Mikhaylovskiy, R.V.; Hendry, E.; Secchi, A.; Mentink, J.H.; Eckstein, M.; Wu, A.; Pisarev, R.V.; Kruglyak, V.V.; Katsnelson, M.I.; Rasing, Th.; Kimel, A.V.

    2015-01-01

    Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 103 Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm−2 acts as a pulsed effective magnetic field of 0.01 Tesla. PMID:26373688

  5. Ultrafast optical modification of exchange interactions in iron oxides.

    PubMed

    Mikhaylovskiy, R V; Hendry, E; Secchi, A; Mentink, J H; Eckstein, M; Wu, A; Pisarev, R V; Kruglyak, V V; Katsnelson, M I; Rasing, Th; Kimel, A V

    2015-09-16

    Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 10(3) Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm(-2) acts as a pulsed effective magnetic field of 0.01 Tesla.

  6. Monte Carlo simulations of spin transport in a strained nanoscale InGaAs field effect transistor

    NASA Astrophysics Data System (ADS)

    Thorpe, B.; Kalna, K.; Langbein, F. C.; Schirmer, S.

    2017-12-01

    Spin-based logic devices could operate at a very high speed with a very low energy consumption and hold significant promise for quantum information processing and metrology. We develop a spintronic device simulator by combining an in-house developed, experimentally verified, ensemble self-consistent Monte Carlo device simulator with spin transport based on a Bloch equation model and a spin-orbit interaction Hamiltonian accounting for Dresselhaus and Rashba couplings. It is employed to simulate a spin field effect transistor operating under externally applied voltages on a gate and a drain. In particular, we simulate electron spin transport in a 25 nm gate length In0.7Ga0.3As metal-oxide-semiconductor field-effect transistor with a CMOS compatible architecture. We observe a non-uniform decay of the net magnetization between the source and the gate and a magnetization recovery effect due to spin refocusing induced by a high electric field between the gate and the drain. We demonstrate a coherent control of the polarization vector of the drain current via the source-drain and gate voltages, and show that the magnetization of the drain current can be increased twofold by the strain induced into the channel.

  7. Effective S =2 antiferromagnetic spin chain in the salt (o -MePy-V)FeCl4

    NASA Astrophysics Data System (ADS)

    Iwasaki, Y.; Kida, T.; Hagiwara, M.; Kawakami, T.; Hosokoshi, Y.; Tamekuni, Y.; Yamaguchi, H.

    2018-02-01

    We present a model compound for the S =2 antiferromagnetic (AF) spin chain composed of the salt (o -MePy-V ) FeCl4 . Ab initio molecular-orbital calculations indicate the formation of a partially stacked two-dimensional (2D) spin model comprising five types of exchange interactions between S =1 /2 and S =5 /2 spins, which locate on verdazyl radical and Fe ion, respectively. The magnetic properties of the synthesized crystals indicate that the dominant interaction between the S =1 /2 and S =5 /2 spins stabilizes an S =2 spin in the low-temperature region, and an effective S =2 AF chain is formed for T ≪10 K and H <4 T. We explain the magnetization curve and electron-spin-resonance modes quantitatively based on the S =2 AF chain. At higher fields above quantitatively 4 T, the magnetization curve assumes two-thirds of the full saturation value for fields between 4 and 20 T, and approaches saturation at ˜40 T. The spin model in the high-field region can be considered as a quasi-2D S =1 /2 honeycomb lattice under an effective internal field caused by the fully polarized S =5 /2 spin.

  8. Electron spin dynamics and optical orientation of Mn2+ ions in GaAs

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.

    2013-04-01

    We present an overview of spin-related phenomena in GaAs doped with low concentration of Mn-acceptors (below 1018 cm-3). We use the combination of different experimental techniques such as spin-flip Raman scattering and time-resolved photoluminescence. This allows to evaluate the time evolution of both electron and Mn spins. We show that optical orientation of Mn ions is possible under application of weak magnetic field, which is required to suppress the manganese spin relaxation. The optically oriented Mn2+ ions maintain the spin and return part of the polarization back to the electron spin system providing a long-lived electron spin memory. This leads to a bunch of spectacular effects such as non-exponential electron spin decay and spin precession in the effective exchange fields.

  9. Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light.

    PubMed

    Quinteiro, G F; Tamborenea, P I; Berakdar, J

    2011-12-19

    We theoretically investigate the effect that twisted light has on the orbital and spin dynamics of electrons in quantum rings possessing sizable Rashba spin-orbit interaction. The system Hamiltonian for such a strongly inhomogeneous light field exhibits terms which induce both spin-conserving and spin-flip processes. We analyze the dynamics in terms of the perturbation introduced by a weak light field on the Rasha electronic states, and describe the effects that the orbital angular momentum as well as the inhomogeneous character of the beam have on the orbital and the spin dynamics.

  10. Rashba and Dresselhaus spin-orbit interactions effects on electronic features of a two dimensional elliptic quantum dot

    NASA Astrophysics Data System (ADS)

    Mokhtari, P.; Rezaei, G.; Zamani, A.

    2017-06-01

    In this paper, electronic structure of a two dimensional elliptic quantum dot under the influence of external electric and magnetic fields are studied in the presence of Rashba and Dresselhaus spin-orbit interactions. This investigation is done computationally and to do this, at first, the effective Hamiltonian of the system by considering the spin-orbit coupling is demonstrated in the presence of applied electric and magnetic fields and afterwards the Schrödinger equation is solved using the finite difference approach. Utilizing finite element method, eigenvalues and eigenstates of the system are calculated and the effect of the external fields, the size of the dot as well as the strength of Rashba spin-orbit interaction are studied. Our results indicate that, Spin-orbit interactions, external fields and the dot size have a great influence on the electronic structure of the system.

  11. Thermoelectric effects in superconductor-ferromagnet tunnel junctions on europium sulfide

    NASA Astrophysics Data System (ADS)

    Kolenda, S.; Sürgers, C.; Fischer, G.; Beckmann, D.

    2017-06-01

    We report on large thermoelectric effects in superconductor-ferromagnet tunnel junctions in proximity contact with the ferromagnetic insulator europium sulfide. The combination of a spin-splitting field and spin-polarized tunnel conductance in these systems breaks the electron-hole symmetry and leads to spin-dependent thermoelectric currents. We show that the exchange splitting induced by europium sulfide boosts the thermoelectric effect in small applied fields and can therefore eliminate the need to apply large magnetic fields, which might otherwise impede applications in thermometry or cooling.

  12. Recent Advance in Organic Spintronics and Magnetic Field Effect

    NASA Astrophysics Data System (ADS)

    Valy Vardeny, Z.

    2013-03-01

    In this talk several important advances in the field of Organic Spintronics and magnetic field effect (MFE) of organic films and optoelectronic devices that have occurred during the past two years from the Utah group will be surveyed and discussed. (i) Organic Spintronics: We demonstrated spin organic light emitting diode (spin-OLED) using two FM injecting electrodes, where the electroluminescence depends on the mutual orientation of the electrode magnetization directions. This development has opened up research studies into organic spin-valves (OSV) in the space-charge limited current regime. (ii) Magnetic field effect: We demonstrated that the photoinduced absorption spectrum in organic films (where current is not involved) show pronounced MFE. This unravels the underlying mechanism of the MFE in organic devices, to be more in agreement with the field of MFE in Biochemistry. (iii) Spin effects in organic optoelectronic devices: We demonstrated that certain spin 1/2 radical additives to donor-acceptor blends substantially enhance the power conversion efficiency of organic photovoltaic (OPV) solar cells. This effect shows that studies of spin response and MFE in OPV devices are promising. In collaboration with T. Nguyen, E. Ehrenfreund, B. Gautam, Y. Zhang and T. Basel. Supported by the DOE grant 04ER46109 ; NSF Grant # DMR-1104495 and MSF-MRSEC program DMR-1121252 [2,3].

  13. Effect of external electric field on spin-orbit splitting of the two-dimensional tungsten dichalcogenides WX 2 (X = S, Se)

    NASA Astrophysics Data System (ADS)

    Affandi, Y.; Absor, M. A. U.; Abraha, K.

    2018-04-01

    Tungsten dichalcogenides WX 2 (X=S, Se) monolayer (ML) attracted much attention due their large spin splitting, which is promising for spintronics applications. However, manipulation of the spin splitting using an external electric field plays a crucial role in the spintronic device operation, such as the spin-field effect transistor. By using first-principles calculations based on density functional theory (DFT), we investigate the impact of external electric field on the spin splitting properties of the WX 2 ML. We find that large spin-splitting up to 441 meV and 493 meV is observed on the K point of the valence band maximum, for the case of the WS2 and WSe2 ML, respectively. Moreover, we also find that the large spin-orbit splitting is also identified in the conduction band minimum around Q points with energy splitting of 285 meV and 270 meV, respectively. Our calculation also show that existence of the direct semiconducting – indirect semiconducting – metallic transition by applying the external electric field. Our study clarify that the electric field plays a significant role in spin-orbit interaction of the WX 2 ML, which has very important implications in designing future spintronic devices.

  14. Discovery of Enhanced Magnetoelectric Coupling through Electric Field Control of Two-Magnon Scattering within Distorted Nanostructures.

    PubMed

    Xue, Xu; Zhou, Ziyao; Dong, Guohua; Feng, Mengmeng; Zhang, Yijun; Zhao, Shishun; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Liu, Yaohua; Liu, Ming

    2017-09-26

    Electric field control of dynamic spin interactions is promising to break through the limitation of the magnetostatic interaction based magnetoelectric (ME) effect. In this work, electric field control of the two-magnon scattering (TMS) effect excited by in-plane lattice rotation has been demonstrated in a La 0.7 Sr 0.3 MnO 3 (LSMO)/Pb(Mn 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) (011) multiferroic heterostructure. Compared with the conventional strain-mediated ME effect, a giant enhancement of ME effect up to 950% at the TMS critical angle is precisely determined by angular resolution of the ferromagnetic resonance (FMR) measurement. Particularly, a large electric field modulation of magnetic anisotropy (464 Oe) and FMR line width (401 Oe) is achieved at 173 K. The electric-field-controllable TMS effect and its correlated ME effect have been explained by electric field modulation of the planar spin interactions triggered by spin-lattice coupling. The enhancement of the ME effect at various temperatures and spin dynamics control are promising paradigms for next-generation voltage-tunable spintronic devices.

  15. Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals

    DOE PAGES

    Rice, William D.; Liu, Wenyong; Baker, Thomas A.; ...

    2015-11-23

    Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn 2+, Co 2+ and so on) couple to band carriers via strong sp–d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical √N fluctuations of N spins are expected to generate giant effective magnetic fields B eff, whichmore » should dramatically impact carrier spin dynamics, even in the absence of any applied field. In this paper, we directly and unambiguously reveal the large B eff that exist in Mn 2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300–600 GHz) spin precession of photoinjected electrons is observed, indicating B eff ~ 15-30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. Finally, these signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn 2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.« less

  16. Peculiarities of magnetic and spin effects in a biradical/stable radical complex (three-spin system). Theory and comparison with experiment.

    PubMed

    Magin, Ilya M; Purtov, Petr A; Kruppa, Alexander I; Leshina, Tatiana V

    2005-08-25

    The field dependencies of biradical recombination probability in the presence of paramagnetic species with spins S(3) = 1 and S(3) = (1)/(2) have been calculated in the framework of the density matrix formalism. To describe the effect of the "third" spin on the spin evolution in biradical, we have also considered the spin exchange interaction between the added spin and one of the paramagnetic biradical centers. A characteristic feature of the calculated field dependencies is the existence of several extrema with positions and magnitudes depending on the signs and values of the exchange integrals in the system. The method proposed can be used to describe the effect of spin catalysis. It is shown that for the system with the third spin S(3) = 1 spin catalysis manifests itself stronger than in the case of spin S(3) = (1)/(2). The dependence of spin catalysis efficiency on the exchange interaction with the third spin has an extremum with position independent of the value of the spin added.

  17. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    NASA Astrophysics Data System (ADS)

    Luengo-Kovac, M.; Huang, S.; Del Gaudio, D.; Occena, J.; Goldman, R. S.; Raimondi, R.; Sih, V.

    2017-11-01

    The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InxGa1 -xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.

  18. Interaction between Rashba and Zeeman effects in a quantum well channel.

    PubMed

    Choi, Won Young; Kwon, Jae Hyun; Chang, Joonyeon; Han, Suk Hee; Koo, Hyun Cheol

    2014-05-01

    The applied field induced Zeeman effect interferes with Rashba effect in a quantum well system. The angle dependence of Shubnikov-de Haas oscillation shows that the in-plane term of the applied field changes the intrinsic Rashba induced spin splitting. The total effective spin-orbit interaction parameter is determined by the vector sum of the Rashba field and the applied field.

  19. Enhancing Spin Filters by Use of Bulk Inversion Asymmetry

    NASA Technical Reports Server (NTRS)

    Ting, David; Cartoixa,Xavier

    2007-01-01

    Theoretical calculations have shown that the degrees of spin polarization in proposed nonmagnetic semiconductor resonant tunneling spin filters could be increased through exploitation of bulk inversion asymmetry (BIA). These enhancements would be effected through suitable orientation of spin collectors (or spin-polarization- inducing lateral electric fields), as described below. Spin filters -- more precisely, sources of spin-polarized electron currents -- have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-transport electronics). The proposed spin filters were to be based on the Rashba effect, which is an energy splitting of what would otherwise be degenerate quantum states, caused by a spinorbit interaction in conjunction with a structural-inversion asymmetry (SIA) in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. In a spin filter, the spin-polarized currents produced by the Rashba effect would be extracted by quantum-mechanical resonant tunneling.

  20. Dramatic impact of the giant local magnetic fields on spin-dependent recombination processes in gadolinium based garnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, N. G., E-mail: nikolai.romanov@mail.ioffe.ru; Tolmachev, D. O.; Gurin, A. S.

    2015-06-29

    A giant magnetic field effect on spin-dependent recombination of the radiation-induced defects has been found in cerium doped gadolinium based garnet crystals and ceramics, promising materials for scintillator applications. A sharp and strong increase in the afterglow intensity stimulated by external magnetic field and an evidence of the magnetic field memory have been discovered. The effect was ascribed to huge Gd-induced internal magnetic fields, which suppress the recombination, and cross-relaxation with Gd{sup 3+} ions leading to reorientation of the spins of the electron and hole centers. Thus, the spin system of radiation-induced defects in gadolinium garnet based scintillator materials wasmore » shown to accumulate significant energy which can be released in external magnetic fields.« less

  1. Gate control of quantum dot-based electron spin-orbit qubits

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Cheng, Liwen; Yu, Huaguang; Wang, Qiang

    2018-07-01

    We investigate theoretically the coherent spin dynamics of gate control of quantum dot-based electron spin-orbit qubits subjected to a tilted magnetic field under electric-dipole spin resonance (EDSR). Our results reveal that Rabi oscillation of qubit states can be manipulated electrically based on rapid gate control of SOC strength. The Rabi frequency is strongly dependent on the gate-induced electric field, the strength and orientation of the applied magnetic field. There are two major EDSR mechanisms. One arises from electric field-induced spin-orbit hybridization, and the other arises from magnetic field-induced energy-level crossing. The SOC introduced by the gate-induced electric field allows AC electric fields to drive coherent Rabi oscillations between spin-up and -down states. After the crossing of the energy-levels with the magnetic field, the spin-transfer crossing results in Rabi oscillation irrespective of whether or not the external electric field is present. The spin-orbit qubit is transferred into the orbit qubit. Rabi oscillation is anisotropic and periodic with respect to the tilted and in-plane orientation of the magnetic field originating from the interplay of the SOC, orbital, and Zeeman effects. The strong electrically-controlled SOC strength suggests the possibility for scalable applications of gate-controllable spin-orbit qubits.

  2. Isotropic and anisotropic regimes of the field-dependent spin dynamics in Sr 2 IrO 4 : Raman scattering studies

    DOE PAGES

    Gim, Y.; Sethi, A.; Zhao, Q.; ...

    2016-01-11

    A major focus of experimental interest in Sr 2IrO 4 has been to clarify how the magnetic excitations of this strongly spin-orbit coupled system differ from the predictions of an isotropic 2D spin-1/2 Heisenberg model and to explore the extent to which strong spin-orbit coupling affects the magnetic properties of iridates. Here, we present a high-resolution inelastic light (Raman) scattering study of the low energy magnetic excitation spectrum of Sr 2IrO 4 and doped Eu-doped Sr 2IrO 4 as functions of both temperature and applied magnetic field. We show that the high-field (H > 1.5 T) in-plane spin dynamics ofmore » Sr 2IrO 4 are isotropic and governed by the interplay between the applied field and the small in-plane ferromagnetic spin components induced by the Dzyaloshinskii-Moriya interaction. However, the spin dynamics of Sr 2IrO 4 at lower fields (H < 1.5 T) exhibit important effects associated with interlayer coupling and in-plane anisotropy, including a spin-flop transition at Hc in Sr 2IrO 4 that occurs either discontinuously or via a continuous rotation of the spins, depending upon the in-plane orientation of the applied field. Furthermore, these results show that in-plane anisotropy and interlayer coupling effects play important roles in the low-field magnetic and dynamical properties of Sr 2IrO 4.« less

  3. Detection of single electron spin resonance in a double quantum dota)

    NASA Astrophysics Data System (ADS)

    Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.

    2007-04-01

    Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.

  4. Homogeneous microwave field emitted propagating spin waves: Direct imaging and modeling

    NASA Astrophysics Data System (ADS)

    Lohman, Mathis; Mozooni, Babak; McCord, Jeffrey

    2018-03-01

    We explore the generation of propagating dipolar spin waves by homogeneous magnetic field excitation in the proximity of the boundaries of magnetic microstructures. Domain wall motion, precessional dynamics, and propagating spin waves are directly imaged by time-resolved wide-field magneto-optical Kerr effect microscopy. The aspects of spin wave generation are clarified by micromagnetic calculations matching the experimental results. The region of dipolar spin wave formation is confined to the local resonant excitation due to non-uniform internal demagnetization fields at the edges of the patterned sample. Magnetic domain walls act as a border for the propagation of plane and low damped spin waves, thus restraining the spin waves within the individual magnetic domains. The findings are of significance for the general understanding of structural and configurational magnetic boundaries for the creation, the propagation, and elimination of spin waves.

  5. Electric field controlled spin interference in a system with Rashba spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciftja, Orion, E-mail: ogciftja@pvamu.edu

    There have been intense research efforts over the last years focused on understanding the Rashba spin-orbit coupling effect from the perspective of possible spintronics applications. An important component of this line of research is aimed at control and manipulation of electron’s spin degrees of freedom in semiconductor quantum dot devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system embedded in a host semiconducting material that lacks inversion-symmetry. This way, the Rashba spin-orbit coupling effect may potentially lead to fabrication of amore » new generation of spintronic devices where control of spin, thus magnetic properties, is achieved via an electric field and not a magnetic field. In this work we investigate theoretically the electron’s spin interference and accumulation process in a Rashba spin-orbit coupled system consisting of a pair of two-dimensional semiconductor quantum dots connected to each other via two conducting semi-circular channels. The strength of the confinement energy on the quantum dots is tuned by gate potentials that allow “leakage” of electrons from one dot to another. While going through the conducting channels, the electrons are spin-orbit coupled to a microscopically generated electric field applied perpendicular to the two-dimensional system. We show that interference of spin wave functions of electrons travelling through the two channels gives rise to interference/conductance patterns that lead to the observation of the geometric Berry’s phase. Achieving a predictable and measurable observation of Berry’s phase allows one to control the spin dynamics of the electrons. It is demonstrated that this system allows use of a microscopically generated electric field to control Berry’s phase, thus, enables one to tune the spin-dependent interference pattern and spintronic properties with no need for injection of spin-polarized electrons.« less

  6. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking.

    PubMed

    Picardi, Michela F; Zayats, Anatoly V; Rodríguez-Fortuño, Francisco J

    2018-03-16

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  7. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking

    NASA Astrophysics Data System (ADS)

    Picardi, Michela F.; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.

    2018-03-01

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  8. Controllable spin polarization and spin filtering in a zigzag silicene nanoribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farokhnezhad, Mohsen, E-mail: Mohsen-farokhnezhad@physics.iust.ac.ir; Esmaeilzadeh, Mahdi, E-mail: mahdi@iust.ac.ir; Pournaghavi, Nezhat

    2015-05-07

    Using non-equilibrium Green's function, we study the spin-dependent electron transport properties in a zigzag silicene nanoribbon. To produce and control spin polarization, it is assumed that two ferromagnetic strips are deposited on the both edges of the silicene nanoribbon and an electric field is perpendicularly applied to the nanoribbon plane. The spin polarization is studied for both parallel and anti-parallel configurations of exchange magnetic fields induced by the ferromagnetic strips. We find that complete spin polarization can take place in the presence of perpendicular electric field for anti-parallel configuration and the nanoribbon can work as a perfect spin filter. Themore » spin direction of transmitted electrons can be easily changed from up to down and vice versa by reversing the electric field direction. For parallel configuration, perfect spin filtering can occur even in the absence of electric field. In this case, the spin direction can be changed by changing the electron energy. Finally, we investigate the effects of nonmagnetic Anderson disorder on spin dependent conductance and find that the perfect spin filtering properties of nanoribbon are destroyed by strong disorder, but the nanoribbon retains these properties in the presence of weak disorder.« less

  9. Unusual negative permeability of single magnetic nanowire excited by the spin transfer torque effect

    NASA Astrophysics Data System (ADS)

    Han, Mangui; Zhou, Wu

    2018-07-01

    Due to the effect of spin transfer torque, negative imaginary parts of permeability (μ″ < 0) are reported in a ferromagnetic nanowire. It is found that negative μ″ values are resulted from the interaction of spin polarized conduction electrons with the spatially non-uniform distributed magnetic moments at both ends of nanowires. The results are well explained from the effect of spin transfer torque on the precession of magnetization under the excitation of both the pulsed magnetic field and static electric field.

  10. Tunable spin splitting and spin lifetime in polar WSTe monolayer

    NASA Astrophysics Data System (ADS)

    Adhib Ulil Absor, Moh.; Kotaka, Hiroki; Ishii, Fumiyuki; Saito, Mineo

    2018-04-01

    The established spin splitting with out-of-plane Zeeman spin polarizations in the monolayer (ML) of transition metal dichalcogenides (TMDs) is dictated by inversion symmetry breaking together with mirror symmetry in the surface plane. Here, by density functional theory calculations, we find that mirror symmetry breaking in the polar WSTe ML leads to large spin splitting exhibiting in-plane Rashba spin polarizations. We also find that the interplay between the out-of-plane Zeeman- and in-plane Rashba spin-polarized states sensitively affects the spin lifetime, which can be effectively controlled by in-plane strain. In addition, the tunability of spin splitting using an external electric field is also demonstrated. Our study clarifies that the use of in-plane strain and an external electric field is effective for tuning the spin splitting and spin lifetime of the polar WSTe ML; thus, it is useful for designing spintronic devices.

  11. Extrinsic Rashba spin-orbit coupling effect on silicene spin polarized field effect transistors

    NASA Astrophysics Data System (ADS)

    Pournaghavi, Nezhat; Esmaeilzadeh, Mahdi; Abrishamifar, Adib; Ahmadi, Somaieh

    2017-04-01

    Regarding the spin field effect transistor (spin FET) challenges such as mismatch effect in spin injection and insufficient spin life time, we propose a silicene based device which can be a promising candidate to overcome some of those problems. Using non-equilibrium Green’s function method, we investigate the spin-dependent conductance in a zigzag silicene nanoribbon connected to two magnetized leads which are supposed to be either in parallel or anti-parallel configurations. For both configurations, a controllable spin current can be obtained when the Rashba effect is present; thus, we can have a spin filter device. In addition, for anti-parallel configuration, in the absence of Rashba effect, there is an intrinsic energy gap in the system (OFF-state); while, in the presence of Rashba effect, electrons with flipped spin can pass through the channel and make the ON-state. The current voltage (I-V) characteristics which can be tuned by changing the gate voltage or Rashba strength, are studied. More importantly, reducing the mismatch conductivity as well as energy consumption make the silicene based spin FET more efficient relative to the spin FET based on two-dimensional electron gas proposed by Datta and Das. Also, we show that, at the same conditions, the current and {{I}\\text{on}}/{{I}\\text{off}} ratio of silicene based spin FET are significantly greater than that of the graphene based one.

  12. Spin–orbit induced electronic spin separation in semiconductor nanostructures

    PubMed Central

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin–orbit interaction in an InGaAs-based heterostructure. Using a Stern–Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 108 T m−1 resulting in a highly polarized spin current. PMID:23011136

  13. Stern-Gerlach dynamics with quantum propagators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Bailey C.; Berrondo, Manuel; Van Huele, Jean-Francois S.

    2011-01-15

    We study the quantum dynamics of a nonrelativistic neutral particle with spin in inhomogeneous external magnetic fields. We first consider fields with one-dimensional inhomogeneities, both unphysical and physical, and construct the corresponding analytic propagators. We then consider fields with two-dimensional inhomogeneities and develop an appropriate numerical propagation method. We propagate initial states exhibiting different degrees of space localization and various initial spin configurations, including both pure and mixed spin states. We study the evolution of their spin densities and identify characteristic features of spin density dynamics, such as the spatial separation of spin components, and spin localization or accumulation. Wemore » compare our approach and our results with the coverage of the Stern-Gerlach effect in the literature, and we focus on nonstandard Stern-Gerlach outcomes, such as radial separation, spin focusing, spin oscillation, and spin flipping.« less

  14. Wireless power transfer exploring spin rectification and inverse spin Hall effects

    NASA Astrophysics Data System (ADS)

    Seeger, R. L.; Garcia, W. J. S.; Dugato, D. A.; da Silva, R. B.; Harres, A.

    2018-04-01

    Devices based on spin rectification effects are of great interest for broadband communication applications, since they allow the rectification of radio frequency signals by simple ferromagnetic materials. The phenomenon is enhanced at ferromagnetic resonance condition, which may be attained when an external magnetic field is applied. The necessity of such field, however, hinders technological applications. Exploring spin rectification and spin Hall effects in exchange-biased samples, we were able to rectify radio frequency signals without an external applied magnetic field. Direct voltages of the order of μV were obtained when Ta/NiFe/FeMn/Ta thin films were exposed to microwaves in a shorted microstrip line for a relatively broad frequency range. Connecting the films to a resistive load, we estimated the fraction of the incident radio frequency power converted into usable dc power.

  15. Magnetic field effects in hybrid perovskite devices

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  16. Field-controllable Spin-Hall Effect of Light in Optical Crystals: A Conoscopic Mueller Matrix Analysis.

    PubMed

    Samlan, C T; Viswanathan, Nirmal K

    2018-01-31

    Electric-field applied perpendicular to the direction of propagation of paraxial beam through an optical crystal dynamically modifies the spin-orbit interaction (SOI), leading to the demonstration of controllable spin-Hall effect of light (SHEL). The electro- and piezo-optic effects of the crystal modifies the radially symmetric spatial variation in the fast-axis orientation of the crystal, resulting in a complex pattern with different topologies due to the symmetry-breaking effect of the applied field. This introduces spatially-varying Pancharatnam-Berry type geometric phase on to the paraxial beam of light, leading to the observation of SHEL in addition to the spin-to-vortex conversion. A wave-vector resolved conoscopic Mueller matrix measurement and analysis provides a first glimpse of the SHEL in the biaxial crystal, identified via the appearance of weak circular birefringence. The emergence of field-controllable fast-axis orientation of the crystal and the resulting SHEL provides a new degree of freedom for affecting and controlling the spin and orbital angular momentum of photons to unravel the rich underlying physics of optical crystals and aid in the development of active photonic spin-Hall devices.

  17. Nature of magnetization and lateral spin-orbit interaction in gated semiconductor nanowires.

    PubMed

    Karlsson, H; Yakimenko, I I; Berggren, K-F

    2018-05-31

    Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin-orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree-Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.

  18. Detecting topological phases in silicene by anomalous Nernst effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yafang; Zhou, Xingfei; Jin, Guojun, E-mail: gjin@nju.edu.cn

    2016-05-16

    Silicene undergoes various topological phases under the interplay of intrinsic spin-orbit coupling, perpendicular electric field, and off-resonant light. We propose that the abundant topological phases can be distinguished by measuring the Nernst conductivity even at room temperature, and their phase boundaries can be determined by differentiating the charge and spin Nernst conductivities. By modulating the electric and light fields, pure spin polarized, valley polarized, and even spin-valley polarized Nernst currents can be generated. As Nernst conductivity is zero for linear polarized light, silicene can act as an optically controlled spin and valley field-effect transistor. Similar investigations can be extended frommore » silicene to germanene and stanene, and a comparison is made for the anomalous thermomagnetic figure of merits between them. These results will facilitate potential applications in spin and valley caloritronics.« less

  19. Superconductivity in an almost localized Fermi liquid of quasiparticles with spin-dependent masses and effective-field induced by electron correlations

    NASA Astrophysics Data System (ADS)

    Kaczmarczyk, Jan; Spałek, Jozef

    2009-06-01

    Paired state of nonstandard quasiparticles is analyzed in detail in two model situations. Namely, we consider the Cooper-pair bound state and the condensed phase of an almost localized Fermi liquid composed of quasiparticles in a narrow band with the spin-dependent masses and an effective field, both introduced earlier and induced by strong electronic correlations. Each of these novel characteristics is calculated in a self-consistent manner. We analyze the bound states as a function of Cooper-pair momentum |Q| in applied magnetic field in the strongly Pauli limiting case (i.e., when the orbital effects of applied magnetic field are disregarded). The spin-direction dependence of the effective mass makes the quasiparticles comprising Cooper-pair spin distinguishable in the quantum-mechanical sense, whereas the condensed gas of pairs may still be regarded as composed of identical entities. The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) condensed phase of moving pairs is by far more robust in the applied field for the case with spin-dependent masses than in the situation with equal masses of quasiparticles. Relative stability of the Bardeen-Cooper-Schrieffer vs FFLO phase is analyzed in detail on temperature-applied field plane. Although our calculations are carried out for a model situation, we can conclude that the spin-dependent masses should play an important role in stabilizing high-field low-temperature unconventional superconducting phases (FFLO, for instance) in systems such as CeCoIn5 , organic metals, and possibly others.

  20. Spin-valleytronics of silicene based nanodevices (SBNs)

    NASA Astrophysics Data System (ADS)

    Ahmed, Ibrahim Sayed; Asham, Mina Danial; Phillips, Adel Helmy

    2018-06-01

    The quantum spin and valley characteristics in normal silicene/ferromagnetic silicene/normal silicene junction are investigated under the effects of both electric field and the exchange field of the ferromagnetic silicene. The spin resolved conductance and valley resolved conductance are deduced by solving the Dirac equation. Results show resonant oscillations of both spin and valley conductance. These oscillations might be due to confined states of ferromagnetic silicene. The spin and valley polarizations are also computed. Their trends of figures show that they might be tuned and modulated by the electric field and the exchange field of the ferromagnetic silicene. The present investigated silicene nanodevice might be good for spin-valleytronics applications which are needed for quantum information processing and quantum logic circuits.

  1. Interplay between the Dzyaloshinskii-Moriya term and external fields on spin transport in the spin-1/2 one-dimensional antiferromagnet

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2018-05-01

    We study the effect of the uniform Dzyaloshinskii-Moriya interaction (symmetric exchange anisotropy) and arbitrary oriented external magnetic fields on spin conductivity in the spin-1/2 one-dimensional Heisenberg antiferromagnet. The spin conductivity is calculated employing abelian bosonization and the Kubo formalism of transport. We investigate the influence of three competing phases at zero-temperature, (Néel phase, dimerized phase and gapless Luttinger liquid phase) on the AC spin conductivity.

  2. Domain wall dynamics driven by spin transfer torque and the spin-orbit field.

    PubMed

    Hayashi, Masamitsu; Nakatani, Yoshinobu; Fukami, Shunsuke; Yamanouchi, Michihiko; Mitani, Seiji; Ohno, Hideo

    2012-01-18

    We have studied current-driven dynamics of domain walls when an in-plane magnetic field is present in perpendicularly magnetized nanowires using an analytical model and micromagnetic simulations. We model an experimentally studied system, ultrathin magnetic nanowires with perpendicular anisotropy, where an effective in-plane magnetic field is developed when current is passed along the nanowire due to the Rashba-like spin-orbit coupling. Using a one-dimensional model of a domain wall together with micromagnetic simulations, we show that the existence of such in-plane magnetic fields can either lower or raise the threshold current needed to cause domain wall motion. In the presence of the in-plane field, the threshold current differs for positive and negative currents for a given wall chirality, and the wall motion becomes sensitive to out-of-plane magnetic fields. We show that large non-adiabatic spin torque can counteract the effect of the in-plane field.

  3. All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature

    NASA Astrophysics Data System (ADS)

    Dankert, André; Dash, Saroj

    Spintronics aims to exploit the spin degree of freedom in solid state devices for data storage and information processing. Its fundamental concepts (creation, manipulation and detection of spin polarization) have been demonstrated in semiconductors and spin transistor structures using electrical and optical methods. However, an unsolved challenge is the realization of all-electrical methods to control the spin polarization in a transistor manner at ambient temperatures. Here we combine graphene and molybdenum disulfide (MoS2) in a van der Waals heterostructure to realize a spin field-effect transistor (spin-FET) at room temperature. These two-dimensional crystals offer a unique platform due to their contrasting properties, such as weak spin-orbit coupling (SOC) in graphene and strong SOC in MoS2. The gate-tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel yields spins to interact with high SOC material and allows us to control the spin polarization and lifetime. This all-electrical spin-FET at room temperature is a substantial step in the field of spintronics and opens a new platform for testing a plethora of exotic physical phenomena, which can be key building blocks in future device architectures.

  4. Thermoelectric efficiency enhanced in a quantum dot with polarization leads, spin-flip and external magnetic field

    NASA Astrophysics Data System (ADS)

    Yao, Hui; Niu, Peng-Bin; Zhang, Chao; Xu, Wei-Ping; Li, Zhi-Jian; Nie, Yi-Hang

    2018-03-01

    We theoretically study the thermoelectric transport properties in a quantum dot system with two ferromagnetic leads, the spin-flip scattering and the external magnetic field. The results show that the spin polarization of the leads strongly influences thermoelectric coefficients of the device. For the parallel configuration the peak of figure of merit increases with the increase of polarization strength and non-collinear configuration trends to destroy the improvement of figure of merit induced by lead polarization. While the modulation of the spin-flip scattering on the figure of merit is effective only in the absence of external magnetic field or small magnetic field. In terms of improving the thermoelectric efficiency, the external magnetic field plays a more important role than spin-flip scattering. The thermoelectric efficiency can be significantly enhanced by the magnetic field for a given spin-flip scattering strength.

  5. Antiferromagnetic spintronics

    NASA Astrophysics Data System (ADS)

    Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and "magnetization" dynamics, and spin-orbit related phenomena, such as (tunnel) anisotropic magnetoresistance, spin Hall, and inverse spin galvanic effects. Effects related to spin caloritronics, such as the spin Seebeck effect, are linked to the transport of magnons in antiferromagnets. The propagation of spin waves and spin superfluids in antiferromagnets is also covered.

  6. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    DOE PAGES

    Luengo-Kovac, Marta; Huang, Simon; Del Gaudio, Davide; ...

    2017-11-16

    Here, the current-induced spin polarization and momentum-dependent spin-orbit field were measured in In xGa 1-xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbitmore » coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.« less

  7. Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luengo-Kovac, Marta; Huang, Simon; Del Gaudio, Davide

    Here, the current-induced spin polarization and momentum-dependent spin-orbit field were measured in In xGa 1-xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbitmore » coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.« less

  8. Rashba and Dresselhaus spin-orbit couplings effects on electromagnetically induced transparency of a lens-shaped quantum dot: External electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Zamani, A.; Setareh, F.; Azargoshasb, T.; Niknam, E.; Mohammadhosseini, E.

    2017-06-01

    In this article the spin of electron as well as simultaneous effects of Rashba and Dresselhaus spin-orbit interactions are considered for a lens-shaped GaAs quantum dot and the influences of applied electric field and Zeeman effect on the electromagnetically induced transparency (EIT) of this system are investigated. To do so, the absorption, refractive index as well as the group velocity of the probe light pulse are presented and discussed. Study of the absorption and refractive index reveals that, at a particular frequency of probe field, absorption diminishes, refractive index becomes unity and so the EIT occurs. Furthermore, the investigation of group velocity show that, around such frequency the probe propagation is sub-luminal, which shifts to super-luminal for higher and lower frequencies. Our results illustrate that the EIT frequency, transparency window and sub(super)-luminal frequency intervals are strongly sensitive to applied fields in the presence of spin-orbit couplings. It is found that, in comparison with the investigations with negligence of spin, the EIT behavior under the effects of applied fields are quite different.

  9. Higher-order spin-noise spectroscopy of atomic spins in fluctuating external fields

    DOE PAGES

    Li, Fuxiang; Crooker, S. A.; Sinitsyn, N. A.

    2016-03-09

    Here, we discuss the effect of external noisy magnetic fields on mesoscopic spin fluctuations that can be probed in semiconductors and atomic vapors by means of optical spin-noise spectroscopy. We also show that conventional arguments of the law of large numbers do not apply to spin correlations induced by external fields, namely, the magnitude of the 4th-order spin cumulant grows as ~N 2 with the number N of observed spins, i.e., it is not suppressed in comparison to the 2nd-order cumulant. Moreover, this allows us to design a simple experiment to measure the 4th-order cumulant of spin fluctuations in anmore » atomic system near thermodynamic equilibrium and develop a quantitative theory that explains all observations.« less

  10. Magnon Hall effect without Dzyaloshinskii-Moriya interaction.

    PubMed

    Owerre, S A

    2017-01-25

    Topological magnon bands and magnon Hall effect in insulating collinear ferromagnets are induced by the Dzyaloshinskii-Moriya interaction (DMI) even at zero magnetic field. In the geometrically frustrated star lattice, a coplanar/noncollinear [Formula: see text] magnetic ordering may be present due to spin frustration. This magnetic structure, however, does not exhibit topological magnon effects even with DMI in contrast to collinear ferromagnets. We show that a magnetic field applied perpendicular to the star plane induces a non-coplanar spin configuration with nonzero spin scalar chirality, which provides topological effects without the need of DMI. The non-coplanar spin texture originates from the topology of the spin configurations and does not need the presence of DMI or magnetic ordering, which suggests that this phenomenon may be present in the chiral spin liquid phases of frustrated magnetic systems. We propose that these anomalous topological magnon effects can be accessible in polymeric iron (III) acetate-a star-lattice antiferromagnet with both spin frustration and long-range magnetic ordering.

  11. Stability of standing spin wave in permalloy thin film studied by anisotropic magnetoresistance effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanoi, K.; Yokotani, Y.; Cui, X.

    2015-12-21

    We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of themore » standing spin wave is an important advantage for the high power operation of the spin-wave device.« less

  12. Voltage Control of Two-Magnon Scattering and Induced Anomalous Magnetoelectric Coupling in Ni-Zn Ferrite.

    PubMed

    Xue, Xu; Dong, Guohua; Zhou, Ziyao; Xian, Dan; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Chen, Wei; Jiang, Zhuang-De; Liu, Ming

    2017-12-13

    Controlling spin dynamics through modulation of spin interactions in a fast, compact, and energy-efficient way is compelling for its abundant physical phenomena and great application potential in next-generation voltage controllable spintronic devices. In this work, we report electric field manipulation of spin dynamics-the two-magnon scattering (TMS) effect in Ni 0.5 Zn 0.5 Fe 2 O 4 (NZFO)/Pb(Mg 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) multiferroic heterostructures, which breaks the bottleneck of magnetostatic interaction-based magnetoelectric (ME) coupling in multiferroics. An alternative approach allowing spin-wave damping to be controlled by external electric field accompanied by a significant enhancement of the ME effect has been demonstrated. A two-way modulation of the TMS effect with a large magnetic anisotropy change up to 688 Oe has been obtained, referring to a 24 times ME effect enhancement at the TMS critical angle at room temperature. Furthermore, the anisotropic spin-freezing behaviors of NZFO were first determined via identifying the spatial magnetic anisotropy fluctuations. A large spin-freezing temperature change of 160 K induced by the external electric field was precisely determined by electron spin resonance.

  13. Voltage Control of Two-Magnon Scattering and Induced Anomalous Magnetoelectric Coupling in Ni–Zn Ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Xu; Dong, Guohua; Zhou, Ziyao

    2017-12-01

    Controlling spin dynamics through modulation of spin interactions in a fast, compact, and energy-efficient way is compelling for its abundant physical phenomena and great application potential in next-generation voltage controllable spintronic devices. In this work, we report electric field manipulation of spin dynamics-the two-magnon scattering (TMS) effect in Ni0.5Zn0.5Fe2O4 (NZFO)/Pb(Mg2/3Nb1/3)-PbTiO3 (PMN-PT) multiferroic heterostructures, which breaks the bottleneck of magnetostatic interaction-based magnetoelectric (ME) coupling in multiferroics. An alternative approach allowing spin-wave damping to be controlled by external electric field accompanied by a significant enhancement of the ME effect has been demonstrated. A two-way modulation of the TMS effect with a largemore » magnetic anisotropy change up to 688 Oe has been obtained, referring to a 24 times ME effect enhancement at the TMS critical angle at room temperature. Furthermore, the anisotropic spin-freezing behaviors of NZFO were first determined via identifying the spatial magnetic anisotropy fluctuations. A large spin-freezing temperature change of 160 K induced by the external electric field was precisely determined by electron spin resonance.« less

  14. Training effect in specular spin valves

    NASA Astrophysics Data System (ADS)

    Ventura, J.; Araujo, J. P.; Sousa, J. B.; Veloso, A.; Freitas, P. P.

    2008-05-01

    Specular spin valves show an enhanced giant magnetoresistive (GMR) ratio due to specular reflection in nano-oxide layers (NOLs) formed by the partial oxidation of CoFe pinned and free layers. The oxides that form the (pinned layer) NOL were recently shown to antiferromagnetically order at Ttilde 175K . Here, we study the training effect (TE) in MnIr/CoFe/NOL/CoFe/Cu/CoFe/NOL/Ta specular spin valves in the 300-15 K temperature range. The exchange bias direction between the MnIr and CoFe layers impressed during annealing is taken as the positive direction. The training effect is observed in antiferromagnetic (AFM)/ferromagnetic (FM) exchange systems and related to the rearrangement of interfacial AFM spin structure with the number of hysteretic cycles performed (n) , resulting in the decrease of the exchange field (Hexch) . Here, in the studied specular spin valve, TE was only observed for T<175K and is thus related to the pinned layer NOL-AFM ordering and to the evolution of the corresponding spin structure with n . We show that FM spins that are strongly coupled to AFM domains do not align with the applied positive magnetic field (H) , giving rise to a residual MR at H≫0 . Such nonsaturating MR will be related with a spin-glass-like behavior of the interfacial magnetism induced by the nano-oxide layer. The observed dependence of the training effect on the field cooling procedure is also likely associated with the existence of different spin configurations available in the magnetically disordered oxide. Furthermore, anomalous magnetoresistance cycles measured after cooling runs under -500Oe are here related to induced NOL exchange bias/applied magnetic field misalignment. The temperature dependence of the training effect was obtained and fitted by using a recent theoretical model.

  15. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO.

    PubMed

    Kim, Junyeon; Sinha, Jaivardhan; Hayashi, Masamitsu; Yamanouchi, Michihiko; Fukami, Shunsuke; Suzuki, Tetsuhiro; Mitani, Seiji; Ohno, Hideo

    2013-03-01

    Current-induced effective magnetic fields can provide efficient ways of electrically manipulating the magnetization of ultrathin magnetic heterostructures. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, a quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses. In particular, a 1 nm thickness variation of the Ta layer can change the magnitude of the effective field by nearly two orders of magnitude. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects contributing to it. Our results illustrate that the presence of atomically thin metals can profoundly change the landscape for controlling magnetic moments in magnetic heterostructures electrically.

  16. Spin Current through a Quantum Dot in the Presence of an Oscillating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Xue, Qi-Kun; Xie, X. C.

    2003-11-01

    Nonequilibrium spin transport through an interacting quantum dot is analyzed. The coherent spin oscillations in the dot provide a generating source for spin current. In the interacting regime, the Kondo effect is influenced in a significant way by the presence of the processing magnetic field. In particular, when the precession frequency is tuned to resonance between spin-up and spin-down states of the dot, Kondo singularity for each spin splits into a superposition of two resonance peaks. The Kondo-type cotunneling contribution is manifested by a large enhancement of the pumped spin current in the strong coupling low temperature regime.

  17. Effect of hyperfine-induced spin mixing on the defect-enabled spin blockade and spin filtering in GaNAs

    NASA Astrophysics Data System (ADS)

    Puttisong, Y.; Wang, X. J.; Buyanova, I. A.; Chen, W. M.

    2013-03-01

    The effect of hyperfine interaction (HFI) on the recently discovered room-temperature defect-enabled spin-filtering effect in GaNAs alloys is investigated both experimentally and theoretically based on a spin Hamiltonian analysis. We provide direct experimental evidence that the HFI between the electron and nuclear spin of the central Ga atom of the spin-filtering defect, namely, the Gai interstitials, causes strong mixing of the electron spin states of the defect, thereby degrading the efficiency of the spin-filtering effect. We also show that the HFI-induced spin mixing can be suppressed by an application of a longitudinal magnetic field such that the electronic Zeeman interaction overcomes the HFI, leading to well-defined electron spin states beneficial to the spin-filtering effect. The results provide a guideline for further optimization of the defect-engineered spin-filtering effect.

  18. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical point of view, focusing on well-established and accepted physics. In such a young field, there remains much to be understood and explored, hence some of the future challenges and opportunities of this rapidly evolving area of spintronics are outlined.

  19. Effective field theory for triaxially deformed nuclei

    NASA Astrophysics Data System (ADS)

    Chen, Q. B.; Kaiser, N.; Meißner, Ulf-G.; Meng, J.

    2017-10-01

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation.

  20. Spin imbalance effect on the Larkin-Ovchinnikov-Fulde-Ferrel state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshii, Ryosuke; Tsuchiya, Shunji; Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521

    2011-07-01

    We study spin imbalance effects on the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state relevant for superconductors under a strong magnetic field and spin polarized ultracold Fermi gas. We obtain the exact solution for the condensates with arbitrary spin imbalance and the fermion spectrum perturbatively in the presence of small spin imbalance. We also obtain fermion zero mode exactly without perturbation theory.

  1. Multi-scale modeling of spin transport in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo

    In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.

  2. Field-cycling NMR with high-resolution detection under magic-angle spinning: determination of field-window for nuclear hyperpolarization in a photosynthetic reaction center.

    PubMed

    Gräsing, Daniel; Bielytskyi, Pavlo; Céspedes-Camacho, Isaac F; Alia, A; Marquardsen, Thorsten; Engelke, Frank; Matysik, Jörg

    2017-09-21

    Several parameters in NMR depend on the magnetic field strength. Field-cycling NMR is an elegant way to explore the field dependence of these properties. The technique is well developed for solution state and in relaxometry. Here, a shuttle system with magic-angle spinning (MAS) detection is presented to allow for field-dependent studies on solids. The function of this system is demonstrated by exploring the magnetic field dependence of the solid-state photochemically induced nuclear polarization (photo-CIDNP) effect. The effect allows for strong nuclear spin-hyperpolarization in light-induced spin-correlated radical pairs (SCRPs) under solid-state conditions. To this end, 13 C MAS NMR is applied to a photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wildtype (WT). For induction of the effect in the stray field of the magnet and its subsequent observation at 9.4 T under MAS NMR conditions, the sample is shuttled by the use of an aerodynamically driven sample transfer technique. In the RC, we observe the effect down to 0.25 T allowing to determine the window for the occurrence of the effect to be between about 0.2 and 20 T.

  3. Spin polarization effects and their time evolutions

    NASA Astrophysics Data System (ADS)

    Vernes, A.; Weinberger, P.

    2015-04-01

    The time evolution of the density corresponding to the polarization operator, originally constructed to commute with the Dirac Hamiltonian in the absence of an external electromagnetic field, is investigated in terms of the time-dependent Dirac equation taking the presence of an external electromagnetic field into account. It is found that this time evolution leads to 'tensorial' and 'vectorial' particle current densities and to the interaction of the spin density with the external electromagnetic field. As the time evolution of the spin density does not refer to a constant of motion (continuity condition) it only serves as auxiliary density. By taking the non-relativistic limit, it is shown that the polarization, spin and magnetization densities are independent of electric field effects and, in addition, no preferred directions can be defined.

  4. Magnetic-field-modulated resonant tunneling in ferromagnetic-insulator-nonmagnetic junctions.

    PubMed

    Song, Yang; Dery, Hanan

    2014-07-25

    We present a theory for resonance-tunneling magnetoresistance (MR) in ferromagnetic-insulator-nonmagnetic junctions. The theory sheds light on many of the recent electrical spin injection experiments, suggesting that this MR effect rather than spin accumulation in the nonmagnetic channel corresponds to the electrically detected signal. We quantify the dependence of the tunnel current on the magnetic field by quantum rate equations derived from the Anderson impurity model, with the important addition of impurity spin interactions. Considering the on-site Coulomb correlation, the MR effect is caused by competition between the field, spin interactions, and coupling to the magnetic lead. By extending the theory, we present a basis for operation of novel nanometer-size memories.

