Sample records for spin ice material

  1. Magnetic Coulomb phase in the spin ice Ho2Ti2O7.

    PubMed

    Fennell, T; Deen, P P; Wildes, A R; Schmalzl, K; Prabhakaran, D; Boothroyd, A T; Aldus, R J; McMorrow, D F; Bramwell, S T

    2009-10-16

    Spin-ice materials are magnetic substances in which the spin directions map onto hydrogen positions in water ice. Their low-temperature magnetic state has been predicted to be a phase that obeys a Gauss' law and supports magnetic monopole excitations: in short, a Coulomb phase. We used polarized neutron scattering to show that the spin-ice material Ho2Ti2O7 exhibits an almost perfect Coulomb phase. Our result proves the existence of such phases in magnetic materials and strongly supports the magnetic monopole theory of spin ice.

  2. Magnetic Charge Organization and Screening in Thermalized Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Gilbert, Ian

    2014-03-01

    Artificial spin ice is a material-by-design in which interacting single-domain ferromagnetic nanoislands are used to model Ising spins in frustrated spin systems. Artificial spin ice has proved a useful system in which to directly probe the physics of geometrical frustration, allowing us to better understand materials such as spin ice. Recently, several new experimental techniques have been developed that allow effective thermalization of artificial spin ice. Given the intense interest in magnetic monopole excitations in spin ice materials and artificial spin ice's success in modeling these materials, it should not come as a surprise that interesting monopole physics emerges here as well. The first experimental investigation of thermalized artificial square spin ice determined that the system's monopole-like excitations obeyed a Boltzmann distribution and also found evidence for monopole-antimonopole interactions. Further experiments have implicated these monopole excitations in the growth of ground state domains. Our recent study of artificial kagome spin ice, whose odd-coordinated vertices always possess a net magnetic charge, has revealed a theoretically-predicted magnetic charge ordering transition which has not been previously observed experimentally. We have also investigated the details of magnetic charge interactions in lattices of mixed coordination number. This work was done in collaboration with Sheng Zhang, Cristiano Nisoli, Gia-Wei Chern, Michael Erickson, Liam O'Brien, Chris Leighton, Paul Lammert, Vincent Crespi, and Peter Schiffer. This work was primarily funded by the US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division, grant no. DE-SC0005313.

  3. Spin Ice

    NASA Astrophysics Data System (ADS)

    Bramwell, Steven T.; Gingras, Michel J. P.; Holdsworth, Peter C. W.

    2013-03-01

    Pauling's model of hydrogen disorder in water ice represents the prototype of a frustrated system. Over the years it has spawned several analogous models, including Anderson's model antiferromagnet and the statistical "vertex" models. Spin Ice is a sixteen vertex model of "ferromagnetic frustration" that is approximated by real materials, most notably the rare earth pyrochlores Ho2Ti2O7, Dy2Ti2O7 and Ho2Sn2O7. These "spin ice materials" have the Pauling zero point entropy and in all respects represent almost ideal realisations of Pauling's model. They provide experimentalists with unprecedented access to a wide variety of novel magnetic states and phase transitions that are located in different regions of the field-temperature phase diagram. They afford theoreticians the opportunity to explore many new features of the magnetic interactions and statistical mechanics of frustrated systems. This chapter is a comprehensive review of the physics -- both experimental and theoretical -- of spin ice. It starts with a discussion of the historic problem of water ice and its relation to spin ice and other frustrated magnets. The properties of spin ice are then discussed in three sections that deal with the zero field spin ice state, the numerous field-induced states (including the recently identified "kagomé ice") and the magnetic dynamics. Some materials related to spin ice are briefly described and the chapter is concluded with a short summary of spin ice physics.

  4. Realizing three-dimensional artificial spin ice by stacking planar nano-arrays

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano

    2014-01-01

    Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in a pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.

  5. Disordered kagomé spin ice

    NASA Astrophysics Data System (ADS)

    Greenberg, Noah; Kunz, Andrew

    2018-05-01

    Artificial spin ice is made from a large array of patterned magnetic nanoislands designed to mimic naturally occurring spin ice materials. The geometrical arrangement of the kagomé lattice guarantees a frustrated arrangement of the islands' magnetic moments at each vertex where the three magnetic nanoislands meet. This frustration leads to a highly degenerate ground state which gives rise to a finite (residual) entropy at zero temperature. In this work we use the Monte Carlo simulation to explore the effects of disorder in kagomé spin ice. Disorder is introduced to the system by randomly removing a known percentage of magnetic islands from the lattice. The behavior of the spin ice changes as the disorder increases; evident by changes to the shape and locations of the peaks in heat capacity and the residual entropy. The results are consistent with observations made in diluted physical spin ice materials.

  6. Realizing three-dimensional artificial spin ice by stacking planar nano-arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano

    2014-01-06

    Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in amore » pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.« less

  7. Magnetic monopole dynamics in spin ice.

    PubMed

    Jaubert, L D C; Holdsworth, P C W

    2011-04-27

    One of the most remarkable examples of emergent quasi-particles is that of the 'fractionalization' of magnetic dipoles in the low energy configurations of materials known as 'spin ice' into free and unconfined magnetic monopoles interacting via Coulomb's 1/r law (Castelnovo et al 2008 Nature 451 42-5). Recent experiments have shown that a Coulomb gas of magnetic charges really does exist at low temperature in these materials and this discovery provides a new perspective on otherwise largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we present detailed results describing the diffusive dynamics of monopole particles starting both from the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble. The diffusive quasi-particle dynamics of real spin ice materials within the 'quantum tunnelling' regime is modelled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.

  8. Dynamics of Topological Excitations in a Model Quantum Spin Ice

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Jiong; Deng, Youjin; Wan, Yuan; Meng, Zi Yang

    2018-04-01

    We study the quantum spin dynamics of a frustrated X X Z model on a pyrochlore lattice by using large-scale quantum Monte Carlo simulation and stochastic analytic continuation. In the low-temperature quantum spin ice regime, we observe signatures of coherent photon and spinon excitations in the dynamic spin structure factor. As the temperature rises to the classical spin ice regime, the photon disappears from the dynamic spin structure factor, whereas the dynamics of the spinon remain coherent in a broad temperature window. Our results provide experimentally relevant, quantitative information for the ongoing pursuit of quantum spin ice materials.

  9. Spin-ice behavior of three-dimensional inverse opal-like magnetic structures: Micromagnetic simulations

    NASA Astrophysics Data System (ADS)

    Dubitskiy, I. S.; Syromyatnikov, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Sapoletova, N. A.; Grigoriev, S. V.

    2017-11-01

    We perform micromagnetic simulations of the magnetization distribution in inverse opal-like structures (IOLS) made from ferromagnetic materials (nickel and cobalt). It is shown that the unit cell of these complex structures, whose characteristic length is approximately 700 nm, can be divided into a set of structural elements some of which behave like Ising-like objects. A spin-ice behavior of IOLS is observed in a broad range of external magnetic fields. Numerical results describe successfully the experimental hysteresis curves of the magnetization in Ni- and Co-based IOLS. We conclude that ferromagnetic IOLS can be considered as the first realization of three-dimensional artificial spin ice. The problem is discussed of optimal geometrical properties and material characteristics of IOLS for the spin-ice rule fulfillment.

  10. A spin-liquid with pinch-line singularities on the pyrochlore lattice.

    PubMed

    Benton, Owen; Jaubert, L D C; Yan, Han; Shannon, Nic

    2016-05-26

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7.

  11. A spin-liquid with pinch-line singularities on the pyrochlore lattice

    PubMed Central

    Benton, Owen; Jaubert, L.D.C.; Yan, Han; Shannon, Nic

    2016-01-01

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7. PMID:27225400

  12. Disorder and Quantum Spin Ice

    NASA Astrophysics Data System (ADS)

    Martin, N.; Bonville, P.; Lhotel, E.; Guitteny, S.; Wildes, A.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.; Mirebeau, I.; Petit, S.

    2017-10-01

    We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin-ice candidate Pr2Zr2O7 . Since Pr3 + is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low-temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin-excitation spectra. Taking advantage of mean-field and spin-dynamics simulations, we argue that the randomness in Pr2Zr2O7 promotes a new state of matter, which is disordered yet characterized by short-range antiferroquadrupolar correlations, and from which emerge spin-ice-like excitations. Thus, this study gives an original research route in the field of quantum spin ice.

  13. Magnetotransport in Artificial Kagome Spin Ice

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei

    2017-12-01

    Magnetic nanoarrays with special geometries exhibit nontrivial collective behaviors similar to those observed in spin-ice materials. Here, we present a circuit model to describe the complex magnetotransport phenomena in artificial kagome spin ice. In this picture, the system can be viewed as a resistor network driven by voltage sources that are located at vertices of the honeycomb array. The differential voltages across different terminals of these sources are related to the ice rules that govern the local magnetization ordering. The circuit model relates the transverse Hall voltage of kagome ice to the underlying spin correlations. Treating the magnetic nanoarray as metamaterials, we present a mesoscopic constitutive equation relating the Hall resistance to magnetization components of the system. We further show that the Hall signal is significantly enhanced when the kagome ice undergoes a magnetic-charge-ordering transition. Our analysis can be readily generalized to other lattice geometries, providing a quantitative method for the design of magnetoresistance devices based on artificial spin ice.

  14. Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange

    NASA Astrophysics Data System (ADS)

    Taillefumier, Mathieu; Benton, Owen; Yan, Han; Jaubert, L. D. C.; Shannon, Nic

    2017-10-01

    Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2 Ti2 O7 and Dy2 Ti2 O7 exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related "quantum spin-ice" materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.

  15. Switchable geometric frustration in an artificial-spin-ice-superconductor heterosystem.

    PubMed

    Wang, Yong-Lei; Ma, Xiaoyu; Xu, Jing; Xiao, Zhi-Li; Snezhko, Alexey; Divan, Ralu; Ocola, Leonidas E; Pearson, John E; Janko, Boldizsar; Kwok, Wai-Kwong

    2018-06-11

    Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applications in microelectronics 1 , such as data storage, memory and logic 2 . However, it is difficult to achieve very high degeneracy, especially in a two-dimensional system 3,4 . Here, we showcase in situ controllable geometric frustration with high degeneracy in a two-dimensional flux-quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure 5 . The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin-ice magnetic state through the application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting 'particles' using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which could illuminate a path to control new functionalities in other material systems, such as magnetic skyrmions 6 , electrons and holes in two-dimensional materials 7,8 , and topological insulators 9 , as well as colloids in soft materials 10-13 .

  16. Neutron scattering investigations of frustated magnets

    NASA Astrophysics Data System (ADS)

    Fennell, Tom

    This thesis describes the experimental investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Ho2Ti207 and Dy2Ti207 are examples of spin ices, in which the manifold of disordered magnetic groundstates maps onto that of the proton positions in ice. Using single crystal neutron scattering to measure Bragg and diffuse scattering, the effect of applying magnetic fields along different directions in the crystal was investigated. Different schemes of degeneracy removal were observed for different directions. Long and short range order, and the coexistence of both could be observed by this technique.The field and temperature dependence of magnetic ordering was studied in Ho2Ti207 and Dy2Ti207. Ho2Ti2()7 has been more extensively investigated. The field was applied on [00l], [hh0], [hhh] and [hh2h]. Dy2Ti207 was studied with the field applied on [00l] and [hho] but more detailed information about the evolution of the scattering pattern across a large area of reciprocal space was obtained.With the field applied on [00l] both materials showed complete degeneracy removal. A long range ordered structure was formed. Any magnetic diffuse scattering vanished and was entirely replaced by strong magnetic Bragg scattering. At T =0.05 K both materials show unusual magnetization curves, with a prominent step and hysteresis. This was attributed to the extremely slow dynamics of spin ice materials at this temperature.Both materials were studied in greatest detail with the field applied on [hh0]. The coexistence of long and short range order was observed when the field was raised at T = 0.05 K. The application of a field in this direction separated the spin system into two populations. One could be ordered by the field, and one remained disordered. However, via spin-spin interactions, the field restricted the degeneracy of the disordered spin population. The neutron scattering pattern of Dy2Ti207 shows that the spin system was separated into two populations of spin chains, one set ordered and the other only partly so. Cycling the field induced dynamics in these chains, again via spin-spin interactions, as the field acted on the ordered si)in chains. These field regulated dynamics were particularly noted in Ho2Ti207 where a full field cycle was executed. Raising the temperature in an applied field also activated the dynamics of the partially ordered spin chains. The continued evolution of the spin system toward a more ordered state, when dynamics can be induced, suggested that a spin ice does indeed have an energetic groundstate.The remaining two directions probed in Ho2Ti20y both have two populations of spins with different Zeeman energies. The competition of the field and the spin- spin interactions was used to investigate the onset of the ice rules regime (field on [hh2h] and the breaking of the ice rules by a strong field (field on [hhh]). It was shown that the behavior of Ho2Ti207 with field on [hhh] was consistent with the "kagome ice" hypothesis.

  17. Proposal for the detection of magnetic monopoles in spin ice via nanoscale magnetometry

    NASA Astrophysics Data System (ADS)

    Kirschner, Franziska K. K.; Flicker, Felix; Yacoby, Amir; Yao, Norman Y.; Blundell, Stephen J.

    2018-04-01

    We present a proposal for applying nanoscale magnetometry to the search for magnetic monopoles in the spin ice materials holmium and dysprosium titanate. Employing Monte Carlo simulations of the dipolar spin ice model, we find that when cooled to below 1.5 K these materials exhibit a sufficiently low monopole density to enable the direct observation of magnetic fields from individual monopoles. At these temperatures we demonstrate that noise spectroscopy can capture the intrinsic fluctuations associated with monopole dynamics, allowing one to isolate the qualitative effects associated with both the Coulomb interaction between monopoles and the topological constraints implied by Dirac strings. We describe in detail three different nanoscale magnetometry platforms (muon spin rotation, nitrogen-vacancy defects, and nanoscale arrays of superconducting quantum interference devices) that can be used to detect monopoles in these experiments and analyze the advantages of each.

  18. Vindication of Yb2Ti2O7 as a model exchange quantum spin ice.

    PubMed

    Applegate, R; Hayre, N R; Singh, R R P; Lin, T; Day, A G R; Gingras, M J P

    2012-08-31

    We use numerical linked-cluster expansions to compute the specific heat C(T) and entropy S(T) of a quantum spin ice Hamiltonian for Yb2Ti2O7 using anisotropic exchange interactions, recently determined from inelastic neutron scattering measurements, and find good agreement with experimental calorimetric data. This vindicates Yb2Ti2O7 as a model quantum spin ice. We find that in the perturbative weak quantum regime, such a system has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signaling the paramagnetic to spin ice crossover, followed at a lower temperature by a sharp peak accompanying a first-order phase transition to the ordered state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We anticipate that the conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.

  19. Magnetoresistance in Permalloy Connected Brickwork Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Park, Jungsik; Le, Brian; Chern, Gia-Wei; Watts, Justin; Leighton, Chris; Schiffer, Peter

    Artificial spin ice refers to a two-dimensional array of elongated ferromagnetic elements in which frustrated lattice geometry induces novel magnetic behavior. Here we examine room-temperature magnetoresistance properties of connected permalloy (Ni81Fe19) brickwork artificial spin ice. Both the longitudinal and transverse magnetoresistance of the nanostructure demonstrate an angular sensitivity that has not been previously observed. The observed magnetoresistance behavior can be explained from micromagnetic modelling using an anisotropic magnetoresistance model (AMR). As part of this study, we find that the ground state of the connected brickwork artificial spin ice can be reproducibly created by a simple field sweep in a narrow range of angles, and manifests in the magnetotransport with a distinct signal. Supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Grant Number DE-SC0010778. Work at the University of Minnesota was supported by the NSF MRSEC under award DMR-1420013, and DMR-1507048.

  20. Thermodynamics of Polaronic States in Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Farhan, Alan

    Artificial spin ices represent a class of systems consisting of lithographically patterned nanomagnets arranged in two-dimensional geometries. They were initially introduced as a two-dimensional analogue to geometrically frustrated pyrochlore spin ice, and the most recent introduction of artificial spin ice systems with thermally activated moment fluctuations not only delivered the possibility to directly investigate geometrical frustration and emergent phenomena with real space imaging, but also paved the way to design and investigate new two-dimensional magnetic metamaterials, where material properties can be directly manipulated giving rise to properties that do not exist in nature. Here, taking advantage of cryogenic photoemission electron microscopy, and using the concept of emergent magnetic charges, we are able to directly visualize the creation and annihilation of screened emergent magnetic monopole defects in artificial spin ice. We observe that these polaronic states arise as intermediate states, separating an energetically excited out-of-equilibrium state and low-energy equilibrium configurations. They appear as a result of a local screening effect between emergent magnetic charge defects and their neighboring magnetic charges, thus forming a transient minimum, before the system approaches a global minimum with the least amount of emergent magnetic charge defects. This project is funded by the Swiss National Science Foundation.

  1. Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice.

    PubMed

    Perrin, Yann; Canals, Benjamin; Rougemaille, Nicolas

    2016-12-15

    Artificial spin-ice systems are lithographically patterned arrangements of interacting magnetic nanostructures that were introduced as way of investigating the effects of geometric frustration in a controlled manner. This approach has enabled unconventional states of matter to be visualized directly in real space, and has triggered research at the frontier between nanomagnetism, statistical thermodynamics and condensed matter physics. Despite efforts to create an artificial realization of the square-ice model-a two-dimensional geometrically frustrated spin-ice system defined on a square lattice-no simple geometry based on arrays of nanomagnets has successfully captured the macroscopically degenerate ground-state manifold of the model. Instead, square lattices of nanomagnets are characterized by a magnetically ordered ground state that consists of local loop configurations with alternating chirality. Here we show that all of the characteristics of the square-ice model are observed in an artificial square-ice system that consists of two sublattices of nanomagnets that are vertically separated by a small distance. The spin configurations we image after demagnetizing our arrays reveal unambiguous signatures of a Coulomb phase and algebraic spin-spin correlations, which are characterized by the presence of 'pinch' points in the associated magnetic structure factor. Local excitations-the classical analogues of magnetic monopoles-are free to evolve in an extensively degenerate, divergence-free vacuum. We thus provide a protocol that could be used to investigate collective magnetic phenomena, including Coulomb phases and the physics of ice-like materials.

  2. Evidence of impurity and boundary effects on magnetic monopole dynamics in spin ice

    NASA Astrophysics Data System (ADS)

    Revell, H. M.; Yaraskavitch, L. R.; Mason, J. D.; Ross, K. A.; Noad, H. M. L.; Dabkowska, H. A.; Gaulin, B. D.; Henelius, P.; Kycia, J. B.

    2013-01-01

    Electrical resistance is a crucial and well-understood property of systems ranging from computer microchips to nerve impulse propagation in the human body. Here we study the motion of magnetic charges in spin ice and find that extra spins inserted in Dy2Ti2O7 trap magnetic monopole excitations and provide the first example of how defects in a spin-ice material obstruct the flow of monopoles--a magnetic version of residual resistance. We measure the time-dependent magnetic relaxation in Dy2Ti2O7 and show that it decays with a stretched exponential followed by a very slow long-time tail. In a Monte Carlo simulation governed by Metropolis dynamics we show that surface effects and a very low level of stuffed spins (0.30%)--magnetic Dy ions substituted for non-magnetic Ti ions--cause these signatures in the relaxation. In addition, we find evidence that the rapidly diverging experimental timescale is due to a temperature-dependent attempt rate proportional to the monopole density.

  3. Emergent geometric frustration of artificial magnetic skyrmion crystals

    DOE PAGES

    Ma, Fusheng; Reichhardt, Charles; Gan, Weiliang; ...

    2016-10-05

    Magnetic skyrmions have been receiving growing attention as potential information storage and magnetic logic devices since an increasing number of materials have been identified that support skyrmion phases. Explorations of artificial frustrated systems have led to new insights into controlling and engineering new emergent frustration phenomena in frustrated and disordered systems. Here, we propose a skyrmion spin ice, giving a unifying framework for the study of geometric frustration of skyrmion crystals (SCs) in a nonfrustrated artificial geometrical lattice as a consequence of the structural confinement of skyrmions in magnetic potential wells. The emergent ice rules from the geometrically frustrated SCsmore » highlight a novel phenomenon in this skyrmion system: emergent geometrical frustration. We demonstrate how SC topology transitions between a nonfrustrated periodic configuration and a frustrated icelike ordering can also be realized reversibly. The proposed artificial frustrated skyrmion systems can be annealed into different ice phases with an applied current-induced spin-transfer torque, including a long-range ordered ice rule obeying ground state, as-relaxed random state, biased state, and monopole state. In conclusion, the spin-torque reconfigurability of the artificial skyrmion ice states, difficult to achieve in other artificial spin ice systems, is compatible with standard spintronic device fabrication technology, which makes the semiconductor industrial integration straightforward.« less

  4. Emergent geometric frustration of artificial magnetic skyrmion crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Fusheng; Reichhardt, Charles; Gan, Weiliang

    Magnetic skyrmions have been receiving growing attention as potential information storage and magnetic logic devices since an increasing number of materials have been identified that support skyrmion phases. Explorations of artificial frustrated systems have led to new insights into controlling and engineering new emergent frustration phenomena in frustrated and disordered systems. Here, we propose a skyrmion spin ice, giving a unifying framework for the study of geometric frustration of skyrmion crystals (SCs) in a nonfrustrated artificial geometrical lattice as a consequence of the structural confinement of skyrmions in magnetic potential wells. The emergent ice rules from the geometrically frustrated SCsmore » highlight a novel phenomenon in this skyrmion system: emergent geometrical frustration. We demonstrate how SC topology transitions between a nonfrustrated periodic configuration and a frustrated icelike ordering can also be realized reversibly. The proposed artificial frustrated skyrmion systems can be annealed into different ice phases with an applied current-induced spin-transfer torque, including a long-range ordered ice rule obeying ground state, as-relaxed random state, biased state, and monopole state. In conclusion, the spin-torque reconfigurability of the artificial skyrmion ice states, difficult to achieve in other artificial spin ice systems, is compatible with standard spintronic device fabrication technology, which makes the semiconductor industrial integration straightforward.« less

  5. Evidence for the confinement of magnetic monopoles in quantum spin ice.

    PubMed

    Sarte, P M; Aczel, A A; Ehlers, G; Stock, C; Gaulin, B D; Mauws, C; Stone, M B; Calder, S; Nagler, S E; Hollett, J W; Zhou, H D; Gardner, J S; Attfield, J P; Wiebe, C R

    2017-10-19

    Magnetic monopoles are hypothesised elementary particles connected by Dirac strings that behave like infinitely thin solenoids (Dirac 1931 Proc. R. Soc. A 133 60). Despite decades of searching, free magnetic monopoles and their Dirac strings have eluded experimental detection, although there is substantial evidence for deconfined magnetic monopole quasiparticles in spin ice materials (Castelnovo et al 2008 Nature 326 411). Here we report the detection of a hierarchy of unequally-spaced magnetic excitations via high resolution inelastic neutron spectroscopic measurements on the quantum spin ice candidate [Formula: see text] [Formula: see text] [Formula: see text]. These excitations are well-described by a simple model of monopole pairs bound by a linear potential (Coldea et al Science 327 177) with an effective tension of 0.642(8) K [Formula: see text] at 1.65 K. The success of the linear potential model suggests that these low energy magnetic excitations are direct spectroscopic evidence for the confinement of magnetic monopole quasiparticles in the quantum spin ice candidate [Formula: see text] [Formula: see text] [Formula: see text].

  6. Three-dimensional Kasteleyn transition: spin ice in a [100] field.

    PubMed

    Jaubert, L D C; Chalker, J T; Holdsworth, P C W; Moessner, R

    2008-02-15

    We examine the statistical mechanics of spin-ice materials with a [100] magnetic field. We show that the approach to saturated magnetization is, in the low-temperature limit, an example of a 3D Kasteleyn transition, which is topological in the sense that magnetization is changed only by excitations that span the entire system. We study the transition analytically and using a Monte Carlo cluster algorithm, and compare our results with recent data from experiments on Dy2Ti2O7.

  7. Phonon-mediated spin-flipping mechanism in the spin ices Dy 2 Ti 2 O 7 and Ho 2 Ti 2 O 7

    DOE PAGES

    Ruminy, M.; Chi, S.; Calder, S.; ...

    2017-02-21

    To understand emergent magnetic monopole dynamics in the spin ices Ho 2Ti 2O 7 and Dy 2Ti 2O 7, it is necessary to investigate the mechanisms by which spins flip in these materials. Presently there are thought to be two processes: quantum tunneling at low and intermediate temperatures and thermally activated at high temperatures. We identify possible couplings between crystal field and optical phonon excitations and construct a strictly constrained model of phonon-mediated spin flipping that quantitatively describes the high-temperature processes in both compounds, as measured by quasielastic neutron scattering. We support the model with direct experimental evidence of themore » coupling between crystal field states and optical phonons in Ho 2Ti 2O 7.« less

  8. Antiferroquadrupolar correlations in the quantum spin ice candidate Pr2Zr2O7

    NASA Astrophysics Data System (ADS)

    Petit, S.; Lhotel, E.; Guitteny, S.; Florea, O.; Robert, J.; Bonville, P.; Mirebeau, I.; Ollivier, J.; Mutka, H.; Ressouche, E.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.

    2016-10-01

    We present an experimental study of the quantum spin ice candidate pyrochlore compound Pr2Zr2O7 by means of magnetization measurements, specific heat, and neutron scattering up to 12 T and down to 60 mK. When the field is applied along the [111 ] and [1 1 ¯0 ] directions, k =0 field-induced structures settle in. We find that the ordered moment rises slowly, even at very low temperature, in agreement with macroscopic magnetization. Interestingly, for H ∥[1 1 ¯0 ] , the ordered moment appears on the so-called α chains only. The spin excitation spectrum is essentially inelastic and consists in a broad flat mode centered at about 0.4 meV with a magnetic structure factor which resembles the spin ice pattern. For H ∥[1 1 ¯0 ] (at least up to 2.5 T), we find that a well-defined mode forms from this broad response, whose energy increases with H , in the same way as the temperature of the specific-heat anomaly. We finally discuss these results in the light of mean field calculations and propose an interpretation where quadrupolar interactions play a major role, overcoming the magnetic exchange. In this picture, the spin ice pattern appears shifted up to finite energy because of those interactions. We then propose a range of acceptable parameters for Pr2Zr2O7 that allow to reproduce several experimental features observed under field. With these parameters, the actual ground state of this material would be an antiferroquadrupolar liquid with spin-ice-like excitations.

  9. Evidence for the Confinement of Magnetic Monopoles in Quantum Spin Ice.

    PubMed

    Sarte, Paul Maximo; Aczel, Adam; Ehlers, Georg; Stock, Christopher; Gaulin, Bruce D; Mauws, Cole; Stone, Matthew B; Calder, Stuart; Nagler, Stephen; Hollett, Joshua; Zhou, Haidong; Gardner, Jason S; Attfield, J Paul; Wiebe, Christopher R

    2017-09-25

    Magnetic monopoles are hypothesised elementary particles connected by Dirac strings that behave like infinitely thin solenoids [Dirac 1931 Proc. Roy. Soc. A 133 60]. Despite decades of searches, free magnetic monopoles and their Dirac strings have eluded experimental detection, although there is substantial evidence for deconfined magnetic monopole quasiparticles in spin ice materials [Castelnovo, Moessner & Sondhi 2008 Nature 326 411]. Here we report the detection of a hierarchy of unequally-spaced magnetic excitations via high resolution inelastic neutron spectroscopic measurements on the quantum spin ice candidate Pr<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>. These excitations are well-described by a simple model of monopole pairs bound by a linear potential [Coldea et al. Science 327 177] with an effective tension of 0.7(1) K/Angstrom. The success of the linear potential model suggests that these low energy magnetic excitations are direct spectroscopic evidence for the confinement of magnetic monopole quasiparticles in the quantum spin ice candidate Pr<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>. © 2017 IOP Publishing Ltd.

  10. Electrodynamics in cylindrical symmetry in the magnetic plasma state

    NASA Astrophysics Data System (ADS)

    López-Bara, F. I.; López-Aguilar, F.

    2018-05-01

    Excited states in magnetic structures of the so-called spin-ices and in some artificial magnetic materials present a behaviour as being a magnetic neutral plasma. In this state the electromagnetic waves in confined systems (waveguides) filled with materials with magnetic charges are able to transmit information and energy. In the natural spin-ices, the difficulty is the very low temperature for which these magnetic entities appear, whose phenomenology under the electromagnetic interaction is that of solids containing magnetic charges. However, similar behaviour may be present in other compounds at higher temperatures, even at room temperature and they are named artificial spin-ice compounds. This analysis is addressed to obtain theoretical results about magnetic responses and frequency-dependent magnetricity. The key physical magnitudes are the plasmon frequency () which is related to the cut-off frequency in a wave guide and the effective inertial masses () of these magnetic charges. All properties of the electromagnetic propagation in these compounds with effective magnetic monopoles depend on and m. This is carried out including the dissipative forces among magnetic charges which give new characteristic features to the electromagnetic propagation. The main goal of this work is the analysis of these electromagnetic properties in order to find possible circuital applications of these materials to be utilized by devices.

  11. The SPectrometer for Ice Nuclei (SPIN): An instrument to investigate ice nucleation

    DOE PAGES

    Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina; ...

    2016-07-06

    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigatemore » homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Altogether, we report that the SPIN is able to reproduce previous INP counter measurements.« less

  12. Quantum Spin Ice under a [111] Magnetic Field: From Pyrochlore to Kagome

    NASA Astrophysics Data System (ADS)

    Bojesen, Troels Arnfred; Onoda, Shigeki

    2017-12-01

    Quantum spin ice, modeled for magnetic rare-earth pyrochlores, has attracted great interest for hosting a U(1) quantum spin liquid, which involves spin-ice monopoles as gapped deconfined spinons, as well as gapless excitations analogous to photons. However, the global phase diagram under a [111] magnetic field remains open. Here we uncover by means of unbiased quantum Monte Carlo simulations that a supersolid of monopoles, showing both a superfluidity and a partial ionization, intervenes the kagome spin ice and a fully ionized monopole insulator, in contrast to classical spin ice where a direct discontinuous phase transition takes place. We also show that on cooling, kagome spin ice evolves towards a valence-bond solid similar to what appears in the associated kagome lattice model [S. V. Isakov et al., Phys. Rev. Lett. 97, 147202 (2006), 10.1103/PhysRevLett.97.147202]. Possible relevance to experiments is discussed.

  13. Emergent reduced dimensionality by vertex frustration in artificial spin ice

    NASA Astrophysics Data System (ADS)

    Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris; Scholl, Andreas; Nisoli, Cristiano; Schiffer, Peter

    2016-02-01

    Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.

  14. Emergent reduced dimensionality by vertex frustration in artificial spin ice

    DOE PAGES

    Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; ...

    2015-10-26

    Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments.more » The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.« less

  15. The 3D Kasteleyn transition in dipolar spin ice: a numerical study with the conserved monopoles algorithm

    NASA Astrophysics Data System (ADS)

    Baez, M. L.; Borzi, R. A.

    2017-02-01

    We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along ≤ft[1 0 0\\right] , and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases  ≈0.4 K for the parameters corresponding to the best known spin ice materials, \\text{D}{{\\text{y}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} and \\text{H}{{\\text{o}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} . This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of ‘strings’ of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along ≤ft[1 0 0\\right] there are only three different stable phases at zero temperature.

  16. Honeycomb artificial spin ice at low temperatures

    NASA Astrophysics Data System (ADS)

    Zeissler, Katharina; Chadha, Megha; Cohen, Lesley; Branford, Will

    2015-03-01

    Artificial spin ice is a macroscopic playground for magnetically frustrated systems. It consists of a geometrically ordered but magnetically frustrated arrangement of ferromagnetic macros spins, e.g. an arrangement of single domain ferromagnetic nanowires on a honeycomb lattice. Permalloy and cobalt which have critical temperature scales far above 290 K, are commonly used in the construction of such systems. Previous measurements have shown unusual features in the magnetotransport signature of cobalt honeycomb artificial spin ice at temperatures below 50 K which are due to changes in the artificial spin ice's magnetic reversal. In that case, the artificial spin ice bars were 1 micron long, 100 nm wide and 20 nm thick. Here we explore the low temperature magnetic behavior of honeycomb artificial spin ice structures with a variety of bar dimensions, indirectly via electrical transport, as well as, directly using low temperature magnetic imaging techniques. We discuss the extent to which this change in the magnetic reversal at low temperatures is generic to the honeycomb artificial spin ice geometry and whether the bar dimensions have an influence on its onset temperature. The EPSRC (Grant No. EP/G004765/1; Grant No. EP/L504786/1) and the Leverhulme Trust (Grant No. RPG 2012-692) funded this scientific work.

  17. Emergent magnetic monopoles, disorder, and avalanches in artificial kagome spin ice (invited)

    NASA Astrophysics Data System (ADS)

    Hügli, R. V.; Duff, G.; O'Conchuir, B.; Mengotti, E.; Heyderman, L. J.; Rodríguez, A. Fraile; Nolting, F.; Braun, H. B.

    2012-04-01

    We study artificial spin ice with isolated elongated nanoscale islands arranged in a kagome lattice and solely interacting via long range dipolar fields. The artificial kagome spin ice displays a phenomenology similar to the microscopic pyrochlore system, where excitations at sub-Kelvin temperatures consist of emergent monopole quasiparticles that are connected via a solenoidal flux line, a classical and observable version of the Dirac string. We show that magnetization reversal in kagome spin ice is fundamentally different from the nucleation and extensive domain growth scenario expected for a generic 2D system. Here, the magnetization reverses in a strictly 1D fashion: After nucleation, a monopole-antimonopole dissociates along a 1D path, leaving a (Dirac) string of islands with reversed magnetization in its wake. Since the 2D artificial spin ice spontaneously decays into a 1D subsystem, magnetization reversal in kagome spin ice provides an example of dimensional reduction via frustration.

  18. Restoration of the third law in spin ice thin films

    PubMed Central

    Bovo, L.; Moya, X.; Prabhakaran, D.; Soh, Yeong-Ah; Boothroyd, A.T.; Mathur, N.D.; Aeppli, G.; Bramwell, S.T.

    2014-01-01

    A characteristic feature of spin ice is its apparent violation of the third law of thermodynamics. This leads to a number of interesting properties including the emergence of an effective vacuum for magnetic monopoles and their currents – magnetricity. Here we add a new dimension to the experimental study of spin ice by fabricating thin epitaxial films of Dy2Ti2O7, varying between 5 and 60 monolayers on an inert substrate. The films show the distinctive characteristics of spin ice at temperatures >2 K, but at lower temperature we find evidence of a zero entropy state. This restoration of the third law in spin ice thin films is consistent with a predicted strain-induced ordering of a very unusual type, previously discussed for analogous electrical systems. Our results show how the physics of frustrated pyrochlore magnets such as spin ice may be significantly modified in thin-film samples. PMID:24619137

  19. Restoration of the third law in spin ice thin films.

    PubMed

    Bovo, L; Moya, X; Prabhakaran, D; Soh, Yeong-Ah; Boothroyd, A T; Mathur, N D; Aeppli, G; Bramwell, S T

    2014-03-12

    A characteristic feature of spin ice is its apparent violation of the third law of thermodynamics. This leads to a number of interesting properties including the emergence of an effective vacuum for magnetic monopoles and their currents - magnetricity. Here we add a new dimension to the experimental study of spin ice by fabricating thin epitaxial films of Dy2Ti2O7, varying between 5 and 60 monolayers on an inert substrate. The films show the distinctive characteristics of spin ice at temperatures >2 K, but at lower temperature we find evidence of a zero entropy state. This restoration of the third law in spin ice thin films is consistent with a predicted strain-induced ordering of a very unusual type, previously discussed for analogous electrical systems. Our results show how the physics of frustrated pyrochlore magnets such as spin ice may be significantly modified in thin-film samples.

  20. Doped colloidal artificial spin ice

    DOE PAGES

    Libál, A.; Reichhardt, C. J. Olson; Reichhardt, C.

    2015-10-07

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Conversely, magnetic artificial spin ices, unlike colloidal and vortex artificial spin ice realizations, allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloidsmore » is suppressed near the doping sites. Our results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.« less

  1. Doped colloidal artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libál, A.; Reichhardt, C. J. Olson; Reichhardt, C.

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Conversely, magnetic artificial spin ices, unlike colloidal and vortex artificial spin ice realizations, allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloidsmore » is suppressed near the doping sites. Our results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.« less

  2. Husimi-cactus approximation study on the diluted spin ice

    NASA Astrophysics Data System (ADS)

    Otsuka, Hiromi; Okabe, Yutaka; Nefedev, Konstantin

    2018-04-01

    We investigate dilution effects on the classical spin-ice materials such as Ho2Ti2O7 and Dy2Ti2O7 . In particular, we derive a formula of the thermodynamic quantities as functions of the temperature and a nonmagnetic ion concentration based on a Husimi-cactus approximation. We find that the formula predicts a dilution-induced crossover from the cooperative to the conventional paramagnets in a ground state, and that it also reproduces the "generalized Pauling's entropy" given by Ke et al. To verify the formula from a numerical viewpoint, we compare these results with Monte Carlo simulation calculation data, and then find good agreement for all parameter values.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina

    The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigatemore » homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Altogether, we report that the SPIN is able to reproduce previous INP counter measurements.« less

  4. NMR signal analysis to attribute the components to the solid/liquid phases present in mixes and ice creams.

    PubMed

    Mariette, François; Lucas, Tiphaine

    2005-03-09

    The NMR relaxation signals from complex products such as ice cream are hard to interpret because of the multiexponential behavior of the relaxation signal and the difficulty of attributing the NMR relaxation components to specific molecule fractions. An attribution of the NMR relaxation parameters is proposed, however, based on an approach that combines quantitative analysis of the spin-spin and spin-lattice relaxation times and the signal intensities with characterization of the ice cream components. We have been able to show that NMR can be used to describe the crystallized and liquid phases separately. The first component of the spin-spin and spin-lattice relaxation describes the behavior of the protons of the crystallized fat in the mix. The amount of fat crystals can then be estimated. In the case of ice cream, only the spin-lattice relaxation signal from the crystallized fraction is relevant. However, it enables the ice protons and the protons of the crystallized fat to be distinguished. The spin-lattice relaxation time can be used to describe the mobility of the protons in the different crystallized phases and also to quantify the amount of ice crystals and fat crystals in the ice cream. The NMR relaxation of the liquid phase of the mix has a biexponential behavior. A first component is attributable to the liquid fraction of the fat and to the sugars, while a second component is attributable to the aqueous phase. Overall, the study shows that despite the complexity of the NMR signal from ice cream, a number of relevant parameters can be extracted to study the influence of the formulation and of the process stages on the ice fraction, the crystallized fat fraction, and the liquid aqueous fraction.

  5. Rewritable artificial magnetic charge ice

    DOE PAGES

    Wang, Yong-Lei; Xiao, Zhi-Li; Snezhko, Alexey; ...

    2016-05-20

    Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. Here, we designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the propertiesmore » of other two-dimensional materials.« less

  6. Rewritable artificial magnetic charge ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong-Lei; Xiao, Zhi-Li; Snezhko, Alexey

    Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. Here, we designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the propertiesmore » of other two-dimensional materials.« less

  7. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Stockem, Irina; Porrati, Fabrizio; Huth, Michael; Schröder, Christian; Müller, Jens

    2016-10-01

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.

  8. Topological Spin Glass in Diluted Spin Ice

    NASA Astrophysics Data System (ADS)

    Sen, Arnab; Moessner, R.

    2015-06-01

    It is a salient experimental fact that a large fraction of candidate spin liquid materials freeze as the temperature is lowered. The question naturally arises whether such freezing is intrinsic to the spin liquid ("disorder-free glassiness") or extrinsic, in the sense that a topological phase simply coexists with standard freezing of impurities. Here, we demonstrate a surprising third alternative, namely, that freezing and topological liquidity are inseparably linked. The topological phase reacts to the introduction of disorder by generating degrees of freedom of a new type (along with interactions between them), which in turn undergo a freezing transition while the topological phase supporting them remains intact.