  5. Driving spin transition at interface: Role of adsorption configurations

    NASA Astrophysics Data System (ADS)

    Zhang, Yachao

    2018-01-01

    A clear insight into the electrical manipulation of molecular spins at interface is crucial to the design of molecule-based spintronic devices. Here we report on the electrically driven spin transition in manganocene physisorbed on a metallic surface in two different adsorption configurations predicted by ab initio techniques, including a Hubbard-U correction at the manganese site and accounting for the long-range van der Waals interactions. We show that the application of an electric field at the interface induces a high-spin to low-spin transition in the flat-lying manganocene, while it could hardly alter the high-spin ground state of the standing-up molecule. This phenomenon cannot be explained by either the molecule-metal charge transfer or the local electron correlation effects. We demonstrate a linear dependence of the intra-molecular spin-state splitting on the energy difference between crystal-field splitting and on-site Coulomb repulsion. After considering the molecule-surface binding energy shifts upon spin transition, we reproduce the obtained spin-state energetics. We find that the configuration-dependent responses of the spin-transition originate from the binding energy shifts instead of the variation of the local ligand field. Through these analyses, we obtain an intuitive understanding of the effects of molecule-surface contact on spin-crossover under electrical bias.

  6. Collapse and revival of entanglement between qubits coupled to a spin coherent state

    NASA Astrophysics Data System (ADS)

    Bahari, Iskandar; Spiller, Timothy P.; Dooley, Shane; Hayes, Anthony; McCrossan, Francis

    We extend the study of the Jayne-Cummings (JC) model involving a pair of identical two-level atoms (or qubits) interacting with a single mode quantized field. We investigate the effects of replacing the radiation field mode with a composite spin, comprising N qubits, or spin-1/2 particles. This model is relevant for physical implementations in superconducting circuit QED, ion trap and molecular systems. For the case of the composite spin prepared in a spin coherent state, we demonstrate the similarities of this set-up to the qubits-field model in terms of the time evolution, attractor states and in particular the collapse and revival of the entanglement between the two qubits. We extend our analysis by taking into account an effect due to qubit imperfections. We consider a difference (or “mismatch”) in the dipole interaction strengths of the two qubits, for both the field mode and composite spin cases. To address decoherence due to this mismatch, we then average over this coupling strength difference with distributions of varying width. We demonstrate in both the field mode and the composite spin scenarios that increasing the width of the “error” distribution increases suppression of the coherent dynamics of the coupled system, including the collapse and revival of the entanglement between the qubits.

  7. Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2015-03-13

    Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. Here, we apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We also quantify the spin Hall effects in Ir and W using the conventional bilayer structures, and discuss the self-induced voltage in a single layer of ferromagnetic permalloy.more » Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.« less

  8. Role of magnetic exchange interaction due to magnetic anisotropy on inverse spin Hall voltage at FeSi3%/Pt thin film bilayer interface

    NASA Astrophysics Data System (ADS)

    Shah, Jyoti; Ahmad, Saood; Chaujar, Rishu; Puri, Nitin K.; Negi, P. S.; Kotnala, R. K.

    2017-12-01

    In our recent studies inverse spin Hall voltage (ISHE) was investigated by ferromagnetic resonance (FMR) using bilayer FeSi3%/Pt thin film prepared by pulsed laser deposition (PLD) technique. In ISHE measurement microwave signal was applied on FeSi3% film along with DC magnetic field. Higher magnetization value along the film-plane was measured by magnetic hysteresis (M-H) loop. Presence of magnetic anisotropy has been obtained by M-H loop which showed easy direction of magnetization when applied magnetic field is parallel to the film plane. The main result of this study is that FMR induced inverse spin Hall voltage 12.6 μV at 1.0 GHz was obtained across Pt layer. Magnetic exchange field at bilayer interface responsible for field torque was measured 6 × 1014 Ω-1 m-2 by spin Hall magnetoresistance. The damping torque and spin Hall angle have been evaluated as 0.084 and 0.071 respectively. Presence of Si atom in FeSi3% inhomogenize the magnetic exchange field among accumulated spins at bilayer interface and feebly influenced by spin torque of FeSi3% layer. Weak field torque suppresses the spin pumping to Pt layer thus low value of inverse spin Hall voltage is obtained. This study provides an excellent opportunity to investigate spin transfer torque effect, thus motivating a more intensive experimental effort for its utilization at maximum potential. The improvement in spin transfer torque may be useful in spin valve, spin battery and spin transistor application.

  9. A model of spin crossover in manganese(III) compounds: effects of intra- and intercenter interactions.

    PubMed

    Klokishner, Sophia I; Roman, Marianna A; Reu, Oleg S

    2011-11-21

    A microscopic approach to the problem of cooperative spin crossover in the [MnL2]NO3 crystal, which contains Mn(III) ions as structural units, is elaborated on, and the main mechanisms governing this effect are revealed. The proposed model also takes into account the splitting of the low-spin 3T1 (t(2)(4)) and high-spin 5E (t(2)(3)e) terms by the low-symmetry crystal field. The low-spin → high-spin transition has been considered as a cooperative phenomenon driven by interaction of the electronic shells of the Mn(III) ions with the all-around full-symmetric deformation that is extended over the crystal lattice via the acoustic phonon field. The model well explains the observed thermal dependencies of the magnetic susceptibility and the effective magnetic moment.

  10. Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu

    2018-04-01

    In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.

  11. Spin-dependent transport phenomena in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Bergeson, Jeremy D.

    Thin-film organic semiconductors transport can have an anomalously high sensitivity to low magnetic fields. Such a response is unexpected considering that thermal fluctuation energies are greater than the energy associated with the intrinsic spin of charge carriers at a modest magnetic field of 100 Oe by a factor of more than 104 at room temperature and is still greater by 102 even at liquid helium temperatures. Nevertheless, we report experimental characterization of (1) spin-dependent injection, detection and transport of spin-polarized current through organic semiconductors and (2) the influence of a magnetic field on the spin dynamics of recombination-limited transport. The first focus of this work was accomplished by fabricating basic spin-valve devices consisting of two magnetic layers spatially separated by a nonmagnetic organic semiconductor. The spin-valve effect is a change in electrical resistance due to the magnetizations of the magnetic layers changing from parallel to antiparallel alignment, or vice versa. The conductivities of the metallic contacts and that of the semiconductor differed by many orders of magnitude, which inhibited the injection of a spin-polarized current from the magnet into the nonmagnet. We successfully overcame the problem of conductivity mismatch by inserting ultra-thin tunnel barriers at the metal/semiconductor interfaces which aided in yielding a ˜20% spin-valve effect at liquid helium temperatures and the effect persisted up to 150 K. We built on this achievement by constructing spin valves where one of the metallic contacts was replaced by the organic-based magnetic semiconductor vanadium tetracyanoethylene (V[TCNE]2). At 10 K these devices produced the switching behavior of the spin-valve effect. The second focus of this work was the bulk magnetoresistance (MR) of small molecule, oligomer and polymer organic semiconductors in thin-film structures. At room temperature the resistance can change up to 8% at 100 Oe and 15% at 1000 Oe. Depending on parameters such as temperature, layer thickness, or applied voltage, the resistance of these materials may increase or decrease as a function of field. A model for this phenomenon, termed magnetoresistance by the interconversion of singlets and triplets (MIST), is developed to account for this anomalous behavior. This model predicts that increasing the spin-orbit coupling in the organic semiconductor should decrease the magnitude of the MR. In an experiment where the small molecule Alq3 was doped with phosphorescent sensitizers, to increase the spin-orbit coupling, the MR was observed to decrease by an order of magnitude or more, depending on the doping. In addition to low-magnetic-field effects, we show the experimental observation of high-field MR in devices with and without magnetic contacts. To the best of our knowledge, we are the first to report (1) a tunnel-barrier-assisted spin-valve effect into an organic semiconductor using partially polarized metallic magnetic electrodes and (2) an experimental characterization of the central impact of the hyperfine interaction and spin-orbit coupling on MR in organic semiconductors.

  12. Bipolar magnetic semiconductor in silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Farghadan, Rouhollah

    2017-08-01

    A theoretical study was presented on generation of spin polarization in silicene nanoribbons using the single-band tight-binding approximation and the non-equilibrium Green's function formalism. We focused on the effect of electric and exchange magnetic fields on the spin-filter capabilities of zigzag-edge silicene nanoribbons in the presence of the intrinsic spin-orbit interaction. The results show that a robust bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps can be obtained when exchange magnetic and electric field strengths are both larger than the intrinsic spin-orbit interaction. Therefore, zigzag silicene nanoribbons could act as bipolar and perfect spin filter devices with a large spin-polarized current and a reversible spin polarization in the vicinity of the Fermi energy. We also investigated the effect of edge roughness and found that the bipolar magnetic semiconductor features are robust against edge disorder in silicene nanoribbon junctions. These results may be useful in multifunctional spin devices based on silicene nanoribbons.

  13. Effects of Zeeman splitting on spin transportation in a three-terminal Rashba ring under a weak magnetic field

    NASA Astrophysics Data System (ADS)

    Zhai, Li-Xue; Wang, Yan; An, Zhong

    2018-05-01

    Spin-dependent transport in one-dimensional (1D) three-terminal Rashba rings is investigated under a weak magnetic field, and we focus on the Zeeman splitting (ZS) effect. For this purpose, the interaction between the electron spin and the weak magnetic field has been treated by perturbation theory. ZS removes the spin degeneracy, and breaks both the time reversal symmetry and the spin reversal symmetry of the ring system. Consequently, all conductance zeros are lifted and turned into conductance dips. Aharonov-Bohm (AB) oscillations can be found in both branch conductances and the total conductance as a function of the magnetic field. In a relatively high magnetic field, the decoherence caused by ZS decreases the amplitude of the branch conductance and increases that of the total conductance. The results have been compared with those reported in the published literature, and a reasonable agreement is obtained. The conductance as a function of the Rashba spin-orbit coupling (RSOC) strength has also been investigated. As the RSOC strength increases, the role of ZS becomes weaker and weaker; ZS can even be neglected when B ≤ 0.1 T.

  14. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  15. Spin-controlled negative magnetoresistance resulting from exchange interactions

    NASA Astrophysics Data System (ADS)

    Agrinskaya, N. V.; Kozub, V. I.; Mikhailin, N. Yu.; Shamshur, D. V.

    2017-04-01

    We studied conductivity of AlGaAs-GaAs quantum well structures (where centers of the wells were doped by Be) at temperatures higher than 4 K in magnetic fields up 10 T. Throughout all the temperature region considered the conductivity demonstrated activated behavior. At moderate magnetic fields 0.1 T < H < 1 T, we observed negative isotropic magnetoresistance, which was linear in magnetic field while for magnetic field normal with respect to the plane of the wells the magnetoresistance was positive at H > 2T. To the best of our knowledge, it was the first observation of linear negative magnetoresistance, which would be isotropic with respect to the direction of magnetic field. While the isotropic character of magnetoresistance apparently evidences role of spins, the existing theoretical considerations concerning spin effects in conductance fail to explain our experimental results. We believe that such a behavior can be attributed to spin effects supported by exchange interactions between localized states.

  16. Spin Hall effects in metallic antiferromagnets – perspectives for future spin-orbitronics

    DOE PAGES

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...

    2016-03-07

    In this paper, we investigate angular dependent spin-orbit torques from the spin Hall effect in a metallic antiferromagnet using the spin-torque ferromagnetic resonance technique. The large spin Hall effect exists in PtMn, a prototypical CuAu-I-type metallic antiferromagnet. By applying epitaxial growth, we previously reported an appreciable difference in spin-orbit torques for c- and a-axis orientated samples, implying anisotropic effects in magnetically ordered materials. In this work we demonstrate through bipolar-magnetic-field experiments a small but noticeable asymmetric behavior in the spin-transfer-torque that appears as a hysteresis effect. Finally, we also suggest that metallic antiferromagnets may be good candidates for the investigationmore » of various unidirectional effects related to novel spin-orbitronics phenomena.« less

  17. Unveiling the thermal entanglement in a mixed-spin XXZ model with Dzyaloshinskii-Moriya interaction under a homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Cheng; Xu, Shuai; He, Juan; Ye, Liu

    2015-10-01

    We analytically investigate the thermal entanglement of three-mixed-spin (1/2, 1, 1/2) XXZ model with the DM interaction under an external magnetic field B. Two different cases are considered: one subsystem (1/2, 1/2) consists of two spin-1/2 fermions and the other subsystem (1/2, 1) contains a spin-1/2 fermion and a spin-1 boson. It is shown that the DM interaction parameter D, the external magnetic field strength B and coupling constant J have different effects on Fermi and mixed Fermi-Bose systems. All of the factors mentioned above can be utilized to control entanglement switch of any two particles in mixed spins model.

  18. Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact

    NASA Astrophysics Data System (ADS)

    Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.

    2015-07-01

    We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.

  19. Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wójcik, P., E-mail: pawel.wojcik@fis.agh.edu.pl; Adamowski, J., E-mail: janusz.adamowski@fis.agh.edu.pl; Wołoszyn, M.

    2015-07-07

    We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be usedmore » to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.« less

  20. A two-dimensional spin field-effect switch

    NASA Astrophysics Data System (ADS)

    Casanova, Felix

    The integration of the spin degree of freedom in charge-based electronic devices has revolutionised both sensing and memory capability in microelectronics. Further development in spintronic devices requires electrical manipulation of spin current for logic operations. The mainstream approach followed so far, inspired by the seminal proposal of the Datta and Das spin modulator, has relied on the spin-orbit field as a medium for electrical control of the spin state. However, the still standing challenge is to find a material whose spin-orbit coupling (SOC) is weak enough to transport spins over long distances, while also being strong enough to allow their electrical manipulation. In our recent work, we demonstrate a radically different approach by engineering a van der Waals heterostructure from atomically thin crystals, and which combines the superior spin transport properties of graphene with the strong SOC of MoS2, a transition metal dichalcogenide with semiconducting properties. The spin transport in the graphene channel is modulated between ON and OFF states by tuning the spin absorption into the MoS2 layer with a gate electrode. Our demonstration of a spin field-effect switch using two-dimensional (2D) materials identifies a new route towards spin logic operations for beyond CMOS technology. Furthermore, the van der Waals heterostructure at the core of our experiments opens the path for fundamental research of exotic transport properties predicted for transition metal dichalcogenides, in which electrical spin injection has so far been elusive.

  1. Hot-electron effect in spin relaxation of electrically injected electrons in intrinsic Germanium.

    PubMed

    Yu, T; Wu, M W

    2015-07-01

    The hot-electron effect in the spin relaxation of electrically injected electrons in intrinsic germanium is investigated by the kinetic spin Bloch equations both analytically and numerically. It is shown that in the weak-electric-field regime with E ≲ 0.5 kV cm(-1), our calculations have reasonable agreement with the recent transport experiment in the hot-electron spin-injection configuration (2013 Phys. Rev. Lett. 111 257204). We reveal that the spin relaxation is significantly enhanced at low temperature in the presence of weak electric field E ≲ 50 V cm(-1), which originates from the obvious center-of-mass drift effect due to the weak electron-phonon interaction, whereas the hot-electron effect is demonstrated to be less important. This can explain the discrepancy between the experimental observation and the previous theoretical calculation (2012 Phys. Rev. B 86 085202), which deviates from the experimental results by about two orders of magnitude at low temperature. It is further shown that in the strong-electric-field regime with 0.5 ≲ E ≲ 2 kV cm(-1), the spin relaxation is enhanced due to the hot-electron effect, whereas the drift effect is demonstrated to be marginal. Finally, we find that when 1.4 ≲ E ≲ 2 kV cm(-1) which lies in the strong-electric-field regime, a small fraction of electrons (≲5%) can be driven from the L to Γ valley, and the spin relaxation rates are the same for the Γ and L valleys in the intrinsic sample without impurity. With the negligible influence of the spin dynamics in the Γ valley to the whole system, the spin dynamics in the L valley can be measured from the Γ valley by the standard direct optical transition method.

  2. Hyperfine spin interactions between polarons and nuclei in organic light emitting diodes: Magneto-EL measurements

    NASA Astrophysics Data System (ADS)

    Crooker, S. A.; Kelley, M. R.; Martinez, N.; Nie, W.; Mohite, A. D.; Smith, D. L.; Tretiak, S.; Ruden, P. P.

    2014-03-01

    Considerable attention in recent years has focused on the effects of applied magnetic fields on the conductance, photocurrent, electroluminescence (EL), and photoluminescence of nominally nonmagnetic organic semiconductor materials and devices. These magnetic field effects have proven useful in revealing the underlying physical mechanisms and relevant spin interactions that influence the electrical and optical properties in these organic systems (e.g., hyperfine coupling, exchange interactions, and spin-orbit coupling). Here we study the field-dependent properties of organic light-emitting diode (OLEDs) based on MTDATA/LiF/Bphen layered structures, in which exciplex recombination at the interface dominates the EL spectra. Small applied magnetic fields (~10 mT) are found to boost the net EL yield by up to 10%, due to a suppression of the mixing between singlet and triplet polaron pairs which, in turn, arises from hyperfine spin coupling of the polarons to the underlying nuclei of the host molecules. We discuss the dependence of these field-induced effects on the LiF barrier thickness, device bias, and on the orientation of the applied magnetic field, as well as the mechanisms responsible.

  3. Exchange biased Co3O4 nanowires: A new insight into its magnetic core-shell nature

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Jose, A.; Thanveer, T.; Anantharaman, M. R.

    2017-06-01

    We investigated interfacial exchange coupling effect in nano casted Co3O4 nanowires. Magnetometry measurements indicated that the magnetic response of the wires has two contributions. First one from the core of the wire which has characteristics of a 2D-DAFF(two-dimensional diluted antiferromagnet in a field). The second one is from uncompensated surface spins which get magnetically ordered towards the field direction once field cooled below 25 K. Below 25 K, the net magnetization of the core of the wire gets exchange coupled with the uncompensated surface spins giving rise to exchange bias effect. The unique 2D-DAFF/spin-glass core/shell heterostructure showed a pronounced training effect in the first field cycling itself. The magnitude of exchange bias field showed a maximum at intermediate cooling fields and for the higher cooling field, exchange bias got reduced.

  4. Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Kohei; Pai, Chi-Feng; Tan, Aik Jun

    2016-06-06

    We report the effect of the rare earth metal Gd on current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Pt/Co/Gd heterostructures, characterized using harmonic measurements and spin-torque ferromagnetic resonance (ST-FMR). By varying the Gd metal layer thickness from 0 nm to 8 nm, harmonic measurements reveal a significant enhancement of the effective fields generated from the Slonczewski-like and field-like torques. ST-FMR measurements confirm an enhanced effective spin Hall angle and show a corresponding increase in the magnetic damping constant with increasing Gd thickness. These results suggest that Gd plays an active role in generating SOTs in these heterostructures. Our finding may lead tomore » spin-orbitronics device application such as non-volatile magnetic random access memory, based on rare earth metals.« less

  5. Boson mapping techniques applied to constant gauge fields in QCD

    NASA Technical Reports Server (NTRS)

    Hess, Peter Otto; Lopez, J. C.

    1995-01-01

    Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).

  6. Inverse spin Hall and spin rectification effects in NiFe/FeMn exchange-biased thin films

    NASA Astrophysics Data System (ADS)

    Garcia, W. J. S.; Seeger, R. L.; da Silva, R. B.; Harres, A.

    2017-11-01

    Materials presenting high spin-orbit coupling are able to convert spin currents in charge currents. The phenomenon, known as inverse spin Hall effect, promises to revolutionize spintronic technology enabling the electrical detection of spin currents. It has been observed in a variety of systems, usually non-magnetic metals. We study the voltage emerging in exchange biased Ta/NiFe/FeMn/Ta thin films near the ferromagnetic resonance. Measured signals are related to both inverse spin Hall and spin rectification effects, and two distinct protocols were employed to separate their contributions.The curve shift due to the exchange bias effect may enable high frequency applications without an external applied magnetic field.

  7. Spin-orbit torque in a bulk perpendicular magnetic anisotropy Pd/FePd/MgO system

    PubMed Central

    Lee, Hwang-Rae; Lee, Kyujoon; Cho, Jaehun; Choi, Young-Ha; You, Chun-Yeol; Jung, Myung-Hwa; Bonell, Frédéric; Shiota, Yoichi; Miwa, Shinji; Suzuki, Yoshishige

    2014-01-01

    Spin-orbit torques, including the Rashba and spin Hall effects, have been widely observed and investigated in various systems. Since interesting spin-orbit torque (SOT) arises at the interface between heavy nonmagnetic metals and ferromagnetic metals, most studies have focused on the ultra-thin ferromagnetic layer with interface perpendicular magnetic anisotropy. Here, we measured the effective longitudinal and transverse fields of bulk perpendicular magnetic anisotropy Pd/FePd (1.54 to 2.43 nm)/MgO systems using harmonic methods with careful correction procedures. We found that in our range of thicknesses, the effective longitudinal and transverse fields are five to ten times larger than those reported in interface perpendicular magnetic anisotropy systems. The observed magnitude and thickness dependence of the effective fields suggest that the SOT do not have a purely interfacial origin in our samples. PMID:25293693

  8. Research of spin-orbit interaction in organic conjugated polymers

    NASA Astrophysics Data System (ADS)

    Li, H.; Zhou, M. Y.; Wu, S. Y.; Liang, X. R.

    2017-06-01

    The effect of spin-orbit interaction on the one-dimensional organic polymer was investigated theoretically. Spin-orbital interaction led to the spatial separation of energy band but did not eliminate spin degeneration, which was different from energy level splitting in the Zeeman Effect. Spin-orbit interaction had little effect on the energy band structure, charge density, and lattice position, etc.; Spin precession was obtained when a polaron was transported along the polymer chain, which theoretically proved that it was feasible to control the spin precession of polaron in organic polymers by the use of external electric field.

  9. Experimental limits on the fidelity of adiabatic geometric phase gates in a single solid-state spin qubit

    DOE PAGES

    Zhang, Kai; Nusran, N. M.; Slezak, B. R.; ...

    2016-05-17

    While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically bymore » careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (~10) operations. This occurs in spite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. In conclusion, we have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.« less

  10. Experimental limits on the fidelity of adiabatic geometric phase gates in a single solid-state spin qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Nusran, N. M.; Slezak, B. R.

    While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically bymore » careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (~10) operations. This occurs in spite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. In conclusion, we have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.« less

  11. Spin-dependent polarizabilities of hydrogenic atoms in magnetic fields of arbitrary strength

    NASA Astrophysics Data System (ADS)

    Castner, T. G.; Dexter, D. L.; Druger, S. D.

    1981-12-01

    Utilizing the magnetic field-dependent spin-orbit interaction, the relativistic correction to the Zeeman energy, and the usual diamagnetic interaction, we have calculated spin-dependent electrical polarizabilities of hydrogenic atoms using the Hassé variational approach. The polarizabilities α(↑) and α(↓) for the two spin directions have been obtained for the electric field both parallel and perpendicular to the magnetic field Hz in the weak-field (γ<<1), intermediate-field (γ~1), and strong-field (γ>>1) limits, where γ=(ɛ2ℏ3Hzm*2e3c), with ɛ a static dielectric constant and m* an isotropic effective mass. The results for hydrogen atoms (ɛ=1 and m*=m) in the weak-field limit yield [α(↓)-α(↑)]α(0)~2.31α2fsγ (αfs=1137) with a negligible anisotropy. In the strong-field limit [α⊥(↓)-α⊥(↑)] falls precipitously while [α∥(↓)-α∥(↑)] continues to increase up to at least γ=104, but more slowly than linearly with γ. The spin-independent quantities [α∥(↓)+α∥(↑)] and [α⊥(↓)+α⊥(↑)] are discussed in the intermediate- and high-field limits and represent an extension of the earlier low-field results obtained by Dexter. The implications of these results for shallow-donor impurity atoms in semiconductors and for hydrogen-atom atmospheres of magnetic white dwarfs and neutron stars are briefly considered. The effects of the dramatic shrinkage of the electron's wave function on the spin Zeeman energy and the electron-proton hyperfine interaction are also discussed.

  12. Coherent manipulation of quantum spin states in a single molecular nanomagnet

    NASA Astrophysics Data System (ADS)

    Wernsdorfer, Wolfgang

    The endeavour of quantum electronics is driven by one of the most ambitious technological goals of today's scientists: the realization of an operational quantum computer (http://qurope.eu). We started to address this goal by the new research field of molecular quantum spintronics. The building blocks are magnetic molecules, i.e. well-defined spin qubits. We will discuss this still largely unexplored field and present our first results: For example, using a molecular spin-transistor, we achieved the electronic read-out of the nuclear spin of an individual metal atom embedded in an SMM. We could show very long spin lifetimes (>10 s). Using the hyperfine Stark effect, which transforms electric fields into local effective magnetic fields, we could not only tune the resonance frequency by several MHz, but also perform coherent quantum manipulations on a single nuclear qubit faster than a μs by means of electrical fields only, establishing the individual addressability of identical nuclear qubits. Using three different microwave frequencies, we could implement a simple four-level Grover algorithm. S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, Science 344, 1135 (2014).

  13. Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.

    PubMed

    Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q

    2018-02-02

    We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.

  14. Spin- and Valley-Dependent Electronic Structure in Silicene Under Periodic Potentials

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Li, Yun-Fang; Tian, Hong-Yu

    2018-03-01

    We study the spin- and valley-dependent energy band and transport property of silicene under a periodic potential, where both spin and valley degeneracies are lifted. It is found that the Dirac point, miniband, band gap, anisotropic velocity, and conductance strongly depend on the spin and valley indices. The extra Dirac points appear as the voltage potential increases, the critical values of which are different for electron with different spins and valleys. Interestingly, the velocity is greatly suppressed due to the electric field and exchange field, other than the gapless graphene. It is possible to achieve an excellent collimation effect for a specific spin near a specific valley. The spin- and valley-dependent band structure can be used to adjust the transport, and perfect transmissions are observed at Dirac points. Therefore, a remarkable spin and valley polarization is achieved which can be switched effectively by the structural parameters. Importantly, the spin and valley polarizations are greatly enhanced by the disorder of the periodic potential.

  15. Electronic spin transport in gate-tunable black phosphorus spin valves

    NASA Astrophysics Data System (ADS)

    Liu, Jiawei; Avsar, Ahmet; Tan, Jun You; Oezyilmaz, Barbaros

    High charge mobility, the electric field effect and small spin-orbit coupling make semiconducting black phosphorus (BP) a promising material for spintronics device applications requiring long spin distance spin communication with all rectification and amplification actions. Towards this, we study the all electrical spin injection, transport and detection under non-local spin valve geometry in fully encapsulated ultra-thin BP devices. We observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. These values are an order of magnitude higher than what have been measured in typical graphene spin valve devices. Moreover, the spin transport depends strongly on charge carrier concentration and can be manipulated in a spin transistor-like manner by controlling electric field. This behaviour persists even at room temperature. Finally, we will show that similar to its electrical and optical properties, spin transport property is also strongly anisotropic.

  16. Detection of pure inverse spin-Hall effect induced by spin pumping at various excitation

    NASA Astrophysics Data System (ADS)

    Inoue, H. Y.; Harii, K.; Ando, K.; Sasage, K.; Saitoh, E.

    2007-10-01

    Electric-field generation due to the inverse spin-Hall effect (ISHE) driven by spin pumping was detected and separated experimentally from the extrinsic magnetogalvanic effects in a Ni81Fe19/Pt film. By applying a sample-cavity configuration in which the extrinsic effects are suppressed, the spin pumping using ferromagnetic resonance gives rise to a symmetric spectral shape in the electromotive force spectrum, indicating that the motive force is due entirely to ISHE. This method allows the quantitative analysis of the ISHE and the spin-pumping effect. The microwave-power dependence of the ISHE amplitude is consistent with the prediction of a direct current-spin-pumping scenario.

  17. Tri-critical behavior of the Blume-Emery-Griffiths model on a Kagomé lattice: Effective-field theory and Rigorous bounds

    NASA Astrophysics Data System (ADS)

    Santos, Jander P.; Sá Barreto, F. C.

    2016-01-01

    Spin correlation identities for the Blume-Emery-Griffiths model on Kagomé lattice are derived and combined with rigorous correlation inequalities lead to upper bounds on the critical temperature. From the spin correlation identities the mean field approximation and the effective field approximation results for the magnetization, the critical frontiers and the tricritical points are obtained. The rigorous upper bounds on the critical temperature improve over those effective-field type theories results.

  18. A state interaction spin-orbit coupling density matrix renormalization group method

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2016-06-01

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.

  19. Rashba effect and enriched spin-valley coupling in Ga X /M X2 (M = Mo, W; X = S, Se, Te) heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Qingyun; Schwingenschlögl, Udo

    2018-04-01

    Using first-principles calculations, we investigate the electronic properties of the two-dimensional Ga X /MX 2 (M = Mo, W; X = S, Se, Te) heterostructures. Orbital hybridization between Ga X and MX 2 is found to result in Rashba splitting at the valence-band edge around the Γ point, which grows for increasing strength of the spin-orbit coupling in the p orbitals of the chalcogenide atoms. The location of the valence-band maximum in the Brillouin zone can be tuned by strain and application of an out-of-plane electric field. The coexistence of Rashba splitting (in-plane spin direction) and band splitting at the K and K' valleys (out-of-plane spin direction) makes Ga X /MX 2 heterostructures interesting for spintronics and valleytronics. They are promising candidates for two-dimensional spin-field-effect transistors and spin-valley Hall effect devices. Our findings shed light on the spin-valley coupling in van der Waals heterostructures.

  20. Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect

    DOE PAGES

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...

    2015-11-06

    We demonstrate the generation and detection of spin-torque ferromagnetic resonance in Pt/Y 3Fe 5O 12 (YIG) bilayers. A unique attribute of this system is that the spin Hall effect lies at the heart of both the generation and detection processes and no charge current is passing through the insulating magnetic layer. When the YIG undergoes resonance, a dc voltage is detected longitudinally along the Pt that can be described by two components. One is the mixing of the spin Hall magnetoresistance with the microwave current. The other results from spin pumping into the Pt being converted to a dc currentmore » through the inverse spin Hall effect. The voltage is measured with applied magnetic field directions that range in-plane to nearly perpendicular. In conclusion, we find that for magnetic fields that are mostly out-of-plane, an imaginary component of the spin mixing conductance is required to model our data.« less

  1. Electron spin relaxation in a transition-metal dichalcogenide quantum dot

    NASA Astrophysics Data System (ADS)

    Pearce, Alexander J.; Burkard, Guido

    2017-06-01

    We study the relaxation of a single electron spin in a circular quantum dot in a transition-metal dichalcogenide monolayer defined by electrostatic gating. Transition-metal dichalcogenides provide an interesting and promising arena for quantum dot nano-structures due to the combination of a band gap, spin-valley physics and strong spin-orbit coupling. First we will discuss which bound state solutions in different B-field regimes can be used as the basis for qubits states. We find that at low B-fields combined spin-valley Kramers qubits to be suitable, while at large magnetic fields pure spin or valley qubits can be envisioned. Then we present a discussion of the relaxation of a single electron spin mediated by electron-phonon interaction via various different relaxation channels. In the low B-field regime we consider the spin-valley Kramers qubits and include impurity mediated valley mixing which will arise in disordered quantum dots. Rashba spin-orbit admixture mechanisms allow for relaxation by in-plane phonons either via the deformation potential or by piezoelectric coupling, additionally direct spin-phonon mechanisms involving out-of-plane phonons give rise to relaxation. We find that the relaxation rates scale as \\propto B 6 for both in-plane phonons coupling via deformation potential and the piezoelectric effect, while relaxation due to the direct spin-phonon coupling scales independant to B-field to lowest order but depends strongly on device mechanical tension. We will also discuss the relaxation mechanisms for pure spin or valley qubits formed in the large B-field regime.

  2. Phase transition and field effect topological quantum transistor made of monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F. M.

    2018-06-01

    We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q 2) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q 2 diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q 2 diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.

  3. Bias Dependent Spin Relaxation in a [110]-InAs/AlSb Two Dimensional Electron System

    NASA Astrophysics Data System (ADS)

    Hicks, J.; Holabird, K.

    2005-03-01

    Manipulation of electron spin is a critical component of many proposed semiconductor spintronic devices. One promising approach utilizes the Rashba effect by which an applied electric field can be used to reduce the spin lifetime or rotate spin orientation through spin-orbit interaction. The large spin-orbit interaction needed for this technique to be effective typically leads to fast spin relaxation through precessional decay, which may severely limit device architectures and functionalities. An exception arises in [110]-oriented heterostructures where the crystal magnetic field associated with bulk inversion asymmetry lies along the growth direction and in which case spins oriented along the growth direction do not precess. These considerations have led to a recent proposal of a spin-FET that incorporates a [110]-oriented, gate-controlled InAs quantum well channel [1]. We report measurements of the electron spin lifetime as a function of applied electric field in a [110]-InAs 2DES. Measurements made using an ultrafast, mid-IR pump-probe technique indicate that the spin lifetime can be reduced from its maximum to minimum value over a range of less than 0.2V per quantum well at room temperature. This work is supported by DARPA, NSERC and the NSF grant ECS - 0322021. [1] K. C. Hall, W. H. Lau, K. Gundogdu, M. E. Flatte, and T. F. Boggess, Appl. Phys. Lett. 83, 2937 (2003).

  4. Topological states of matter in two-dimensional fermionic systems

    NASA Astrophysics Data System (ADS)

    Beugeling, W.

    2012-09-01

    Topological states of matter in two-dimensional systems are characterised by the different properties of the edges and the bulk of the system: The edges conduct electrical current while the bulk is insulating. The first well-known example is the quantum Hall effect, which is induced by a perpendicular magnetic field that generates chiral edge channels along which the current propagates. Each channel contributes one quantum to the Hall conductivity. Due to the chirality, i.e., all currents propagate in the same direction, backscattering due to impurities is absent, and the Hall conductivity carried by the edge states is therefore protected from perturbations. Another example is the quantum spin Hall effect, induced by intrinsic spin-orbit coupling in absence of a magnetic field. There the edge states are helical, i.e., spin up and down currents propagate oppositely. In this case, the spin Hall conductivity is quantized, and it is protected by time-reversal symmetry from backscattering due to impurities. In Chapter 2 of the thesis, I discuss the combined effect of the magnetic field and intrinsic spin-orbit coupling. In addition, I discuss the influence of the Rashba spin-orbit coupling and of the Zeeman effect. In particular, I show that in absence of magnetic impurities, a weaker form of the quantum spin Hall state persists in the presence of a magnetic field. In addition, I show that the intrinsic spin-orbit coupling and the Zeeman effect act similarly in the low-flux limit. I furthermore analyse the phase transitions induced by intrinsic spin-orbit coupling at a fixed magnetic field, thereby explaining the change of the Hall and spin Hall conductivities at the transition. I also study the subtle interplay between the effects of the different terms in the Hamiltonian. In Chapter 3, I investigate an effective model for HgTe quantum wells doped with Mn ions. Without doping, HgTe quantum wells may exhibit the quantum spin Hall effect, depending on the thickness of the well. The doping with Mn ions modifies the behaviour of the system in two ways: First, the quantum spin Hall gap is reduced in size, and secondly, the system becomes paramagnetic. The latter effect causes a bending of the Landau levels, which is responsible for reentrant behaviour of the (spin) Hall conductivity. I investigate the different types of reentrant behaviour, and I estimate the experimental resolvability of this effect. In Chapter 4, I present a framework to describe the fractional quantum Hall effect in systems with multiple internal degrees of freedom, e.g., spin or pseudospin. This framework describes the so-called flux attachment in terms of a Chern-Simons theory in Hamiltonian form, proposed earlier for systems without internal degrees of freedom. Here, I show a generalization of these results, by replacing the number of attached flux quanta by a matrix. In particular, the plasma analogy proposed by Laughlin still applies, and Kohn’s theorem remains valid. I also show that the results remain valid when the flux-attachment matrix is singular.

  5. Nuclear-Spin Gyroscope Based on an Atomic Co-Magnetometer

    NASA Technical Reports Server (NTRS)

    Romalis, Michael; Komack, Tom; Ghost, Rajat

    2008-01-01

    An experimental nuclear-spin gyroscope is based on an alkali-metal/noblegas co-magnetometer, which automatically cancels the effects of magnetic fields. Whereas the performances of prior nuclear-spin gyroscopes are limited by sensitivity to magnetic fields, this gyroscope is insensitive to magnetic fields and to other external perturbations. In addition, relative to prior nuclear-spin gyroscopes, this one exhibits greater sensitivity to rotation. There is commercial interest in development of small, highly sensitive gyroscopes. The present experimental device could be a prototype for development of nuclear spin gyroscopes suitable for navigation. In comparison with fiber-optic gyroscopes, these gyroscopes would draw less power and would be smaller, lighter, more sensitive, and less costly.

  6. Identical spin rotation effect and electron spin waves in quantum gas of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Lehtonen, L.; Vainio, O.; Ahokas, J.; Järvinen, J.; Novotny, S.; Sheludyakov, S.; Suominen, K.-A.; Vasiliev, S.; Khmelenko, V. V.; Lee, D. M.

    2018-05-01

    We present an experimental study of electron spin waves in atomic hydrogen gas compressed to high densities of ∼5 × 1018 cm‑3 at temperatures ranging from 0.26 to 0.6 K in the strong magnetic field of 4.6 T. Hydrogen gas is in a quantum regime when the thermal de-Broglie wavelength is much larger than the s-wave scattering length. In this regime the identical particle effects play a major role in atomic collisions and lead to the identical spin rotation effect (ISR). We observed a variety of spin wave modes caused by this effect with strong dependence on the magnetic potential caused by variations of the polarizing magnetic field. We demonstrate confinement of the ISR modes in the magnetic potential and manipulate their properties by changing the spatial profile of the magnetic field. We have found that at a high enough density of H gas the magnons accumulate in their ground state in the magnetic trap and exhibit long coherence, which has a profound effect on the electron spin resonance spectra. Such macroscopic accumulation of the ground state occurs at a certain critical density of hydrogen gas, where the chemical potential of the magnons becomes equal to the energy of their ground state in the trapping potential.

  7. Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle

    NASA Astrophysics Data System (ADS)

    Antón, M. A.; Carreño, F.; Melle, Sonia; Calderón, Oscar G.; Cabrera-Granado, E.; Singh, Mahi R.

    2013-05-01

    The preparation of quantum states with a defined spin is analyzed in a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle. The quantum dot is described as a four-level atom-like system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A metallic nanoparticle with spheroidal geometry is placed in close proximity to the quantum dot, and its effects are considered in the quasistatic approximation. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions which is accompanied by local-field corrections. This effect translates into a preferential acceleration of some of the optical pathways and therefore into a fast initialization of the QD by excitation with a short optical pulse. The population transfer between the lower levels of the QD and the fidelity is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field, and the Rabi frequency of the driving field. It is also shown that the main effect of the local-field corrections is a lengthening of the time elapsed to reach the steady-state. The hole spin is predicted to be successfully cooled from 5 to 0.04 K at a magnetic field of 4.6 T applied in the Voigt geometry.

  8. Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible.

    PubMed

    Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L

    2014-12-07

    A new technique is proposed to carry out Signal Amplification By Reversible Exchange (SABRE) experiments at high magnetic fields. SABRE is a method, which utilizes spin order transfer from para-hydrogen to the spins of a substrate in transient complexes using suitable catalysts. Such a transfer of spin order is efficient at low magnetic fields, notably, in the Level Anti-Crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields in the rotating reference frame under the action of an RF-field. Spin mixing at LACs allows one to polarize substrates at high fields as well; the achievable NMR enhancements are around 360 for the ortho-protons of partially deuterated pyridine used as a substrate and around 700 for H2 and substrate in the active complex with the catalyst. High-field SABRE effects have also been found for several other molecules containing a nitrogen atom in the aromatic ring.

  9. Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.

    2017-09-01

    The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.

  10. Stabilization of the electron-nuclear spin orientation in quantum dots by the nuclear quadrupole interaction.

    PubMed

    Dzhioev, R I; Korenev, V L

    2007-07-20

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  11. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    NASA Astrophysics Data System (ADS)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  12. Rapid Transition of the Hole Rashba Effect from Strong Field Dependence to Saturation in Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex

    2017-09-01

    The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.

  13. The 3D Kasteleyn transition in dipolar spin ice: a numerical study with the conserved monopoles algorithm

    NASA Astrophysics Data System (ADS)

    Baez, M. L.; Borzi, R. A.

    2017-02-01

    We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along ≤ft[1 0 0\\right] , and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases  ≈0.4 K for the parameters corresponding to the best known spin ice materials, \\text{D}{{\\text{y}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} and \\text{H}{{\\text{o}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} . This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of ‘strings’ of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along ≤ft[1 0 0\\right] there are only three different stable phases at zero temperature.

  14. Dynamic nuclear polarisation via the integrated solid effect II: experiments on naphthalene-h8 doped with pentacene-d14

    NASA Astrophysics Data System (ADS)

    Eichhorn, T. R.; van den Brandt, B.; Hautle, P.; Henstra, A.; Wenckebach, W. Th.

    2014-07-01

    In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used. To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.

  15. Manipulation of the electroluminescence of organic light-emitting diodes via fringe fields from patterned magnetic domains

    NASA Astrophysics Data System (ADS)

    Harmon, N. J.; Wohlgenannt, M.; Flatté, M. E.

    2016-12-01

    We predict very large changes in the room-temperature electroluminescence of thermally-activated delayed fluorescence organic light emitting diodes near patterned ferromagnetic films. These effects exceed the changes in a uniform magnetic field by as much as a factor of two. We describe optimal ferromagnetic film patterns for enhancing the electroluminescence. A full theory of the spin-mixing processes in exciplex recombination and how they are affected by hyperfine fields, spin-orbit effects, and ferromagnetic fringe field effects is introduced. These spin-mixing processes are used to describe the effect of magnetic domain structures on the luminescence in various regimes. This provides a method of enhancing light emission rates from exciplexes and also a means of efficiently coupling information encoded in the magnetic domains to organic light emitting diode emission.

  16. Manipulation of the electroluminescence of organic light-emitting diodes via fringe fields from patterned magnetic domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, N. J.; Wohlgenannt, M.; Flatté, M. E.

    We predict very large changes in the room-temperature electroluminescence of thermally-activated delayed fluorescence organic light emitting diodes near patterned ferromagnetic films. These effects exceed the changes in a uniform magnetic field by as much as a factor of two. We describe optimal ferromagnetic film patterns for enhancing the electroluminescence. A full theory of the spin-mixing processes in exciplex recombination and how they are affected by hyperfine fields, spin-orbit effects, and ferromagnetic fringe field effects is introduced. These spin-mixing processes are used to describe the effect of magnetic domain structures on the luminescence in various regimes. This provides a method ofmore » enhancing light emission rates from exciplexes and also a means of efficiently coupling information encoded in the magnetic domains to organic light emitting diode emission« less

  17. Manipulation of the electroluminescence of organic light-emitting diodes via fringe fields from patterned magnetic domains

    DOE PAGES

    Harmon, N. J.; Wohlgenannt, M.; Flatté, M. E.

    2016-12-12

    We predict very large changes in the room-temperature electroluminescence of thermally-activated delayed fluorescence organic light emitting diodes near patterned ferromagnetic films. These effects exceed the changes in a uniform magnetic field by as much as a factor of two. We describe optimal ferromagnetic film patterns for enhancing the electroluminescence. A full theory of the spin-mixing processes in exciplex recombination and how they are affected by hyperfine fields, spin-orbit effects, and ferromagnetic fringe field effects is introduced. These spin-mixing processes are used to describe the effect of magnetic domain structures on the luminescence in various regimes. This provides a method ofmore » enhancing light emission rates from exciplexes and also a means of efficiently coupling information encoded in the magnetic domains to organic light emitting diode emission« less

  18. Prediction of Spin-Polarization Effects in Quantum Wire Transport

    NASA Astrophysics Data System (ADS)

    Fasol, Gerhard; Sakaki, Hiroyuki

    1994-01-01

    We predict a new effect for transport in quantum wires: spontaneous spin polarization. Most work on transport in mesoscopic devices has assumed a model of non interacting, spin-free electrons. We introduce spin, electron pair scattering and microscopic crystal properties into the design of mesoscopic devices. The new spin polarization effect results from the fact that in a single mode quantum wire, electron and hole bands still have two spin subbands. In general, these two spin subbands are expected to be split even in zero magnetic field. At sufficiently low temperatures the electron pair scattering rates for one spin subband ( e.g., the spin-down) can be much larger than for the other spin subband. This effect can be used for an active spin polarizer device: hot electrons in one subband ( e.g., `spin up') pass with weak pair scattering, while electrons in the opposite subband ( e.g., `spin down'), have high probability of scattering into the `spin-up' subband, resulting in spin polarization of a hot electron beam.

  19. Self-oscillation in spin torque oscillator stabilized by field-like torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi

    2014-04-14

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation.

  20. Effects of the magnetic field variation on the spin wave interference in a magnetic cross junction

    NASA Astrophysics Data System (ADS)

    Balynskiy, M.; Chiang, H.; Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Balandin, A. A.; Khitun, A.

    2018-05-01

    This article reports results of the investigation of the effect of the external magnetic field variation on the spin wave interference in a magnetic cross junction. The experiments were performed using a micrometer scale Y3Fe5O12 cross structure with a set of micro-antennas fabricated on the edges of the cross arms. Two of the antennas were used for the spin wave excitation while a third antenna was used for detecting the inductive voltage produced by the interfering spin waves. It was found that a small variation of the bias magnetic field may result in a significant change of the output inductive voltage. The effect is most prominent under the destructive interference condition. The maximum response exceeds 30 dB per 0.1 Oe at room temperature. It takes a relatively small bias magnetic field variation of about 1 Oe to drive the system from the destructive to the constructive interference conditions. The switching is accompanied by a significant, up to 50 dB, change in the output voltage. The obtained results demonstrate a feasibility of the efficient spin wave interference control by an external magnetic field, which may be utilized for engineering novel type of magnetometers and magnonic logic devices.

  1. Localizable entanglement in antiferromagnetic spin chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, B.-Q.; Korepin, V.E.

    2004-06-01

    Antiferromagnetic spin chains play an important role in condensed matter and statistical mechanics. Recently XXX spin chain was discussed in relation to information theory. Here we consider localizable entanglement. It is how much entanglement can be localized on two spins by performing local measurements on other individual spins (in a system of many interacting spins). We consider the ground state of antiferromagnetic spin chain. We study localizable entanglement [represented by concurrence] between two spins. It is a function of the distance. We start with isotropic spin chain. Then we study effects of anisotropy and magnetic field. We conclude that anisotropymore » increases the localizable entanglement. We discovered high sensitivity to a magnetic field in cases of high symmetry. We also evaluated concurrence of these two spins before the measurement to illustrate that the measurement raises the concurrence.« less

  2. Magnetic-field control of electric polarization in coupled spin chains with three-site interactions

    NASA Astrophysics Data System (ADS)

    Sznajd, Jozef

    2018-06-01

    The linear perturbation renormalization group (LPRG) is used to study coupled X Y chains with Dzyaloshinskii-Moriya (DM) and three-spin interactions in a magnetic field. Starting with a minimal model exhibiting the magnetoelectric effect, a spin-1/2 X Y chain with nearest, next-nearest (J2x) , and DM (D1y) interactions in a magnetic field, the recursion relations for all effective interactions generated by the LPRG transformation are found. The evaluation of these relations allows us to analyze, among others, the influence of J2x,D1y , three-spin (SixSi+1 ySi+2 z-SiySi+1 xSi+2 z ), and interchain interactions on the thermodynamic properties. The field and temperature dependences of the polarization, specific heat, and correlation functions are found. It is shown that an interchain coupling triggers a phase transition indicated by the divergence of the renormalized coupling parameters.

  3. Successive field-induced transitions in BiFeO 3 around room temperature

    DOE PAGES

    Kawachi, Shiro; Miyake, Atsushi; Ito, Toshimitsu; ...

    2017-07-21

    The effects of high magnetic fields applied perpendicular to the spontaneous ferroelectric polarization on single crystals of BiFeO 3 were investigated in this paper through magnetization, magnetostriction, and neutron diffraction measurements. The magnetostriction measurements revealed lattice distortion of 2 x 10 -5 during the reorientation process of the cycloidal spin order by applied magnetic fields. Furthermore, anomalous changes in magnetostriction and electric polarization at a larger field demonstrate an intermediate phase between cycloidal and canted antiferromagnetic states, where a large magnetoelectric effect was observed. Neutron diffraction measurements clarified that incommensurate spin modulation along the [110] hex direction in the cycloidalmore » phase becomes Q = 0 commensurate along this direction in the intermediate phase. Finally, theoretical calculations based on the standard spin Hamiltonian of this material suggest an antiferromagnetic cone-type spin order in the intermediate phase.« less

  4. Magnetic-field-induced effects in the electronic structure of itinerant d- and f-metal systems

    NASA Astrophysics Data System (ADS)

    Grechnev, G. E.

    2009-08-01

    A paramagnetic response of transition metals and itinerant d- and f-metal compounds in an external magnetic field is studied by employing ab initio full-potential LMTO method in the framework of the local spin density approximation. Within this method the anisotropy of the magnetic susceptibility in hexagonal close-packed transition metals is evaluated for the first time. This anisotropy is owing to the orbital Van Vleck-like paramagnetic susceptibility, which is revealed to be substantial in transition-metal systems due to hybridization effects in the electronic structure. It is demonstrated that compounds TiCo, Ni3Al, YCo2, CeCo2, YNi5, LaNi5, and CeNi5 are strong paramagnets close to the quantum critical point. For these systems the Stoner approximation underestimates the spin susceptibility, whereas the calculated field-induced spin moments provide a good description of the large paramagnetic susceptibilities and magnetovolume effects. It is revealed that an itinerant description of hybridized f electrons produces magnetic properties of the compounds CeCo2, CeNi5, UAl3, UGa3, USi3, and UGe3 in close agreement with experiment. In the uranium compounds UX3 the strong spin-orbit coupling together with hybridization effects give rise to peculiar magnetic states in which the field-induced spin moments are antiparallel to the external field, and the magnetic response is dominated by the orbital contribution.

  5. Bilayer Ising system designed with half-integer spins: Magnetic hysteresis, compensation behaviors and phase diagrams

    NASA Astrophysics Data System (ADS)

    Kantar, Ersin

    2016-08-01

    In this paper, within the framework of the effective-field theory with correlation, mixed spin-1/2 and spin-3/2 bilayer system on a square lattice is studied. The characteristic behaviors for the magnetic hysteresis, compensation types and phase diagrams depending on effect of the surface and interface exchange parameters as well as crystal field are investigated. From the behavior of total magnetization as a function of the magnetic field and temperature, we obtain the single, double and triple hysteresis loops and the L-, Q-, P-, S-, and N-type compensation behaviors in the system. Moreover, we detect the more effective the J1 and crystal field parameters on the bilayer Ising model according to the behaviors of the phase diagrams.

  6. Anomalous Nonlocal Resistance and Spin-Charge Conversion Mechanisms in Two-Dimensional Metals

    NASA Astrophysics Data System (ADS)

    Huang, Chunli; Chong, Y. D.; Cazalilla, Miguel A.

    2017-09-01

    We uncover two anomalous features in the nonlocal transport behavior of two-dimensional metallic materials with spin-orbit coupling. First, the nonlocal resistance can have negative values and oscillate with distance, even in the absence of a magnetic field. Second, the oscillations of the nonlocal resistance under an applied in-plane magnetic field (the Hanle effect) can be asymmetric under field reversal. Both features are produced by direct magnetoelectric coupling, which is possible in materials with broken inversion symmetry but was not included in previous spin-diffusion theories of nonlocal transport. These effects can be used to identify the relative contributions of different spin-charge conversion mechanisms. They should be observable in adatom-functionalized graphene, and they may provide the reason for discrepancies in recent nonlocal transport experiments on graphene.

  7. Ballistic Spin Field Effect Transistor Based on Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Osintsev, Dmitri; Sverdlov, Viktor; Stanojevic, Zlatan; Selberherr, Siegfried

    2011-03-01

    We investigate the properties of ballistic spin field-effect transistors build on silicon nanowires. An accurate description of the conduction band based on the k . p} model is necessary in thin and narrow silicon nanostructures. The subband effective mass and subband splitting dependence on the nanowire dimensions is analyzed and used in the transport calculations. The spin transistor is formed by sandwiching the nanowire between two ferromagnetic metallic contacts. Delta-function barriers at the interfaces between the contacts and the silicon channel are introduced. The major contribution to the electric field-dependent spin-orbit interaction in confined silicon systems is due to the interface-induced inversion asymmetry which is of the Dresselhaus type. We study the current and conductance through the system for the contacts being in parallel and anti-parallel configurations. Differences between the [100] and [110] orientated structures are investigated in details. This work is supported by the European Research Council through the grant #247056 MOSILSPIN.

  8. Sub-millitesla magnetic field effects on the recombination reaction of flavin and ascorbic acid radicals

    NASA Astrophysics Data System (ADS)

    Evans, Emrys W.; Kattnig, Daniel R.; Henbest, Kevin B.; Hore, P. J.; Mackenzie, Stuart R.; Timmel, Christiane R.

    2016-08-01

    Even though the interaction of a <1 mT magnetic field with an electron spin is less than a millionth of the thermal energy at room temperature (kBT), it still can have a profound effect on the quantum yields of radical pair reactions. We present a study of the effects of sub-millitesla magnetic fields on the photoreaction of flavin mononucleotide with ascorbic acid. Direct control of the reaction pathway is achieved by varying the rate of electron transfer from ascorbic acid to the photo-excited flavin. At pH 7.0, we verify the theoretical prediction that, apart from a sign change, the form of the magnetic field effect is independent of the initial spin configuration of the radical pair. The data agree well with model calculations based on a Green's function approach that allows multinuclear spin systems to be treated including the diffusive motion of the radicals, their spin-selective recombination reactions, and the effects of the inter-radical exchange interaction. The protonation states of the radicals are uniquely determined from the form of the magnetic field-dependence. At pH 3.0, the effects of two chemically distinct radical pair complexes combine to produce a pronounced response to ˜500 μT magnetic fields. These findings are relevant to the magnetic responses of cryptochromes (flavin-containing proteins proposed as magnetoreceptors in birds) and may aid the evaluation of effects of weak magnetic fields on other biologically relevant electron transfer processes.

  9. The dominancy of damping like torque for the current induced magnetization switching in Pt/Co/W multilayers

    NASA Astrophysics Data System (ADS)

    Bekele, Zelalem Abebe; Meng, Kangkang; Miao, Jun; Xu, Xiaoguang; Jiang, Yong

    2018-06-01

    Two classes of spin-orbit coupling (SOC) mechanisms have been considered as candidate sources for the spin orbit torque (SOT): the spin Hall Effect (SHE) in heavy metals with strong SOC and the Rashba effect arising from broken inversion symmetry at material surfaces and interfaces. In this work, we have investigated the SOT in perpendicularly magnetized Pt/Co/W films, which is compared with the results in Pt/Co/AlOx films. Using the harmonic measurements, we have characterized the effective fields corresponding to the damping like torque and the field like torque. Theoretically, in the case of the asymmetrical Pt/Co/W trilayers with opposite sign of spin Hall angle, both damping like torque and field like torque due to the SHE and the Rashba effect will be enhanced, but we have found the dominancy of damping like torque in the Pt/Co/W films. It is much different from the results in the Pt/Co/AlOx films, in which both the damping like torque and the field like torque are evident.

  10. Electrons in strong electromagnetic fields: spin effects and radiation reaction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Wen, Meng; Keitel, Christoph H.

    2017-05-01

    Various different classical models of electrons including their spin degree of freedom are commonly applied to describe the coupled dynamics of relativistic electron motion and spin precession in strong electromagnetic fields. The spin dynamics is usually governed by the Thomas-Bargmann-Michel-Telegdi equation [1, 2] in these models, while the electron's orbital motion follows the (modified) Lorentz force and a spin-dependent Stern-Gerlach force. Various classical models can lead to different or even contradicting predictions how the spin degree of freedom modifies the electron's orbital motion when the electron moves in strong electromagnetic fields. This discrepancy is rooted in the model-specific energy dependency of the spin induced relativistic Stern-Gerlach force acting on the electron. The Frenkel model [3, 4] and the classical Foldy-Wouthuysen model 5 are compared exemplarily against each other and against the quantum mechanical Dirac equation in order to identify parameter regimes where these classical models make different predictions [6, 7]. Our theoretical results allow for experimental tests of these models. In the setup of the longitudinal Stern-Gerlach effect, the Frenkel model and classical Foldy-Wouthuysen model lead in the relativistic limit to qualitatively different spin effects on the electron trajectory. Furthermore, it is demonstrated that in tightly focused beams in the near infrared the effect of the Stern-Gerlach force of the Frenkel model becomes sufficiently large to be potentially detectable in an experiment. Among the classical spin models, the Frenkel model is certainly prominent for its long history and its wide application. Our results, however, suggest that the classical Foldy-Wouthuysen model is superior as it is qualitatively in better agreement with the quantum mechanical Dirac equation. In ultra strong laser setups at parameter regimes where effects of the Stern-Gerlach force become relevant also radiation reaction effects are expected to set in. We incorporate radiation reaction classically via the Landau-Lifshitz equation and demonstrate that although radiation reaction effects can have a significant effect on the electron trajectory, the Frenkel model and the classical Foldy-Wouthuysen model remain distinguishable also if radiation reaction effects are taken into account. Our calculations are also suitable to verify the Landau-Lifshitz equation for the radiation reaction of electrons and other spin one-half particles. 1. Thomas, L. H., "I. The kinematics of an electron with an axis," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 3(13), 1-22 (1927). 2. Bargmann, V., Michel, L., and Telegdi, V. L., "Precession of the polarization of particles moving in a homogeneous electromagnetic field," Phys. Rev. Lett. 2(10), 435-436 (1959). 3. Frenkel, J., "Die Elektrodynamik des rotierenden Elektrons," Z. Phys. 37(4-5), 243-262 (1926). 4. Frenkel, J., "Spinning electrons," Nature (London) 117(2949), 653-654 (1926). 5. Silenko, A. J., "Foldy-Wouthyusen transformation and semiclassical limit for relativistic particles in strong external fields," Phys. Rev. A 77(1), 012116 (2008). 6. Wen, M., Bauke, H., and Keitel, C. H., "Identifying the Stern-Gerlach force of classical electron dynamics," Sci. Rep. 6, 31624 (2016). 7. Wen, M., Keitel, C. H., and Bauke, H., "Spin one-half particles in strong electromagnetic fields: spin effects and radiation reaction," arXiv:1610.08951 (2016).

  11. Effects of external magnetic fields and Rashba spin-orbit coupling on spin conductance in graphene

    NASA Astrophysics Data System (ADS)

    Shirkani, H.; Amiri, F.; Golshan, M. M.

    2013-12-01

    The present article is concerned with spin conductance in graphene (SCG) when both the application of an external magnetic field and Rashba spin-orbit coupling (RSOC) are taken into account. Introducing a Casimir operator, we analyze the structure of total Hamiltonian and demonstrate how the matrix elements along with the summations involved in the suitably adopted Kubo’s formula, may be analytically calculated. From the results so-obtained one finds that, in addition to discrete and symmetric behavior of SCG against the external field, it exhibits large peaks as high as six times that in ordinary two dimensional electron gases. Moreover, it is shown that for any Fermi energy the SCG asymptotically approaches a value three times larger than the standard unit of (e/4π), for large magnetic fields. Effects of the magnetic field, RSOC and Fermi energy on the characteristics of SCG are also discussed. The material presented in this article thus provides novel means of controlling the SCG by external agents.

  12. SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Greene, Thomas P.; Pinzon, Giovanni

    2010-05-10

    We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, wemore » neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than {approx}3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.« less

  13. Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature

    NASA Astrophysics Data System (ADS)

    Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-09-01

    Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.

  14. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Büttner, Felix; Lemesh, Ivan; Schneider, Michael; Pfau, Bastian; Günther, Christian M.; Hessing, Piet; Geilhufe, Jan; Caretta, Lucas; Engel, Dieter; Krüger, Benjamin; Viefhaus, Jens; Eisebitt, Stefan; Beach, Geoffrey S. D.

    2017-11-01

    Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii-Moriya interaction (DMI). The last favours homochiral skyrmions, whose motion is driven by spin-orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin-orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect. This leads to torques that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field. Although spin-orbit torques led to domain nucleation in continuous films and to stochastic nucleation of skyrmions in magnetic tracks, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs.

  15. Field-cycling NMR experiments in an ultra-wide magnetic field range: relaxation and coherent polarization transfer.

    PubMed

    Zhukov, Ivan V; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Grishin, Yuri A; Vieth, Hans-Martin; Ivanov, Konstantin L

    2018-05-09

    An experimental method is described allowing fast field-cycling Nuclear Magnetic Resonance (NMR) experiments over a wide range of magnetic fields from 5 nT to 10 T. The method makes use of a hybrid technique: the high field range is covered by positioning the sample in the inhomogeneous stray field of the NMR spectrometer magnet. For fields below 2 mT a magnetic shield is mounted on top of the spectrometer; inside the shield the magnetic field is controlled by a specially designed coil system. This combination allows us to measure T1-relaxation times and nuclear Overhauser effect parameters over the full range in a routine way. For coupled proton-carbon spin systems relaxation with a common T1 is found at low fields, where the spins are "strongly coupled". In some cases, experiments at ultralow fields provide access to heteronuclear long-lived spin states. Efficient coherent polarization transfer is seen for proton-carbon spin systems at ultralow fields as follows from the observation of quantum oscillations in the polarization evolution. Applications to analysis and the manipulation of heteronuclear spin systems are discussed.

  16. Spin and valley filter across line defect in silicene

    NASA Astrophysics Data System (ADS)

    Wang, Sake; Ren, Chongdan; Li, Yunfang; Tian, Hongyu; Lu, Weitao; Sun, Minglei

    2018-05-01

    We propose a new scheme to achieve an effective spin/valley filter in silicene with extended line defect on the basis of spin–valley coupling due to the intrinsic spin-orbit coupling (SOC). The transmission coefficient of the spin/valley states is seriously affected by the SOC. When a perpendicular magnetic field is applied on one side of the line defect, one valley state will experience backscattering, but the other valley will not; this leads to high valley polarization in all transmission directions. Moreover, the spin/valley polarization can be enhanced to 96% with the aid of a perpendicular electric field.

  17. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    NASA Astrophysics Data System (ADS)

    Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.

    2017-12-01

    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.

  18. Antiferromagnetic nano-oscillator in external magnetic fields

    NASA Astrophysics Data System (ADS)

    Checiński, Jakub; Frankowski, Marek; Stobiecki, Tomasz

    2017-11-01

    We describe the dynamics of an antiferromagnetic nano-oscillator in an external magnetic field of any given time distribution. The oscillator is powered by a spin current originating from spin-orbit effects in a neighboring heavy metal layer and is capable of emitting a THz signal in the presence of an additional easy-plane anisotropy. We derive an analytical formula describing the interaction between such a system and an external field, which can affect the output signal character. Interactions with magnetic pulses of different shapes, with a sinusoidal magnetic field and with a sequence of rapidly changing magnetic fields are discussed. We also perform numerical simulations based on the Landau-Lifshitz-Gilbert equation with spin-transfer torque effects to verify the obtained results and find a very good quantitative agreement between analytical and numerical predictions.

  19. Nonlinear spin conductance of yttrium iron garnet thin films driven by large spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Thiery, N.; Draveny, A.; Naletov, V. V.; Vila, L.; Attané, J. P.; Beigné, C.; de Loubens, G.; Viret, M.; Beaulieu, N.; Ben Youssef, J.; Demidov, V. E.; Demokritov, S. O.; Slavin, A. N.; Tiberkevich, V. S.; Anane, A.; Bortolotti, P.; Cros, V.; Klein, O.

    2018-02-01

    We report high power spin transfer studies in open magnetic geometries by measuring the spin conductance between two nearby Pt wires deposited on top of an epitaxial yttrium iron garnet thin film. Spin transport is provided by propagating spin waves that are generated and detected by direct and inverse spin Hall effects. We observe a crossover in spin conductance from a linear transport dominated by exchange magnons (low current regime) to a nonlinear transport dominated by magnetostatic magnons (high current regime). The latter are low-damping magnetic excitations, located near the spectral bottom of the magnon manifold, with a sensitivity to the applied magnetic field. This picture is supported by microfocus Brillouin light-scattering spectroscopy. Our findings could be used for the development of controllable spin conductors by variation of relatively weak magnetic fields.

  20. Inverse spin-valve effect in nanoscale Si-based spin-valve devices

    NASA Astrophysics Data System (ADS)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2017-12-01

    We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.

  1. Magneto-Seebeck effect in spin valves

    NASA Astrophysics Data System (ADS)

    Zhang, X. M.; Wan, C. H.; Wu, H.; Tang, P.; Yuan, Z. H.; Zhang, Q. T.; Zhang, X.; Tao, B. S.; Fang, C.; Han, X. F.

    2017-10-01

    The magneto-Seebeck (MS) effect, which is also called magneto-thermo-power, was observed in Co/Cu/Co and NiFe/Cu/Co spin valves. Their Seebeck coefficients in the parallel state were larger than those in the antiparallel state, and the MS ratio defined as (SAP -SP)/SP could reach -9% in our case. The MS effect originated not only from trivial giant magnetoresistance but also from spin current generated due to spin-polarized thermoelectric conductivity of ferromagnetic materials and subsequent modulation of the spin current by different spin configurations in spin valves. A simple Mott two-channel model reproduced a -11% MS effect for the Co/Cu/Co spin valves, qualitatively consistent with our observations. The MS effect could be applied for simultaneously sensing the temperature gradient and the magnetic field and also be possibly applied to determine spin polarization of thermoelectric conductivity and the Seebeck coefficient of ferromagnetic thin films.

  2. Spin- and valley-dependent electronic band structure and electronic heat capacity of ferromagnetic silicene in the presence of strain, exchange field and Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Kazzaz, Houshang Araghi

    2017-10-01

    We studied how the strain, induced exchange field and extrinsic Rashba spin-orbit coupling (RSOC) enhance the electronic band structure (EBS) and electronic heat capacity (EHC) of ferromagnetic silicene in presence of external electric field (EF) by using the Kane-Mele Hamiltonian, Dirac cone approximation and the Green's function approach. Particular attention is paid to investigate the EHC of spin-up and spin-down bands at Dirac K and K‧ points. We have varied the EF, strain, exchange field and RSOC to tune the energy of inter-band transitions and consequently EHC, leading to very promising features for future applications. Evaluation of EF exhibits three phases: Topological insulator (TI), valley-spin polarized metal (VSPM) and band insulator (BI) at given aforementioned parameters. As a new finding, we have found a quantum anomalous Hall phase in BI regime at strong RSOCs. Interestingly, the effective mass of carriers changes with strain, resulting in EHC behaviors. Here, exchange field has the same behavior with EF. Finally, we have confirmed the reported and expected symmetry results for both Dirac points and spins with the study of valley-dependent EHC.

  3. Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field

    NASA Astrophysics Data System (ADS)

    Hummel, Frederic; Fey, Christian; Schmelcher, Peter

    2018-04-01

    We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.

  4. Creation of vector bosons by an electric field in curved spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kangal, E. Ersin; Yanar, Hilmi; Havare, Ali

    2014-04-15

    We investigate the creation rate of massive spin-1 bosons in the de Sitter universe by a time-dependent electric field via the Duffin–Kemmer–Petiau (DKP) equation. Complete solutions are given by the Whittaker functions and particle creation rate is computed by using the Bogoliubov transformation technique. We analyze the influence of the electric field on the particle creation rate for the strong and vanishing electric fields. We show that the electric field amplifies the creation rate of charged, massive spin-1 particles. This effect is analyzed by considering similar calculations performed for scalar and spin-1/2 particles. -- Highlights: •Duffin–Kemmer–Petiau equation is solved exactlymore » in the presence of an electrical field. •Solutions were made in (1+1)-dimensional curved spacetime. •Particle creation rate for the de Sitter model is calculated. •Pure gravitational or pure electrical field effect on the creation rate is analyzed.« less

  5. Spin generation by strong inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Finkler, Ilya; Engel, Hans-Andreas; Rashba, Emmanuel; Halperin, Bertrand

    2007-03-01

    Motivated by recent experiments [1], we propose a model with extrinsic spin-orbit interaction, where an inhomogeneous electric field E in the x-y plane can give rise, through nonlinear effects, to a spin polarization with non-zero sz, away from the sample boundaries. The field E induces a spin current js^z= z x(αjc+βE), where jc=σE is the charge current, and the two terms represent,respectively, the skew scattering and side-jump contributions. [2]. The coefficients α and β are assumed to be E- independent, but conductivity σ is field dependent. We find the spin density sz by solving the equation for spin diffusion and relaxation with a source term ∇.js^z. For sufficiently low fields, jc is linear in E, and the source term vanishes, implying that sz=0 away from the edges. However, for large fields, σ varies with E. Solving the diffusion equation in a T-shaped geometry, where the electric current propagates along the main channel, we find spin accumulation near the entrance of the side channel, similar to experimental findings [1]. Also, we present a toy model where spin accumulation away from the boundary results from a nonlinear and anisotropic conductivity. [1] V. Sih, et al, Phys. Rev. Lett. 97, 096605 (2006). [2] H.-A. Engel, B.I. Halperin, E.I.Rashba, Phys. Rev. Lett. 95, 166605 (2005).

  6. Neutron scattering investigations of frustated magnets

    NASA Astrophysics Data System (ADS)

    Fennell, Tom

    This thesis describes the experimental investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Ho2Ti207 and Dy2Ti207 are examples of spin ices, in which the manifold of disordered magnetic groundstates maps onto that of the proton positions in ice. Using single crystal neutron scattering to measure Bragg and diffuse scattering, the effect of applying magnetic fields along different directions in the crystal was investigated. Different schemes of degeneracy removal were observed for different directions. Long and short range order, and the coexistence of both could be observed by this technique.The field and temperature dependence of magnetic ordering was studied in Ho2Ti207 and Dy2Ti207. Ho2Ti2()7 has been more extensively investigated. The field was applied on [00l], [hh0], [hhh] and [hh2h]. Dy2Ti207 was studied with the field applied on [00l] and [hho] but more detailed information about the evolution of the scattering pattern across a large area of reciprocal space was obtained.With the field applied on [00l] both materials showed complete degeneracy removal. A long range ordered structure was formed. Any magnetic diffuse scattering vanished and was entirely replaced by strong magnetic Bragg scattering. At T =0.05 K both materials show unusual magnetization curves, with a prominent step and hysteresis. This was attributed to the extremely slow dynamics of spin ice materials at this temperature.Both materials were studied in greatest detail with the field applied on [hh0]. The coexistence of long and short range order was observed when the field was raised at T = 0.05 K. The application of a field in this direction separated the spin system into two populations. One could be ordered by the field, and one remained disordered. However, via spin-spin interactions, the field restricted the degeneracy of the disordered spin population. The neutron scattering pattern of Dy2Ti207 shows that the spin system was separated into two populations of spin chains, one set ordered and the other only partly so. Cycling the field induced dynamics in these chains, again via spin-spin interactions, as the field acted on the ordered si)in chains. These field regulated dynamics were particularly noted in Ho2Ti207 where a full field cycle was executed. Raising the temperature in an applied field also activated the dynamics of the partially ordered spin chains. The continued evolution of the spin system toward a more ordered state, when dynamics can be induced, suggested that a spin ice does indeed have an energetic groundstate.The remaining two directions probed in Ho2Ti20y both have two populations of spins with different Zeeman energies. The competition of the field and the spin- spin interactions was used to investigate the onset of the ice rules regime (field on [hh2h] and the breaking of the ice rules by a strong field (field on [hhh]). It was shown that the behavior of Ho2Ti207 with field on [hhh] was consistent with the "kagome ice" hypothesis.

  7. Giant magnetostriction effect near onset of spin reorientation in MnBi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Y.; Ryan, P. J.; McGuire, Michael A.

    In materials undergoing spontaneous symmetry breaking transitions, the emergence of multiple competing order parameters is pervasive. Employing in-field x-ray diffraction, we investigate the temperature and magnetic field dependence of the crystallographic structure of MnBi, elucidating the microscopic interplay between lattices and spin. The hexagonal phase of MnBi undergoes a spin reorientation transition (TSR), whereby the easy axis direction changes from the c axis to the basal plane. Across TSR, an abrupt symmetry change is accompanied by a clear sign change in the magnetostrictive coefficient, revealing that this transition corresponds to the onset of the spin reorientation. In the vicinity ofmore » TSR, a significantly larger in-plane magnetostrictive effect is observed, presenting the emergence of an intermediate phase that is highly susceptible to an applied magnetic field. X-ray linear dichroism shows that asymmetric Bi and Mn p orbitals do not play a role in the spin reorientation. Furthermore, this work suggests that the spin reorientation is caused by structural modification rather than changes in the local electronic configuration, providing a strategy for manipulating the magnetic anisotropy by external strain.« less

  8. Giant magnetostriction effect near onset of spin reorientation in MnBi

    DOE PAGES

    Choi, Y.; Ryan, P. J.; McGuire, Michael A.; ...

    2018-05-11

    In materials undergoing spontaneous symmetry breaking transitions, the emergence of multiple competing order parameters is pervasive. Employing in-field x-ray diffraction, we investigate the temperature and magnetic field dependence of the crystallographic structure of MnBi, elucidating the microscopic interplay between lattices and spin. The hexagonal phase of MnBi undergoes a spin reorientation transition (TSR), whereby the easy axis direction changes from the c axis to the basal plane. Across TSR, an abrupt symmetry change is accompanied by a clear sign change in the magnetostrictive coefficient, revealing that this transition corresponds to the onset of the spin reorientation. In the vicinity ofmore » TSR, a significantly larger in-plane magnetostrictive effect is observed, presenting the emergence of an intermediate phase that is highly susceptible to an applied magnetic field. X-ray linear dichroism shows that asymmetric Bi and Mn p orbitals do not play a role in the spin reorientation. Furthermore, this work suggests that the spin reorientation is caused by structural modification rather than changes in the local electronic configuration, providing a strategy for manipulating the magnetic anisotropy by external strain.« less

  9. Optical spin orientation of minority holes in a modulation-doped GaAs/(Ga,Al)As quantum well

    NASA Astrophysics Data System (ADS)

    Koudinov, A. V.; Dzhioev, R. I.; Korenev, V. L.; Sapega, V. F.; Kusrayev, Yu. G.

    2016-04-01

    The optical spin orientation effect in a GaAs/(Ga,Al)As quantum well containing a high-mobility two-dimensional electron gas was found to be due to spin-polarized minority carriers, the holes. The observed oscillations of both the intensity and polarization of the photoluminescence in a magnetic field are well described in a model whose main elements are resonant absorption of the exciting light by the Landau levels and mixing of the heavy- and light-hole subbands. After subtraction of these effects, the observed influence of magnetic fields on the spin polarization can be well interpreted by a standard approach of the optical orientation method. The spin relaxation of holes is controlled by the Dyakonov-Perel' mechanism. Deceleration of the spin relaxation by the magnetic field occurs through the Ivchenko mechanism—due to the cyclotron motion of holes. Mobility of holes was found to be two orders of magnitude smaller than that of electrons, being determined by the scattering of holes by the electron gas.

  10. Giant magnetostriction effect near onset of spin reorientation in MnBi

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Ryan, P. J.; McGuire, M. A.; Sales, B. C.; Kim, J.-W.

    2018-05-01

    In materials undergoing spontaneous symmetry breaking transitions, the emergence of multiple competing order parameters is pervasive. Employing in-field x-ray diffraction, we investigate the temperature and magnetic field dependence of the crystallographic structure of MnBi, elucidating the microscopic interplay between lattices and spin. The hexagonal phase of MnBi undergoes a spin reorientation transition (TSR), whereby the easy axis direction changes from the c axis to the basal plane. Across TSR, an abrupt symmetry change is accompanied by a clear sign change in the magnetostrictive coefficient, revealing that this transition corresponds to the onset of the spin reorientation. In the vicinity of TSR, a significantly larger in-plane magnetostrictive effect is observed, presenting the emergence of an intermediate phase that is highly susceptible to an applied magnetic field. X-ray linear dichroism shows that asymmetric Bi and Mn p orbitals do not play a role in the spin reorientation. This work suggests that the spin reorientation is caused by structural modification rather than changes in the local electronic configuration, providing a strategy for manipulating the magnetic anisotropy by external strain.

  11. Observation of zero-point quantum fluctuations of a single-molecule magnet through the relaxation of its nuclear spin bath.

    PubMed

    Morello, A; Millán, A; de Jongh, L J

    2014-03-21

    A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.

  12. Random Fields and Collective Effects in Molecular Magnets

    DTIC Science & Technology

    2018-01-29

    longitudinal fields the final state consists of only partially reversed spins. Further, we measured the front speed as a function of applied magnetic...field. The theory of magnetic deflagration, together with a modification that takes into account the partial spin reversal, fits the transverse field...Conference Paper or Presentation Conference Name: APS March Meeting 2016 Conference Location: Baltimore, Paper Title: Time-resolved Measurements

  13. Spin orbit coupling in graphene through gold intercalation

    NASA Astrophysics Data System (ADS)

    Mukherjee, Paromita; O'Farrell, Eoin; Tan, Jun You; Yeo, Yuting; Koon, G. K. W.; Özyilmaz, Barbaros; Watanabe, K.; Taniguchi, T.

    Graphene has a very low value of spin orbit coupling. There have been several efforts to enhance the spin orbit interaction in graphene. Our previous work has provided clear evidence that spin orbit coupling can be induced in graphene through Rashba interaction with intercalated gold. By applying an additional electric field, this splitting can be increased or decreased depending on its relative direction with the internal electric field induced by gold in graphene. A large negative magnetoresistance due to an in-plane magnetic field has been observed which can be attributed to the fact that a magnetic moment is induced in gold due to spin-orbit coupling. Anomalous Hall Effect which decreases with an in-plane magnetic field further suggests the formation of a collective magnetic phase. We would like to further elaborate on the spin-orbit coupling in graphene using non local measurements. Hence, by intercalating graphene with gold, we can have a direct electric manipulation of the spin degrees of freedom and lead to its much awaited applications in spintronics, quantum computing. National University of Singapore, Singapore.

  14. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.

    2016-05-15

    We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determinedmore » by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.« less

  15. A state interaction spin-orbit coupling density matrix renormalization group method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe{submore » 2}S{sub 2}(SCH{sub 3}){sub 4}]{sup 3−}, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.« less

  16. Electrical spin injection from CoFe2O4 into p-Si semiconductor across MgO tunnel barrier for spin electronics

    NASA Astrophysics Data System (ADS)

    Panda, J.; Maji, Nilay; Nath, T. K.

    2017-05-01

    The room temperature spin injection and detection in non magnetic p-Si semiconductor have been studied in details in our CoFe2O4 (CFO)/MgO/p-Si heterojunction. The 3-terminal tunnel contacts have been made on the device for transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The spin accumulation in non magnetic p-Si semiconductor has been observed at different bias current under the applied magnetic field parallel to the film plane in the temperature range of 40-300 K. We have observed a giant spin accumulation in p-Si semiconductor using MgO/CFO tunnel contact. The Hanley effect is used to control the reduction of spin accumulation by applying magnetic field perpendicular to the carrier spin in the p-Si. The accumulated spin signal decays as a function of applied magnetic field for fixed bias current. These results will enable utilization of the spin degree of freedom in complementary Si devices and its further development.

  17. Hf thickness dependence of spin-orbit torques in Hf/CoFeB/MgO heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramaswamy, Rajagopalan; Qiu, Xuepeng; Dutta, Tanmay

    We have studied the spin-orbit torques in perpendicularly magnetized Hf/CoFeB/MgO system, by systematically varying the thickness of Hf underlayer. We have observed a sign change of effective fields between Hf thicknesses of 1.75 and 2 nm, indicating that competing mechanisms, such as the Rashba and spin Hall effects, contribute to spin-orbit torques in our system. For larger Hf thicknesses (>2 nm), both the components of spin-orbit torques arise predominantly from the bulk spin Hall effect. We have also confirmed these results using spin-orbit torque induced magnetization switching measurements. Our results could be helpful in designing Hf based SOT devices.

  18. Effect of External Economic-Field Cycle and Market Temperature on Stock-Price Hysteresis: Monte Carlo Simulation on the Ising Spin Model

    NASA Astrophysics Data System (ADS)

    Punya Jaroenjittichai, Atchara; Laosiritaworn, Yongyut

    2017-09-01

    In this work, the stock-price versus economic-field hysteresis was investigated. The Ising spin Hamiltonian was utilized as the level of ‘disagreement’ in describing investors’ behaviour. The Ising spin directions were referred to an investor’s intention to perform his action on trading his stock. The periodic economic variation was also considered via the external economic-field in the Ising model. The stochastic Monte Carlo simulation was performed on Ising spins, where the steady-state excess demand and supply as well as the stock-price were extracted via the magnetization. From the results, the economic-field parameters and market temperature were found to have significant effect on the dynamic magnetization and stock-price behaviour. Specifically, the hysteresis changes from asymmetric to symmetric loops with increasing market temperature and economic-field strength. However, the hysteresis changes from symmetric to asymmetric loops with increasing the economic-field frequency, when either temperature or economic-field strength is large enough, and returns to symmetric shape at very high frequencies. This suggests competitive effects among field and temperature factors on the hysteresis characteristic, implying multi-dimensional complicated non-trivial relationship among inputs-outputs. As is seen, the results reported (over extensive range) can be used as basis/guideline for further analysis/quantifying how economic-field and market-temperature affect the stock-price distribution on the course of economic cycle.

  19. Spin caloritronics, origin and outlook

    NASA Astrophysics Data System (ADS)

    Yu, Haiming; Brechet, Sylvain D.; Ansermet, Jean-Philippe

    2017-03-01

    Spin caloritronics refers to research efforts in spintronics when a heat current plays a role. In this review, we start out by reviewing the predictions that can be drawn from the thermodynamics of irreversible processes. This serves as a conceptual framework in which to analyze the interplay of charge, spin and heat transport. This formalism predicts tensorial relations between vectorial quantities such as currents and gradients of chemical potentials or of temperature. Transverse effects such as the Nernst or Hall effects are predicted on the basis that these tensors can include an anti-symmetric contribution, which can be written with a vectorial cross-product. The local symmetry of the system may determine the direction of the vector defining such transverse effects, such as the surface of an isotropic medium. By including magnetization as state field in the thermodynamic description, spin currents appear naturally from the continuity equation for the magnetization, and dissipative spin torques are derived, which are charge-driven or heat-driven. Thermodynamics does not give the strength of these effects, but may provide relationships between them. Based on this framework, the review proceeds by showing how these effects have been observed in various systems. Spintronics has become a vast field of research, and the experiments highlighted in this review pertain only to heat effects on transport and magnetization dynamics, such as magneto-thermoelectric power, or the spin-dependence of the Seebeck effect, the spin-dependence of the Peltier effect, the spin Seebeck effect, the magnetic Seebeck effect, or the Nernst effect. The review concludes by pointing out predicted effects that are yet to be verified experimentally, and in what novel materials the standard thermal spin effects could be investigated.

  20. Spin dynamics in the single-ion magnet [Er(W5O18) 2 ] 9 -

    NASA Astrophysics Data System (ADS)

    Mariani, M.; Borsa, F.; Graf, M. J.; Sanna, S.; Filibian, M.; Orlando, T.; Sabareesh, K. P. V.; Cardona-Serra, S.; Coronado, E.; Lascialfari, A.

    2018-04-01

    In this work we present a detailed NMR and μ+SR investigation of the spin dynamics in the new hydrated sodium salt containing the single-ion magnet [Er(W5O18) 2 ] 9 -. The 1HNMR absorption spectra at various applied magnetic fields present a line broadening on decreasing temperature which indicates a progressive spin freezing of the single-molecule magnetic moments. The onset of quasistatic local magnetic fields, due to spin freezing, is observed also in the muon relaxation curves at low temperature. Both techniques yield a local field distribution of the order of 0.1-0.2 T, which appears to be of dipolar origin. On decreasing the temperature, a gradual loss of the 1HNMR signal intensity is observed, a phenomenon known as wipe-out effect. The effect is analyzed quantitatively on the basis of a simple model which relies on the enhancement of the NMR spin-spin, T2-1, relaxation rate due to the slowing down of the magnetic fluctuations. Measurements of spin-lattice relaxation rate T1-1 for 1HNMR and of the muon longitudinal relaxation rate λ show an increase as the temperature is lowered. However, while for the NMR case the signal is lost before reaching the very slow fluctuation region, the muon spin-lattice relaxation λ can be followed until very low temperatures and the characteristic maximum, reached when the electronic spin fluctuation frequency becomes of the order of the muon Larmor frequency, can be observed. At high temperatures, the data can be well reproduced with a simple model based on a single correlation time τ =τ0exp (Δ /T ) for the magnetic fluctuations. However, to fit the relaxation data for both NMR and μ+SR over the whole temperature and magnetic field range, one has to use a more detailed model that takes into account spin-phonon transitions among the E r3 + magnetic sublevels. A good agreement for both proton NMR and μ+SR relaxation is obtained, which confirms the validity of the energy level scheme previously calculated from an effective crystal field Hamiltonian.

  1. Rapid Transition of the Hole Rashba Effect from Strong Field Dependence to Saturation in Semiconductor Nanowires.

    PubMed

    Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex

    2017-09-22

    The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.

  2. Towards electrical spin injection into LaAlO3-SrTiO3.

    PubMed

    Bibes, M; Reyren, N; Lesne, E; George, J-M; Deranlot, C; Collin, S; Barthélémy, A; Jaffrès, H

    2012-10-28

    Future spintronics devices will be built from elemental blocks allowing the electrical injection, propagation, manipulation and detection of spin-based information. Owing to their remarkable multi-functional and strongly correlated character, oxide materials already provide such building blocks for charge-based devices such as ferroelectric field-effect transistors (FETs), as well as for spin-based two-terminal devices such as magnetic tunnel junctions, with giant responses in both cases. Until now, the lack of suitable channel materials and the uncertainty of spin-injection conditions in these compounds had however prevented the exploration of similar giant responses in oxide-based lateral spin transport structures. In this paper, we discuss the potential of oxide-based spin FETs and report magnetotransport data that suggest electrical spin injection into the LaAlO(3)-SrTiO(3) interface system. In a local, three-terminal measurement scheme, we analyse the voltage variation associated with the precession of the injected spin accumulation driven by perpendicular or longitudinal magnetic fields (Hanle and 'inverted' Hanle effects). The spin accumulation signal appears to be much larger than expected, probably owing to amplification effects by resonant tunnelling through localized states in the LaAlO(3). We give perspectives on how to achieve direct spin injection with increased detection efficiency, as well on the implementation of efficient top gating schemes for spin manipulation.

  3. Spin transport study in a Rashba spin-orbit coupling system

    PubMed Central

    Mei, Fuhong; Zhang, Shan; Tang, Ning; Duan, Junxi; Xu, Fujun; Chen, Yonghai; Ge, Weikun; Shen, Bo

    2014-01-01

    One of the most important topics in spintronics is spin transport. In this work, spin transport properties of two-dimensional electron gas in AlxGa1-xN/GaN heterostructure were studied by helicity-dependent photocurrent measurements at room temperature. Spin-related photocurrent was detected under normal incidence of a circularly polarized laser with a Gaussian distribution. On one hand, spin polarized electrons excited by the laser generate a diffusive spin polarization current, which leads to a vortex charge current as a result of anomalous circular photogalvanic effect. On the other hand, photo-induced spin polarized electrons driven by a longitudinal electric field give rise to a transverse current via anomalous Hall Effect. Both of these effects originated from the Rashba spin-orbit coupling. By analyzing spin-related photocurrent varied with laser position, the contributions of the two effects were differentiated and the ratio of the spin diffusion coefficient to photo-induced anomalous spin Hall mobility Ds/μs = 0.08 V was extracted at room temperature. PMID:24504193

  4. Nature of magnetization and lateral spin–orbit interaction in gated semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Karlsson, H.; Yakimenko, I. I.; Berggren, K.-F.

    2018-05-01

    Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin–orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree–Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.

  5. Surface Plasmon-Mediated Nanoscale Localization of Laser-Driven sub-Terahertz Spin Dynamics in Magnetic Dielectrics.

    PubMed

    Chekhov, Alexander L; Stognij, Alexander I; Satoh, Takuya; Murzina, Tatiana V; Razdolski, Ilya; Stupakiewicz, Andrzej

    2018-05-09

    We report spatial localization of the effective magnetic field generated via the inverse Faraday effect employing surface plasmon polaritons (SPPs) at Au/garnet interface. Analyzing both numerically and analytically the electric field of the SPPs at this interface, we corroborate our study with a proof-of-concept experiment showing efficient SPP-driven excitation of coherent spin precession with 0.41 THz frequency. We argue that the subdiffractional confinement of the SPP electric field enables strong spatial localization of the SPP-mediated excitation of spin dynamics. We demonstrate two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within a 100 nm layer of a dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways toward nonthermal opto-magnetic recording on the nanoscale.

  6. Magnetic and magnetocaloric properties of the exactly solvable mixed-spin Ising model on a decorated triangular lattice in a magnetic field

    NASA Astrophysics Data System (ADS)

    Gálisová, Lucia; Strečka, Jozef

    2018-05-01

    The ground state, zero-temperature magnetization process, critical behaviour and isothermal entropy change of the mixed-spin Ising model on a decorated triangular lattice in a magnetic field are exactly studied after performing the generalized decoration-iteration mapping transformation. It is shown that both the inverse and conventional magnetocaloric effect can be found near the absolute zero temperature. The former phenomenon can be found in a vicinity of the discontinuous phase transitions and their crossing points, while the latter one occurs in some paramagnetic phases due to a spin frustration to be present at zero magnetic field. The inverse magnetocaloric effect can also be detected slightly above continuous phase transitions following the power-law dependence | - ΔSisomin | ∝hn, where n depends basically on the ground-state spin ordering.

  7. DFT-based Modeling of Field-Dependent Control and Response of Nanomagnetic Molecules

    NASA Astrophysics Data System (ADS)

    Pederson, Mark

    2012-02-01

    Regardless of whether one is interested in characterizing, utilizing or controlling molecular-scale systems [1], one requisite to their understanding, design, and improvement is the ability to realistically model their response to electromagnetic fields. Since such responses are often collective their description requires an understanding of the interplay between bonding, spin, spin-orbit, vibrations, and electromagnetic fields. Inclusion of spin and magnetism influences the behaviors significantly. I provide an overview of a density-functional-based method (NRLMOL) for determining resonant tunneling of magnetization and Berry's phase oscillations in molecular magnets (primarily Mn12-Acetate and derivatives) [2] and spin-electric effects in frustrated spin systems [Na12Cu3(AsW9O33)2.3H20] [3]. The complexities related to spin- and magnetically dependent transport are compared to those of a nonmagnetic case [4]. Direct comparisons to experiments will be made. Challenges and recent progress associated with incorporating these effects into a realistic description of the frequency and amplitude dependent field driven response of many-electron/spin nanosystems will be discussed.[4pt] [1] MRP and SN Khanna, PRB 60 9566 (1999).[0pt] [2] AV Postnikov, J. Kortus & MRP, PSSB 243 2533 (2006).[0pt] [3] MF Islam, JF Nossa, CM Canali, & MRP, PRB 82 15546 (2010).[0pt] [4] N.A. Zimbovskaya, MRP, AS Blum, BR Ratna and R. Allen, JCP 130 094702 (2009).

  8. Superconducting quantum spin-Hall systems with giant orbital g-factors

    NASA Astrophysics Data System (ADS)

    Hankiewicz, Ewelina; Reinthaler, Rolf; Tkachov, Grigory

    Topological aspects of superconductivity in quantum spin-Hall systems (QSHSs) such as thin layers of three-dimensional topological insulators (3D Tis) or two-dimensional Tis are in the focus of current research. Here, we describe a novel superconducting quantum spin-Hall effect (quantum spin Hall system in the proximity to the s-wave superconductor and in the orbital in-plane magnetic field), which is protected against elastic backscattering by combined time-reversal and particle-hole symmetry. This effect is characterized by spin-polarized edge states, which can be manipulated in weak magnetic fields due to a giant effective orbital g-factor, allowing the generation of spin currents. The phenomenon provides a novel solution to the outstanding challenge of detecting the spin-polarization of the edge states. Here we propose the detection of the edge polarization in the three-terminal junction using unusual transport properties of superconducting quantum Hall-effect: a non-monotonic excess current and a zero-bias conductance splitting. We thank for the financial support the German Science Foundation (DFG), Grants No HA 5893/4-1 within SPP 1666, HA5893/5-2 within FOR1162 and TK60/1-1 (G.T.), as well the ENB graduate school ``Topological insulators''.

  9. Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction

    NASA Astrophysics Data System (ADS)

    Kumar, Punit; Singh, Shiv; Ahmad, Nafees

    2018-05-01

    Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.

  10. Exact Mapping from Many-Spin Hamiltonians to Giant-Spin Hamiltonians.

    PubMed

    Ghassemi Tabrizi, Shadan; Arbuznikov, Alexei V; Kaupp, Martin

    2018-03-26

    Thermodynamic and spectroscopic data of exchange-coupled molecular spin clusters (e.g. single-molecule magnets) are routinely interpreted in terms of two different models: the many-spin Hamiltonian (MSH) explicitly considers couplings between individual spin centers, while the giant-spin Hamiltonian (GSH) treats the system as a single collective spin. When isotropic exchange coupling is weak, the physical compatibility between both spin Hamiltonian models becomes a serious concern, due to mixing of spin multiplets by local zero-field splitting (ZFS) interactions ('S-mixing'). Until now, this effect, which makes the mapping MSH→GSH ('spin projection') non-trivial, had only been treated perturbationally (up to third order), with obvious limitations. Here, based on exact diagonalization of the MSH, canonical effective Hamiltonian theory is applied to construct a GSH that exactly matches the energies of the relevant (2S+1) states comprising an effective spin multiplet. For comparison, a recently developed strategy for the unique derivation of effective ('pseudospin') Hamiltonians, now routinely employed in ab initio calculations of mononuclear systems, is adapted to the problem of spin projection. Expansion of the zero-field Hamiltonian and the magnetic moment in terms of irreducible tensor operators (or Stevens operators) yields terms of all ranks k (up to k=2S) in the effective spin. Calculations employing published MSH parameters illustrate exact spin projection for the well-investigated [Ni(hmp)(dmb)Cl] 4 ('Ni 4 ') single-molecule magnet, which displays weak isotropic exchange (dmb=3,3-dimethyl-1-butanol, hmp - is the anion of 2-hydroxymethylpyridine). The performance of the resulting GSH in finite field is assessed in terms of EPR resonances and diabolical points. The large tunnel splitting in the M=± 4 ground doublet of the S=4 multiplet, responsible for fast tunneling in Ni 4 , is attributed to a Stevens operator with eightfold rotational symmetry, marking the first quantification of a k=8 term in a spin cluster. The unique and exact mapping MSH→GSH should be of general importance for weakly-coupled systems; it represents a mandatory ultimate step for comparing theoretical predictions (e.g. from quantum-chemical calculations) to ZFS, hyperfine or g-tensors from spectral fittings. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Relativistic ponderomotive Hamiltonian of a Dirac particle in a vacuum laser field

    DOE PAGES

    Ruiz, D. E.; Ellison, C. L.; Dodin, I. Y.

    2015-12-16

    Here, we report a point-particle ponderomotive model of a Dirac electron oscillating in a high-frequency field. Starting from the Dirac Lagrangian density, we derive a reduced phase-space Lagrangian that describes the relativistic time-averaged dynamics of such a particle in a geometrical-optics laser pulse propagating in vacuum. The pulse is allowed to have an arbitrarily large amplitude provided that radiation damping and pair production are negligible. The model captures the Bargmann-Michel-Telegdi (BMT) spin dynamics, the Stern-Gerlach spin-orbital coupling, the conventional ponderomotive forces, and the interaction with large-scale background fields (if any). Agreement with the BMT spin precession equation is shown numerically.more » The commonly known theory in which ponderomotive effects are incorporated in the particle effective mass is reproduced as a special case when the spin-orbital coupling is negligible. This model could be useful for studying laser-plasma interactions in relativistic spin-1/2 plasmas.« less

  12. Extrinsic spin Nernst effect from first principles.

    PubMed

    Tauber, Katarina; Gradhand, Martin; Fedorov, Dmitry V; Mertig, Ingrid

    2012-07-13

    We present an ab initio description of the thermal transport phenomenon called the spin Nernst effect. It refers to generation of a spin accumulation or a pure spin current transverse to an applied temperature gradient. This is similar to the intensively studied spin Hall effect described by intrinsic and extrinsic mechanisms due to an applied electric field. Analogously, several contributions are present for the spin Nernst effect. Here we investigate the extrinsic skew scattering mechanism which is dominant in the limit of dilute alloys. Our calculations are based on a fully relativistic Korringa-Kohn-Rostoker method and a solution of the linearized Boltzmann equation. As a first application, we consider a Cu host with Au, Ti, and Bi impurities.

  13. Compact vacuum tubes with GaAs(Cs,O) photocathodes for studying spin-dependent phenomena

    NASA Astrophysics Data System (ADS)

    Alperovich, V. L.; Orlov, D. A.; Grishaev, V. G.; Kosolobov, S. N.; Jaroshevich, A. S.; Scheibler, H. E.; Terekhov, A. S.