  9. Topological Spin Glass in Diluted Spin Ice.

    PubMed

    Sen, Arnab; Moessner, R

    2015-06-19

    It is a salient experimental fact that a large fraction of candidate spin liquid materials freeze as the temperature is lowered. The question naturally arises whether such freezing is intrinsic to the spin liquid ("disorder-free glassiness") or extrinsic, in the sense that a topological phase simply coexists with standard freezing of impurities. Here, we demonstrate a surprising third alternative, namely, that freezing and topological liquidity are inseparably linked. The topological phase reacts to the introduction of disorder by generating degrees of freedom of a new type (along with interactions between them), which in turn undergo a freezing transition while the topological phase supporting them remains intact.

  10. Dipolar Spin Ice States with a Fast Monopole Hopping Rate in CdEr2X4 (X =Se , S)

    NASA Astrophysics Data System (ADS)

    Gao, Shang; Zaharko, O.; Tsurkan, V.; Prodan, L.; Riordan, E.; Lago, J.; Fâk, B.; Wildes, A. R.; Koza, M. M.; Ritter, C.; Fouquet, P.; Keller, L.; Canévet, E.; Medarde, M.; Blomgren, J.; Johansson, C.; Giblin, S. R.; Vrtnik, S.; Luzar, J.; Loidl, A.; Rüegg, Ch.; Fennell, T.

    2018-03-01

    Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr2 Se4 is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy2 Ti2 O7 . In this Letter we use diffuse neutron scattering to show that both CdEr2 Se4 and CdEr2 S4 support a dipolar spin ice state—the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to those in Dy2 Ti2 O7 , i.e., dilute and uncorrelated, and so cannot provide three orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er3 + ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr2X4 (X =Se , S) are primarily due to much faster monopole hopping. Our work suggests that CdEr2X4 offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples.

  11. Low field domain wall dynamics in artificial spin-ice basis structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, J.; School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Goolaup, S.

    2015-10-28

    Artificial magnetic spin-ice nanostructures provide an ideal platform for the observation of magnetic monopoles. The formation of a magnetic monopole is governed by the motion of a magnetic charge carrier via the propagation of domain walls (DWs) in a lattice. To date, most experiments have been on the static visualization of DW propagation in the lattice. In this paper, we report on the low field dynamics of DW in a unit spin-ice structure measured by magnetoresistance changes. Our results show that reversible DW propagation can be initiated within the spin-ice basis. The initial magnetization configuration of the unit structure stronglymore » influences the direction of DW motion in the branches. Single or multiple domain wall nucleation can be induced in the respective branches of the unit spin ice by the direction of the applied field.« less

  12. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamicsmore » of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.« less

  13. Nanostructured complex oxides as a route towards thermal behavior in artificial spin ice systems

    NASA Astrophysics Data System (ADS)

    Chopdekar, R. V.; Li, B.; Wynn, T. A.; Lee, M. S.; Jia, Y.; Liu, Z. Q.; Biegalski, M. D.; Retterer, S. T.; Young, A. T.; Scholl, A.; Takamura, Y.

    2017-07-01

    We have used soft x-ray photoemission electron microscopy to image the magnetization of single-domain L a0.7S r0.3Mn O3 nanoislands arranged in geometrically frustrated configurations such as square ice and kagome ice geometries. Upon thermal randomization, ensembles of nanoislands with strong interisland magnetic coupling relax towards low-energy configurations. Statistical analysis shows that the likelihood of ensembles falling into low-energy configurations depends strongly on the annealing temperature. Annealing to just below the Curie temperature of the ferromagnetic film (TC=338 K ) allows for a much greater probability of achieving low-energy configurations as compared to annealing above the Curie temperature. At this thermally active temperature of 325 K, the ensemble of ferromagnetic nanoislands explore their energy landscape over time and eventually transition to lower energy states as compared to the frozen-in configurations obtained upon cooling from above the Curie temperature. Thus, this materials system allows for a facile method to systematically study thermal evolution of artificial spin ice arrays of nanoislands at temperatures modestly above room temperature.

  14. Comparison of the Supercooled Spin Liquid States in the Pyrochlore Magnets Dy2Ti2O7 and Ho2Ti2O7

    NASA Astrophysics Data System (ADS)

    Eyal, Anna; Eyvazov, Azar B.; Dusad, Ritika; Munsie, Timothy J. S.; Luke, Graeme M.; Davis, J. C. Séamus

    Despite a well-ordered crystal structure and strong magnetic interactions between the Dy or Ho ions, no long-range magnetic order has been detected in the pyrochlore titanates Ho2Ti2O7 and Dy2Ti2O7. The low temperature state in these materials is governed by spin-ice rules. These constrain the Ising like spins in the materials, yet does not result in a global broken symmetry state. To explore the actual magnetic phases, we simultaneously measure the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7 and Ho2Ti2O7 using toroidal, boundary-free magnetization transport techniques. We demonstrate a distinctive behavior of the magnetic susceptibility of both compounds, that is indistinguishable in form from the permittivity of supercooled dipolar liquids. Moreover, we show that the microscopic magnetic relaxation times for both materials increase along a super-Arrhenius trajectory also characteristic of supercooled glass-forming liquids. Both materials therefore exhibit characteristics of a supercooled spin liquid. Strongly-correlated dynamics of loops of spins is suggested as a possible mechanism which could account for these findings. Potential connections to many-body spin localization will also be discussed.

  15. Quantum spin ices and magnetic states from dipolar-octupolar doublets on the pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Chen, Gang

    We consider a class of electron systems in which dipolar-octupolar Kramers doublets arise on the pyrochlore lattice. In the localized limit, the Kramers doublets are described by the effective spin 1/2 pseudospins. The most general nearest-neighbor exchange model between these pseudospins is the XYZ model. In additional to dipolar ordered and octupolar ordered magnetic states, we show that this XYZ model exhibits two distinct quantum spin ice (QSI) phases, that we dub dipolar QSI and octupolar QSI. These two QSIs are distinct symmetry enriched U(1) quantum spin liquids, enriched by the lattice symmetry. Moreover, the XYZ model is absent from the notorious sign problem for a quantum Monte Carlo simulation in a large parameter space. We discuss the potential relevance to real material systems such as Dy2Ti2O7, Nd2Zr2O7, Nd2Hf2O7, Nd2Ir2O7, Nd2Sn2O7 and Ce2Sn2O7. chggst@gmail.com, Refs: Y-P Huang, G Chen, M Hermele, Phys. Rev. Lett. 112, 167203 (2014).

  16. Quantifying the effects of disorder on switching of perpendicular spin ice arrays

    NASA Astrophysics Data System (ADS)

    Kempinger, Susan; Fraleigh, Robert; Lammert, Paul; Crespi, Vincent; Samarth, Nitin; Zhang, Sheng; Schiffer, Peter

    There is much contemporary interest in probing custom designed, frustrated systems such as artificial spin ice. To that end, we study arrays of lithographically patterned, single-domain Pt/Co multilayer islands. Due to the perpendicular anisotropy of these materials, we are able to use diffraction-limited magneto-optical Kerr effect microscopy to access the magnetic state in situ with an applied field. As we tune the interaction strength by adjusting the lattice spacing, we observe the switching field distribution broadening with increasing dipolar interactions. Using a simple mathematical analysis we extract the intrinsic disorder (the disorder that would be present without interactions) from these switching field distributions. We also characterize the intrinsic disorder by systematically removing neighbor effects from the switching field distribution. Understanding this disorder contribution as well as the interaction strength allows us to more accurately characterize the moment correlation. This project was funded by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE- SC0010778

  17. Experimental observation of magnetoelectricity in spin ice Dy 2Ti 2O 7

    DOE PAGES

    Lin, L.; Xie, Y. L.; Wen, J. -J.; ...

    2015-12-14

    The intrinsic noncollinear spin patterns in rare-earth pyrochlore are physically interesting, due to their many emergent properties (e.g., spin-ice and monopole-type excitation). Recent works have suggested that the magnetic monopole excitation of spin-ice systems is magnetoelectric active, but this fact has rarely been confirmed via experiment. In this work, we performed a systematic experimental investigation on the magnetoelectricity of Dy 2Ti 2O 7 by probing the ferroelectricity, spin dynamics, and dielectric behaviors. Two ferroelectric transitions at T c1 = 25 K and T c2 =13 K were observed. Remarkable magnetoelectric coupling was identified below the lower transition temperature, with significantmore » suppression of the electric polarization on applied magnetic field. Our results show that the lower ferroelectric transition temperature coincides with the Ising-spin paramagnetic transition point, below which the quasi-particle-like monopoles are populated, which indicates implicit correlation between electric dipoles and spin moments. The possible magnetoelectric mechanisms are discussed. Our findings can be used for more investigations to explore multiferroicity in these spin-ice systems and other frustrated magnets.« less

  18. Phase transition and monopole densities in a nearest neighbor two-dimensional spin ice model

    NASA Astrophysics Data System (ADS)

    Morais, C. W.; de Freitas, D. N.; Mota, A. L.; Bastone, E. C.

    2017-12-01

    In this work, we show that, due to the alternating orientation of the spins in the ground state of the artificial square spin ice, the influence of a set of spins at a certain distance of a reference spin decreases faster than the expected result for the long range dipolar interaction, justifying the use of the nearest neighbor two-dimensional square spin ice model as an effective model. Using an extension of the model presented in Y. L. Xie et al., Sci. Rep. 5, 15875 (2015), considering the influence of the eight nearest neighbors of each spin on the lattice, we analyze the thermodynamics of the model and study the dependence of monopoles and string densities as a function of the temperature.

  19. Real-space observation of magnetic excitations and avalanche behavior in artificial quasicrystal lattices

    DOE PAGES

    Brajuskovic, V.; Barrows, F.; Phatak, C.; ...

    2016-10-03

    Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lattice state changes following demagnetizing and annealing, specific vertex motifs retain low-energy configurations, which excites other motifs into higher energy configurations. In addition, we find that unlike the magnetization reversal process for periodic artificial spin ice lattices, which occurs through 1Dmore » avalanches, quasicrystal lattices undergo reversal through a dendritic 2D avalanche mechanism.« less

  20. Real-space observation of magnetic excitations and avalanche behavior in artificial quasicrystal lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brajuskovic, V.; Barrows, F.; Phatak, C.

    Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lattice state changes following demagnetizing and annealing, specific vertex motifs retain low-energy configurations, which excites other motifs into higher energy configurations. In addition, we find that unlike the magnetization reversal process for periodic artificial spin ice lattices, which occurs through 1Dmore » avalanches, quasicrystal lattices undergo reversal through a dendritic 2D avalanche mechanism.« less

  1. Reconfigurable and writable magnetic charge crystals

    DOEpatents

    Wang, Yong-Lei; Xiao, Zhi-Li; Kwok, Wai-Kwong

    2017-07-18

    Artificial ices enable the study of geometrical frustration by design and through direct observation. It has, however, proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. An artificial spin structure design is described that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. A technique is also developed to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multi-functionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice provides a setting for designing magnetic monopole defects, tailoring magnetics and controlling the properties of other two-dimensional materials.

  2. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    PubMed Central

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-01-01

    Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information. PMID:26830629

  3. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices.

    PubMed

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-02-01

    Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  4. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    NASA Astrophysics Data System (ADS)

    Tierno, Pietro

    Artificial spin-ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair-interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  5. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    NASA Astrophysics Data System (ADS)

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-02-01

    Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  6. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology.

    PubMed

    Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R

    2016-07-22

    Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.

  7. Ordering, thermal excitations and phase transitions in dipolar coupled mono-domain magnet arrays

    NASA Astrophysics Data System (ADS)

    Kapaklis, Vassilios

    2015-03-01

    Magnetism has provided a fertile test bed for physical models, such as the Heisenberg and Ising models. Most of these investigations have focused on solid materials and relate to their atomic properties such as the atomic magnetic moments and their interactions. Recently, advances in nanotechnology have enabled the controlled patterning of nano-sized magnetic particles, which can be arranged in extended lattices. Tailoring the geometry and the magnetic material of these lattices, the magnetic interactions and magnetization reversal energy barriers can be tuned. This enables interesting interaction schemes to be examined on adjustable length and energy scales. As a result such nano-magnetic systems represent an ideal playground for the study of physical model systems, being facilitated by direct magnetic imaging techniques. One particularly interesting case is that of systems exhibiting frustration, where competing interactions cannot be simultaneously satisfied. This results in a degeneracy of the ground state and intricate thermodynamic properties. An archetypical frustrated physical system is water ice. Similar physics can be mirrored in nano-magnetic arrays, by tuning the arrangement of neighboring magnetic islands, referred to as artificial spin ice. Thermal excitations in such systems resemble magnetic monopoles. In this presentation key concepts related to nano-magnetism and artificial spin ice will be introduced and discussed, along with recent experimental and theoretical developments.

  8. George E. Valley, Jr. Prize Talk: Quantum Frustrated Magnetism and its Expression in the Ground State Selection of Pyrochlore Magnets

    NASA Astrophysics Data System (ADS)

    Ross, Kate

    In the search for novel quantum states of matter, such as highly entangled Quantum Spin Liquids, ``geometrically frustrated'' magnetic lattices are essential for suppressing conventional magnetic order. In three dimensions, the pyrochlore lattice is the canonical frustrated geometry. Magnetic materials with pyrochlore structures have the potential to realize unusual phases such as ``quantum spin ice'', which is predicted to host emergent magnetic monopoles, electrons, and photons as its fundamental excitations. Even in pyrochlores that form long range ordered phases, this often occurs through unusual routes such as ``order by disorder'', in which the fluctuation spectrum dictates the preferred ordered state. The rare earth-based pyrochlore series R2Ti2O7 provides a fascinating variety of magnetic ground states. I will introduce the general anisotropic interaction Hamiltonian that has been successfully used to describe several materials in this series. Using inelastic neutron scattering, the relevant anisotropic interaction strengths can be extracted quantitatively. I will discuss this approach, and its application to two rare earth pyrochlore materials, Er2Ti2O7 and Yb2Ti<2O7, whose ground state properties have long been enigmatic. From these studies, ErTi2O7 and Yb2Ti2O7 have been suggested to be realizations of "quantum order by disorder" and "quantum spin ice", respectively. This research was supported by NSERC of Canada and the National Science Foundation.

  9. Body movements during the off-ice execution of back spins in figure skating.

    PubMed

    Mapelli, Andrea; Rodano, Renato; Fiorentini, Angelo; Giustolisi, Andrea; Sidequersky, Fernanda V; Sforza, Chiarella

    2013-10-01

    Using an optoelectronic motion capture system, we quantitatively assessed the arrangement of body segments and the displacement of the horizontal projection of the center of mass (CM) in seven skaters performing off-ice back spins on a rotating device (spinner). The position of the CM at the beginning of the spins was not a determining factor, but its rapid stabilization towards the center of the spinner, together with the achievement of a stable arrangement of trunk and limbs, was crucial to get the dynamic equilibrium, necessary for a lasting performance. At full spinning, however, there was an indicative variety of individual body postures. A final deceleration, associable with the loss of body equilibrium, was detected in the last spin of most of skaters. In conclusion, the current investigation demonstrated that the off-ice execution of back spin, a critical movement of ice skating, can be measured in laboratory, thus providing quantitative information to both the skaters and the coaches. The analysis is not invasive, and it may be proposed also for longitudinal evaluations of skating and postural training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Scaling ansatz for the ac magnetic response in two-dimensional spin ice

    NASA Astrophysics Data System (ADS)

    Otsuka, Hiromi; Takatsu, Hiroshi; Goto, Kazuki; Kadowaki, Hiroaki

    2014-10-01

    A theory for frequency-dependent magnetic susceptibility χ (ω ) is developed for thermally activated magnetic monopoles in a two-dimensional (2D) spin ice. By modeling the system in the vicinity of the ground-state manifold as a 2D Coulomb gas with an entropic interaction, and then as a 2D sine-Gordon model, we have shown that the susceptibility has a scaling form χ (ω ) /χ (0 ) =F (ω /ω1) , where the characteristic frequency ω1 is related to a charge correlation length between diffusively moving monopoles, and to the principal-breather excitation. The dynamical scaling is universal and applicable not only for kagome ice, but also for superfluid and superconducting films and generic 2D ices possibly including the artificial spin ice.

  11. Deliberate exotic magnetism via frustration and topology

    NASA Astrophysics Data System (ADS)

    Nisoli, Cristiano; Kapaklis, Vassilios; Schiffer, Peter

    2017-03-01

    Introduced originally to mimic the unusual, frustrated behaviour of spin ice pyrochlores, artificial spin ice can be realized in odd, dedicated geometries that open the door to new manifestations of a higher level of frustration.

  12. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7.

    PubMed

    Morris, D J P; Tennant, D A; Grigera, S A; Klemke, B; Castelnovo, C; Moessner, R; Czternasty, C; Meissner, M; Rule, K C; Hoffmann, J-U; Kiefer, K; Gerischer, S; Slobinsky, D; Perry, R S

    2009-10-16

    Sources of magnetic fields-magnetic monopoles-have so far proven elusive as elementary particles. Condensed-matter physicists have recently proposed several scenarios of emergent quasiparticles resembling monopoles. A particularly simple proposition pertains to spin ice on the highly frustrated pyrochlore lattice. The spin-ice state is argued to be well described by networks of aligned dipoles resembling solenoidal tubes-classical, and observable, versions of a Dirac string. Where these tubes end, the resulting defects look like magnetic monopoles. We demonstrated, by diffuse neutron scattering, the presence of such strings in the spin ice dysprosium titanate (Dy2Ti2O7). This is achieved by applying a symmetry-breaking magnetic field with which we can manipulate the density and orientation of the strings. In turn, heat capacity is described by a gas of magnetic monopoles interacting via a magnetic Coulomb interaction.

  13. Disordered artificial spin ices: Avalanches and criticality (invited)

    NASA Astrophysics Data System (ADS)

    Reichhardt, Cynthia J. Olson; Chern, Gia-Wei; Libál, Andras; Reichhardt, Charles

    2015-05-01

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  14. Disordered artificial spin ices: Avalanches and criticality (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, Cynthia J. Olson, E-mail: cjrx@lanl.gov; Chern, Gia-Wei; Reichhardt, Charles

    2015-05-07

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in themore » square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.« less

  15. Quantum Magnetism Applied to the Iron-Pnictides and Rare Earth Pyrochlores

    NASA Astrophysics Data System (ADS)

    Applegate, Ryan

    This dissertation presents computational studies of two families of magnetic materials of significant current interest. The iron pnictides are new high temperature superconductors with interesting parent compound antiferromagnetism. The rare earth pyrochlore material Yb2Ti2O7 is a candidate quantum spin ice. The magnetic and structural phases of individual iron pnictides have both many common features and material specific differences. In an attempt to unify these behaviors as instances of a larger theoretical picture, we use Monte Carlo simulations of a two-dimensional Hamiltonian with coupled Heisenberg-spin and Ising-orbital degrees of freedom. We introduce spin-space and single-ion anisotropies and study the finite temperature transitions in our model. We develop a phase diagram and propose that the interplay of spin and orbital physics in the presence of anisotropy could explain how material details affect the transitions of the pnictide materials. Nuclear magnetic resonance (NMR) can study magnetic materials via the hyperfine interaction and the coupling between the nuclear moment and the field produced by the samples local moment environment. Recent measurements suggest that Zn doped BaFe2As2 may have quantum fluctuations about the striped phase that produce a distribution of fields at As nuclear sites. The non-magnetic ion Zn replaces Fe and can be treated as an impurity which can be studied by a zero-temperature Ising Series expansion method. We propose a Heisenberg-like J1a-J 1b-J2 model which has small ferromagnetic exchanges along the b axis and strong antiferromagnetic exchanges along the a axis. In our impurity model we find that the magnetic moments are everywhere reduced by quantum fluctuations, except on the nearest neighbor site in the AFM direction. We suggest that the presented impurity model may provide an explanation for the experimental measurements. Based on a recently proposed quantum spin ice model, we use numerical linked cluster (NLC) expansions to study thermodynamic properties of Yb 2Ti2O7. We show that high field fitting of inelastic neutron scattering experiments is an excellent method in determining the exchange constants of these materials. We calculate the heat capacity, entropy and magnetization as a function of temperature and field along a few high symmetry field directions. We compare our theoretical predictions to experiments and find remarkable agreement. These studies highlight the importance of localized model Hamiltonians in understanding magnetic properties of complex materials.

  16. The Ortho-to-para Ratio of Water Molecules Desorbed from Ice Made from Para-water Monomers at 11 K

    NASA Astrophysics Data System (ADS)

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki

    2018-04-01

    Water has two nuclear-spin isomers: ortho- and para-H2O. Some observations of interstellar space and cometary comae have reported the existence of gaseous H2O molecules with anomalous ortho-to-para ratios (OPRs) less than the statistical value of three. This has been often used to estimate the formation temperature of ice on dust, which is inferred to be below 50 K. The relation between the nuclear-spin dynamics of H2O in ice at low temperatures and the OPR of gaseous H2O desorbed from the ice has yet to be explored in a laboratory. Consequently, the true meaning of the observed OPRs remains debated. We measure the OPR of H2O photodesorbed from ice made from para-H2O monomers at 11 K, which was prepared by the sublimation of Ne from a para-H2O/Ne matrix. The photodesorbed H2O molecules from the ice have the statistical OPR value of three, demonstrating the immediate nuclear-spin-state mixing of H2O toward the statistical value of ice even at 11 K. The OPR of H2O thermally desorbed from the ice also shows the expected statistical value. Our results indicate that the OPR of H2O desorbed from interstellar ice should be the statistical value regardless of the formation process of the ice, which cannot be used to deduce the ice-formation temperature. This study highlights the importance of interstellar gas-phase processes in understanding anomalous abundance ratios of nuclear-spin isomers of molecules in space.

  17. Interaction modifiers in artificial spin ices

    DOE PAGES

    Ostman, Erik; Stopfel, Henry; Chioar, Ioan -Augustin; ...

    2018-02-12

    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order, collective low-energy dynamics and emergent magnetic properties in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane1. We show that by placing these on the vertices of square artificial spin-ice arrays andmore » varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. In conclusion, the work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.« less

  18. Interaction modifiers in artificial spin ices

    NASA Astrophysics Data System (ADS)

    Ã-stman, Erik; Stopfel, Henry; Chioar, Ioan-Augustin; Arnalds, Unnar B.; Stein, Aaron; Kapaklis, Vassilios; Hjörvarsson, Björgvin

    2018-04-01

    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order1-6, collective low-energy dynamics7,8 and emergent magnetic properties5, 9,10 in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane11. We show that by placing these on the vertices of square artificial spin-ice arrays and varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. The work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.

  19. Interaction modifiers in artificial spin ices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostman, Erik; Stopfel, Henry; Chioar, Ioan -Augustin

    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order, collective low-energy dynamics and emergent magnetic properties in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane1. We show that by placing these on the vertices of square artificial spin-ice arrays andmore » varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. In conclusion, the work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.« less

  20. High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice

    NASA Astrophysics Data System (ADS)

    Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia; Park, Jungsik; Pearson, John E.; Novosad, Valentine; Schiffer, Peter; Hoffmann, Axel

    2017-12-01

    Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magnetotransport measurements. The experimental findings are described using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.

  1. High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia

    Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magneto-transport measurements. The experimental findings are describedmore » using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.« less

  2. Spin-Ice Thin Films: Large-N Theory and Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Lantagne-Hurtubise, Étienne; Rau, Jeffrey G.; Gingras, Michel J. P.

    2018-04-01

    We explore the physics of highly frustrated magnets in confined geometries, focusing on the Coulomb phase of pyrochlore spin ices. As a specific example, we investigate thin films of nearest-neighbor spin ice, using a combination of analytic large-N techniques and Monte Carlo simulations. In the simplest film geometry, with surfaces perpendicular to the [001] crystallographic direction, we observe pinch points in the spin-spin correlations characteristic of a two-dimensional Coulomb phase. We then consider the consequences of crystal symmetry breaking on the surfaces of the film through the inclusion of orphan bonds. We find that when these bonds are ferromagnetic, the Coulomb phase is destroyed by the presence of fluctuating surface magnetic charges, leading to a classical Z2 spin liquid. Building on this understanding, we discuss other film geometries with surfaces perpendicular to the [110] or the [111] direction. We generically predict the appearance of surface magnetic charges and discuss their implications for the physics of such films, including the possibility of an unusual Z3 classical spin liquid. Finally, we comment on open questions and promising avenues for future research.

  3. Topologically Nontrivial Magnon Bands in Artificial Square Spin Ices with Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Iacocca, Ezio; Heinonen, Olle

    2017-09-01

    Systems that exhibit topologically protected edge states are interesting both from a fundamental point of view as well as for potential applications, the latter because of the absence of backscattering and robustness to perturbations. It is desirable to be able to control and manipulate such edge states. Here, we show that artificial square ices can incorporate both features: an interfacial Dzyaloshinskii-Moriya interaction gives rise to topologically nontrivial magnon bands, and the equilibrium state of the spin ice is reconfigurable with different configurations having different magnon dispersions and topology. The topology is found to develop as odd-symmetry bulk and edge magnon bands approach each other so that constructive band inversion occurs in reciprocal space. Our results show that topologically protected bands are supported in square spin ices.

  4. EPR Evidence of Liquid Water in Ice: An Intrinsic Property of Water or a Self-Confinement Effect?

    PubMed

    Thangswamy, Muthulakshmi; Maheshwari, Priya; Dutta, Dhanadeep; Rane, Vinayak; Pujari, Pradeep K

    2018-06-01

    Liquid water (LW) existence in pure ice below 273 K has been a controversial aspect primarily because of the lack of experimental evidence. Recently, electron paramagnetic resonance (EPR) has been used to study deeply supercooled water in a rapidly frozen polycrystalline ice. The same technique can also be used to probe the presence of LW in polycrystalline ice that has formed through a more conventional, slow cooling one. In this context, the present study aims to emphasize that in case of an external probe involving techniques such as EPR, the results are influenced by the binary phase (BP) diagram of the probe-water system, which also predicts the existence of LW domains in ice, up to the eutectic point. Here we report the results of our such EPR spin-probe studies on water, which demonstrate that smaller the concentration of the probe stronger is the EPR evidence of liquid domains in polycrystalline ice. We used computer simulations based on stochastic Liouville theory to analyze the lineshapes of the EPR spectra. We show that the presence of the spin probe modifies the BP diagram of water, at very low concentrations of the spin probe. The spin probe thus acts, not like a passive reporter of the behavior of the solvent and its environment, but as an active impurity to influence the solvent. We show that there exists a lower critical concentration, below which BP diagram needs to be modified, by incorporating the effect of confinement of the spin probe. With this approach, we demonstrate that the observed EPR evidence of LW domains in ice can be accounted for by the modified BP diagram of the probe-water system. The present work highlights the importance of taking cognizance of the possibility of spin probes affecting the host systems, when interpreting the EPR (or any other probe based spectroscopic) results of phase transitions of host, as its ignorance may lead to serious misinterpretations.

  5. Effects of exchange bias on magnetotransport in permalloy kagome artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, B. L.; Rench, D. W.; Misra, R.

    2015-02-01

    We investigate the magnetotransport properties of connected kagome artificial spin ice networks composed of permalloy nanowires. Our data show clear evidence of magnetic switching among the wires, both in the longitudinal and transverse magnetoresistance. An unusual asymmetry with field sweep direction appears at temperatures below about 20 K that appears to be associated with exchange bias resulting from surface oxidation of permalloy, and which disappears in alumina-capped samples. These results demonstrate that exchange bias is a phenomenon that must be considered in understanding the physics of such artificial spin ice systems, and that opens up new possibilities for their control.

  6. Nonlinear geometric scaling of coercivity in a three-dimensional nanoscale analog of spin ice

    NASA Astrophysics Data System (ADS)

    Shishkin, I. S.; Mistonov, A. A.; Dubitskiy, I. S.; Grigoryeva, N. A.; Menzel, D.; Grigoriev, S. V.

    2016-08-01

    Magnetization hysteresis loops of a three-dimensional nanoscale analog of spin ice based on the nickel inverse opal-like structure (IOLS) have been studied at room temperature. The samples are produced by filling nickel into the voids of artificial opal-like films. The spin ice behavior is induced by tetrahedral elements within the IOLS, which have the same arrangement of magnetic moments as a spin ice. The thickness of the films vary from a two-dimensional, i.e., single-layered, antidot array to a three-dimensional, i.e., multilayered, structure. The coercive force, the saturation, and the irreversibility field have been measured in dependence of the thickness of the IOLS for in-plane and out-of-plane applied fields. The irreversibility and saturation fields change abruptly from the antidot array to the three-dimensional IOLS and remain constant upon further increase of the number of layers n . The coercive force Hc seems to increase logarithmically with increasing n as Hc=Hc 0+α ln(n +1 ) . The logarithmic law implies the avalanchelike remagnetization of anisotropic structural elements connecting tetrahedral and cubic nodes in the IOLS. We conclude that the "ice rule" is the base of mechanism regulating this process.

  7. Revisiting static and dynamic spin-ice correlations in Ho2Ti2O7 with neutron scattering

    NASA Astrophysics Data System (ADS)

    Clancy, J. P.; Ruff, J. P. C.; Dunsiger, S. R.; Zhao, Y.; Dabkowska, H. A.; Gardner, J. S.; Qiu, Y.; Copley, J. R. D.; Jenkins, T.; Gaulin, B. D.

    2009-01-01

    Elastic and inelastic neutron-scattering studies have been carried out on the pyrochlore magnet Ho2Ti2O7 . Measurements in zero applied magnetic field show that the disordered spin-ice ground state of Ho2Ti2O7 is characterized by a pattern of rectangular diffuse elastic scattering within the [HHL] plane of reciprocal space, which closely resembles the zone-boundary scattering seen in its sister compound Dy2Ti2O7 . Well-defined peaks in the zone-boundary scattering develop only within the spin-ice ground state below ˜2K . In contrast, the overall diffuse-scattering pattern evolves on a much higher-temperature scale of ˜17K . The diffuse scattering at small wave vectors below [001] is found to vanish on going to Q=0 , an explicit signature of expectations for dipolar spin ice. Very high energy-resolution inelastic measurements reveal that the spin-ice ground state below ˜2K is also characterized by a transition from dynamic to static spin correlations on the time scale of 10-9s . Measurements in a magnetic field applied along the [11¯0] direction in zero-field-cooled conditions show that the system can be broken up into orthogonal sets of polarized α chains along [11¯0] and quasi-one-dimensional β chains along [110]. Three-dimensional correlations between β chains are shown to be very sensitive to the precise alignment of the [11¯0] externally applied magnetic field.

  8. The physics of quantum materials

    NASA Astrophysics Data System (ADS)

    Keimer, B.; Moore, J. E.

    2017-11-01

    The physical description of all materials is rooted in quantum mechanics, which describes how atoms bond and electrons interact at a fundamental level. Although these quantum effects can in many cases be approximated by a classical description at the macroscopic level, in recent years there has been growing interest in material systems where quantum effects remain manifest over a wider range of energy and length scales. Such quantum materials include superconductors, graphene, topological insulators, Weyl semimetals, quantum spin liquids, and spin ices. Many of them derive their properties from reduced dimensionality, in particular from confinement of electrons to two-dimensional sheets. Moreover, they tend to be materials in which electrons cannot be considered as independent particles but interact strongly and give rise to collective excitations known as quasiparticles. In all cases, however, quantum-mechanical effects fundamentally alter properties of the material. This Review surveys the electronic properties of quantum materials through the prism of the electron wavefunction, and examines how its entanglement and topology give rise to a rich variety of quantum states and phases; these are less classically describable than conventional ordered states also driven by quantum mechanics, such as ferromagnetism.

  9. Engineering of frustration in colloidal artificial ice (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-09-01

    Artificial spin-ice systems have been used to date as microscopic models of frustration induced by lattice topology, as they allow for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Recently, an analogue system has been proposed theoretically, where an optical landscape confined colloidal particles that interacted electrostatically. Here we realize experimentally another version of a colloidal artificial ice system using interacting magnetically polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair-interactions between the microscopic units. By using optical tweezers, we can control particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  10. Magnetic response of brickwork artificial spin ice

    NASA Astrophysics Data System (ADS)

    Park, Jungsik; Le, Brian L.; Sklenar, Joseph; Chern, Gia-Wei; Watts, Justin D.; Schiffer, Peter

    2017-07-01

    We have investigated the response of brickwork artificial spin ice to an applied in-plane magnetic field through magnetic force microscopy, magnetotransport measurements, and micromagnetic simulations. We find that, by sweeping an in-plane applied field from saturation to zero in a narrow range of angles near one of the principal axes of the lattice, the moments of the system fall into an antiferromagnetic ground state in both connected and disconnected structures. Magnetotransport measurements of the connected lattice exhibit unique signatures of this ground state. Also, modeling of the magnetotransport demonstrates that the signal arises at vertex regions in the structure, confirming behavior that was previously seen in transport studies of kagome artificial spin ice.

  11. Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Porrati, Fabrizio; Huth, Michael; Ohno, Yuzo; Ohno, Hideo; Müller, Jens

    2015-05-01

    We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their "coercive field" with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior within experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' "survival time" with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct "paths" most likely driven by thermal perturbation.

  12. Topologically Nontrivial Magnon Bands in Artificial Square Spin Ices with Dzyaloshinskii-Moriya Interaction [Topologically Non-Trivial Magnon Bands in Artificial Square Spin Ices Subject to Dzyaloshinskii-Moriya Interaction

    DOE PAGES

    Iacocca, Ezio; Heinonen, Olle

    2017-09-20

    Systems that exhibit topologically protected edge states are interesting both from a fundamental point of view as well as for potential applications, the latter because of the absence of backscattering and robustness to perturbations. It is desirable to be able to control and manipulate such edge states. Here, we demonstrate using a semi-analytical model that artificial square ices can incorporate both features: an interfacial Dzyaloshinksii-Moriya gives rise to topologically non-trivial magnon bands, and the equilibrium state of the spin ice is reconfigurable with different states having different magnon dispersions and topology. Micromagnetic simulations are used to determine the magnetization equilibriummore » states and to validate the semi-analytical model. Lastly, our results are amenable to experimental verification via, e.g., lithographic patterning and micro-focused Brillouin light scattering.« less

  13. Topologically Nontrivial Magnon Bands in Artificial Square Spin Ices with Dzyaloshinskii-Moriya Interaction [Topologically Non-Trivial Magnon Bands in Artificial Square Spin Ices Subject to Dzyaloshinskii-Moriya Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacocca, Ezio; Heinonen, Olle

    Systems that exhibit topologically protected edge states are interesting both from a fundamental point of view as well as for potential applications, the latter because of the absence of backscattering and robustness to perturbations. It is desirable to be able to control and manipulate such edge states. Here, we demonstrate using a semi-analytical model that artificial square ices can incorporate both features: an interfacial Dzyaloshinksii-Moriya gives rise to topologically non-trivial magnon bands, and the equilibrium state of the spin ice is reconfigurable with different states having different magnon dispersions and topology. Micromagnetic simulations are used to determine the magnetization equilibriummore » states and to validate the semi-analytical model. Lastly, our results are amenable to experimental verification via, e.g., lithographic patterning and micro-focused Brillouin light scattering.« less

  14. The origin, composition and history of cometary ices from spectroscopic studies

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1989-01-01

    The spectroscopic analysis of pristine cometary material provides a very important probe of the chemical identity of the material as well as of the physical and chemical conditions which prevailed during the comet's history. Concerning classical spectroscopy, the spectral regions which will most likely prove most useful are the infrared, the visible and ultraviolet. Newer spectroscopic techniques which have the potential to provide equally important information include nuclear magnetic resonance (NMR) and electron spin resonance (ESR). Each technique is summarized with emphasis placed on the kind of information which can be obtained.

  15. Quenched crystal-field disorder and magnetic liquid ground states in Tb 2 Sn 2 - x Ti x O 7 [Crystal field disorder in the quantum spin ice ground state of Tb2Sn2-xTixO7

    DOE PAGES

    Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; ...

    2015-06-01

    Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb 2B 2O 7 with B=Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac-susceptibility and muSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb 3+ crystal field levels appropriate to at high B-site mixing (0.5 < x < 1.5 in Tb 2Sn 2-xTi xO 7) reveal that the doublet ground andmore » first excited states present as continua in energy, while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb 3+ ion.« less

  16. Long-Range Anti-ferromagnetic Order in Sm2Ti2O7

    NASA Astrophysics Data System (ADS)

    Mauws, Cole; Sarte, Paul; Hallas, Alannah; Wildes, Andrew; Quilliam, Jeffrey; Luke, Graeme; Gaulin, Bruce; Wiebe, Christopher

    The spin ice state has been a key topic in frustrated magnetism for decades. Largely due to the presence of monopole-like excitations, leading to interesting physics. There has been a consistent effort in the field at synthesising new spin ice phases that possess smaller moments in the hopes of increasing the density of magnetic monopoles. As well as investigating the phase when quantum fluctuations dominate over dipolar interactions. Initially Sm2Ti2O7 was thought to be a candidate for a quantum spin ice, possessing a low moment of 1.5 μB in the high-spin case and crystal fields may reduce it to a true spin-1/2 system. However anti-ferromagnetic interactions as well as a lambda-like heat capacity anomaly pointed towards long-range antiferromagnetic order. An isotopically enriched samarium-154 single crystal was taken to the D7 polarized diffuse scattering spectrometer at the ILL. Long-range antiferromagnetic order was observed and indexed onto the all-in all-out structure. This agrees with theoretical predictions of Ising pyrochlore systems with sufficiently large anti-ferromagnetic coupling. NSERC, CFI, CIFAR, CRC.

  17. Controlling electric and magnetic currents in artificial spin ice (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Branford, Will R.

    2015-09-01

    I will discuss the collective properties of arrays of single domain nanomagnets called Artificial Spin Ice.1 The shape of each nanomagnet controls the magnetic anisotropy and the elements are closely spaced so dipolar interactions are important. The honeycomb lattice geometry prevents the satisfaction of all dipole interactions. Here I will show direct magnetic imaging studies of magnetic charge flow.2 The magnetic charge is carried by transverse domain walls and the chirality of the domain wall is found to control the direction of propagation.3,4 Injection of domain walls within the arrays with local fields is also explored.5 References 1 Branford, W. R., Ladak, S., Read, D. E., Zeissler, K. and Cohen, L. F. Emerging Chirality in Artificial Spin Ice. Science 335, 1597-1600, (2012). 2 Ladak, S., Read, D. E., Perkins, G. K., Cohen, L. F. and Branford, W. R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nature Physics 6, 359-363, (2010). 3 Burn, D. M., Chadha, M., Walton, S. K. and Branford, W. R. Dynamic interaction between domain walls and nanowire vertices. Phys. Rev. B 90, 144414, (2014). 4 Zeissler, K., Walton, S. K., Ladak, S., Read, D. E., Tyliszczak, T., Cohen, L. F. and Branford, W. R. The non-random walk of chiral magnetic charge carriers in artificial spin ice. Sci Rep-Uk 3, 1252, (2013). 5 Pushp, A., Phung, T., Rettner, C., Hughes, B. P., Yang, S. H., Thomas, L. and Parkin, S. S. P. Domain wall trajectory determined by its fractional topological edge defects. Nature Physics 9, 505-511, (2013).

  18. Lineated Valley Fills and Lobate Debris Aprons in Coloe Fossae: Evolutionary characteristics and time-stratigraphic relationships.

    NASA Astrophysics Data System (ADS)

    Schreiner, Björn; van Gasselt, Stephan; Neukum, Gerhard; HRSC Co-Investigator Team

    2010-05-01

    Mid-latitude regions of Mars, especially the crustal dichotomy boundary between highlands and northern lowlands are characterized by lineated valley fills (LVF) and lobate debris aprons (LDA). These features reveal evidence of ice-rich deposits. LDAs are assumed to consist of a mixture of ice and rock/debris consistent with models of apron formation such as rock glacier ice assisted creep of talus, ice-rich landslides, or debris-covered glaciers. Deposition of ice at these latitudes is consistent with athmospheric circulation models and predictions of spin axis and orbital variations for the past history of Mars. In this study we measured crater size frequency distributions of LVS and LDA including unrelaxed glacier-like convex bodies in the Coloe Fossae region (35°N, 55°E) and determined late amazonian crater retention ages of 30-50 Ma and 80-100 Ma which gives evidence of repeated deposition of mantling material from surrounding head walls with continuous resurfacing between active periods. We use new HRSC data for topography and imaging in conjunction with high resolution CTX imaging data.