    2009-08-01

    Compact proximity focused vacuum tubes with GaAs(Cs,O) photocathodes are used for experimental studying spindependent phenomena. Firstly, spin-dependent emission of optically oriented electrons from p-GaAs(Cs,O) into vacuum in a magnetic field normal to the surface was observed in a nonmagnetic vacuum diode. This phenomenon is explained by the jump in the electron g-factor at the semiconductor-vacuum interface. Due to this jump, the effective electron affinity on the semiconductor surface depends on the mutual direction of optically oriented electron spins and the magnetic field, resulting in the spin-dependent photoemission. It is demonstrated that the observed effect can be used for the determination of spin diffusion length in semiconductors. Secondly, we developed a prototype of a new spin filter, which consists of a vacuum tube with GaAs(Cs,O) photocathode and a nickel-covered venetian blind dynode. Preliminary results on spin-dependent reflection of electrons from the oxidized polycrystal nickel layer are presented.

  14. The expected spins of gravitational wave sources with isolated field binary progenitors

    NASA Astrophysics Data System (ADS)

    Zaldarriaga, Matias; Kushnir, Doron; Kollmeier, Juna A.

    2018-01-01

    We explore the consequences of dynamical evolution of field binaries composed of a primary black hole (BH) and a Wolf-Rayet (WR) star in the context of gravitational wave (GW) source progenitors. We argue, from general considerations, that the spin of the WR-descendent BH will be maximal in a significant number of cases due to dynamical effects. In other cases, the spin should reflect the natal spin of the primary BH which is currently theoretically unconstrained. We argue that the three currently published LIGO systems (GW150914, GW151226, LVT151012) suggest that this spin is small. The resultant effective spin distribution of gravitational wave sources should thus be bi-model if this classic GW progenitor channel is indeed dominant. While this is consistent with the LIGO detections thus far, it is in contrast to the three best-measured high-mass X-ray binary (HMXB) systems. A comparison of the spin distribution of HMXBs and GW sources should ultimately reveal whether or not these systems arise from similar astrophysical channels.

  15. Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Blanchard, J. W.; Sjolander, T. F.; King, J. P.; Ledbetter, M. P.; Levine, E. H.; Bajaj, V. S.; Budker, D.; Pines, A.

    2015-12-01

    Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from the effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultralow-field NMR measurements of residual dipolar couplings in acetonitrile-2-13C aligned in stretched polyvinyl acetate gels. This permits the investigation of dipolar couplings as a perturbation on the indirect spin-spin J coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultralow-field NMR and has potential applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.

  16. Strong excitation of surface and bulk spin waves in yttrium iron garnet placed in a split ring resonator

    NASA Astrophysics Data System (ADS)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.

    2018-02-01

    This paper presents an experimental study of the inverse spin Hall effect (ISHE) in a bilayer consisting of a yttrium iron garnet (YIG) and platinum (Pt) loaded on a metamaterial split ring resonator (SRR). The system is excited by a microstrip feed line which generates both surface and bulk spin waves in the YIG. The spin waves subsequently undergo spin pumping from the YIG film to an adjacent Pt layer, and is converted into a charge current via the ISHE. It is found that the presence of the SRR causes a significant enhancement of the mangetic field near the resonance frequency of the SRR, resulting in a significant increase in the ISHE signal. Furthermore, the type of spin wave generated in the system can be controlled by changing the external applied magnetic field angle (θH ). When the external applied magnetic field is near parallel to the microstrip line (θH = 0 ), magnetostatic surface spin waves are predominantly excited. On the other hand, when the external applied magnetic field is perpendicular to the microstrip line (θH = π/2 ), backward volume magnetostatic spin waves are predominantly excited. Hence, it can be seen that the SRR structure is a promising method of achieving spin-charge conversion, which has many advantages over a coaxial probe.

  17. Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    NASA Astrophysics Data System (ADS)

    Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.

    2018-03-01

    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.

  18. Chirality-induced magnon transport in AA-stacked bilayer honeycomb chiral magnets.

    PubMed

    Owerre, S A

    2016-11-30

    In this Letter, we study the magnetic transport in AA-stacked bilayer honeycomb chiral magnets coupled either ferromagnetically or antiferromagnetically. For both couplings, we observe chirality-induced gaps, chiral protected edge states, magnon Hall and magnon spin Nernst effects of magnetic spin excitations. For ferromagnetically coupled layers, thermal Hall and spin Nernst conductivities do not change sign as function of magnetic field or temperature similar to single-layer honeycomb ferromagnetic insulator. In contrast, for antiferromagnetically coupled layers, we observe a sign change in the thermal Hall and spin Nernst conductivities as the magnetic field is reversed. We discuss possible experimental accessible honeycomb bilayer quantum materials in which these effects can be observed.

  19. Sub-millitesla magnetic field effects on the recombination reaction of flavin and ascorbic acid radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Emrys W.; Henbest, Kevin B.; Timmel, Christiane R., E-mail: christiane.timmel@chem.ox.ac.uk, E-mail: stuart.mackenzie@chem.ox.ac.uk

    Even though the interaction of a <1 mT magnetic field with an electron spin is less than a millionth of the thermal energy at room temperature (k{sub B}T), it still can have a profound effect on the quantum yields of radical pair reactions. We present a study of the effects of sub-millitesla magnetic fields on the photoreaction of flavin mononucleotide with ascorbic acid. Direct control of the reaction pathway is achieved by varying the rate of electron transfer from ascorbic acid to the photo-excited flavin. At pH 7.0, we verify the theoretical prediction that, apart from a sign change, themore » form of the magnetic field effect is independent of the initial spin configuration of the radical pair. The data agree well with model calculations based on a Green’s function approach that allows multinuclear spin systems to be treated including the diffusive motion of the radicals, their spin-selective recombination reactions, and the effects of the inter-radical exchange interaction. The protonation states of the radicals are uniquely determined from the form of the magnetic field-dependence. At pH 3.0, the effects of two chemically distinct radical pair complexes combine to produce a pronounced response to ∼500 μT magnetic fields. These findings are relevant to the magnetic responses of cryptochromes (flavin-containing proteins proposed as magnetoreceptors in birds) and may aid the evaluation of effects of weak magnetic fields on other biologically relevant electron transfer processes.« less

  20. Insulating nanomagnets driven by spin torque

    DOE PAGES

    Jungfleisch, Matthias B.; Ding, Junjia; Zhang, Wei; ...

    2016-11-29

    Magnetic insulators, such as yttrium iron garnet (Y 3Fe 5O 12), are ideal materials for ultra-low power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y 3Fe 5O 12/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y 3Fe 5O 12/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd 3Ga 5O 12 substrates and lift-off. We observe field-likemore » and anti-damping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y 3Fe 5O 12/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident. In conclusion, our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.« less

  1. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

    PubMed Central

    Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.

    2015-01-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131

  2. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    PubMed

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Spin valve effect of the interfacial spin accumulation in yttrium iron garnet/platinum bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Lichuan; Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716; Zhang, Dainan

    2014-09-29

    We report the spin valve effect in yttrium iron garnet/platinum (YIG/Pt) bilayers. The spin Hall effect (SHE) generates spin accumulation at the YIG/Pt interface and can be opened/closed by magnetization switching in the electrical insulator YIG. The interfacial spin accumulation was measured in both YIG/Pt and YIG/Cu/Pt structures using a planar Hall configuration. The spin valve effect remained, even after a 2 nm thick Cu layer was inserted between the YIG and Pt layers, which aimed to exclude the induced magnetization at the YIG/Pt interface. The transverse Hall voltage and switching field were dependent on the applied charge current density. Themore » origin of this behavior can be explained by the SHE induced torque exerted on the domain wall, caused by the transfer of the spin angular momentum from the spin-polarized current to the YIG magnetic moment.« less

  4. Influence of electrically induced refraction and absorption on the measurement of spin current by pockels effect in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Houquan; She, Weilong, E-mail: shewl@mail.sysu.edu.cn

    2015-03-14

    The pockels effect could be utilized to measure spin current in semiconductors for linear electro-optic coefficient can be induced by spin current. When dc electric field is applied, the carriers will shift in k space, which could lead to the change of refraction and absorption coefficients. In this paper, we investigate the influence of the induced change of the refraction and absorption coefficients on the measurement of spin current by pockels effect in GaAs.

  5. Highly tunable charge and spin transport in silicene junctions: phase transitions and half-metallic states.

    PubMed

    Mahdavifar, Maryam; Khoeini, Farhad

    2018-08-10

    We report peculiar charge and spin transport properties in S-shaped silicene junctions with the Kane-Mele tight-binding model. In this work, we investigate the effects of electric and exchange fields on the charge and spin transport properties. Our results show that by applying a perpendicular electric field, metal-semiconductor and also semimetal-semiconductor phase transitions occur in our systems. Furthermore, full spin current can be obtained in the structures, so the half-metallic states are observable. Our results enable us to control charge and spin currents and provide new opportunities and applications in silicene-based electronics, optoelectronics, and spintronics.

  6. A two-dimensional spin field-effect switch

    NASA Astrophysics Data System (ADS)

    Yan, Wenjing; Txoperena, Oihana; Llopis, Roger; Dery, Hanan; Hueso, Luis E.; Casanova, Fèlix

    2016-11-01

    Future development in spintronic devices will require an advanced control of spin currents, for example by an electric field. Here we demonstrate an approach that differs from previous proposals such as the Datta and Das modulator, and that is based on a van de Waals heterostructure of atomically thin graphene and semiconducting MoS2. Our device combines the superior spin transport properties of graphene with the strong spin-orbit coupling of MoS2 and allows switching of the spin current in the graphene channel between ON and OFF states by tuning the spin absorption into the MoS2 with a gate electrode. Our proposal holds potential for technologically relevant applications such as search engines or pattern recognition circuits, and opens possibilities towards electrical injection of spins into transition metal dichalcogenides and alike materials.

  7. Random crystal field effects on the integer and half-integer mixed-spin system

    NASA Astrophysics Data System (ADS)

    Yigit, Ali; Albayrak, Erhan

    2018-05-01

    In this work, we have focused on the random crystal field effects on the phase diagrams of the mixed spin-1 and spin-5/2 Ising system obtained by utilizing the exact recursion relations (ERR) on the Bethe lattice (BL). The distribution function P(Di) = pδ [Di - D(1 + α) ] +(1 - p) δ [Di - D(1 - α) ] is used to randomize the crystal field.The phase diagrams are found to exhibit second- and first-order phase transitions depending on the values of α, D and p. It is also observed that the model displays tricritical point, isolated point, critical end point and three compensation temperatures for suitable values of the system parameters.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungfleisch, Matthias B.; Ding, Junjia; Zhang, Wei

    Magnetic insulators, such as yttrium iron garnet (Y 3Fe 5O 12), are ideal materials for ultra-low power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y 3Fe 5O 12/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y 3Fe 5O 12/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd 3Ga 5O 12 substrates and lift-off. We observe field-likemore » and anti-damping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y 3Fe 5O 12/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident. In conclusion, our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.« less

  9. Magnon Polarons in the Spin Seebeck Effect.

    PubMed

    Kikkawa, Takashi; Shen, Ka; Flebus, Benedetta; Duine, Rembert A; Uchida, Ken-Ichi; Qiu, Zhiyong; Bauer, Gerrit E W; Saitoh, Eiji

    2016-11-11

    Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y_{3}Fe_{5}O_{12} at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.

  10. Focus on the Rashba effect

    NASA Astrophysics Data System (ADS)

    Bihlmayer, G.; Rader, O.; Winkler, R.

    2015-05-01

    The Rashba effect, discovered in 1959, continues to supply fertile ground for fundamental research and applications. It provided the basis for the proposal of the spin transistor by Datta and Das in 1990, which has largely inspired the broad and dynamic field of spintronics. More recent developments include new materials for the Rashba effect such as metal surfaces, interfaces and bulk materials. It has also given rise to new phenomena such as spin currents and the spin Hall effect, including its quantized version, which has led to the very active field of topological insulators. The Rashba effect plays a crucial role in yet more exotic fields of physics such as the search for Majorana fermions at semiconductor-superconductor interfaces and the interaction of ultracold atomic Bose and Fermi gases. Advances in our understanding of Rashba-type spin-orbit couplings, both qualitatively and quantitatively, can be obtained in many different ways. This focus issue brings together the wide range of research activities on Rashba physics to further promote the development of our physical pictures and concepts in this field. The present Editorial gives a brief account on the history of the Rashba effect including material that was previously not easily accessible before summarizing the key results of the present focus issue as a guidance to the reader.

  11. Quantitative characterization of spin-orbit torques in Pt/Co/Pt/Co/Ta/BTO heterostructures due to the magnetization azimuthal angle dependence

    NASA Astrophysics Data System (ADS)

    Engel, Christian; Goolaup, Sarjoosing; Luo, Feilong; Lew, Wen Siang

    2017-08-01

    Substantial understanding of spin-orbit interactions in heavy-metal (HM)/ferromagnet (FM) heterostructures is crucial in developing spin-orbit torque (SOT) spintronics devices utilizing spin Hall and Rashba effects. Though the study of SOT effective field dependence on the out-of-plane magnetization angle has been relatively extensive, the understanding of in-plane magnetization angle dependence remains unknown. Here, we analytically propose a method to compute the SOT effective fields as a function of the in-plane magnetization angle using the harmonic Hall technique in perpendicular magnetic anisotropy (PMA) structures. Two different samples with PMA, a Pt /Co /Pt /Co /Ta /BaTi O3 (BTO) test sample and a Pt/Co/Pt/Co/Ta reference sample, are studied using the derived formula. Our measurements reveal that only the dampinglike field of the test sample with a BTO capping layer exhibits an in-plane magnetization angle dependence, while no angular dependence is found in the reference sample. The presence of the BTO layer in the test sample, which gives rise to a Rashba effect at the interface, is ascribed as the source of the angular dependence of the dampinglike field.

  12. Non-local detection of spin dynamics via spin rectification effect in yttrium iron garnet/SiO{sub 2}/NiFe trilayers near simultaneous ferromagnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, Wee Tee, E-mail: a0046479@u.nus.edu; Ong, C. K.; Peng, Bin

    2015-08-15

    The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-localmore » SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO{sub 2} spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.« less

  13. Optical pumping of electron and nuclear spin in a negatively-charged quantum dot

    NASA Astrophysics Data System (ADS)

    Bracker, Allan; Gershoni, David; Korenev, Vladimir

    2005-03-01

    We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.

  14. Nuclear spin nanomagnet in an optically excited quantum dot.

    PubMed

    Korenev, V L

    2007-12-21

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins-the nuclear spin nanomagnet.

  15. Generation of spin currents by surface plasmon resonance

    PubMed Central

    Uchida, K.; Adachi, H.; Kikuchi, D.; Ito, S.; Qiu, Z.; Maekawa, S.; Saitoh, E.

    2015-01-01

    Surface plasmons, free-electron collective oscillations in metallic nanostructures, provide abundant routes to manipulate light–electron interactions that can localize light energy and alter electromagnetic field distributions at subwavelength scales. The research field of plasmonics thus integrates nano-photonics with electronics. In contrast, electronics is also entering a new era of spintronics, where spin currents play a central role in driving devices. However, plasmonics and spin-current physics have so far been developed independently. Here we report the generation of spin currents by surface plasmon resonance. Using Au nanoparticles embedded in Pt/BiY2Fe5O12 bilayer films, we show that, when the Au nanoparticles fulfill the surface-plasmon-resonance conditions, spin currents are generated across the Pt/BiY2Fe5O12 interface. This spin-current generation cannot be explained by conventional heating effects, requiring us to introduce nonequilibrium magnons excited by surface-plasmon-induced evanescent electromagnetic fields in BiY2Fe5O12. This plasmonic spin pumping integrates surface plasmons with spin-current physics, opening the door to plasmonic spintronics. PMID:25569821

  16. Spin polarized semimagnetic exciton-polariton condensate in magnetic field.

    PubMed

    Król, Mateusz; Mirek, Rafał; Lekenta, Katarzyna; Rousset, Jean-Guy; Stephan, Daniel; Nawrocki, Michał; Matuszewski, Michał; Szczytko, Jacek; Pacuski, Wojciech; Piętka, Barbara

    2018-04-27

    Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.

  17. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi{sub 2}Te{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Rik, E-mail: rikdey@utexas.edu; Pramanik, Tanmoy; Roy, Anupam

    We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance,more » we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.« less

  18. Complementary spin transistor using a quantum well channel.

    PubMed

    Park, Youn Ho; Choi, Jun Woo; Kim, Hyung-Jun; Chang, Joonyeon; Han, Suk Hee; Choi, Heon-Jin; Koo, Hyun Cheol

    2017-04-20

    In order to utilize the spin field effect transistor in logic applications, the development of two types of complementary transistors, which play roles of the n- and p-type conventional charge transistors, is an essential prerequisite. In this research, we demonstrate complementary spin transistors consisting of two types of devices, namely parallel and antiparallel spin transistors using InAs based quantum well channels and exchange-biased ferromagnetic electrodes. In these spin transistors, the magnetization directions of the source and drain electrodes are parallel or antiparallel, respectively, depending on the exchange bias field direction. Using this scheme, we also realize a complementary logic operation purely with spin transistors controlled by the gate voltage, without any additional n- or p-channel transistor.

  19. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

    PubMed Central

    Huang, Xu-Guang

    2016-01-01

    The chiral magnetic and chiral separation effects—quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma—have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084

  20. Switching effects and spin-valley Andreev resonant peak shifting in silicene superconductor

    NASA Astrophysics Data System (ADS)

    Soodchomshom, Bumned; Niyomsoot, Kittipong; Pattrawutthiwong, Eakkarat

    2018-03-01

    The magnetoresistance and spin-valley transport properties in a silicene-based NM/FB/SC junction are investigated, where NM, FB and SC are normal, ferromagnetic and s-wave superconducting silicene, respectively. In the FB region, perpendicular electric and staggered exchange fields are applied. The quasiparticles may be described by Dirac Bogoliubov-de Gennes equation due to Cooper pairs formed by spin-valley massive fermions. The spin-valley conductances are calculated based on the modified Blonder-Tinkham-Klapwijk formalism. We find the spin-valley dependent Andreev resonant peaks in the junction shifted by applying exchange field. Perfect conductance switch generated by interplay of intrinsic spin orbit interaction and superconducting gap has been predicted. Spin and valley polarizations are almost linearly dependent on biased voltage near zero bias and then turn into perfect switch at biased voltage approaching the superconducting gap. The perfect switching of large magnetoresistance has been also predicted at biased energy near the superconducting gap. These switching effects may be due to the presence of spin-valley Andreev resonant peak near the superconducting gap. Our work reveals potential of silicene as applications of electronic switching devices and linear control of spin and valley polarizations.

  1. Current-driven second-harmonic domain wall resonance in ferromagnetic metal/nonmagnetic metal bilayers: A field-free method for spin Hall angle measurements

    NASA Astrophysics Data System (ADS)

    Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.

    2017-10-01

    We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.

  2. Spin-Hall Switching of In-plane Exchange Biased Heterostructures

    NASA Astrophysics Data System (ADS)

    Mann, Maxwell; Beach, Geoffrey

    The spin Hall effect (SHE) in heavy-metal/ferromagnet bilayers generates a pure transverse spin current from in-plane charge current, allowing for efficient switching of spintronic devices with perpendicular magnetic anisotropy. Here, we demonstrate that an AFM deposited adjacent to the FM establishes a large in-plane exchange bias field, allowing operation at zero HIP. We sputtered Pt(3nm)/Co(0.9nm)/Ni80Co20O(tAF) stacks at room-temperature in an in-plane magnetic field of 3 kOe. The current-induced effective field was estimated in Hall cross devices by measuring the variation of the out-of-plane switching field as a function of JIP and HIP. The spin torque efficiency, dHSL/dJIP, is measured versus HIP for a sample with tAF =30 nm, and for a control in which NiCoO is replaced by TaOx. In the latter, dHSL/dJIP varied linearly with HIP. In the former, dHSL/dJIP varied nonlinearly with HIP and exhibited an offset indicating nonzero spin torque efficiency with zero HIP. The magnitude of HEB was 600 Oe in-plane.

  3. Far-from-Equilibrium Field Theory of Many-Body Quantum Spin Systems: Prethermalization and Relaxation of Spin Spiral States in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Babadi, Mehrtash; Demler, Eugene; Knap, Michael

    2015-10-01

    We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1 /2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1 /N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014), 10.1103/PhysRevLett.113.147205].

  4. Exchange-Dominated Pure Spin Current Transport in Alq3 Molecules.

    PubMed

    Jiang, S W; Liu, S; Wang, P; Luan, Z Z; Tao, X D; Ding, H F; Wu, D

    2015-08-21

    We address the controversy over the spin transport mechanism in Alq3 utilizing spin pumping in the Y3Fe5O12/Alq3/Pd system. An unusual angular dependence of the inverse spin Hall effect is found. It, however, disappears when the microwave magnetic field is fully in the sample plane, excluding the presence of the Hanle effect. Together with the quantitative temperature-dependent measurements, these results provide compelling evidence that the pure spin current transport in Alq3 is dominated by the exchange-mediated mechanism.

  5. Rashba-Zeeman-effect-induced spin filtering energy windows in a quantum wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Xianbo, E-mail: xxb-11@hotmail.com; Nie, Wenjie; Chen, Zhaoxia

    2014-06-14

    We perform a numerical study on the spin-resolved transport in a quantum wire (QW) under the modulation of both Rashba spin-orbit coupling (SOC) and a perpendicular magnetic field by using the developed Usuki transfer-matrix method in combination with the Landauer-Büttiker formalism. Wide spin filtering energy windows can be achieved in this system for unpolarized spin injection. In addition, both the width of energy window and the magnitude of spin conductance within these energy windows can be tuned by varying Rashba SOC strength, which can be apprehended by analyzing the energy dispersions and spin-polarized density distributions inside the QW, respectively. Furthermore » study also demonstrates that these Rashba-SOC-controlled spin filtering energy windows show a strong robustness against disorders. These findings may not only benefit to further understand the spin-dependent transport properties of a QW in the presence of external fields but also provide a theoretical instruction to design a spin filter device.« less

  6. Dynamic generation of spin-wave currents in hybrid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyapilin, I. I.; Okorokov, M. S., E-mail: Okorokovmike@gmail.com

    2016-11-15

    Spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure is studied by the nonequilibrium statistical operator method under conditions of the spin Seebeck effect. The effective parameter approach in which each examined subsystem (conduction electrons, magnons, phonons) is characterized by its specific effective temperature is considered. The effect of the resonant (electric dipole) excitation of the spin electronic subsystem of conduction electrons on spin-wave current excitation in a ferromagnetic insulator is considered. The macroscopic equations describing the spin-wave current caused by both resonant excitation of the spin system of conduction electrons and the presence of a nonuniform temperaturemore » field in the ferromagnetic insulator are derived taking into account both the resonance-diffusion propagation of magnons and their relaxation processes. It is shown that spin-wave current excitation is also of resonant nature under the given conditions.« less

  7. Interlayer-coupled spin vortex pairs and their response to external magnetic fields

    NASA Astrophysics Data System (ADS)

    Wintz, Sebastian; Bunce, Christopher; Banholzer, Anja; Körner, Michael; Strache, Thomas; Mattheis, Roland; McCord, Jeffrey; Raabe, Jörg; Quitmann, Christoph; Erbe, Artur; Fassbender, Jürgen

    2012-06-01

    We report on the response of multilayer spin textures to static magnetic fields. Coupled magnetic vortex pairs in trilayer elements (ferromagnetic/nonmagnetic/ferromagnetic) are imaged directly by means of layer-selective magnetic x-ray microscopy. We observe two different circulation configurations with parallel and opposing senses of magnetization rotation at remanence. Upon application of a field, all of the vortex pairs investigated react with a displacement of their cores. For purely dipolar coupled pairs, the individual core displacements are similar to those of an isolated single-layer vortex, but also a noticeable effect of the mutual stray fields is detected. Vortex pairs that are linked by an additional interlayer exchange coupling (IEC), which is either ferromagnetic or antiferromagnetic, mainly exhibit a layer-congruent response. We find that, apart from a possible decoupling at higher fields, these strict IEC vortex pairs can be described by a single-layer model with effective material parameters. This result implies the possibility to design multilayer spin structures with arbitrary effective magnetization.

  8. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field.

    PubMed

    Liu, Zheng-Xin; Normand, B

    2018-05-04

    Motivated by recent experimental observations in α-RuCl_{3}, we study the K-Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α-RuCl_{3}. For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  9. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Xin; Normand, B.

    2018-05-01

    Motivated by recent experimental observations in α -RuCl3 , we study the K -Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α -RuCl3 . For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  10. Thermal transport through a spin-phonon interacting junction: A nonequilibrium Green's function method study

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-Quan; Lü, Jing-Tao

    2017-09-01

    Using the nonequilibrium Green's function method, we consider heat transport in an insulating ferromagnetic spin chain model with spin-phonon interaction under an external magnetic field. Employing the Holstein-Primakoff transformation to the spin system, we treat the resulted magnon-phonon interaction within the self-consistent Born approximation. We find the magnon-phonon coupling can change qualitatively the magnon thermal conductance in the high-temperature regime. At a spectral mismatched ferromagnetic-normal insulator interface, we also find thermal rectification and negative differential thermal conductance due to the magnon-phonon interaction. We show that these effects can be effectively tuned by the external applied magnetic field, a convenient advantage absent in anharmonic phonon and electron-phonon systems studied before.

  11. Effect of ferromagnetic exchange field on band gap and spin polarisation of graphene on a TMD substrate

    NASA Astrophysics Data System (ADS)

    Goswami, Partha

    2018-03-01

    We calculate the electronic band dispersion of graphene monolayer on a two-dimensional transition metal dichalcogenide substrate (GrTMD) around K and K^' } points by taking into account the interplay of the ferromagnetic impurities and the substrate-induced interactions. The latter are (strongly enhanced) intrinsic spin-orbit interaction (SOI), the extrinsic Rashba spin-orbit interaction (RSOI) and the one related to the transfer of the electronic charge from graphene to substrate. We introduce exchange field ( M) in the Hamiltonian to take into account the deposition of magnetic impurities on the graphene surface. The cavalcade of the perturbations yield particle-hole symmetric band dispersion with an effective Zeeman field due to the interplay of the substrate-induced interactions with RSOI as the prime player. Our graphical analysis with extremely low-lying states strongly suggests the following: The GrTMDs, such as graphene on WY2, exhibit (direct) band-gap narrowing / widening (Moss-Burstein (MB) gap shift) including the increase in spin polarisation ( P) at low temperature due to the increase in the exchange field ( M) at the Dirac points. The polarisation is found to be electric field tunable as well. Finally, there is anticrossing of non-parabolic bands with opposite spins, the gap closing with same spins, etc. around the Dirac points. A direct electric field control of magnetism at the nanoscale is needed here. The magnetic multiferroics, like BiFeO3 (BFO), are useful for this purpose due to the coupling between the magnetic and electric order parameters.

  12. Effective model with strong Kitaev interactions for α -RuCl3

    NASA Astrophysics Data System (ADS)

    Suzuki, Takafumi; Suga, Sei-ichiro

    2018-04-01

    We use an exact numerical diagonalization method to calculate the dynamical spin structure factors of three ab initio models and one ab initio guided model for a honeycomb-lattice magnet α -RuCl3 . We also use thermal pure quantum states to calculate the temperature dependence of the heat capacity, the nearest-neighbor spin-spin correlation function, and the static spin structure factor. From the results obtained from these four effective models, we find that, even when the magnetic order is stabilized at low temperature, the intensity at the Γ point in the dynamical spin structure factors increases with increasing nearest-neighbor spin correlation. In addition, we find that the four models fail to explain heat-capacity measurements whereas two of the four models succeed in explaining inelastic-neutron-scattering experiments. In the four models, when temperature decreases, the heat capacity shows a prominent peak at a high temperature where the nearest-neighbor spin-spin correlation function increases. However, the peak temperature in heat capacity is too low in comparison with that observed experimentally. To address these discrepancies, we propose an effective model that includes strong ferromagnetic Kitaev coupling, and we show that this model quantitatively reproduces both inelastic-neutron-scattering experiments and heat-capacity measurements. To further examine the adequacy of the proposed model, we calculate the field dependence of the polarized terahertz spectra, which reproduces the experimental results: the spin-gapped excitation survives up to an onset field where the magnetic order disappears and the response in the high-field region is almost linear. Based on these numerical results, we argue that the low-energy magnetic excitation in α -RuCl3 is mainly characterized by interactions such as off-diagonal interactions and weak Heisenberg interactions between nearest-neighbor pairs, rather than by the strong Kitaev interactions.

  13. Application of Terahertz Field Enhancement Effect in Metal Microstructures

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.

    2016-12-01

    Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.

  14. Basic spin physics.

    PubMed

    Pipe, J G

    1999-11-01

    Magnetic resonance imaging is fundamentally a measurement of the magnetism inherent in some nuclear isotopes; of these the proton, or hydrogen atom, is of particular interest for clinical applications. The magnetism in each nucleus is often referred to as spin. A strong, static magnetic field B0 is used to align spins, forming a magnetic density within the patient. A second, rotating magnetic field B1 (RF pulse) is applied for a short duration, which rotates the spins away from B0 in a process called excitation. After the spins are rotated away from B0, the RF pulse is turned off, and the spins precess about B0. As long as the spins are all pointing in the same direction at any one time (have phase coherence), they act in concert to create rapidly oscillating magnetic fields. These fields in turn create a current in an appropriately placed receiver coil, in a manner similar to that of an electrical generator. The precessing magnetization decays rapidly in a duration roughly given by the T2 time constant. At the same time, but at a slower rate, magnetization forms again along the direction of B0; the duration of this process is roughly expressed by the T1 time constant. The precessional frequency of each spin is proportional to the magnetic field experienced at the nucleus. Small variations in this magnetic field can have dramatic effects on the MR image, caused in part by loss of phase coherence. These magnetic field variations can arise because of magnet design, the magnetic properties (susceptibility) of tissues and other materials, and the nuclear environment unique to various sites within any given molecule. The loss of phase coherence can be effectively eliminated by the use of RF refocusing pulses. Conventional MR imaging experiments can be characterized as either gradient echo or spin echo, the latter indicating the use of a RF refocusing pulse, and by the parameters TR, TE, and flip angle alpha. Tissues, in turn, are characterized by their individual spin density, M0, and by the T1, T2, and T2* time constants. Knowledge of these parameters allows one to calculate the resulting signal from a given tissue for a given MR imaging experiment.

  15. Spin current induced by a charged tip in a quantum point contact

    NASA Astrophysics Data System (ADS)

    Shchamkhalova, B. S.

    2017-03-01

    We show that the charged tip of the probe microscope, which is widely used in studying the electron transport in low-dimensional systems, induces a spin current. The effect is caused by the spin-orbit interaction arising due to an electric field produced by the charged tip. The tip acts as a spin-flip scatterer giving rise to the spin polarization of the net current and the occurrence of a spin density in the system.

  16. Effective spin physics in two-dimensional cavity QED arrays

    NASA Astrophysics Data System (ADS)

    Minář, Jiří; Güneş Söyler, Şebnem; Rotondo, Pietro; Lesanovsky, Igor

    2017-06-01

    We investigate a strongly correlated system of light and matter in two-dimensional cavity arrays. We formulate a multimode Tavis-Cummings (TC) Hamiltonian for two-level atoms coupled to cavity modes and driven by an external laser field which reduces to an effective spin Hamiltonian in the dispersive regime. In one-dimension we provide an exact analytical solution. In two-dimensions, we perform mean-field study and large scale quantum Monte Carlo simulations of both the TC and the effective spin models. We discuss the phase diagram and the parameter regime which gives rise to frustrated interactions between the spins. We provide a quantitative description of the phase transitions and correlation properties featured by the system and we discuss graph-theoretical properties of the ground states in terms of graph colourings using Pólya’s enumeration theorem.

  17. The spin evolution of nascent neutron stars

    NASA Astrophysics Data System (ADS)

    Watts, Anna L.; Andersson, Nils

    2002-07-01

    The loss of angular momentum owing to unstable r-modes in hot young neutron stars has been proposed as a mechanism for achieving the spin rates inferred for young pulsars. One factor that could have a significant effect on the action of the r-mode instability is fallback of supernova remnant material. The associated accretion torque could potentially counteract any gravitational-wave-induced spin-down, and accretion heating could affect the viscous damping rates and hence the instability. We discuss the effects of various external agents on the r-mode instability scenario within a simple model of supernova fallback on to a hot young magnetized neutron star. We find that the outcome depends strongly on the strength of the magnetic field of the star. Our model is capable of generating spin rates for young neutron stars that accord well with initial spin rates inferred from pulsar observations. The combined action of r-mode instability and fallback appears to cause the spin rates of neutron stars born with very different spin rates to converge, on a time-scale of approximately 1 year. The results suggest that stars with magnetic fields <=1013G could emit a detectable gravitational wave signal for perhaps several years after the supernova event. Stars with higher fields (magnetars) are unlikely to emit a detectable gravitational wave signal via the r-mode instability. The model also suggests that the r-mode instability could be extremely effective in preventing young neutron stars from going dynamically unstable to the bar-mode.

  18. Pumped spin and charge currents from applying a microwave field to a quantum dot between two magnetic leads

    NASA Astrophysics Data System (ADS)

    Zhou, Yun-Qing; Wang, Rui-Qiang; Sheng, L.; Wang, Baigeng; Xing, D. Y.

    2008-10-01

    The evolution-operator approach is applied to studying photon-electron-pumping effects on a quantum dot connected to two magnetic leads in the presence of both via-dot and over-dot tunneling channels. It is found that a microwave field applied to the quantum dot may give rise to charge and spin pumpings at zero-bias voltage for asymmetric magnetic junctions. More interestingly, a pure spin current can be pumped for symmetric magnetic junctions in the antiparallel magnetization configuration, providing an idea for the design of spin batteries.

  19. Nuclear spin warm up in bulk n -GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Jouault, B.; Korenev, V. L.; Kavokin, K. V.

    2016-08-01

    We show that the spin-lattice relaxation in n -type insulating GaAs is dramatically accelerated at low magnetic fields. The origin of this effect, which cannot be explained in terms of well-known diffusion-limited hyperfine relaxation, is found in the quadrupole relaxation, induced by fluctuating donor charges. Therefore, quadrupole relaxation, which governs low field nuclear spin relaxation in semiconductor quantum dots, but was so far supposed to be harmless to bulk nuclei spins in the absence of optical pumping, can be studied and harnessed in the much simpler model environment of n -GaAs bulk crystal.

  20. Photo-induced spin and valley-dependent Seebeck effect in the low-buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Mohammadi, Yawar

    2018-04-01

    Employing the Landauer-Buttiker formula we investigate the spin and valley dependence of Seebeck effect in low-buckled Dirac materials (LBDMs), whose band structure are modulated by local application of a gate voltage and off-resonant circularly polarized light. We calculate the charge, spin and valley Seebeck coefficients of an irradiated LBDM as functions of electronic doping, light intensity and the amount of the electric field in the linear regime. Our calculation reveal that all Seebeck coefficients always shows an odd features with respect to the chemical potential. Moreover, we show that, due to the strong spin-orbit coupling in the LBDMs, the induced thermovoltage in the irradiated LBDMs is spin polarized, and can also become valley polarized if the gate voltage is applied too. It is also found that the valley (spin) polarization of the induced thermovoltage could be inverted by reversing the circular polarization of light or reversing the direction the electric field (only by reversing the circular polarization of light).

  1. Magnetoelectric Effect in a Spin-State Transition System

    NASA Astrophysics Data System (ADS)

    Naka, Makoto; Mizoguchi, Eriko; Nasu, Joji; Ishihara, Sumio

    2018-06-01

    Magnetic, dielectric, and magnetoelectric properties in a spin-state transition system are examined, motivated by the recent discovery of multiferroic behavior in a cobalt oxide. We construct an effective model Hamiltonian on the basis of the two-orbital Hubbard model, in which the spin-state degrees of freedom in magnetic ions couple with ferroelectric-type lattice distortions. A phase transition occurs from the high-temperature low-spin phase to the low-temperature high-spin ferroelectric phase with an accompanying increase in spin entropy. The calculated results are consistent with the experimental pressure-temperature phase diagram. We predict the magnetic-field induced electric polarization in the low-spin paraelectric phase near the ferroelectric phase boundary.

  2. Inter-instrument calibration using magnetic field data from Flux Gate Magnetometer (FGM) and Electron Drift Instrument (EDI) onboard Cluster

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.

    2013-07-01

    We compare the magnetic field data obtained from the Flux-Gate Magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the Electron Drift Instrument (EDI) onboard Cluster to determine the spin axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 nT and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ~ 0.6 nT was observed between July and October 2003. Using multi-point multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.

  3. Interinstrument calibration using magnetic field data from the flux-gate magnetometer (FGM) and electron drift instrument (EDI) onboard Cluster

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.

    2014-01-01

    We compare the magnetic field data obtained from the flux-gate magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the electron drift instrument (EDI) onboard Cluster to determine the spin-axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ∼ 0.6 nT was observed for Cluster 1 between July and October 2003. Using multipoint multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.

  4. A Crystal Field Approach to Orbitally Degenerate SMMs: Beyond the Spin-Only Hamiltonian

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Lakshmi; Marriott, Katie; Murrie, Mark; Hill, Stephen

    Single-Molecule Magnets (SMMs) with large magnetization reversal barriers are promising candidates for high-density information storage. Recently, a large uniaxial magnetic anisotropy was observed for a mononuclear trigonal bipyramidal (TBP) [NiIICl3(Me-abco)2] SMM. High-field EPR studies analyzed on the basis of a spin-only Hamiltonian give ¦D¦>400 cm-1, which is close to the spin-orbit coupling parameter λ = 668 cm-1 for NiII, suggesting an orbitally degenerate ground state. The spin-only description is ineffective in this limit, necessitating the development of a model that includes the orbital moment. Here we describe a phenomenological approach that takes into account a full description of crystal field, electron-electron repulsion and spin-orbit coupling effects on the ground state of a NiII ion in a TBP coordination geometry. The model is in good agreement with the high-field EPR experiments, validating its use for spectroscopic studies of orbitally degenerate molecular nanomagnets. This work was supported by the NSF (DMR-1309463).

  5. Spin-orbit torque induced magnetization anisotropy modulation in Pt/(Co/Ni)4/Co/IrMn heterostructure

    NASA Astrophysics Data System (ADS)

    Engel, Christian; Goolaup, Sarjoosing; Luo, Feilong; Gan, Weiliang; Lew, Wen Siang

    2017-04-01

    In this work, we show that domain wall (DW) dynamics within a system provide an alternative platform to characterizing spin-orbit torque (SOT) effective fields. In perpendicularly magnetized wires with a Pt/(Co/Ni)4/Co/IrMn stack structure, differential Kerr imaging shows that the magnetization switching process is via the nucleation of the embryo state followed by domain wall propagation. By probing the current induced DW motion in the presence of in-plane field, the SOT effective fields are obtained using the harmonic Hall voltage scheme. The effective anisotropy field of the structure decreases by 12% due to the SOT effective fields, as the in-plane current in the wire is increased.

  6. Microwave ac Zeeman force for ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, C. T.; Pyle, A. J.; Rotunno, A. P.; Aubin, S.

    2018-04-01

    We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved.

  7. Sol-gel NiFe2O4 nanoparticles: Effect of the silica coating

    NASA Astrophysics Data System (ADS)

    Larumbe, S.; Pérez-Landazábal, J. I.; Pastor, J. M.; Gómez-Polo, C.

    2012-05-01

    NiFe2O4 and NiFe2O4-SiO2 nanoparticles were synthesized by a sol-gel method using citric acid as fuel, giving rise its combustion to the crystallization of the spinel phase. Different synthesis conditions were analyzed with the aim of obtaining stoichiometric NiFe2O4 nanoparticles. The spinel structure in the calcined nanoparticles (400 °C, 2 h) was evaluated by x-ray diffraction. Their nanometer size (mean diameters around 10-15 nm) was confirmed through electron microscopy (field emission scanning electron microscopy and transmission electron microscopy). Rietveld refinement indicates the existence of a small percentage of NiO and Fe3O4 phases and a certain degree of structural disorder. The main effect of the silica coating is to enhance the disorder effects and prevent the crystalline growth after post-annealing treatments. Due to the small particle size, the nanoparticles display characteristic superparamagnetic behaviour and surface effects associated to a spin-glass like state: i.e., reduction in the saturation magnetization values and splitting of the zero field cooled (ZFC)-field cooled (FC) high field magnetization curves. The fitting of the field dependence of the ZFC-FC irreversibility temperatures to the Almeida—Thouless equation confirms the spin-glass nature of the detected magnetic phenomena. Exchange bias effects (shifts in the FC hysteresis loops) detected below the estimated freezing temperature support the spin-glass nature of the spin disorder effects.

  8. Self-current induced spin-orbit torque in FeMn/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Xu, Yanjun; Yang, Yumeng; Yao, Kui; Xu, Baoxi; Wu, Yihong

    2016-05-01

    Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications.

  9. Spin-Mechanical Inertia in Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Wu, Xiaochuan; Xiao, Di

    Interplay between spin dynamics and mechanical motions is responsible for numerous striking phenomena, which has shaped a rapidly expanding field known as spin-mechanics. The guiding principle of this field has been the conservation of angular momentum that involves both quantum spins and classical mechanical rotations. However, in an antiferromagnet, the macroscopic magnetization vanishes while the order parameter (Néel order) does not carry an angular momentum. It is therefore not clear whether the order parameter dynamics has any mechanical consequence as its ferromagnetic counterparts. Here we demonstrate that the Néel order dynamics affects the mechanical motion of a rigid body by modifying its inertia tensor in the presence of strong magnetocrystalline anisotropy. This effect depends on temperature when magnon excitations are considered. Such a spin-mechanical inertia can produce measurable consequences at nanometer scales. Our discovery establishes spin-mechanical inertia as an essential ingredient to properly describe spin-mechanical effects in AFs, which supplements the known governing physics from angular momentum conservation. This work was supported by the DOE, Basic Energy Sciences, Grant No. DE-SC0012509. D.X. also acknowledges support from a Research Corporation for Science Advancement Cottrell Scholar Award.

  10. Transport spin dependent in nanostructures: Current and geometry effect of quantum dots in presence of spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Paredes-Gutiérrez, H.; Pérez-Merchancano, S. T.; Beltran-Rios, C. L.

    2017-12-01

    In this work, we study the quantum electron transport through a Quantum Dots Structure (QDs), with different geometries, embedded in a Quantum Well (QW). The behaviour of the current through the nanostructure (dot and well) is studied considering the orbital spin coupling of the electrons and the Rashba effect, by means of the second quantization theory and the standard model of Green’s functions. Our results show the behaviour of the current in the quantum system as a function of the electric field, presenting resonant states for specific values of both the external field and the spin polarization. Similarly, the behaviour of the current on the nanostructure changes when the geometry of the QD and the size of the same are modified as a function of the polarization of the electron spin and the potential of quantum confinement.

  11. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    NASA Astrophysics Data System (ADS)

    Zaim, N.; Zaim, A.; Kerouad, M.

    2017-02-01

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.

  12. Neutron resonance spin echo with longitudinal DC fields

    NASA Astrophysics Data System (ADS)

    Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang

    2016-12-01

    We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.

  13. Spin Seebeck effect and thermal colossal magnetoresistance in Christmas-tree silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Gao, Xiu-Jin; Zhao, Peng; Chen, Gang

    2018-05-01

    Based on the density functional theory and nonequilibrium Green's function method, we investigate the electronic structures and thermal spin transport properties of Christmas-tree silicene nanoribbons (CSiNRs). The results show that CSiNRs have ferromagnetic ground state with high Curie temperature far above the room temperature. Obvious spin Seebeck effect with spin-up and spin-down currents flowing in opposite directions by a temperature gradient can be observed in these systems. Furthermore, a thermal colossal magnetoresistance up to 109% can be realized by tuning the external magnetic field. The results show that CSiNRs hold great potential in designing spin caloritronic devices.

  14. Magneto-photocurrent in organic photovoltaic cells; the effect of short-lived charge transfer states

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Eitan; Devir-Wolfman, A.; Khachatryan, B.; Gautam, B.; Tessler, N.; Vardeny, Z. V.

    2014-03-01

    The spin degrees of freedom are responsible for the magnetic field effects in organic devices at low magnetic fields. The MFE is formed via a variety of spin-mixing mechanisms, such as the hyperfine (typical strength: Bhf<0.003 T), triplet-polaron or triplet-triplet (Btrip<0.1 T) interactions, that limit the response by their respective strength. We report on magneto-photocurrent (MPC) response of bulk hetero-junction organic photovoltaic cells in an extended field range B =0.00005 - 8 Tesla, and found that spin mixing mechanisms are still operative even at the highest fields. In fact, the response MPC(B) can be divided into three main regions, each with a different sign: sharp response that increases with B up to B1 ~ 0.04 T; broad response that decreases with B in the range from B1 to B2 ~ 0.3-0.7 T; and even broader response that increases above B2; this response does not saturate even at 8.5 T. We attribute the latter MPC component to short-lived charge transfer excitons (CTE) where spin-mixing is caused by the difference of the donor/acceptor g factors; a mechanism that is increasingly more effective at high magnetic field. Supported by the US-Israel BSF.

  15. Adiabatic physics of an exchange-coupled spin-dimer system: Magnetocaloric effect, zero-point fluctuations, and possible two-dimensional universal behavior

    DOE PAGES

    Brambleby, J.; Goddard, P. A.; Singleton, John; ...

    2017-01-05

    We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states andmore » highlight that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results. In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced critical points. Finally, the data at the upper critical point, combined with the layered structure of the system, are consistent with a two-dimensional nature of spin excitations in the system.« less

  16. Correlation effects in fcc-Fe(x)Ni(1-x) alloys investigated by means of the KKR-CPA.

    PubMed

    Minár, J; Mankovsky, S; Šipr, O; Benea, D; Ebert, H

    2014-07-09

    The electronic structure and magnetic properties of the disordered alloy system fcc-FexNi1-x (fcc: face centered cubic) have been investigated by means of the KKR-CPA (Korringa-Kohn-Rostoker coherent potential approximation) band structure method. To investigate the impact of correlation effects, the calculations have been performed on the basis of the LSDA (local spin density approximation), the LSDA + U as well as the LSDA + DMFT (dynamical mean field theory). It turned out that the inclusion of correlation effects hardly changed the spin magnetic moments and the related hyperfine fields. The spin-orbit induced orbital magnetic moments and hyperfine fields, on the other hand, show a pronounced and element-specific enhancement. These findings are in full accordance with the results of a recent experimental study.

  17. Magnetic field dependence of the current flowing in the spin-coated chlorophyll thin films

    NASA Astrophysics Data System (ADS)

    Aji, J. R. P.; Kusumandari; Purnama, B.

    2018-03-01

    The magnetic dependence of the current flowing in the spin coated chlorophyll films on a patterned Cu PCB substrate has been presented. Chlorophyll was isolated from Spirulina sp and deposited by spin coated methods. The reducing of current by the change of magnetic field (magneto conductance effect) was performed by inducing the magnetic field parallel to the inplane of film at room temp. The magnetoconductance ratio decreases as the increase of voltage. It was indicated that the origin of carrier charge in chlorophyll films should be different with the carrier charge injection (electron).

  18. Spin-wave resonances and surface spin pinning in Ga1-xMnxAs thin films

    NASA Astrophysics Data System (ADS)

    Bihler, C.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.

    2009-01-01

    We investigate the dependence of the spin-wave resonance (SWR) spectra of Ga0.95Mn0.05As thin films on the sample treatment. We find that for the external magnetic field perpendicular to the film plane, the SWR spectrum of the as-grown thin films and the changes upon etching and short-term hydrogenation can be quantitatively explained via a linear gradient in the uniaxial magnetic anisotropy field in growth direction. The model also qualitatively explains the SWR spectra observed for the in-plane easy-axis orientation of the external magnetic field. Furthermore, we observe a change in the effective surface spin pinning of the partially hydrogenated sample, which results from the tail in the hydrogen-diffusion profile. The latter leads to a rapidly changing hole concentration/magnetic anisotropy profile acting as a barrier for the spin-wave excitations. Therefore, short-term hydrogenation constitutes a simple method to efficiently manipulate the surface spin pinning.

  19. Strong-coupling phases of the spin-orbit-coupled spin-1 Bose-Hubbard chain: Odd-integer Mott lobes and helical magnetic phases

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Cole, William S.; Spielman, I. B.; Rizzi, Matteo; Das Sarma, S.

    2017-10-01

    We study the odd-integer filled Mott phases of a spin-1 Bose-Hubbard chain and determine their fate in the presence of a Raman induced spin-orbit coupling which has been achieved in ultracold atomic gases; this system is described by a quantum spin-1 chain with a spiral magnetic field. The spiral magnetic field initially induces helical order with either ferromagnetic or dimer order parameters, giving rise to a spiral paramagnet at large field. The spiral ferromagnet-to-paramagnet phase transition is in a universality class with critical exponents associated with the divergence of the correlation length ν ≈2 /3 and the order-parameter susceptibility γ ≈1 /2 . We solve the effective spin model exactly using the density-matrix renormalization group, and compare with both a large-S classical solution and a phenomenological Landau theory. We discuss how these exotic bosonic magnetic phases can be produced and probed in ultracold atomic experiments in optical lattices.

  20. Electron charge and spin delocalization revealed in the optically probed longitudinal and transverse spin dynamics in n -GaAs

    NASA Astrophysics Data System (ADS)

    Belykh, V. V.; Kavokin, K. V.; Yakovlev, D. R.; Bayer, M.

    2017-12-01

    The evolution of the electron spin dynamics as consequence of carrier delocalization in n -type GaAs is investigated by the recently developed extended pump-probe Kerr/Faraday rotation spectroscopy. We find that isolated electrons localized on donors demonstrate a prominent difference between the longitudinal and transverse spin relaxation rates in a magnetic field, which is almost absent in the metallic phase. The inhomogeneous transverse dephasing time T2* of the spin ensemble strongly increases upon electron delocalization as a result of motional narrowing that can be induced by increasing either the donor concentration or the temperature. An unexpected relation between T2* and the longitudinal spin relaxation time T1 is found, namely, that their product is about constant, as explained by the magnetic field effect on the spin diffusion. We observe a two-stage longitudinal spin relaxation, which suggests the establishment of spin temperature in the system of exchange-coupled donor-bound electrons.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van den Berg, R.; Brandino, G. P.; El Araby, O.

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  2. Competing interactions in semiconductor quantum dots

    DOE PAGES

    van den Berg, R.; Brandino, G. P.; El Araby, O.; ...

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  3. Spin-orbit torque in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO epitaxial magnetic heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Zhenchao; Kim, Junyeon; Sukegawa, Hiroaki

    2016-05-15

    We study the spin-orbit torque (SOT) effective fields in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO magnetic heterostructures using the adiabatic harmonic Hall measurement. High-quality perpendicular-magnetic-anisotropy CoFeAl layers were grown on Cr and Ru layers. The magnitudes of the SOT effective fields were found to significantly depend on the underlayer material (Cr or Ru) as well as their thicknesses. The damping-like longitudinal effective field (ΔH{sub L}) increases with increasing underlayer thickness for all heterostructures. In contrast, the field-like transverse effective field (ΔH{sub T}) increases with increasing Ru thickness while it is almost constant or slightly decreases with increasing Cr thickness. The sign of ΔH{submore » L} observed in the Cr-underlayer devices is opposite from that in the Ru-underlayer devices while ΔH{sub T} shows the same sign with a small magnitude. The opposite directions of ΔH{sub L} indicate that the signs of spin Hall angle in Cr and Ru are opposite, which are in good agreement with theoretical predictions. These results show sizable contribution from SOT even for elements with small spin orbit coupling such as 3d Cr and 4d Ru.« less

  4. Effect of low refocusing angle in T1-weighted spin echo and fast spin echo MRI on low-contrast detectability: a comparative phantom study at 1.5 and 3 Tesla.

    PubMed

    Sarkar, Subhendra N; Mangosing, Jason L; Sarkar, Pooja R

    2013-01-01

    MRI tissue contrast is not well preserved at high field. In this work, we used a phantom with known, intrinsic contrast (3.6%) for model tissue pairs to test the effects of low angle refocusing pulses and magnetization transfer from adjacent slices on intrinsic contrast at 1.5 and 3 Tesla. Only T1-weighted spin echo sequences were tested since for such sequences the contrast loss, tissue heating, and image quality degradation at high fields seem to present significant diagnostic and quality issues. We hypothesized that the sources of contrast loss could be attributed to low refocusing angles that do not fulfill the Hahn spin echo conditions or to magnetization transfer effects from adjacent slices in multislice imaging. At 1.5 T the measured contrast was 3.6% for 180° refocusing pulses and 2% for 120° pulses, while at 3 T, it was 4% for 180° and only 1% for 120° refocusing pulses. There was no significant difference between single slice and multislice imaging suggesting little or no role played by magnetization transfer in the phantom chosen. Hence, one may conclude that low angle refocusing pulses not fulfilling the Hahn spin echo conditions are primarily responsible for significant deterioration of T1-weighted spin echo image contrast in high-field MRI.

  5. Neuroperformance Imaging

    DTIC Science & Technology

    2012-10-01

    EMBC10.1722. 10. Mitra, P.P., Halperin, B.I.: Effects of finite gradient-pulse widths in pulsed- field - gradient diffusion measurements . Journal of Magnetic ...December 2011 ABSTRACT: The addition of a pair of magnetic field gradient pulses had initially enabled the measurement of spin motion to nuclear mag- netic...introduced a pair of (homogenous) magnetic field gradients into the spin echo experi- ment with the purpose of accurately measuring the scalar diffusion

  6. Dynamics of magnetization in ferromagnet with spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming

    2014-11-01

    We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. The precession frequency can be expressed as a function of the current and external magnetic field.

  7. Quantitative separation of the anisotropic magnetothermopower and planar Nernst effect by the rotation of an in-plane thermal gradient

    NASA Astrophysics Data System (ADS)

    Reimer, Oliver; Meier, Daniel; Bovender, Michel; Helmich, Lars; Dreessen, Jan-Oliver; Krieft, Jan; Shestakov, Anatoly S.; Back, Christian H.; Schmalhorst, Jan-Michael; Hütten, Andreas; Reiss, Günter; Kuschel, Timo

    2017-01-01

    A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect.

  8. Electrical control of flying spin precession in chiral 1D edge states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Takashi; Komiyama, Susumu; Lin, Kuan-Ting

    2013-12-04

    Electrical control and detection of spin precession are experimentally demonstrated by using spin-resolved edge states in the integer quantum Hall regime. Spin precession is triggered at a corner of a biased metal gate, where electron orbital motion makes a sharp turn leading to a nonadiabatic change in the effective magnetic field via spin-orbit interaction. The phase of precession is controlled by the group velocity of edge-state electrons tuned by gate bias voltage: Spin-FET-like coherent control of spin precession is thus realized by all-electrical means.

  9. Electrical Manipulation of Spin Qubits in Li-doped Si

    NASA Astrophysics Data System (ADS)

    Petukhov, Andre; Pendo, Luke; Handberg, Erin; Smelyanskiy, Vadim

    2011-03-01

    We propose a complete quantum computing scheme based on Li donors in Si under external biaxial stress. The qubits are encoded on the ground state Zeeman doublets and coupled via long-range spin-spin interaction mediated by acoustic phonons. This interaction is unique for Li donors in Si due to their inverted electronic structure. Our scheme takes advantage of the fact that the energy level spacing in 1 s Li-donor manifold is comparable with the magnitude of the spin-orbit interaction. As a result the Li spin qubits can be placed 100 nm apart and manipulated by a combination of external electric field and microwave field impulses. We present a specially-designed sequence of the electric field impulses which allows for a typical time of a two-qubit gate ~ ~1~ μ s and a quality factor ~10-6 . These estimates are derived from detailed microscopic calculations of the quadratic Stark effect and electron-phonon decoherence times.

  10. Giant spin-torque diode sensitivity in the absence of bias magnetic field.

    PubMed

    Fang, Bin; Carpentieri, Mario; Hao, Xiaojie; Jiang, Hongwen; Katine, Jordan A; Krivorotov, Ilya N; Ocker, Berthold; Langer, Juergen; Wang, Kang L; Zhang, Baoshun; Azzerboni, Bruno; Amiri, Pedram Khalili; Finocchio, Giovanni; Zeng, Zhongming

    2016-04-07

    Microwave detectors based on the spin-torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of their semiconductor (Schottky) counterparts. However, so far, practical implementations of spin-diode microwave detectors have been limited by the necessity to apply a magnetic field. Here, we demonstrate nanoscale magnetic tunnel junction microwave detectors, exhibiting high-detection sensitivity of 75,400 mV mW(-1) at room temperature without any external bias fields, and for low-input power (micro-Watts or lower). This sensitivity is significantly larger than both state-of-the-art Schottky diode detectors and existing spintronic diodes. Micromagnetic simulations and measurements reveal the essential role of injection locking to achieve this sensitivity performance. This mechanism may provide a pathway to enable further performance improvement of spin-torque diode microwave detectors.

  11. Giant spin-torque diode sensitivity in the absence of bias magnetic field

    PubMed Central

    Fang, Bin; Carpentieri, Mario; Hao, Xiaojie; Jiang, Hongwen; Katine, Jordan A.; Krivorotov, Ilya N.; Ocker, Berthold; Langer, Juergen; Wang, Kang L.; Zhang, Baoshun; Azzerboni, Bruno; Amiri, Pedram Khalili; Finocchio, Giovanni; Zeng, Zhongming

    2016-01-01

    Microwave detectors based on the spin-torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of their semiconductor (Schottky) counterparts. However, so far, practical implementations of spin-diode microwave detectors have been limited by the necessity to apply a magnetic field. Here, we demonstrate nanoscale magnetic tunnel junction microwave detectors, exhibiting high-detection sensitivity of 75,400 mV mW−1 at room temperature without any external bias fields, and for low-input power (micro-Watts or lower). This sensitivity is significantly larger than both state-of-the-art Schottky diode detectors and existing spintronic diodes. Micromagnetic simulations and measurements reveal the essential role of injection locking to achieve this sensitivity performance. This mechanism may provide a pathway to enable further performance improvement of spin-torque diode microwave detectors. PMID:27052973

  12. Studies of an Isolated 15N- 15N Spin Pair. Off-Angle Fast-Sample-Spinning NMR and Self-Consistent-Field Calculations for Diazo Systems

    NASA Astrophysics Data System (ADS)

    Challoner, Robin; Harris, Robin K.; Tossell, John A.

    1997-05-01

    An off-magic-angle spinning study of the nonassociated molecular solid, doubly15N-labeled 5-methyl-2-diazobenzenesulphonic acid hydrochloride (I) is reported. The validity of the off-magic-angle spinning approach under fast-spinning conditions is verified by average Hamiltonian theory. Ab initio SCF calculations were performed on the simpler molecule, C6H5N2+, to provide the shielding parameters, the dipolar coupling between the two nitrogen nuclei, and the electric field gradient existing at both the α-nitrogen and β-nitrogen sites. The calculated values are in good agreement with the shielding and effective dipolar coupling data elucidated in the present investigation, and with a previous study of the two singly15N-labeled isotopomers in which information concerning the electric field gradient at the α and β sites was deduced.

  13. All-Silicon Switchable Magnetoelectric Effect through Interlayer Exchange Coupling.

    PubMed

    Liu, Hang; Sun, Jia-Tao; Fu, Hui-Xia; Sun, Pei-Jie; Feng, Y P; Meng, Sheng

    2017-07-19

    The magnetoelectric (ME) effect originating from the effective coupling between electric field and magnetism is an exciting frontier in nanoscale science such as magnetic tunneling junction (MTJ), ferroelectric/piezoelectric heterojunctions etc. The realization of switchable ME effect under external electric field in d0 semiconducting materials of single composition is needed especially for all-silicon spintronics applications because of its natural compatibility with current industry. We employ density functional theory (DFT) to reveal that the pristine Si(111)-3×3 R30° (Si3 hereafter) reconstructed surfaces of thin films with a thickness smaller than eleven bilayers support a sizeable linear ME effect with switchable direction of magnetic moment under external electric field. This is achieved through the interlayer exchange coupling effect in the antiferromagnetic regime, where the spin-up and spin-down magnetized density is located on opposite surfaces of Si3 thin films. The obtained coefficient for the linear ME effect can be four times larger than that of ferromagnetic Fe films, which fail to have the reversal switching capabilities. The larger ME effect originates from the spin-dependent screening of the spin-polarized Dirac fermion. The prediction will promote the realization of well-controlled and switchable data storage in all-silicon electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Magnetic field effects on electron transfer reactions involving sextet-spin ( S = 5/2) intermediates generated on photoexcitation of a Cr(III)-porphyrin complex

    NASA Astrophysics Data System (ADS)

    Mori, Yukie; Hoshino, Mikio; Hayashi, Hisaharu

    The excited trip-sextet ( 6 T 1 ) state of chloro-(3-methylimidazol)-( meso -tetraphenylporphyrinato) chromium(III) (Cr III P) is quenched by 1,1 '-dibenzyl-4,4 '-bipyridinium (BV 2+ ) in acetonitrile through electron transfer to give 5 (Cr III P .+ ) and 2 BV .+ . The intermediate is a geminate ion pair in the sextet (Sx) state 6 [ 5 (Cr III P .+ ) 2 BV .+ ], which decays through either the escape from a solvent cage to give the free ions or the spin conversion to the quartet (Qa) state followed by back electron transfer. The free ion yield ( ΦFI ) increased with increasing magnetic field from 0 to 4 T and then slightly decreased from 4 T to 10 T. These magnetic field effects are explained as follows. Under low fields where the Zeeman splitting of the spin sublevels is lower than or comparable with the electron spin dipole-dipole interaction within 5 (Cr III P .+ ), this interaction effectively induces the Sx ⇔Qa conversion of [ 5 (Cr III P .+ ) 2 BV + ] to result in low ΦFI values. Under high fields where the Zeeman splitting is larger than the dipole-dipole interaction, the Sx Qa conversion is decreased with increasing field to cause higher ΦFI values. The slight decrease in ΦFI above 4 T may be due to the Δg mechanism.

  15. Effect of electron spin-spin interaction on level crossings and spin flips in a spin-triplet system

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Hu, Fang-Qi; Wu, Ning; Zhao, Qing

    2017-12-01

    We study level crossings and spin flips in a system consisting of a spin-1 (an electron spin triplet) coupled to a nuclear spin of arbitrary size K , in the presence of a uniform magnetic field and the electron spin-spin interaction within the triplet. Through an analytical diagonalization based on the SU (3 ) Lie algebra, we find that the electron spin-spin interaction not only removes the curious degeneracy which appears in the absence of the interaction, but also produces some level anticrossings (LACs) for strong interactions. The real-time dynamics of the system shows that periodic spin flips occur at the LACs for arbitrary K , which might provide an option for nuclear or electron spin polarization.

  16. Spin-polarized ground state and exact quantization at ν=5/2

    NASA Astrophysics Data System (ADS)

    Pan, Wei

    2002-03-01

    The nature of the even-denominator fractional quantum Hall effect at ν=5/2 remains elusive, in particular, its ground state spin-polarization. An earlier, so-called "hollow core" model arrived at a spin-unpolarized wave function. The more recent calculations based on a model of BCS-like pairing of composite fermions, however, suggest that its ground state is spin-polarized. In this talk, I will first review the earlier experiments and then present our recent experimental results showing evidence for a spin-polarized state at ν=5/2. Our ultra-low temperature experiments on a high quality sample established the fully developed FQHE state at ν=5/2 as well as at ν=7/3 and 8/3, manifested by a vanishing R_xx and exact quantization of the Hall plateau. The tilted field experiments showed that the added in-plane magnetic fields not only destroyed the FQHE at ν=5/2, as seen before, but also induced an electrical anisotropy, which is now interpreted as a phase transition from a paired, spin-polarized ν=5/2 state to a stripe phase, not unlike the ones at ν=9/2, 11/2, etc in the N > 1 higher Landau levels. Furthermore, in the experiments on the heterojunction insulated-gate field-effect transistors (HIGFET) at dilution refrigerator temperatures, a strong R_xx minimum and a concomitant developing Hall plateau were observed at ν=5/2 in a magnetic field as high as 12.6 Tesla. This and the subsequent density dependent studies of its energy gap largely rule out a spin-singlet state and point quite convincingly towards a spin-polarized ground state at ν=5/2.

  17. Valley-locked thermospin effect in silicene and germanene with asymmetric magnetic field induced by ferromagnetic proximity effect

    NASA Astrophysics Data System (ADS)

    Zhai, Xuechao; Wang, Yun-Tong; Wen, Rui; Wang, Shu-Xuan; Tian, Yue; Zhou, Xingfei; Chen, Wei; Yang, Zhihong

    2018-02-01

    Silicene and germanene, as graphenelike materials with observable spin-orbit couplings and two distinctive valleys, have potential applications in future low-dissipation spintronics and valleytronics. We here propose a magnetic system of silicene or germanene intercalated between two ferromagetic (FM) dielectric layers, and find that the system with a proximity-induced asymmetric magnetic field supports an attractive phenomenon named the valley-locked spin-dependent Seebeck effect (VL-SSE) driven by a thermal gradient. The VL-SSE indicates that the carries from only one valley could be thermally excited, with opposite spin polarization counterpropagating along the thermal gradient direction, while nearly no carrier from the other insulating valley is excited due to the relatively wide band gap. It is also illustrated that the VL-SSE here does not survive in the usual FM or anti-FM systems, and can be destroyed by the overlarge temperature broadening. Moreover, we prove that the signal for VL-SSE can be weakened gradually with the enhancement of the local interlayer electric field, and be strengthened lineally by increasing the source-drain temperature difference in a caloritronic field effect transistor. Further calculations indicate that the VL-SSE is robust against many perturbations, including the global and local Fermi levels as well as the magnetic strength. These findings about the valley-locked thermospin effect provide a nontrivial and convenient dimension to control the quantum numbers of spin and valley and are expected to be applied in future spin-valley logic circuits and energy-saving devices.

  18. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    PubMed Central

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; Lupton, John M.; Boehme, Christoph

    2015-01-01

    Weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices, which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair's zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm. PMID:25868686

  19. Probing long-range carrier-pair spin–spin interactions in a conjugated polymer by detuning of electrically detected spin beating

    DOE PAGES

    van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; ...

    2015-04-14

    Here, weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices,more » which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair’s zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm.« less

  20. Polar-Core Spin Vortex of Quasi-2D Spin-2 Condensate in a Flat-Bottomed Optical Trap

    NASA Astrophysics Data System (ADS)

    Zheng, Gong-Ping; Chang, Gao-Zhan; Li, Pin; Li, Ting

    2017-10-01

    Motivated by the recent experiments realized in a flat-bottomed optical trap [Science 347 (2015) 167; Nat. Commun. 6 (2015) 6162], we study the ground state of polar-core spin vortex of quasi-2D spin-2 condensate in a homogeneous trap plus a weak magnetic field. The exact spatial distribution of local spin is obtained and the vortex core are observed to decrease with the growth of the effective spin-spin interaction. For the larger effective spin-spin interaction, the spatial distribution of spin magnitude in spin-2 condensate we obtained agrees well with that of spin-1 condensate in a homogeneous trap, where a polar-core spin vortex was schematically demonstrated as a fully-magnetized planar spin texture with a zero-spin core. The effective spin-spin interaction is proportional to both the bare spin-spin interaction and the radius of the homogeneous trap, simultaneously. Thus the polar-core spin vortex we obtained can be easily controlled by the radius of the trap. Supported by the National Natural Science Foundation of China under Grant No. 11274095, the Key Scientific Research Project of Henan Province of China under Grant No. 16A140011, and the High Performance Computing Center of Henan Normal University

  1. Ultrafast Study of Dynamic Exchange Coupling in Ferromagnet/Oxide/Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Ou, Yu-Sheng

    Spintronics is the area of research that aims at utilizing the quantum mechanical spin degree of freedom of electrons in solid-state materials for information processing and data storage application. Since the discovery of the giant magnetoresistance, the field of spintronics has attracted lots of attention for its numerous potential advantages over contemporary electronics, such as less power consumption, high integration density and non-volatility. The realization of a spin battery, defined by the ability to create spin current without associated charge current, has been a long-standing goal in the field of spintronics. The demonstration of pure spin current in ferromagnet/nonmagnetic material hybrid structures by ferromagnetic resonance spin pumping has defined a thrilling direction for this field. As such, this dissertation targets at exploring the spin and magnetization dynamics in ferromagnet/oxide/semiconductor heterostructures (Fe/MgO/GaAs) using time-resolved optical pump-probe spectroscopy with the long-range goal of understanding the fundamentals of FMR-driven spin pumping. Fe/GaAs heterostructures are complex systems that contain multiple spin species, including paramagnetic spins (GaAs electrons), nuclear spins (Ga and As nuclei) and ferromagnetic spins (Fe). Optical pump-probe studies on their interplay have revealed a number of novel phenomena that has not been explored before. As such they will be the major focus of this dissertation. First, I will discuss the effect of interfacial exchange coupling on the GaAs free-carrier spin relaxation. Temperature- and field-dependent spin-resolved pump-probe studies reveal a strong correlation of the electron spin relaxation with carrier freeze-out, in quantitative agreement with a theoretical interpretation that at low temperatures the free-carrier spin lifetime is dominated by inhomogeneity in the local hyperfine field due to carrier localization. Second, we investigate the impact of tunnel barrier thickness on GaAs electron spin dynamics in Fe/MgO/GaAs heterostructures. Comparison of the Larmor frequency between samples with thick and thin MgO barriers reveals a four-fold variation in exchange coupling strength, and investigation of the spin lifetimes argues that inhomogeneity in the local hyperfine field dominates free-carrier spin relaxation across the entire range of barrier thickness. These results provide additional evidence to support the theory of hyperfine-dominated spin relaxation in GaAs. Third, we investigated the origin and dynamics of an emergent spin population by pump power and magnetic field dependent spin-resolved pump-probe studies. Power dependent study confirms its origin to be filling of electronic states in GaAs, and further field dependent studies reveal the impact of contact hyperfine coupling on the dynamics of electron spins occupying distinct electronic states. Beyond above works, we also pursue optical detection of dynamic spin pumping in Fe/MgO/GaAs heterostructures in parallel. I will discuss the development and progress that we have made toward this goal. This project can be simply divided into two phases. In the first phase, we focused on microwave excitation and optical detection of spin pumping. In the second phase, we focused on all-optical excitation and detection of spin pumping. A number of measurement strategies have been developed and executed in both stages to hunt for a spin pumping signal. I will discuss the preliminary data based upon them.

  2. Quantum Coherence and Random Fields at Mesoscopic Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenbaum, Thomas F.

    2016-03-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets tomore » antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.« less

  3. Experimental investigation of spin-orbit coupling in n-type PbTe quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peres, M. L.; Monteiro, H. S.; Castro, S. de

    2014-03-07

    The spin-orbit coupling is studied experimentally in two PbTe quantum wells by means of weak antilocalization effect. Using the Hikami-Larkin-Nagaoka model through a computational global optimization procedure, we extracted the spin-orbit and inelastic scattering times and estimated the strength of the zero field spin-splitting energy Δ{sub so}. The values of Δ{sub so} are linearly dependent on the Fermi wave vector (k{sub F}) confirming theoretical predictions of the existence of large spin-orbit coupling in IV-VI quantum wells originated from pure Rashba effect.

  4. Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2007-12-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.

  5. Revealing weak spin-orbit coupling effects on charge carriers in a π -conjugated polymer

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Miller, R.; Baird, D. L.; Jamali, S.; Joshi, G.; Bursch, M.; Grimme, S.; van Tol, J.; Lupton, J. M.; Boehme, C.

    2018-04-01

    We measure electrically detected magnetic resonance on organic light-emitting diodes made of the polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] at room temperature and high magnetic fields where spectral broadening of the resonance due to spin-orbit coupling (SOC) exceeds that due to the local hyperfine fields. Density-functional-theory calculations on an open-shell model of the material reveal g -tensors of charge-carrier spins in the lowest unoccupied (electron) and highest occupied (hole) molecular orbitals. These tensors are used for simulations of magnetic resonance line shapes. Besides providing the first quantification and direct observation of SOC effects on charge-carrier states in these weakly SO-coupled hydrocarbons, this procedure demonstrates that spin-related phenomena in these materials are fundamentally monomolecular in nature.

  6. Effect of spin fluctuations on the resistivity of LaCrGe{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Durgesh, E-mail: durgesh@csr.res.in; Gangrade, Mohan; Ganesan, V.

    2016-05-23

    Resistivity of LaCrGe{sub 3} at low temperatures and high magnetic fields is reported for fields upto 12 T. Spin fluctuations play an important role in this compound whose T{sub C} is 90 K. The normal state above T{sub C} is anomalous in the sense that a T{sup 1/2} term is to be added to the normal phonon contribution [ρ=ρ{sub 0}+aT+bT{sup 1/2}] to get a good fit, whose origin is debatable. Magnetoresistance (MR) vs. applied field H in PM region confirms the presence of strong spin fluctuations in this material. Effect of magnetic field on resistivity shows marked deviation below 170more » K. Suppression of resistivity in field up to 12 T near T{sub C} is observed. A negative magnetoresistance (MR) is seen and is consistent with the ferromagnetic behavior. The resistivity data fitted below 80 K could be fitted with an equation ρ(H,T) = ρ{sub 0}(H) + B(H)*T{sup n} where n varies between 2.3 − 2.4, closed to n=2, signifying the presence of possible spin fluctuation.« less

  7. Early-type Galaxy Spin Evolution in the Horizon-AGN Simulation

    NASA Astrophysics Data System (ADS)

    Choi, Hoseung; Yi, Sukyoung K.; Dubois, Yohan; Kimm, Taysun; Devriendt, Julien. E. G.; Pichon, Christophe

    2018-04-01

    Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after z ≃ 1. We follow the spin evolution of 10,037 color-selected ETGs more massive than {10}10 {M}ȯ that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, f SR, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of f SR, a weak trend is seen in the mean value of the spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of the central ETGs of halos with {M}vir}> {10}12.5 {M}ȯ , but only 22% of satellite and field ETGs. We find that non-merger-induced tidal perturbations better correlate with the galaxy spin down in satellite ETGs than in mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z < 1) universe.

  8. Thermoelectric spin voltage in graphene

    NASA Astrophysics Data System (ADS)

    Sierra, Juan F.; Neumann, Ingmar; Cuppens, Jo; Raes, Bart; Costache, Marius V.; Valenzuela, Sergio O.

    2018-02-01

    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents1,2. Amongst the most intriguing phenomena is the spin Seebeck effect3-5, in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect6-8. Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport9-11, energy-dependent carrier mobility and unique density of states12,13. Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current14-17. These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias.

  9. Thermal spin current generation and spin transport in Pt/magnetic-insulator/Py heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tzu; Safranski, Christopher; Krivorotov, Ilya; Sun, Jonathan

    Magnetic insulators can transmit spin current via magnon propagation while blocking charge current. Furthermore, under Joule heating, magnon flow as a result of the spin Seeback effect can generate additional spin current. Incorporating magnetic insulators in a spin-orbit torque magnetoresistive memory device can potentially yield high switching efficiencies. Here we report the DC magneto-transport studies of these two effects in Pt/magnetic-insulator/Py heterostructures, using ferrimagnetic CoFexOy (CFO) and antiferromagnet NiO as the model magnetic insulators. We observe the presence and absence of the inverse spin-Hall signals from the thermal spin current in Pt/CFO/Py and Pt/NiO/Py structures. These results are consistent with our spin-torque FMR linewidths in comparison. We will also report investigations into the magnetic field-angle dependence of these observations.

  10. Antisymmetric Spin-Orbit Coupling in a d-p Model on a Zigzag Chain

    DOE PAGES

    Sugita, Yusuke; Hayami, Satoru; Motome, Yukitoshi

    2015-12-29

    In this paper, we theoretically investigate how an antisymmetric spin-orbit coupling emerges in electrons moving on lattice structures which are centrosymmetric but break the spatial inversion symme- try at atomic positions. We construct an effective d-p model on the simplest lattice structure, a zigzag chain of edge-sharing octahedra, with taking into account the crystalline electric field, the spin-orbit coupling, and on-site and inter-site d-p hybridizations. We show that an effective antisymmetric spin-orbit coupling arises in the sublattice-dependent form, which results in a hidden spin polarization in the band structure. Finally, we explicitly derive the effective antisymmetric spin-orbit coupling for dmore » electrons, which not only explains the hidden spin polarization but also indicates how to enhance it.« less

  11. Antisymmetric Spin-Orbit Coupling in a d-p Model on a Zigzag Chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugita, Yusuke; Hayami, Satoru; Motome, Yukitoshi

    In this paper, we theoretically investigate how an antisymmetric spin-orbit coupling emerges in electrons moving on lattice structures which are centrosymmetric but break the spatial inversion symme- try at atomic positions. We construct an effective d-p model on the simplest lattice structure, a zigzag chain of edge-sharing octahedra, with taking into account the crystalline electric field, the spin-orbit coupling, and on-site and inter-site d-p hybridizations. We show that an effective antisymmetric spin-orbit coupling arises in the sublattice-dependent form, which results in a hidden spin polarization in the band structure. Finally, we explicitly derive the effective antisymmetric spin-orbit coupling for dmore » electrons, which not only explains the hidden spin polarization but also indicates how to enhance it.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yizhou, E-mail: yliu062@ucr.edu; Yin, Gen; Lake, Roger K., E-mail: rlake@ece.ucr.edu

    Single skyrmion creation and annihilation by spin waves in a crossbar geometry are theoretically analyzed. A critical spin-wave frequency is required both for the creation and the annihilation of a skyrmion. The minimum frequencies for creation and annihilation are similar, but the optimum frequency for creation is below the critical frequency for skyrmion annihilation. If a skyrmion already exists in the cross bar region, a spin wave below the critical frequency causes the skyrmion to circulate within the central region. A heat assisted creation process reduces the spin-wave frequency and amplitude required for creating a skyrmion. The effective field resultingmore » from the Dzyaloshinskii-Moriya interaction and the emergent field of the skyrmion acting on the spin wave drive the creation and annihilation processes.« less

  13. Ultrafast optical excitation of magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Ogawa, N.; Seki, S.; Tokura, Y.

    2015-04-01

    Magnetic skyrmions in an insulating chiral magnet Cu2OSeO3 were studied by all-optical spin wave spectroscopy. The spins in the conical and skyrmion phases were excited by the impulsive magnetic field from the inverse-Faraday effect, and resultant spin dynamics were detected by using time-resolved magneto-optics. Clear dispersions of the helimagnon were observed, which is accompanied by a distinct transition into the skyrmion phase, by sweeping temperature and magnetic field. In addition to the collective excitations of skyrmions, i.e., rotation and breathing modes, several spin precession modes were identified, which would be specific to optical excitation. The ultrafast, nonthermal, and local excitation of the spin systems by photons would lead to the efficient manipulation of nano-magnetic structures.

  14. Field-Free Programmable Spin Logics via Chirality-Reversible Spin-Orbit Torque Switching.

    PubMed

    Wang, Xiao; Wan, Caihua; Kong, Wenjie; Zhang, Xuan; Xing, Yaowen; Fang, Chi; Tao, Bingshan; Yang, Wenlong; Huang, Li; Wu, Hao; Irfan, Muhammad; Han, Xiufeng

    2018-06-21

    Spin-orbit torque (SOT)-induced magnetization switching exhibits chirality (clockwise or counterclockwise), which offers the prospect of programmable spin-logic devices integrating nonvolatile spintronic memory cells with logic functions. Chirality is usually fixed by an applied or effective magnetic field in reported studies. Herein, utilizing an in-plane magnetic layer that is also switchable by SOT, the chirality of a perpendicular magnetic layer that is exchange-coupled with the in-plane layer can be reversed in a purely electrical way. In a single Hall bar device designed from this multilayer structure, three logic gates including AND, NAND, and NOT are reconfigured, which opens a gateway toward practical programmable spin-logic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Graphene-based half-metal and spin-semiconductor for spintronic applications.

    PubMed

    Qi, Jingshan; Chen, Xiaofang; Hu, Kaige; Feng, Ji

    2016-03-31

    In this letter we propose a strategy to make graphene become a half-metal or spin-semiconductor by combining the magnetic proximity effects and sublattice symmetry breaking in graphone/graphene and graphone/graphene/BN heterostructures. Exchange interactions lift the spin degeneracy and sublattice symmetry breaking opens a band gap in graphene. More interestingly, the gap opening depends on the spin direction and the competition between the sublattice asymmetry and exchange field determines the system is a half-metal or a spin-semiconductor. By first-principles calculations and a low-energy effective model analysis, we elucidate the underlying physical mechanism of spin-dependent gap opening and spin degeneracy splitting. This offers an alternative practical platform for graphene-based spintronics.

  16. Entanglement distribution in star network based on spin chain in diamond

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan-Ming; Ma, Lei

    2018-06-01

    After star network of spins was proposed, generating entanglement directly through spin interactions between distant parties became possible. We propose an architecture which involves coupled spin chains based on nitrogen-vacancy centers and nitrogen defect spins to expand star network. The numerical analysis shows that the maximally achievable entanglement Em exponentially decays with the length of spin chains M and spin noise. The entanglement capability of this configuration under the effect of disorder and spin loss is also studied. Moreover, it is shown that with this kind of architecture, star network of spins is feasible in measurement of magnetic-field gradient.

  17. Quantum spin circulator in Y junctions of Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Buccheri, Francesco; Egger, Reinhold; Pereira, Rodrigo G.; Ramos, Flávia B.

    2018-06-01

    We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-1 /2 Heisenberg chains coupled by a chiral three-spin interaction. Using bosonization, boundary conformal field theory, and density matrix renormalization group simulations, we find that a chiral fixed point with maximally asymmetric spin conductance arises at a critical point separating a regime of disconnected chains from a spin-only version of the three-channel Kondo effect. We argue that networks of spin-chain Y junctions provide a controllable approach to construct long-sought chiral spin-liquid phases.

  18. On the Weyl anomaly of 4D conformal higher spins: a holographic approach

    NASA Astrophysics Data System (ADS)

    Acevedo, S.; Aros, R.; Bugini, F.; Diaz, D. E.

    2017-11-01

    We present a first attempt to derive the full (type-A and type-B) Weyl anomaly of four dimensional conformal higher spin (CHS) fields in a holographic way. We obtain the type-A and type-B Weyl anomaly coefficients for the whole family of 4D CHS fields from the one-loop effective action for massless higher spin (MHS) Fronsdal fields evaluated on a 5D bulk Poincaré-Einstein metric with an Einstein metric on its conformal boundary. To gain access to the type-B anomaly coefficient we assume, for practical reasons, a Lichnerowicz-type coupling of the bulk Fronsdal fields with the bulk background Weyl tensor. Remarkably enough, our holographic findings under this simplifying assumption are certainly not unknown: they match the results previously found on the boundary counterpart under the assumption of factorization of the CHS higher-derivative kinetic operator into Laplacians of "partially massless" higher spins on Einstein backgrounds.

  19. Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field

    NASA Astrophysics Data System (ADS)

    Borelli, M. E. S.; Carneiro, C. E. I.

    1996-02-01

    We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.

  20. Hyperfine interaction mechanism of magnetic field effects in sequential fluorophore and exciplex fluorescence.

    PubMed

    Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I

    2013-03-28

    The magnetic field effect on the fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is theoretically explored in the framework of Integral Encounter Theory. It is assumed that the excited fluorophore is equilibrated with the exciplex that reversibly dissociates into the radical-ion pair. The magnetic field sensitive stage is the spin conversion in the resulting geminate radical-ion pair, (1, 3)[D(+)...A(-)] that proceeds due to hyperfine interaction. We confirm our earlier conclusion (obtained with a rate description of spin conversion) that in the model with a single nucleus spin 1/2 the magnitude of the Magnetic Field Effect (MFE) also vanishes in the opposite limits of low and high dielectric permittivity of the solvent. Moreover, it is shown that MFE being positive at small hyperfine interaction A, first increases with A but approaching the maximum starts to decrease and even changes the sign.

  1. Organic-inorganic proximity effect in the magneto-conductance of vertical organic field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, B.; Devir-Wolfman, A. H.; Ehrenfreund, E., E-mail: eitane@technion.ac.il

    Vertical organic field effect transistors having a patterned source electrode and an a-SiO{sub 2} insulation layer show high performance as a switching element with high transfer characteristics. By measuring the low field magneto-conductance under ambient conditions at room temperature, we show here that the proximity of the inorganic a-SiO{sub 2} insulation to the organic conducting channel affects considerably the magnetic response. We propose that in n-type devices, electrons in the organic conducting channel and spin bearing charged defects in the inorganic a-SiO{sub 2} insulation layer (e.g., O{sub 2} = Si{sup +·}) form oppositely charged spin pairs whose singlet-triplet spin configurations are mixedmore » through the relatively strong hyperfine field of {sup 29}Si. By increasing the contact area between the insulation layer and the conducting channel, the ∼2% magneto-conductance response may be considerably enhanced.« less

  2. Spin resonance and spin fluctuations in a quantum wire

    NASA Astrophysics Data System (ADS)

    Pokrovsky, V. L.

    2017-02-01

    This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the measurement of spin correlations is a diagnostic tool to distinguish between the two states of electronic liquid in the quantum wire.

  3. Anomalous electron spin decoherence in an optically pumped quantum dot

    NASA Astrophysics Data System (ADS)

    Shi, Xiaofeng; Sham, L. J.

    2013-03-01

    We study the nuclear-spin-fluctuation induced spin decoherence of an electron (SDE) in an optically pumped quantum dot. The SDE is computed in terms of the steady distribution of the nuclear field (SDNF) formed through the hyperfine interaction (HI) with two different nuclear species in the dot. A feedback loop between the optically driven electron spin and the nuclear spin ensemble determines the SDNF [W. Yang and L. J. Sham, Phy. Rev. B 85, 235319(2012)]. Different from that work and others reviewed therein, where a bilinear HI, SαIβ , between the electron (or hole) spin S and the nuclear spin I is used, we use an effective nonlinear interaction of the form SαIβIγ derived from the Fermi-contact HI. Our feedback loop forms a multi-peak SDNF in which the SDE shows remarkable collapses and revivals in nanosecond time scale. Such an anomalous SDE results from a quantum interference effect of the electron Larmor precession in a multi-peak effective magnetic field. In the presence of a bilinear HI that suppresses the nuclear spin fluctuation, the non-Markovian SDE persists whenever there are finite Fermi contact interactions between two or more kinds of nuclei and the electron in the quantum dot. This work is supported by NSF(PHY 1104446) and the US Army Research Office MURI award W911NF0910406.

  4. Magnetic field effect on the optoelectronic response of amorphous hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    McLaughlin, Ryan; Sun, Dali; Zhang, Chuang; Ehrenfreund, Eitan; Vardeny, Zeev Valy

    We have studied the magneto-photoluminescence and magneto photoconductivity in amorphous hydrogenated silicon (a-Si:H) thin films and devices as a function of temperature up to field of 5 Tesla. The magnetic field effects (MFE) are interpreted as spin mixing between spin-singlet and spin-triplet charge pairs due to the ''delta- g'' mechanism that is based on the g-value difference between the paired electron and hole, which directly affects the rate of radiative recombination and charge carrier separation, respectively. We found that the MFE(B) response does not form a Lorentzian (that is expected from the ''delta- g'' mechanism) due to disorder in the film that results in a broad distribution of e-h recombination rates, which could be extracted directly by time-resolved photoluminescence.

  5. Field dependence of TB in NiO and (Ni, Zn)O Nanoclusters

    NASA Astrophysics Data System (ADS)

    Huh, Yung; Peck, M.; Skomski, R.; Zhang, R.; Kharel, P.; Allison, M.; Sellmyer, D.; Langell, M.

    2011-03-01

    Size dependence of magnetic properties of rocksalt NiO and Zn substituted NiO nanoparticles are investigated. Nanoparticle diameters are determined from 8 to 30 nm by XRD and AFM. Uncompensated spins at the nanoparticle surface contribute to superparametism at low temperatures and their blocking temperatures increase with stronger applied field. The field induced spin canting of the antiferromagnetic sublattices is a bulk effect and studied by the substitution of Zn with transition metal. Nanoparticles start exhibiting bulk magnetic behavior with size greater than 18 nm. Magnetization rotation of uncompensated spins under the magnetic field is mainly due to nanoscale size effect. The anisotropy of the nanoparticle is about four times larger than that of the bulk NiO. This research is supported by the NSF (CHE-1012366 and Nebraska MRSEC Grant DMR-0820521), the DOE Grant DE-FG02-04ER46152 (P. K. and D. J. S.) and NCMN.

  6. Higher Spin Fields in Three-Dimensional Gravity

    NASA Astrophysics Data System (ADS)

    Lepage-Jutier, Arnaud

    In this thesis, we study the effects of massless higher spin fields in three-dimensional gravity with a negative cosmological constant. First, we introduce gravity in Anti-de Sitter (AdS) space without the higher spin gauge symmetry. We recapitulate the semi-classical analysis that outlines the duality between quantum gravity in three dimensions with a negative cosmological constant and a conformal field theory on the asymptotic boundary of AdS 3. We review the statistical interpretation of the black hole entropy via the AdS/CFT correspondence and the modular invariance of the partition function of a CFT on a torus. For the case of higher spin theories in AdS 3 we use those modular properties to bound the amount of gauge symmetry present. We then discuss briefly cases that can evade this bound.

  7. Solid effect in magic angle spinning dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2012-08-01

    For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.

  8. Spin dynamics of random Ising chain in coexisting transverse and longitudinal magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Qiang; Jiang, Su-Rong; Kong, Xiang-Mu; Xu, Yu-Liang

    2017-05-01

    The dynamics of the random Ising spin chain in coexisting transverse and longitudinal magnetic fields is studied by the recursion method. Both the spin autocorrelation function and its spectral density are investigated by numerical calculations. It is found that system's dynamical behaviors depend on the deviation σJ of the random exchange coupling between nearest-neighbor spins and the ratio rlt of the longitudinal and the transverse fields: (i) For rlt = 0, the system undergoes two crossovers from N independent spins precessing about the transverse magnetic field to a collective-mode behavior, and then to a central-peak behavior as σJ increases. (ii) For rlt ≠ 0, the system may exhibit a coexistence behavior of a collective-mode one and a central-peak one. When σJ is small (or large enough), system undergoes a crossover from a coexistence behavior (or a disordered behavior) to a central-peak behavior as rlt increases. (iii) Increasing σJ depresses effects of both the transverse and the longitudinal magnetic fields. (iv) Quantum random Ising chain in coexisting magnetic fields may exhibit under-damping and critical-damping characteristics simultaneously. These results indicate that changing the external magnetic fields may control and manipulate the dynamics of the random Ising chain.

  9. Spin-Orbit Torques in ferrimagnetic GdFeCo

    NASA Astrophysics Data System (ADS)

    Roschewsky, Niklas; Lambert, Charles-Henri; Salahuddin, Sayeef

    Recently spin-orbit torques in antiferromagnets received a lot of attention due to intrinsic high frequency dynamics as well as robustness against perturbations from external magnetic fields. Here, we report on spin-orbit torque (SOT) switching in ferrimagnetic Gdx (Fe90Co10)100-x films on both sides of the magnetic compensation point. In addition to current driven switching experiments we performed harmonic Hall measurements of the effective SOT fields. We find that both the Slonczewski torque as well as the field-like torque diverge at the magnetization compensation point. However, the effective spin Hall angle ξ = (2 | e | / ℏ) MStFM (Heff / | jHM |) is found to be roughly constant across the investigated composition range. This provides important insight into the the angular momentum transfer process in ferrimagnets. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 within the NEMM program (KC2204).

  10. Frustrated spin chains in strong magnetic field: Dilute two-component Bose gas regime

    NASA Astrophysics Data System (ADS)

    Kolezhuk, A. K.; Heidrich-Meisner, F.; Greschner, S.; Vekua, T.

    2012-02-01

    We study the ground state of frustrated spin-S chains in a strong magnetic field in the immediate vicinity of saturation. In strongly frustrated chains, the magnon dispersion has two degenerate minima at inequivalent momenta ±Q, and just below the saturation field the system can be effectively represented as a dilute one-dimensional lattice gas of two species of bosons that correspond to magnons with momenta around ±Q. We present a theory of effective interactions in such a dilute magnon gas that allows us to make quantitative predictions for arbitrary values of the spin. With the help of this method, we are able to establish the magnetic phase diagram of frustrated chains close to saturation and study phase transitions between several nontrivial states, including a two-component Luttinger liquid, a vector chiral phase, and phases with bound magnons. We study those phase transitions numerically and find a good agreement with our analytical predictions.

  11. A two-dimensional spin field-effect switch

    DOE PAGES

    Yan, Wenjing; Txoperena, Oihana; Llopis, Roger; ...

    2016-11-11

    Future development in spintronic devices will require an advanced control of spin currents, for example by an electric field. Here we demonstrate an approach that differs from previous proposals such as the Datta and Das modulator, and that is based on a van de Waals heterostructure of atomically thin graphene and semiconducting MoS 2. Our device combines the superior spin transport properties of graphene with the strong spin–orbit coupling of MoS 2 and allows switching of the spin current in the graphene channel between ON and OFF states by tuning the spin absorption into the MoS 2 with a gatemore » electrode. Lastly, our proposal holds potential for technologically relevant applications such as search engines or pattern recognition circuits, and opens possibilities towards electrical injection of spins into transition metal dichalcogenides and alike materials.« less

  12. Electric-field-induced spin switch of endohedral dodecahedrane heterodimers H@C20Hn-C20Hn@M (M= Cu, Ag and Au, n = 15, 18, and 19): a theoretical study.

    PubMed

    Hou, Jianhua; Yang, Zhixiong; Li, Zhiru; Chai, Haoyu; Zhao, Ruiqi

    2017-08-01

    We designed nine endohedral dodecahedrane heterodimers H@C 20 H n -C 20 H n @M (M = Cu, Ag, and Au, n = 15, 18, and 19) that may act as single-molecule spin switches, and we predicted theoretically that the ground states of the dimmers shift from low-spin states (S = 0) to the high-spin states (S = 1) under an external electric field applied parallel or perpendicular to the molecular symmetry axes, consisting well with the analyses of Stark effect. Molecular orbitals analyses provide an intuitive insight into the spin crossover behavior. This study expands the application of endohedral chemistry and provides new molecules for designing single-molecule spin switch.

  13. Study of CP(N-1) theta-vacua by cluster simulation of SU(N) quantum spin ladders.

    PubMed

    Beard, B B; Pepe, M; Riederer, S; Wiese, U-J

    2005-01-14

    D-theory provides an alternative lattice regularization of the 2D CP(N-1) quantum field theory in which continuous classical fields emerge from the dimensional reduction of discrete SU(N) quantum spins. Spin ladders consisting of n transversely coupled spin chains lead to a CP(N-1) model with a vacuum angle theta=npi. In D-theory no sign problem arises and an efficient cluster algorithm is used to investigate theta-vacuum effects. At theta=pi there is a first order phase transition with spontaneous breaking of charge conjugation symmetry for CP(N-1) models with N>2.

  14. Spin Biochemistry Modulates Reactive Oxygen Species (ROS) Production by Radio Frequency Magnetic Fields

    PubMed Central

    Usselman, Robert J.; Hill, Iain; Singel, David J.; Martino, Carlos F.

    2014-01-01

    The effects of weak magnetic fields on the biological production of reactive oxygen species (ROS) from intracellular superoxide (O2 •−) and extracellular hydrogen peroxide (H2O2) were investigated in vitro with rat pulmonary arterial smooth muscle cells (rPASMC). A decrease in O2 •− and an increase in H2O2 concentrations were observed in the presence of a 7 MHz radio frequency (RF) at 10 μTRMS and static 45 μT magnetic fields. We propose that O2 •− and H2O2 production in some metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH•) enzymes and O2 •− spin-correlated radical pairs. Spin-radical pair products are modulated by the 7 MHz RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in an increase of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects cellular proliferation. This study demonstrates the interplay between O2 •− and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth. PMID:24681944

  15. Tuning the Electronic, Optical, and Magnetic Properties of Monolayer GaSe with a Vertical Electric Field

    NASA Astrophysics Data System (ADS)

    Ke, Congming; Wu, Yaping; Guo, Guang-Yu; Lin, Wei; Wu, Zhiming; Zhou, Changjie; Kang, Junyong

    2018-04-01

    Inspired by two-dimensional material with their unique physical properties and innovative device applications, here we report a design framework on monolayer GaSe, an important member of the two-dimensional material family, in an effort to tune the electronic, optical, and magnetic properties through a vertical electric field. A transition from indirect to direct band gap in monolayer GaSe is found with an electric field of 0.09 V /Å . The giant Stark effect results in a reduction of the band gap with a Stark coefficient of 3.54 Å. Optical and dielectric properties of monolayer GaSe are dependent on the vertical electric field. A large regulation range for polarization E ∥c ^ is found for the static dielectric constant. The optical anisotropy with the dipole transition from E ∥c ^ to E ⊥c ^ is achieved. Induced by the spin-orbit coupling, spin-splitting energy at the valence band maximum increases linearly with the electric field. The effective mass of holes is highly susceptible to the vertical electric field. Switchable spin-polarization features in spin texture of monolayer GaSe are predicted. The tunable electronic, optical, and magnetic properties of monolayer GaSe hold great promise for applications in both the optoelectronic and spintronic devices.

  16. Effective-field renormalization-group method for Ising systems

    NASA Astrophysics Data System (ADS)

    Fittipaldi, I. P.; De Albuquerque, D. F.

    1992-02-01

    A new applicable effective-field renormalization-group (ERFG) scheme for computing critical properties of Ising spins systems is proposed and used to study the phase diagrams of a quenched bond-mixed spin Ising model on square and Kagomé lattices. The present EFRG approach yields results which improves substantially on those obtained from standard mean-field renormalization-group (MFRG) method. In particular, it is shown that the EFRG scheme correctly distinguishes the geometry of the lattice structure even when working with the smallest possible clusters, namely N'=1 and N=2.

  17. Time-domain detection of current controlled magnetization damping in Pt/Ni{sub 81}Fe{sub 19} bilayer and determination of Pt spin Hall angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, A.; Haldar, A.; Sinha, J.