  19. Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael

    We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their “coercive field” with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior withinmore » experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' “survival time” with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct “paths” most likely driven by thermal perturbation.« less

  20. Tunable nonequilibrium dynamics of field quenches in spin ice

    PubMed Central

    Mostame, Sarah; Castelnovo, Claudio; Moessner, Roderich; Sondhi, Shivaji L.

    2014-01-01

    We present nonequilibrium physics in spin ice as a unique setting that combines kinematic constraints, emergent topological defects, and magnetic long-range Coulomb interactions. In spin ice, magnetic frustration leads to highly degenerate yet locally constrained ground states. Together, they form a highly unusual magnetic state—a “Coulomb phase”—whose excitations are point-like defects—magnetic monopoles—in the absence of which effectively no dynamics is possible. Hence, when they are sparse at low temperature, dynamics becomes very sluggish. When quenching the system from a monopole-rich to a monopole-poor state, a wealth of dynamical phenomena occur, the exposition of which is the subject of this article. Most notably, we find reaction diffusion behavior, slow dynamics owing to kinematic constraints, as well as a regime corresponding to the deposition of interacting dimers on a honeycomb lattice. We also identify potential avenues for detecting the magnetic monopoles in a regime of slow-moving monopoles. The interest in this model system is further enhanced by its large degree of tunability and the ease of probing it in experiment: With varying magnetic fields at different temperatures, geometric properties—including even the effective dimensionality of the system—can be varied. By monitoring magnetization, spin correlations or zero-field NMR, the dynamical properties of the system can be extracted in considerable detail. This establishes spin ice as a laboratory of choice for the study of tunable, slow dynamics. PMID:24379372

  1. A Continuing Analysis of Possible Activity Drivers for the Enigmatic Comet 29P/Schwassmann-Wachmann 1

    NASA Astrophysics Data System (ADS)

    Schambeau, Charles Alfred; Fernandez, Yanga; Samarasinha, Nalin; Sarid, Gal; Mueller, Beatrice; Meech, Karen; Woodney, Laura

    2015-11-01

    We present results from our continuing effort to understand activity drivers in Comet 29P/Schwassmann-Wachmann 1 (SW1). While being in a nearly circular orbit around 6 AU, SW1 is continuously active and experiences frequent outbursts. Our group’s effort is focusing on finding constraints on physical and dynamical properties of SW1’s nucleus and their incorporation into a thermophysical model [1,2] to explain this behavior. Now we are analyzing coma morphology of SW1 before, during, and after outburst to place constraints on the spin-pole direction, spin period, and surface areas of activity (a spin period lower limit has been measured). Also, we are using the thermal model to investigate if the continuous activity comes from one or multiple processes, such as the release of trapped supervolatiles during the amorphous to crystalline (A-C) water ice phase transition and/or the direct sublimation of pockets of supervolatile ices, which may be primordial or from the condensation of gases released during the A-C phase transition. To explain the possibly quasi-periodic but frequent outbursts, we are looking into subsurface cavities where internal pressures can build, reaching and exceeding surrounding material strengths [3,4] and/or thermal waves reaching a pocket of supervolatile ices, causing a rapid increase in the sublimation rate. For all these phenomena, the model is constrained by comparing the output dust mass loss rate and its variability with what has been observed through optical imaging of the comet at various points in its orbit. We will present preliminary thermal modeling of a homogeneous progenitor nucleus that evolves into a body showing internal material layering, the generation of CO and CO2 ice pockets, and the production of outbursts, thus bringing us closer to explaining the behavior of this intriguing comet.[1] Sarid, G., et al.: 2005, PASP, 117, 843. [2] Sarid, G.: 2009, PhD Thesis, Tel Aviv Univ. [3] Gronkowski, P., 2014, Astron. Nachr./AN 2, No. 335, 124-134. [4] Gronkowski, P. and Wesolowski, M., 2015, MNRAS, 451, 3068-3077. We thank the NASA Outer Planets Research Program (NNX12AK50G) and the Center for Lunar and Asteroid Surface Science (CLASS, NNA14AB05A) for support of this work.

  2. The Winter Olympics--On Ice.

    ERIC Educational Resources Information Center

    Hoover, Barbara G.

    1998-01-01

    Describes several science activities designed around the upcoming Winter Olympics ice skating events which demonstrate the scientific principles behind the sport. Students learn that increasing the pressure on ice will lead to the ice melting, the principle involved in the spinning swing, and the technology of skates and skating outfits. (PVD)

  3. Local magnetization effects on magnetotransport in networks of connected permalloy nanowires

    NASA Astrophysics Data System (ADS)

    Sklenar, Joseph; Le, Brian; Park, Jung Sik; Chern, Gia-Wei; Nisoli, Cristiano; Watts, Justin; Manno, Michael; Rench, David; Samarth, Nitin; Leighton, Chris; Schiffer, Peter

    We have performed detailed magnetotransport measurements of connected kagome artificial spin ice. To interpret our results we have performed micromagnetic simulations using MuMax3 to recreate all of the experimental configurations. We find good agreement between experiment and simulations for all in-plane angular orientations of the field. In certain ranges of the applied field angle, the structures vertex regions control the transverse resistance. The wide array of realizable connected systems provides many vertex types, and in turn points toward the utility of artificial spin ice as a platform in which to engineer magnetoresistive effects that are sensitive to local environments. This project was funded by the US DOE under Grant No. DE-SC0010778. This work was carried out in part in the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign. Work at the University of Minnesota was supported by the NSF MRSEC under award DMR-1420013, and DMR-1507048. CN's work is carried out under the auspices of the NNSA of the U.S. DoE at LANL under Contract No. DE-AC.

  4. Rational strategy for the atmospheric icing prevention based on chemically functionalized carbon soot coatings

    NASA Astrophysics Data System (ADS)

    Esmeryan, Karekin D.; Bressler, Ashton H.; Castano, Carlos E.; Fergusson, Christian P.; Mohammadi, Reza

    2016-12-01

    Although the superhydrophobic surfaces are preferable for passive anti-icing systems, as they provide water shedding before initiation of ice nucleation, their practical usage is still under debate. This is so, as the superhydrophobic materials are not necessarily icephobic and most of the synthesis techniques are characterized with low fabrication scalability. Here, we describe a rational strategy for the atmospheric icing prevention, based on chemically functionalized carbon soot, suitable for large-scale fabrication of superhydrophobic coatings that exhibit and retain icephobicity in harsh operational conditions. This is achieved through a secondary treatment with ethanol and aqueous fluorocarbon solution, which improves the coating's mechanical strength without altering its water repellency. Subsequent experimental analyses on the impact dynamics of icy water droplets on soot coated aluminum and steel sheets show that these surfaces remain icephobic in condensate environments and substrate temperatures down to -35 °C. Furthermore, the soot's icephobicity and non-wettability are retained in multiple icing/de-icing cycles and upon compressed air scavenging, spinning and water jetting with impact velocity of ∼25 m/s. Finally, on frosted soot surfaces, the droplets freeze in a spherical shape and are entirely detached by adding small amount of thermal energy, indicating lower ice adhesion compared to the uncoated metal substrates.

  5. Discovery of Emergent Photon and Monopoles in a Quantum Spin Liquid

    NASA Astrophysics Data System (ADS)

    Tokiwa, Yoshifumi; Yamashita, Takuya; Terazawa, Daiki; Kimura, Kenta; Kasahara, Yuichi; Onishi, Takafumi; Kato, Yasuyuki; Halim, Mario; Gegenwart, Philipp; Shibauchi, Takasada; Nakatsuji, Satoru; Moon, Eun-Gook; Matsuda, Yuji

    2018-06-01

    Quantum spin liquid (QSL) is an exotic quantum phase of matter whose ground state is quantum-mechanically entangled without any magnetic ordering. A central issue concerns emergent excitations that characterize QSLs, which are hypothetically associated with quasiparticle fractionalization and topological order. Here we report highly unusual heat conduction generated by the spin degrees of freedom in a QSL state of the pyrochlore magnet Pr2Zr2O7, which hosts spin-ice correlations with strong quantum fluctuations. The thermal conductivity in high temperature regime exhibits a two-gap behavior, which is consistent with the gapped excitations of magnetic (M-) and electric monopoles (E-particles). At very low temperatures below 200 mK, the thermal conductivity unexpectedly shows a dramatic enhancement, which well exceeds purely phononic conductivity, demonstrating the presence of highly mobile spin excitations. This new type of excitations can be attributed to emergent photons (ν-particle), coherent gapless spin excitations in a spin-ice manifold.

  6. Dynamic Control of Topological Defects in Artificial Colloidal Ice

    DOE PAGES

    Libál, A.; Nisoli, C.; Reichhardt, C.; ...

    2017-04-05

    We demonstrate the use of an external field to stabilize and control defect lines connecting topological monopoles in spin ice. For definiteness we perform Brownian dynamics simulations with realistic units mimicking experimentally realized artificial colloidal spin ice systems, and show how defect lines can grow, shrink or move under the action of direct and alternating fields. Asymmetric alternating biasing forces can cause the defect line to ratchet in either direction, making it possible to precisely position the line at a desired location. Such manipulation could be employed to achieve mobile information storage in these metamaterials.

  7. Dynamic Control of Topological Defects in Artificial Colloidal Ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libál, A.; Nisoli, C.; Reichhardt, C.

    We demonstrate the use of an external field to stabilize and control defect lines connecting topological monopoles in spin ice. For definiteness we perform Brownian dynamics simulations with realistic units mimicking experimentally realized artificial colloidal spin ice systems, and show how defect lines can grow, shrink or move under the action of direct and alternating fields. Asymmetric alternating biasing forces can cause the defect line to ratchet in either direction, making it possible to precisely position the line at a desired location. Such manipulation could be employed to achieve mobile information storage in these metamaterials.

  8. Thermodynamics of emergent magnetic charge screening in artificial spin ice

    DOE PAGES

    Farhan, Alan; Scholl, Andreas; Petersen, Charlotte F.; ...

    2016-09-01

    Electric charge screening is a fundamental principle governing the behaviour in a variety of systems in nature. Through reconfiguration of the local environment, the Coulomb attraction between electric charges is decreased, leading, for example, to the creation of polaron states in solids or hydration shells around proteins in water. Here, we directly visualize the real-time creation and decay of screened magnetic charge configurations in a two-dimensional artificial spin ice system, the dipolar dice lattice. By comparing the temperature dependent occurrence of screened and unscreened emergent magnetic charge defects, we determine that screened magnetic charges are indeed a result of localmore » energy reduction and appear as a transient minimum energy state before the system relaxes towards the predicted ground state. These results highlight the important role of emergent magnetic charges in artificial spin ice, giving rise to screened charge excitations and the emergence of exotic low-temperature configurations.« less

  9. Dynamic response of an artificial square spin ice

    DOE PAGES

    Jungfleisch, M. B.; Zhang, W.; Iacocca, E.; ...

    2016-03-02

    Magnetization dynamics in an artficial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich spectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets.more » Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.« less

  10. Dynamic response of an artificial square spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungfleisch, M. B.; Zhang, W.; Iacocca, E.

    Magnetization dynamics in an artficial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich spectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets.more » Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.« less

  11. Thermodynamics of emergent magnetic charge screening in artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farhan, Alan; Scholl, Andreas; Petersen, Charlotte F.

    Electric charge screening is a fundamental principle governing the behaviour in a variety of systems in nature. Through reconfiguration of the local environment, the Coulomb attraction between electric charges is decreased, leading, for example, to the creation of polaron states in solids or hydration shells around proteins in water. Here, we directly visualize the real-time creation and decay of screened magnetic charge configurations in a two-dimensional artificial spin ice system, the dipolar dice lattice. By comparing the temperature dependent occurrence of screened and unscreened emergent magnetic charge defects, we determine that screened magnetic charges are indeed a result of localmore » energy reduction and appear as a transient minimum energy state before the system relaxes towards the predicted ground state. These results highlight the important role of emergent magnetic charges in artificial spin ice, giving rise to screened charge excitations and the emergence of exotic low-temperature configurations.« less

  12. Novel insights into the mechanism of the ortho/para spin conversion of hydrogen pairs: implications for catalysis and interstellar water.

    PubMed

    Limbach, Hans-Heinrich; Buntkowsky, Gerd; Matthes, Jochen; Gründemann, Stefan; Pery, Tal; Walaszek, Bernadeta; Chaudret, Bruno

    2006-03-13

    The phenomenon of exchange coupling is taken into account in the description of the magnetic nuclear spin conversion between bound ortho- and para-dihydrogen. This conversion occurs without bond breaking, in contrast to the chemical spin conversion. It is shown that the exchange coupling needs to be reduced so that the corresponding exchange barrier can increase and the given magnetic interaction can effectively induce a spin conversion. The implications for related molecules such as water are discussed. For ice, a dipolar magnetic conversion and for liquid water a chemical conversion are predicted to occur within the millisecond timescale. It follows that a separation of water into its spin isomers, as proposed by Tikhonov and Volkov (Science 2002, 296, 2363), is not feasible. Nuclear spin temperatures of water vapor in comets, which are smaller than the gas-phase equilibrium temperatures, are proposed to be diagnostic for the temperature of the ice or the dust surface from which the water was released.

  13. Super-Hydrophobic/Icephobic Coatings Based on Silica Nanoparticles Modified by Self-Assembled Monolayers.

    PubMed

    Liu, Junpeng; Janjua, Zaid A; Roe, Martin; Xu, Fang; Turnbull, Barbara; Choi, Kwing-So; Hou, Xianghui

    2016-12-02

    A super-hydrophobic surface has been obtained from nanocomposite materials based on silica nanoparticles and self-assembled monolayers of 1 H ,1 H ,2 H ,2 H -perfluorooctyltriethoxysilane (POTS) using spin coating and chemical vapor deposition methods. Scanning electron microscope images reveal the porous structure of the silica nanoparticles, which can trap small-scale air pockets. An average water contact angle of 163° and bouncing off of incoming water droplets suggest that a super-hydrophobic surface has been obtained based on the silica nanoparticles and POTS coating. The monitored water droplet icing test results show that icing is significantly delayed by silica-based nano-coatings compared with bare substrates and commercial icephobic products. Ice adhesion test results show that the ice adhesion strength is reduced remarkably by silica-based nano-coatings. The bouncing phenomenon of water droplets, the icing delay performance and the lower ice adhesion strength suggest that the super-hydrophobic coatings based on a combination of silica and POTS also show icephobicity. An erosion test rig based on pressurized pneumatic water impinging impact was used to evaluate the durability of the super-hydrophobic/icephobic coatings. The results show that durable coatings have been obtained, although improvement will be needed in future work aiming for applications in aerospace.

  14. A Near Perfect Spin Balance (Measurement in Chaos)

    NASA Technical Reports Server (NTRS)

    Luntz, R. A.

    1997-01-01

    The stringent spin balance requirements arise from the predecessor of SSMIS, the SSMI. The SSMI sensor spinning portion weighed only 85 pounds and contained 7 channels of radiometric data. The Aerospace Corporation recommended to pass on the same requirements from the smaller SSMI to our larger SSMIS (with slight change for increased weight). The SSMIS spinning portion will weigh about 155 pounds and contain 24 channels of radiometeric data. The SSMIS, on orbit, spins a CCW direction at 31.6 RPM its own drive motor. The packaging of this SSMIS is unique, as it combines three sensor into one unit. This combination allows for concurrently reading data in one beam. The unit will have a polar orbit about 500 miles above the earths surface. One of the primary influences for our receipt of the follow-on contract for the next generation sensor, was the ability to package 24 channels of radiometeric data into about the some volume as its predecessor. The data from SSMIS will be used to measure the following: (1) Ocean surface wind speed, (2) Rain over land an ocean, (3) Cloud water over Ocean, (4) Soil moisture, (5) Ice Concentration, (6) Ice age, (7) Ice Edge and snow edge, (8) Water vapor over Ocean, (9) Surface type, (10) Snow water content, (11) Land surface Temperature, (12) Cloud amount over ocean.

  15. Coulombic charge ice

    NASA Astrophysics Data System (ADS)

    McClarty, P. A.; O'Brien, A.; Pollmann, F.

    2014-05-01

    We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge ice experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge ice model and the dipolar spin ice model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two ice models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin ice and charge ice ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge ice in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin ice in a magnetic field. Finally, we comment on the transport properties of Coulombic charge ice in the correlated liquid phase.

  16. Disordered Route to the Coulomb Quantum Spin Liquid: Random Transverse Fields on Spin Ice in Pr 2 Zr 2 O 7

    DOE PAGES

    Wen, J. -J.; Koohpayeh, S. M.; Ross, K. A.; ...

    2017-03-08

    Inelastic neutron scattering reveals a broad continuum of excitations in Pr 2 Zr 2 O 7 , the temperature and magnetic field dependence of which indicate a continuous distribution of quenched transverse fields ( Δ ) acting on the non-Kramers Pr 3 + crystal field ground state doublets. Spin-ice correlations are apparent within 0.2 meV of the Zeeman energy. In a random phase approximation an excellent account of the data is provided and contains a transverse field distribution ρ ( Δ ) ∝ ( Δ 2 + Γ 2 ) - 1 , where Γ = 0.27 ( 1 )more » meV . Established during high temperature synthesis due to an underlying structural instability, it appears disorder in Pr 2 Zr 2 O 7 actually induces a quantum spin liquid.« less

  17. A Continuing Analysis of Possible Activity Drivers for the Enigmatic Comet 29P/Schwassmann-Wachmann 1

    NASA Astrophysics Data System (ADS)

    Schambeau, Charles; Fernández, Yanga; Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Sarid, Gal; Meech, Karen Jean; Woodney, Laura

    2016-01-01

    We present results from our effort to understand activity drivers in Comet 29P/Schwassmann-Wachmann 1 (SW1). In a nearly circular orbit around 6 AU, outside of the water-sublimation zone, SW1 is continuously active and experiences frequent outbursts. Our group's effort is focusing on finding constraints on physical and dynamical properties of SW1's nucleus and their incorporation into a thermophysical model [1,2] to explain this behavior. We are currently analyzing coma morphology of SW1 before, during, and after outburst placing constraints on the spin-pole direction, spin period, and surface areas of activity. In addition, we are using the thermal model to investigate if the continuous activity comes from one or multiple processes, such as the release of trapped supervolatiles during the amorphous to crystalline (A-C) water ice phase transition and/or the direct sublimation of pockets of supervolatile ices. The supervolatile ices may be primordial or from the condensation of gases released during the A-C phase transition. To explain the possibly quasi-periodic but frequent outbursts, we are looking into subsurface cavities where internal pressures can build, reaching and exceeding surrounding material strengths [3,4] and/or thermal waves reaching a pocket of supervolatile ices, causing a rapid increase in the sublimation rate. For all these phenomena, the model is constrained by comparing the output dust mass loss rate and its variability with what has been observed through optical imaging of the comet at various points in its orbit. We will present preliminary thermal modeling of a homogeneous progenitor nucleus that evolves into a body showing internal material layering, the generation of CO and CO2 ice pockets, and the production of outbursts, thus bringing us closer to explaining the behavior of this intriguing comet. [1] Sarid, G., et al.: 2005, PASP, 117, 843. [2] Sarid, G.: 2009, PhD Thesis, Tel Aviv Univ. [3] Gronkowski, P., 2014, Astron. Nachr./AN 2, No. 335, 124-134. [4] Gronkowski, P. and Wesolowski, M., 2015, MNRAS, 451, 3068-3077. We thank the NASA Outer Planets Research Program (NNX12AK50G) and the Center for Lunar and Asteroid Surface Science (CLASS, NNA14AB05A) for support of this work.

  18. Ice as a Construction Material

    NASA Technical Reports Server (NTRS)

    Zuppero, Anthony; Lewis, J.

    1998-01-01

    This presentation shows how water and ice can enable exceptionally simple ways to construct structures in deep space. Practicality is underscored by applying advanced tank methods being developed for Mars missions. Water or ice is now known to be present or abundant on most objects in the solar system, starting with the planet Mercury. Thermal processes alone can be used to melt ice . The cold of space can refreeze water back into ice. The anomalous low vapor pressure of water, about 7 mm Hg, permits bladder containers. Tanks or bladders made with modern polymer fiber and film can exhibit very small (<0.1 %) equivalent tankage and ullage fractions and thus hold thousands of tons of water per ton bladder. Injecting water into a bladder whose shape when inflated is the desired final shape, such as a space vehicle, provides a convenient way to construct large structures. In space, structures of 1O,OOO-T mass become feasible because the bladder mass is low enough to be launched. The bladder can weigh 1OOO times less than its contents, or 10 T. The bladder would be packed like a parachute. Shaped memory materials and/or gas inflation could reestablish the desired structure shape after unpacking. The water comes from space resources. An example examines construction of torus space vehicle with 100-m nominal dimension. People would live inside the torus. A torus, like a tire on an automobile, would spin and provide synthetic gravity at its inner surface. A torus of order 100 m across would provide a gravity with gradients low enough to mitigate against vertigo.

  19. Electron Spin Resonance (ESR) studies of returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1989-01-01

    The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H2O, NH3, CH4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed.

  20. ESR/spin probe study of ice cream.

    PubMed

    Gillies, Duncan G; Greenley, Katherine R; Sutcliffe, Leslie H

    2006-07-12

    Spin probes based on the 1,1,3,3-tetramethylisoindolin-2-yl structure have been used, in conjunction with electron spin resonance spectroscopy (ESR), to study the physical changes occurring in ice cream during freezing and melting. The ESR measurements allowed the rotational correlation times, tau(B), of the spin probes to be determined. Two probes were used together in a given sample of ice cream, namely, 1,1,3,3-tetramethylisoindolin-2-yl (TMIO), which samples the fat phase, and the sodium salt of 1,1,3,3-tetramethylisoindolin-2-yloxyl-5-sulfonate (NaTMIOS), which samples the aqueous phase. Data from the TMIO probe showed that when ice cream is cooled, the fat phase is a mixture of solid and liquid fat until a temperature of approximately -60 degrees C is reached. The water-soluble probe NaTMIOS showed that the aqueous phase changes completely from liquid to solid within 1 degrees C of -18 degrees C. On cooling further to -24.7 degrees C and then allowing it to warm to +25.0 degrees C, the rotational correlation times of the NaTMIOS were slow to recover to their previous values. For the lipid phase, tau(B)(298) was found to be 65.7 +/- 2.0 ps and the corresponding activation enthalpy, DeltaH, was 32.5 +/- 0.9 kJ mol(-)(1): These values are typical of those expected to be found in the type of fat used to make ice cream. The water phase gave corresponding values of 32.2 +/- 0.5 ps and 24.5 +/- 0.4 kJ mol(-)(1) values, which are those expected for a sucrose concentration of 24%.

  1. Critical behavior of two- and three-dimensional ferromagnetic and antiferromagnetic spin-ice systems using the effective-field renormalization group technique

    NASA Astrophysics Data System (ADS)

    Garcia-Adeva, Angel J.; Huber, David L.

    2001-07-01

    In this work we generalize and subsequently apply the effective-field renormalization-group (EFRG) technique to the problem of ferro- and antiferromagnetically coupled Ising spins with local anisotropy axes in geometrically frustrated geometries (kagomé and pyrochlore lattices). In this framework, we calculate the various ground states of these systems and the corresponding critical points. Excellent agreement is found with exact and Monte Carlo results. The effects of frustration are discussed. As pointed out by other authors, it turns out that the spin-ice model can be exactly mapped to the standard Ising model, but with effective interactions of the opposite sign to those in the original Hamiltonian. Therefore, the ferromagnetic spin ice is frustrated and does not order. Antiferromagnetic spin ice (in both two and three dimensions) is found to undergo a transition to a long-range-ordered state. The thermal and magnetic critical exponents for this transition are calculated. It is found that the thermal exponent is that of the Ising universality class, whereas the magnetic critical exponent is different, as expected from the fact that the Zeeman term has a different symmetry in these systems. In addition, the recently introduced generalized constant coupling method is also applied to the calculation of the critical points and ground-state configurations. Again, a very good agreement is found with exact, Monte Carlo, and renormalization-group calculations for the critical points. Incidentally, we show that the generalized constant coupling approach can be regarded as the lowest-order limit of the EFRG technique, in which correlations outside a frustrated unit are neglected, and scaling is substituted by strict equality of the thermodynamic quantities.

  2. Magnetic stray-field studies of a single Cobalt nanoelement as a component of the building blocks of artificial square spin ice

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Porrati, Fabrizio; Huth, Michael; Ohno, Yuzo; Ohno, Hideo; Müller, Jens

    2016-02-01

    We use Focused Electron Beam Deposition (FEBID) to directly write Cobalt magnetic nanoelements onto a micro-Hall magnetometer, which allows for high-sensitivity measurements of the magnetic stray field emanating from the samples. In a previous study [M. Pohlit et al., J. Appl. Phys. 117 (2015) 17C746] [21] we investigated thermal dynamics of an individual building block (nanocluster) of artificial square spin ice. In this work, we compare the results of this structure with interacting elements to the switching of a single nanoisland. By analyzing the survival function of the repeatedly prepared state in a given temperature range, we find thermally activated switching dynamics. A detailed analysis of the hysteresis loop reveals a metastable microstate preceding the overall magnetization reversal of the single nanoelement, also found in micromagnetic simulations. Such internal degrees of freedom may need to be considered, when analyzing the thermal dynamics of larger spin ice configurations on different lattice types.

  3. Separation of ice crystals from interstitial aerosol particles using virtual impaction at the Fifth International Ice Nucleation Workshop FIN-3

    NASA Astrophysics Data System (ADS)

    Roesch, M.; Garimella, S.; Roesch, C.; Zawadowicz, M. A.; Katich, J. M.; Froyd, K. D.; Cziczo, D. J.

    2016-12-01

    In this study, a parallel-plate ice chamber, the SPectrometer for Ice Nuclei (SPIN, DMT Inc.) was combined with a pumped counterflow virtual impactor (PCVI, BMI Inc.) to separate ice crystals from interstitial aerosol particles by their aerodynamic size. These measurements were part of the FIN-3 workshop, which took place in fall 2015 at Storm Peak Laboratory (SPL), a high altitude mountain top facility (3220 m m.s.l.) in the Rocky Mountains. The investigated particles were sampled from ambient air and were exposed to cirrus-like conditions inside SPIN (-40°C, 130% RHice). Previous SPIN experiments under these conditions showed that ice crystals were found to be in the super-micron range. Connected to the outlet of the ice chamber, the PCVI was adjusted to separate all particulates aerodynamically larger than 3.5 micrometer to the sample flow while smaller ones were rejected and removed by a pump flow. Using this technique reduces the number of interstitial aerosol particles, which could bias subsequent ice nucleating particle (INP) analysis. Downstream of the PCVI, the separated ice crystals were evaporated and the flow with the remaining INPs was split up to a particle analysis by laser mass spectrometry (PALMS) instrument a laser aerosol spectrometer (LAS, TSI Inc.) and a single particle soot photometer (SP2, DMT Inc.). Based on the sample flow and the resolution of the measured particle data, the lowest concentration threshold for the SP2 instrument was 294 INP L-1 and for the LAS instrument 60 INP L-1. Applying these thresholds as filters to the measured PALMS time series 944 valid INP spectra using the SP2 threshold and 445 valid INP spectra using the LAS threshold were identified. A sensitivity study determining the number of good INP spectra as a function of the filter threshold concentration showed a two-phase linear growth when increasing the threshold concentration showing a breakpoint around 100 INP L-1.

  4. Reconfigurable wave band structure of an artificial square ice

    DOE PAGES

    lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.; ...

    2016-04-18

    Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors.more » Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.« less

  5. Reconfigurable wave band structure of an artificial square ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.

    Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors.more » Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.« less

  6. Universal monopole scaling near transitions from the Coulomb phase.

    PubMed

    Powell, Stephen

    2012-08-10

    Certain frustrated systems, including spin ice and dimer models, exhibit a Coulomb phase at low temperatures, with power-law correlations and fractionalized monopole excitations. Transitions out of this phase, at which the effective gauge theory becomes confining, provide examples of unconventional criticality. This Letter studies the behavior at nonzero monopole density near such transitions, using scaling theory to arrive at universal expressions for the crossover phenomena. For a particular transition in spin ice, quantitative predictions are made by mapping to the XY model and confirmed using Monte Carlo simulations.

  7. Temperature and magnetic-field driven dynamics in artificial magnetic square ice

    DOE PAGES

    Drouhin, Henri-Jean; Wegrowe, Jean-Eric; Razeghi, Manijeh; ...

    2015-09-08

    Artificial spin ices are often spoken of as being realisations of some of the celebrated vertex models of statistical mechanics, where the exact microstate of the system can be imaged using advanced magnetic microscopy methods. The fact that a stable image can be formed means that the system is in fact athermal and not undergoing the usual finite-temperature fluctuations of a statistical mechanical system. In this paper we report on the preparation of artificial spin ices with islands that are thermally fluctuating due to their very small size. The relaxation rate of these islands was determined using variable frequency focusedmore » magneto-optic Kerr measurements. We performed magnetic imaging of artificial spin ice under varied temperature and magnetic field using X-ray transmission microscopy which uses X-ray magnetic circular dichroism to generate magnetic contrast. Furthermore, we have developed an on-membrane heater in order to apply temperatures in excess of 700 K and have shown increased dynamics due to higher temperature. Due to the ‘photon-in, photon-out' method employed here, it is the first report where it is possible to image the microstates of an ASI system under the simultaneous application of temperature and magnetic field, enabling the determination of relaxation rates, coercivties, and the analysis of vertex population during reversal.« less

  8. Temperature and magnetic-field driven dynamics in artificial magnetic square ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouhin, Henri-Jean; Wegrowe, Jean-Eric; Razeghi, Manijeh

    Artificial spin ices are often spoken of as being realisations of some of the celebrated vertex models of statistical mechanics, where the exact microstate of the system can be imaged using advanced magnetic microscopy methods. The fact that a stable image can be formed means that the system is in fact athermal and not undergoing the usual finite-temperature fluctuations of a statistical mechanical system. In this paper we report on the preparation of artificial spin ices with islands that are thermally fluctuating due to their very small size. The relaxation rate of these islands was determined using variable frequency focusedmore » magneto-optic Kerr measurements. We performed magnetic imaging of artificial spin ice under varied temperature and magnetic field using X-ray transmission microscopy which uses X-ray magnetic circular dichroism to generate magnetic contrast. Furthermore, we have developed an on-membrane heater in order to apply temperatures in excess of 700 K and have shown increased dynamics due to higher temperature. Due to the ‘photon-in, photon-out' method employed here, it is the first report where it is possible to image the microstates of an ASI system under the simultaneous application of temperature and magnetic field, enabling the determination of relaxation rates, coercivties, and the analysis of vertex population during reversal.« less

  9. The Leipzig Ice Nucleation chamber Comparison (LINC): An overview of ice nucleation measurements observed with four on-line ice nucleation devices

    NASA Astrophysics Data System (ADS)

    Kohn, Monika; Wex, Heike; Grawe, Sarah; Hartmann, Susan; Hellner, Lisa; Herenz, Paul; Welti, André; Stratmann, Frank; Lohmann, Ulrike; Kanji, Zamin A.

    2016-04-01

    Mixed-phase clouds (MPCs) are found to be the most relevant cloud type leading to precipitation in mid-latitudes. The formation of ice crystals in MPCs is not completely understood. To estimate the effect of aerosol particles on the radiative properties of clouds and to describe ice nucleation in models, the specific properties of aerosol particles acting as ice nucleating particles (INPs) still need to be identified. A number of devices are able to measure INPs in the lab and in the field. However, methods can be very different and need to be tested under controlled conditions with respect to aerosol generation and properties in order to standardize measurement and data analysis approaches for subsequent ambient measurements. Here, we present an overview of the LINC campaign hosted at TROPOS in September 2015. We compare four ice nucleation devices: PINC (Portable Ice Nucleation Chamber, Chou et al., 2011) and SPIN (SPectrometer for Ice Nuclei) are operated in deposition nucleation and condensation freezing mode. LACIS (Leipzig Aerosol Cloud Interaction Simulator, Hartmann et al., 2011) and PIMCA (Portable Immersion Mode Cooling chamber) measure in the immersion freezing mode. PIMCA is used as a vertical extension to PINC and allows activation and droplet growth prior to exposure to the investigated ice nucleation temperature. Size-resolved measurements of multiple aerosol types were performed including pure mineral dust (K-feldspar, kaolinite) and biological particles (Birch pollen washing waters) as well as some of them after treatment with sulfuric or nitric acid prior to experiments. LACIS and PIMCA-PINC operated in the immersion freezing mode showed very good agreement in the measured frozen fraction (FF). For the comparison between PINC and SPIN, which were scanning relative humidity from below to above water vapor saturation, an agreement was found for the obtained INP concentration. However, some differences were observed, which may result from ice detection and data treatment. A difference was observed between FF from LACIS and PIMCA-PINC compared to the ice activated fractions (AF) from PINC and SPIN. This requires further investigations. Acknowledgements Part of this work was funded by the DFG Research Unit FOR 1525 INUIT, grant WE 4722/1-2. References Chou et al. (2011), Atmos. Chem. Phys., 11, 4725-4738. Hartmann et al. (2011), Atmos. Chem. Phys., 11, 1753-1767.

  10. Dark Material at the Surface of Polar Crater Deposits on Mercury

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.; Cavanaugh, John F.; Sun, Xiaoli; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.; Paige, Daid A.

    2012-01-01

    Earth-based radar measurements [1-3] have yielded images of radar-bright material at the poles of Mercury postulated to be near-surface water ice residing in cold traps on the permanently shadowed floors of polar impact craters. The Mercury Laser Altimeter (MLA) on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has now mapped much of the north polar region of Mercury [4] (Fig. 1). Radar-bright zones lie within polar craters or along poleward-facing scarps lying mainly in shadow. Calculations of illumination with respect to solid-body motion [5] show that at least 0.5% of the surface area north of 75deg N lies in permanent shadow, and that most such permanently shadowed regions (PSRs) coincide with radar-bright regions. MLA transmits a 1064-nm-wavelength laser pulse at 8 Hz, timing the leading and trailing edges of the return pulse. MLA can in some cases infer energy and thereby surface reflectance at the laser wavelength from the returned pulses. Surficial exposures of water ice would be optically brighter than the surroundings, but persistent surface water ice would require temperatures over all seasons to remain extremely low (<110 K). Thermal models [6,7] incorporating direct and scattered radiation, Mercury s eccentric orbit, 3:2 spin-orbit resonance, and near-zero obliquity generally do not support such conditions in all permanently shadowed craters but suggest that water ice buried near the surface (<0.5 m depth) could survive for > 1 Gy. We describe measurements of reflectivity derived from MLA pulse returns. These reflectivity data show that surface materials in the shadowed regions are darker than their surroundings, enough to strongly attenuate or extinguish laser returns. Such measurements appear to rule out widespread surface exposures of water ice. We consider explanations for the apparent low reflectivity of these regions involving other types of volatile deposit.

  11. Hexagonal ice in pure water and biological NMR samples.

    PubMed

    Bauer, Thomas; Gath, Julia; Hunkeler, Andreas; Ernst, Matthias; Böckmann, Anja; Meier, Beat H

    2017-01-01

    Ice, in addition to "liquid" water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273 K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice spectra.

  12. Magnetic monopole condensation transition out of quantum spin ice: application to Pr2 Ir2 O7 and Yb2 Ti2 O7

    NASA Astrophysics Data System (ADS)

    Chen, Gang

    We study the proximate magnetic orders and the related quantum phase transition out of quantum spin ice (QSI). We apply the electromagnetic duality of the compact quantum electrodynamics to analyze the condensation of the magnetic monopoles for QSI. The monopole condensation transition represents a unconventional quantum criticality with unusual scaling laws. The magnetic monopole condensation leads to the magnetic states that belong to the ``2-in 2-out'' spin ice manifold and generically have an enlarged magnetic unit cell. We demonstrate that the antiferromagnetic state with the ordering wavevector Q = 2p(001) is proximate to QSI while the ferromagnetic state with the ordering wavevector Q = (000) is not proximate to QSI. This implies that if there exists a direct transition from QSI to the ferromagnetic state, the transition must be strongly first order. We apply the theory to the puzzling experiments on two pyrochlore systems Pr2Ir2O7 and Yb2Ti2O7. chggst@gmail.com.

  13. Possible observation of highly itinerant quantum magnetic monopoles in the frustrated pyrochlore Yb2Ti2O7

    PubMed Central

    Tokiwa, Y.; Yamashita, T.; Udagawa, M.; Kittaka, S.; Sakakibara, T; Terazawa, D.; Shimoyama, Y.; Terashima, T.; Yasui, Y.; Shibauchi, T.; Matsuda, Y.

    2016-01-01

    The low-energy elementary excitations in frustrated quantum magnets have fascinated researchers for decades. In frustrated Ising magnets on a pyrochlore lattice possessing macroscopically degenerate spin-ice ground states, the excitations have been discussed in terms of classical magnetic monopoles, which do not contain quantum fluctuations. Here we report unusual behaviours of magneto-thermal conductivity in the disordered spin-liquid regime of pyrochlore Yb2Ti2O7, which hosts frustrated spin-ice correlations with large quantum fluctuations owing to pseudospin-1/2 of Yb ions. The analysis of the temperature and magnetic field dependencies shows the presence of gapped elementary excitations. We find that the gap energy is largely suppressed from that expected in classical monopoles. Moreover, these excitations propagate a long distance without being scattered, in contrast to the diffusive nature of classical monopoles. These results suggests the emergence of highly itinerant quantum magnetic monopole, which is a heavy quasiparticle that propagates coherently in three-dimensional spin liquids. PMID:26912080

  14. Possible observation of highly itinerant quantum magnetic monopoles in the frustrated pyrochlore Yb2Ti2O7.

    PubMed

    Tokiwa, Y; Yamashita, T; Udagawa, M; Kittaka, S; Sakakibara, T; Terazawa, D; Shimoyama, Y; Terashima, T; Yasui, Y; Shibauchi, T; Matsuda, Y

    2016-02-25

    The low-energy elementary excitations in frustrated quantum magnets have fascinated researchers for decades. In frustrated Ising magnets on a pyrochlore lattice possessing macroscopically degenerate spin-ice ground states, the excitations have been discussed in terms of classical magnetic monopoles, which do not contain quantum fluctuations. Here we report unusual behaviours of magneto-thermal conductivity in the disordered spin-liquid regime of pyrochlore Yb2Ti2O7, which hosts frustrated spin-ice correlations with large quantum fluctuations owing to pseudospin-1/2 of Yb ions. The analysis of the temperature and magnetic field dependencies shows the presence of gapped elementary excitations. We find that the gap energy is largely suppressed from that expected in classical monopoles. Moreover, these excitations propagate a long distance without being scattered, in contrast to the diffusive nature of classical monopoles. These results suggests the emergence of highly itinerant quantum magnetic monopole, which is a heavy quasiparticle that propagates coherently in three-dimensional spin liquids.

  15. Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb₂Ti₂O₇.

    PubMed

    Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard

    2012-01-01

    In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose-Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb(2)Ti(2)O(7). Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below T(C)~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations.

  16. Fingerprints of quantum spin ice in Raman scattering

    NASA Astrophysics Data System (ADS)

    Perkins, Natalia

    Quantum spin liquids (QSLs) emerging in frustrated magnetic systems have been a fascinating and challenging subject in modern condensed matter physics for over four decades. In these systems the conventional ordering is suppressed and, instead, unusual behaviors strongly dependent on the topology of the system are observed. The difficulty in the experimental observation of QSLs comes from the fact that unlike the states with broken symmetry, the topological order characteristic of cannot be captured by a local order parameter and thus cannot be detected by local measurements. Identifying QSLs therefore requires reconsideration of experimental probes to find ones sensitive to features characteristic of topological order. The fractionalization of excitations associated with this order can offer signatures that can be probed by conventional methods such as inelastic neutron scattering, Raman or Resonant X-ray scattering experiments. In my talk I will discuss the possibility to use Raman scattering to probe the excitations of Quantum Spin Ice, a model which has long been believed to host a U(1) spin liquid ground state. NSF DMR-1511768.