    2014-09-15

    The effect of spin torque from the spin Hall effect in Pt/Ni{sub 81}Fe{sub 19} rectangular bilayer film was investigated using time-resolved magneto-optical Kerr microscopy. Current flow through the stack resulted in a linear variation of effective damping up to ±7%, attributed to spin current injection from the Pt into the Ni{sub 81}Fe{sub 19}. The spin Hall angle of Pt was estimated as 0.11 ± 0.03. The modulation of the damping depended on the angle between the current and the bias magnetic field. These results demonstrate the importance of optical detection of precessional magnetization dynamics for studying spin transfer torque due to spinmore » Hall effect.« less

  18. Structural Effects on the Spin Dynamics of Potential Molecular Qubits.

    PubMed

    Atzori, Matteo; Benci, Stefano; Morra, Elena; Tesi, Lorenzo; Chiesa, Mario; Torre, Renato; Sorace, Lorenzo; Sessoli, Roberta

    2018-01-16

    Control of spin-lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin-lattice relaxation time as a function of the magnetic field, for S = 1 / 2 potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0-6.0 μs in the 4-100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.

  19. Anisotropic in-plane spin splitting in an asymmetric (001) GaAs/AlGaAs quantum well

    PubMed Central

    2011-01-01

    The in-plane spin splitting of conduction-band electron has been investigated in an asymmetric (001) GaAs/AlxGa1-xAs quantum well by time-resolved Kerr rotation technique under a transverse magnetic field. The distinctive anisotropy of the spin splitting was observed while the temperature is below approximately 200 K. This anisotropy emerges from the combined effect of Dresselhaus spin-orbit coupling plus asymmetric potential gradients. We also exploit the temperature dependence of spin-splitting energy. Both the anisotropy of spin splitting and the in-plane effective g-factor decrease with increasing temperature. PACS: 78.47.jm, 71.70.Ej, 75.75.+a, 72.25.Fe, PMID:21888636

  20. Ab initio model potential calculations on the electronic spectrum of Ni2 + -doped MgO including correlation, spin-orbit and embedding effects

    NASA Astrophysics Data System (ADS)

    Llusar, Rosa; Casarrubios, Marcos; Barandiarán, Zoila; Seijo, Luis

    1996-10-01

    An ab initio theoretical study of the optical absorption spectrum of Ni2+-doped MgO has been conducted by means of calculations in a MgO-embedded (NiO6)10-cluster. The calculations include long- and short-range embedding effects of electrostatic and quantum nature brought about by the MgO crystalline lattice, as well as electron correlation and spin-orbit effects within the (NiO6)10- cluster. The spin-orbit calculations have been performed using the spin-orbit-CI WB-AIMP method [Chem. Phys. Lett. 147, 597 (1988); J. Chem. Phys. 102, 8078 (1995)] which has been recently proposed and is applied here for the first time to the field of impurities in crystals. The WB-AIMP method is extended in order to handle correlation effects which, being necessary to produce accurate energy differences between spin-free states, are not needed for the proper calculation of spin-orbit couplings. The extension of the WB-AIMP method, which is also aimed at keeping the size of the spin-orbit-CI within reasonable limits, is based on the use of spin-free-state shifting operators. It is shown that the unreasonable spin-orbit splittings obtained for MgO:Ni2+ in spin-orbit-CI calculations correlating only 8 electrons become correct when the proposed extension is applied, so that the same CI space is used but energy corrections due to correlating up to 26 electrons are included. The results of the ligand field spectrum of MgO:Ni2+ show good overall agreement with the experimental measurements and a reassignment of the observed Eg(b3T1g) excited state is proposed and discussed.

  1. Conductance Change Induced by the Rashba Effect in the LaAlO3/SrTiO3 Interface.

    PubMed

    Kim, Taeyueb; Kim, Shin-Ik; Baek, Seung-Hyub; Hong, Jinki; Koo, Hyun Cheol

    2015-11-01

    The LaAlO3/SrTiO3 (LAO/STO) heterostructure has an inherent space inversion asymmetry causing an internal electric field near the interface. The Rashba spin-orbit coupling arising from this structural characteristic has a considerable influence on spin transport. With application of an external magnetic field, we observed conductance change in the LAO/STO interface which depends on the sign and magnitude of the field. Our systematic study revealed that these results come from spin dependent transport, by which we obtained quantitative strength of the Rashba effect. The Rashba strength in this system depends on the temperature: it varies from 2.6 x 10(-12) eVm to negligible value in the temperature range of 1.8 K-12 K. This method for detecting Rashba effect covers a wider temperature range in comparison with those obtained from Shubnikov-de Haas oscillation or weak antilocalization measurements.

  2. Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO3/SrTiO3 devices

    PubMed Central

    Hurand, S.; Jouan, A.; Feuillet-Palma, C.; Singh, G.; Biscaras, J.; Lesne, E.; Reyren, N.; Barthélémy, A.; Bibes, M.; Villegas, J. E.; Ulysse, C.; Lafosse, X.; Pannetier-Lecoeur, M.; Caprara, S.; Grilli, M.; Lesueur, J.; Bergeal, N.

    2015-01-01

    The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two-dimensional electron gases (2-DEGs) at LaAlO3/SrTiO3 interfaces, which exhibit both superconductivity and strong Rashba spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on the realisation of a field-effect LaAlO3/SrTiO3 device, whose physical properties, including superconductivity and SOC, can be tuned over a wide range by a top-gate voltage. We derive a phase diagram, which emphasises a field-effect-induced superconductor-to-insulator quantum phase transition. Magneto-transport measurements show that the Rashba coupling constant increases linearly with the interfacial electric field. Our results pave the way for the realisation of mesoscopic devices, where these two properties can be manipulated on a local scale by means of top-gates. PMID:26244916

  3. Effect of the strong coupling on the exchange bias field in IrMn/Py/Ru/Co spin valves

    NASA Astrophysics Data System (ADS)

    Tarazona, H. S.; Alayo, W.; Landauro, C. V.; Quispe-Marcatoma, J.

    2018-01-01

    The IrMn/Py/Ru/Co (Py = Ni81Fe19) spin valves have been produced by sputtering deposition and analyzed by magnetization measurements and a theoretical modelling of their exchange interactions, based on the macro-spin model. The Ru thickness was grown between 6 and 22 Å, which is small enough to promote strong indirect coupling between Py and Co. Results of measurements showed a large and gradual change in the shape of hysteresis loops when the Ru thickness was varied. The theoretical analysis, using numerical calculations based on the gradient conjugate method, provides the exchange coupling constants (bilinear and biquadratic), the exchange anisotropy fields and the magnetic anisotropy fields (uniaxial and rotatable). The exchange bias fields of spin valves were compared to that of a IrMn/Py bilayer. We found that the difference between these fields oscillates with Ru thickness in the same manner as the bilinear coupling constants.

  4. Improvement of spin-exchange optical pumping of xenon-129 using in situ NMR measurement in ultra-low magnetic field

    NASA Astrophysics Data System (ADS)

    Takeda, Shun; Kumagai, Hiroshi

    2018-02-01

    Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.

  5. Electronic spin polarization in the Majorana bound state in one-dimensional wires

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Aksenov, S. V.

    2017-10-01

    We have studied the effect of magnetic field and disorder on the electronic z-spin polarization at the ends of the one-dimensional wire with strong Rashba spin-orbit coupling deposited on an s-wave superconductor. It was shown that in the topologically nontrivial phase the polarization as well as the energy of the Majorana bound state oscillate as a function of the magnetic field. Despite being substantially nonzero in the low transversal and longitudinal fields the polarization at one of the wire's ends is significantly suppressed at a certain range of the magnitudes and angles of the canted magnetic field. Thus, in this case the polarization cannot be regarded as a local order parameter. However, the sum of the absolute values of the polarization at both ends remains significantly nonzero. It was demonstrated that Anderson disorder does not seriously affect observed properties but leads to the appearance of the additional areas with weak spin polarization at the high magnetic fields.

  6. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deb, Moumita, E-mail: moumitadeb44@gmail.com; Ghosh, Asim Kumar, E-mail: asimkumar96@yahoo.com

    2016-05-23

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu{sub 3}WO{sub 6}.

  7. Local Field Response Method Phenomenologically Introducing Spin Correlations

    NASA Astrophysics Data System (ADS)

    Tomaru, Tatsuya

    2018-03-01

    The local field response (LFR) method is a way of searching for the ground state in a similar manner to quantum annealing. However, the LFR method operates on a classical machine, and quantum effects are introduced through a priori information and through phenomenological means reflecting the states during the computations. The LFR method has been treated with a one-body approximation, and therefore, the effect of entanglement has not been sufficiently taken into account. In this report, spin correlations are phenomenologically introduced as one of the effects of entanglement, by which multiple tunneling at anticrossing points is taken into account. As a result, the accuracy of solutions for a 128-bit system increases by 31% compared with that without spin correlations.

  8. Field-induced exciton condensation in LaCoO3

    PubMed Central

    Sotnikov, A.; Kuneš, J.

    2016-01-01

    Motivated by recent observation of magnetic field induced transition in LaCoO3 we study the effect of external field in systems close to instabilities towards spin-state ordering and exciton condensation. We show that, while in both cases the transition can be induced by an external field, temperature dependencies of the critical field have opposite slopes. Based on this result we argue that the experimental observations select the exciton condensation scenario. We show that such condensation is possible due to high mobility of the intermediate spin excitations. The estimated width of the corresponding dispersion is large enough to overrule the order of atomic multiplets and to make the intermediate spin excitation propagating with a specific wave vector the lowest excitation of the system. PMID:27461512

  9. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    NASA Astrophysics Data System (ADS)

    Zietek, Slawomir; Ogrodnik, Piotr; Skowroński, Witold; Stobiecki, Feliks; van Dijken, Sebastiaan; Barnaś, Józef; Stobiecki, Tomasz

    2016-08-01

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  10. CFD Prediction for Spin Rate of Fixed Canards on a Spinning Projectile

    NASA Astrophysics Data System (ADS)

    Ji, X. L.; Jia, Ch. Y.; Jiang, T. Y.

    2011-09-01

    A computational study performed for spin rate of fixed canards on a spinning projectile is presented in this paper. The cancards configurations provide challenges in terms of the determination of the aerodynamic forces and moments and the flow field changes which could have significant effect on the stability, performance, and corrected round accuracy. Advanced time accurate Navier-Stokes computations have been performed to compute the spin rate associated with the spinning motion of the cancards configurations at supersonic speed. The results show that roll-damping moment of cancards varies linearly with the spin rate at supersonic velocity.

  11. Microwave Magnetic Materials for Radar and Signal Processing Devices - Thin Film and Bulk Oxides and Metals

    DTIC Science & Technology

    2007-11-29

    films, (3) low field effective linewidth in polycrystalline ferrites, (4) Fermi-Pasta-Ulam recurrence for spin wave solitons in yttrium iron garnet...Fermi- Pasta-Ulam recurrence for spin wave solitons in yttrium iron garnet (YIG) film strips in a feedback ring system, (5) the Hamiltonian...XRD data. point in field was so small that field modulation and lock -in The FMR field is taken at the peak loss point in the (b) detection methods

  12. Manifestations of geometric phases in a proton electric-dipole-moment experiment in an all-electric storage ring

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.

    2017-12-01

    We consider a proton electric-dipole-moment experiment in an all-electric storage ring when the spin is frozen and local longitudinal and vertical electric fields alternate. In this experiment, the geometric (Berry) phases are very important. Due to the these phases, the spin rotates about the radial axis. The corresponding systematic error is rather important while it can be canceled with clockwise and counterclockwise beams. The geometric phases also lead to the spin rotation about the radial axis. This effect can be canceled with clockwise and counterclockwise beams as well. The sign of the azimuthal component of the angular velocity of the spin precession depends on the starting point where the spin orientation is perfect. The radial component of this quantity keeps its value and sign for each starting point. When the longitudinal and vertical electric fields are joined in the same sections without any alternation, the systematic error due to the geometric phases does not appear but another systematic effect of the spin rotation about the azimuthal axis takes place. It has opposite signs for clockwise and counterclockwise beams.

  13. Self-current induced spin-orbit torque in FeMn/Pt multilayers

    PubMed Central

    Xu, Yanjun; Yang, Yumeng; Yao, Kui; Xu, Baoxi; Wu, Yihong

    2016-01-01

    Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications. PMID:27185656

  14. Quantum Phase Transitions in Cavity Coupled Dot systems

    NASA Astrophysics Data System (ADS)

    Kasisomayajula, Vijay; Russo, Onofrio

    2011-03-01

    We investigate a Quantum Dot System, in which the transconductance, in part, is due to spin coupling, with each dot subjected to a biasing voltage. When this system is housed in a QED cavity, the cavity dot coupling alters the spin coupling of the coupled dots significantly via the Purcell Effect. In this paper we show the extent to which one can control the various coupling parameters: the inter dot coupling, the individual dots coupling with the cavity and the coupled dots coupling with the cavity as a single entity. We show that the dots coupled to each other and to the cavity, the spin transport can be controlled selectively. We derive the conditions for such control explicitly. Further, we discuss the Quantum phase transition effects due to the charge and spin transport through the dots. The electron transport through the dots, electron-electron spin interaction and the electron-photon interaction are treated using the Non-equilibrium Green's Function Formalism. http://publish.aps.org/search/field/author/Trif_Mircea (Trif Mircea), http://publish.aps.org/search/field/author/Golovach_Vitaly_N (Vitaly N. Golovach), and http://publish.aps.org/search/field/author/Loss_Daniel (Daniel Loss), Phys. Rev. B 75, 085307 (2007)

  15. Critical and compensation behavior of a mixed spin-3/2 and spin-5/2 Ising ferrimagnetic system in a graphene layer

    NASA Astrophysics Data System (ADS)

    Alzate-Cardona, J. D.; Sabogal-Suárez, D.; Restrepo-Parra, E.

    2017-05-01

    We have studied the magnetic properties of the mixed spin σ = ± 3/2, ± 1/2 and spin S = ± 5/2, ± 3/2, ± 1/2 Ising ferrimagnetic system in a graphene layer by means of Monte Carlo simulations. The effects of next-nearest neighbors exchange interactions and crystal field anisotropy on the critical and compensation behavior of the system have been investigated. The results show that, for a system with given values of the crystal field anisotropy and exchange interaction constants, a compensation point only exists if the values of the spins in the ground state are such that | S | > | σ | and Jσ is higher than a certain value Jσmin . It was shown that the relationship between Jσmin and JS is linear for a given value of the crystal field constant. The compensation and the critical temperature are very sensitive to the change of JS and Jσ, respectively, while the crystal field anisotropy affects both temperatures to a large extent.

  16. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    NASA Astrophysics Data System (ADS)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-01

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.

  17. Design of Transverse Spinning of Light with Globally Unique Handedness

    NASA Astrophysics Data System (ADS)

    Piao, Xianji; Yu, Sunkyu; Park, Namkyoo

    2018-05-01

    Access to the transverse spin of light has unlocked new regimes in topological photonics. To achieve the transverse spin from nonzero longitudinal fields, various platforms that derive transversely confined waves based on focusing, interference, or evanescent waves have been suggested. Nonetheless, because of the transverse confinement inherently accompanying sign reversal of the field derivative, the resulting transverse spin handedness of each field experiences spatial inversion, which leads to a mismatch between the intensities of the field and its spin component and hinders the global observation of the transverse spin. Here, we reveal a globally pure transverse spin of the electric field in which the field intensity signifies the spin distribution. Starting from the target spin mode for the inverse design of required spatial profiles of anisotropic permittivities, we show that the elliptic-hyperbolic transition around the epsilon-near-zero permittivity allows for the global conservation of transverse spin handedness of the electric field across the topological interface between anisotropic metamaterials. Extending to the non-Hermitian regime, we develop annihilated transverse spin modes to cover the entire Poincaré sphere of the meridional plane. This result realizes the complete optical analogy of three-dimensional quantum spin states.

  18. Stretchable Persistent Spin Helices in GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Dettwiler, Florian; Fu, Jiyong; Mack, Shawn; Weigele, Pirmin J.; Egues, J. Carlos; Awschalom, David D.; Zumbühl, Dominik M.

    2017-07-01

    The Rashba and Dresselhaus spin-orbit (SO) interactions in 2D electron gases act as effective magnetic fields with momentum-dependent directions, which cause spin decay as the spins undergo arbitrary precessions about these randomly oriented SO fields due to momentum scattering. Theoretically and experimentally, it has been established that by fine-tuning the Rashba α and renormalized Dresselhaus β couplings to equal fixed strengths α =β , the total SO field becomes unidirectional, thus rendering the electron spins immune to decay due to momentum scattering. A robust persistent spin helix (PSH), i.e., a helical spin-density wave excitation with constant pitch P =2 π /Q , Q =4 m α /ℏ2, has already been experimentally realized at this singular point α =β , enhancing the spin lifetime by up to 2 orders of magnitude. Here, we employ the suppression of weak antilocalization as a sensitive detector for matched SO fields together with independent electrical control over the SO couplings via top gate voltage VT and back gate voltage VB to extract all SO couplings when combined with detailed numerical simulations. We demonstrate for the first time the gate control of the renormalized β and the continuous locking of the SO fields at α =β ; i.e., we are able to vary both α and β controllably and continuously with VT and VB, while keeping them locked at equal strengths. This makes possible a new concept: "stretchable PSHs," i.e., helical spin patterns with continuously variable pitches P over a wide parameter range. Stretching the PSH, i.e., gate controlling P while staying locked in the PSH regime, provides protection from spin decay at the symmetry point α =β , thus offering an important advantage over other methods. This protection is limited mainly by the cubic Dresselhaus term, which breaks the unidirectionality of the total SO field and causes spin decay at higher electron densities. We quantify the cubic term, and find it to be sufficiently weak so that the extracted spin-diffusion lengths and decay times show a significant enhancement near α =β . Since within the continuous-locking regime quantum transport is diffusive (2D) for charge while ballistic (1D) for spin and thus amenable to coherent spin control, stretchable PSHs could provide the platform for the much heralded long-distance communication ˜8 - 25 μ m between solid-state spin qubits, where the spin diffusion length for α ≠β is an order of magnitude smaller.

  19. Optically Induced Nuclear Spin Polarization in the Quantum Hall Regime: The Effect of Electron Spin Polarization through Exciton and Trion Excitations.

    PubMed

    Akiba, K; Kanasugi, S; Yuge, T; Nagase, K; Hirayama, Y

    2015-07-10

    We study nuclear spin polarization in the quantum Hall regime through the optically pumped electron spin polarization in the lowest Landau level. The nuclear spin polarization is measured as a nuclear magnetic field B(N) by means of the sensitive resistive detection. We find the dependence of B(N) on the filling factor nonmonotonic. The comprehensive measurements of B(N) with the help of the circularly polarized photoluminescence measurements indicate the participation of the photoexcited complexes, i.e., the exciton and trion (charged exciton), in nuclear spin polarization. On the basis of a novel estimation method of the equilibrium electron spin polarization, we analyze the experimental data and conclude that the filling factor dependence of B(N) is understood by the effect of electron spin polarization through excitons and trions.

  20. Electrical tuning of spin splitting in Bi-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Kılıç, ćetin

    2018-01-01

    The effect of applying an external electric field on doping-induced spin-orbit splitting of the lowest conduction-band states in a bismuth-doped zinc oxide nanowire is studied by performing electronic structure calculations within the framework of density functional theory. It is demonstrated that spin splitting in Bi-doped ZnO nanowires could be tuned and enhanced electrically via control of the strength and direction of the applied electric field, thanks to the nonuniform and anisotropic response of the ZnO:Bi nanowire to external electric fields. The results reported here indicate that a single ZnO nanowire doped with a low concentration of Bi could function as a spintronic device, the operation of which is controlled by applied lateral electric fields.

  1. Exchange bias mechanism in FM/FM/AF spin valve systems in the presence of random unidirectional anisotropy field at the AF interface: The role played by the interface roughness due to randomness

    NASA Astrophysics Data System (ADS)

    Yüksel, Yusuf

    2018-05-01

    We propose an atomistic model and present Monte Carlo simulation results regarding the influence of FM/AF interface structure on the hysteresis mechanism and exchange bias behavior for a spin valve type FM/FM/AF magnetic junction. We simulate perfectly flat and roughened interface structures both with uncompensated interfacial AF moments. In order to simulate rough interface effect, we introduce the concept of random exchange anisotropy field induced at the interface, and acting on the interface AF spins. Our results yield that different types of the random field distributions of anisotropy field may lead to different behavior of exchange bias.

  2. Spin current and second harmonic generation in non-collinear magnetic systems: the hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Karashtin, E. A.; Fraerman, A. A.

    2018-04-01

    We report a theoretical study of the second harmonic generation in a noncollinearly magnetized conductive medium with equilibrium spin current. The hydrodynamic model is used to unravel the mechanism of a novel effect of the double frequency signal generation that is attributed to the spin current. According to our calculations, this second harmonic response appears due to the ‘non-adiabatic’ spin polarization of the conduction electrons induced by the oscillations in the non-uniform magnetization forced by the electric field of the electromagnetic wave. Together with the linear velocity response this leads to the generation of the double frequency spin current. This spin current is converted to the electric current via the inverse spin Hall effect, and the double-frequency electric current emits the second harmonic radiation. Possible experiment for detection of the new second harmonic effect is proposed.

  3. Tunneling Anomalous and Spin Hall Effects.

    PubMed

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  4. Investigation of the spin Seebeck effect and anomalous Nernst effect in a bulk carbon material

    NASA Astrophysics Data System (ADS)

    Wongjom, Poramed; Pinitsoontorn, Supree

    2018-03-01

    Since the discovery of the spin Seebeck effect (SSE) in 2008, it has become one of the most active topics in the spin caloritronics research field. It opened up a new way to create the spin current by a combination of magnetic fields and heat. The SSE was observed in many kinds of materials including metallic, semiconductor, or insulating magnets, as well as non-magnetic materials. On the other hand, carbon-based materials have become one of the most exciting research areas recently due to its low cost, abundance and some exceptional functionalities. In this work, we have investigated the possibility of the SSE in bulk carbon materials for the first time. Thin platinum film (Pt), coated on the smoothened surface of the bulk carbon, was used as the spin detector via the inverse spin Hall effect (ISHE). The experiment for observing longitudinal SSE in the bulk carbon was set up by applying a magnetic field up to 30 kOe to the sample with the direction perpendicular to the applied temperature gradient. The induced voltage from the SSE was extracted. However, for conductive materials, e.g. carbon, the voltage signal under this set up could be a combination of the SSE and the anomalous Nernst effect (ANE). Therefore, two measurement configurations were carried out, i.e. the in-plane magnetization (IM), and the perpendicular-to-plane magnetization (PM). For the IM configuration, the SSE + ANE signals were detected where as the only ANE signal existed in the PM configuration. The results showed that there were the differences between the voltage signals from the IM and PM configurations implying the possibility of the SSE in the bulk carbon material. Moreover, it was found that the difference in the IM and PM signals was a function of the magnetic field strength, temperature difference, and measurement temperature. Although the magnitude of the possible SSE voltage in this experiment was rather low (less than 0.5 μV at 50 K), this research showed that potential of using low cost and abundant bulk carbon as spin current supplier or thermoelectric power generators.

  5. Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays

    PubMed Central

    De, Anulekha; Mondal, Sucheta; Sahoo, Sourav; Barman, Saswati; Otani, Yoshichika; Mitra, Rajib Kumar

    2018-01-01

    Ferromagnetic antidot arrays have emerged as a system of tremendous interest due to their interesting spin configuration and dynamics as well as their potential applications in magnetic storage, memory, logic, communications and sensing devices. Here, we report experimental and numerical investigation of ultrafast magnetization dynamics in a new type of antidot lattice in the form of triangular-shaped Ni80Fe20 antidots arranged in a hexagonal array. Time-resolved magneto-optical Kerr effect and micromagnetic simulations have been exploited to study the magnetization precession and spin-wave modes of the antidot lattice with varying lattice constant and in-plane orientation of the bias-magnetic field. A remarkable variation in the spin-wave modes with the orientation of in-plane bias magnetic field is found to be associated with the conversion of extended spin-wave modes to quantized ones and vice versa. The lattice constant also influences this variation in spin-wave spectra and spin-wave mode profiles. These observations are important for potential applications of the antidot lattices with triangular holes in future magnonic and spintronic devices. PMID:29719763

  6. All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect

    DOE PAGES

    Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; ...

    2016-02-03

    The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, whichmore » is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Lastly, our findings have direct implications on the development of engineered magnonics applications and devices.« less

  7. Spin-dependent Seebeck effects in a graphene superlattice p-n junction with different shapes

    NASA Astrophysics Data System (ADS)

    Zhou, Benhu; Zhou, Benliang; Yao, Yagang; Zhou, Guanghui; Hu, Ming

    2017-10-01

    We theoretically calculate the spin-dependent transmission probability and spin Seebeck coefficient for a zigzag-edge graphene nanoribbon p-n junction with periodically attached stubs under a perpendicular magnetic field and a ferromagnetic insulator. By using the nonequilibrium Green’s function method combining with the tight-binding Hamiltonian, it is demonstrated that the spin-dependent transmission probability and spin Seebeck coefficient for two types of superlattices can be modulated by the potential drop, the magnetization strength, the number of periods of the superlattice, the strength of the perpendicular magnetic field, and the Anderson disorder strength. Interestingly, a metal to semiconductor transition occurs as the number of the superlattice for a crossed superlattice p-n junction increases, and its spin Seebeck coefficient is much larger than that for the T-shaped one around the zero Fermi energy. Furthermore, the spin Seebeck coefficient for crossed systems can be much pronounced and their maximum absolute value can reach 528 μV K-1 by choosing optimized parameters. Besides, the spin Seebeck coefficient for crossed p-n junction is strongly enhanced around the zero Fermi energy for a weak magnetic field. Our results provide theoretical references for modulating the thermoelectric properties of a graphene superlattice p-n junction by tuning its geometric structure and physical parameters.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Dongmei, E-mail: dmdeng@shu.edu.cn, E-mail: dyu@ansto.gov.au, E-mail: jczhang@staff.shu.edu.cn; Feng, Zhenjie; Jing, Chao

    Cooling magnetic field dependence of magnetic phase transition has been observed in Y{sub 0.9}Pr{sub 0.1}CrO{sub 3}. G{sub z}F{sub x} order (spin structure of PrCrO{sub 3}) is dominant after zero field cooling (ZFC), whereas G{sub x}F{sub z} order (spin structure of YCrO{sub 3}) is dominant after cooling under a field higher than 100 Oe. Positive/negative exchange bias-like effect, with large vertical shift and small horizontal shift, has been observed after FC/ZFC process. The vertical shift can be attributed to the frozen ordered Pr{sup 3+} and Cr{sup 3+} spins in magnetic domains, because of the strong coupling between Pr{sup 3+} and Cr{sup 3+}more » sublattices; while the horizontal shift is a result of the pinning of spins at the interfaces. The frozen structure is generated by the field used for the measurement of the initial magnetization curve of M(H) for the ZFC cooled sample, while it is generated by the cooling field for the sample cooled under a cooling field higher than 100 Oe.« less

  9. Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium

    NASA Astrophysics Data System (ADS)

    Sigillito, Anthony James

    Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a single-phonon T1 process. At lower frequencies or lower temperatures the qubit coherence times should substantially increase. Finally, we measure the electric field tunability of donors in germanium and find a four order-of-magnitude enhancement in the spin-orbit Stark shift and confirm that the donors should be tunable by at least 4 times the electron spin ensemble linewidth (in isotopically enriched material). Germanium should therefore also be more sensitive to electrically driven nuclear magnetic resonance. Based on these results germanium is a promising alternative to silicon for spin qubits.

  10. Spintronics Based on Topological Insulators

    NASA Astrophysics Data System (ADS)

    Fan, Yabin; Wang, Kang L.

    2016-10-01

    Spintronics using topological insulators (TIs) as strong spin-orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin-orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin-torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its potential applications in ultralow power dissipation spintronic memory and logic devices.

  11. Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Kimball, Derek F. Jackson; Sushkov, Alexander O.; Aybas, Deniz; Blanchard, John W.; Centers, Gary; Kelley, Sean R. O.'; Wickenbrock, Arne; Fang, Jiancheng; Budker, Dmitry

    2018-03-01

    The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity ≈ 1 fT /√{ Hz } and an effective sensing volume of 0.1 cm3 that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is the SERF's limited dynamic range. Use of a magnetic flux transformer to suppress the leading magnetic field is considered as a potential method to expand the SERF's dynamic range in order to probe higher axion/ALP Compton frequencies.

  12. Spin-Hall effect and emergent antiferromagnetic phase transition in n-Si

    NASA Astrophysics Data System (ADS)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    Spin current experiences minimal dephasing and scattering in Si due to small spin-orbit coupling and spin-lattice interactions is the primary source of spin relaxation. We hypothesize that if the specimen dimension is of the same order as the spin diffusion length then spin polarization will lead to non-equilibrium spin accumulation and emergent phase transition. In n-Si, spin diffusion length has been reported up to 6 μm. The spin accumulation in Si will modify the thermal transport behavior of Si, which can be detected with thermal characterization. In this study, we report observation of spin-Hall effect and emergent antiferromagnetic phase transition behavior using magneto-electro-thermal transport characterization. The freestanding Pd (1 nm)/Ni80Fe20 (75 nm)/MgO (1 nm)/n-Si (2 μm) thin film specimen exhibits a magnetic field dependent thermal transport and spin-Hall magnetoresistance behavior attributed to Rashba effect. An emergent phase transition is discovered using self-heating 3ω method, which shows a diverging behavior at 270 K as a function of temperature similar to a second order phase transition. We propose that spin-Hall effect leads to the spin accumulation and resulting emergent antiferromagnetic phase transition. We propose that the length scale for Rashba effect can be equal to the spin diffusion length and two-dimensional electron gas is not essential for it. The emergent antiferromagnetic phase transition is attributed to the site inversion asymmetry in diamond cubic Si lattice.

  13. Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.

    2016-01-01

    As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.

  14. Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics

    DOE PAGES

    Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; ...

    2016-02-05

    As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blendsmore » exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device’s current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. In conclusion, magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.« less

  15. Fisher information of a single qubit interacts with a spin-qubit in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2018-06-01

    In this contribution, quantum Fisher information is utilized to estimate the parameters of a central qubit interacting with a single-spin qubit. The effect of the longitudinal, transverse and the rotating strengths of the magnetic field on the estimation degree is discussed. It is shown that, in the resonance case, the number of peaks and consequently the size of the estimation regions increase as the rotating magnetic field strength increases. The precision estimation of the central qubit parameters depends on the initial state settings of the central and the spin-qubit, either encode classical or quantum information. It is displayed that, the upper bounds of the estimation degree are large if the two qubits encode classical information. In the non-resonance case, the estimation degree depends on which of the longitudinal/transverse strength is larger. The coupling constant between the central qubit and the spin-qubit has a different effect on the estimation degree of the weight and the phase parameters, where the possibility of estimating the weight parameter decreases as the coupling constant increases, while it increases for the phase parameter. For large number of spin-particles, namely, we have a spin-bath particles, the upper bounds of the Fisher information with respect to the weight parameter of the central qubit decreases as the number of the spin particle increases. As the interaction time increases, the upper bounds appear at different initial values of the weight parameter.

  16. Discrimination between spin-dependent charge transport and spin-dependent recombination in π-conjugated polymers by correlated current and electroluminescence-detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Kavand, Marzieh; Baird, Douglas; van Schooten, Kipp; Malissa, Hans; Lupton, John M.; Boehme, Christoph

    2016-08-01

    Spin-dependent processes play a crucial role in organic electronic devices. Spin coherence can give rise to spin mixing due to a number of processes such as hyperfine coupling, and leads to a range of magnetic field effects. However, it is not straightforward to differentiate between pure single-carrier spin-dependent transport processes which control the current and therefore the electroluminescence, and spin-dependent electron-hole recombination which determines the electroluminescence yield and in turn modulates the current. We therefore investigate the correlation between the dynamics of spin-dependent electric current and spin-dependent electroluminescence in two derivatives of the conjugated polymer poly(phenylene-vinylene) using simultaneously measured pulsed electrically detected (pEDMR) and optically detected (pODMR) magnetic resonance spectroscopy. This experimental approach requires careful analysis of the transient response functions under optical and electrical detection. At room temperature and under bipolar charge-carrier injection conditions, a correlation of the pEDMR and the pODMR signals is observed, consistent with the hypothesis that the recombination currents involve spin-dependent electronic transitions. This observation is inconsistent with the hypothesis that these signals are caused by spin-dependent charge-carrier transport. These results therefore provide no evidence that supports earlier claims that spin-dependent transport plays a role for room-temperature magnetoresistance effects. At low temperatures, however, the correlation between pEDMR and pODMR is weakened, demonstrating that more than one spin-dependent process influences the optoelectronic materials' properties. This conclusion is consistent with prior studies of half-field resonances that were attributed to spin-dependent triplet exciton recombination, which becomes significant at low temperatures when the triplet lifetime increases.

  17. Modulation of spin dynamics via voltage control of spin-lattice coupling in multiferroics

    DOE PAGES

    Zhu, Mingmin; Zhou, Ziyao; Peng, Bin; ...

    2017-02-03

    Our work aims at magnonics manipulation by the magnetoelectric coupling effect and is motivated by the most recent progresses in both magnonics (spin dynamics) and multiferroics fields. Here, voltage control of magnonics, particularly the surface spin waves, is achieved in La 0.7Sr 0.3MnO 3/0.7Pb(Mg 1/3Nb 2/3)O 3-0.3PbTiO 3 multiferroic heterostructures. With the electron spin resonance method, a large 135 Oe shift of surface spin wave resonance (≈7 times greater than conventional voltage-induced ferromagnetic resonance shift of 20 Oe) is determined. A model of the spin-lattice coupling effect, i.e., varying exchange stiffness due to voltage-induced anisotropic lattice changes, has been establishedmore » to explain experiment results with good agreement. In addition, an “on” and “off” spin wave state switch near the critical angle upon applying a voltage is created. The modulation of spin dynamics by spin-lattice coupling effect provides a platform for realizing energy-efficient, tunable magnonics devices.« less

  18. Adiabatically modeling quantum gates with two-site Heisenberg spins chain: Noise vs interferometry

    NASA Astrophysics Data System (ADS)

    Jipdi, M. N.; Tchoffo, M.; Fai, L. C.

    2018-02-01

    We study the Landau Zener (LZ) dynamics of a two-site Heisenberg spin chain assisted with noise and focus on the implementation of logic gates via the resulting quantum interference. We present the evidence of the quantum interference phenomenon in triplet spin states and confirm that, three-level systems mimic Landau-Zener-Stückelberg (LZS) interferometers with occupancies dependent on the effective phase. It emerges that, the critical parameters tailoring the system are obtained for constructive interferences where the two sets of the chain are found to be maximally entangled. Our findings demonstrate that the enhancement of the magnetic field strength suppresses noise effects; consequently, the noise severely impacts the occurrence of quantum interference for weak magnetic fields while for strong fields, quantum interference subsists and allows the modeling of universal sets of quantum gates.

  19. Effective field renormalization group approach for Ising lattice spin systems

    NASA Astrophysics Data System (ADS)

    Fittipaldi, Ivon P.

    1994-03-01

    A new applicable real-space renormalization group framework (EFRG) for computing the critical properties of Ising lattice spin systems is presented. The method, which follows up the same strategy of the mean-field renormalization group scheme (MFRG), is based on rigorous Ising spin identities and utilizes a convenient differential operator expansion technique. Within this scheme, in contrast with the usual mean-field type of equation of state, all the relevant self-spin correlations are taken exactly into account. The results for the critical coupling and the critical exponent v, for the correlation length, are very satisfactory and it is shown that this technique leads to rather accurate results which represent a remarkable improvement on those obtained from the standard MFRG method. In particular, it is shown that the present EFRG approach correctly distinguishes the geometry of the lattice structure even when employing its simplest size-cluster version. Owing to its simplicity we also comment on the wide applicability of the present method to problems in crystalline and disordered Ising spin systems.

  20. Novel effect of spin dynamics with suppression of charge and orbital ordering in Nd0.5Ca0.5MnO3 under the influence of ac electric field

    NASA Astrophysics Data System (ADS)

    Sarwar, T.; Qamar, A.; Nadeem, M.

    2017-07-01

    Dynamics of spin ordering in the manganite Nd0.5Ca0.5MnO3 have been investigated in this paper. It was observed that the complex mixed magnetic ordering in pellets is comprised of antiferromagnetic ordering at 160 K (TN) and complete charge ordering at 250 K (TCO). Under ac field, appearance of unstable ferromagnetic correlations is observed above TCO, which is badly frustrated due to strong spin disorder induced by Jahn Teller distortions. Impedance measurements reveal the spin glass like scenario, suppressing the strong antiferromagnetic and charge ordering states below TN.

  1. Spin-dependent dwell times of electron tunneling through double- and triple-barrier structures

    NASA Astrophysics Data System (ADS)

    Erić, Marko; Radovanović, Jelena; Milanović, Vitomir; Ikonić, Zoran; Indjin, Dragan

    2008-04-01

    We have analyzed the influence of Dresselhaus and Rashba spin-orbit couplings (caused by the bulk inversion asymmetry and the structural asymmetry, respectively) on electron tunneling through a double- and triple-barrier structures, with and without an externally applied electric field. The results indicate that the degree of structural asymmetry and external electric field can greatly affect the dwell times of electrons with opposite spin orientation. This opens up the possibilities of obtaining efficient spin separation in the time domain. The material system of choice is AlxGa1-xSb, and the presented model takes into account the position dependence of material parameters, as well as the effects of band nonparabolicity.

  2. Magnetic Field Effects on In-Medium ϒ Dissociation

    NASA Astrophysics Data System (ADS)

    Hoelck, Johannes; Nendzig, Felix; Wolschin, Georg

    2017-12-01

    The electromagnetic fields during relativistic heavy ion collisions are calculated using a simple model which characterises the emerging quark-gluon medium by its conductivity only. An estimate of the average magnetic field strength experienced by the bb¯ mesons produced in the collision is made. In a sufficiently strong magnetic field, the individual spins of bb¯ mesons can align with the field leading to quantum mixing of the singlet and triplet spin configurations. The extent of this intermixture, however, is found to be negligible at field strengths occurring in heavy ion collisions at LHC energies.

  3. Magneto-optical imaging of thin magnetic films using spins in diamond

    NASA Astrophysics Data System (ADS)

    Simpson, David A.; Tetienne, Jean-Philippe; McCoey, Julia M.; Ganesan, Kumaravelu; Hall, Liam T.; Petrou, Steven; Scholten, Robert E.; Hollenberg, Lloyd C. L.

    2016-03-01

    Imaging the fields of magnetic materials provides crucial insight into the physical and chemical processes surrounding magnetism, and has been a key ingredient in the spectacular development of magnetic data storage. Existing approaches using the magneto-optic Kerr effect, x-ray and electron microscopy have limitations that constrain further development, and there is increasing demand for imaging and characterisation of magnetic phenomena in real time with high spatial resolution. Here we show how the magneto-optical response of an array of negatively-charged nitrogen-vacancy spins in diamond can be used to image and map the sub-micron stray magnetic field patterns from thin ferromagnetic films. Using optically detected magnetic resonance, we demonstrate wide-field magnetic imaging over 100 × 100 μm2 with sub-micron spatial resolution at video frame rates, under ambient conditions. We demonstrate an all-optical spin relaxation contrast imaging approach which can image magnetic structures in the absence of an applied microwave field. Straightforward extensions promise imaging with sub-μT sensitivity and sub-optical spatial and millisecond temporal resolution. This work establishes practical diamond-based wide-field microscopy for rapid high-sensitivity characterisation and imaging of magnetic samples, with the capability for investigating magnetic phenomena such as domain wall and skyrmion dynamics and the spin Hall effect in metals.

  4. Large spin-orbit torques in Pt/Co-Ni/W heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jiawei; Qiu, Xuepeng; Legrand, William

    2016-07-25

    The spin orbit torques (SOTs) in perpendicularly magnetized Co-Ni multilayers sandwiched between two heavy metals (HM) have been studied. By exploring various HM materials, we show an efficient enhancement or cancellation of the total SOT, depending on the combination of the two HM materials. The maximum SOT effective field is obtained in Pt/Co-Ni/W heterostructures. We also model our double HM system and show that the effective spin Hall angle has a peak value at certain HM thicknesses. Measuring the SOT in Pt/Co-Ni/W for various W thicknesses confirms an effective spin Hall angle up to 0.45 in our double HM system.

  5. Stable spin domains in a nondegenerate ultracold gas

    NASA Astrophysics Data System (ADS)

    Graham, S. D.; Niroomand, D.; Ragan, R. J.; McGuirk, J. M.

    2018-05-01

    We study the stability of two-domain spin structures in an ultracold gas of magnetically trapped 87Rb atoms above quantum degeneracy. Adding a small effective magnetic field gradient stabilizes the domains via coherent collective spin rotation effects, despite negligibly perturbing the potential energy relative to the thermal energy. We demonstrate that domain stabilization is accomplished through decoupling the dynamics of longitudinal magnetization, which remains in time-independent domains, from transverse magnetization, which undergoes a purely transverse spin wave trapped within the domain wall. We explore the effect of temperature and density on the steady-state domains, and compare our results to a hydrodynamic solution to a quantum Boltzmann equation.

  6. A practical approach to calculate the time evolutions of magnetic field effects on photochemical reactions in nano-structured materials.

    PubMed

    Yago, Tomoaki; Wakasa, Masanobu

    2015-04-21

    A practical method to calculate time evolutions of magnetic field effects (MFEs) on photochemical reactions involving radical pairs is developed on the basis of the theory of the chemically induced dynamic spin polarization proposed by Pedersen and Freed. In theory, the stochastic Liouville equation (SLE), including the spin Hamiltonian, diffusion motions of the radical pair, chemical reactions, and spin relaxations, is solved by using the Laplace and the inverse Laplace transformation technique. In our practical approach, time evolutions of the MFEs are successfully calculated by applying the Miller-Guy method instead of the final value theorem to the inverse Laplace transformation process. Especially, the SLE calculations are completed in a short time when the radical pair dynamics can be described by the chemical kinetics consisting of diffusions, reactions and spin relaxations. The SLE analysis with a short calculation time enables one to examine the various parameter sets for fitting the experimental date. Our study demonstrates that simultaneous fitting of the time evolution of the MFE and of the magnetic field dependence of the MFE provides valuable information on the diffusion motions of the radical pairs in nano-structured materials such as micelles where the lifetimes of radical pairs are longer than hundreds of nano-seconds and the magnetic field dependence of the spin relaxations play a major role for the generation of the MFE.

  7. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB6

    PubMed Central

    Song, Qi; Mi, Jian; Zhao, Dan; Su, Tang; Yuan, Wei; Xing, Wenyu; Chen, Yangyang; Wang, Tianyu; Wu, Tao; Chen, Xian Hui; Xie, X. C.; Zhang, Chi; Shi, Jing; Han, Wei

    2016-01-01

    There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observe the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Furthermore, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6. PMID:27834378

  8. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB 6

    DOE PAGES

    Song, Qi; Mi, Jian; Zhao, Dan; ...

    2016-11-11

    There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observemore » the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB 6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Moreover, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6.« less

  9. Control of the spin geometric phase in semiconductor quantum rings.

    PubMed

    Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku

    2013-01-01

    Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.

  10. Longitudinal and transverse spin dynamics of donor-bound electrons in fluorine-doped ZnSe: Spin inertia versus Hanle effect

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Zhukov, E. A.; Greilich, A.; Yakovlev, D. R.; Korenev, V. L.; Pawlis, A.; Bayer, M.

    2015-06-01

    The spin dynamics of strongly localized donor-bound electrons in fluorine-doped ZnSe epilayers is studied using pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time T1 in a wide range of magnetic fields, temperatures, and pump densities. The T1 time of the donor-bound electron spin of about 1.6 μ s remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8-45 K. These findings impose severe restrictions on possible spin relaxation mechanisms. In our opinion they allow us to rule out scattering between free and donor-bound electrons, jumping of electrons between different donor centers, scattering between phonons and donor-bound electrons, and with less certainty charge fluctuations in the environment of the donors caused by the 1.5 ps pulsed laser excitation.

  11. Magnetic properties of magnetic bilayer Kekulene structure: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.

    2018-06-01

    In the present work, we have studied the magnetic properties of magnetic bilayer Kekulene structure with mixed spin-5/2 and spin-2 Ising model using Monte Carlo study. The magnetic phase diagrams of mixed spins Ising model have been given. The thermal total, partial magnetization and magnetic susceptibilities of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure are obtained. The transition temperature has been deduced. The effect of crystal field and exchange interactions on the this bilayers has been studied. The partial and total magnetic hysteresis cycles of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure have been given. The superparamagnetism behavior is observed in magnetic bilayer Kekulene structure. The magnetic coercive field decreases with increasing the exchange interactions between σ-σ and temperatures values and increases with increasing the absolute value of exchange interactions between σ-S. The multiple hysteresis behavior appears.

  12. Magnetic order at a single-crystal surface in the diffuse-scattering theory

    NASA Astrophysics Data System (ADS)

    Zasada, I.

    2003-06-01

    A theoretical description of incoherent spin-dependent multiple scattering of electrons at a magnetically disordered single-crystal surface is reported. A formalism in which the spin operators specify the magnetic state of a surface atom is used for the description of magnetic order at the surface. The theory is based upon the concepts used in multiple scattering spin-dependent diffuse LEED theory (DSPLEED) theory. In the present considerations, this theory is extended to the case of magnetic materials by using the time-independent Dirac equation with an effective magnetic field. Thus, an expression for incoherent spin-dependent intensity for magnetic material is obtained. It depends on the Fourier transform on the surface lattice of the spin-pair correlation function and, as a consequence, on the magnetic properties of the surface. The equations for the description of magnetization and various correlation functions in the frame of effective field theory are derived and the results of the numerical calculations are presented for the particular case of Ni(1 0 0) surface. The spin-orbit induced and exchange asymmetries are calculated. It is found that the magnetic DSPLEED is sensitive to the properties of the surface characterized by the spin-pair correlation functions. Thus, it is demonstrated that the magnetic DSPLEED can be an effective method in the investigation of critical behaviour of magnetic surfaces.

  13. Towards Simulating the Transverse Ising Model in a 2D Array of Trapped Ions

    NASA Astrophysics Data System (ADS)

    Sawyer, Brian

    2013-05-01

    Two-dimensional Coulomb crystals provide a useful platform for large-scale quantum simulation. Penning traps enable confinement of large numbers of ions (>100) and allow for the tunable-range spin-spin interactions demonstrated in linear ion strings, facilitating simulation of quantum magnetism at a scale that is currently intractable on classical computers. We readily confine hundreds of Doppler laser-cooled 9Be+ within a Penning trap, producing a planar array of ions with self-assembled triangular order. The transverse ``drumhead'' modes of our 2D crystal along with the valence electron spin of Be+ serve as a resource for generating spin-motion and spin-spin entanglement. Applying a spin-dependent optical dipole force (ODF) to the ion array, we perform spectroscopy and thermometry of individual drumhead modes. This ODF also allows us to engineer long-range Ising spin couplings of either ferromagnetic or anti-ferromagnetic character whose approximate power-law scaling with inter-ion distance, d, may be varied continuously from 1 /d0 to 1 /d3. An effective transverse magnetic field is applied via microwave radiation at the ~124-GHz spin-flip frequency, and ground states of the effective Ising Hamiltonian may in principle be prepared adiabatically by slowly decreasing this transverse field in the presence of the induced Ising coupling. Long-range anti-ferromagnetic interactions are of particular interest due to their inherent spin frustration and resulting large, near-degenerate manifold of ground states. We acknowledge support from NIST and the DARPA-OLE program.

  14. Spin tuning of electron-doped metal-phthalocyanine layers.

    PubMed

    Stepanow, Sebastian; Lodi Rizzini, Alberto; Krull, Cornelius; Kavich, Jerald; Cezar, Julio C; Yakhou-Harris, Flora; Sheverdyaeva, Polina M; Moras, Paolo; Carbone, Carlo; Ceballos, Gustavo; Mugarza, Aitor; Gambardella, Pietro

    2014-04-09

    The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state.

  15. Spin-orbit coupling effects in indium antimonide quantum well structures

    NASA Astrophysics Data System (ADS)

    Dedigama, Aruna Ruwan

    Indium antimonide (InSb) is a narrow band gap material which has the smallest electron effective mass (0.014m0) and the largest electron Lande g-facture (-51) of all the III-V semiconductors. Spin-orbit effects of III-V semiconductor heterostructures arise from two different inversion asymmetries namely bulk inversion asymmetry (BIA) and structural inversion asymmetry (SIA). BIA is due to the zinc-blende nature of this material which leads to the Dresselhaus spin splitting consisting of both linear and cubic in-plane wave vector terms. As its name implies SIA arises due to the asymmetry of the quantum well structure, this leads to the Rashba spin splitting term which is linear in wave vector. Although InSb has theoretically predicted large Dresselhaus (760 eVA3) and Rashba (523 eA 2) coefficients there has been relatively little experimental investigation of spin-orbit coefficients. Spin-orbit coefficients can be extracted from the beating patterns of Shubnikov--de Haas oscillations (SdH), for material like InSb it is hard to use this method due to the existence of large electron Lande g-facture. Therefore it is essential to use a low field magnetotransport technique such as weak antilocalization to extract spin-orbit parameters for InSb. The main focus of this thesis is to experimentally determine the spin-orbit parameters for both symmetrically and asymmetrically doped InSb/InxAl 1-xSb heterostructures. During this study attempts have been made to tune the Rashba spin-orbit coupling coefficient by using a back gate to change the carrier density of the samples. Dominant phase breaking mechanisms for InSb/InxAl1-xSb heterostructures have been identified by analyzing the temperature dependence of the phase breaking field from weak antilocalization measurements. Finally the strong spin-orbit effects on InSb/InxAl1-xSb heterostructures have been demonstrated with ballistic spin focusing devices.

  16. Magnetoelectric effects in the spin-1/2 XXZ model with Dzyaloshinskii-Moriya interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, Pradeep; Durganandini, P., E-mail: pdn@physics.unipune.ac.in

    2015-06-24

    We study the 1D spin-1/2 XXZ chain in the presence of the Dzyaloshinskii-Moriya (D-M) interaction and with longitudinal and transverse magnetic fields. We assume the spin-current mechanism of Katsura-Nagaosa-Balatsky at play and interpret the D-M interaction as a coupling between the local electric polarization and an external electric field. We study the interplay of electric and magnetic order in the ground state using the numerical density matrix renormalization group(DMRG) method. Specifically, we investigate the dependences of the magnetization and electric polarization on the external electric and magnetic fields. We find that for transverse magnetic fields, there are two different regimesmore » of polarization while for longitudinal magnetic fields, there are three different regimes of polarization. The different regimes can be tuned by the external magnetic fields.« less

  17. Level crossings and zero-field splitting in the {Cr8}-cubane spin cluster studied using inelastic neutron scattering and magnetization

    NASA Astrophysics Data System (ADS)

    Vaknin, D.; Garlea, V. O.; Demmel, F.; Mamontov, E.; Nojiri, H.; Martin, C.; Chiorescu, I.; Qiu, Y.; Kögerler, P.; Fielden, J.; Engelhardt, L.; Rainey, C.; Luban, M.

    2010-11-01

    Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.

  18. Level crossings and zero-field splitting in the {Cr8}-cubane spin-cluster studied using inelastic neutron scattering and magnetization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaknin, D.; Garlea, Vasile O; Demmel, F.

    Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It ismore » noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.« less

  19. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziętek, Slawomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Stobiecki, Tomasz

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions formore » optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.« less

  20. A β-Ta system for current induced magnetic switching in the absence of external magnetic field

    NASA Astrophysics Data System (ADS)

    Chen, Wenzhe; Qian, Lijuan; Xiao, Gang

    2018-05-01

    Magnetic switching via Giant Spin Hall Effect (GSHE) has received great interest for its role in developing future spintronics logic or memory devices. In this work, a new material system (i.e. a transition metal sandwiched between two ferromagnetic layers) with interlayer exchange coupling is introduced to realize the deterministic field-free perpendicular magnetic switching. This system uses β-Ta, as the GSHE agent to generate a spin current and as the interlayer exchange coupling medium to generate an internal field. The critical switching current density at zero field is on the order of 106 A/cm2 due to the large spin Hall angle of β-Ta. The internal field, along with switching efficiency, depends strongly on the orthogonal magnetization states of two ferromagnetic coupling layers in this system.

  1. Electrical detection of nuclear spin-echo signals in an electron spin injection system

    NASA Astrophysics Data System (ADS)

    Lin, Zhichao; Rasly, Mahmoud; Uemura, Tetsuya

    2017-06-01

    We demonstrated spin echoes of nuclear spins in a spin injection device with a highly polarized spin source by nuclear magnetic resonance (NMR). Efficient spin injection into GaAs from a half-metallic spin source of Co2MnSi enabled efficient dynamic nuclear polarization (DNP) and sensitive detection of NMR signals even at a low magnetic field of ˜0.1 T and a relatively high temperature of 4.2 K. The intrinsic coherence time T2 of 69Ga nuclear spins was evaluated from the spin-echo signals. The relation between T2 and the decay time of the Rabi oscillation suggests that the inhomogeneous effects in our system are not obvious. This study provides an all-electrical NMR system for nuclear-spin-based qubits.

  2. Magnetic field-modulated photo-thermo-electric effect in Fe/GaAs film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Shuang; Liu, Jihong; Yan, Guoying

    2015-11-02

    Ferromagnet/semiconductor heterostructure, such as Fe/GaAs, is always one of the key issues in spintronics due to its prerequisite for the realization of spin sensitive devices. In this letter, a lateral photoelectric effect (LPE) was observed in Fe/GaAs. Our results show that the sensitivity was not related to laser wavelength, but only proportional to laser power, suggesting that the lateral photovoltage was induced by photo-thermo-electric effect. Moreover, we also observe that the voltage signal increases with the increase in applied field due to decreasing scattering probability for spin-polarized electrons. Our finding of LPE adds another functionality to the Fe/GaAs system andmore » will be useful in development of spin-polarized voltage devices.« less

  3. Voltage-controlled magnetization switching in MRAMs in conjunction with spin-transfer torque and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Munira, Kamaram; Pandey, Sumeet C.; Kula, Witold; Sandhu, Gurtej S.

    2016-11-01

    Voltage-controlled magnetic anisotropy (VCMA) effect has attracted a significant amount of attention in recent years because of its low cell power consumption during the anisotropy modulation of a thin ferromagnetic film. However, the applied voltage or electric field alone is not enough to completely and reliably reverse the magnetization of the free layer of a magnetic random access memory (MRAM) cell from anti-parallel to parallel configuration or vice versa. An additional symmetry-breaking mechanism needs to be employed to ensure the deterministic writing process. Combinations of voltage-controlled magnetic anisotropy together with spin-transfer torque (STT) and with an applied magnetic field (Happ) were evaluated for switching reliability, time taken to switch with low error rate, and energy consumption during the switching process. In order to get a low write error rate in the MRAM cell with VCMA switching mechanism, a spin-transfer torque current or an applied magnetic field comparable to the critical current and field of the free layer is necessary. In the hybrid processes, the VCMA effect lowers the duration during which the higher power hungry secondary mechanism is in place. Therefore, the total energy consumed during the hybrid writing processes, VCMA + STT or VCMA + Happ, is less than the energy consumed during pure spin-transfer torque or applied magnetic field switching.

  4. Transport Studies of Quantum Magnetism: Physics and Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Minhyea

    The main goal of this project was to understand novel ground states of spin systems probed by thermal and electrical transport measurements. They are well-suited to characterize the nature of low-energy excitations as unique property of the ground state. More specifically, it was aimed to study the transverse electrical conductivity in the presence of non-collinear and non-coplanar spin ordering and the effects of gauge field as well as novel spin excitations as a coherent heat transport channel in insulating quantum magnets. Most of works done during the grant period focused on these topics. As a natural extension of the project'smore » initial goals, the scope was broadened to include transport studies on the spin systems with strong spin-orbit coupling. One particular focus was an exploration of systems with strong magnetic anisotropy combined with non-trivial spin configuration. Magnetic anisotropy is directly related to implement the non-collinear spin ordering to the existing common geometry of planar devices and thus poses a significant potential. Work in this direction includes the comparison of the topological Hall signal under hydrostatic pressure and chemical doping, as well as the angular dependence dependence of the non-collinear spin ordered phase and their evolution up on temperature and field strength. Another focus was centered around the experimental identification of spin-originated heat carrying excitation in quasi two dimensional honeycomb lattice, where Kitaev type of quantum spin liquid phase is expected to emerge. In fact, when its long range magnetic order is destroyed by the applied field, we discovered anomalously large enhancement of thermal conductivity, for which proximate Kitaev excitations in field-induced spin liquid state are responsible for. This work, combined with further investigations in materials in the similar class may help establish the experimental characterization of new quantum spin liquid and their unique low energy excitation, e.g. Majorana fermions.« less

  5. Dynamical spin accumulation in large-spin magnetic molecules

    NASA Astrophysics Data System (ADS)

    Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej

    2018-01-01

    The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.

  6. External electric field driven modification of the anomalous and spin Hall conductivities in Fe thin films on MgO(001)

    NASA Astrophysics Data System (ADS)

    Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji

    2018-01-01

    The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).

  7. Charge/spin supercurrent and the Fulde-Ferrell state induced by crystal deformation in Weyl/Dirac superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, Taiki; Liu, Tianyu; Mizushima, Takeshi; Fujimoto, Satoshi

    2018-04-01

    It has been predicted that emergent chiral magnetic fields can be generated by crystal deformation in Weyl/Dirac metals and superconductors. The emergent fields give rise to chiral anomaly phenomena as in the case of Weyl semimetals with usual electromagnetic fields. Here, we clarify effects of the chiral magnetic field on Cooper pairs in Weyl/Dirac superconductors on the basis of the Ginzburg-Landau equation microscopically derived from the quasiclassical Eilenberger formalism. It is found that Cooper pairs are affected by the emergent chiral magnetic field in a dramatic way, and the pseudo-Lorentz force due to the chiral magnetic field stabilizes the Fulde-Ferrell state and causes a charge/spin supercurrent, which flows parallel to the chiral magnetic field in the case of Weyl/Dirac superconductors. This effect is in analogy with the chiral magnetic effect of Weyl semimetals. In addition, we elucidate that neither Meissner effect nor vortex state due to chiral magnetic fields occurs.

  8. Observation of longitudinal spin-Seebeck effect in cobalt-ferrite epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Niizeki, Tomohiko; Kikkawa, Takashi; Uchida, Ken-ichi; Oka, Mineto; Suzuki, Kazuya Z.; Yanagihara, Hideto; Kita, Eiji; Saitoh, Eiji

    2015-05-01

    The longitudinal spin-Seebeck effect (LSSE) has been investigated in cobalt ferrite (CFO), an exceptionally hard magnetic spinel ferrite. A bilayer of a polycrystalline Pt and an epitaxially-strained CFO(110) exhibiting an in-plane uniaxial anisotropy was prepared by reactive rf sputtering technique. Thermally generated spin voltage in the CFO layer was measured via the inverse spin-Hall effect in the Pt layer. External-magnetic-field (H) dependence of the LSSE voltage (VLSSE) in the Pt/CFO(110) sample with H ∥ [001] was found to exhibit a hysteresis loop with a high squareness ratio and high coercivity, while that with H ∥ [ 1 1 ¯ 0 ] shows a nearly closed loop, reflecting the different anisotropies induced by the epitaxial strain. The magnitude of VLSSE has a linear relationship with the temperature difference (ΔT), giving the relatively large VLSSE /ΔT of about 3 μV/K for CFO(110) which was kept even at zero external field.

  9. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    DOE PAGES

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-10

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less

  10. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less

  11. Valley-spin filtering through a nonmagnetic resonant tunneling structure in silicene

    NASA Astrophysics Data System (ADS)

    Wu, Xiuqiang; Meng, Hao; Zhang, Haiyang; Bai, Yujie; Xu, Xing

    2018-07-01

    We theoretically investigate how a silecene-based nonmagnetic resonant-tunneling structure, i.e. a double electrostatic potential structure, can be tailored to generate valley- and spin-polarized filtering by using the scattering matrix method. This method allows us to find simple analytical expressions for the scattering amplitudes. It is found that the transmissions of electrons from opposite spin and valley show exactly opposite behaviors, leading to valley and spin filtering in a wide range of transmission directions. These directional-dependent valley-spin polarization behaviors can be used to select preferential directions along which the valley-spin polarization of an initially unpolarized carrier can be strongly enhanced. We also find that this phenomenon arises from the combinations of the coherent effect, electrostatic potential and external electric field. Especially when the direction of the external electric field is changed, the spin filtering properties are contained, while the valley filtering properties can be switched. In addition, the filtering behaviors can be conveniently controlled by electrical gating. Therefore, the results can offer an all-electric method to construct a valley-spin filter in silicene.

  12. Spin heat capacity of monolayer and AB-stacked bilayer MoS2 in the presence of exchange magnetic field

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos

    2017-04-01

    Dirac theory and Green's function technique are carried out to compute the spin dependent band structures and corresponding electronic heat capacity (EHC) of monolayer (ML) and AB-stacked bilayer (BL) molybdenum disulfide (MoS2) two-dimensional (2D) crystals. We report the influence of induced exchange magnetic field (EMF) by magnetic insulator substrates on these quantities for both structures. The spin-up (down) subband gaps are shifted with EMF from conduction (valence) band to valence (conduction) band at both Dirac points in the ML because of the spin-orbit coupling (SOC) which leads to a critical EMF in the K point and EHC returns to its initial states for both spins. In the BL case, EMF results split states and the decrease (increase) behavior of spin-up (down) subband gaps has been observed at both K and K‧ valleys which is due to the combined effect of SOC and interlayer coupling. For low and high EMFs, EHC of BL MoS2 does not change for spin-up subbands while increases for spin-down subbands.

  13. Quantum confinement and magnetic field effects on the electron Landé g factor in GaAs-(Ga,Al)As double quantum wells

    NASA Astrophysics Data System (ADS)

    Perea, J. Darío; Mejía-Salazar, J. R.; Porras-Montenegro, N.

    2011-12-01

    Nowadays the spin-related phenomena have attracted great attention for the possible spintronic and optoelectronic applications. The manipulation of the Landé g factor by means of the control of the electron confinement, applied magnetic field and hydrostatic pressure offers the possibility of having a wide range of ways to control single qubit operation and to have pure spin states to guarantee that no losses occur when the electron spins transport information. In this work we have performed a theoretical study of the quantum confinement (geometrical and barrier potential confinements) and growth direction applied magnetic field effects on the conduction-electron effective Landé g factor in GaAs-(Ga,Al)As double quantum wells. Our calculations of the Landé g factor are performed by using the Ogg-McCombe effective Hamiltonian, which includes non-parabolicity and anisotropy effects for the conduction-band electrons. Our theoretical results are given as function of the central barrier widths for different values of the applied magnetic fields. We have found that in this type of heterostructure the geometrical confinement commands the behavior of the electron effective Landé g factor as compared to the effect of the applied magnetic field. Present theoretical reports are in very good agreement with previous experimental and theoretical results.

  14. Vortex Flipping in Superconductor-Ferromagnet Spin Valve Structures

    NASA Astrophysics Data System (ADS)

    Patino, Edgar J.; Aprili, Marco; Blamire, Mark; Maeno, Yoshiteru

    2014-03-01

    We report in plane magnetization measurements on Ni/Nb/Ni/CoO and Co/Nb/Co/CoO spin valve structures with one of the ferromagnetic layers pinned by an antiferromagnetic layer. In samples with Ni, below the superconducting transition Tc, our results show strong evidence of vortex flipping driven by the ferromagnets magnetization. This is a direct consequence of proximity effect that leads to vortex supercurrents leakage into the ferromagnets. Here the polarized electron spins are subject to vortices magnetic field occasioning vortex flipping. Such novel mechanism has been made possible for the first time by fabrication of the F/S/F/AF multilayered spin valves with a thin-enough S layer to barely confine vortices inside as well as thin-enough F layers to align and control the magnetization within the plane. When Co is used there is no observation of vortex flipping effect. This is attributed to Co shorter coherence length. Interestingly instead a reduction in pinning field of about 400 Oe is observed when the Nb layer is in superconducting state. This effect cannot be explained in terms of vortex fields. In view of these facts any explanation must be directly related to proximity effect and thus a remarkable phenomenon that deserves further investigation. Programa Nacional de Ciencias Basicas COLCIENCIAS (No. 120452128168).

  15. Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots.

    PubMed

    Bracker, A S; Stinaff, E A; Gammon, D; Ware, M E; Tischler, J G; Shabaev, A; Efros, Al L; Park, D; Gershoni, D; Korenev, V L; Merkulov, I A

    2005-02-04

    We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.

  16. Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots

    NASA Astrophysics Data System (ADS)

    Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.

    2005-02-01

    We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.

  17. Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui

    2016-05-01

    We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.

  18. Renormalization and additional degrees of freedom within the chiral effective theory for spin-1 resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kampf, Karol; Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holesovickach 2, 18000 Prague; Novotny, Jiri

    2010-06-01

    We study in detail various aspects of the renormalization of the spin-1 resonance propagator in the effective field theory framework. First, we briefly review the formalisms for the description of spin-1 resonances in the path integral formulation with the stress on the issue of propagating degrees of freedom. Then we calculate the one-loop 1{sup --} meson self-energy within the resonance chiral theory in the chiral limit using different methods for the description of spin-1 particles, namely, the Proca field, antisymmetric tensor field, and the first-order formalisms. We discuss in detail technical aspects of the renormalization procedure which are inherent tomore » the power-counting nonrenormalizable theory and give a formal prescription for the organization of both the counterterms and one-particle irreducible graphs. We also construct the corresponding propagators and investigate their properties. We show that the additional poles corresponding to the additional one-particle states are generated by loop corrections, some of which are negative norm ghosts or tachyons. We count the number of such additional poles and briefly discuss their physical meaning.« less

  19. Quasiparticle Breakdown and Spin Hamiltonian of the Frustrated Quantum Pyrochlore Yb_{2}Ti_{2}O_{7} in a Magnetic Field.

    PubMed

    Thompson, J D; McClarty, P A; Prabhakaran, D; Cabrera, I; Guidi, T; Coldea, R

    2017-08-04

    The frustrated pyrochlore magnet Yb_{2}Ti_{2}O_{7} has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.

  20. Magnetic field effects on coenzyme B12- and B6-dependent lysine 5,6-aminomutase: switching of the J-resonance through a kinetically competent radical-pair intermediate.

    PubMed

    Chen, Jun-Ru; Ke, Shyue-Chu

    2018-05-09

    The environmental magnetic field is beneficial to migratory bird navigation through the radical-pair mechanism. One of the continuing challenges in understanding how magnetic fields may perturb biological processes is that only a very few field-sensitive examples have been explored despite the prevalence of radical pairs in enzymatic reactions. We show that the reaction of adenosylcobalamin- and pyridoxal-5'-phosphate-dependent lysine 5,6-aminomutase proceeds via radical-pair intermediates and is magnetic field dependent. The 5'-deoxyadenosyl radical from adenosylcobalamin abstracts a C5(H) from the substrate to yield a {cob(ii)alamin - substrate} radical pair wherein the large spin-spin interaction (2J = 8000 gauss) locks the radical pair in a triplet state, as evidenced by electron paramagnetic resonance spectroscopy. Application of an external magnetic field in the range of 6500 to 8500 gauss triggers intersystem crossing to the singlet {cob(ii)alamin - substrate} radical-pair state. Spin-conserved H back-transfer from deoxyadenosine to the substrate radical yields a singlet {cob(ii)alamin-5'-deoxyadenosyl} radical pair. Spin-selective recombination to adenosylcobalamin decreased the enzyme catalytic efficiency kcat/Km by 16% at 7600 gauss. As a mechanistic probe, observation of magnetic field effects successfully demonstrates the presence of a kinetically significant radical pair in this enzyme. The study of a pronounced high-field level-crossing characteristic through an immobilized radical pair with a constant exchange interaction deepens our understanding of how a magnetic field may interact with an enzyme.

  1. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.

  2. Synthetic Spin-Orbit and Light Field Coupling in Ultra-cold Quantum Gases

    NASA Astrophysics Data System (ADS)

    Dong, Lin

    Ultra-cold quantum gases subjected to light-induced synthetic gauge potentials have become an emergent field of theoretical and experimental studies. Because of the novel application of two-photon Raman transitions, ultra-cold neutral atoms behave like charged particles in magnetic field. The Raman coupling naturally gives rise to an effective spin-orbit interaction which couples the atoms center-of-mass motion to its selected pseudo-spin degrees of freedom. Combined with unprecedented controllability of interactions, geometry, disorder strength, spectroscopy, and high resolution measurement of momentum distribution, etc., we are truly in an exciting era of fulfilling and going beyond Richard Feynman's vision. of realizing quantum simulators to better understand the quantum mechanical nature of the universe, manifested immensely in the ultra-cold regimes. In this dissertation, we present a collection of theoretical progresses made by the doctoral candidate and his colleagues and collaborators. From the past few years of work, we mainly address three aspects of the synthetic spin-orbit and light field induced coupling in ultracold quantum gases: a) The ground-state physics of singleparticle system, two-body bound states, and many-body systems, all of which are subjected to spin-orbit coupling originated from synthetic gauge potentials; b) The symmetry breaking, topological phase transition and quench dynamics, which are conveniently offered by the realized experimental setup; c) The proposal and implications of light field induced dynamical spin-orbit coupling for atoms inside optical cavity. Our work represents an important advancement of theoretical understanding to the active research frontier of ultra-cold atom physics with spin-orbit coupling.

  3. High-field magnetoconductance in Anderson insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaknin, A.; Frydman, A.; Ovadyahu, Z.

    1996-11-01

    We report on high-field magnetoconductance measurements made on indium-oxide films as a function of temperature and static disorder. Special emphasis is given to the strong-localization regime where the magnetoconductance reveals a negative contribution associated with a spin-alignment mechanism in addition to the positive contribution associated with orbital, quantum-coherence effects. While the overall features of the theoretically expected effects are observed in our experiments, they depart in certain ways from the detailed predictions. We discuss the merits and shortcomings of current models to describe them, in particular, as they apply to the regime where the localized wave functions become larger thanmore » the Bohr radius. The main results of this paper are both quantum interference and spin effects contribute to the magnetoconductance throughout the entire range studied. In the limit of very strong disorder, the quantum interference effects are faithfully described by the Nguyen {ital et} {ital al}. model. The spin effects, on the other hand, show only qualitative agreement with current models which are unable to account for the saturation field being insensitive to changes in disorder. {copyright} {ital 1996 The American Physical Society.}« less

  4. Successive Magnetic-Field-Induced Transitions and Colossal Magnetoelectric Effect in Ni 3 TeO 6

    DOE PAGES

    Kim, Jae Wook; Artyukhin, Sergei; Mun, Eun Deok; ...

    2015-09-24

    In this paper, we report the discovery of a metamagnetic phase transition in a polar antiferromagnet Ni 3TeO 6 that occurs at 52 T. The new phase transition accompanies a colossal magnetoelectric effect, with a magnetic-field-induced polarization change of 0.3 μC/cm 2, a value that is 4 times larger than for the spin-flop transition at 9 T in the same material, and also comparable to the largest magnetically induced polarization changes observed to date. Via density-functional calculations we construct a full microscopic model that describes the data. We model the spin structures in all fields and clarify the physics behindmore » the 52 T transition. The high-field transition involves a competition between multiple different exchange interactions which drives the polarization change through the exchange-striction mechanism. Finally, the resultant spin structure is rather counterintuitive and complex, thus providing new insights on design principles for materials with strong magnetoelectric coupling.« less

  5. Domain wall assisted GMR head with spin-Hall effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arun, R., E-mail: arunbdu@gmail.com; Sabareesan, P., E-mail: sendtosabari@gmail.com; Daniel, M., E-mail: danielcnld@gmail.com

    2016-05-06

    We theoretically study the dynamics of a field induced domain wall in the Py/Pt bi-layer structure in the presence of spin-Hall effect (SHE) by solving the Landau-Lifshitz-Gilbert (LLG) equation along with the adiabatic, nonadiabatic and SHE spin-transfer torques (STTs). It is observed that a weak magnetic field moves the domain wall with high velocity in the presence of SHE and the direction of the velocity is changed by changing the direction of the weak field. The numerical results show that the magnetization of the ferromagnetic layer can be reversed quickly through domain wall motion by changing the direction of amore » weak external field in the presence of SHE while the direction of current is fixed. The SHE reduces the magnetization reversal time of 1000 nm length strip by 14.7 ns. This study is extended to model a domain wall based GMR (Giant Magnetoresistance) read head with SHE.« less

  6. Slow spin relaxation induced by magnetic field in [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O.

    PubMed

    Vrábel, P; Orendáč, M; Orendáčová, A; Čižmár, E; Tarasenko, R; Zvyagin, S; Wosnitza, J; Prokleška, J; Sechovský, V; Pavlík, V; Gao, S

    2013-05-08

    We report on a comprehensive investigation of the magnetic properties of [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O (bpdo=4, 4'-bipyridine-N,N'-dioxide) by use of electron paramagnetic resonance, magnetization, specific heat and susceptibility measurements. The studied material was identified as a magnet with an effective spin S = 1/2 and a weak exchange interaction J/kB = 25 mK. The ac susceptibility studies conducted at audio frequencies and at temperatures from 1.8 to 9 K revealed that the application of a static magnetic field induces a slow spin relaxation. It is suggested that the relaxation in the magnetic field appears due to an Orbach-like process between the two lowest doublet energy states of the magnetic Nd(3+) ion. The appearance of the slow relaxation in a magnetic field cannot be associated with a resonant phonon trapping. The obtained results suggest that the relaxation is influenced by nuclear spin driven quantum tunnelling which is suppressed by external magnetic field.

  7. Relativistic effects on the bonding and properties of the hydrides of platinum

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1993-01-01

    The ground state of PtH2 and several low-lying states of PtH(+) and PtH have been studied at the all-electron self-consistent-field level of theory to examine the importance of relativistic effects. The results of calculations based on Dirac-Hartree-Fock theory, nonrelativistic theory, and the spin-free no-pair relativistic approximation of Hess are compared to separate the effects of the spin-free terms and the spin-orbit terms of the Hamiltonian on the relativistic corrections to the molecular properties. Comparison is also made between first-order perturbation theory including the one-electron spin-free terms and the method of Hess to determine the size of effects beyond first order. It is found that the spin-orbit interaction significantly affects the properties and energetics of these molecules because of the participation of the Pt 5d orbitals in the bonding, and that effects beyond first order in perturbation theory are large. Any treatment of Pt compounds will have to include both the spin-free and spin-orbit interactions for an accurate description.

  8. Strain engineering of graphene nanoribbons: pseudomagnetic versus external magnetic fields

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis

    2017-05-01

    Bandgap opening due to strain engineering is a key architect for making graphene's optoelectronic, straintronic, and spintronic devices. We study the bandgap opening due to strain induced ripple waves and investigate the interplay between pseudomagnetic fields and externally applied magnetic fields on the band structures and spin relaxation in graphene nanoribbons (GNRs). We show that electron-hole bands of GNRs are highly influenced (i.e. level crossing of the bands are possible) by coupling two combined effects: pseudomagnetic fields (PMF) originating from strain tensor and external magnetic fields. In particular, we show that the tuning of the spin-splitting band extends to large externally applied magnetic fields with increasing values of pseudomagnetic fields. Level crossings of the bands in strained GNRs can also be observed due to the interplay between pseudomagnetic fields and externally applied magnetic fields. We also investigate the influence of this interplay on the electromagnetic field mediated spin relaxation mechanism in GNRs. In particular, we show that the spin hot spot can be observed at approximately B = 65 T (the externally applied magnetic field) and B0 = 53 T (the magnitude of induced pseudomagnetic field due to ripple waves) which may not be considered as an ideal location for the design of straintronic devices. Our analysis might be used for tuning the bandgaps in strained GNRs and utilized to design the optoelectronic devices for straintronic applications.

  9. Electrical-field-induced magnetic Skyrmion ground state in a two-dimensional chromium tri-iodide ferromagnetic monolayer

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Shi, Mengchao; Mo, Pinghui; Lu, Jiwu

    2018-05-01

    Using fully first-principles non-collinear self-consistent field density functional theory (DFT) calculations with relativistic spin-orbital coupling effects, we show that, by applying an out-of-plane electrical field on a free-standing two-dimensional chromium tri-iodide (CrI3) ferromagnetic monolayer, the Néel-type magnetic Skyrmion spin configurations become more energetically-favorable than the ferromagnetic spin configurations. It is revealed that the topologically-protected Skyrmion ground state is caused by the breaking of inversion symmetry, which induces the non-trivial Dzyaloshinskii-Moriya interaction (DMI) and the energetically-favorable spin-canting configuration. Combining the ferromagnetic and the magnetic Skyrmion ground states, it is shown that 4-level data can be stored in a single monolayer-based spintronic device, which is of practical interests to realize the next-generation energy-efficient quaternary logic devices and multilevel memory devices.

  10. Distribution of blocking temperatures in nano-oxide layers of specular spin valves

    NASA Astrophysics Data System (ADS)

    Ventura, J.; Araujo, J. P.; Sousa, J. B.; Veloso, A.; Freitas, P. P.

    2007-06-01

    Specular spin valves show enhanced giant magnetoresistive (GMR) ratio when compared to other, simpler, spin valve structures. The enhancement of GMR results from specular reflection in nano-oxide layers (NOLs) formed by the partial oxidation of the pinned and free layer. These oxides forming the NOL order antiferromagnetically (AFM) below a temperature T ˜175 K. Here, we study the effects of the pinned layer magnetization and its domain structure on the AFM ordering of the NOL by performing field cooling measurements with different cooling fields (H0). We observe enhanced (reduced) exchange field and magnetoresistive ratio for H0>0(<0), i.e., parallel (antiparallel) to the pinned magnetization. These measurements allowed us to confirm the existence of a wide distribution of blocking temperatures (TB) in the NOL of specular spin valves, having a maximum at T ≈175 K, and extending to NOL regions with TB as low as 15 K.

  11. Multinuclear Detection of Nuclear Spin Optical Rotation at Low Field.

    PubMed

    Zhu, Yue; Gao, Yuheng; Rodocker, Shane; Savukov, Igor; Hilty, Christian

    2018-06-06

    We describe the multinuclear detection of nuclear spin optical rotation (NSOR), an effect dependent on the hyperfine interaction between nuclear spins and electrons. Signals of 1 H and 19 F are discriminated by frequency in a single spectrum acquired at sub-millitesla field. The simultaneously acquired optical signal along with the nuclear magnetic resonance signal allows the calculation of the relative magnitude of the NSOR constants corresponding to different nuclei within the sample molecules. This is illustrated by a larger NSOR signal measured at the 19 F frequency despite a smaller corresponding spin concentration. Second, it is shown that heteronuclear J-coupling is observable in the NSOR signal, which can be used to retrieve chemical information. Multinuclear frequency and J resolution can localize optical signals in the molecule. Properties of electronic states at multiple sites in a molecule may therefore ultimately be determined by frequency-resolved NSOR spectroscopy at low field.

  12. Electron transport through magnetic quantum point contacts

    NASA Astrophysics Data System (ADS)

    Day, Timothy Ellis

    Spin-based electronics, or spintronics, has generated a great deal of interest as a possible next-generation integrated circuit technology. Recent experimental and theoretical work has shown that these devices could exhibit increased processing speed, decreased power consumption, and increased integration densities as compared with conventional semiconductor devices. The spintronic device that was designed, fabricated, and tested throughout the course of this work aimed to study the generation of spin-polarized currents in semiconductors using magnetic fringe fields. The device scheme relied on the Zeeman effect in combination with a quantum mechanical barrier to generate spin-polarized currents. The Zeeman effect was used to break the degeneracy of spin-up and spin-down electrons and the quantum mechanical potential to transmit one while rejecting the other. The design was dictated by the drive to maximize the strength of the magnetic fringe field and in turn maximize the energy separation of the two spin species. The device was fabricated using advanced techniques in semiconductor processing including electron beam lithography and DC magnetron sputtering. Measurements were performed in a 3He cryostat equipped with a superconducting magnet at temperatures below 300 mK. Preliminary characterization of the device revealed magnetoconductance oscillations produced by the effect of the transverse confining potential on the density of states and the mobility. Evidence of the effect of the magnetic fringe fields on the transport properties of electrons in the device were observed in multiple device measurements. An abrupt washout of the quantized conductance steps was observed over a minute range of the applied magnetic field. The washout was again observed as electrons were shifted closer to the magnetic gates. In addition, bias spectroscopy demonstrated that the washout occurred despite stronger electron confinement, as compared to a non-magnetic split-gate. Thus, the measurements indicated that conductance quantization breaks down in a non-uniform magnetic field, possibly due to changes to the stationary Landau states. It was also demonstrated that non-integer conductance plateaus at high source-drain bias are not caused by a macroscopic asymmetry in the potential drop.

  13. Re-visiting RHIC snakes: OPERA fields, n 0 dance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meot, F.; Gupta, R.; Huang, H.

    In this Tech. Note RHIC snakes and stable spin directionmore » $$\\vector{n}$$ 0(s) are re-visited, based on OPERA-computed field maps of the former. The numerical simulations so undertaken provide various outcomes regarding RHIC optics and spin dynamics, in relation with orbital and focusing effects resulting from the use of this realistic 3-D representation of the snakes.« less

  14. Topological Phase Transitions in the Photonic Spin Hall Effect

    DOE PAGES

    Kort-Kamp, Wilton Junior de Melo

    2017-10-04

    The recent synthesis of two-dimensional staggered materials opens up burgeoning opportunities to study optical spin-orbit interactions in semiconducting Dirac-like systems. In this work, we unveil topological phase transitions in the photonic spin Hall effect in the graphene family materials. It is shown that an external static electric field and a high frequency circularly polarized laser allow for active on-demand manipulation of electromagnetic beam shifts. The spin Hall effect of light presents a rich dependence with radiation degrees of freedom, and material properties, and features nontrivial topological properties. Finally, we discover that photonic Hall shifts are sensitive to spin and valleymore » properties of the charge carriers, providing an unprecedented pathway to investigate spintronics and valleytronics in staggered 2D semiconductors.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.

    The rich physics associated with magnetism often centers around directional effects. Here we demonstrate how spin-transfer torques in general result in unidirectional ferromagnetic resonance dynamics upon field reversal. The unidirectionality is a direct consequence of both field-like and damping-like dynamic torques simultaneously driving the motion. This directional effect arises from the field-like torque being odd and the damping-like torque being even under field reversal. The directional effect is observed when the magnetization has both an in-plane and out-of-plane component, since then the linear combination of the torques rotates with a different handedness around the magnetization as the magnetization is tippedmore » out-of-plane. The effect is experimentally investigated via spin-torque ferromagnetic resonance measurements with the field applied at arbitrary directions away from the interface normal. The measured asymmetry of the voltage spectra are well explained within a phenomenological torque model.« less

  16. Perspectives of antiferromagnetic spintronics

    NASA Astrophysics Data System (ADS)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronic applications owing to their advantageous properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions, which results in zero net magnetization. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnets for spin-based technologies and applications. This article gives a broad perspective on antiferromagnetic spintronics. In particular, the manipulation and detection of antiferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.

  17. Perspectives of antiferromagnetic spintronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungfleisch, Matthias B.; Zhang, Wei; Hoffmann, Axel

    2018-04-01

    Antiferromagnets are promising for future spintronics applications owing to their interesting properties: They are magnetically ordered, but neighboring magnetic moments point in opposite directions which results in zero net magneti- zation. This means antiferromagnets produce no stray fields and are insensitive to external magnetic field perturbations. Furthermore, they show intrinsic high frequency dynamics, exhibit considerable spin-orbit and magneto-transport effects. Over the past decade, it has been realized that antiferromagnets have more to offer than just being utilized as passive components in exchange bias applications. This development resulted in a paradigm shift, which opens the pathway to novel concepts using antiferromagnetsmore » for spin-based technologies and applications. This article gives a broad per- spective on antiferromagnetic spintronics. In particular, the manipulation and detection of anitferromagnetic states by spintronics effects, as well as spin transport and dynamics in antiferromagnetic materials will be discussed. We will also outline current challenges and future research directions in this emerging field.« less

  18. The effect of external magnetic field on the Raman peaks in manganites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, A. K., E-mail: ajitsahu@seemantaengg.ac.in; Rout, G. C.

    2014-04-24

    We report here a microscopic theoretical model study exhibiting the effect of external magnetic field on the Raman excitation peaks in the CMR manganite system. The Hamiltonian consists of Jahn-Teller (J-T) distortion in e{sub g} band, the double exchange interaction and the Heisenberg spin-spin interaction. Further the phonons are coupled to e{sub g} band electrons, J-T distorted e{sub g} band and the double exchange interaction. The Raman spectral intensity is calculated from the imaginary part of the phonon Green function. The spectra exhibits three peaks besides a very weak high energy peak. The magnetic field effect on these peaks aremore » reported.« less

  19. Zero-Field Spin Structure and Spin Reorientations in Layered Organic Antiferromagnet, κ-(BEDT-TTF)2Cu[N(CN)2]Cl, with Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Ishikawa, Rui; Tsunakawa, Hitoshi; Oinuma, Kohsuke; Michimura, Shinji; Taniguchi, Hiromi; Satoh, Kazuhiko; Ishii, Yasuyuki; Okamoto, Hiroyuki

    2018-06-01

    Detailed magnetization measurements enabled us to claim that the layered organic insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl [BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene] with the Dzyaloshinskii-Moriya interaction has an antiferromagnetic spin structure with the easy axis being the crystallographic c-axis and the net canting moment parallel to the a-axis at zero magnetic field. This zero-field spin structure is significantly different from that proposed in the past studies. The assignment was achieved by arguments including a correction of the direction of the weak ferromagnetism, reinterpretations of magnetization behaviors, and reasoning based on known high-field spin structures. We suggest that only the contributions of the strong intralayer antiferromagnetic interaction, the moderately weak Dzyaloshinskii-Moriya interaction, and the very weak interlayer ferromagnetic interaction can realize this spin structure. On the basis of this model, characteristic magnetic-field dependences of the magnetization can be interpreted as consequences of intriguing spin reorientations. The first reorientation is an unusual spin-flop transition under a magnetic field parallel to the b-axis. Although the existence of this transition is already known, the interpretation of what happens at this transition has been significantly revised. We suggest that this transition can be regarded as a spin-flop phenomenon of the local canting moment. We also claim that half of the spins rotate by 180° at this transition, in contrast to the conventional spin flop transition. The second reorientation is the gradual rotation of the spins during the variation of the magnetic field parallel to the c-axis. In this process, all the spins rotate around the Dzyaloshinskii-Moriya vectors by 90°. The results of our simulation based on the classical spin model well reproduce these spin reorientation behaviors, which strongly support our claimed zero-field spin structure. The present study highlights the intriguing low-field magnetic properties of this material and may evoke further research on the low-field magnetism in this class of materials.

  20. Terahertz emission from ultrafast spin-charge current at a Rashba interface

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Jungfleisch, Matthias Benjamin; Zhang, Wei; Pearson, John E.; Wen, Haidan; Hoffmann, Axel

    Ultrafast broadband terahertz (THz) radiation is highly desired in various fields from fundamental research in condensed matter physics to bio-chemical detection. Conventional ultrafast THz sources rely on either nonlinear optical effects or ultrafast charge currents in semiconductors. Recently, however, it was realized that ultrabroad-band THz radiation can be produced highly effectively by novel spintronics-based emitters that also make use of the electron's spin degree of freedom. Those THz-emitters convert a spin current flow into a terahertz electromagnetic pulse via the inverse spin-Hall effect. In contrast to this bulk conversion process, we demonstrate here that a femtosecond spin current pulse launched from a CoFeB layer can also generate terahertz transients efficiently at a two-dimensional Rashba interface between two non-magnetic materials, i.e., Ag/Bi. Those interfaces have been proven to be efficient means for spin- and charge current interconversion.

  1. Large magnetoresistance dips and perfect spin-valley filter induced by topological phase transitions in silicene

    NASA Astrophysics Data System (ADS)

    Prarokijjak, Worasak; Soodchomshom, Bumned

    2018-04-01

    Spin-valley transport and magnetoresistance are investigated in silicene-based N/TB/N/TB/N junction where N and TB are normal silicene and topological barriers. The topological phase transitions in TB's are controlled by electric, exchange fields and circularly polarized light. As a result, we find that by applying electric and exchange fields, four groups of spin-valley currents are perfectly filtered, directly induced by topological phase transitions. Control of currents, carried by single, double and triple channels of spin-valley electrons in silicene junction, may be achievable by adjusting magnitudes of electric, exchange fields and circularly polarized light. We may identify that the key factor behind the spin-valley current filtered at the transition points may be due to zero and non-zero Chern numbers. Electrons that are allowed to transport at the transition points must obey zero-Chern number which is equivalent to zero mass and zero-Berry's curvature, while electrons with non-zero Chern number are perfectly suppressed. Very large magnetoresistance dips are found directly induced by topological phase transition points. Our study also discusses the effect of spin-valley dependent Hall conductivity at the transition points on ballistic transport and reveals the potential of silicene as a topological material for spin-valleytronics.

  2. Current-induced modulation of backward spin-waves in metallic microstructures

    NASA Astrophysics Data System (ADS)

    Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji

    2017-03-01

    We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m-2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m-2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.

  3. Magnetoelectric coupling tuned by competing anisotropies in Mn 1 - x Ni x TiO 3

    DOE PAGES

    Chi, Songxue; Ye, Feng; Zhou, H. D.; ...

    2014-10-24

    A flop of electric polarization from Pmore » $$\\|$$c (P c) to P$$\\|$$ a (P a) is observed in MnTiO 3 as a spin flop transtion is triggered by a c-axis magnetic field, H $$\\|$$c=7 T. The critical magnetic field for P a is significantly reduced in Mn 1-xNi xTiO 3 (x=0.33). Neutron diffraction measurements revealed similar magnetic arrangements for the two compositions where the ordered spins couple antiferromagnetically with their nearest intra- and inter-planar neighbors. In the x=0.33 system, the single ion anisotropies of Mn 2+ and Ni 2+ compete and give rise to an additional spin reorientation transition at TR. A magnetic field, H c, aligns the spins along c for T RN. The rotation of the collinear spins away from the c-axis for TR alters the magnetic point symmetry and gives rise to new ME susceptibility tensor form. Such linear ME response provides satisfactory explanation for behavior of field-induced electric polarization in both compositions. As the Ni content increases to x=0.5 and 0.68, the ME effect disappears as a new magnetic phase emerges.« less

  4. Roto-chemical heating in a neutron star with fall-back disc accretion

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Liu, Xi-Wei; Zheng, Xiao-Ping

    2018-07-01

    Recent research on the classical pulsar B0950+08 demonstrates that the explanation of its high surface temperature by roto-chemical heating encounters some difficulties. We assume that there is a fall-back disc around the newborn neutron star, which originates from the supernova ejecta and influences the spin and magnetic evolution of the star. By taking into account disc accretion and magnetic field evolution simultaneously, the effect of the fall-back disc accretion process on the roto-chemical heating in the neutron star is studied. The results show that there are two roto-chemical deviation phases (spin-up deviation and spin-down deviation), but that only the spin-down deviation leads to heating. The specific cooling curve depends on the accretion disc mass, the initial magnetic field and the magnetic field decay rate. Most importantly, the observations of surface temperature, magnetic field strength and spin period of the classical pulsar B0950+08 are well explained by the accretion roto-chemical heating model. The fall-back accretion process is important in roto-chemical heating for explanations of classical pulsars with high temperature. Given the absence of any evidence of fall-back accretion on to B0950+08, our study is purely hypothetical.

  5. Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets

    NASA Astrophysics Data System (ADS)

    Johansen, Øyvind; Brataas, Arne

    2017-06-01

    Dynamical antiferromagnets can pump spins into adjacent conductors. The high antiferromagnetic resonance frequencies represent a challenge for experimental detection, but magnetic fields can reduce these resonance frequencies. We compute the ac and dc inverse spin Hall voltages resulting from dynamical spin excitations as a function of a magnetic field along the easy axis and the polarization of the driving ac magnetic field perpendicular to the easy axis. We consider the insulating antiferromagnets MnF2,FeF2, and NiO. Near the spin-flop transition, there is a significant enhancement of the dc spin pumping and inverse spin Hall voltage for the uniaxial antiferromagnets MnF2 and FeF2. In the uniaxial antiferromagnets it is also found that the ac spin pumping is independent of the external magnetic field when the driving field has the optimal circular polarization. In the biaxial NiO, the voltages are much weaker, and there is no spin-flop enhancement of the dc component.

  6. Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of ½

    PubMed Central

    Maryasov, Alexander G.

    2012-01-01

    The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or ‘powder’ sample when g tensor anisotropy is significant. PMID:22743542

  7. Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of 1/2

    NASA Astrophysics Data System (ADS)

    Maryasov, Alexander G.; Bowman, Michael K.

    2012-08-01

    The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or 'powder' sample when g tensor anisotropy is significant.

  8. Spin properties of black phosphorus and phosphorene, and their prospects for spincalorics

    NASA Astrophysics Data System (ADS)

    Kurpas, Marcin; Gmitra, Martin; Fabian, Jaroslav

    2018-05-01

    Semiconducting black phosphorus attracts a lot of attention due to its extraordinary electronic properties. Its application to spincalorics requires the knowledge about the spin and thermal properties. Here, we describe first principles calculations of the spin–orbit coupling and spin scattering in phosphorene and bulk black phosphorus. We find that the intrinsic spin–orbit coupling is of the order of 20 meV for the valence and conduction band, both for phosphorene and bulk black phosphorus, and induces spin mixing with the probability b2 ≈ 10-5 –10‑4. A strong anisotropy of b 2 is observed. The calculated Elliott–Yafet spin relaxation times reach nanoseconds for realistic values of the momentum relaxation times. The extrinsic spin–orbit coupling, enabling the D’yakonov–Perel’ spin relaxation mechanism, is studied for phosphorene by application of a transverse electric field. We observe a strong anisotropy of the extrinsic effects for the valence band and much weaker for the conduction band. It is shown, that for small enough electric fields the spin relaxation is dominated by the Elliott–Yafet mechanism, while the D’yakonov–Perel’ matters for higher electric fields. Our theoretical results stay in a good agreement with the experimental findings, and indicates that long spin lifetimes in black phosphorus and phosphorene makes them prospective materials for spincalorics and spintronics.

  9. Spin Currents and Ferromagnetic Resonance in Magnetic Thin Films

    NASA Astrophysics Data System (ADS)

    Ellsworth, David

    Spin currents represent a new and exciting phenomenon. There is both a wealth of new physics to be discovered and understood, and many appealing devices which may result from this area of research. To fully realize the potential of this discipline it is necessary to develop new methods for realizing spin currents and explore new materials which may be suitable for spin current applications. Spin currents are an inherently dynamic phenomenon involving the transfer of angular momentum within and between different thin films. In order to understand and optimize such devices the dynamics of magnetization must be determined. This dissertation reports on novel approaches for spin current generation utilizing the magnetic insulators yttrium iron garnet (YIG) and M-type barium hexagonal ferrite (BaM). First, the light-induced spin Seebeck effect is reported for the first time in YIG. Additionally, the first measurement of the spin Seebeck effect without an external magnetic field is demonstrated. To accomplish this the self-biased BaM thin films are utilized. Second, a new method for the generation of spin currents is presented: the photo-spin-voltaic effect. In this new phenomenon, a spin current may be generated by photons in a non-magnetic metal that is in close proximity to a magnetic insulator. On exposure to light, there occurs a light induced, spin-dependent excitation of electrons in a few platinum layers near the metal/magnetic insulator interface. This excitation gives rise to a pure spin current which flows in the metal. This new effect is explored in detail and extensive measurements are carried out to confirm the photonic origin of the photo-spin-voltaic effect and exclude competing effects. In addition to the spin current measurements, magnetization dynamics were probed in thin films using ferromagnetic resonance (FMR). In order to determine the optimal material configuration for magnetic recording write heads, FMR measurements were used to perform damping studies on a set of FeCo samples with different numbers of lamination layers. The use of lamination layers has the potential to tune the damping in such films, while leaving the other magnetic properties unchanged. Finally, the sensitivity of the vector network analyzer FMR technique was improved. The use of field modulation and lock-in detection, along with the background subtraction of a Mach-Zehnder microwave interferometer working as a notch filter, is able to increase the sensitivity and lower the background noise of this measurement technique. This improved system opens the possibility of probing previously difficult samples with extremely low signals.

  10. Analysis of a gauged model with a spin-1/2 field directly coupled to a Rarita-Schwinger spin-3/2 field

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2018-02-01

    We give a detailed analysis of an Abelianized gauge field model in which a Rarita-Schwinger spin-3/2 field is directly coupled to a spin-1/2 field. The model permits a perturbative expansion in powers of the gauge field coupling, and from the Feynman rules for the model we calculate the chiral anomaly.

  11. Frustrated honeycomb-lattice bilayer quantum antiferromagnet in a magnetic field

    NASA Astrophysics Data System (ADS)

    Krokhmalskii, Taras; Baliha, Vasyl; Derzhko, Oleg; Schulenburg, Jörg; Richter, Johannes

    2018-05-01

    Frustrated bilayer quantum magnets have attracted attention as flat-band spin systems with unconventional thermodynamic properties. We study the low-temperature properties of a frustrated honeycomb-lattice bilayer spin-1/2 isotropic (XXX) Heisenberg antiferromagnet in a magnetic field by means of an effective low-energy theory using exact diagonalizations and quantum Monte Carlo simulations. Our main focus is on the magnetization curve and the temperature dependence of the specific heat indicating a finite-temperature phase transition in high magnetic fields.