  17. Leipzig Ice Nucleation chamber Comparison (LINC): intercomparison of four online ice nucleation counters

    NASA Astrophysics Data System (ADS)

    Burkert-Kohn, Monika; Wex, Heike; Welti, André; Hartmann, Susan; Grawe, Sarah; Hellner, Lisa; Herenz, Paul; Atkinson, James D.; Stratmann, Frank; Kanji, Zamin A.

    2017-09-01

    Ice crystal formation in atmospheric clouds has a strong effect on precipitation, cloud lifetime, cloud radiative properties, and thus the global energy budget. Primary ice formation above 235 K is initiated by nucleation on seed aerosol particles called ice-nucleating particles (INPs). Instruments that measure the ice-nucleating potential of aerosol particles in the atmosphere need to be able to accurately quantify ambient INP concentrations. In the last decade several instruments have been developed to investigate the ice-nucleating properties of aerosol particles and to measure ambient INP concentrations. Therefore, there is a need for intercomparisons to ensure instrument differences are not interpreted as scientific findings.In this study, we intercompare the results from parallel measurements using four online ice nucleation chambers. Seven different aerosol types are tested including untreated and acid-treated mineral dusts (microcline, which is a K-feldspar, and kaolinite), as well as birch pollen washing waters. Experiments exploring heterogeneous ice nucleation above and below water saturation are performed to cover the whole range of atmospherically relevant thermodynamic conditions that can be investigated with the intercompared chambers. The Leipzig Aerosol Cloud Interaction Simulator (LACIS) and the Portable Immersion Mode Cooling chAmber coupled to the Portable Ice Nucleation Chamber (PIMCA-PINC) performed measurements in the immersion freezing mode. Additionally, two continuous-flow diffusion chambers (CFDCs) PINC and the Spectrometer for Ice Nuclei (SPIN) are used to perform measurements below and just above water saturation, nominally presenting deposition nucleation and condensation freezing.The results of LACIS and PIMCA-PINC agree well over the whole range of measured frozen fractions (FFs) and temperature. In general PINC and SPIN compare well and the observed differences are explained by the ice crystal growth and different residence times in the chamber. To study the mechanisms responsible for the ice nucleation in the four instruments, the FF (from LACIS and PIMCA-PINC) and the activated fraction, AF (from PINC and SPIN), are compared. Measured FFs are on the order of a factor of 3 higher than AFs, but are not consistent for all aerosol types and temperatures investigated. It is shown that measurements from CFDCs cannot be assumed to produce the same results as those instruments exclusively measuring immersion freezing. Instead, the need to apply a scaling factor to CFDCs operating above water saturation has to be considered to allow comparison with immersion freezing devices. Our results provide further awareness of factors such as the importance of dispersion methods and the quality of particle size selection for intercomparing online INP counters.

  18. Charge and spin correlations in the monopole liquid

    NASA Astrophysics Data System (ADS)

    Slobinsky, D.; Baglietto, G.; Borzi, R. A.

    2018-05-01

    A monopole liquid is a spin system with a high density of magnetic charges but no magnetic-charge order. We study such a liquid over an Ising pyrochlore lattice, where a single topological charge or monopole sits in each tetrahedron. Restricting the study to the case with no magnetic field applied we show that, in spite of the liquidlike correlations between charges imposed by construction constraints, the spins are uncorrelated like in a perfect paramagnet. We calculate a massive residual entropy for this phase (ln(2 )/2 , a result which is exact in the thermodynamic limit), implying a free Ising-like variable per tetrahedron. After defining a simple model Hamiltonian for this system (the balanced monopole liquid) we study its thermodynamics. Surprisingly, this monopole liquid remains a perfect paramagnet at all temperatures. Thermal disorder can then be simply and quantitatively interpreted as single charge dilution, by the excitation of neutral sites and double monopoles. The addition of the usual nearest neighbors interactions favoring neutral `2in-2out' excitations as a perturbation maintains the same ground state but induces short-range (topological) order by thermal disorder. While it decreases charge-charge correlations, pair spin correlations—resembling those in spin ice—appear on increasing temperature. This helps us to see in another light the dipolarlike correlations present in spin ices at unexpectedly high temperatures. On the other side, favoring double excitations strengthens the charges short range order and its associated spin correlations. Finally, we discuss how the monopole liquid can be related to other systems and materials where different phases of monopole matter have been observed.

  19. A Continuous Flow Diffusion Chamber Study of Sea Salt Particles Acting as Cloud Seeds: Deliquescence, Ice Nucleation and Sublimation

    NASA Astrophysics Data System (ADS)

    Kong, X.; Wolf, M. J.; Garimella, S.; Roesch, M.; Cziczo, D. J.

    2016-12-01

    Sea Salt Aerosols (SSA) are abundant in the atmosphere, and important to the Earth's chemistry and energy budget. However, the roles of sea salts in the context of cloud formation are still poorly understood, which is partially due to the complexity of the water-salt phase diagram. At ambient temperatures, even well below 0°C, SSA deliquesces at sub-water saturated conditions. Since the ratio of the partial pressure over ice versus super-cooled water continuously declines with decreasing temperatures, it is interesting to consider if SSA continues to deliquesce under a super-saturated condition of ice, or if particles act as depositional ice nuclei when a critical supersaturation is reached. Some recent studies suggest hydrated NaCl and simulated sea salt might deliquesce between -35°C to -44°C, and below that deposition freezing becomes possible. Deliquesced droplets can subsequently freeze via the immersion or homogenous freezing mode, depending on if the deliquescence processes is complete. After the droplets or ice particles are formed, it is also interesting to consider how the different processes influence physical properties after evaporation or sublimation. This data is important for climate modeling that includes bromine burst observed in Antarctica, which is hypothesized to be relevant to the sublimation of blowing snow particles. In this study we use a SPectrometer for Ice Nuclei (SPIN; DMT, Inc., Boulder, CO) to perform experiments over a wide range of temperature and RH conditions to quantify deliquescence, droplet formation and ice nucleation. The formation of droplets and ice particles is detected by an advanced Optical Particle Counter (OPC) and the liquid/solid phases are distinguished by a machine learning method based on laser scattering and polarization data. Using an atomizer, four different sea salt samples are generated: pure NaCl and MgCl2 solutions, synthetic seawater, and natural seawater. Downstream of the SPIN chamber, a Pumped Counterflow Virtual Impactor (PCVI) is connected to separate the activated ice particles/large droplets to allow them undergo complete evaporation and sublimation. The particle size distributions are measured and compared to those upstream of SPIN to determine the effects of the ice/droplet nucleation process on the aerosol physical parameters.

  20. Broken vertex symmetry and finite zero-point entropy in the artificial square ice ground state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gliga, Sebastian; Kákay, Attila; Heyderman, Laura J.

    In this paper, we study degeneracy and entropy in the ground state of artificial square ice. In theoretical models, individual nanomagnets are typically treated as single spins with only two degrees of freedom, leading to a twofold degenerate ground state with intensive entropy and thus no zero-point entropy. Here, we show that the internal degrees of freedom of the nanostructures can result, through edge bending of the magnetization and breaking of local magnetic symmetry at the vertices, in a transition to a highly degenerate ground state with finite zero-point entropy, similar to that of the pyrochlore spin ices. Finally, wemore » find that these additional degrees of freedom have observable consequences in the resonant spectrum of the lattice, and predict the occurrence of edge “melting” above a critical temperature at which the magnetic symmetry is restored.« less

  1. Broken vertex symmetry and finite zero-point entropy in the artificial square ice ground state

    DOE PAGES

    Gliga, Sebastian; Kákay, Attila; Heyderman, Laura J.; ...

    2015-08-26

    In this paper, we study degeneracy and entropy in the ground state of artificial square ice. In theoretical models, individual nanomagnets are typically treated as single spins with only two degrees of freedom, leading to a twofold degenerate ground state with intensive entropy and thus no zero-point entropy. Here, we show that the internal degrees of freedom of the nanostructures can result, through edge bending of the magnetization and breaking of local magnetic symmetry at the vertices, in a transition to a highly degenerate ground state with finite zero-point entropy, similar to that of the pyrochlore spin ices. Finally, wemore » find that these additional degrees of freedom have observable consequences in the resonant spectrum of the lattice, and predict the occurrence of edge “melting” above a critical temperature at which the magnetic symmetry is restored.« less

  2. Non-conserved magnetization operator and 'fire-and-ice' ground states in the Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Torrico, Jordana; Ohanyan, Vadim; Rojas, Onofre

    2018-05-01

    We consider the diamond chain with S = 1/2 XYZ vertical dimers which interact with the intermediate sites via the interaction of the Ising type. We also suppose all four spins form the diamond-shaped plaquette to have different g-factors. The non-uniform g-factors within the quantum spin dimer as well as the XY-anisotropy of the exchange interaction lead to the non-conserving magnetization for the chain. We analyze the effects of non-conserving magnetization as well as the effects of the appearance of negative g-factors among the spins from the unit cell. A number of unusual frustrated states for ferromagnetic couplings and g-factors with non-uniform signs are found out. These frustrated states generalize the "half-fire-half-ice" state introduced in reference Yin et al. (2015). The corresponding zero-temperature ground state phase diagrams are presented.

  3. A view of Antarctic ice-sheet evolution from sea-level and deep-sea Isotope Changes During the Late Cretaceous-Cenozoic

    USGS Publications Warehouse

    Miller, K.G.; Wright, J.D.; Katz, M.E.; Browning, J.V.; Cramer, B.S.; Wade, B.S.; Mizintseva, S.F.

    2007-01-01

    18O increase. This large ice sheet became a driver of climate change, not just a response to it, causing increased latitudinal thermal gradients and a spinning up of the oceans that, in turn, caused a dramatic reorganization of ocean circulation and chemistry.

  4. Neutron spectroscopic study of crystal field excitations in Tb 2Ti 2O 7 and Tb 2Sn 2O 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Fritsch, Katharina; Hao, Z.

    2014-04-01

    We present time-of-flight inelastic neutron scattering measurements at low temperature on powder samples of the magnetic pyrochlore oxides Tb 2Ti 2O 7 and Tb 2Sn 2O 7. These two materials possess related, but different ground states, with Tb 2Sn 2O 7 displaying "soft" spin ice order below T N approx 0.87 K, while Tb 2Ti 2O 7 enters a hybrid, glassy-spin ice state below T g approx 0.2 K. Our neutron measurements, performed at T = 1.5 K and 30 K, probe the crystal field states associated with the J = 6 states of Tb 3+ within the appropriate Fd3-barmmore » pyrochlore environment. These crystal field states determine the size and anisotropy of the Tb 3+ magnetic moment in each material's ground state, information that is an essential starting point for any description of the low temperature phase behavior and spin dynamics in Tb 2Ti 2O 7 and Tb 2Sn 2O 7. While these two materials have much in common, the cubic stanate lattice is expanded compared to the cubic titanate lattice. As our measurements show, this translates into a factor of approx 2 increase in the crystal field bandwidth of the 2J +1 = 13 states in Tb 2Ti 2O 7 compared with Tb 2Sn 2O 7. Our results are consistent with previous measurements on crystal field states in Tb 2Sn 2O 7, wherein the ground state doublet corresponds primarily to mJ = {vert_bar}+-5> and the first excited state doublet to mJ = {vert_bar}+-4>. In contrast, our results on Tb 2Ti 2O 7 differ markedly from earlier studies, showing that the ground state doublet corresponds to a significant mixture of mJ = {vert_bar}+-5>, mJ = {vert_bar}+-4> and mJ = {vert_bar}+-2>, while the first excited state doublet corresponds to a mixture of mJ = {vert_bar}+-4>, mJ = {vert_bar}+-5> and mJ = {vert_bar}+-1>. We discuss these results in the context of proposed mechanisms for the failure of Tb 2Ti 2O 7 to develop conventional long range order down to 50 mK.« less

  5. [H2O ortho-para spin conversion in aqueous solutions as a quantum factor of Konovalov paradox].

    PubMed

    Pershin, S M

    2014-01-01

    Recently academician Konovalov and co-workers observed an increase in electroconductivity and biological activity simultaneously with diffusion slowing (or nanoobject diameter increasing) and extremes of other parameters (ζ-potential, surface tension, pH, optical activity) in low concentration aqueous solutions. This phenomenon completely disappeared when samples were shielded against external electromagnetic fields by a Faraday cage. A conventional theory of water and water solutions couldn't explain "Konovalov paradox" observed in numerous experiments (representative sampling about 60 samples and 7 parameters). The new approach was suggested to describe the physics of water and explain "Konovalov paradox". The proposed concept takes into account the quantum differences of ortho-para spin isomers of H2O in bulk water (rotational spin-selectivity upon hydration and spontaneous formation of ice-like structures, quantum beats and spin conversion induced in the presence of a resonant electromagnetic radiation). A size-dependent self-assembly of amorphous complexes of H2O molecules more than 275 leading to the ice Ih structure observed in the previous experiments supports this concept.

  6. Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7

    PubMed Central

    Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard

    2012-01-01

    In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose–Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb2Ti2O7. Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below TC~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations. PMID:22871811

  7. Advances in large, transportable, highly spin-polarized, solid HD targets operable in the frozen-spin mode in a 1-4K temperature environment

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron Paul

    The development of large, portable highly spin-polarized solid HD targets has been in progress at Syracuse University for the past 5 years. These targets are scheduled for deployment at Brookhaven National Laboratory, bearing the acronym SPHICE (Spin-Polarized Hydrogen Ice), for studies of the electro-magnetic spin structure of the nucleus via scattering of polarized gammas from the HD polarized protons and deuterons. The target work has just reached the milestone demonstration of the complete system, including polarization of triple targets containing 4 moles of solid HD, aging of these targets so that they retain their polarization for months under storage at a temperature of 1.3K and in an 8 Tesla field, and for at least a week at operational conditions of 1.3K and 0.7 Tesla in an in-beam cryostat. Cold-transfers of the polarized targets to a storage cryostat have been successfully carried out, and the storage cryostat has been trucked from Syracuse to BNL with one polarized target, sufficient to test the in-beam operations there. The complete system is presented here, with emphasis on innovations for engagement and disengagement of multiple targets, a solution to the challenge of attaining sufficiently strong RF fields in the large volume probe coils at acceptable power dissipation in the cables, and the polarization production and monitoring in the highly inhomogeneous magnetic fields owing to the multiple targets and the large dimensions of the targets. In this first multiple target production and extraction-to-storage cycle, air-ice accumulation in the dilution refrigerator due to repetitive use of cold sliding o-ring seals resulted in a rupture of one of the inserted targets, and a consequent partial thermal short from a solid HD ice bridge. The o-ring fault was cured with double evacuatable o-ring seals, and the air-ice was successfully cleaned out. However, the refrigerator operating base temperature was substantially higher than that normally obtained and the proton polarizations were accordingly lower than the 48% previously obtained. Nevertheless, the targets passed all their production procedures and are still useful for a first experiment at BNL. We anticipate an era of important use of these now demonstrated specially advantageous polarized frozen-spin HD targets.

  8. Rotational Spin-up Caused CO2 Outgassing on Comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Graves, Kevin; Hirabayashi, Masatoshi; Richardson, James

    2015-11-01

    The Deep Impact spacecraft’s flyby of comet 103P/Hartley 2 on November 4, 2010 revealed its nucleus to be a small, bilobate, and highly active world [1] [2]. The bulk of this activity is driven by CO2 sublimation, which is enigmatically restricted to the tip of the small lobe [1]. Because Hartley 2's CO2 production responds to the diurnal cycle of the nucleus [1], CO2 ice must be no deeper than a few centimeters below the surface of the small lobe. However the high volatility of CO2 would suggest that its sublimation front should recede deep below the surface, such that diurnal volatile production is dominated by more refractory species such as water ice, as was observed at comet Tempel 1 [3].Here we show that both the near surface CO2 ice and its geographic restriction to the tip of the small lobe suggest that Hartley 2 recently experienced an episode of fast rotation. We use the GRAVMAP code to compute the stability of slopes on the surface of Hartley 2 as a function of spin period. We determine that the surface of the active region of Hartley 2’s small lobe becomes unstable at a rotation period of ~10-12 hours (as opposed to its current spin period of ~ 18 hours [1]), and will flow toward the tip of the lobe, excavating buried CO2 ice and activating CO2-driven activity. However, the rest of the surface of the nucleus is stable at these spin rates, and will therefore not exhibit CO2 activity. We additionally use Finite Element Model (FEM) analysis to demonstrate that the interior of Hartley 2’s nucleus is structurally stable (assuming a cohesive strength of at least 5 Pa) at these spin rates.The uncommonly high angular acceleration of Hartley 2, which has changed the nucleus spin period by two hours in three months [4], suggests that this episode of fast rotation may have existed only a few years or decades ago. Thus, Hartley 2 may provide an excellent case study into the reactivation of quiescent comet nuclei via rotational spin up, as would result from weak homogeneous gas emissions via the SYORP Effect.References: [1] A'Hearn et al. Science 332, 1396 (2011) [2] Thomas et al. Icarus 222, 550 (2013) [3] Feaga et al. Icarus 190, 345 (2007) [4] Samarasinha & Mueller. Ap. J. 775:L10 (2013)

  9. Unstable spin-ice order in the stuffed metallic pyrochlore Pr 2+xIr 2-xO 7-δ

    DOE PAGES

    MacLaughlin, D. E.; Bernal, O. O.; Shu, Lei; ...

    2015-08-24

    Specific heat, elastic neutron scattering, and muon spin rotation experiments have been carried out on a well-characterized sample of “stuffed” (Pr-rich) Pr 2+xIr 2-xO 7-δ. Elastic neutron scattering shows the onset of long-range spin-ice “2-in/2-out” magnetic order at 0.93 kelvin, with an ordered moment of 1.7(1) Bohr magnetons per Pr ion at low temperatures. Approximate lower bounds on the correlation length and correlation time in the ordered state are 170 angstroms and 0.7 nanosecond, respectively. Muon spin rotation experiments yield an upper bound 2.6(7) milliteslas on the local field B 4f loc at the muon site, which is nearly twomore » orders of magnitude smaller than the expected dipolar field for long-range spin-ice ordering of 1.7-Bohr magneton moments (120–270 milliteslas, depending on the muon site). This shortfall is due in part to splitting of the non-Kramers crystal-field ground-state doublets of near-neighbor Pr 3+ ions by the positive-muon-induced lattice distortion. For this to be the only effect, however, ~160 Pr moments out to a distance of ~14 angstroms must be suppressed. An alternative scenario—one consistent with the observed reduced nuclear hyperfine Schottky anomaly in the specific heat—invokes slow correlated Pr-moment fluctuations in the ordered state that average B 4f loc on the μSR time scale (~10 -7 second), but are static on the time scale of the elastic neutron scattering experiments (~10 -9 second). In this picture, the dynamic muon relaxation suggests a Pr 3+ 4f correlation time of a few nanoseconds, which should be observable in a neutron spin echo experiment.« less

  10. Out-of-equilibrium dynamics and extended textures of topological defects in spin ice

    NASA Astrophysics Data System (ADS)

    Udagawa, M.; Jaubert, L. D. C.; Castelnovo, C.; Moessner, R.

    2016-09-01

    Memory effects have been observed across a wide range of geometrically frustrated magnetic materials, possibly including Pr2Ir2O7 where a spontaneous Hall effect has been observed. Frustrated magnets are also famous for the emergence of topological defects. Here we explore how the interaction between these defects can be responsible for a rich diversity of out-of-equilibrium dynamics, dominated by topological bottlenecks and multiscale energy barriers. Our model is an extension of the spinice model on the pyrochlore lattice, where farther-neighbor spin interactions give rise to a nearest-neighbor coupling between topological defects. This coupling can be chosen to be "unnatural" or not, i.e., attractive or repulsive between defects carrying the same topological charge. After applying a field quench, our model supports, for example, long-lived magnetization plateaux, and allows for the metastability of a "fragmented" spin liquid, an unconventional phase of matter where long-range order co-exists with a spin liquid. Perhaps most strikingly, the attraction between same-sign charges produces clusters of these defects in equilibrium, whose stability is due to a combination of energy and topological barriers. These clusters may take the form of a "jellyfish" spin texture, centered on a hexagonal ring with branches of arbitrary length. The ring carries a clockwise or counterclockwise circular flow of magnetization. This emergent toroidal degrees of freedom provide a possibility for time-reversal symmetry breaking with potential relevance to the spontaneous Hall effect observed in Pr2Ir2O7 .

  11. Forced precession of the cometary nucleus with randomly placed active regions

    NASA Technical Reports Server (NTRS)

    Szutowicz, Slawomira

    1992-01-01

    The cometary nucleus is assumed to be triaxial or axisymmetric spheroid rotating about its axis of maximum moment of inertia and is forced to precess due to jets of ejected material. Randomly placed regions of exposed ice on the surface of the nucleus are assumed to produce gas and dust. The solution of the heat conduction equation for each active region is used to find the gas sublimation rate and the jet acceleration. Precession of the comet nucleus is followed numerically using a phase-averaged system of equations. The gas production curves and the variation of the spin axis during the orbital motion of the comet are presented.

  12. Vogel-Fulcher-Tammann freezing of a thermally fluctuating artificial spin ice probed by x-ray photon correlation spectroscopy

    DOE PAGES

    Morley, S. A.; Alba Venero, D.; Porro, J. M.; ...

    2017-03-16

    We report on the crossover from the thermal to the athermal regime of an artificial spin ice formed from a square array of magnetic islands whose lateral size, 30 nm × 70 nm, is small enough that they are dynamic at room temperature.We used resonant magnetic soft x-ray photon correlation spectroscopy as a method to observe the time-time correlations of the fluctuating magnetic configurations of spin ice during cooling, which are found to slow abruptly as a freezing temperature of T 0 = 178 ± 5 K is approached. This slowing is well described by a Vogel-Fulcher-Tammann law, implying thatmore » the frozen state is glassy, with the freezing temperature being commensurate with the strength of magnetostatic interaction energies in the array. The activation temperature, T A = 40 ± 10 K, is much less than that expected from a Stoner-Wohlfarth coherent rotation model. Zerofield- cooled/field-cooled magnetometry reveals a freeing up of fluctuations of states within islands above this temperature, caused by variation in the local anisotropy axes at the oxidised edges. This Vogel-Fulcher-Tammann behavior implies that the system enters a glassy state upon freezing, which is unexpected for a system with a well-defined ground state.« less

  13. Vogel-Fulcher-Tammann freezing of a thermally fluctuating artificial spin ice probed by x-ray photon correlation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morley, S. A.; Alba Venero, D.; Porro, J. M.

    We report on the crossover from the thermal to the athermal regime of an artificial spin ice formed from a square array of magnetic islands whose lateral size, 30 nm × 70 nm, is small enough that they are dynamic at room temperature.We used resonant magnetic soft x-ray photon correlation spectroscopy as a method to observe the time-time correlations of the fluctuating magnetic configurations of spin ice during cooling, which are found to slow abruptly as a freezing temperature of T 0 = 178 ± 5 K is approached. This slowing is well described by a Vogel-Fulcher-Tammann law, implying thatmore » the frozen state is glassy, with the freezing temperature being commensurate with the strength of magnetostatic interaction energies in the array. The activation temperature, T A = 40 ± 10 K, is much less than that expected from a Stoner-Wohlfarth coherent rotation model. Zerofield- cooled/field-cooled magnetometry reveals a freeing up of fluctuations of states within islands above this temperature, caused by variation in the local anisotropy axes at the oxidised edges. This Vogel-Fulcher-Tammann behavior implies that the system enters a glassy state upon freezing, which is unexpected for a system with a well-defined ground state.« less

  14. Experimental Insights into Ground-State Selection of Quantum XY Pyrochlores

    NASA Astrophysics Data System (ADS)

    Hallas, Alannah M.; Gaudet, Jonathan; Gaulin, Bruce D.

    2018-03-01

    Extensive experimental investigations of the magnetic structures and excitations in the XY pyrochlores have been carried out over the past decade. Three families of XY pyrochlores have emerged: Yb2B2O7, Er2B2O7, and, most recently, [Formula: see text]Co2F7. In each case, the magnetic cation (either Yb, Er, or Co) exhibits XY anisotropy within the local pyrochlore coordinates, a consequence of crystal field effects. Materials in these families display rich phase behavior and are candidates for exotic ground states, such as quantum spin ice, and exotic ground-state selection via order-by-disorder mechanisms. In this review, we present an experimental summary of the ground-state properties of the XY pyrochlores, including evidence that they are strongly influenced by phase competition. We empirically demonstrate the signatures for phase competition in a frustrated magnet: multiple heat capacity anomalies, suppressed TN or TC, sample- and pressure-dependent ground states, and unconventional spin dynamics.

  15. Thermally induced magnetic relaxation in square artificial spin ice.

    PubMed

    Andersson, M S; Pappas, S D; Stopfel, H; Östman, E; Stein, A; Nordblad, P; Mathieu, R; Hjörvarsson, B; Kapaklis, V

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  16. Thermally induced magnetic relaxation in square artificial spin ice

    NASA Astrophysics Data System (ADS)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-11-01

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  17. Understanding magnetotransport signatures in networks of connected permalloy nanowires

    NASA Astrophysics Data System (ADS)

    Le, B. L.; Park, J.; Sklenar, J.; Chern, G.-W.; Nisoli, C.; Watts, J. D.; Manno, M.; Rench, D. W.; Samarth, N.; Leighton, C.; Schiffer, P.

    2017-02-01

    The change in electrical resistance associated with the application of an external magnetic field is known as the magnetoresistance (MR). The measured MR is quite complex in the class of connected networks of single-domain ferromagnetic nanowires, known as "artificial spin ice," due to the geometrically induced collective behavior of the nanowire moments. We have conducted a thorough experimental study of the MR of a connected honeycomb artificial spin ice, and we present a simulation methodology for understanding the detailed behavior of this complex correlated magnetic system. Our results demonstrate that the behavior, even at low magnetic fields, can be well described only by including significant contributions from the vertices at which the legs meet, opening the door to new geometrically induced MR phenomena.

  18. Voltage control of magnetic monopoles in artificial spin ice

    NASA Astrophysics Data System (ADS)

    Chavez, Andres C.; Barra, Anthony; Carman, Gregory P.

    2018-06-01

    Current research on artificial spin ice (ASI) systems has revealed unique hysteretic memory effects and mobile quasi-particle monopoles controlled by externally applied magnetic fields. Here, we numerically demonstrate a strain-mediated multiferroic approach to locally control the ASI monopoles. The magnetization of individual lattice elements is controlled by applying voltage pulses to the piezoelectric layer resulting in strain-induced magnetic precession timed for 180° reorientation. The model demonstrates localized voltage control to move the magnetic monopoles across lattice sites, in CoFeB, Ni, and FeGa based ASI’s. The switching is achieved at frequencies near ferromagnetic resonance and requires energies below 620 aJ. The results demonstrate that ASI monopoles can be efficiently and locally controlled with a strain-mediated multiferroic approach.

  19. Upper-Tropospheric Cloud Ice from IceCube

    NASA Astrophysics Data System (ADS)

    Wu, D. L.

    2017-12-01

    Cloud ice plays important roles in Earth's energy budget and cloud-precipitation processes. Knowledge of global cloud ice and its properties is critical for understanding and quantifying its roles in Earth's atmospheric system. It remains a great challenge to measure these variables accurately from space. Submillimeter (submm) wave remote sensing has capability of penetrating clouds and measuring ice mass and microphysical properties. In particular, the 883-GHz frequency is a highest spectral window in microwave frequencies that can be used to fill a sensitivity gap between thermal infrared (IR) and mm-wave sensors in current spaceborne cloud ice observations. IceCube is a cubesat spaceflight demonstration of 883-GHz radiometer technology. Its primary objective is to raise the technology readiness level (TRL) of 883-GHz cloud radiometer for future Earth science missions. By flying a commercial receiver on a 3U cubesat, IceCube is able to achieve fast-track maturation of space technology, by completing its development, integration and testing in 2.5 years. IceCube was successfully delivered to ISS in April 2017 and jettisoned from the International Space Station (ISS) in May 2017. The IceCube cloud-ice radiometer (ICIR) has been acquiring data since the jettison on a daytime-only operation. IceCube adopted a simple design without payload mechanism. It makes maximum utilization of solar power by spinning the spacecraft continuously about the Sun vector at a rate of 1.2° per second. As a result, the ICIR is operated under the limited resources (8.6 W without heater) and largely-varying (18°C-28°C) thermal environments. The spinning cubesat also allows ICIR to have periodical views between the Earth (atmosphere and clouds) and cold space (calibration), from which the first 883-GHz cloud map is obtained. The 883-GHz cloud radiance, sensitive to ice particle scattering, is proportional to cloud ice amount above 10 km. The ICIR cloud map acquired during June 20-July 2, 2017 shows a clear distribution of the inter-tropical convergence zone (ITCZ), as well as the classic Gill-model pattern over the Western Pacific and Indian monsoon regions. Like the ISS, the coverage of ICIR observations is limited to low-to-mid latitudes. More science results and IceCube experiments with the cubesat operation will be discussed.

  20. Artificial ferroic systems: novel functionality from structure, interactions and dynamics.

    PubMed

    Heyderman, L J; Stamps, R L

    2013-09-11

    Lithographic processing and film growth technologies are continuing to advance, so that it is now possible to create patterned ferroic materials consisting of arrays of sub-1 μm elements with high definition. Some of the most fascinating behaviour of these arrays can be realised by exploiting interactions between the individual elements to create new functionality. The properties of these artificial ferroic systems differ strikingly from those of their constituent components, with novel emergent behaviour arising from the collective dynamics of the interacting elements, which are arranged in specific designs and can be activated by applying magnetic or electric fields. We first focus on artificial spin systems consisting of arrays of dipolar-coupled nanomagnets and, in particular, review the field of artificial spin ice, which demonstrates a wide range of fascinating phenomena arising from the frustration inherent in particular arrangements of nanomagnets, including emergent magnetic monopoles, domains of ordered macrospins, and novel avalanche behaviour. We outline how demagnetisation protocols have been employed as an effective thermal anneal in an attempt to reach the ground state, comment on phenomena that arise in thermally activated systems and discuss strategies for selectively generating specific configurations using applied magnetic fields. We then move on from slow field and temperature driven dynamics to high frequency phenomena, discussing spinwave excitations in the context of magnonic crystals constructed from arrays of patterned magnetic elements. At high frequencies, these arrays are studied in terms of potential applications including magnetic logic, linear and non-linear microwave optics, and fast, efficient switching, and we consider the possibility to create tunable magnonic crystals with artificial spin ice. Finally, we discuss how functional ferroic composites can be incorporated to realise magnetoelectric effects. Specifically, we discuss artificial multiferroics (or multiferroic composites), which hold promise for new applications that involve electric field control of magnetism, or electric and magnetic field responsive devices for high frequency integrated circuit design in microwave and terahertz signal processing. We close with comments on how enhanced functionality can be realised through engineering of nanostructures with interacting ferroic components, creating opportunities for novel spin electronic devices that, for example, make use of the transport of magnetic charges, thermally activated elements, and reprogrammable nanomagnet systems.

  1. Multiyear search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Andeen, K.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Rizzo, A.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2012-02-01

    A search for an excess of muon neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of live time between 2001 and 2006 and 149 days of live time collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total live time of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 50-5000 GeV. We also derive a limit on the neutralino-proton spin-dependent and spin-independent cross section. The limits presented here improve the previous results obtained by the collaboration between a factor of 2 and 5, as well as extending the neutralino masses probed down to 50 GeV. The spin-dependent cross section limits are the most stringent so far for neutralino masses above 200 GeV, and well below direct search results in the mass range from 50 GeV to 5 TeV.

  2. Thermal conductivity of Ho2Ti2O7 along the [111] direction.

    PubMed

    Toews, W H; Zhang, Songtian S; Ross, K A; Dabkowska, H A; Gaulin, B D; Hill, R W

    2013-05-24

    Thermal transport measurements have been made on the spin-ice material Ho(2)Ti(2)O(7) in an applied magnetic field with both the heat current and the field parallel to the [111] direction for temperatures from 50 mK to 1.2 K. A large magnetic field >6 T is applied to suppress the magnetic contribution to the thermal conductivity in order to extract the lattice conductivity. The low field thermal conductivity thus reveals a magnetic field dependent contribution to the conductivity which both transfers heat and scatters phonons. We interpret these magnetic excitations as monopolelike excitations and describe their behavior via existing Debye-Hückel theory.

  3. Surfaces of Ganymede and Callisto: H2O-ice particle sizes and composition of non-ice materials

    NASA Astrophysics Data System (ADS)

    Stephan, K.; Hoffmann, H.; Hibbitts, C.; Wagner, R. J.; Jaumann, R.

    2017-12-01

    Band depth ratios (BDRs) of the major H2O-ice absorptions in the NIMS spectra of the Galilean satellites Ganymede and Callisto have been found to be mainly unaffected by the abundance of the dark non-ice material(s) and can be leveraged to provide semi-quantitative indicators of variations in the H2O-ice particle sizes across their surfaces. Interestingly, the derived H2O-ice particle sizes vary continuously with geographic latitude on both satellites. H2O-ice particles on Callisto appear slightly larger at low and mid latitude than observed on Ganymede, whereas the BDR values converge toward the poles indicating similarly small H2O-ice particle sizes for both satellites. This smooth latitudinal trend on both satellites may be related to their surface temperatures and the possible thermal migration of water vapor to higher latitudes and grain welding at lower latitudes. It is not expected that the observed relationship between the BDRs and H2O-ice particle sizes occurs for mixtures with every non-ice material expected to exist on planetary surfaces. Therefore, ice mixtures with a variety of considered non-ice materials such as carbon-rich materials, phyllosilicates and salts have been investigated and the validity of this relationship tested depending on different H2O-ice abundances and particle sizes. The relationship seems to be valid for most materials if the amount of the non-ice material in the mixture does not exceed a few percent or the non-ice component is not hydrated, i.e. does not itself possess water-related bands near 1.4 and 1.9 microns. Best results across the nearly full range of percentage could be achieved for carbon-rich material, iron sulfides, and hydroxylated phyllosilicates, which are expected to be the major constituent of carbonaceous chondrites. In contrast, significant amounts of hydrated material, as identified on Europa, significantly changes the BDRs and cannot fully explain the global trend.

  4. Virtual Reality: Bringing the Awe of Our Science into The Classroom with VR

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Turrin, M.; Frearson, N.; Boghosian, A.; Ferrini, V. L.; Simpson, F.

    2016-12-01

    The geosciences are rich in imagery, making them compelling material for immersive teaching experiences. We often work in remote locations, places where few others are able to travel. Flat 2 D images from the field have served explorers and scientists well from the lantern slides brought back from Antarctica to the images scientists and educators now use in powerpoint presentations. These images provide a backdrop to introduce the experience for formal classes and informal presentations. Our stories from the field bring the setting alive for the participants. The travelers presented and the audience passively listened. Immersive learning opportunities are much more powerful than lecturing. We have enlisted both VR and drone imagery to bring learners fully into the experience of science. A 360 VR image brings the viewer into the moment of discovery. Both have been shown to create an active learning setting fully under the learner's control; they explore at their own pace and following their own interest. This learning `sticks', becoming part of the participant's own unique experience in the space. We are building VR images of field experiences and VR data immersion experiences that will transport people into new locations, building a field experience that they can not only see but fully explore. Through VR we introduce new experiences that showcase our science, our careers and our collaborations. Users can spin the view up to see the helicopter landing in a remote field location by the ice. Spin to the right and see a colleague collecting a reading from instruments that have been pulled from the LC130 aircraft. Turn the view to the left and see the harsh windswept environment along the edge of an ice shelf. Look down and note that you feet are encased in snow boots to keep them warm and stable on the ice. The viewer is in the field as part of the science team. Learning in the classroom and through social media is now fully 360 and fully immersive.

  5. Analysis of Multispectral Galileo SSI Images of the Conamara Chaos Region, Europa

    NASA Technical Reports Server (NTRS)

    Spaun, N. A.; Phillips, C. B.

    2003-01-01

    Multispectral imaging of Europa s surface by Galileo s Solid State Imaging (SSI) camera has revealed two major surface color units, which appear as white and red-brown regions in enhanced color images of the surface (see figure). The Galileo Near- Infrared Mapping Spectrometer (NIMS) experiment suggests that the whitish material is icy, almost pure water ice, while the spectral signatures of the reddish regions are dominated by a non-ice material. Two endmember models have been proposed for the composition of the non-ice material: magnesium sulfate hydrates [1] and sulfuric acid and its byproducts [2]. There is also debate concerning whether the origin of this non-ice material is exogenic or endogenic [3].Goals: The key questions this work addresses are: 1) Is the non-ice material exogenic or endogenic in origin? 2) Once emplaced, is this non-ice material primarily modified by exogenic or endogenic processes? 3) Is the non-ice material within ridges, bands, chaos, and lenticulae the same non-ice material across all such geological features? 4) Does the distribution of the non-ice material provide any evidence for or against any of the various models for feature formation? 5) To what extent do the effects of scattered light in SSI images change the spectral signatures of geological features?

  6. Plateau on temperature dependence of magnetization of nanostructured rare earth titanates

    NASA Astrophysics Data System (ADS)

    Rinkevich, A. B.; Korolev, A. V.; Samoylovich, M. I.; Demokritov, S. O.; Perov, D. V.

    2018-05-01

    Magnetic properties of nanocomposite materials containing particles of rare earth titanates of R2Ti2O7 type, where R is a rare earth ion, including "spin ice" materials are investigated. The descending branches of hysteresis loop have been studied in detail in temperature range from 2 to 50 K. It has been shown that nanocomposites with Yb2Ti2O7, Dy2Ti2O7 and Er2Ti2O7 particles have one intersection point of the descending branches in some temperature range unlike many other nanocomposites. It is shown that magnetization has only weak temperature dependence near this point. It has been obtained that nanocomposites with Pr2Ti2O7 and Nd2Ti2O7 particles have no hysteresis loop. All above findings point out to unusual magnetic structures of the studied samples.

  7. A Combined Experimental and Theoretical Study on the Formation of Interstellar Propylene Oxide (CH3CHCH2O)—A Chiral Molecule

    NASA Astrophysics Data System (ADS)

    Bergantini, Alexandre; Abplanalp, Matthew J.; Pokhilko, Pavel; Krylov, Anna I.; Shingledecker, Christopher N.; Herbst, Eric; Kaiser, Ralf I.

    2018-06-01

    This work reveals via a combined experimental, computational, and astrochemical modeling study that racemic propylene oxide (c-C3H6O)—the first chiral molecule detected outside Earth toward the high-mass star-forming region Sagittarius B2(N)—can be synthesized by non-equilibrium reactions initiated by the effects of secondary electrons generated in the track of cosmic rays interacting with ice-coated interstellar grains through excited-state and spin-forbidden reaction pathways operating within low-temperature interstellar ices at 10 K. Our findings confront traditional hypotheses that thermal chemistries followed by processing of interstellar grains dictate the formation of complex organic molecules (COMs) in molecular clouds. Instead, we reveal a hitherto poorly quantified reaction class involving excited-state and spin-forbidden chemistry leading to racemic mixtures of COMs inside interstellar ices prior to their sublimation in star-forming regions. This fundamental production mechanism is of essential consequence in aiding our understanding of the origin and evolution of chiral molecules in the universe.

  8. Spin relaxation in geometrically frustrated pyrochlores

    NASA Astrophysics Data System (ADS)

    Dunsiger, Sarah Ruth

    This thesis describes muSR experiments which focus on systems where the magnetic ions occupy the vertices of edge or corner sharing triangular units, in particular the pyrochlores A2B2O7. The scientific interest in pyrochlores is based on the fact that they display novel magnetic behaviour at low temperatures due to geometrical frustration. The ground state of these systems is sensitively dependent on such factors as the range of the spin-spin interactions, disorder, anisotropy, thermal and quantum fluctuations. For example, Y2Mo2O7 shows many features reminiscent of a conventional spin glass, even though this material has nominally zero chemical disorder. It is found that the muon spin polarisation obeys a time-field scaling relation which indicates that the spin-spin autocorrelation function has a power law form in time, in stark contrast with the exponential form often assumed for conventional magnets above their transition temperature. Gd2Ti2O7 shows long range order, but only at a temperature much lower than its Curie-Weiss temperature, a signature of a frustrated system. In the paramagnetic regime, it is well described by an isotropic Heisenberg Hamiltonian with nearest neighbour couplings in the presence of a Zeeman interaction, from which the spin-spin autocorrelation function may be calculated as a power series in time. The muon spin relaxation rate decreases with magnetic field as the Zeeman energy becomes comparable with the exchange coupling between Gd spins. Thus, an independent measure of the exchange coupling or equivalently the Gd spin fluctuation rate is extracted. By contrast, Tb2Ti2O7 has been identified as a type of cooperative paramagnet. Short range correlations develop below 50 K. However, there is no long range ordering down to very low temperatures (0.075 K). The Tb3+ ion is subject to strong crystal electric field effects: point charge calculations indicate that this system is Ising like at low temperatures. Thus this system may be analogous to water ice, a system theoretically predicted to have finite entropy at zero temperature. It is possible to qualitatively explain the unusual changes in T1-1 as a function of applied magnetic field which are also observed using muSR.