  12. Magnetization of La2-xSrxNiO4+δ (0⩽x⩽0.5) : Spin-glass and memory effects

    NASA Astrophysics Data System (ADS)

    Freeman, P. G.; Boothroyd, A. T.; Prabhakaran, D.; Lorenzana, J.

    2006-01-01

    We have studied the magnetization of a series of spin-charge-ordered La2-xSrxNiO4+δ single crystals with 0⩽x⩽0.5 . For fields applied parallel to the ab plane there is a large irreversibility below a temperature TF1˜50K and a smaller irreversibility that persists up to near the charge-ordering temperature. We observed memory effects in the thermoremnant magnetization across the entire doping range. We found that these materials retain a memory of the temperature at which an external field was removed and that there is a pronounced increase in the thermoremnant magnetization when the system is warmed through a spin reorientation transition.

  13. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Secchi, A.; Lichtenstein, A. I.; Katsnelson, M. I.

    2016-02-01

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as dipole-dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms.

  14. THE DEPENDENCE OF STELLAR MASS AND ANGULAR MOMENTUM LOSSES ON LATITUDE AND THE INTERACTION OF ACTIVE REGION AND DIPOLAR MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfvén wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates andmore » that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.« less

  15. AdS/CFT in Fractional Dimension and Higher-Spins at One Loop

    NASA Astrophysics Data System (ADS)

    Skvortsov, Evgeny; Tran, Tung

    2017-08-01

    Large-$N$, $\\epsilon$-expansion or the conformal bootstrap allow one to make sense of some of conformal field theories in non-integer dimension, which suggests that AdS/CFT may also extend to fractional dimensions. It was shown recently that the sphere free energy and the $a$-anomaly coefficient of the free scalar field can be reproduced as a one-loop effect in the dual higher-spin theory in a number of integer dimensions. We extend this result to all integer and also to fractional dimensions. Upon changing the boundary conditions in the higher-spin theory the sphere free energy of the large-$N$ Wilson-Fisher CFT can also be reproduced from the higher-spin side.

  16. Magnetochromic effect in multiferroic R In 1 ₋ x Mn x O 3 ( R = Tb , Dy)

    DOE PAGES

    Chen, P.; Holinsworth, B. S.; O'Neal, K. R.; ...

    2015-05-26

    We combined high field magnetization and magneto-optical spectroscopy to investigate spin-charge coupling in Mn-substituted rare-earth indium oxides of chemical formula RIn₁₋ xMn xO₃ (R=Tb, Dy). The edge states, on-site Mn³⁺d to d excitations, and rare-earth f-manifold excitations all track the magnetization energy due to dominant Zeeman interactions. The field-induced modifications to the rare-earth excitations are quite large because spin-orbit coupling naturally mixes spin and charge, suggesting that the next logical step in the design strategy should be to bring spin-orbit coupling onto the trigonal bipyramidal chromophore site with a 4 or 5d center.

  17. Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect

    DOE PAGES

    Wu, Stephen M.; Hoffman, Jason; Pearson, John E.; ...

    2014-09-05

    In this paper, the longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe 3O 4 with the ferromagnetic metal Co 0.2Fe 0.6B 0.2 (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe 3O 4 into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between themore » two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. Finally, these experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.« less

  18. Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M., E-mail: swu@anl.gov; Hoffman, Jason; Pearson, John E.

    2014-09-01

    The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe{sub 3}O{sub 4} with the ferromagnetic metal Co{sub 0.2}Fe{sub 0.6}B{sub 0.2} (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe{sub 3}O{sub 4} into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, itmore » is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.« less

  19. Deficiency of the bulk spin Hall effect model for spin-orbit torques in magnetic-insulator/heavy-metal heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Junxue; Yu, Guoqiang; Tang, Chi; Liu, Yizhou; Shi, Zhong; Liu, Yawen; Navabi, Aryan; Aldosary, Mohammed; Shao, Qiming; Wang, Kang L.; Lake, Roger; Shi, Jing

    2017-06-01

    Electrical currents in a magnetic-insulator/heavy-metal heterostructure can induce two simultaneous effects, namely, spin Hall magnetoresistance (SMR) on the heavy-metal side and spin-orbit torques (SOTs) on the magnetic-insulator side. Within the framework of a pure spin current model based on the bulk spin Hall effect (SHE), the ratio of the spin Hall-induced anomalous Hall effect (SH-AHE) to SMR should be equal to the ratio of the fieldlike torque (FLT) to the dampinglike torque (DLT). We perform a quantitative study of SMR, SH-AHE, and SOTs in a series of thulium iron garnet/platinum or T m3F e5O12/Pt heterostructures with different T m3F e5O12 thicknesses, where T m3F e5O12 is a ferrimagnetic insulator with perpendicular magnetic anisotropy. We find the ratio between the measured effective fields of FLT and DLT is at least two times larger than the ratio of the SH-AHE to SMR. In addition, the bulk SHE model grossly underestimates the spin-torque efficiency of FLT. Our results reveal deficiencies of the bulk SHE model and also address the importance of interfacial effects such as the Rashba and magnetic proximity effects in magnetic-insulator/heavy-metal heterostructures.

  20. New opportunities at the frontiers of spintronics

    DOE PAGES

    Hoffmann, Axel; Bader, Sam D.

    2015-10-05

    The field of spintronics, or magnetic electronics, is maturing and giving rise to new subfields. These new directions involve the study of collective spin excitations and couplings of the spin system to additional degrees of freedom of a material, as well as metastable phenomena due to perturbations that drive the system far from equilibrium. The interactions lead to possibilities for future applications within the realm of energy-efficient information technologies. Examples discussed herein include research opportunities associated with (i) various spin-orbit couplings, such as spin Hall effects, (ii) couplings to the thermal bath of a system, such as in spin Seebeckmore » effects, (iii) spin-spin couplings, such as via induced and interacting magnon excitations, and (iv) spin-photon couplings, such as in ultra-fast magnetization switching due to coherent photon pulses. These four basic frontier areas of research are giving rise to new applied disciplines known as spin-orbitronics, spin-caloritronics, magnonics, and spin-photonics, respectively. These topics are highlighted in order to stimulate interest in the new directions that spintronics research is taking, and to identify open issues to pursue.« less

  1. Electron-Spin Filters Based on the Rashba Effect

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y.; Cartoixa, Xavier; McGill, Thomas C.; Moon, Jeong S.; Chow, David H.; Schulman, Joel N.; Smith, Darryl L.

    2004-01-01

    Semiconductor electron-spin filters of a proposed type would be based on the Rashba effect, which is described briefly below. Electron-spin filters more precisely, sources of spin-polarized electron currents have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-based electronics). There have been a number of successful demonstrations of injection of spin-polarized electrons from diluted magnetic semiconductors and from ferromagnetic metals into nonmagnetic semiconductors. In contrast, a device according to the proposal would be made from nonmagnetic semiconductor materials and would function without an applied magnetic field. The Rashba effect, named after one of its discoverers, is an energy splitting, of what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. The present proposal evolved from recent theoretical studies that suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling. Accordingly, a device according to the proposal would be denoted an asymmetric resonant interband tunneling diode [a-RITD]. An a-RITD could be implemented in a variety of forms, the form favored in the proposal being a double-barrier heterostructure containing an asymmetric quantum well. It is envisioned that a-RITDs would be designed and fabricated in the InAs/GaSb/AlSb material system for several reasons: Heterostructures in this material system are strong candidates for pronounced Rashba spin splitting because InAs and GaSb exhibit large spin-orbit interactions and because both InAs and GaSb would be available for the construction of highly asymmetric quantum wells. This mate-rial system affords a variety of energy-band alignments that can be exploited to obtain resonant tunneling and other desired effects. The no-common-atom InAs/GaSb and InAs/AlSb interfaces would present opportunities for engineering interface potentials for optimizing Rashba spin splitting.

  2. The interaction of Dirac particles with a Hawking charged radiating black hole

    NASA Astrophysics Data System (ADS)

    Kubik, Erik

    2007-08-01

    The interaction of spin 1/2 fields with a charged, evaporating black hole (EBH) is investigated. Using the Vaidya metric to model the Hawking evaporating black hole, the wave equation for a massless spinor field is obtained. The resulting field equation is solved utilizing techniques developed by Brill and Wheeler. Unlike previous efforts, a charged, evaporating black hole has never been used as a background to investigate spin 1/2 quantum field propagation, e.g., Brill and Wheeler considered massless spin 1/2 interactions in a static, Schwarzschild background. Using the WKB approximation, the wave equation is solved for the case of an EBH with constant luminosity. Analysis of the effective potential at different stages of evaporation is made including the dependence on the parameters of the system such as the total angular momentum, energy of the incident field, and luminosity of the evaporating black hole. Utilizing techniques of Mukhopad-hey, the transmission and reflection coefficients for the massless spinors are computed and compared to Schwarzschild result for both the high energy and hard scattering cases. The effect of the time dependence of the space-time metric has an important effect on the behavior of quantum fields over the lifetime of the evaporating black hole and may provide a signature for the detection of such objects.

  3. Training effect of the exchange bias in sputter deposited Fe3O4 thin films with varying thickness

    NASA Astrophysics Data System (ADS)

    Muhammed Shameem, P. V.; Senthil Kumar, M.

    2018-07-01

    The training effect property of the exchange bias in the reactively sputtered polycrystalline Fe3O4 thin films of varying thicknesses in the range 25-200 nm are studied. Structural studies by X-ray diffraction, X-ray photoelectron spectroscopy and selected area electron diffraction confirm the formation of single phase Fe3O4. The scanning electron spectroscopy images show that the grains are uniformly distributed. All the samples show clear and consistent exchange bias training behaviour due to the dynamics of the spins at the interface of the ferrimagnetic core and the spin glass-like surface of the grains. The analysis of the training effect data of the exchange bias field HE measured at 2 K by using three different models show that the model based on the relaxation of the frozen and rotatable spin components at the interface gives the best description for all the samples. From this model, it is found that the reversible interface spins relax around 7 times faster than the frozen interface spins at 2 K for all the samples and that their relative relaxation rates are independent of the sample thickness. This constancy show that the relative relaxation rates of the interfacial frozen and rotatable spin components is a material dependent property. The frozen component of the interfacial spins of each sample is found to be dominated at the initial stage of the training. A direct equivalence between the HE and remanence asymmetry ME is observed. Above the spin freezing temperature, the training effect measurements at 75 K show that the HE decreases sharply with successive field cycling as compared to the measurements made at 2 K and the HE vanishes after first few cycles.

  4. Diamagnetic to paramagnetic transition in LaCoO3

    NASA Astrophysics Data System (ADS)

    Hoch, M. J. R.; Nellutla, S.; van Tol, J.; Choi, Eun Sang; Lu, Jun; Zheng, H.; Mitchell, J. F.

    2009-06-01

    The diamagnetic to paramagnetic spin state transition in LaCoO3 (LCO) that occurs in the temperature range 30-120 K is generally attributed to the small energy gap between the Co3+t2g and eg states. Evidence for this thermally activated transition has been interpreted as leading to either the intermediate spin state, t2g5eg1(S=1) , or, alternatively, to the high-spin state, t2g4eg2(S=2) of the Co3+ ion, with the issue proving highly controversial. In an effort to obtain a consistent description of the temperature dependence of the magnetic and thermal properties of this system, we have made measurements of both the magnetization in applied fields of up to 33 T and the specific heat at 0 and 9 T on a single crystal of LCO. In addition, EPR measurements were made on the same sample using high-field EPR spectrometers. The spin-Hamiltonian parameters are consistent with the previous pulsed-field EPR work and support the atomic-like energy level description of the Co ion. The low-lying first-excited state is part of the T52g (D5) set and is a triplet state with effective spin Seff=1 . The magnetization results are analyzed using a mean-field model allowing for antiferromagnetic correlations between the spins. The model is used to estimate the spin contribution to the specific heat.

  5. Stability of the quantum Sherrington-Kirkpatrick spin glass model

    NASA Astrophysics Data System (ADS)

    Young, A. P.

    2017-09-01

    I study in detail the quantum Sherrington-Kirkpatrick (SK) model, i.e., the infinite-range Ising spin glass in a transverse field, by solving numerically the effective one-dimensional model that the quantum SK model can be mapped to in the thermodynamic limit. I find that the replica symmetric solution is unstable down to zero temperature, in contrast to some previous claims, and so there is not only a line of transitions in the (longitudinal) field-temperature plane (the de Almeida-Thouless, AT, line) where replica symmetry is broken, but also a quantum de Almeida-Thouless (QuAT) line in the transverse field-longitudinal field plane at T =0 . If the QuAT line also occurs in models with short-range interactions its presence might affect the performance of quantum annealers when solving spin glass-type problems with a bias (i.e., magnetic field).

  6. A study of environmental effects on galaxy spin using MaNGA data

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Chung, Haeun

    2018-06-01

    We investigate environmental effects on galaxy spin using the recent public data of Mapping Nearby Galaxies at APO (MaNGA) integral field spectroscopic survey containing ˜2800 galaxies. We measure the spin parameter of 1830 galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and obtain their large-scale (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environmental parameters for 1529 and 1767 galaxies, respectively. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at log (M*/M⊙) ≳ 10, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.

  7. I. Advances in NMR Signal Processing. II. Spin Dynamics in Quantum Dissipative Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yung-Ya

    1998-11-01

    Part I. Advances in IVMR Signal Processing. Improvements of sensitivity and resolution are two major objects in the development of NMR/MRI. A signal enhancement method is first presented which recovers signal from noise by a judicious combination of a priordmowledge to define the desired feasible solutions and a set theoretic estimation for restoring signal properties that have been lost due to noise contamination. The effect of noise can be significantly mitigated through the process of iteratively modifying the noisy data set to the smallest degree necessary so that it possesses a collection of prescribed properties and also lies closest tomore » the original data set. A novel detection-estimation scheme is then introduced to analyze noisy and/or strongly damped or truncated FIDs. Based on exponential modeling, the number of signals is detected based on information estimated using the matrix pencil method. theory and the spectral parameters are Part II. Spin Dynamics in body dipole-coupled systems Quantum Dissipative Systems. Spin dynamics in manyconstitutes one of the most fundamental problems in magnetic resonance and condensed-matter physics. Its many-spin nature precludes any rigorous treatment. ‘Therefore, the spin-boson model is adopted to describe in the rotating frame the influence of the dipolar local fields on a tagged spin. Based on the polaronic transform and a perturbation treatment, an analytical solution is derived, suggesting the existence of self-trapped states in the. strong coupling limit, i.e., when transverse local field >> longitudinal local field. Such nonlinear phenomena originate from the joint action of the lattice fluctuations and the reaction field. Under semiclassical approximation, it is found that the main effect of the reaction field is the renormalization of the Hamiltonian of interest. Its direct consequence is the two-step relaxation process: the spin is initially localized in a quasiequilibrium state, which is later detrapped by the lattice fluctuations in an extended time scale. Lowtemperature measurements and classical-spin simulations are carried out to verify the above analysis. To promote the implementation and future study on the topics described in this thesis, program packages of advanced NMR signal processing and many-spin FID simulations are summarized and listed in the Appendix.« less

  8. Plasmonic diabolo cavity enhanced spin pumping

    NASA Astrophysics Data System (ADS)

    Qian, Jie; Gou, Peng; Gui, Y. S.; Hu, C. M.; An, Zhenghua

    2017-09-01

    Low spin-current generation efficiency has impeded further progress in practical spin devices, especially in the form of wireless excitation. To tackle this problem, a unique Plasmonic Diabolo Cavity (PDC) is proposed to enhance the spin pumping (SP) signal. The SP microwave photovoltage is enhanced ˜22-fold by PDC at ferromagnetic resonance (FMR). This improvement owes to the localization of the microwave magnetic field, which drives the spin precession process to more effectively generate photovoltage at the FMR condition. The in-plane anisotropy of spin pumping is found to be suppressed by PDC. Our work suggests that metamaterial resonant structures exhibit rich interactions with spin dynamics and could potentially be applied in future high-frequency spintronics.

  9. Spin-selective electronic reconstruction in quantum ferromagnets: A view from the spin-asymmetric Hubbard model

    NASA Astrophysics Data System (ADS)

    Faúndez, J.; Jorge, T. N.; Craco, L.

    2018-03-01

    Using the tight-binding treatment for the spin-asymmetric Hubbard model we explore the effect of electronic interactions in the ferromagnetic, partially filled Lieb lattice. As a key result we demonstrate the formation of correlation satellites in the minority spin channel. In addition, we consider the role played by transverse-field spin fluctuations in metallic ferromagnets. We quantify the degree of electronic demagnetization, showing that the half-metallic state is rather robust to local spin flips. Not being restricted to the case of a partially filled Lieb lattice, our findings are expected to advance the general understanding of spin-selective electronic reconstruction in strongly correlated quantum ferromagnets.

  10. Hierarchical spin-orbital polarization of a giant Rashba system

    PubMed Central

    Bawden, Lewis; Riley, Jonathan M.; Kim, Choong H.; Sankar, Raman; Monkman, Eric J.; Shai, Daniel E.; Wei, Haofei I.; Lochocki, Edward B.; Wells, Justin W.; Meevasana, Worawat; Kim, Timur K.; Hoesch, Moritz; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Fennie, Craig J.; Shen, Kyle M.; Chou, Fangcheng; King, Phil D. C.

    2015-01-01

    The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two “spin-split” branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector. PMID:26601268

  11. Hierarchical spin-orbital polarization of a giant Rashba system.

    PubMed

    Bawden, Lewis; Riley, Jonathan M; Kim, Choong H; Sankar, Raman; Monkman, Eric J; Shai, Daniel E; Wei, Haofei I; Lochocki, Edward B; Wells, Justin W; Meevasana, Worawat; Kim, Timur K; Hoesch, Moritz; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Fennie, Craig J; Shen, Kyle M; Chou, Fangcheng; King, Phil D C

    2015-09-01

    The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector.

  12. Time-resolved lateral spin-caloric transport of optically generated spin packets in n-GaAs

    NASA Astrophysics Data System (ADS)

    Göbbels, Stefan; Güntherodt, Gernot; Beschoten, Bernd

    2018-05-01

    We report on lateral spin-caloric transport (LSCT) of electron spin packets which are optically generated by ps laser pulses in the non-magnetic semiconductor n-GaAs at K. LSCT is driven by a local temperature gradient induced by an additional cw heating laser. The spatio-temporal evolution of the spin packets is probed using time-resolved Faraday rotation. We demonstrate that the local temperature-gradient induced spin diffusion is solely driven by a non-equilibrium hot spin distribution, i.e. without involvement of phonon drag effects. Additional electric field-driven spin drift experiments are used to verify directly the validity of the non-classical Einstein relation for moderately doped semiconductors at low temperatures for near band-gap excitation.

  13. Controlling spin relaxation with a cavity

    DOE PAGES

    Bienfait, A.; Pla, J. J.; Kubo, Y.; ...

    2016-02-15

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photonmore » sources. In this paper, we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. Finally, they also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.« less

  14. An ab initio MO study of heavy atom effects on the zero-field splitting tensors of high-spin nitrenes: how the spin-orbit contributions are affected.

    PubMed

    Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji

    2014-05-21

    The CASSCF and the hybrid CASSCF-MRMP2 methods are applied to the calculations of spin-spin and spin-orbit contributions to the zero-field splitting tensors (D tensors) of the halogen-substituted spin-septet 2,4,6-trinitrenopyridines, focusing on the heavy atom effects on the spin-orbit term of the D tensors (D(SO) tensors). The calculations reproduced experimentally determined |D| values within an error of 15%. Halogen substitutions at the 3,5-positions are less influential in the spin-spin dipolar (D(SS)) term of 2,4,6-trinitrenopyridines, although the D(SO) terms are strongly affected by the introduction of heavier halogens. The absolute sign of the D(SO) value (D = D(ZZ) - (D(XX) + D(YY))/2) of 3,5-dibromo derivative 3 is predicted to be negative, which contradicts the Pederson-Khanna (PK) DFT result previously reported. The large negative contributions to the D(SO) value of 3 arise from the excited spin-septet states ascribed mainly to the excitations of in-plane lone pair of bromine atoms → SOMO of π nature. The importance of the excited states involving electron transitions from the lone pair orbital of the halogen atom is also confirmed in the D(SO) tensors of halogen-substituted para-phenylnitrenes. A new scheme based on the orbital region partitioning is proposed for the analysis of the D(SO) tensors as calculated by means of the PK-DFT approach.

  15. Spin-filtering and giant magnetoresistance effects in polyacetylene-based molecular devices

    NASA Astrophysics Data System (ADS)

    Chen, Tong; Yan, Shenlang; Xu, Liang; Liu, Desheng; Li, Quan; Wang, Lingling; Long, Mengqiu

    2017-07-01

    Using the non-equilibrium Green's function formalism in combination with density functional theory, we performed ab initio calculations of spin-dependent electron transport in molecular devices consisting of a polyacetylene (CnHn+1) chain vertically attached to a carbon chain sandwiched between two semi-infinite zigzag-edged graphene nanoribbon electrodes. Spin-charge transport in the device could be modulated to different magnetic configurations by an external magnetic field. The results showed that single spin conduction could be obtained. Specifically, the proposed CnHn+1 devices exhibited several interesting effects, including (dual) spin filtering, spin negative differential resistance, odd-even oscillation, and magnetoresistance (MR). Marked spin polarization with a filtering efficiency of up to 100% over a large bias range was found, and the highest MR ratio for the CnHn+1 junctions reached 4.6 × 104. In addition, the physical mechanisms for these phenomena were also revealed.

  16. Rashba spin-orbit effect and its electric field control at the surfaces and interfaces for spintronics applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Satpathy, Sashi; Shanavas, Kavungal Veedu

    2015-09-01

    The Rashba effect [1] describes the momentum-dependent spin splitting of the electron states at a surface or interface. It is the combined result of the relativistic spin-orbit interaction (SOI) and the inversion-symmetry breaking. The control of the Rashba effect by an applied electric field is at the heart of the proposed Rashba-effect-based spintronics devices for manipulating the electron spinfor ma- nipulating the electron spin in the semiconductors. The effect is expected to be much stronger in the perovskite oxides owing to the presence of high-Z elements. In this talk, I will introduce the Rashba effect and discuss how the Rashba SOI at the surfaces and interfaces can be tuned by manipulating the two dimensional electron gas (2DEG) by an applied electric field. The effect can be understood in terms of a tight-binding model Hamiltonian for the d orbitals incorporating the effect of electric field in terms of effective orbital overlap parameters [3]. From first principles calculations we see that the Rashba SOI originates from the first few layers near the surface and it therefore can be altered by drawing the 2DEG to the surface or by pushing the 2DEG deeper into the bulk with an applied elec- tric field. These ideas will be illustrated by a comprehensive density-functional study of polar perovskite systems [4]. References [1] E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960) [2] A. Ohtomo and H. Hwang, Nature 427, 423 (2004); Z. Popovic, S. Satpathy, and R. Martin, Phys. Rev. Letts. 101, 256801 (2008) [3] K. V. Shanavas and S. Satpathy, Phys. Rev. Lett. 112, 086802 (2014); K. V. Shanavas, Z. S. Popovic, and S. Satpathy, Phys. Rev. B 90, 165108 (2014) [4] K. V. Shanavas, J. Electron Spectrosc., In press (2015)

  17. Magnon Mode Selective Spin Transport in Compensated Ferrimagnets.

    PubMed

    Cramer, Joel; Guo, Er-Jia; Geprägs, Stephan; Kehlberger, Andreas; Ivanov, Yurii P; Ganzhorn, Kathrin; Della Coletta, Francesco; Althammer, Matthias; Huebl, Hans; Gross, Rudolf; Kosel, Jürgen; Kläui, Mathias; Goennenwein, Sebastian T B

    2017-06-14

    We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a nonmonotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not only modify the magnitude of the spin Seebeck effect signal but in particular also alter its temperature dependence. By varying the temperature, we can select the dominating magnon mode and we analyze our results to reveal the mode selective interface transmission probabilities for different magnon modes and interfaces. The comparison of selected systems reveals semiquantitative details of the interfacial coupling depending on the materials involved, supported by the obtained field dependence of the signal.

  18. Spin currents and spin-orbit torques in ferromagnetic trilayers.

    PubMed

    Baek, Seung-Heon C; Amin, Vivek P; Oh, Young-Wan; Go, Gyungchoon; Lee, Seung-Jae; Lee, Geun-Hee; Kim, Kab-Jin; Stiles, M D; Park, Byong-Guk; Lee, Kyung-Jin

    2018-06-01

    Magnetic torques generated through spin-orbit coupling 1-8 promise energy-efficient spintronic devices. For applications, it is important that these torques switch films with perpendicular magnetizations without an external magnetic field 9-14 . One suggested approach 15 to enable such switching uses magnetic trilayers in which the torque on the top magnetic layer can be manipulated by changing the magnetization of the bottom layer. Spin currents generated in the bottom magnetic layer or its interfaces transit the spacer layer and exert a torque on the top magnetization. Here we demonstrate field-free switching in such structures and show that its dependence on the bottom-layer magnetization is not consistent with the anticipated bulk effects 15 . We describe a mechanism for spin-current generation 16,17 at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence. This other-layer-generated spin-orbit torque is relevant to energy-efficient control of spintronic devices.

  19. Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

    NASA Astrophysics Data System (ADS)

    Koop, Cornelie; Wessel, Stefan

    2017-10-01

    We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.

  20. Storage and retrieval of quantum information with a hybrid optomechanics-spin system

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Bo; Zhang, Jian-Qi; Yang, Wan-Li; Feng, Mang

    2016-08-01

    We explore an efficient scheme for transferring the quantum state between an optomechanical cavity and an electron spin of diamond nitrogen-vacancy center. Assisted by a mechanical resonator, quantum information can be controllably stored (retrieved) into (from) the electron spin by adjusting the external field-induced detuning or coupling. Our scheme connects effectively the cavity photon and the electron spin and transfers quantum states between two regimes with large frequency difference. The experimental feasibility of our protocol is justified with accessible laboratory parameters.

  1. Dynamical current-induced ferromagnetic and antiferromagnetic resonances

    NASA Astrophysics Data System (ADS)

    Guimarães, F. S. M.; Lounis, S.; Costa, A. T.; Muniz, R. B.

    2015-12-01

    We demonstrate that ferromagnetic and antiferromagnetic excitations can be triggered by the dynamical spin accumulations induced by the bulk and surface contributions of the spin Hall effect. Due to the spin-orbit interaction, a time-dependent spin density is generated by an oscillatory electric field applied parallel to the atomic planes of Fe/W(110) multilayers. For symmetric trilayers of Fe/W/Fe in which the Fe layers are ferromagnetically coupled, we demonstrate that only the collective out-of-phase precession mode is excited, while the uniform (in-phase) mode remains silent. When they are antiferromagnetically coupled, the oscillatory electric field sets the Fe magnetizations into elliptical precession motions with opposite angular velocities. The manipulation of different collective spin-wave dynamical modes through the engineering of the multilayers and their thicknesses may be used to develop ultrafast spintronics devices. Our work provides a general framework that probes the realistic responses of materials in the time or frequency domain.

  2. Spin squeezing a cold molecule

    NASA Astrophysics Data System (ADS)

    Bhattacharya, M.

    2015-12-01

    In this article we present a concrete proposal for spin squeezing the cold ground-state polar paramagnetic molecule OH, a system currently under fine control in the laboratory. In contrast to existing work, we consider a single, noninteracting molecule with angular momentum greater than 1 /2 . Starting from an experimentally relevant effective Hamiltonian, we identify an adiabatic regime where different combinations of static electric and magnetic fields can be used to realize the single-axis twisting Hamiltonian of Kitagawa and Ueda [M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993), 10.1103/PhysRevA.47.5138], the uniform field Hamiltonian proposed by Law et al. [C. K. Law, H. T. Ng, and P. T. Leung, Phys. Rev. A 63, 055601 (2001), 10.1103/PhysRevA.63.055601], and a model of field propagation in a Kerr medium considered by Agarwal and Puri [G. S. Agarwal and R. R. Puri, Phys. Rev. A 39, 2969 (1989), 10.1103/PhysRevA.39.2969]. We then consider the situation in which nonadiabatic effects are quite large and show that the effective Hamiltonian supports spin squeezing even in this case. We provide analytical expressions as well as numerical calculations, including optimization of field strengths and accounting for the effects of field misalignment. Our results have consequences for applications such as precision spectroscopy, techniques such as magnetometry, and stereochemical effects such as the orientation-to-alignment transition.

  3. Superconducting magnetic Wollaston prism for neutron spin encoding

    NASA Astrophysics Data System (ADS)

    Li, F.; Parnell, S. R.; Hamilton, W. A.; Maranville, B. B.; Wang, T.; Semerad, R.; Baxter, D. V.; Cremer, J. T.; Pynn, R.

    2014-05-01

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ˜30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ˜98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  4. Superconducting magnetic Wollaston prism for neutron spin encoding.

    PubMed

    Li, F; Parnell, S R; Hamilton, W A; Maranville, B B; Wang, T; Semerad, R; Baxter, D V; Cremer, J T; Pynn, R

    2014-05-01

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ~30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ~98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  5. Interplay between spin-orbit coupling and crystal-field effect in topological insulators

    NASA Astrophysics Data System (ADS)

    Lee, Hyungjun; Yazyev, Oleg V.

    2015-07-01

    Band inversion, one of the key signatures of time-reversal invariant topological insulators (TIs), arises mostly due to the spin-orbit (SO) coupling. Here, based on ab initio density-functional calculations, we report a theoretical investigation of the SO-driven band inversion in isostructural bismuth and antimony chalcogenide TIs from the viewpoint of its interplay with the crystal-field effect. We calculate the SO-induced energy shift of states in the top valence and bottom conduction manifolds and reproduce this behavior using a simple one-atom model adjusted to incorporate the crystal-field effect. The crystal-field splitting is shown to compete with the SO coupling, that is, stronger crystal-field splitting leads to weaker SO band shift. We further show how both these effects can be controlled by changing the chemical composition, whereas the crystal-field splitting can be tuned by means of uniaxial strain. These results provide a practical guidance to the rational design of novel TIs as well as to controlling the properties of existing materials.

  6. Critical Slowing Down in Zn-Mg-Ho Quasicrystal

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Nozaki, Hiroshi; Ansaldo, Eduardo J.; Morris, Gerald D.; Brewer, Jess H.; Sato, Taku J.

    By means of longitudinal field muon-spin spectroscopy, we have found a clear critical slowing down caused by spin fluctuation of Ho moments in the icosahedral quasicrystal (QC), i-ZnMgHo, with freezing temperature (Tf =1.95 K), for which the susceptibility showed an anomaly at5K. The difference is attributed to crystalline elec-tric field (CEF) effects. The muons experience a broad, fluctuating, field distribution, of width Δ ∼6.3Taround Tf . The effect of the CEF is also apparent in zero field and weak applied transverse field measurements, with an onset around 60 K. For the Cd-based QCs (CdMgHo and CdMgGd), which exhibited two freezing temperatures in the susceptibility, the change in fluctuation rate, i.e. freezing, occurs at the lower Tf .

  7. Spin and charge controlled by antisymmetric spin-orbit coupling in a triangular-triple-quantum-dot Kondo system

    NASA Astrophysics Data System (ADS)

    Koga, M.; Matsumoto, M.; Kusunose, H.

    2018-05-01

    We study a local antisymmetric spin-orbit (ASO) coupling effect on a triangular-triple-quantum-dot (TTQD) system as a theoretical proposal for a new application of the Kondo physics to nanoscale devices. The electric polarization induced by the Kondo effect is strongly correlated with the spin configurations and molecular orbital degrees of freedom in the TTQD. In particular, an abrupt sign reversal of the emergent electric polarization is associated with a quantum critical point in a magnetic field, which can also be controlled by the ASO coupling that changes the mixing weight of different orbital components in the TTQD ground state.

  8. Spin-spin relaxation of protons in ferrofluids characterized with a high-Tc superconducting quantum interference device-detected magnetometer in microtesla fields

    NASA Astrophysics Data System (ADS)

    Liao, Shu-Hsien; Liu, Chieh-Wen; Yang, Hong-Chang; Chen, Hsin-Hsien; Chen, Ming-Jye; Chen, Kuen-Lin; Horng, Herng-Er; Wang, Li-Min; Yang, Shieh-Yueh

    2012-06-01

    In this work, the spin-spin relaxation of protons in ferrofluids is characterized using a high-Tc SQUID-based detector in microtesla fields. We found that spin-spin relaxation rate is enhanced in the presence of superparamagnetic nanoparticles. The enhanced relaxation rates are attributed to the microscopic field gradients from magnetic nanoparticles that dephase protons' spins nearby. The relaxation rates decrease when temperatures increase. Additionally, the alternating current magnetic susceptibility was inversely proportional to temperature. Those characteristics explained the enhanced Brownian motion of nanoparticles at high temperatures. Characterizing the relaxation will be helpful for assaying bio-molecules and magnetic resonance imaging in microtesla fields.

  9. Theory of in-plane current induced spin torque in metal/ferromagnet bilayers

    NASA Astrophysics Data System (ADS)

    Sakanashi, Kohei; Sigrist, Manfred; Chen, Wei

    2018-05-01

    Using a semiclassical approach that simultaneously incorporates the spin Hall effect (SHE), spin diffusion, quantum well states, and interface spin–orbit coupling (SOC), we address the interplay of these mechanisms as the origin of the spin–orbit torque (SOT) induced by in-plane currents, as observed in the normal metal/ferromagnetic metal bilayer thin films. Focusing on the bilayers with a ferromagnet much thinner than its spin diffusion length, such as Pt/Co with  ∼10 nm thickness, our approach addresses simultaneously the two contributions to the SOT, namely the spin-transfer torque (SHE-STT) due to SHE-induced spin injection, and the inverse spin Galvanic effect spin–orbit torque (ISGE-SOT) due to SOC-induced spin accumulation. The SOC produces an effective magnetic field at the interface, hence it modifies the angular momentum conservation expected for the SHE-STT. The SHE-induced spin voltage and the interface spin current are mutually dependent and, hence, are solved in a self-consistent manner. The result suggests that the SHE-STT and ISGE-SOT are of the same order of magnitude, and the spin transport mediated by the quantum well states may be an important mechanism for the experimentally observed rapid variation of the SOT with respect to the thickness of the ferromagnet.

  10. Recent advancements in 2D-materials interface based magnetic junctions for spintronics

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Zahir; Qureshi, Nabeel Anwar; Hussain, Ghulam

    2018-07-01

    Two-dimensional (2D) materials comprising of graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs) have revealed fascinating properties in various spintronic architectures. Here, we review spin valve effect in lateral and vertical magnetic junctions incorporating 2D materials as non-magnetic layer between ferromagnetic (FM) electrodes. The magnetic field dependent spin transport properties are studied by measuring non-local resistance (RNL) and relative magnetoresistance ratio (MR) for lateral and vertical structures, respectively. The review consists of (i) studying spin lifetimes and spin diffusion length thereby exploring the effect of tunneling and transparent contacts in lateral spin valve structures, temperature dependence, gate tunability and contrasting mechanisms of spin relaxation in single layer graphene (SLG) and bilayer graphene (BLG) devices. (ii) Perpendicular spin valve devices are thoroughly investigated thereby studying the role of different 2D materials in vertical spin dynamics. The dependence of spin valve signal on interface quality, temperature and various other parameters is also investigated. Furthermore, the spin reversal in graphene-hBN hybrid system is examined on the basis of Julliere model.

  11. Ballistic magnetotransport and spin-orbit interaction in indium antimonide and indium arsenide quantum wells

    NASA Astrophysics Data System (ADS)

    Peters, John Archibald

    While charge transport in a two-dimensional electron system (2DES) is fairly well understood, many open experimental and theoretical questions related to the spin of electrons remain. The standard 2DES embedded in Alx Ga1-xAs/GaAs heterostructures is most likely not the optimal candidate for such investigations, since spin effects as well as spin-orbit interactions are small perturbations compared to other effects. This has brought InSb- and InAs-based material systems into focus due to the possibility of large spin-orbit interactions. By utilizing elastic scattering off a lithographic barrier, we investigate the consequence of spin on different electron trajectories observed in InSb and InAs quantum wells. We focus on the physical properties of spin-dependent reflection in a 2DES and we present experimental results demonstrating a method to create spin-polarized beams of ballistic electrons in the presence of a lateral potential barrier. Spatial separation of electron spins using cyclotron motion in a weak magnetic is also achieved via transverse magnetic focusing. We also explore electrostatic gating effects in InSb/InAlSb heterostructures and demonstrate the effective use of polymethylglutarimide (PMGI) as a gate dielectric for InSb. The dependence on temperature and on front gate voltage of mobility and density are also examined, revealing a strong dependence of mobility on density. As regards front gate action, there is saturation in the density once it reaches a limiting value. Further, we investigate antidot lattices patterned on InSb/InAlSb and InAs/AlGaSb heterostructures. At higher magnetic fields, ballistic commensurability features are displayed while at smaller magnetic fields localization and quantized oscillatory phenomena appear, with marked differences between InSb and InAs. Interesting localization behavior is exhibited in InSb, with the strength of the localization peak decreasing exponentially with temperature between 0.4 K and 50 K. InAs on the other hand show a strikingly modified antilocalization behavior, with small-period oscillations in magnetic field superposed. We also observe Altshuler-Aronov-Spivak oscillations in InSb and InAs antidot lattices and extract the phase and spin coherence lengths in InAs. Our experimental results are discussed in the light of localization and anti localization as probes of disorder and of spin dephasing mechanisms, modified by the artificial potential of the antidot lattice.

  12. Quantum mechanical model for the anticarcinogenic effect of extremely-low-frequency electromagnetic fields on early chemical hepatocarcinogenesis

    NASA Astrophysics Data System (ADS)

    Godina-Nava, Juan José; Torres-Vega, Gabino; López-Riquelme, Germán Octavio; López-Sandoval, Eduardo; Samana, Arturo Rodolfo; García Velasco, Fermín; Hernández-Aguilar, Claudia; Domínguez-Pacheco, Arturo

    2017-02-01

    Using the conventional Haberkorn approach, it is evaluated the recombination of the radical pair (RP) singlet spin state to study theoretically the cytoprotective effect of an extremely-low-frequency electromagnetic field (ELF-EMF) on early stages of hepatic cancer chemically induced in rats. The proposal is that ELF-EMF modulates the interconversion rate of singlet and triplet spin states of the RP populations modifying the products from the metabolization of carcinogens. Previously, we found that the daily treatment with ELF-EMF 120 Hz inhibited the number and area of preneoplastic lesions in chemical carcinogenesis. The singlet spin population is evaluated diagonalizing the spin density matrix through the Lanczos method in a radical pair mechanism (RPM). Using four values of the interchange energy, we have studied the variations over the singlet population. The low magnetic field effect as a test of the influence over the enzymatic chemical reaction is evaluated calculating the quantum yield. Through a bootstrap technique the range is found for the singlet decay rate for the process. Applying the quantum measurements concept, we addressed the impact toward hepatic cells. The result contributes to improving our understanding of the chemical carcinogenesis process affected by charged particles that damage the DNA.

  13. In-plane current-driven spin-orbit torque switching in perpendicularly magnetized films with enhanced thermal tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Di; Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures; Yu, Guoqiang, E-mail: guoqiangyu@ucla.edu

    2016-05-23

    We study spin-orbit-torque (SOT)-driven magnetization switching in perpendicularly magnetized Ta/Mo/Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB)/MgO films. The thermal tolerance of the perpendicular magnetic anisotropy (PMA) is enhanced, and the films sustain the PMA at annealing temperatures of up to 430 °C, due to the ultra-thin Mo layer inserted between the Ta and CoFeB layers. More importantly, the Mo insertion layer also allows for the transmission of the spin current generated in the Ta layer due to spin Hall effect, which generates a damping-like SOT and is able to switch the perpendicular magnetization. When the Ta layer is replaced by a Pt layer,more » i.e., in a Pt/Mo/CoFeB/MgO multilayer, the direction of the SOT-induced damping-like effective field becomes opposite because of the opposite sign of spin Hall angle in Pt, which indicates that the SOT-driven switching is dominated by the spin current generated in the Ta or Pt layer rather than the Mo layer. Quantitative characterization through harmonic measurements reveals that the large SOT effective field is preserved for high annealing temperatures. This work provides a route to applying SOT in devices requiring high temperature processing steps during the back-end-of-line processes.« less

  14. Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Hung, Yu-Ming

    This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (<1 nm) perpendicularly magnetized CoFeB layers on beta-Ta. While complete magnetization reversal occurs at a threshold current density in the quasistatic case, pulses with short duration (≤10 ns) and larger amplitude (≃10 times the quasistatic threshold current) lead to only partial magnetization reversal and domain formation. The partial reversal is associated with the limited time for reversed domain expansion during the pulse. The second part of my thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then demonstrate the device operation by using micromagnetic modeling which involves studying the magnetic coupling induced by fringe fields from chiral DWs in perpendicularly magnetized nanowires. The last part of my thesis project reports spin transport and spin-Hall magnetoresistance (SMR) in yttrium iron garnet Y3Fe5O 12 (YIG)/NiO/Pt trilayers with varied NiO thickness. To characterize the spin transport through NiO we excite ferromagnetic resonance in YIG with a microwave frequency magnetic field and detect the voltage associated with the inverse spin-Hall effect (ISHE) in the Pt layer. The ISHE signal is found to decay exponentially with the NiO thickness with a characteristic decay length of 3.9 nm. However, in contrast to the ISHE response, as the NiO thickness increases the SMR signal goes towards zero abruptly at a NiO thickness of 4 nm, highlighting the different length scales associated with the spin-transport in NiO and SMR in such trilayers.

  15. Morphology effects on spin-dependent transport and recombination in polyfluorene thin films

    NASA Astrophysics Data System (ADS)

    Miller, Richards; van Schooten, K. J.; Malissa, H.; Joshi, G.; Jamali, S.; Lupton, J. M.; Boehme, C.

    2016-12-01

    We have studied the role of spin-dependent processes on conductivity in polyfluorene (PFO) thin films by preforming continuous wave (cw) electrically detected magnetic resonance (EDMR) spectroscopy at temperatures between 10 K and room temperature using microwave frequencies between about 1 GHz and 20 GHz, as well as pulsed EDMR at the X band (10 GHz). Variable frequency EDMR allows us to establish the role of spin-orbit coupling in spin-dependent processes whereas pulsed EDMR allows for the observation of coherent spin motion effects. We used PFO for this study in order to allow for the investigation of the effects of microscopic morphological ordering since this material can adopt two distinct intrachain morphologies: an amorphous (glassy) phase, in which monomer units are twisted with respect to each other, and an ordered (β) phase, where all monomers lie within one plane. In thin films of organic light-emitting diodes, the appearance of a particular phase can be controlled by deposition parameters and solvent vapor annealing, and is verified by electroluminescence spectroscopy. Under bipolar charge-carrier injection conditions, we conducted multifrequency cw EDMR, electrically detected Rabi spin-beat experiments, and Hahn echo and inversion-recovery measurements. Coherent echo spectroscopy reveals electrically detected electron-spin-echo envelope modulation due to the coupling of the carrier spins to nearby nuclear spins. Our results demonstrate that, while conformational disorder can influence the observed EDMR signals, including the sign of the current changes on resonance as well as the magnitudes of local hyperfine fields and charge-carrier spin-orbit interactions, it does not qualitatively affect the nature of spin-dependent transitions in this material. In both morphologies, we observe the presence of at least two different spin-dependent recombination processes. At room temperature and 10 K, polaron-pair recombination through weakly spin-spin coupled intermediate charge-carrier pair states is dominant, while at low temperatures, additional signatures of spin-dependent charge transport through the interaction of polarons with triplet excitons are seen in the half-field resonance of a triplet spin-1 species. This additional contribution arises since triplet lifetimes are increased at lower temperatures. We tentatively conclude that spectral broadening induced by hyperfine coupling is slightly weaker in the more ordered β-phase than in the glassy phase since protons are more evenly spaced, whereas broadening effects due to spin-orbit coupling, which impacts the distribution of g -factors, appear to be somewhat more significant in the β-phase.

  16. Magnon localization and Bloch oscillations in finite Heisenberg spin chains in an inhomogeneous magnetic field.

    PubMed

    Kosevich, Yuriy A; Gann, Vladimir V

    2013-06-19

    We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.

  17. Field-angle and DC-bias dependence of spin-torque diode in giant magnetoresistive microstripe

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhou, Y.; Zheng, C.; Chan, P. H.; Chan, M.; Pong, Philip W. T.

    2016-11-01

    The spin torque diode effect in all metal spintronic devices has been proposed as a microwave detector with a high power limit and resistivity to breakdown. The previous works have revealed the field-angle dependence of the rectified DC voltage (VDC) in the ferromagnetic stripe. The giant magnetoresistive (GMR) microstripe exhibits higher sensitivity compared with the ferromagnetic stripe. However, the influence of the magnetic field direction and bias current in the spin rectification of GMR microstripe is not yet reported. In this work, the angular dependence and bias dependence of resonant frequency (fR) and VDC are investigated. A macrospin model concerning the contribution of magnetic field, shape anisotropy, and unidirectional anisotropy is engaged to interpret the experimental data. fR exhibits a |sin δH| dependence on the in-plane field angle (δH). VDC presents either |sin δH| or |sin2 δH cos δH | relation, depending on the magnitude of Hext. Optimized VDC of 24 μV is achieved under 4 mT magnetic field applied at δH = 170°. Under out-of-plane magnetic field, fR shows a cos 2θH reliance on the polar angle (θH), whereas VDC is sin θH dependent. The Oersted field of the DC bias current (IDC) modifies the effective field, resulting in shifted fR. Enhanced VDC with increasing IDC is attributed to the elevated contribution of spin-transfer torque. Maximum VDC of 35.2 μV is achieved, corresponding to 47% increase compared with the optimized value under zero bias. Higher IDC also results in enlarged damping parameter in the free layer, resulting in increased linewidth in the spin torque diode spectra. This work experimentally and analytically reveals the angular dependence of fR and VDC in the GMR microstripe. The results further demonstrate a highly tunable fR and optimized VDC by bias current without the external magnetic field. GMR microstripe holds promise for application as a high-power, frequency-tunable microwave detector that works under small or zero magnetic field.

  18. Detection of the spin injection into silicon by broadband ferromagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ohshima, Ryo; Dushenko, Sergey; Ando, Yuichiro; Weiler, Mathias; Klingler, Stefan; Huebl, Hans; Shinjo, Teruya; Goennenwein, Sebastian; Shiraishi, Masashi

    Silicon (Si) based spintronics was eagerly studied to realize spin metal-oxide-semiconductor field-effect-transistors (MOSFETs) since it has long spin lifetime and gate tunability. The operation of n-type Si spin MOSFET was successfully demonstrated, however, their resistivity is still too low for practical applications and a systematic study of spin injection properties (such as spin lifetime, spin injection efficiency and so on) from the ferromagnet into the Si with different resistivity is awaited for further progress in Si spintronics. In this study, we show the spin injection by spin pumping technique in the NiFe(Py)/Si system. Broadband FMR measurement was carried out to see the enhancement of the Gilbert damping parameter with different resistivity of the Si channel. Additional damping indicated the successful spin injection by spin pumping and observed even for the Si channel with high resistivity, which is necessary for the gate operation of the device.

  19. Complete magnetic field dependence of SABRE-derived polarization.

    PubMed

    Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L

    2018-07-01

    Signal amplification by reversible exchange (SABRE) is a promising hyperpolarization technique, which makes use of spin-order transfer from parahydrogen (the H 2 molecule in its singlet spin state) to a to-be-polarized substrate in a transient organometallic complex, termed the SABRE complex. In this work, we present an experimental method for measuring the magnetic field dependence of the SABRE effect over an ultrawide field range, namely, from 10 nT to 10 T. This approach gives a way to determine the complete magnetic field dependence of SABRE-derived polarization. Here, we focus on SABRE polarization of spin-1/2 hetero-nuclei, such as 13 C and 15 N and measure their polarization in the entire accessible field range; experimental studies are supported by calculations of polarization. Features of the field dependence of polarization can be attributed to level anticrossings in the spin system of the SABRE complex. Features at magnetic fields of the order of 100 nT-1 μT correspond to "strong coupling" of protons and hetero-nuclei, whereas features found in the mT field range stem from "strong coupling" of the proton system. Our approach gives a way to measuring and analyzing the complete SABRE field dependence, to probing NMR parameters of SABRE complexes and to optimizing the polarization value. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Quantum Information Processing with Large Nuclear Spins in GaAs Semiconductors

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael N.; Loss, Daniel; Poggio, M.; Awschalom, D. D.

    2002-10-01

    We propose an implementation for quantum information processing based on coherent manipulations of nuclear spins I=3/2 in GaAs semiconductors. We describe theoretically an NMR method which involves multiphoton transitions and which exploits the nonequidistance of nuclear spin levels due to quadrupolar splittings. Starting from known spin anisotropies we derive effective Hamiltonians in a generalized rotating frame, valid for arbitrary I, which allow us to describe the nonperturbative time evolution of spin states generated by magnetic rf fields. We identify an experimentally observable regime for multiphoton Rabi oscillations. In the nonlinear regime, we find Berry phase interference.

Top