  9. Thermally induced magnetic relaxation in square artificial spin ice

    DOE PAGES

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; ...

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less

  10. Thermally induced magnetic relaxation in square artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less

  11. Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.

    PubMed

    He, Zhiyuan; Liu, Kai; Wang, Jianjun

    2018-05-15

    Ice formation, mainly consisting of ice nucleation, ice growth, and ice recrystallization, is ubiquitous and crucial in wide-ranging fields from cryobiology to atmospheric physics. Despite active research for more than a century, the mechanism of ice formation is still far from satisfactory. Meanwhile, nature has unique ways of controlling ice formation and can provide resourceful avenues to unravel the mechanism of ice formation. For instance, antifreeze proteins (AFPs) protect living organisms from freezing damage via controlling ice formation, for example, tuning ice nucleation, shaping ice crystals, and inhibiting ice growth and recrystallization. In addition, AFP mimics can have applications in cryopreservation of cells, tissues, and organs, food storage, and anti-icing materials. Therefore, continuous efforts have been made to understand the mechanism of AFPs and design AFP inspired materials. In this Account, we first review our recent research progress in understanding the mechanism of AFPs in controlling ice formation. A Janus effect of AFPs on ice nucleation was discovered, which was achieved via selectively tethering the ice-binding face (IBF) or the non-ice-binding face (NIBF) of AFPs to solid surfaces and investigating specifically the effect of the other face on ice nucleation. Through molecular dynamics (MD) simulation analysis, we observed ordered hexagonal ice-like water structure atop the IBF and disordered water structure atop the NIBF. Therefore, we conclude that the interfacial water plays a critical role in controlling ice formation. Next, we discuss the design and fabrication of AFP mimics with capabilities in tuning ice nucleation and controlling ice shape and growth, as well as inhibiting ice recrystallization. For example, we tuned ice nucleation via modifying solid surfaces with supercharged unfolded polypeptides (SUPs) and polyelectrolyte brushes (PBs) with different counterions. We found graphene oxide (GO) and oxidized quasi-carbon nitride quantum dots (OQCNs) had profound effects in controlling ice shape and inhibiting ice growth. We also studied the ion-specific effect on ice recrystallization inhibition (IRI) with a large variety of anions and cations. All functionalities are achieved by tuning the properties of interfacial water on these materials, which reinforces the importance of the interfacial water in controlling ice formation. Finally, we review the development of novel application-oriented materials emerging from our enhanced understanding of ice formation, for example, ultralow ice adhesion coatings with aqueous lubricating layer, cryopreservation of cells by inhibiting ice recrystallization, and two-dimensional (2D) and three-dimensional (3D) porous materials with tunable pore sizes through recrystallized ice crystal templates. This Account sheds new light on the molecular mechanism of ice formation and will inspire the design of unprecedented functional materials based on controlled ice formation.

  12. Computational Simulation of the Formation and Material Behavior of Ice

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Singhal, Surendra N.; Chamis, Christos C.

    1994-01-01

    Computational methods are described for simulating the formation and the material behavior of ice in prevailing transient environments. The methodology developed at the NASA Lewis Research Center was adopted. A three dimensional finite-element heat transfer analyzer was used to predict the thickness of ice formed under prevailing environmental conditions. A multi-factor interaction model for simulating the material behavior of time-variant ice layers is presented. The model, used in conjunction with laminated composite mechanics, updates the material properties of an ice block as its thickness increases with time. A sample case of ice formation in a body of water was used to demonstrate the methodology. The results showed that the formation and the material behavior of ice can be computationally simulated using the available composites technology.

  13. Quasiparticle Excitations with Berry Curvature in Insulating Magnets and Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Hirschberger, Maximilian Anton

    The concept of the geometric Berry phase of the quantum mechanical wave function has led to a better theoretical understanding of natural phenomena in all fields of fundamental physics research. In condensed matter physics, the impact of this theoretical discovery has been particularly profound: The quantum Hall effect, the anomalous Hall effect, the quantum spin Hall effect, magnetic skyrmions, topological insulators, and topological semimetals are but a few subfields that have witnessed rapid developments over the three decades since Michael Berry's landmark paper. In this thesis, I will present and discuss the results of three experiments where Berry's phase leads to qualitatively new transport behavior of electrons or magnetic spin excitations in solids. We introduce the theoretical framework that leads to the prediction of a thermal Hall effect of magnons in Cu(1,3-bdc), a simple two-dimensional layered ferromagnet on a Kagome net of spin S = 1/2 copper atoms. Combining our experimental results measured down to very low temperatures T = 0.3 K with published data from inelastic neutron scattering, we report a quantitative comparison with the theory. This confirms the expected net Berry curvature of the magnon band dispersion in this material. Secondly, we have studied the thermal Hall effect in the frustrated pyrochlore magnet Tb2Ti2O7, where the thermal Hall effect is large in the absence of long-range magnetic order. We establish the magnetic nature of the thermal Hall effect in Tb2Ti2O7, introducing this material as the first example of a paramagnet with non-trivial low-lying spin excitations. Comparing our results to other materials with zero thermal Hall effect such as the classical spin ice Dy2Ti 2O7 and the non-magnetic analogue Y2Ti2O 7, we carefully discuss the experimental limitations of our setup and rule out spurious background signals. The third and final chapter of this thesis is dedicated to electrical transport and thermopower experiments on the half-Heusler material GdPtBi. A careful doping study of the negative longitudinal magnetoresistance (LMR) establishes GdPtBi as a new material platform to study the physical properties of a simple Weyl metal with only two Weyl points (for magnetic field along the crystallographic 〈111〉 direction). The negative LMR is associated with the theory of the chiral anomaly in solids, and a direct consequence of the nonzero Berry curvature of the energy band structure of a Weyl semimetal. We compare our results to detailed calculations of the electronic band structure. Moving beyond the negative LMR, we report for the first time the effect of the chiral anomaly on the longitudinal thermopower in a Weyl semimetal.

  14. Y{sub 3}Fe{sub 5}O{sub 12} spin pumping for quantitative understanding of pure spin transport and spin Hall effect in a broad range of materials (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Chunhui; Wang, Hailong; Hammel, P. Chris

    2015-05-07

    Using Y{sub 3}Fe{sub 5}O{sub 12} (YIG) thin films grown by our sputtering technique, we study dynamic spin transport in nonmagnetic, ferromagnetic, and antiferromagnetic (AF) materials by ferromagnetic resonance spin pumping. From both inverse spin Hall effect and damping enhancement, we determine the spin mixing conductance and spin Hall angle in many metals. Surprisingly, we observe robust spin conduction in AF insulators excited by an adjacent YIG at resonance. This demonstrates that YIG spin pumping is a powerful and versatile tool for understanding spin Hall physics, spin-orbit coupling, and magnetization dynamics in a broad range of materials.

  15. Immersion freezing in concentrated solution droplets for a variety of ice nucleating particles

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Kohn, Monika; Grawe, Sarah; Hartmann, Susan; Hellner, Lisa; Herenz, Paul; Welti, Andre; Lohmann, Ulrike; Kanji, Zamin; Stratmann, Frank

    2016-04-01

    The measurement campaign LINC (Leipzig Ice Nucleation counter Comparison) was conducted in September 2015, during which ice nucleation measurements as obtained with the following instruments were compared: - LACIS (Leipzig Aerosol Cloud Interaction Simulator, see e.g. Wex et al., 2014) - PIMCA-PINC (Portable Immersion Mode Cooling Chamber together with PINC) - PINC (Portable Ice Nucleation Chamber, Chou et al., 2011) - SPIN (SPectrometer for Ice Nuclei, Droplet Measurement Technologies) While LACIS and PIMCA-PINC measured immersion freezing, PINC and SPIN varied the super-saturation during the measurements and collected data also for relative humidities below 100% RHw. A suite of different types of ice nucleating particles were examined, where particles were generated from suspensions, subsequently dried and size selected. For the following samples, data for all four instruments are available: K-feldspar, K-feldspar treated with nitric acid, Fluka-kaolinite and birch pollen. Immersion freezing measurements by LACIS and PIMCA-PINC were in excellent agreement. Respective parameterizations from these measurement were used to model the ice nucleation behavior below water vapor saturation, assuming that the process can be described as immersion freezing in concentrated solutions. This is equivalent to simply including a concentration dependent freezing point depression in the immersion freezing parameterization, as introduced for coated kaolinite particles in Wex et al. (2014). Overall, measurements performed below water vapor saturation were reproduced by the model, and it will be discussed in detail, why deviations were observed in some cases. Acknowledgement: Part of this work was funded by the DFG Research Unit FOR 1525 INUIT, grant WE 4722/1-2. Literature: Chou, C., O. Stetzer, E. Weingartner, Z. Juranyi, Z. A. Kanji, and U. Lohmann (2011), Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps, Atmos. Chem. Phys., 11(10), 4725-4738, doi:10.5194/acp-11-4725-2011. Wex, H., P. J. DeMott, Y. Tobo, S. Hartmann, M. Rösch, T. Clauss, L. Tomsche, D. Niedermeier, and F. Stratmann (2014), Kaolinite particles as ice nuclei: learning from the use of different kaolinite samples and different coatings, Atmos. Chem. Phys., 14, doi:10.5194/acp-14-5529-2014.

  16. How to realize a spin-dependent Seebeck diode effect in metallic zigzag γ-graphyne nanoribbons?

    PubMed

    Wu, Dan-Dan; Liu, Qing-Bo; Fu, Hua-Hua; Wu, Ruqian

    2017-11-30

    The spin-dependent Seebeck effect (SDSE) is one of the core topics of spin caloritronics. In the traditional device designs of spin-dependent Seebeck rectifiers and diodes, finite spin-dependent band gaps of materials are required to realize the on-off characteristic in thermal spin currents, and nearly zero charge current should be achieved to reduce energy dissipation. Here, we propose that two ferromagnetic zigzag γ-graphyne nanoribbons (ZγGNRs) without any spin-dependent band gaps around the Fermi level can not only exhibit the SDSE, but also display rectifier and diode effects in thermal spin currents characterized by threshold temperatures, which originates from the compensation effect occurring in spin-dependent transmissions but not from the spin-splitting band gaps in materials. The metallic characteristics of ZγGNRs bring about an advantage that the gate voltage is an effective route to adjust the symmetry of spin-splitting bands to obtain pure thermal spin currents. The results provide a new mechanism to realize spin-Seebeck rectifier and diode effects in 2D materials and expand material candidates towards spin-Seebeck device applications.

  17. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    PubMed Central

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  18. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  19. Search for annihilating dark matter in the Sun with 3 years of IceCube data: IceCube Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; Ackermann, M.; Adams, J.

    © 2017, The Author(s). We present results from an analysis looking for dark matter annihilation in the Sun with the IceCube neutrino telescope. Gravitationally trapped dark matter in the Sun’s core can annihilate into Standard Model particles making the Sun a source of GeV neutrinos. IceCube is able to detect neutrinos with energies > 100 GeV while its low-energy infill array DeepCore extends this to > 10 GeV. This analysis uses data gathered in the austral winters between May 2011 and May 2014, corresponding to 532 days of livetime when the Sun, being below the horizon, is a source of up-going neutrinomore » events, easiest to discriminate against the dominant background of atmospheric muons. The sensitivity is a factor of two to four better than previous searches due to additional statistics and improved analysis methods involving better background rejection and reconstructions. The resultant upper limits on the spin-dependent dark matter-proton scattering cross section reach down to 1.46 × 10 - 5  pb for a dark matter particle of mass 500 GeV annihilating exclusively into τ + τ - particles. These are currently the most stringent limits on the spin-dependent dark matter-proton scattering cross section for WIMP masses above 50 GeV.« less

  20. Search for annihilating dark matter in the Sun with 3 years of IceCube data: IceCube Collaboration

    DOE PAGES

    Aartsen, M. G.; Ackermann, M.; Adams, J.; ...

    2017-03-01

    © 2017, The Author(s). We present results from an analysis looking for dark matter annihilation in the Sun with the IceCube neutrino telescope. Gravitationally trapped dark matter in the Sun’s core can annihilate into Standard Model particles making the Sun a source of GeV neutrinos. IceCube is able to detect neutrinos with energies > 100 GeV while its low-energy infill array DeepCore extends this to > 10 GeV. This analysis uses data gathered in the austral winters between May 2011 and May 2014, corresponding to 532 days of livetime when the Sun, being below the horizon, is a source of up-going neutrinomore » events, easiest to discriminate against the dominant background of atmospheric muons. The sensitivity is a factor of two to four better than previous searches due to additional statistics and improved analysis methods involving better background rejection and reconstructions. The resultant upper limits on the spin-dependent dark matter-proton scattering cross section reach down to 1.46 × 10 - 5  pb for a dark matter particle of mass 500 GeV annihilating exclusively into τ + τ - particles. These are currently the most stringent limits on the spin-dependent dark matter-proton scattering cross section for WIMP masses above 50 GeV.« less

  1. Extenstional terrain formation in icy satellites: Implications for ocean-surface interaction

    NASA Astrophysics Data System (ADS)

    Howell, Samuel M.; Pappalardo, Robert T.

    2017-10-01

    Europa and Ganymede, Galilean satellites of Jupiter, exhibit geologic activity in their outer H2O ice shells that might convey material from water oceans within the satellites to their surfaces. Imagery from the Voyager and Galileo spacecraft reveal surfaces rich with tectonic deformation, including dilational bands on Europa and groove lanes on Ganymede. These features are generally attributed to the extension of a brittle ice lithosphere overlaying a possibly convecting ice asthenosphere. To explore band formation and interaction with interior oceans, we employ fully visco-elasto-plastic 2-D models of faulting and convection with complex, realistic pure ice rheologies. In these models, material entering from below is tracked and considered to be “fossilized ocean,” ocean material that has frozen into the ice shell and evolves through geologic time. We track the volume fraction of fossil ocean material in the ice shell as a function of depth, and the exposure of both fresh ice and fossil ocean material at the ice shell surface. To explore the range in extensional terrains, we vary ice shell thickness, fault localization, melting-temperature ice viscosity, and the presence of pre-existing weaknesses. Mechanisms which act to weaken the ice shell and thin the lithosphere (e.g. vigorous convection, thinner shells, pre-existing weaknesses) tend to plastically yield to form smooth bands at high strains, and are more likely to incorporate fossil ocean material in the ice shell and expose it at the surface. In contrast, lithosphere strengthened by rapid fault annealing or increased viscosity, for example, exhibits large-scale tectonic rifting at low strains superimposed over pre-existing terrains, and inhibits the incorporation and delivery of fossil ocean material to the surface. Thus, our results identify a spectrum of extensional terrain formation mechanisms as linked to lithospheric strength, rather than specific mechanisms that are unique to each type of band, and discuss where in this spectrum ocean material incorporated at the bottom of the ice shell may be exposed on the satellite surface.

  2. Extensional terrain formation on Europa and Ganymede: Implications for ocean-surface interaction

    NASA Astrophysics Data System (ADS)

    Howell, S. M.; Pappalardo, R. T.

    2017-12-01

    Europa and Ganymede, Galilean satellites of Jupiter, exhibit geologic activity in their outer H2O ice shells that might convey material from water oceans within the satellites to their surfaces. Imagery from the Voyager and Galileo spacecraft reveal surfaces rich with tectonic deformation, including dilational bands on Europa and groove lanes on Ganymede. These features are generally attributed to the extension of a brittle ice lithosphere overlaying a possibly convecting ice asthenosphere. To explore band formation and interaction with interior oceans, we employ fully visco-elasto-plastic 2-D models of faulting and convection with complex, realistic pure ice rheologies. In these models, material entering from below is tracked and considered to be "fossilized ocean," ocean material that has frozen into the ice shell and evolves through geologic time. We track the volume fraction of fossil ocean material in the ice shell as a function of depth, and the exposure of both fresh ice and fossil ocean material at the ice shell surface. We vary ice shell thickness, fault localization, melting-temperature ice viscosity, and the presence of pre-existing weaknesses. Mechanisms which act to weaken the ice shell and thin the lithosphere (e.g. vigorous convection, thinner shells, pre-existing weaknesses) tend to plastically yield to form smooth bands at high strains, and are more likely to incorporate fossil ocean material in the ice shell and expose it at the surface. In contrast, lithosphere strengthened by rapid fault annealing or increased viscosity, for example, exhibits large-scale tectonic rifting at low strains superimposed over pre-existing terrains, and inhibits the incorporation and delivery of fossil ocean material to the surface. Thus, our results identify a spectrum of extensional terrain formation mechanisms as linked to lithospheric strength, rather than any specific mechanism being unique to each type of band, and where in this spectrum ocean material incorporated at the bottom of the ice shell may be exposed on the satellite surface.

  3. A marine biogenic source of atmospheric ice-nucleating particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also showmore » that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.« less

  4. Physical State and Distribution of Materials at the Surface of Pluto from New Horizons LEISA Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Schmitt, B.; Philippe, S.; Grundy, W. M.; Reuter, D. C.; Cote, R.; Quirico, E.; Protopappa, S.; Young, L. A.; Binzel, R. P.; Cook, J. C.; hide

    2016-01-01

    From Earth based observations Pluto is known to be the host of N2, CH4 and CO ices and also a dark red material. Very limited spatial distribution information is available from rotational visible and near-infrared spectral curves obtained from hemispheric measurements. In July 2015 the New Horizons spacecraft reached Pluto and its satellite system and recorded a large set of data. The LEISA spectro-imager of the RALPH instruments are dedicated to the study of the composition and physical state of the materials composing the surface. In this paper we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's illuminated surface and their mode and degree of mixing. Principal Component analysis as well as various specific spectral indicators and correlation plots are used on the first set of 2 high resolution spectro-images from the LEISA instrument covering the whole illuminated face of Pluto at the time of the New Horizons encounter. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. Based on specific spectral indicators, using either the strength or the position of absorption bands, these 4 molecules are found to indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich(:CO:N2?) ices and H2O ice. The mixing lines between these ices and with the dark red material are studied using scatter plots between the various spectral indicators. CH4 is mixed at the molecular level with N2, most probably also with CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a progressive decrease of the CO/CH4 ratio tells us that a fractionation sublimation sequence transforms one type of ice to the other forming either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich ice crust that may hide the N2-rich ice below. The strong CH4-rich - H2O mixing line witnesses the subsequent sublimation of the CH4-rich ice lag left behind by the N2:CO sublimation (N spring-summer), or a direct condensation of CH4 ice on the cold H2O ice (S autumn). The weak mixing line between CH4-containing ices and the dark red material and the very sharp spatial transitions between these ices and this non-volatile material are probably due to thermal incompatibility. Finally the occurrence of a H2O ice - red material mixing line advocates for a spatial mixing of the red material covering H2O ice, with possibly a small amount intimately mixed in water ice. From this analysis of the different materials distribution and their relative mixing lines, H2O ice appears to be the substratum on which other ices condense or non-volatile organic material is deposited from the atmosphere. N2-rich ices seem to evolve to CH4-dominated ices, possibly still containing traces of CO and N2, as N2 and CO sublimate away. The spatial distribution of these materials is very complex. The high spatial definition of all these composition maps, as well as those at even higher resolution that will be soon available, will allow us to compare them with Pluto's geologic features observed by LORRI panchromatic and MVIC multispectral imagers to better understand the geophysical processes in action at the surface of this astonishingly active frozen world.

  5. Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Schmitt, B.; Philippe, S.; Grundy, W. M.; Reuter, D. C.; Côte, R.; Quirico, E.; Protopapa, S.; Young, L. A.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Jennings, D. E.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm.; Singer, K. N.; Spencer, J. R.; Stansberry, J. A.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; New Horizons Science Team

    2017-05-01

    From Earth based observations Pluto is known to be the host of N2, CH4 and CO ices and also a dark red material. Very limited spatial distribution information is available from rotational visible and near-infrared spectral curves obtained from hemispheric measurements. In July 2015 the New Horizons spacecraft reached Pluto and its satellite system and recorded a large set of data. The LEISA spectro-imager of the RALPH instruments are dedicated to the study of the composition and physical state of the materials composing the surface. In this paper we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's illuminated surface and their mode and degree of mixing. Principal Component analysis as well as various specific spectral indicators and correlation plots are used on the first set of 2 high resolution spectro-images from the LEISA instrument covering the whole illuminated face of Pluto at the time of the New Horizons encounter. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. Based on specific spectral indicators, using either the strength or the position of absorption bands, these 4 molecules are found to indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich(:CO:N2?) ices and H2O ice. The mixing lines between these ices and with the dark red material are studied using scatter plots between the various spectral indicators. CH4 is mixed at the molecular level with N2, most probably also with CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a progressive decrease of the CO/CH4 ratio tells us that a fractionation sublimation sequence transforms one type of ice to the other forming either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich ice crust that may hide the N2-rich ice below. The strong CH4-rich - H2O mixing line witnesses the subsequent sublimation of the CH4-rich ice lag left behind by the N2:CO sublimation (N spring-summer), or a direct condensation of CH4 ice on the cold H2O ice (S autumn). The weak mixing line between CH4-containing ices and the dark red material and the very sharp spatial transitions between these ices and this non-volatile material are probably due to thermal incompatibility. Finally the occurrence of a H2O ice - red material mixing line advocates for a spatial mixing of the red material covering H2O ice, with possibly a small amount intimately mixed in water ice. From this analysis of the different materials distribution and their relative mixing lines, H2O ice appears to be the substratum on which other ices condense or non-volatile organic material is deposited from the atmosphere. N2-rich ices seem to evolve to CH4-dominated ices, possibly still containing traces of CO and N2, as N2 and CO sublimate away. The spatial distribution of these materials is very complex. The high spatial definition of all these composition maps, as well as those at even higher resolution that will be soon available, will allow us to compare them with Pluto's geologic features observed by LORRI panchromatic and MVIC multispectral imagers to better understand the geophysical processes in action at the surface of this astonishingly active frozen world.

  6. Ice-assisted transfer of carbon nanotube arrays.

    PubMed

    Wei, Haoming; Wei, Yang; Lin, Xiaoyang; Liu, Peng; Fan, Shoushan; Jiang, Kaili

    2015-03-11

    Decoupling the growth and the application of nanomaterials by transfer is an important issue in nanotechnology. Here, we developed an efficient transfer technique for carbon nanotube (CNT) arrays by using ice as a binder to temporarily bond the CNT array and the target substrate. Ice makes it an ultraclean transfer because the evaporation of ice ensures that no contaminants are introduced. The transferred superaligned carbon nanotube (SACNT) arrays not only keep their original appearance and initial alignment but also inherit their spinnability, which is the most desirable feature. The transfer-then-spin strategy can be employed to fabricate patterned CNT arrays, which can act as 3-dimensional electrodes in CNT thermoacoustic chips. Besides, the flip-chipped CNTs are promising field electron emitters. Furthermore, the ice-assisted transfer technique provides a cost-effective solution for mass production of SACNTs, giving CNT technologies a competitive edge, and this method may inspire new ways to transfer other nanomaterials.

  7. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars

    USGS Publications Warehouse

    Head, J.W.; Neukum, G.; Jaumann, R.; Hiesinger, H.; Hauber, E.; Carr, M.; Masson, P.; Foing, B.; Hoffmann, H.; Kreslavsky, M.; Werner, S.; Milkovich, S.; Van Gasselt, S.

    2005-01-01

    Images from the Mars Express HRSC (High-Resolution Stereo Camera) of debris aprons at the base of massifs in eastern Hellas reveal numerous concentrically ridged lobate and pitted features and related evidence of extremely ice-rich glacier-like viscous flow and sublimation. Together with new evidence for recent ice-rich rock glaciers at the base of the Olympus Mons scarp superposed on larger Late Amazonian debris-covered piedmont glaciers, we interpret these deposits as evidence for geologically recent and recurring glacial activity in tropical and mid-latitude regions of Mars during periods of increased spin-axis obliquity when polar ice was mobilized and redeposited in microenvironments at lower latitudes. The data indicate that abundant residual ice probably remains in these deposits and that these records of geologically recent climate changes are accessible to future automated and human surface exploration.

  8. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars.

    PubMed

    Head, J W; Neukum, G; Jaumann, R; Hiesinger, H; Hauber, E; Carr, M; Masson, P; Foing, B; Hoffmann, H; Kreslavsky, M; Werner, S; Milkovich, S; van Gasselt, S

    2005-03-17

    Images from the Mars Express HRSC (High-Resolution Stereo Camera) of debris aprons at the base of massifs in eastern Hellas reveal numerous concentrically ridged lobate and pitted features and related evidence of extremely ice-rich glacier-like viscous flow and sublimation. Together with new evidence for recent ice-rich rock glaciers at the base of the Olympus Mons scarp superposed on larger Late Amazonian debris-covered piedmont glaciers, we interpret these deposits as evidence for geologically recent and recurring glacial activity in tropical and mid-latitude regions of Mars during periods of increased spin-axis obliquity when polar ice was mobilized and redeposited in microenvironments at lower latitudes. The data indicate that abundant residual ice probably remains in these deposits and that these records of geologically recent climate changes are accessible to future automated and human surface exploration.

  9. Tunable artificial vortex ice in nanostructured superconductors with a frustrated kagome lattice of paired antidots

    NASA Astrophysics Data System (ADS)

    Xue, C.; Ge, J.-Y.; He, A.; Zharinov, V. S.; Moshchalkov, V. V.; Zhou, Y. H.; Silhanek, A. V.; Van de Vondel, J.

    2018-04-01

    Theoretical proposals for spin-ice analogs based on nanostructured superconductors have suggested larger flexibility for probing the effects of fluctuations and disorder than in the magnetic systems. In this paper, we unveil the particularities of a vortex ice system by direct observation of the vortex distribution in a kagome lattice of paired antidots using scanning Hall probe microscopy. The theoretically suggested vortex ice distribution, lacking long-range order, is observed at half matching field (H1/2 ). Moreover, the vortex ice state formed by the pinned vortices is still preserved at 2 H1/3 . This unexpected result is attributed to the introduction of interstitial vortices at these magnetic-field values. Although the interstitial vortices increase the number of possible vortex configurations, it is clearly shown that the vortex ice state observed at 2 H1/3 is less prone to defects than at H1/2 . In addition, the nonmonotonic variations of the vortex ice quality on the lattice spacing indicates that a highly ordered vortex ice state cannot be attained by simply reducing the lattice spacing. The optimal design to observe defect-free vortex ice is discussed based on the experimental statistics. The direct observations of a tunable vortex ice state provides new opportunities to explore the order-disorder transition in artificial ice systems.

  10. Realization of Rectangular Artificial Spin Ice and Direct Observation of High Energy Topology.

    PubMed

    Ribeiro, I R B; Nascimento, F S; Ferreira, S O; Moura-Melo, W A; Costa, C A R; Borme, J; Freitas, P P; Wysin, G M; de Araujo, C I L; Pereira, A R

    2017-10-25

    In this work, we have constructed and experimentally investigated frustrated arrays of dipoles forming two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal and vertical lattice spacings denoted by a and b respectively). Arrays with three different aspect ratios γ = a/b = [Formula: see text], [Formula: see text] and [Formula: see text] are studied. Theoretical calculations of low-energy demagnetized configurations for these same parameters are also presented. Experimental data for demagnetized samples confirm most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does not emerge in our theoretical model, while they are seen in experiments for large enough γ. Our results also insinuate that the string tension connecting two magnetic monopoles in a pair vanishes in rectangular lattices with a critical ratio γ = γ c  = [Formula: see text], supporting previous theoretical predictions.

  11. The effect of the size of the system, aspect ratio and impurities concentration on the dynamic of emergent magnetic monopoles in artificial spin ice systems

    NASA Astrophysics Data System (ADS)

    León, Alejandro

    2013-08-01

    In this work we study the dynamical properties of a finite array of nanomagnets in artificial kagome spin ice at room temperature. The dynamic response of the array of nanomagnets is studied by implementing a "frustrated celular autómata" (FCA), based in the charge model and dipolar model. The FCA simulations allow us to study in real-time and deterministic way, the dynamic of the system, with minimal computational resource. The update function is defined according to the coordination number of vertices in the system. Our results show that for a set geometric parameters of the array of nanomagnets, the system exhibits high density of Dirac strings and high density emergent magnetic monopoles. A study of the effect of disorder in the arrangement of nanomagnets is incorporated in this work.

  12. Emergent order in the kagome Ising magnet Dy3Mg2Sb3O14

    PubMed Central

    Paddison, Joseph A. M.; Ong, Harapan S.; Hamp, James O.; Mukherjee, Paromita; Bai, Xiaojian; Tucker, Matthew G.; Butch, Nicholas P.; Castelnovo, Claudio; Mourigal, Martin; Dutton, S. E.

    2016-01-01

    The Ising model—in which degrees of freedom (spins) are binary valued (up/down)—is a cornerstone of statistical physics that shows rich behaviour when spins occupy a highly frustrated lattice such as kagome. Here we show that the layered Ising magnet Dy3Mg2Sb3O14 hosts an emergent order predicted theoretically for individual kagome layers of in-plane Ising spins. Neutron-scattering and bulk thermomagnetic measurements reveal a phase transition at ∼0.3 K from a disordered spin-ice-like regime to an emergent charge ordered state, in which emergent magnetic charge degrees of freedom exhibit three-dimensional order while spins remain partially disordered. Monte Carlo simulations show that an interplay of inter-layer interactions, spin canting and chemical disorder stabilizes this state. Our results establish Dy3Mg2Sb3O14 as a tuneable system to study interacting emergent charges arising from kagome Ising frustration. PMID:27996012

  13. Ice-Release and Erosion Resistant Materials for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Brinn, Cameron; Cook, Alex; Pascual-Marquez, Fernando

    2017-11-01

    Icing conditions may cause wind turbine generators to partially lose productivity or to be completely shut down to avoid structural damage. At present, commercially available technologies to mitigate this problem consist of expensive, energy hungry heating elements, which costs roughly 70,000 euro per medium size turbine. Conventional passive ice protection coating systems heavily rely on delicate surface structures and expensive materials to create water repellent superhydrophobic / low surface energy surfaces, which have been proven to be ineffective against ice accumulation. The lack of performance among conventional ice protection materials stems from a flaw in the approach to the problem: failure to recognize that water in its liquid form (WATER) and water in its solid form (ICE) are two different things. Something that works for WATER does not automatically work for ICE. Another reason is that many superhydrophobic materials are often reliant upon often fragile micro-structured surfaces to achieve their intended effects. This paper discusses a fundamentally different approach to the creation of a robust, low cost, durable, and multifunctional materials for ice release and erosion resistance. This National Science Foundation sponsored ice-release coating technology holds promise for protecting wind turbine blades and towers, thus potentially increasing reliability for power generation under icing conditions. Because of the vulnerability of wind turbine blades to ice buildup and erosion damages, wind farm facilities stand to reap considerable benefits.

  14. Distribution, physical state and mixing of materials at the surface of Pluto from New Horizons

    NASA Astrophysics Data System (ADS)

    Schmitt, Bernard; Philippe, Sylvain; Grundy, Will; Reuter, D. C.; Quirico, Eric; Protopapa, Silvia; Côte, Rémi; Young, Leslie; Binzel, Richard; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa M.; Ennico, Kimberly; Howett, Carly; Jennings, Donald; Linscott, Ivan; Lunsford, A. W.; Olkin, Catherine B.; Parker, Joel Wm.; Parker, Alex; Singer, Kelsi N.; Spencer, John R.; Stansberry, John A.; Stern, S. Alan; Tsang, Constantine; Verbiscer, Anne J.; Weaver, Harold A.; New Horizons Science Team

    2016-10-01

    In July 2015 the New Horizons spacecraft recorded a large set of data on Pluto, in particular with the LEISA spectro-imager dedicated to the study of the surface composition.In this talk we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's surface and their mode and degree of mixing. Principal Component analysis as well as specific spectral indicators and correlation plots are used on high resolution LEISA spectro-images covering the whole illuminated face of Pluto. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. These maps indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich:(CO:N2?) ices and H2O ice. Their mixing lines and with the dark reddish material are studied. CH4 is mixed at the molecular level with N2 and CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a decrease of the CO/CH4 ratio tell us that a fractionation sublimation sequence transforms N2-rich ice into either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich(:CO:N2) ice crust that may hide the N2-rich ice below. The CH4-rich - H2O mixing line witnesses the subsequent sublimation of CH4 ice left behind by the N2:CO sublimation (N spring-summer), or a direct condensation of CH4 ice on cold H2O ice (S autumn). The very sharp spatial transitions between CH4-containing ices and the dark red material are probably due to thermal incompatibility. Finally there is some spatial mixing of the reddish material covering H2O ice. H2O ice appears to be the substratum on which other ices condense or non-volatile organic material is deposited from the atmosphere. The spatial distribution of these materials is very complex.The high spatial definition of all these composition maps will allow us to compare them with Pluto's geologic features observed by LORRI panchromatic and MVIC multispectral imagers to better understand the geophysical processes in action at the surface of this astonishingly active cold world.

  15. Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4

    PubMed Central

    Tsurkan, Vladimir; Zherlitsyn, Sergei; Prodan, Lilian; Felea, Viorel; Cong, Pham Thanh; Skourski, Yurii; Wang, Zhe; Deisenhofer, Joachim; von Nidda, Hans-Albrecht Krug; Wosnitza, Joahim; Loidl, Alois

    2017-01-01

    Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCr2S4 up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases. The magnetization plateau characterizes fully polarized chromium moments, without any contributions from manganese spins. At 40 T, the middle of the plateau, a regime evolves, where sound waves propagate almost without dissipation. The external magnetic field exactly compensates the Cr–Mn exchange field and decouples Mn and Cr sublattices. In analogy to predictions of quantum lattice-gas models, the changes of the spin order of the manganese ions at the phase boundaries of the magnetization plateau are interpreted as transitions to supersolid phases. PMID:28345038

  16. Thermally Generated Spin Signals in a Nondegenerate Silicon Spin Valve

    NASA Astrophysics Data System (ADS)

    Yamashita, Naoto; Ando, Yuichiro; Koike, Hayato; Miwa, Shinji; Suzuki, Yoshishige; Shiraishi, Masashi

    2018-05-01

    Thermally generated spin signals are observed in a nondegenerate Si spin valve. The spin-dependent Seebeck effect is used for thermal spin-signal generation. A thermal gradient of about 200 mK at the interface of Fe and Si enables the generation of a spin voltage of 8 μ V at room temperature. A simple expansion of the conventional spin-drift-diffusion model that takes into account the spin-dependent Seebeck effect shows that semiconductor materials are more promising for thermal spin-signal generation comparing than metallic materials, and thus enable efficient heat recycling in semiconductor spin devices.

  17. Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhang, Yang; Felser, Claudia; Yan, Binghai

    2016-09-01

    Since their discovery, topological insulators are expected to be ideal spintronic materials owing to the spin currents carried by surface states with spin-momentum locking. However, the bulk doping problem remains an obstacle that hinders such an application. In this work, we predict that a newly discovered family of topological materials, the Weyl semimetals, exhibits a large intrinsic spin Hall effect that can be utilized to generate and detect spin currents. Our ab initio calculations reveal a large spin Hall conductivity in the TaAs family of Weyl materials. Considering the low charge conductivity of semimetals, Weyl semimetals are believed to present a larger spin Hall angle (the ratio of the spin Hall conductivity over the charge conductivity) than that of conventional spin Hall systems such as the 4 d and 5 d transition metals. The spin Hall effect originates intrinsically from the bulk band structure of Weyl semimetals, which exhibit a large Berry curvature and spin-orbit coupling, so the bulk carrier problem in the topological insulators is naturally avoided. Our work not only paves the way for employing Weyl semimetals in spintronics, but also proposes a new guideline for searching for the spin Hall effect in various topological materials.

  18. Direct micropatterning of polymer materials by ice mold

    NASA Astrophysics Data System (ADS)

    Yu, Xinhong; Xing, Rubo; Luan, Shifang; Wang, Zhe; Han, Yanchun

    2006-10-01

    Micropatterning of functional polymer materials by micromolding in capillaries (MIMIC) with ice mold is reported in this paper. Ice mold was selected due to its thaw or sublimation. Thus, the mold can be easily removed. Furthermore, the polymer solution did not react with, swell, or adhere to the ice mold, so the method is suitable for many kinds of materials (such as P3HT, PMMA Alq 3/PVK, PEDOT: PSS, PS, P2VP, etc.). Freestanding polymer microstructures, binary polymer pattern, and microchannels have been fabricated by the use of ice mold freely.

  19. Break-the-ice Demos.

    ERIC Educational Resources Information Center

    Smith, Jack L.

    1989-01-01

    Discusses the advantages of opening class sessions with demonstrations. Describes 11 demonstrations, including cloud formation, lather expansion, singing glassware, a flickering filament, balancing a fork and spoon, spinning an egg, television distortion, a roll race, a vortex generator, a suspended egg, and flight magic. (YP)

  20. Recent advancements in 2D-materials interface based magnetic junctions for spintronics

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Zahir; Qureshi, Nabeel Anwar; Hussain, Ghulam

    2018-07-01

    Two-dimensional (2D) materials comprising of graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs) have revealed fascinating properties in various spintronic architectures. Here, we review spin valve effect in lateral and vertical magnetic junctions incorporating 2D materials as non-magnetic layer between ferromagnetic (FM) electrodes. The magnetic field dependent spin transport properties are studied by measuring non-local resistance (RNL) and relative magnetoresistance ratio (MR) for lateral and vertical structures, respectively. The review consists of (i) studying spin lifetimes and spin diffusion length thereby exploring the effect of tunneling and transparent contacts in lateral spin valve structures, temperature dependence, gate tunability and contrasting mechanisms of spin relaxation in single layer graphene (SLG) and bilayer graphene (BLG) devices. (ii) Perpendicular spin valve devices are thoroughly investigated thereby studying the role of different 2D materials in vertical spin dynamics. The dependence of spin valve signal on interface quality, temperature and various other parameters is also investigated. Furthermore, the spin reversal in graphene-hBN hybrid system is examined on the basis of Julliere model.

  1. Synthesis, structural and magnetic characterization of polycrystalline Yb{sub 2}Ti{sub 2}O{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juyal, Abhishek, E-mail: abijuyal@iitk.ac.in; Mukhopadhyay, Soumik; Barman, Kalyani

    2015-06-24

    The discovery of the Yb{sub 2}Ti{sub 2}O{sub 7} is among the most significant findings in magnetic materials in over a decade. The spin-ice model is based on an ingenious analogy to Pauling’s model of geometrical frustration in water ice, which is confirmed by various experiments. Here we present the characteristics of Yb2Ti2O7 studied by X-ray diffraction and magnetic measurements. Polycrystalline sample of Yb{sub 2}Ti{sub 2}O{sub 7} was prepared by sol-gel synthesis followed by thermal annealing at 1400 ° C for 36 hours. We calculated the change in the magnetic entropy from isothermal magnetization curves. We find no evidence of plateaumore » at Pauling residual entropy. Temperature dependence of the inverse magnetic susceptibility reveals Curie-Wiess temperature Θ{sub cw} = 156mK and paramagnetic moment μ{sub eff} ≈ 3.58 µ{sub B}, indicating weak ferromagnetic interaction. Using Arrott plot we conclude that Yb{sub 2}Ti{sub 2}O{sub 7} possibly enters a magnetic ground state below Tc~140 mK.« less

  2. Data assimilation and prognostic whole ice sheet modelling with the variationally derived, higher order, open source, and fully parallel ice sheet model VarGlaS

    NASA Astrophysics Data System (ADS)

    Brinkerhoff, D. J.; Johnson, J. V.

    2013-07-01

    We introduce a novel, higher order, finite element ice sheet model called VarGlaS (Variational Glacier Simulator), which is built on the finite element framework FEniCS. Contrary to standard procedure in ice sheet modelling, VarGlaS formulates ice sheet motion as the minimization of an energy functional, conferring advantages such as a consistent platform for making numerical approximations, a coherent relationship between motion and heat generation, and implicit boundary treatment. VarGlaS also solves the equations of enthalpy rather than temperature, avoiding the solution of a contact problem. Rather than include a lengthy model spin-up procedure, VarGlaS possesses an automated framework for model inversion. These capabilities are brought to bear on several benchmark problems in ice sheet modelling, as well as a 500 yr simulation of the Greenland ice sheet at high resolution. VarGlaS performs well in benchmarking experiments and, given a constant climate and a 100 yr relaxation period, predicts a mass evolution of the Greenland ice sheet that matches present-day observations of mass loss. VarGlaS predicts a thinning in the interior and thickening of the margins of the ice sheet.

  3. An experimental study on soft PDMS materials for aircraft icing mitigation

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Liqun; Wang, Wei; Kota, Arun K.; Hu, Hui

    2018-07-01

    A series of experiments were conducted to characterize the anti-/de-icing performances of soft PDMS materials with different shear modulus and to explore their potentials for aircraft icing mitigation. In the present study, a new class of soft PDMS materials with adjustable shear modulus were fabricated by adding different amounts and different molecular weights of non-reactive trimethyl-terminated PDMS (t-PDMS) into the hydrosilylation mixture of vinyl-terminated PDMS (v-PDMS) and hydride-terminated PDMS (h-PDMS). While the soft PDMS materials were found to be hydrophobic with the contact angle of water droplets over the PDMS surfaces being about 110°, the ice adhesion strength over the soft PDMS materials was found to be extremely low (i.e., being less than 10 kPa at -5 °C or two orders of magnitude smaller), in comparison to those of the conventional rigid surface (i.e., being greater than 1000 kPa for Aluminum or the hard plastic material used to make the airfoil/wing model used in the present study). Upon the dynamic impacting of water droplets at relatively high weber number levels pertinent to aircraft inflight icing phenomena (e.g., We = 4000), the soft PDMS surfaces were found to deform dynamically due to the elastic nature of the PDMS materials, which cause the soft PDMS materials acting as "trampolines" to bounce off most of the impinged water mass away from the impacted surfaces. By applying the soft PDMS materials to coat/cover the surface of a NACA 0012 airfoil/wing model, an explorative study was also performed in an Icing Research Tunnel available at Iowa State University (i.e., ISU-IRT) to demonstrate the feasibility of using the soft PDMS materials to mitigate the impact ice accretion process pertinent to aircraft inflight icing phenomena.

  4. Spectral Modeling of Ground Ices Exposed by Trenching at the Phoenix Mars Landing Site

    NASA Astrophysics Data System (ADS)

    Cull, S.; Arvidson, R. E.; Blaney, D.; Morris, R. V.

    2008-12-01

    The Phoenix Lander, which landed on the northern plains of Mars on 25 May 2008, used its Robotic Arm (RA) to dig six trenches during its nominal 90-sol mission: Dodo-Goldilocks, Snow White, Cupboard, Neverland, Burn Alive, and Stone Soup. During excavation of the first five of these, the RA encountered hard material interpreted to be the ice table, and the Stereo Surface Imager (SSI) imaged the exposed materials using 15 filters spanning a wavelength range from 445 to 1001 nm. Materials exposed in the Dodo- Goldilocks and Snow White trenches are spectroscopically dissimilar: Dodo-Goldilocks hard material is brighter relative to the surrounding soil, and has a distinct downturn around 800 nm resulting from a dusty ice with low soil-to-ice ratio. Snow White hard stuff varies in brightness and spectral shape depending on the phase angle, with low-phase angle images showing dark material and higher phase angles showing more soil-like material. The Snow White material does not have the strong 800-nm downturn seen in Dodo- Goldilocks, because the soil-to-ice ratio is high as inferred by the rapid development of a sublimation lag; however, the albedo variation with phase angle could be due to strong forward-scattering at low phase angles, consistent with icy material. A modified Hapke model is used to estimate the relative abundances of water ice and dust in the Dodo- Goldilocks and Snow White materials, with dehydrated palagonite as an analogue for dust . The ice exposed at Dodo-Goldilocks must be relatively dust-free, since only a small amount of dust is needed to obscure water ice absorptions. In our modeling, we find that as little as 5 wt% 20-um dust is enough to completely mask the 1001 nm absorption in 1-mm grain size water ice. Dodo-Goldilocks spectra can have up to a 20% drop in reflectance from 800 nm to 1001 nm, which is best-matched in our Hapke model by water ice with path lengths on the order of 2-3 mm. The Snow White dark materials typically have a small downturn at approximately 900 nm, with a depth on the order of a few percent. This could be the result of finer-grained ice or a higher dust:ice ratio. Further modeling is needed to understand the behavior of the dark and bright material at the Snow White trench.

  5. Antiferromagnetic spintronics

    NASA Astrophysics Data System (ADS)

    Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y.

    2018-01-01

    Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics, and are capable of generating large magnetotransport effects. Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials. Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed. Antiferromagnetic spintronics started out with studies on spin transfer and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets. This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics. Central to these endeavors are the need for predictive models, relevant disruptive materials, and new experimental designs. This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials. It also details some of the remaining bottlenecks and suggests possible avenues for future research. This review covers both spin-transfer-related effects, such as spin-transfer torque, spin penetration length, domain-wall motion, and "magnetization" dynamics, and spin-orbit related phenomena, such as (tunnel) anisotropic magnetoresistance, spin Hall, and inverse spin galvanic effects. Effects related to spin caloritronics, such as the spin Seebeck effect, are linked to the transport of magnons in antiferromagnets. The propagation of spin waves and spin superfluids in antiferromagnets is also covered.

  6. How Gas Carves Channels

    NASA Image and Video Library

    2017-01-24

    NASA Mars Reconnaissance Orbiter spies a layer of dry ice covering Mars south polar layer. In the spring, gas created from heating of the dry ice escapes through ruptures in the overlying seasonal ice, entraining material from the ground below. The gas erodes channels in the surface, generally exploiting weaker material. The ground likely started as polygonal patterned ground (common in water-ice-rich surfaces), and then escaping gas widened the channels. Fans of dark material are bits of the surface carried onto the top of the seasonal ice layer and deposited in a direction determined by local winds. http://photojournal.jpl.nasa.gov/catalog/PIA11706

  7. Robust Anti-Icing Performance of a Flexible Superhydrophobic Surface.

    PubMed

    Wang, Lei; Gong, Qihua; Zhan, Shihui; Jiang, Lei; Zheng, Yongmei

    2016-09-01

    A material with superhydrophobic and anti-ice/de-icing properties, which has a micro-/nanostructured surface, is produced by a straightforward method. This material comprises a poly(dimethylsiloxane) (PDMS) microstructure with ZnO nanohairs and shows excellent water and ice repellency even at low temperatures (-20 °C) and relatively high humidity (90%) for over three months. These results are expected to be helpful for designing smart, non-wetting materials that can be adapted to low-temperature environments for the development of anti-icing systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Spin-Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene

    DTIC Science & Technology

    2017-11-09

    to correlate the atomic-scale magnetism and spin density with the macroscopic spin transport properties of 2D materials. This is a long-term effort...devices, our goal is to correlate the atomic-scale magnetism and spin density with the macroscopic spin transport properties of 2D materials. This is a... correlate the change in transport with the atomic structure of hydrogen-doped graphene, we subsequently use the STM to investigate the graphene

  9. Characterization of the mechanical behavior of sea ice as a frictional material

    NASA Astrophysics Data System (ADS)

    Lade, Poul V.

    2002-12-01

    The mechanical properties of sea ice are determined by the formation process, and the consequent material behavior at the element scale exhibits viscoelastic behavior at the early loading stages, followed by brittle fracture or ductile, irrecoverable deformation that may be captured by hardening/softening plasticity models with nonassociated flow. Failure of sea ice under different loading conditions follows a pattern that demonstrates its highly cross-anisotropic nature as well as its behavior as a frictional material. The interactions between the floes in the pack ice resemble those observed in granular materials. These materials are frictional in nature, they exhibit both contractive and dilative volume changes, the plastic flow is nonassociated, and their stiffnesses and strengths increase with confining pressure, but they do not have any strength when unconfined. The overall behavior of the pack ice may be close to isotropic. Constitutive modeling of this behavior may be achieved by models used in geotechnical engineering. Formation of leads and subsequent freezing of the water results in cementation between the ice floes, and the pack ice becomes stronger. The behavior of the pack ice may now be compared with that observed in cemented soils or concrete. For these materials, increasing amounts of cementation result in increasing rates of dilation when sheared, and this accounts for the largest contribution to the increase in shear strength.

  10. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.

    PubMed

    Kim, Philseok; Wong, Tak-Sing; Alvarenga, Jack; Kreder, Michael J; Adorno-Martinez, Wilmer E; Aizenberg, Joanna

    2012-08-28

    Ice-repellent coatings can have significant impact on global energy savings and improving safety in many infrastructures, transportation, and cooling systems. Recent efforts for developing ice-phobic surfaces have been mostly devoted to utilizing lotus-leaf-inspired superhydrophobic surfaces, yet these surfaces fail in high-humidity conditions due to water condensation and frost formation and even lead to increased ice adhesion due to a large surface area. We report a radically different type of ice-repellent material based on slippery, liquid-infused porous surfaces (SLIPS), where a stable, ultrasmooth, low-hysteresis lubricant overlayer is maintained by infusing a water-immiscible liquid into a nanostructured surface chemically functionalized to have a high affinity to the infiltrated liquid and lock it in place. We develop a direct fabrication method of SLIPS on industrially relevant metals, particularly aluminum, one of the most widely used lightweight structural materials. We demonstrate that SLIPS-coated Al surfaces not only suppress ice/frost accretion by effectively removing condensed moisture but also exhibit at least an order of magnitude lower ice adhesion than state-of-the-art materials. On the basis of a theoretical analysis followed by extensive icing/deicing experiments, we discuss special advantages of SLIPS as ice-repellent surfaces: highly reduced sliding droplet sizes resulting from the extremely low contact angle hysteresis. We show that our surfaces remain essentially frost-free in which any conventional materials accumulate ice. These results indicate that SLIPS is a promising candidate for developing robust anti-icing materials for broad applications, such as refrigeration, aviation, roofs, wires, outdoor signs, railings, and wind turbines.

  11. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    NASA Astrophysics Data System (ADS)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  12. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this usingmore » inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.« less

  13. A Comprehensive Modeling Approach Towards Understanding and Prediction of the Alaskan Coastal System Response to Changes in an Ice-diminished Arctic

    DTIC Science & Technology

    2009-09-30

    and 28 day spin-up times used to generate the 3 member ensembles). In total we’ve run 120 months of simulations as part of the pan-Arctic WRF...Cassano, J.J. and M.W. Seefeldt, 2009: Polar atmospheric modeling in an Arctic system model, IAMAS-IAPSO-IACS MOCA-09 Joint Assembly , Montreal, Canada...NOAA, Seattle, WA. Maslowski, W., and J. Clement Kinney, 2009: Oceanic Heat Contribution to Arctic Sea Ice Melt, EGU , Vienna, Austria. Maslowski, W

  14. Evaluating Graphene as a Channel Material in Spintronic Logic Devices

    NASA Astrophysics Data System (ADS)

    Anugrah, Yoska

    Spintronics, a class of devices that exploit the spin properties of electrons in addition to the charge properties, promises the possibility for nonvolatile logic and memory devices that operate at low power. Graphene is a material in which the spin orientation of electrons can be conserved over a long distance, which makes it an attractive channel material in spintronics devices. In this dissertation, the properties of graphene that are interesting for spintronics applications are explored. A robust fabrication process is described for graphene spin valves using Al2O3 tunnel tunnel barriers and Co ferromagnetic contacts. Spin transport was characterized in both few-layer exfoliated and single-layer graphene, and spin diffusion lengths and spin relaxation times were extracted using the nonlocal spin valve geometry and Hanle measurements. The effect of input-output asymmetry on the spin transport was investigated. The effect of an applied drift electric field on spin transport was investigated and the spin diffusion length was found to be tunable by a factor of 8X (suppressed to 1.6 microm and enhanced to 13 microm from the intrinsic length of 4.6 microm using electric field of +/-1800 V/cm). A mechanism to induce asymmetry without excess power dissipation is also described which utilizes a double buried-gate structure to tune the Fermi levels on the input and output sides of a graphene spin logic device independently. It was found that different spin scattering mechanisms were at play in the two halves of a small graphene strip. This suggests that the spin properties of graphene are strongly affected by its local environment, e.g. impurities, surface topography, defects. Finally, two-dimensional materials beyond graphene have been explored as spin channels. One such material is phosphorene, which has low spin-orbit coupling and high mobility, and the interface properties of ferromagnets (cobalt and permalloy) with this material were explored. This work could potentially enable spin injection without the need for a physical tunnel barrier to solve the conductivity mismatch problem inherent to graphene.

  15. Spin and Valley Noise in Two-Dimensional Dirac Materials

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Saxena, A.; Smith, D. L.; Sinitsyn, N. A.

    2014-07-01

    We develop a theory for optical Faraday rotation noise in two-dimensional Dirac materials. In contrast to spin noise in conventional semiconductors, we find that the Faraday rotation fluctuations are influenced not only by spins but also the valley degrees of freedom attributed to intervalley scattering processes. We illustrate our theory with two-dimensional transition-metal dichalcogenides and discuss signatures of spin and valley noise in the Faraday noise power spectrum. We propose optical Faraday noise spectroscopy as a technique for probing both spin and valley relaxation dynamics in two-dimensional Dirac materials.

  16. Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Edsjö, J.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Savage, C.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Scott, P.; Seckel, D.; Seunarine, S.; Silverwood, H.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Te{š}ić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2016-04-01

    We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.

  17. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Subrata; Vijay, Amrendra, E-mail: avijay@iitm.ac.in

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, whichmore » is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.« less

  18. Water sprays in space retrieval operations. [for despinning or detumbling disabled spacecraft

    NASA Technical Reports Server (NTRS)

    Freesland, D. C.

    1977-01-01

    Recent experiments involving liquid jets exhausting into a vacuum have led to significant conclusions regarding techniques for detumbling and despinning disabled spacecraft during retrieval operations. A fine water spray directed toward a tumbling or spinning object may quickly form ice over its surface. The added mass of water will absorb angular momentum and slow the vehicle. As this ice sublimes it carries momentum away with it. Thus, a complete detumble or despin is possible by simply spraying water at a disabled vehicle. Experiments were conducted in a ground based vacuum chamber to determine physical properties of water-ice in a space-like environment. Additional ices, alcohol and ammonia, were also studied. An analytical analysis based on the conservation of angular momentum, resulted in despin performance parameters, i.e., total water mass requirements and despin times. The despin and retrieval of a disabled spacecraft was considered to illustrate a potential application of the water spray technique.

  19. Alternating current breakdown voltage of ice electret

    NASA Astrophysics Data System (ADS)

    Oshika, Y.; Tsuchiya, Y.; Okumura, T.; Muramoto, Y.

    2017-09-01

    Ice has low environmental impact. Our research objectives are to study the availability of ice as a dielectric insulating material at cryogenic temperatures. We focus on ferroelectric ice (iceXI) at cryogenic temperatures. The properties of iceXI, including its formation, are not clear. We attempted to obtain the polarized ice that was similar to iceXI under the applied voltage and cooling to 77 K. The polarized ice have a wide range of engineering applications as electronic materials at cryogenic temperatures. This polarized ice is called ice electret. The structural difference between ice electret and normal ice is only the positions of protons. The effects of the proton arrangement on the breakdown voltage of ice electret were shown because electrical properties are influenced by the structure of ice. We observed an alternating current (ac) breakdown voltage of ice electret and normal ice at 77 K. The mean and minimum ac breakdown voltage values of ice electret were higher than those of normal ice. We considered that the electrically weak part of the normal ice was improved by applied a direct electric field.

  20. Frustration under pressure: Exotic magnetism in new pyrochlore oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebe, C. R.; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2; Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1

    2015-04-01

    Pyrochlore structures, of chemical formula A{sub 2}B{sub 2}O{sub 7} (A and B are typically trivalent and tetravalent ions, respectively), have been the focus of much activity in the condensed matter community due to the ease of substitution of rare earth and transition metal ions upon the two interpenetrating corner-shared tetrahedral lattices. Over the last few decades, superconductivity, spin liquid states, spin ice states, glassy states in the absence of chemical disorder, and metal-insulator transitions have all been discovered in these materials. Geometric frustration plays a role in the relevant physics of all of these phenomena. In the search for newmore » pyrochlore materials, it is the R{sub A}/R{sub B} cation radius ratio which determines the stability of the lattice over the defect fluorite structure in the lower limit. Under ambient pressure, the pyrochlores are stable for 1.36 ≤ R{sub A}/R{sub B} ≤ 1.71. However, using high pressure synthesis techniques (1-10 GPa of pressure), metastable pyrochlores exist up to R{sub A}/R{sub B} = 2.30. Many of these compounds are stable on a timescale of years after synthesis, and provide a means to greatly enhance exchange, and thus test theories of quantum magnetism and search for new phenomena. Within this article, we review new pyrochlore compounds synthesized via high pressure techniques and show how the ground states are extremely sensitive to chemical pressure.« less

  1. Thermodynamics of spin ice in staggered and direct (along the [111] axis) fields in the cluster approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinenko, V. I., E-mail: zvi@iph.krasn.ru; Pavlovskii, M. S.

    We have analyzed the low-temperature thermodynamic properties of spin ice in the staggered and direct (acting along the [111] axis) fields for rare-earth oxides with the chalcolamprite structure and general formula Re{sub 2}{sup 3+}Me{sub 2}{sup 4+}O{sub 7}{sup 2-}. Calculations have been performed in the cluster approximation. The results have been compared with experimental temperature dependences of heat capacity and entropy for Dy{sub 2}Ti{sub 2}O{sub 7} compound for different values of the external field in the [111] direction. The experimental data and calculated results have also been compared for the Pr{sub 2}Ru{sub 2}O{sub 7} compound with the antiferromagnetic ordering of magneticmore » moments of ruthenium ions, which gives rise to the staggered field acting on the system of rare-earth ions. The calculated temperature dependences of heat capacity and entropy are in good agreement with experimental data.« less

  2. Study of system-size effects on the emergent magnetic monopoles and Dirac strings in artificial kagome spin ice

    NASA Astrophysics Data System (ADS)

    Leon, Alejandro

    2012-02-01

    In this work we study the dynamical properties of a finite array of nanomagnets in artificial kagome spin ice at room temperature. The dynamic response of the array of nanomagnets is studied by implementing a ``frustrated celular aut'omata'' (FCA), based in the charge model. In this model, each dipole is replaced by a dumbbell of two opposite charges, which are situated at the neighbouring vertices of the honeycomb lattice. The FCA simulations, allow us to study in real-time and deterministic way, the dynamic of the system, with minimal computational resource. The update function is defined according to the coordination number of vertices in the system. Our results show that for a set geometric parameters of the array of nanomagnets, the system exhibits high density of Dirac strings and high density emergent magnetic monopoles. A study of the effect of disorder in the arrangement of nanomagnets is incorporated in this work.

  3. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film.

    PubMed

    Yao, Wei; Wang, Eryin; Huang, Huaqing; Deng, Ke; Yan, Mingzhe; Zhang, Kenan; Miyamoto, Koji; Okuda, Taichi; Li, Linfei; Wang, Yeliang; Gao, Hongjun; Liu, Chaoxing; Duan, Wenhui; Zhou, Shuyun

    2017-01-31

    The generally accepted view that spin polarization in non-magnetic solids is induced by the asymmetry of the global crystal space group has limited the search for spintronics materials mainly to non-centrosymmetric materials. In recent times it has been suggested that spin polarization originates fundamentally from local atomic site asymmetries and therefore centrosymmetric materials may exhibit previously overlooked spin polarizations. Here, by using spin- and angle-resolved photoemission spectroscopy, we report the observation of helical spin texture in monolayer, centrosymmetric and semiconducting PtSe 2 film without the characteristic spin splitting in conventional Rashba effect (R-1). First-principles calculations and effective analytical model analysis suggest local dipole induced Rashba effect (R-2) with spin-layer locking: opposite spins are degenerate in energy, while spatially separated in the top and bottom Se layers. These results not only enrich our understanding of the spin polarization physics but also may find applications in electrically tunable spintronics.

  4. Materials science with muon spin rotation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.

  5. A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site

    USGS Publications Warehouse

    Mellon, M.T.; Boynton, W.V.; Feldman, W.C.; Arvidson, R. E.; Titus, Joshua T.N.; Bandfield, L.; Putzig, N.E.; Sizemore, H.G.

    2009-01-01

    We review multiple estimates of the ice table depth at potential Phoenix landing sites and consider the possible state and distribution of subsurface ice. A two-layer model of ice-rich material overlain by ice-free material is consistent with both the observational and theoretical lines of evidence. Results indicate ground ice to be shallow and ubiquitous, 2-6 cm below the surface. Undulations in the ice table depth are expected because of the thermodynamic effects of rocks, slopes, and soil variations on the scale of the Phoenix Lander and within the digging area, which can be advantageous for analysis of both dry surficial soils and buried ice-rich materials. The ground ice at the ice table to be sampled by the Phoenix Lander is expected to be geologically young because of recent climate oscillations. However, estimates of the ratio of soil to ice in the ice-rich subsurface layer suggest that that the ice content exceeds the available pore space, which is difficult to reconcile with existing ground ice stability and dynamics models. These high concentrations of ice may be the result of either the burial of surface snow during times of higher obliquity, initially high-porosity soils, or the migration of water along thin films. Measurement of the D/H ratio within the ice at the ice table and of the soil-to-ice ratio, as well as imaging ice-soil textures, will help determine if the ice is indeed young and if the models of the effects of climate change on the ground ice are reasonable. Copyright 2008 by the American Geophysical Union.

  6. Mutual influence between macrospin reversal order and spin-wave dynamics in isolated artificial spin-ice vertices

    DOE PAGES

    Montoncello, F.; Giovannini, L.; Bang, Wonbae; ...

    2018-01-18

    In this paper, we theoretically and experimentally investigate magnetization reversal and associated spin-wave dynamics of isolated threefold vertices that constitute a Kagome lattice. The three permalloy macrospins making up the vertex have an elliptical cross section and a uniform thickness. We study the dc magnetization curve and the frequency versus field curves (dispersions) of those spin-wave modes that produce the largest response. We also investigate each macrospin reversal from a dynamic perspective, by performing micromagnetic simulations of the reversal processes, and revealing their relationships to the soft-mode profile calculated at the equilibrium state immediately before reversal. The theoretical results aremore » compared with the measured magnetization curves and ferromagnetic resonance spectra. Finally, the agreement achieved suggests that a much deeper understanding of magnetization reversal and accompanying hysteresis can be achieved by combining theoretical calculations with static and dynamic magnetization experiments.« less

  7. Mutual influence between macrospin reversal order and spin-wave dynamics in isolated artificial spin-ice vertices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoncello, F.; Giovannini, L.; Bang, Wonbae

    In this paper, we theoretically and experimentally investigate magnetization reversal and associated spin-wave dynamics of isolated threefold vertices that constitute a Kagome lattice. The three permalloy macrospins making up the vertex have an elliptical cross section and a uniform thickness. We study the dc magnetization curve and the frequency versus field curves (dispersions) of those spin-wave modes that produce the largest response. We also investigate each macrospin reversal from a dynamic perspective, by performing micromagnetic simulations of the reversal processes, and revealing their relationships to the soft-mode profile calculated at the equilibrium state immediately before reversal. The theoretical results aremore » compared with the measured magnetization curves and ferromagnetic resonance spectra. Finally, the agreement achieved suggests that a much deeper understanding of magnetization reversal and accompanying hysteresis can be achieved by combining theoretical calculations with static and dynamic magnetization experiments.« less

  8. TOPICAL REVIEW: Sintering and microstructure of ice: a review

    NASA Astrophysics Data System (ADS)

    Blackford, Jane R.

    2007-11-01

    Sintering of ice is driven by the thermodynamic requirement to decrease surface energy. The structural morphology of ice in nature has many forms—from snowflakes to glaciers. These forms and their evolution depend critically on the balance between the thermodynamic and kinetic factors involved. Ice is a crystalline material so scientific understanding and approaches from more conventional materials can be applied to ice. The early models of solid state ice sintering are based on power law models originally developed in metallurgy. For pressure sintering of ice, these are based on work on hot isostatic pressing of metals and ceramics. Recent advances in recognizing the grain boundary groove geometry between sintering ice particles require models that use new approaches in materials science. The newer models of sintering in materials science are beginning to incorporate more realistic processing conditions and microstructural complexity, and so there is much to be gained from applying these to ice in the future. The vapour pressure of ice is high, which causes it to sublime readily. The main mechanism for isothermal sintering of ice particles is by vapour diffusion; however other transport mechanisms certainly contribute. Plastic deformation with power law creep combined with recrystallization become important mechanisms in sintering with external pressure. Modern experimental techniques, low temperature scanning electron microscopy and x-ray tomography, are providing new insights into the evolution of microstructures in ice. Sintering in the presence of a small volume fraction of the liquid phase causes much higher bond growth rates. This may be important in natural snow which contains impurities that form a liquid phase. Knowledge of ice microstructure and sintering is beneficial in understanding mechanical behaviour in ice friction and the stability of snow slopes prone to avalanches.

  9. ICE911 Research: Preserving and Rebuilding Reflective Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.; Venkatesh, S.

    2014-12-01

    We have developed a localized surface albedo modification technique that shows promise as a method to increase reflective multi-year ice using floating materials, chosen so as to have low subsidiary environmental impact. It is now well-known that multi-year reflective ice has diminished rapidly in the Arctic over the past 3 decades and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time bright ice disappears, the Arctic is losing its ability to reflect summer insolation, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over six Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. We have continued to refine our material and deployment approaches, and we have had laboratory confirmation by NASA. In the field, the materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. We are evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization, and we are concurrently developing our techniques to aid in water conservation. Localized albedo modification options such as those being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes. If this method is deployed on a large enough scale, it could conceivably bring about a reduction in the Ice-Albedo Feedback Effect, possibly slowing one of the key effects and factors in climate change.

  10. Simulating Ice Shelf Response to Potential Triggers of Collapse Using the Material Point Method

    NASA Astrophysics Data System (ADS)

    Huth, A.; Smith, B. E.

    2017-12-01

    Weakening or collapse of an ice shelf can reduce the buttressing effect of the shelf on its upstream tributaries, resulting in sea level rise as the flux of grounded ice into the ocean increases. Here we aim to improve sea level rise projections by developing a prognostic 2D plan-view model that simulates the response of an ice sheet/ice shelf system to potential triggers of ice shelf weakening or collapse, such as calving events, thinning, and meltwater ponding. We present initial results for Larsen C. Changes in local ice shelf stresses can affect flow throughout the entire domain, so we place emphasis on calibrating our model to high-resolution data and precisely evolving fracture-weakening and ice geometry throughout the simulations. We primarily derive our initial ice geometry from CryoSat-2 data, and initialize the model by conducting a dual inversion for the ice viscosity parameter and basal friction coefficient that minimizes mismatch between modeled velocities and velocities derived from Landsat data. During simulations, we implement damage mechanics to represent fracture-weakening, and track ice thickness evolution, grounding line position, and ice front position. Since these processes are poorly represented by the Finite Element Method (FEM) due to mesh resolution issues and numerical diffusion, we instead implement the Material Point Method (MPM) for our simulations. In MPM, the ice domain is discretized into a finite set of Lagrangian material points that carry all variables and are tracked throughout the simulation. Each time step, information from the material points is projected to a Eulerian grid where the momentum balance equation (shallow shelf approximation) is solved similarly to FEM, but essentially treating the material points as integration points. The grid solution is then used to determine the new positions of the material points and update variables such as thickness and damage in a diffusion-free Lagrangian frame. The grid does not store any variables permanently, and can be replaced at any time step. MPM naturally tracks the ice front and grounding line at a subgrid scale. MPM also facilitates the implementation of rift propagation in arbitrary directions, and therefore shows promise for predicting calving events. To our knowledge, this is the first application of MPM to ice flow modeling.

  11. Development of a novel nanoscratch technique for quantitative measurement of ice adhesion strength

    NASA Astrophysics Data System (ADS)

    Loho, T.; Dickinson, M.

    2018-04-01

    The mechanism for the way that ice adheres to surfaces is still not well understood. Currently there is no standard method to quantitatively measure how ice adheres to surfaces which makes ice surface studies difficult to compare. A novel quantitative lateral force adhesion measurement at the micro-nano scale for ice was created which shears micro-nano sized ice droplets (less than 3 μm in diameter and 100nm in height) using a nanoindenter. By using small ice droplets, the variables associated with bulk ice measurements were minimised which increased data repeatability compared to bulk testing. The technique provided post- testing surface scans to confirm that the ice had been removed and that measurements were of ice adhesion strength. Results show that the ice adhesion strength of a material is greatly affected by the nano-scale surface roughness of the material with rougher surfaces having higher ice adhesion strength.

  12. Aircraft Icing Handbook. (Update)

    DTIC Science & Technology

    1993-01-01

    Report 1946-1947, U. S. Air Material Command Tech. Rept. 5676. Findeisen , W., *Meteorological Commentary of D (air) 1209, Icing,* Germany, Reichsamt fur...Wetterdienst, Forschungs-und Krfahrungsberichte, Ser. a, No. 29, 1943. Findeisen , W., *Meteorological-Physical Limitations of Icing on the Atmosphere...Apparatus for Measurement,’ Harvard - Mt. Washington Icing Research Report 1946-1947, U. S. Air Material Command Tech. Rept. 5676.. Findeisen , W., "The

  13. Bulletproof Ice: How to Teach Materials Science Using Pykrete

    ERIC Educational Resources Information Center

    Riggs, Caroline

    2017-01-01

    Students make and test a seemingly impossible material made from ice and sawdust that had been developed for possible emergency use during the Second World War. It was open to the students to be creative with their methods of testing the viability of such a material. The thought of making a battleship from ice that would gradually melt seems…

  14. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials

    NASA Astrophysics Data System (ADS)

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-05-01

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4+/-4.1 to 277.5+/-30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering.

  15. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials

    PubMed Central

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-01-01

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4±4.1 to 277.5±30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering. PMID:28462937

  16. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials.

    PubMed

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun

    2017-05-02

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4±4.1 to 277.5±30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering.

  17. Material Targets for Scaling All-Spin Logic

    NASA Astrophysics Data System (ADS)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2016-01-01

    All-spin-logic devices are promising candidates to augment and complement beyond-CMOS integrated circuit computing due to nonvolatility, ultralow operating voltages, higher logical efficiency, and high density integration. However, the path to reach lower energy-delay product performance compared to CMOS transistors currently is not clear. We show that scaling and engineering the nanoscale magnetic materials and interfaces is the key to realizing spin-logic devices that can surpass the energy-delay performance of CMOS transistors. With validated stochastic nanomagnetic and vector spin-transport numerical models, we derive the target material and interface properties for the nanomagnets and channels. We identify promising directions for material engineering and discovery focusing on the systematic scaling of magnetic anisotropy (Hk ) and saturation magnetization (Ms ), the use of perpendicular magnetic anisotropy, and the interface spin-mixing conductance of the ferromagnet-spin-channel interface (Gmix ). We provide systematic targets for scaling a spin-logic energy-delay product toward 2 aJ ns, comprehending the stochastic noise for nanomagnets.

  18. Room temperature electrical spin injection into GaAs by an oxide spin injector

    PubMed Central

    Bhat, Shwetha G.; Kumar, P. S. Anil

    2014-01-01

    Spin injection, manipulation and detection are the integral parts of spintronics devices and have attracted tremendous attention in the last decade. It is necessary to judiciously choose the right combination of materials to have compatibility with the existing semiconductor technology. Conventional metallic magnets were the first choice for injecting spins into semiconductors in the past. So far there is no success in using a magnetic oxide material for spin injection, which is very important for the development of oxide based spintronics devices. Here we demonstrate the electrical spin injection from an oxide magnetic material Fe3O4, into GaAs with the help of tunnel barrier MgO at room temperature using 3-terminal Hanle measurement technique. A spin relaxation time τ ~ 0.9 ns for n-GaAs at 300 K is observed along with expected temperature dependence of τ. Spin injection using Fe3O4/MgO system is further established by injecting spins into p-GaAs and a τ of ~0.32 ns is obtained at 300 K. Enhancement of spin injection efficiency is seen with barrier thickness. In the field of spin injection and detection, our work using an oxide magnetic material establishes a good platform for the development of room temperature oxide based spintronics devices. PMID:24998440

  19. Topologically protected unidirectional edge spin waves

    NASA Astrophysics Data System (ADS)

    Wang, Xiang Rong; Wang, Xiansi; Su, Ying

    Magnetic materials are highly correlated spin systems that do not respect the time-reversal symmetry. The low-energy excitations of magnetic materials are spin waves whose quanta are magnons. Like electronic materials that can be topologically nontrivial, a magnetic material can also be topologically nontrivial with topologically protected unidirectional edge states. These edge states should be superb channels of processing and manipulating spin waves because they are robust against perturbations and geometry changes, unlike the normal spin wave states that are very sensitive to the system changes and geometry. Therefore, the magnetic topological matter is of fundamental interest and technologically useful in magnonics. Here, we show that ferromagnetically interacting spins on a two-dimensional honeycomb lattice with nearest-neighbour interactions and governed by the Landau-Lifshitz-Gilbert equation, can be topologically nontrivial with gapped bulk spin waves and gapless edge spin waves. These edge spin waves are indeed very robust against defects under topological protection. Because of the unidirectional nature of these topologically protected edge spin waves, an interesting functional magnonic device called beam splitter can be made out of a domain wall in a strip. It is shown that an in-coming spin wave beam along one edge splits into two spin wave beams propagating along two opposite directions on the other edge after passing through a domain wall. This work was supported by Hong Kong GRF Grants (Nos. 163011151 and 16301816) and the Grant from NNSF of China (No. 11374249). X.S.W acknowledge support from UESTC.

  20. Modeling Subsidence-Like Events on Cometary Nuclei

    NASA Astrophysics Data System (ADS)

    Rosenberg, Eric; Prialnik, Dina

    2017-10-01

    There is ample evidence, particularly from the Rosetta mission, that cometary nuclei have very low tensile strength. Consequently, morphological changes are expected to occur, caused by buildup of pressure due to gas release in the interior of the nucleus. Such changes have been observed on the surface of comet 67P/Churyumov-Gerasimenko, as reported for example by Groussin et al.(2015). A mechanism for explaining comet surface depressions has been recently proposed by Prialnik & Sierks (2017). Here we report on a numerical study, elaborating on this mechanism. Essentially, the model considers a cometary nucleus composed of a low-density mixture of ice and dust, assuming that the ice is amorphous and traps volatile gasses, such as CO and CO2. The model assumes that the tensile strength of the subsurface material is low and that the surface is covered by a thin crust of low permeability. As the comet evolves, the amorphous ice crystallizes, and the crystallization front recedes from the surface, releasing the trapped gasses, which accumulate beneath the surface, building up pressure. The gas pressure weakens the material strength, but sustains the gas-filled layer against hydrostatic pressure. Eventually, the gas will break its way through the outer crust in an outburst. The rapid pressure drop may cause the collapse of the gas depleted layer, as seen on the nucleus of 67P/Churyumov-Gerasimenko. This mechanism is similar to subsidence events in gas fields on earth.We have performed quasi-3D numerical simulations in an attempt to determine the extent of the area that would be affected by such a mechanism. The frequency of such subsidence events and the depth of the collapse are investigated as functions of solar angle and spin axis inclination. The necessary conditions for outburst-induced collapse are determined and confronted with observations.References:Groussin, O., Sierks, H., et al. 2015, A&A, 583, A35Prialnik, D. & Sierks, H., 2017, MNRAS, in press

  1. Versatile spin-polarized electron source

    DOEpatents

    Jozwiak, Chris; Park, Cheol -Hwan; Gotlieb, Kenneth; Louie, Steven G.; Hussain, Zahid; Lanzara, Alessandra

    2015-09-22

    One or more embodiments relate generally to the field of photoelectron spin and, more specifically, to a method and system for creating a controllable spin-polarized electron source. One preferred embodiment of the invention generally comprises: method for creating a controllable spin-polarized electron source comprising the following steps: providing one or more materials, the one or more materials having at least one surface and a material layer adjacent to said surface, wherein said surface comprises highly spin-polarized surface electrons, wherein the direction and spin of the surface electrons are locked together; providing at least one incident light capable of stimulating photoemission of said surface electrons; wherein the photon polarization of said incident light is tunable; and inducing photoemission of the surface electron states.

  2. ICE911 Research: Floating Safe Inert Materials to Preserve Ice and Conserve Water in Order to Mitigate Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.

    2015-12-01

    Ice911 Research has conducted years of field testing to develop and test localized reversible engineering techniques to mitigate the negative impacts of polar ice melt. The technology uses environmentally safe materials to reflect energy in carefully selected, limited areas from summertime polar sun. The technology is now being adapted to help with California's drought. We have tested the albedo modification technique on a small scale over seven Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small artificial pond in Minnesota about 100 ft in diameter and 6 ft deep at the center, using various materials and an evolving array of instrumentation. On the pond in Minnesota, this year's test results for ice preservation, using hollow glass spheres deployed over our largest test areas yet, showed that glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. This year Ice911 also undertook its first small Arctic field test in Barrow, Alaska on a lake in Barrow's BEO area, and results are still coming in. The technology that Ice911 has been developing for ice preservation has also been shown to keep small test areas of water cooler, in various small-scale tests spanning years. We believe that with some adaptations of the technology, the materials can be applied to reservoirs and lakes to help stretch these precious resources further in California's ongoing drought. There are several distinct advantages for this method over alternatives such as large reverse osmosis projects or building new reservoirs, which could possibly allow a drought-stricken state to build fewer of these more-costly alternatives. First, applying an ecologically benign surface treatment of Ice911's materials can be accomplished within a season, at a lower cost, with far less secondary environmental impact, than such capital-and-time-intensive infrastructure projects. Second, keeping bodies of water cooler using these floating materials could help avoid scenarios like the overheated lakes and streams that led to millions of fish killed this summer in Washington State. Third, Ice911's materials can later be removed if no longer needed, and could be repurposed to another area in need.

  3. Spectrophotometry and organic matter on Iapetus. 1: Composition models

    NASA Technical Reports Server (NTRS)

    Wilson, Peter D.; Sagan, Carl

    1995-01-01

    Iapetus shows a greater hemispheric albedo asymmetry than any other body in the solar system. Hapke scattering theory and optical constants measured in the laboratory are used to identify possible compositions for the dark material on the leading hemisphere of Iapetus. The materials considered are poly-HCN, kerogen, Murchison organic residue, Titan tholin, ice tholin, and water ice. Three-component mixtures of these materials are modeled in intraparticle mixture of 25% poly-HCN, 10% Murchison residue, and 65% water ice is found to best fit the spectrum, albedo, and phase behavior of the dark material. The Murchison residue and/or water ice can be replaced by kerogen and ice tholin, respectively, and still produce very good fits. Areal and particle mixtures of poly-HCN, Titan tholin, and either ice tholin or Murchison residue are also possible models. Poly-HCN is a necessary component in almost all good models. The presence of poly-HCN can be further tested by high-resolution observations near 4.5 micrometers.

  4. It's Tradition!

    ERIC Educational Resources Information Center

    Ogens, Eva M.; Padilla, Christine

    2012-01-01

    Making ice cream! Dissecting a cow's eye! Spinning glasses of water without spilling a drop! Investigating fingerprints! These are just samples of what elementary children did at the Jersey City Public Schools very first districtwide "Family Science Night." Although there was some stress in preparing for the evening, it turned out to be a…

  5. Ultrahigh-energy Cosmic Rays from the "En Caul" Birth of Magnetars

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Kollmeier, Juna A.

    2016-07-01

    Rapidly spinning magnetars can potentially form through the accretion induced collapse of a white dwarf or by neutron star (NS) mergers if the equation of state of the nuclear density matter is such that two low-mass NSs can form a massive NS rather than a black hole. In either case, the newborn magnetar is an attractive site for the production of ultrahigh-energy cosmic rays (particles with individual energies exceeding {10}18 {{eV}}; UHECRs). The short-period spin and strong magnetic field are able to accelerate particles up to appropriate energies, and the composition of material on and around the magnetar may naturally explain recent inferences of heavy elements in UHECRs. We explore whether the small amount of natal debris surrounding these magnetars allows UHECRs to escape easily. We also investigate the impact on the UHECRs of the unique environment around the magnetar, which consists of a bubble of relativistic particles and magnetic field within the debris. The rates and energetics of UHECRs are consistent with such an origin, even though the rates of events that produce rapidly spinning magnetars remain very uncertain. The low ejecta mass also helps the high-energy neutrino background associated with this scenario to be below current IceCube constraints over most of the magnetar parameter space. A unique prediction is that UHECRs may be generated in old stellar environments without strong star formation, in contrast to what would be expected for other UHECR scenarios, such as active galactic nuclei or long gamma-ray bursts. The “en caul” birth refers to the rare circumstance in which a newborn emerges in a fully intact amniotic sac. A birth of this nature is considered to be a sign of good fortune in many cultures. Here, we refer to the newborn magnetar similarly surrounded by a small amount of natal material and similarly fortunate as a cosmic-ray accelerator.

  6. Hypervelocity impacts into ice-topped layered targets: Investigating the effects of ice crust thickness and subsurface density on crater morphology

    NASA Astrophysics Data System (ADS)

    Harriss, Kathryn H.; Burchell, Mark J.

    2017-07-01

    Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8-5.3 km s-1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3-30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi-infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well-consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s-1) is effectively semi-infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7-15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the subsurface material. If the subsurface is noncohesive (loose) material, a crater forms in it. If it is dense, well-consolidated basalt, no crater forms in the exposed subsurface layer.

  7. Enhancing Icing Training for Pilots Through Web-Based Multimedia

    NASA Technical Reports Server (NTRS)

    Fletcher, William; Nolan, Gary; Adanich, Emery; Bond, Thomas H.

    2006-01-01

    The Aircraft Icing Project of the NASA Aviation Safety Program has developed a number of in-flight icing education and training aids designed to increase pilot awareness about the hazards associated with various icing conditions. The challenges and advantages of transitioning these icing training materials to a Web-based delivery are discussed. Innovative Web-based delivery devices increased course availability to pilots and dispatchers while increasing course flexibility and utility. These courses are customizable for both self-directed and instructor-led learning. Part of our goal was to create training materials with enough flexibility to enable Web-based delivery and downloadable portability while maintaining a rich visual multimedia-based learning experience. Studies suggest that using visually based multimedia techniques increases the effectiveness of icing training materials. This paper describes these concepts, gives examples, and discusses the transitional challenges.

  8. Roles of nonlocal conductivity on spin Hall angle measurement

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Zhang, Shufeng

    2017-10-01

    Spin Hall angle characterizes the rate of spin-charge current conversion and it has become one of the most important material parameters for spintronics physics and device application. A long-standing controversy is that the spin Hall angles for a given material measured by spin pumping and by spin Hall torque experiments are inconsistent and they could differ by as much as an order of magnitude. By using the linear response spin transport theory, we explicitly formulate the relation between the spin Hall angle and measured variables in different experiments. We find that the nonlocal conductivity inherited in the layered structure plays a key role to resolve conflicting values of the spin Hall angle. We provide a generalized scheme for extracting spin transport coefficients from experimental data.

  9. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.

    PubMed

    Mishchenko, Lidiya; Hatton, Benjamin; Bahadur, Vaibhav; Taylor, J Ashley; Krupenkin, Tom; Aizenberg, Joanna

    2010-12-28

    Materials that control ice accumulation are important to aircraft efficiency, highway and powerline maintenance, and building construction. Most current deicing systems include either physical or chemical removal of ice, both energy and resource-intensive. A more desirable approach would be to prevent ice formation rather than to fight its build-up. Much attention has been given recently to freezing of static water droplets resting on supercooled surfaces. Ice accretion, however, begins with the droplet/substrate collision followed by freezing. Here we focus on the behavior of dynamic droplets impacting supercooled nano- and microstructured surfaces. Detailed experimental analysis of the temperature-dependent droplet/surface interaction shows that highly ordered superhydrophobic materials can be designed to remain entirely ice-free down to ca. -25 to -30 °C, due to their ability to repel impacting water before ice nucleation occurs. Ice accumulated below these temperatures can be easily removed. Factors contributing to droplet retraction, pinning and freezing are addressed by combining classical nucleation theory with heat transfer and wetting dynamics, forming the foundation for the development of rationally designed ice-preventive materials. In particular, we emphasize the potential of hydrophobic polymeric coatings bearing closed-cell surface microstructures for their improved mechanical and pressure stability, amenability to facile replication and large-scale fabrication, and opportunities for greater tuning of their material and chemical properties.

  10. Chemical Evolution of Interstellar Methanol Ice Analogs upon Ultraviolet Irradiation: The Role of the Substrate

    NASA Astrophysics Data System (ADS)

    Ciaravella, A.; Jiménez-Escobar, A.; Cosentino, G.; Cecchi-Pestellini, C.; Peres, G.; Candia, R.; Collura, A.; Barbera, M.; Di Cicca, G.; Varisco, S.; Venezia, A. M.

    2018-05-01

    An important issue in the chemistry of interstellar ices is the role of dust materials. In this work, we study the effect of an amorphous water-rich magnesium silicate deposited onto ZnSe windows on the chemical evolution of ultraviolet-irradiated methanol ices. For comparison, we also irradiate similar ices deposited onto bare ZnSe windows. Silicates are produced at relatively low temperatures exploiting a sol–gel technique. The chemical composition of the synthesized material reflects the forsterite stoichiometry. Si–OH groups and magnesium carbonates are incorporated during the process. The results show that the substrate material does affect the chemical evolution of the ice. In particular, the CO2/CO ratio within the ice is larger for methanol ices deposited onto the silicate substrate as a result of concurrent effects: the photolysis of carbonates present in the adopted substrate as a source of CO2, CO, and carbon and oxygen atoms; reactions of water molecules and hydroxyl radicals released from the substrate with the CO formed in the ice by the photolysis of the methanol ice; and changes in the structure and energy of the silicate surface by ultraviolet irradiation, leading to more favorable conditions for chemical reactions or catalysis at the grain surface. The results of our experiments allow such chemical effects contributed by the various substrate material components to be disentangled.

  11. A Detailed Geophysical Investigation of the Grounding of Henry Ice Rise, with Implications for Holocene Ice-Sheet Extent.

    NASA Astrophysics Data System (ADS)

    Wearing, M.; Kingslake, J.

    2017-12-01

    It is generally assumed that since the Last Glacial Maximum the West Antarctic Ice Sheet (WAIS) has experienced monotonic retreat of the grounding line (GL). However, recent studies have cast doubt on this assumption, suggesting that the retreat of the WAIS grounding line may have been followed by a significant advance during the Holocene in the Weddell and Ross Sea sectors. Constraining this evolution is important as reconstructions of past ice-sheet extent are used to spin-up predictive ice-sheet models and correct mass-balance observations for glacial isostatic adjustment. Here we examine in detail the formation of the Henry Ice Rise (HIR), which ice-sheet model simulations suggest played a key role in Holocene ice-mass changes in the Weddell Sea sector. Observations from a high-resolution ground-based, ice-penetrating radar survey are best explained if the ice rise formed when the Ronne Ice Shelf grounded on a submarine high, underwent a period of ice-rumple flow, before the GL migrated outwards to form the present-day ice rise. We constrain the relative chronology of this evolution by comparing the alignment and intersection of isochronal internal layers, relic crevasses, surface features and investigating the dynamic processes leading to their complex structure. We also draw analogies between HIR and the neighbouring Doake Ice Rumples. The date of formation is estimated using vertical velocities derived with a phase-sensitive radio-echo sounder (pRES). Ice-sheet models suggest that the formation of the HIR and other ice rises may have halted and reversed large-scale GL retreat. Hence the small-scale dynamics of these crucial regions could have wide-reaching consequences for future ice-sheet mass changes and constraining their formation and evolution further would be beneficial. One stringent test of our geophysics-based conclusions would be to drill to the bed of HIR to sample the ice for isotopic analysis and the bed for radiocarbon analysis.

  12. Pre-activation of aerosol particles by ice preserved in pores

    NASA Astrophysics Data System (ADS)

    Marcolli, Claudia

    2017-02-01

    Pre-activation denotes the capability of particles or materials to nucleate ice at lower relative humidities or higher temperatures compared to their intrinsic ice nucleation efficiency after having experienced an ice nucleation event or low temperature before. This review presumes that ice preserved in pores is responsible for pre-activation and analyses pre-activation under this presumption. Idealized trajectories of air parcels are used to discuss the pore characteristics needed for ice to persist in pores and to induce macroscopic ice growth out of the pores. The pore width needed to keep pores filled with water decreases with decreasing relative humidity as described by the inverse Kelvin equation. Thus, narrow pores remain filled with ice well below ice saturation. However, the smaller the pore width, the larger the melting and freezing point depressions within the pores. Therefore, pre-activation due to pore ice is constrained by the melting of ice in narrow pores and the sublimation of ice from wide pores imposing restrictions on the temperature and relative humidity range of pre-activation for cylindrical pores. Ice is better protected in ink-bottle-shaped pores with a narrow opening leading to a large cavity. However, whether pre-activation is efficient also depends on the capability of ice to grow macroscopically, i.e. out of the pore. A strong effect of pre-activation is expected for swelling pores, because at low relative humidity (RH) their openings narrow and protect the ice within them against sublimation. At high relative humidities, they open up and the ice can grow to macroscopic size and form an ice crystal. Similarly, ice protected in pockets is perfectly sheltered against sublimation but needs the dissolution of the surrounding matrix to be effective. Pores partially filled with condensable material may also show pre-activation. In this case, complete filling occurs at lower RH than for empty pores and freezing shifts to lower temperatures.Pre-activation experiments confirm that materials susceptible to pre-activation are indeed porous. Pre-activation was observed for clay minerals like illite, kaolinite, and montmorillonite with inherent porosity. The largest effect was observed for the swelling clay mineral montmorillonite. Some materials may acquire porosity, depending on the formation and processing conditions. Particles of CaCO3, meteoritic material, and volcanic ash showed pre-activation for some samples or in some studies but not in other ones. Quartz and silver iodide were not susceptible to pre-activation.Atmospheric relevance of pre-activation by ice preserved in pores may not be generally given but depend on the atmospheric scenario. Lower-level cloud seeding by pre-activated particles released from high-level clouds crucially depends on the ability of pores to retain ice at the relative humidities and temperatures of the air masses they pass through. Porous particles that are recycled in wave clouds may show pre-activation with subsequent ice growth as soon as ice saturation is exceeded after having passed a first cloud event. Volcanic ash particles and meteoritic material likely influence ice cloud formation by pre-activation. Therefore, the possibility of pre-activation should be considered when ice crystal number densities in clouds exceed the number of ice-nucleating particles measured at the cloud forming temperature.

  13. Ice911: Developing an Effective Response to Climate Change in Earth's Cryosphere using High Albedo Materials

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Wadhams, P.; Root, T.; Chetty, S.; Kammen, D. M.; Venkatesh, S.; van der Heide, D.; Baum, E.

    2012-12-01

    We are developing a localized surface albedo modification technique which shows promise for preserving ice and snow using inexpensive and environmentally benign floating materials. The approach has been developed with aims including preservation of polar and glacial ice, snow, permafrost and polar habitat,and keeping water cooler, using a localized and ecologically respectful "planetary band-aid" that can be deployed quickly and can be removed once it is no longer needed. The method has been tested at small scale using various material sets over several years, including four Winter/Spring seasons at sites including California's San Francisco Bay Area and Sierra Nevada Mountains, and a Canadian lake. The materials can passively float and in granular form can be easily deployed as a "monolayer" and/or corralled in the desired locations. They have been shown to reduce solar heat absorption in the underlying water in small test pools by nearly 200 Watts/m2 in California summer daytime conditions, and 2 to 11 degree-C reductions in water temperatures have been logged over the course of a day. The materials have a cost of roughly of $11.15/kW-hour (of reflected solar energy that would otherwise have heated the underlying water) for one day. Over a two-month summer period, the materials cost would be roughly eighteen cents/kW-hour of reflected solar energy, and work is ongoing to reduce costs further. Material deployments in a sheet form were used on a California mountain lake in Winter/Spring 2010-2011 to successfully demonstrate over a larger scale that properly engineered materials are effective in aiding snow and ice retention. Over the course of several days during the melting season, we typically observed differences of 70 cm greater snow retention under a Teslin sheet compared to the uncovered control areas. However, sheets tend to act as sails, requiring special measures to remain stable. The most recent season's experimentation saw further evolution in the material and deployment approach. Small deployments were once again made on a California mountain lake, using granular biodegradable food-grade materials or glass-based materials placed in large-mesh containers. The deployments successfully shielded underlying snow and ice from melting, and remained stable in the face of the strong winds in the area. It may also be possible to select materials that are readily incorporated in new ice as it forms in the winter season. Young, or thin, ice tends to have a relatively low albedo, and the higher albedo of ice so formed with these materials incorporated could be advantageous in retaining young or thin ice. We speculate that once a critical amount of ice (or snow, permafrost, etc.) is preserved, the balance may be tipped back sufficiently to slow the overall melting rate of the cryosphere, and further intervention may not be required. Localized albedo modification options such as the one being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes, enhance the preservation of threatened species, ensure more predictable availability of drinking water, and perhaps bring about a reduction in the Ice-Albedo Feedback Effect, thus slowing some of the effects of climate change in the earth's icy regions and beyond.

  14. Laser-assisted metal spinning for an efficient and flexible processing of challenging materials

    NASA Astrophysics Data System (ADS)

    Brummer, C.; Eck, S.; Marsoner, S.; Arntz, K.; Klocke, F.

    2016-03-01

    The demand for components made from high performance materials like titanium or nickel-based alloys as well as strain-hardening stainless steel is steadily increasing. However, conventional forming operations conducted on these materials are generally very laborious and time-consuming. This is where the limitations of metal spinning also become apparent. Using a laser to apply heat localized to the forming zone during metal spinning facilitates to enhance the formability of a material. In order to analyse the potential of the new manufacturing process, experimental investigations on laser-assisted shear forming and multi-pass metal spinning have been performed with austenitic stainless steel X5CrNi18-10, nickel-based alloy Inconel 718 and titanium grade 2. It could be demonstrated that the formability of these materials can be enhanced by laser-assistance. Besides the resulting enhancement of forming limits for metal spinning of challenging materials, the forming forces were reduced and the product quality was improved significantly.

  15. Amazonian mid- to high-latitude glaciation on Mars: Supply-limited ice sources, ice accumulation patterns, and concentric crater fill glacial flow and ice sequestration

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.

    2014-02-01

    Concentric crater fill (CCF) occurs in the interior of impact craters in mid- to high latitudes on Mars and is interpreted to have formed by glacial ice flow and debris covering. We use the characteristics and orientation of deposits comprising CCF, the thickness of pedestal deposits in mid- to high-latitude pedestal craters (Pd), the volumes of the current polar caps, and information about regional slopes and ice rheology to address questions about (1) the maximum thickness of regional ice deposits during the Late Amazonian, (2) the likelihood that these deposits flowed regionally, (3) the geological regions and features most likely to induce ice-flow, and (4) the locations and environments in which ice is likely to have been sequestered up to the present. We find that regional ice flow under Late Amazonian climate conditions requires ice thicknesses exceeding many hundreds of meters for slopes typical of the vast majority of the surface of Mars, a thickness for the mid-latitudes that is well in excess of the total volume available from polar ice reservoirs. This indicates that although conditions for mid- to high-latitude glaciation may have persisted for tens to hundreds of millions of years, the process is “supply limited”, with a steady state reached when the polar ice cap water ice supply becomes exhausted. Impact craters are by far the most abundant landform with associated slopes (interior wall and exterior rim) sufficiently high to induce glacial ice flow under Late Amazonian climate conditions, and topographic slope data show that Amazonian impact craters have been clearly modified, undergoing crater interior slope reduction and floor shallowing. We show that these trends are the predictable response of ice deposition and preferential accumulation and retention in mid- to high-latitude crater interiors during episodes of enhanced spin-axis obliquity. We demonstrate that flow from a single episode of an inter-crater terrain layer comparable to Pedestal Crater deposit thicknesses (~50 m) cannot fill the craters in a time period compatible with the interpreted formation times of the Pedestal Crater mantled ice layers. We use a representative obliquity solution to drive an ice flow model and show that a cyclical pattern of multiply recurring layers can both fill the craters with a significant volume of ice, as well as transport debris from the crater walls out into the central regions of the craters. The cyclical pattern of waxing and waning mantling layers results in a rippled pattern of surface debris extending out into the crater interiors that would manifest itself as an observable concentric pattern, comparable in appearance to concentric crater fill. In this scenario, the formation of mantling sublimation till layers seals the accumulating ice and sequesters it from significant temperature variations at diurnal, annual and spin-axis/orbital cycle time scales, to produce ancient ice records preserved today below CCF crater floors. Lack of meltwater features associated with concentric crater fill provides evidence that the Late Amazonian climate did not exceed the melting temperature in the mid- to high-latitudes for any significant period of time. Continued sequestration of ice with time in CCF and related deposits (lobate debris aprons and lineated valley fill) further reduces the already supply-limited polar ice sources, suggesting that there has been a declining reservoir of available ice with each ensuing glacial period. Together, these deposits represent a candidate library of climate chemistry and global change dating from the Late Amazonian, and a non-polar water resource for future exploration.

  16. An Ice Protection and Detection Systems Manufacturer's Perspective

    NASA Technical Reports Server (NTRS)

    Sweet, Dave

    2009-01-01

    Accomplishments include: World Class Aircraft Icing Research Center and Facility. Primary Sponsor/Partner - Aircraft Icing Consortia/Meetings. Icing Research Tunnel. Icing Test Aircraft. Icing Codes - LEWICE/Scaling, et al. Development of New Technologies (SBIR, STTR, et al). Example: Look Ahead Ice Detection. Pilot Training Materials. Full Cooperation with Academia, Government and Industry.

  17. Ice911 Research: Preserving and Rebuilding Multi-Year Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.

    2013-12-01

    A localized surface albedo modification technique is being developed that shows promise as a method to increase multi-year ice using reflective floating materials, chosen so as to have low subsidiary environmental impact. Multi-year ice has diminished rapidly in the Arctic over the past 3 decades (Riihela et al, Nature Climate Change, August 4, 2013) and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time ice disappears, the Arctic is losing its ability to act as the earth's refrigeration system, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat, and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over five Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. Climate modeling is underway to analyze the effects of this method of surface albedo modification in key areas on the rate of oceanic and atmospheric temperature rise. We are also evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization. This paper will also discuss a possible reduction of sea level rise with an eye to quantification of cost/benefit. The most recent season's experimentation on a man-made private lake in Minnesota saw further evolution in the material and deployment approach. The materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. Localized albedo modification options such as the one being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes. If this method could be deployed on a large enough scale, it could conceivably bring about a reduction in the Ice-Albedo Feedback Effect, possibly slowing one of the key effects and factors in climate change. Test site at man-made lake in Minnesota 2013

  18. Possible fossil H2O liquid-ice interfaces in the Martian crust

    USGS Publications Warehouse

    Soderblom, L.A.; Wenner, D.B.

    1978-01-01

    Throughout the northern equatorial region of Mars, extensive areas have been uniformly stripped, roughly to a constant depth. These terrains vary widely in their relative ages. A model is described here to explain this phenomenon as reflecting the vertical distribution of H2O liquid and ice in the crust. Under present conditions the Martian equatorial regions are stratified in terms of the stability of water ice and liquid water. This arises because the temperature of the upper 1 or 2 km is below the melting point of ice and liquid is stable only at greater depth. It is suggested here that during planetary outgassing earlier in Martian history H2O was injected into the upper few kilometers of the crust by subsurface and surface volcanic eruption and lateral migration of the liquid and vapor. As a result, a discontinuity in the physical state of materials developed in the Martian crust coincident with the depth of H2O liquid-ice phase boundary. Material above the boundary remained pristine; material below underwent diagenetic alteration and cementation. Subsequently, sections of the ice-laden zone were erosionally stripped by processes including eolian deflation, gravitational slump and collapse, and fluvial transport due to geothermal heating and melting of the ice. The youngest plains which display this uniform stripping may provide a minimum stratigraphic age for the major period of outgassing of the planet. Viking results suggest that the total amount of H2O outgassed is less than half that required to fill the ice layer, hence any residual liquid eventually found itself in the upper permafrost zone or stored in the polar regions. Erosion stopped at the old liquid-ice interface due to increased resistance of subjacent material and/or because melting of ice was required to mobilize the debris. Water ice may remain in uneroded regions, the overburden of debris preventing its escape to the atmosphere. Numerous morphological examples shown in Viking and Mariner 9 images suggest interaction of impact, volcanic, and gravitational processes with the ice-laden layer. Finally, volcanic eruptions into ice produces a highly oxidized friable amorphous rock, palagonite. Based on spectral reflectance properties, these materials may provide the best analog to Martian surface materials. They are easily eroded, providing vast amounts of eolian debris, and have been suggested (Toulmin et al., 1977) as possible source rocks for the materials observed at the Viking landing sites. ?? 1978.

  19. Current driven dynamics of magnetic domain walls in permalloy nanowires

    NASA Astrophysics Data System (ADS)

    Hayashi, Masamitsu

    The significant advances in micro-fabrication techniques opened the door to access interesting properties in solid state physics. With regard to magnetic materials, geometrical confinement of magnetic structures alters the defining parameters that govern magnetism. For example, development of single domain nano-pillars made from magnetic multilayers led to the discovery of electrical current controlled magnetization switching, which revealed the existence of spin transfer torque. Magnetic domain walls (DWs) are boundaries in magnetic materials that divide regions with distinct magnetization directions. DWs play an important role in the magnetization reversal processes of both bulk and thin film magnetic materials. The motion of DW is conventionally controlled by magnetic fields. Recently, it has been proposed that spin polarized current passed across the DW can also control the motion of DWs. Current in most magnetic materials is spin-polarized, due to spin-dependent scattering of the electrons, and thus can deliver spin angular momentum to the DW, providing a "spin transfer" torque on the DW which leads to DW motion. In addition, owing to the development of micro-fabrication techniques, geometrical confinement of magnetic materials enables creation and manipulation of a "single" DW in magnetic nanostructures. New paradigms for DW-based devices are made possible by the direct manipulation of DWs using spin polarized electrical current via spin transfer torque. This dissertation covers research on current induced DW motion in magnetic nanowires. Fascinating effects arising from the interplay between DWs with spin polarized current will be revealed.

  20. NASA Soil Moisture Mapper Takes First SMAPshots

    NASA Image and Video Library

    2015-03-09

    Fresh off the recent successful deployment of its 20-foot (6-meter) reflector antenna and associated boom arm, NASA's new Soil Moisture Active Passive (SMAP) observatory has successfully completed a two-day test of its science instruments. On Feb. 27 and 28, SMAP's radar and radiometer instruments were successfully operated for the first time with SMAP's antenna in a non-spinning mode. The test was a key step in preparation for the planned spin-up of SMAP's antenna to approximately 15 revolutions per minute in late March. The spin-up will be performed in a two-step process after additional tests and maneuvers adjust the observatory to its final science orbit over the next couple of weeks. Based on the data received, mission controllers at NASA's Jet Propulsion Laboratory, Pasadena, California; and NASA's Goddard Space Flight Center, Greenbelt, Maryland; concluded that the radar and radiometer performed as expected. SMAP launched Jan. 31 on a minimum three-year mission to map global soil moisture and detect whether soils are frozen or thawed. The mission will help scientists understand the links in Earth's water, energy and carbon cycles, help reduce uncertainties in predicting weather and climate, and enhance our ability to monitor and predict natural hazards such as floods and droughts The first test image illustrates the significance of SMAP's spinning instrument design. For this initial test with SMAP's antenna not yet spinning, the observatory's measurement swath width -- the strips observed on Earth in the image -- was limited to 25 miles (40 kilometers). When fully spun up and operating, SMAP's antenna will measure a 620-mile-wide (1,000-kilometer) swath of the ground as it flies above Earth at an altitude of 426 miles (685 kilometers). This will allow SMAP to map the entire globe with high-resolution radar data every two to three days, filling in all of the land surface detail that is not available in this first image. The radar data illustrated in the upper panel of the image show a clear contrast between land and ocean surfaces. The Amazon and Congo forests in South America and Africa, respectively, produced strong radar echoes due to their large biomass and water content. Areas with no vegetation and low soil moisture, such as the Sahara Desert, yielded weaker radar echoes. As expected, the dry snow zone in central Greenland, the largest zone of the Greenland ice sheet where snow does not melt year-round, produced weaker radar echoes. Surrounding areas in Greenland's percolation zone, where some meltwater penetrates down into glaciers and refreezes, had strong radar echoes due to ice lens and glands within the ice sheet. Ice lenses form when moisture that is diffused within soil or rock accumulates in a localized zone. Ice glands are columns of ice in the granular snow at the top of glaciers. The test shows that SMAP's radiometer is performing well. The radiometer's brightness temperature data are illustrated in the lower panel. Brightness temperature is a measurement of how much natural microwave radiant energy is traveling up from Earth's surface to the satellite. The contrast between land and ocean surface brightness temperatures is clear, as they are in the radar image. The Sahara Desert has high brightness temperatures because it is so hot and has low soil moisture content. The India subcontinent is currently in its dry season and therefore also has high brightness temperatures. Some regions, such as the northeast corner of Australia, showed low brightness temperatures, likely due to the high moisture content of the soil after heavy rainfall from Cyclone Marcia in late February. http://photojournal.jpl.nasa.gov/catalog/PIA19236

  1. On the nature of the solvated electron in ice Ih.

    PubMed

    de Koning, Maurice; Fazzio, Adalberto; da Silva, Antônio José Roque; Antonelli, Alex

    2016-02-14

    The water-solvated excess electron (EE) is a key chemical agent whose hallmark signature, its asymmetric optical absorption spectrum, continues to be a topic of debate. While nearly all investigation has focused on the liquid-water solvent, the fact that the crystalline-water solvated EE shows a very similar visible absorption pattern has remained largely unexplored. Here, we present spin-polarized density-functional theory calculations subject to periodic boundary conditions of the interplay between an EE and a number of intrinsic lattice defects in ice Ih. Our results show that the optical absorption signatures in the presence of three unsaturated hydrogen bonds (HB) are very similar to those observed experimentally. Its low-energy side can be attributed to transitions between the EE ground state and a single localized excited level, in a picture that is different from that for the liquid solvent, where this portion has been associated with hydrogen-like s → p excitations. The blue tail, on the other hand, relates to transitions between the EE ground state and delocalized excited states, which is in line with the bound-to-continuum transition interpretations for the EE in liquid water. Finally, we find that, depending on the number of dangling HBs participating in the EE trap, its charge density may spontaneously break the spin degeneracy through exchange interactions with the surrounding electrons, displaying the many-electron quantum nature of the EE problem in ice Ih.

  2. 10 CFR 431.133 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers Test Procedures § 431.133 Materials..., (“AHRI 810”), Performance Rating of Automatic Commercial Ice-Makers, March 2011; IBR approved for §§ 431... Automatic Ice Makers, (including Errata Sheets issued April 8, 2010 and April 21, 2010), approved January 28...

  3. 10 CFR 431.133 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers Test Procedures § 431.133 Materials..., (“AHRI 810”), Performance Rating of Automatic Commercial Ice-Makers, March 2011; IBR approved for §§ 431... Automatic Ice Makers, (including Errata Sheets issued April 8, 2010 and April 21, 2010), approved January 28...

  4. From ice-binding proteins to bio-inspired antifreeze materials.

    PubMed

    Voets, I K

    2017-07-19

    Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented.

  5. First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride

    NASA Astrophysics Data System (ADS)

    Jiao, Yalong; Ma, Fengxian; Zhang, Chunmei; Bell, John; Sanvito, Stefano; Du, Aijun

    2017-07-01

    Spin-polarized materials with Dirac features have sparked great scientific interest due to their potential applications in spintronics. But such a type of structure is very rare and none has been fabricated. Here, we investigate the already experimentally synthesized manganese fluoride (MnF3 ) as a novel spin-polarized Dirac material by using first-principles calculations. MnF3 exhibits multiple Dirac cones in one spin orientation, while it behaves like a large gap semiconductor in the other spin channel. The estimated Fermi velocity for each cone is of the same order of magnitude as that in graphene. The 3D band structure further reveals that MnF3 possesses rings of Dirac nodes in the Brillouin zone. Such a spin-polarized multiple Dirac ring feature is reported for the first time in an experimentally realized material. Moreover, similar band dispersions can be also found in other transition metal fluorides (e.g., CoF3 , CrF3 , and FeF3 ). Our results highlight a new interesting single-spin Dirac material with promising applications in spintronics and information technologies.

  6. First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride.

    PubMed

    Jiao, Yalong; Ma, Fengxian; Zhang, Chunmei; Bell, John; Sanvito, Stefano; Du, Aijun

    2017-07-07

    Spin-polarized materials with Dirac features have sparked great scientific interest due to their potential applications in spintronics. But such a type of structure is very rare and none has been fabricated. Here, we investigate the already experimentally synthesized manganese fluoride (MnF_{3}) as a novel spin-polarized Dirac material by using first-principles calculations. MnF_{3} exhibits multiple Dirac cones in one spin orientation, while it behaves like a large gap semiconductor in the other spin channel. The estimated Fermi velocity for each cone is of the same order of magnitude as that in graphene. The 3D band structure further reveals that MnF_{3} possesses rings of Dirac nodes in the Brillouin zone. Such a spin-polarized multiple Dirac ring feature is reported for the first time in an experimentally realized material. Moreover, similar band dispersions can be also found in other transition metal fluorides (e.g., CoF_{3}, CrF_{3}, and FeF_{3}). Our results highlight a new interesting single-spin Dirac material with promising applications in spintronics and information technologies.

  7. Possible fossil H2O liquid-ice interfaces in the Martian crust

    NASA Technical Reports Server (NTRS)

    Soderblom, L. A.; Wenner, D. B.

    1978-01-01

    The extensive chaotic and fretted terrains in the equatorial regions of Mars are explained on the basis of the vertical distribution of H2O liquid and ice which once existed in the crust. This account assumes that below the permafrost containing water ice, there was a second zone in which liquid water resided for at least a time. Diagenetic alteration and cementation characterized the material in the subpermafrost zone; above, pristine fragmented material with various ice concentrations was found. Later, the ice-laden zone was stripped away by a number of erosional processes, exposing the former ice-liquid water interface.

  8. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  9. Performance and durability tests of smart icephobic coatings to reduce ice adhesion

    NASA Astrophysics Data System (ADS)

    Janjua, Zaid A.; Turnbull, Barbara; Choy, Kwang-Leong; Pandis, Christos; Liu, Junpeng; Hou, Xianghui; Choi, Kwing-So

    2017-06-01

    The accretion of ice can cause damage in applications ranging from power lines and shipping decks, to wind turbines and rail infrastructure. In particular on aircraft, it can change aerodynamic characteristics, greatly affecting the flight safety. Commercial aircraft are therefore required to be equipped with de-icing devices, such as heating mats over the wings. The application of icephobic coatings near the leading edge of a wing can in theory reduce the high power requirements of heating mats, which melt ice that forms there. Such coatings are effective in preventing the accretion of runback ice, formed from airborne supercooled droplets, or the water that the heating mats generate as it is sheared back over the wing's upper surface. However, the durability and the practicality of applying them over a large wing surface have been prohibitive factors in deploying this technology so far. Here, we evaluated the ice adhesion strength of four non-conductive coatings and seven thermally conductive coatings by shearing ice samples from coated plates by spinning them in a centrifuge device. The durability of the coating performance was also assessed by repeating the tests, each time regrowing ice samples on the previously-used coatings. Contact angle parameters of each coating were tested for each test to determine influence on ice adhesion strength. The results indicate that contact angle hysteresis is a crucial parameter in determining icephobicity of a coating and hydrophobicity is not necessarily linked to icephobicity.

  10. Spin coating of electrolytes

    DOEpatents

    Stetter, Joseph R.; Maclay, G. Jordan

    1989-01-01

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  11. Ice Nucleation Properties of Oxidized Carbon Nanomaterials

    PubMed Central

    2015-01-01

    Heterogeneous ice nucleation is an important process in many fields, particularly atmospheric science, but is still poorly understood. All known inorganic ice nucleating particles are relatively large in size and tend to be hydrophilic. Hence it is not obvious that carbon nanomaterials should nucleate ice. However, in this paper we show that four different readily water-dispersible carbon nanomaterials are capable of nucleating ice. The tested materials were carboxylated graphene nanoflakes, graphene oxide, oxidized single walled carbon nanotubes and oxidized multiwalled carbon nanotubes. The carboxylated graphene nanoflakes have a diameter of ∼30 nm and are among the smallest entities observed so far to nucleate ice. Overall, carbon nanotubes were found to nucleate ice more efficiently than flat graphene species, and less oxidized materials nucleated ice more efficiently than more oxidized species. These well-defined carbon nanomaterials may pave the way to bridging the gap between experimental and computational studies of ice nucleation. PMID:26267196

  12. Cometary Materials Originating from Interstellar Ices: Clues from Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Fresneau, A.; Abou Mrad, N.; d'Hendecourt, L. LS; Duvernay, F.; Flandinet, L.; Orthous-Daunay, F.-R.; Vuitton, V.; Thissen, R.; Chiavassa, T.; Danger, G.

    2017-03-01

    We use laboratory experiments to derive information on the chemistry occurring during the evolution of astrophysical ices from dense molecular clouds to interplanetary objects. Through a new strategy that consists of coupling very high resolution mass spectrometry and infrared spectroscopy (FT-IR), we investigate the molecular content of the organic residues synthesized from different initial ice compositions. We also obtain information on the evolution of the soluble part of the residues after their over-irradiation. The results give insight into the role of water ice as a trapping and diluting agent during the chemical evolution. They also give information about the importance of the amount of ammonia in such ices, particularly regarding its competition with the carbon chemistry. All of these results allow us to build a first mapping of the evolution of soluble organic matter based on its chemical and physical history. Furthermore, our results suggest that interstellar ices should lead to organic materials enriched in heteroatoms that present similarities with cometary materials but strongly differ from meteoritic organic material, especially in their C/N ratios.

  13. ORTHO-TO-PARA ABUNDANCE RATIO OF WATER ION IN COMET C/2001 Q4 (NEAT): IMPLICATION FOR ORTHO-TO-PARA ABUNDANCE RATIO OF WATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Kobayashi, Hitomi

    2012-04-20

    The ortho-to-para abundance ratio (OPR) of cometary molecules is considered to be one of the primordial characteristics of cometary ices, and contains information concerning their formation. Water is the most abundant species in cometary ices, and OPRs of water in comets have been determined from infrared spectroscopic observations of H{sub 2}O rovibrational transitions so far. In this paper, we present a new method to derive OPR of water in comets from the high-dispersion spectrum of the rovibronic emission of H{sub 2}O{sup +} in the optical wavelength region. The rovibronic emission lines of H{sub 2}O{sup +} are sometimes contaminated by othermore » molecular emission lines but they are not affected seriously by telluric absorption compared with near-infrared observations. Since H{sub 2}O{sup +} ions are mainly produced from H{sub 2}O by photoionization in the coma, the OPR of H{sub 2}O{sup +} is considered to be equal to that of water based on the nuclear spin conservation through the reaction. We have developed a fluorescence excitation model of H{sub 2}O{sup +} and applied it to the spectrum of comet C/2001 Q4 (NEAT). The derived OPR of water is 2.54{sup +0.32}{sub -0.25}, which corresponds to a nuclear spin temperature (T{sub spin}) of 30{sup +10}{sub -4} K. This is consistent with the previous value determined in the near-infrared for the same comet (OPR = 2.6 {+-} 0.3, T{sub spin} = 31{sup +11}{sub -5} K).« less

  14. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes

    NASA Astrophysics Data System (ADS)

    Avsar, Ahmet; Tan, Jun Y.; Kurpas, Marcin; Gmitra, Martin; Watanabe, Kenji; Taniguchi, Takashi; Fabian, Jaroslav; Özyilmaz, Barbaros

    2017-09-01

    Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron's spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of two-dimensional semiconductors could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (~5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott-Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.

  15. Inertial effects in systems with magnetic charge

    NASA Astrophysics Data System (ADS)

    Armitage, N. P.

    2018-05-01

    This short article sets out some of the basic considerations that go into detecting the mass of quasiparticles with effective magnetic charge in solids. Effective magnetic charges may be appear as defects in particular magnetic textures. A magnetic monopole is a defect in this texture and as such these are not monopoles in the actual magnetic field B, but instead in the auxiliary field H. They may have particular properties expected for such quasiparticles such as magnetic charge and mass. This effective mass may-in principle-be detected in the same fashion that the mass is detected of other particles classically e.g. through their inertial response to time-dependent electromagnetic fields. I discuss this physics in the context of the "simple" case of the quantum spin ices, but aspects are broadly applicable. Based on extensions to Ryzkhin's model for classical spin ice, a hydrodynamic formulation can be given that takes into account inertial and entropic forces. Ultimately, a form for the susceptibility is obtained that is equivalent to the Rocard equation, which is a classic form used to account for inertial effects in the context of Debye-like relaxation.

  16. From ice-binding proteins to bio-inspired antifreeze materials

    PubMed Central

    Voets, I. K.

    2017-01-01

    Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented. PMID:28657626

  17. Characterization of Al 2219 material for the application of the spin-forming-process

    NASA Astrophysics Data System (ADS)

    Mueller-Wiesner, D.; Sieger, E.; Ernsberger, K.

    1991-10-01

    The shells of the propellant tanks of the Ariane 5 EPS stage are to be manufactured by the spin forming process. The material for the shells (hemispheres) is the aluminum alloy 2219. By a material characterization program optimized parameters for the application of the forming process starting from different material conditions (T31 temper and '0' condition) are determined. Based on the results of this program it was decided to start spin forming in the '0' condition for flight hardware.

  18. Impact and Collisional Processes in the Solar System

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2001-01-01

    In the past year, we have successfully developed the techniques necessary to conduct impact experiments on ice at very low temperatures. We employ the method of embedding gauges within a target to measure the shock wave and material properties. This means that our data are not model dependent; we directly measure the essential parameters needed for numerical simulations of impact cratering. Since then we have developed a new method for temperature control of icy targets that ensures temperature equilibrium throughout a porous target. Graduate student, Sarah Stewart-Mukhopadhyay, is leading the work on ices and porous materials as the main thrust of her thesis research. Our previous work has focused on icy materials with no porosity, and we propose to extend our research to include porous ice and porous ice-silicate mixtures. There is little shockwave data for porous ice, and none of the data was acquired under conditions applicable to the outer solar system. The solid ice Hugoniot is only defined for initial temperatures above -20 C. Our program uniquely measures the properties of ice at temperatures directly applicable to the solar system. Previous experiments were conducted at ambient temperatures soon after removing the target from a cold environment, usually just below freezing, or in a room just below freezing. Since ice has an extremely complicated phase diagram, it is important to conduct experiments at lower temperatures to determine the true outcome of impacts in the outer solar system. This research is complementary to other programs on icy materials. Our work focuses on the inherent material properties by measuring the shock wave directly; this complements the macroscopic observations and immediately provides the parameters necessary to extend this research to the gravity regime. Our numerical simulations of impacts in porous ice under very low gravity conditions, such as found on comets, show that the final crater size and shape is very dependent on the dynamic strength of the material.

  19. Microorganisms Trapped Within Permafrost Ice In The Fox Permafrost Tunnel, Alaska

    NASA Astrophysics Data System (ADS)

    Katayama, T.; Tanaka, M.; Douglas, T. A.; Cai, Y.; Tomita, F.; Asano, K.; Fukuda, M.

    2008-12-01

    Several different types of massive ice are common in permafrost. Ice wedges are easily recognized by their shape and foliated structure. They grow syngenetically or epigenetically as a result of repeated cycles of frost cracking followed by the infiltration of snow, melt water, soil or other material into the open frost cracks. Material incorporated into ice wedges becomes frozen and preserved. Pool ice, another massive ice type, is formed by the freezing of water resting on top of frozen thermokarst sediment or melting wedges and is not foliated. The Fox Permafrost Tunnel in Fairbanks was excavated within the discontinuous permafrost zone of central Alaska and it contains permafrost, ice wedges, and pool ice preserved at roughly -3°C. We collected samples from five ice wedges and three pool ice structures in the Fox Permafrost Tunnel. If the microorganisms were incorporated into the ice during its formation, a community analysis of the microorganisms could elucidate the environment in which the ice was formed. Organic material from sediments in the tunnel was radiocarbon-dated between 14,000 and 30,000 years BP. However, it is still not clear when the ice wedges were formed or subsequently deformed because they are only partially exposed and their upper surfaces are above the tunnel walls. The objectives of our study were to determine the biogeochemical conditions during massive ice formation and to analyze the microbial community within the ices by incubation-based and DNA-based analyses. The geochemical profile and the PCR-DGGE band patterns of bacteria among five ice wedge and 3 portions of pool ice samples were markedly different. The DGGE band patterns of fungi were simple with a few bands of fungi or yeast. The dominant bands of ice wedge and pool ice samples were affiliated with the genus Geomyces and Doratomyces, respectively. Phylogenetic analysis using rRNA gene ITS regions indicated isolates of Geomyces spp. from different ice wedges were affiliated with different clusters. The enumeration of fungal colonies among the ice wedge and pool ice samples were also different. These results demonstrate that different massive ice structures had different microbial and geochemical environments or backgrounds when they were formed.

  20. Coulomb spin liquid in anion-disordered pyrochlore Tb 2Hf 2O 7

    DOE PAGES

    Sibille, Romain; Lhotel, Elsa; Hatnean, Monica Ciomaga; ...

    2017-10-12

    Here, the charge ordered structure of ions and vacancies characterizing rare-earth pyrochlore oxides serves as a model for the study of geometrically frustrated magnetism. The organization of magnetic ions into networks of corner-sharing tetrahedra gives rise to highly correlated magnetic phases with strong fluctuations, including spin liquids and spin ices. It is an open question how these ground states governed by local rules are affected by disorder. Here we demonstrate in the pyrochlore Tb 2Hf 2O 7, that the vicinity of the disordering transition towards a defective fluorite structure translates into a tunable density of anion Frenkel disorder while cationsmore » remain ordered. Quenched random crystal fields and disordered exchange interactions can therefore be introduced into otherwise perfect pyrochlore lattices of magnetic ions. We show that disorder can play a crucial role in preventing long-range magnetic order at low temperatures, and instead induces a strongly fluctuating Coulomb spin liquid with defect-induced frozen magnetic degrees of freedom.« less

  1. Non-metal spintronics: study of spin-dependent transport in InSb- and InAs-based nanopatterned heterostructures

    NASA Astrophysics Data System (ADS)

    Heremans, J. J.; Chen, Hong; Peters, J. A.; Goel, N.; Chung, S. J.; Santos, M. B.; van Roy, W.; Borghs, G.

    2006-03-01

    Spin-orbit interaction in semiconductor heterostructures can lead to various spin-dependent electronic transport effects without the presence of magnetic materials. Mesoscopic samples were fabricated on InSb/InAlSb and InAs/AlGaSb two-dimensional electron systems, where spin-orbit interaction is strong. In mesoscopic devices, the effects of spin-orbit interaction are not averaged out over the geometry, and lead to observable electronic properties. We experimentally demonstrate spin-split ballistic transport and the creation of fully spin-polarized electron beams using spin-dependent reflection geometries and transverse magnetic focusing geometries. Spin-dependent transport properties in the semiconductor materials are also investigated using antidot lattices. Spin-orbit interaction effects in high-mobility semiconductor devices may be utilized toward the design of novel spintronics implementations. We acknowledge NSF DMR-0094055 (JJH), DMR-0080054, DMR-0209371 (MBS).

  2. Structural properties of impact ices accreted on aircraft structures

    NASA Technical Reports Server (NTRS)

    Scavuzzo, R. J.; Chu, M. L.

    1987-01-01

    The structural properties of ice accretions formed on aircraft surfaces are studied. The overall objectives are to measure basic structural properties of impact ices and to develop finite element analytical procedures for use in the design of all deicing systems. The Icing Research Tunnel (IRT) was used to produce simulated natural ice accretion over a wide range of icing conditions. Two different test apparatus were used to measure each of the three basic mechanical properties: tensile, shear, and peeling. Data was obtained on both adhesive shear strength of impact ices and peeling forces for various icing conditions. The influences of various icing parameters such as tunnel air temperature and velocity, icing cloud drop size, material substrate, surface temperature at ice/material interface, and ice thickness were studied. A finite element analysis of the shear test apparatus was developed in order to gain more insight in the evaluation of the test data. A comparison with other investigators was made. The result shows that the adhesive shear strength of impact ice typically varies between 40 and 50 psi, with peak strength reaching 120 psi and is not dependent on the kind of substrate used, the thickness of accreted ice, and tunnel temperature below 4 C.

  3. The Dorsa Argentea Formation and the Noachian-Hesperian climate transition

    NASA Astrophysics Data System (ADS)

    Scanlon, K. E.; Head, J. W.; Fastook, J. L.; Wordsworth, R. D.

    2018-01-01

    The Dorsa Argentea Formation (DAF), a set of geomorphologic units covering ∼1.5 million square kilometers in the south circumpolar region of Mars, has been interpreted as the remnants of a large south polar ice sheet that formed near the Noachian-Hesperian boundary and receded in the early Hesperian. Determining the extent and thermal regime of the DAF ice sheet, as well as the mechanism and timing of its recession, can therefore provide insight into the ancient martian climate and the timing of the transition from a presumably thicker CO2 atmosphere to the present climate. We used the Laboratoire de Météorologie Dynamique (LMD) early Mars global climate model (GCM) and the University of Maine Ice Sheet Model (UMISM) glacial flow model to constrain climates allowing development of a south polar ice sheet of DAF-like size and shape. In addition, we modeled basal melting of this ice sheet in amounts and locations consistent with observed glaciofluvial landforms. A large, asymmetric region of ice stability surrounding the south pole is a robust feature of GCM simulations with spin-axis obliquity of 15° or 25° and a 600-1000 mb CO2 atmosphere. The shape results from the large-scale south polar topography of Mars and the strong dependence of surface temperature on altitude under a thicker atmosphere. Of the scenarios considered in this study, the extent of the modeled DAF ice sheet in UMISM simulations most closely matches that of the DAF when the surface water ice inventory of Mars is a ∼137 m global equivalent layer (GEL) and spin-axis obliquity is 15°. In climates warmed only by CO2, significant basal melting does not occur except when the ice inventory is larger than plausible estimates for early Mars. In this case, the extent of the south polar ice sheet is also much larger than that of the DAF, and basal melting is more widespread than observed landforms indicate. When an idealized greenhouse gas warms the surface by at least 20°C near the poles relative to CO2 alone, the stable extent of the ice sheet is less than that of the DAF units, but widespread basal melting occurs, with maxima in the locations where eskers are currently observed. We therefore conclude that warming by a gas other than CO2 alone was necessary to enable the construction of glaciofluvial landforms in the DAF. Previously published crater exposure ages of eskers in the DAF indicate that eskers were being exposed as activity was ceasing in the equatorial valley networks, suggesting that the warming that allowed basal melting at the edges of the DAF ice sheet were broadly contemporaneous with those in which the valley networks were carved. Finally, elevated Tharsis topography is required to produce an ice sheet with the shape of the DAF. Thus, our results are not consistent with the DAF (and the valley networks) forming before the emplacement of Tharsis, as recently suggested.

  4. Spin pumping and inverse spin Hall effects in heavy metal/antiferromagnet/Permalloy trilayers

    NASA Astrophysics Data System (ADS)

    Saglam, Hilal; Zhang, Wei; Jungfleisch, M. Benjamin; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel

    Recent work shows efficient spin transfer via spin waves in insulating antiferromagnets (AFMs), suggesting that AFMs can play a more active role in the manipulation of ferromagnets. We use spin pumping and inverse spin Hall effect experiments on heavy metal (Pt and W)/AFMs/Py (Ni80Fe20) trilayer structures, to examine the possible spin transfer phenomenon in metallic AFMs, i . e . , FeMn and PdMn. Previous work has studied electronic effects of the spin transport in these materials, yielding short spin diffusion length on the order of 1 nm. However, the work did not examine whether besides diffusive spin transport by the conduction electrons, there are additional spin transport contributions from spin wave excitations. We clearly observe spin transport from the Py spin reservoir to the heavy metal layer through the sandwiched AFMs with thicknesses well above the previously measured spin diffusion lengths, indicating that spin transport by spin waves may lead to non-negligible contributions This work was supported by US DOE, OS, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the CNM, which is supported by DOE, OS under Contract No. DE-AC02-06CH11357.

  5. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    NASA Astrophysics Data System (ADS)

    Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.

    2015-06-01

    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.

  6. Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect

    DOE PAGES

    Wu, Stephen M.; Hoffman, Jason; Pearson, John E.; ...

    2014-09-05

    In this paper, the longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe 3O 4 with the ferromagnetic metal Co 0.2Fe 0.6B 0.2 (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe 3O 4 into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between themore » two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. Finally, these experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.« less

  7. Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M., E-mail: swu@anl.gov; Hoffman, Jason; Pearson, John E.

    2014-09-01

    The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe{sub 3}O{sub 4} with the ferromagnetic metal Co{sub 0.2}Fe{sub 0.6}B{sub 0.2} (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe{sub 3}O{sub 4} into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, itmore » is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.« less

  8. Design for a spin-Seebeck diode based on two-dimensional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Hua-Hua; Wu, Dan-Dan; Gu, Lei

    2015-07-01

    Studies of the spin-Seebeck effect (SSE) are very important for the development of fundamental science and novel low-power-consumption technologies. The spin-Seebeck diode (SSD), in which the spin current can be driven by a forward temperature gradient but not by a reverse temperature gradient, is a key unit in spin caloritronic devices. Here, we propose a SSD design using two-dimensional (2D) materials such as silicene and phosphorene nanoribbons as the source and drain. Due to their unique band structures and magnetic states, thermally driven spin-up and spin-down currents flow in opposite directions. This mechanism is different from that of the previousmore » one, which uses two permalloy circular disks [Phys. Rev. Lett. 112, 047203 (2014)], and the SSD in our design can be easily integrated with gate voltage control. Since the concept of this design is rather general and applicable to many 2D materials, it is promising for the realization and exploitation of SSDs in nanodevices.« less

  9. A meta-analysis of the mechanical properties of ice-templated ceramics and metals

    PubMed Central

    Deville, Sylvain; Meille, Sylvain; Seuba, Jordi

    2015-01-01

    Ice templating, also known as freeze casting, is a popular shaping route for macroporous materials. Over the past 15 years, it has been widely applied to various classes of materials, and in particular ceramics. Many formulation and process parameters, often interdependent, affect the outcome. It is thus difficult to understand the various relationships between these parameters from isolated studies where only a few of these parameters have been investigated. We report here the results of a meta analysis of the structural and mechanical properties of ice templated materials from an exhaustive collection of records. We use these results to identify which parameters are the most critical to control the structure and properties, and to derive guidelines for optimizing the mechanical response of ice templated materials. We hope these results will be a helpful guide to anyone interested in such materials. PMID:27877817

  10. A meta-analysis of the mechanical properties of ice-templated ceramics and metals

    NASA Astrophysics Data System (ADS)

    Deville, Sylvain; Meille, Sylvain; Seuba, Jordi

    2015-08-01

    Ice templating, also known as freeze casting, is a popular shaping route for macroporous materials. Over the past 15 years, it has been widely applied to various classes of materials, and in particular ceramics. Many formulation and process parameters, often interdependent, affect the outcome. It is thus difficult to understand the various relationships between these parameters from isolated studies where only a few of these parameters have been investigated. We report here the results of a meta analysis of the structural and mechanical properties of ice templated materials from an exhaustive collection of records. We use these results to identify which parameters are the most critical to control the structure and properties, and to derive guidelines for optimizing the mechanical response of ice templated materials. We hope these results will be a helpful guide to anyone interested in such materials.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M.G.; Abraham, K.; Ackermann, M.

    We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihoodmore » to arbitrary dark matter models.« less

  12. Defect Dynamics in Artificial Colloidal Ice: Real-Time Observation, Manipulation, and Logic Gate.

    PubMed

    Loehr, Johannes; Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-10-14

    We study the defect dynamics in a colloidal spin ice system realized by filling a square lattice of topographic double well islands with repulsively interacting magnetic colloids. We focus on the contraction of defects in the ground state, and contraction or expansion in a metastable biased state. Combining real-time experiments with simulations, we prove that these defects behave like emergent topological monopoles obeying a Coulomb law with an additional line tension. We further show how to realize a completely resettable "nor" gate, which provides guidelines for fabrication of nanoscale logic devices based on the motion of topological magnetic monopoles.

  13. Ice911 Research: A Reversible Localized Geo-Engineering Technique to Mitigate Climate Change Effects: Field Testing, Instrumentation and Climate Modeling Results

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Sholtz, A.; Chetty, S.; Manzara, A.; Johnson, D.; Christodoulou, E.; Decca, R.; Walter, P.; Katuri, K.; Bhattacharyya, S.; Ivanova, D.; Mlaker, V.; Perovich, D. K.

    2017-12-01

    This work uses ecologically benign surface treatment of silica-based materials in carefully selected, limited areas to reduce polar ice melt by reflecting energy from summertime polar sun to attempt to slow ice loss due to the Ice-Albedo Feedback Effect. Application of Ice911's materials can be accomplished within a season, at a comparatively low cost, and with far less secondary environmental impact than many other proposed geo-engineering solutions. Field testing, instrumentation, safety testing, data-handling and modeling results will be presented. The albedo modification has been tested over a number of melt seasons with an evolving array of instrumentation, at multiple sites and on progressively larger scales, most recently in a small artificial pond in Minnesota and in a lake in Barrow, Alaska's BEO (Barrow Experimental Observatory) area. The test data show that the glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. Using NCAR's CESM package the environmental impact of the approach of surface albedo modification was studied. During two separate runs, region-wide Arctic albedo modification as well as more targeted localized treatments were modeled and compared. The parameters of a surface snow layer are used as a proxy to simulate Ice911's high-albedo materials, and the modification is started in January over selected ice/snow regions in the Arctic. Preliminary results show promising possibilities of enhancements in surface albedo, sea ice area and sea-ice concentration, as well as temperature reductions of .5 to 3 degree Kelvin in the Arctic, and global average temperature reductions of .5 to 1 degrees.

  14. First search for dark matter annihilations in the Earth with the IceCube detector: IceCube Collaboration

    DOE PAGES

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...

    2017-02-01

    © 2017, The Author(s). We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days ofmore » detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube’s predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP–nucleon cross section. For a WIMP mass of 50 GeV this analysis results in the most restrictive limits achieved with IceCube data.« less

  15. First search for dark matter annihilations in the Earth with the IceCube detector: IceCube Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.

    © 2017, The Author(s). We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days ofmore » detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube’s predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP–nucleon cross section. For a WIMP mass of 50 GeV this analysis results in the most restrictive limits achieved with IceCube data.« less

  16. Spin-dependent Peltier effect in 3D topological insulators

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard

    2013-03-01

    The Peltier effect represents the heat carrying capacity of a certain material when current passes through it. When two materials with different Peltier coefficients are placed together, the Peltier effect causes heat to flow either towards or away from the interface between them. This work utilizes the spin-polarized property of 3D topological insulator (TI) surface states to describe the transport of heat through the spin-up and spin-down channels. It has been observed that the spin channels are able to carry heat independently of each other. Spin currents can therefore be employed to supply or extract heat from an interface between materials with spin-dependent Peltier coefficients. The device is composed of a thin film of Bi2Se3 sandwiched between two layers of Bi2Te3. The thin film of Bi2Se3serves both as a normal and topological insulator. It is a normal insulator when its surfaces overlap to produce a finite band-gap. Using an external gate, Bi2Se3 film can be again tuned in to a TI. Sufficiently thick Bi2Te3 always retain TI behavior. Spin-dependent Peltier coefficients are obtained and the spin Nernst effect in TIs is shown by controlling the temperature gradient to convert charge current to spin current.

  17. Synthesis of low-moment CrVTiAl: A potential room temperature spin filter

    NASA Astrophysics Data System (ADS)

    Stephen, G. M.; McDonald, I.; Lejeune, B.; Lewis, L. H.; Heiman, D.

    2016-12-01

    The efficient production of spin-polarized currents at room temperature is fundamental to the advancement of spintronics. Spin-filter materials—semiconductors with unequal band gaps for each spin channel—can generate spin-polarized current without the need for spin-polarized contacts. In addition, a spin-filter material with zero magnetic moment would have the advantage of not producing strong fringing fields that would interfere with neighboring electronic components and limit the volume density of devices. The quaternary Heusler compound CrVTiAl has been predicted to be a zero-moment spin-filter material with a Curie temperature in excess of 1000 K. In this work, CrVTiAl has been synthesized with a lattice constant of a = 6.15 Å. Magnetization measurements reveal an exceptionally low moment of μ = 2.3 × 10-3 μB/f.u. at a field of μ0H = 2 T that is independent of temperature between T = 10 K and 400 K, consistent with the predicted zero-moment ferrimagnetism. Transport measurements reveal a combination of metallic and semiconducting components to the resistivity. Combining a zero-moment spin-filter material with nonmagnetic electrodes would lead to an essentially nonmagnetic spin injector. These results suggest that CrVTiAl is a promising candidate for further research in the field of spintronics.

  18. Modeling the reflectance spectrum of Callisto 0.25 to 4.1μm

    USGS Publications Warehouse

    Calvin, Wendy M.; Clark, Roger N.

    1991-01-01

    The reflectance spectrum of Callisto from 0.2 to 4.1 μm is modeled using a simultaneous intimate plus areal mixture solution of ice and dark material which satisfies absorption band depths and reflectance levels. The model uses the radiative transfer theory based on Hapke's (1981, J. Geophys. Res. 86, 3039–3054) work, optical constants of materials and includes effects of grain size and abundance of each material. The best-fitting models contain 20–45 wt% ice in the optical surface. The models indicate that the ice component of the surface is fairly large gained and that the ice cannot account for major spectral features beyond approximately 2.5 μm. In this spectral region other hydrated minerals must dominate. A variety of reasonably well-fitting models were found and the amount of ice determined for these best fits was mathematically removed from the original Callisto spectrum. All of the spectra determined for the non-material were quite similar to each other and have absorption features that resemble hydrated silicates bearing both oxidation states of iron. Certain features in the Callisto non-ice spectrum can be duplicated by mixtures of Fe- and Mg-end member serpentines. Discrepancies indicate that other phases, possibly opaque minerals, are also required to match the entire spectrum. The unusual Fe-serpentines are commonly found in the matrices of primitive cabodnaceous chondrites, suggesting that other matrix phases may also be likely candidates for the Callisto non-ice material.

  19. Ising antiferromagnet on the Archimedean lattices.

    PubMed

    Yu, Unjong

    2015-06-01

    Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.

  20. Ising antiferromagnet on the Archimedean lattices

    NASA Astrophysics Data System (ADS)

    Yu, Unjong

    2015-06-01

    Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.

  1. The direct mechanical influence of sea ice state on ice sheet mass loss via iceberg mélange

    NASA Astrophysics Data System (ADS)

    Robel, A.

    2017-12-01

    The interaction between sea ice and land ice has typically been considered as a large-scale exchange of moisture, heat and salinity through the ocean and atmosphere. However, recent observations from marine-terminating glaciers in Greenland indicate that the long-term decline of local sea ice cover has been accompanied by an increase in nearby iceberg calving and associated ice sheet mass loss. Near glacier calving fronts, sea ice binds icebergs together into an aggregate granular material known as iceberg mélange. Studies have hypothesized that mélange may suppress calving by exerting a mechanical buttressing force directly on the glacier terminus. Here, we show explicitly how sea ice thickness and concentration play a critical role in setting the material strength of mélange. To do so, we adapt a discrete element model to simulate mélange as a cohesive granular material. In these simulations, mélange laden with thick, dense, landfast sea ice can produce enough resistance to shut down calving at the terminus. When sea ice thins, mélange weakens, reducing the mechanical force of mélange on the glacier terminus, and increasing the likelihood of calving. We discuss whether longer periods of sea-ice-free conditions in winter may lead to a transition from currently slow calving, predominantly occurring in the summer, to rapid calving, occurring throughout the year. We also discuss the potential role of freshwater discharge in promoting sea ice formation in fjords, potentially strengthening mélange.

  2. Spin Hall Effects in Metallic Antiferromagnets

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2014-11-04

    In this paper, we investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn > IrMn > PdMn > FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spinmore » Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Finally, engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.« less

  3. Spin Dynamics in Novel Materials Systems

    NASA Astrophysics Data System (ADS)

    Yu, Howard

    Spintronics and organic electronics are fields that have made considerable advances in recent years, both in fundamental research and in applications. Organic materials have a number of attractive properties that enable them to complement applications traditionally fulfilled by inorganic materials, while spintronics seeks to take advantage of the spin degree of freedom to produce new applications. My research is aimed at combining these two fields to develop organic materials for spintronics use. My thesis is divided into three primary projects centered around an organic-based semiconducting ferrimagnet, vanadium tetracyanoethylene. First, we investigated the transport characteristics of a hybrid organic-inorganic heterostructure. Semiconductors form the basis of the electronics industry, and there has been considerable effort put forward to develop organic semiconductors for applications like organic light-emitting diodes and organic thin film transistors. Working with hybrid organic-inorganic semiconductor device structures allows us to potentially take advantage of the infrastructure that has already been developed for silicon and other inorganic semiconductors. This could potentially pave the way for a new class of active hybrid devices with multifunctional behavior. Second, we investigated the magnetic resonance characteristics of V[TCNE]x, in multiple measurement schemes and exploring the effect of temperature, frequency, and chemical tuning. Recently, the spintronics community has shifted focus from static electrical spin injection to various dynamic processes, such as spin pumping and thermal effects. Spin pumping in particular is an intriguing way to generate pure spin currents via magnetic resonance that has attracted a high degree of interest, with the FMR linewidth being an important metric for spin injection. Furthermore, we can potentially use these measurements to probe the magnetic properties as we change the physical properties of the materials by chemically tuning the organic ligand. We are therefore interested in exploring the resonance properties of this materials system to lay the groundwork for future spin pumping applications. Third, we have made preliminary measurements of spin pumping in hybrid and all-organic bilayer structures. As mentioned above, FMR-driven spin pumping is method for generating pure spin currents with no associated charge motion. This can be detected in a number of ways, one of which is monitoring the FMR characteristics of two ferromagnets in close contact, where spins injected from one magnet into the other changes the linewidth. In conjunction with the magnetic resonance measurements, we have started to investigate the FMR properties of these bilayer systems.

  4. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  5. The influence of Lifshitz forces and gas on premelting of ice within porous materials

    NASA Astrophysics Data System (ADS)

    Boström, M.; Malyi, O. I.; Thiyam, P.; Berland, K.; Brevik, I.; Persson, C.; Parsons, D. F.

    2016-07-01

    Premelting of ice within pores in earth materials is shown to depend on the presence of vapor layers. For thick vapor layers between ice and pore surfaces, a nanosized water sheet can be formed due to repulsive Lifshitz forces. In the absence of vapor layers, ice is inhibited from melting near pore surfaces. In between these limits, we find an enhancement of the water film thickness in silica and alumina pores. In the presence of metallic surface patches in the pore, the Lifshitz forces can dramatically widen the water film thickness, with potential complete melting of the ice surface.

  6. Material Excavated by a Fresh Impact and Identified as Water Ice

    NASA Image and Video Library

    2009-09-24

    The Compact Reconnaissance Imaging Spectrometer for Mars, an instrument on NASA Mars Reconnaissance Orbiter, obtained information confirming material excavated by a fresh impact and Identified as water ice.

  7. Muon spin rotation study of spin dimers on a triangular lattice in Ba3 MRu2 O9

    NASA Astrophysics Data System (ADS)

    Ziat, Djamel; Verrier, Aimé; Quilliam, Jeffrey; Aczel, Adam; Sinclair, Ryan; Chen, Qiang; Zhou, Haidong

    The family of hexagonal perovskites, Ba3 MA2 O9 has recently been proven to be fertile ground for the discovery of new, exotic magnetic phases, including several quantum spin liquid candidates. The 6H-perovskites can also accommodate spin dimers on a triangular lattice, as in the ruthenate materials Ba3MRu2O9. We will present measurements on materials containing M3 + (M = Y, La, Lu, In), which give rise to mixed valence Ru4.5 + ions wherein the orbital and charge degrees of freedom must also be considered. In particular, muon spin rotation (µSR) experiments, have allowed us to probe the nature of the magnetically ordered ground state of these materials at low temperatures.

  8. Topological Phase Transitions in the Photonic Spin Hall Effect

    DOE PAGES

    Kort-Kamp, Wilton Junior de Melo

    2017-10-04

    The recent synthesis of two-dimensional staggered materials opens up burgeoning opportunities to study optical spin-orbit interactions in semiconducting Dirac-like systems. In this work, we unveil topological phase transitions in the photonic spin Hall effect in the graphene family materials. It is shown that an external static electric field and a high frequency circularly polarized laser allow for active on-demand manipulation of electromagnetic beam shifts. The spin Hall effect of light presents a rich dependence with radiation degrees of freedom, and material properties, and features nontrivial topological properties. Finally, we discover that photonic Hall shifts are sensitive to spin and valleymore » properties of the charge carriers, providing an unprecedented pathway to investigate spintronics and valleytronics in staggered 2D semiconductors.« less

  9. Characterization of Ice for Return-to-Flight of the Space Shuttle. Part 2; Soft Ice

    NASA Technical Reports Server (NTRS)

    Schulson, Erland M.; Iliescu, Daniel

    2005-01-01

    In support of characterizing ice debris for return-to-flight (RTF) of NASA's space shuttle, we have determined the microstructure, density and compressive strength (at -10 C at approximately 0.3 per second) of porous or soft ice that was produced from both atmospheric water and consolidated snow. The study showed that the atmospheric material was generally composed of a mixture of very fine (0.1 to 0.3 millimeters) and coarser (5 to 10 millimeter) grains, plus air bubbles distributed preferentially within the more finely-grained part of the microstructure. The snow ice was composed of even finer grains (approximately 0.05 millimeters) and contained more pores. Correspondingly, the snow ice was of lower density than the atmospheric ice and both materials were significantly less dense than hard ice. The atmospheric ice was stronger (approximately 3.8 MPa) than the snow ice (approximately 1.9 MPa), but weaker by a factor of 2 to 5 than pore-free hard ice deformed under the same conditions. Zero Values are given for Young's modulus, compressive strength and Poisson's ratio that can be used for modeling soft ice from the external tank (ET).

  10. Study of flowability effect on self-planarization performance at SOC materials

    NASA Astrophysics Data System (ADS)

    Yun, Huichan; Kim, Jinhyung; Park, Youjung; Kim, Yoona; Jeong, Seulgi; Baek, Jaeyeol; Yoon, Byeri; Lim, Sanghak

    2017-03-01

    For multilayer process, importance of carbon-based spin-on hardmask material that replaces amorphous carbon layer (ACL) is ever increasing. Carbon-based spin-on hardmask is an organic polymer with high carbon content formulated in organic solvents for spin-coating application that is cured through baking. In comparison to CVD process for ACL, carbon-based spin-on hardmask material can offer several benefits: lower cost of ownership (CoO) and improved process time, as well as better gap-fill and planarization performances. Thus carbon-based spin-on hardmask material of high etch resistance, good gap-fill properties and global planarization performances over various pattern topographies are desired to achieve the fine patterning and high aspect ratio (A/R). In particular, good level of global planarization of spin coated layer over the underlying pattern topographies is important for self-aligned double patterning (SADP) process as it dictates the photolithographic margin. Herein, we report a copolymer carbon-based spin-on hardmask resin formulation that exhibits favorable film shrinkage profile and good etch resistance properties. By combining the favorable characteristics of each resin - one resin with good shrinkage property and the other with excellent etch resistance into the copolymer, it was possible to achieve a carbonbased spin-on hardmask formulation with desirable level of etch resistance and the planarization performances across various underlying substrate pattern topographies.

  11. Associating Specific Materials with Topological Insulation Behavior

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuwen

    2014-03-01

    The first-principles (a) total-energy/stability calculations combined with (b) electronic structure calculations of band inversion, spin-polarization and topological invariants (Z2) has led to the design and prediction of specific materials that are topological insulators in this study. We classify bulk materials into four types of band-inversion behaviors (TI-1, TI-2, BI-3, BI-4), based on the number of band inversions and their distributions on various time reversal invariant k points. Depending on the inversion type in bulk, the corresponding surface states have different protections e.g., protected by time reversal symmetry (in TI-1 materials), spatial symmetry (in TI-2), or not protected (in BI-3, BI-4). Subject 1 Discovery of new TI by screening materials for a Z2 metric: Such high-throughput search in the framework of Inverse Design methodology predicts a few previously undocumented materials that are TI-1 in their ground state crystal structure. We also predict dozens of materials that are TI-1 however in structures that are not ground states (e.g. perovskite structure of II-Bi-O3). Subject 2 Design Principle to increase the gap of TI-1 materials: In HgTe-like cubic topological materials, the insulating gap is zero since the spin-orbit splitting is positive and so a 4-fold half-filled p-like band is near the Fermi level. By design of hybridization of d-orbitals into the p-like bands, one can create negative spin-orbit splitting and so a finite insulating gap. Subject 3 Unconventional spin textures of TI surface states: Despite the fact that one of our predicted TI-1 KBaBi has inversion symmetry in the bulk-a fact that that would preclude bulk spin polarization-we find a Dresselhaus-like spin texture with non-helical spin texture. This originates from the local spin polarization, anchored on the atomic sites with inversion asymmetric point groups, that is compensated due to global inversion symmetry in bulk. In collaboration with: Jun-Wei Luo, Qihang Liu, Julien Vidal, and Alex Zunger, and supported in part by National Science Foundation DMREF. X.Z. acknowledges the administrative support of REMRSEC at Colorado School of Mines, Golden, Colorado.

  12. Line patterning of anisotropic spin chains by polarized laser for application in micro-thermal management

    NASA Astrophysics Data System (ADS)

    Terakado, Nobuaki; Takahashi, Ryosuke; Takahashi, Yoshihiro; Fujiwara, Takumi

    2017-05-01

    The control of heat flow has become increasingly important in energy saving and harvesting. Among various thermal management materials, spinon thermal conductivity materials are promising for heat flow control at microscales because they exhibit high, anisotropic thermal conductivity resulting from spin chains. However, there has been only little development of the materials for controlling heat flow. Here, we present the line patterning of the spin chain structure on a SrCuO2 nanocrystalline film by laser scanning. When the polarization direction of laser light was orthogonal to the scanning direction, we found that the spin-chain structure anisotropically grew on the patterned line.

  13. Ice Chemistry on Outer Solar System Bodies: Electron Radiolysis of N2-, CH4-, and CO-Containing Ices

    NASA Astrophysics Data System (ADS)

    Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.; Imanaka, Hiroshi; Nuevo, Michel

    2015-10-01

    Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N2-, CH4-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple ices dominated by N2, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ∼ 0.9 and O/C ∼ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.

  14. Metal rubber sensor technology to enable in-flight icing measurement

    NASA Astrophysics Data System (ADS)

    Berg, Michelle; Lalli, Jennifer; Claus, Richard; Kreeger, Richard E.

    2017-04-01

    This paper describes the development and testing of Metal Rubber sensors for the nondestructive, normal force detection of ice accretion on aerospace structures. The buildup of ice on aircraft engine components, wings and rotorblades is a problem for both civilian and military aircraft that must operate under all weather conditions. Ice adds mass to moving components, thus changing the equations of motion that control the operation of the system as well as increasing drag and torque requirements. Ice also alters the surface geometry of leading edges, altering the airflow transition from laminar to turbulent, generating turbulence and again increasing drag. Metal Rubber is a piezoresistive material that exhibits a change in electrical resistance in response to physical deformation. It is produced as a freestanding sheet that is assembled at the molecular level using alternating layers of conductive metal nanoparticles and polymers. As the volume percentage of the conductive nanoparticle clusters within the material is increased from zero, the onset of electrical conduction occurs abruptly at the percolation threshold. Electrical conduction occurs due to electron hopping between the clusters. If a length of the material is strained, the clusters move apart so the efficiency of electron hopping decreases and electrical resistance increases. The resulting change in resistance as a function of the change in strain in the material, at a specific volume percentage of conductive clusters, can be interpreted as the transduction response of the material. We describe how sensors fabricated from these materials can be used to measure ice buildup.

  15. Using ultrashort terahertz pulses to directly probe spin dynamics in insulating antiferromagnets

    NASA Astrophysics Data System (ADS)

    Bowlan, P.; Trugman, S. A.; Yarotski, D. A.; Taylor, A. J.; Prasankumar, R. P.

    2018-05-01

    Terahertz pulses are a direct and general probe of ultrafast spin dynamics in insulating antiferromagnets (AFM). This is shown by using optical-pump, THz-probe spectroscopy to directly track AFM spin dynamics in the hexagonal multiferroic HoMnO3 and the orthorhombic multiferroic TbMnO3. Our studies show that despite the different structural and spin orders in these materials, THz pulses can unambiguously resolve spin dynamics after optical photoexcitation. We believe that this approach is quite general and can be applied to a broad range of materials with different AFM spin alignments, providing a novel non-contact approach for probing AFM order with femtosecond temporal resolution.

  16. Band Formation and Ocean-Surface Interaction on Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Howell, Samuel M.; Pappalardo, Robert T.

    2018-05-01

    Geologic activity in the outer H2O ice shells of Europa and Ganymede, Galilean moons of Jupiter, may facilitate material exchange between global water oceans and the icy surface, fundamentally affecting potential habitability and the future search for life. Spacecraft imagery reveals surfaces rich with tectonic bands, predominantly attributed to the extension of brittle ice overlaying a convecting ice layer. However, the details of band-forming processes and links to potential ocean-surface exchange have remained elusive. We simulate ice shell faulting and convection with two-dimensional numerical models and track the movement of "fossil" ocean material frozen into the base of the ice shell and deformed through geologic time. We find that distinct band types form within a spectrum of extensional terrains correlated to lithosphere strength, governed by lithosphere thickness and cohesion. Furthermore, we find that smooth bands formed in weak lithosphere promote exposure of fossil ocean material at the surface.

  17. A Chronology of Late-Glacial and Holocene Advances of Quelccaya Ice Cap, Peru, Based on 10Be and Radiocarbon Dating

    NASA Astrophysics Data System (ADS)

    Kelly, M. A.; Lowell, T. V.; Schaefer, J. M.

    2007-12-01

    The Quelccaya Ice Cap region in the southeastern Peruvian Andes (~13-14°S latitude) is a key location for the development of late-glacial and Holocene terrestrial paleoclimate records in the tropics. We present a chronology of past extents of Quelccaya Ice Cap based on ~thirty internally consistent 10Be dates of boulders on moraines and bedrock as well as twenty radiocarbon dates of organic material associated with moraines. Based on results from both dating methods, we suggest that significant advances of Quelccaya Ice Cap occurred during late-glacial time, at ~12,700-11,400 yr BP, and during Late Holocene time ~400-300 yr BP. Radiocarbon dating of organic material associated with moraines provides maximum and minimum ages for ice advances and recessions, respectively, thus providing an independent check on 10Be dates of boulders on moraines. The opportunity to use both 10Be and radiocarbon dating makes the Quelccaya Ice Cap region a potentially important low-latitude calibration site for production rates of cosmogenic nuclides. Our radiocarbon chronology provides a tighter constraint on maximum ages of late-glacial and Late Holocene ice advances. Upcoming field research will obtain organic material for radiocarbon dating to improve minimum age constrains for late-glacial and Late Holocene ice recessions.

  18. Cratering at the Icy Satellites: Experimental Insights

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.; Schultz, P. H.

    2013-12-01

    Impact cratering processes play a central role in shaping the evolution of icy satellites and in guiding interpretations of various geologic features at these bodies. Accurate reconstruction of icy satellite histories depends in large part upon observed impact crater size-frequency distributions. Determining the extent of impact-induced thermal processing and the retention rates for impact-delivered materials of interest, e.g. organics, at these outer solar system moons is of fundamental importance for assessing their habitability and explaining differing geophysical histories. Hence, knowledge of how the impact process operates in ices or ice-rich materials is critically important. Recent progress in the development of water equations of state, coupled with increasingly efficient 3-D hydrocode calculations, has been used to construct careful numerical studies of melt and vapor generation for water ice targets. Complementary to this approach is experimental work to constrain the effects of differing ice target conditions, including porosity, rock mass fraction, and impact angle. Here we report on results from hypervelocity impact experiments (v~5.5 km/s) into water ice targets, performed at the NASA Ames Vertical Gun Range (AVGR). The setup at the AVGR allows for the use of particulate targets, which is useful for examining the effects of target porosity. Photometry and geophysical modeling both suggest that regolith porosity at the icy satellites is significant. We use a combination of half-space and quarter-space geometries, enabling analysis of the impact-generated vapor plume (half-space geometry), along with shock wave and transient crater growth tracking in a cross-sectional view (quarter-space geometry). Evaluating the impact-generated vapor from porous (φ = 0.5) and non-porous water ice targets provides an extension to previously published vapor production results for dolomite and CO2 ice targets. For the case of a 90 degree impact into porous ice, we calculate that 0.6% of the initial kinetic energy of the impactor is partitioned into the internal energy of the vapor plume. This is slightly higher than values determined in prior studies for non-porous CO2 ice (0.2%) [Schultz, 1996]. As CO2 ice possesses a lower vaporization temperature than water ice, this effect strongly suggests a role for porosity in enhancing vaporization. This is expected, as the compaction of porous materials performs additional, irreversible PdV work on the target, causing enhanced partitioning of kinetic energy into internal energy. At oblique impact angles, plume morphology changes dramatically while vaporization is enhanced. Comparing shock wave velocity attenuation in porous materials, including mixes of materials (e.g., quartz sand and porous ice), to numerical results obtained from shock physics codes such as CTH, provides insight into how impacts into porous ice-rich materials can be most accurately numerically modeled.

  19. Thermoelectricity in transition metal compounds: The role of spin disorder

    DOE PAGES

    Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan

    2016-11-01

    Here, at room temperature and above, most magnetic materials adopt a spin-disordered (paramagnetic) state whose electronic properties can differ significantly from their low-temperature, spin-ordered counterparts. Yet computational searches for new functional materials usually assume some type of magnetic order. In the present work, we demonstrate a methodology to incorporate spin disorder in computational searches and predict the electronic properties of the paramagnetic phase. We implement this method in a high-throughput framework to assess the potential for thermoelectric performance of 1350 transition-metal sulfides and find that all magnetic systems we identify as promising in the spin-ordered ground state cease to bemore » promising in the paramagnetic phase due to disorder-induced deterioration of the charge carrier transport properties. We also identify promising non-magnetic candidates that do not suffer from these spin disorder effects. In addition to identifying promising materials, our results offer insights into the apparent scarcity of magnetic systems among known thermoelectrics and highlight the importance of including spin disorder in computational searches.« less

  20. Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3

    NASA Astrophysics Data System (ADS)

    Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.

    2016-02-01

    Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.

  1. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  2. A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core

    NASA Astrophysics Data System (ADS)

    D'Andrilli, Juliana; Foreman, Christine M.; Sigl, Michael; Priscu, John C.; McConnell, Joseph R.

    2017-05-01

    Englacial ice contains a significant reservoir of organic material (OM), preserving a chronological record of materials from Earth's past. Here, we investigate if OM composition surveys in ice core research can provide paleoecological information on the dynamic nature of our Earth through time. Temporal trends in OM composition from the early Holocene extending back to the Last Glacial Maximum (LGM) of the West Antarctic Ice Sheet Divide (WD) ice core were measured by fluorescence spectroscopy. Multivariate parallel factor (PARAFAC) analysis is widely used to isolate the chemical components that best describe the observed variation across three-dimensional fluorescence spectroscopy (excitation-emission matrices; EEMs) assays. Fluorescent OM markers identified by PARAFAC modeling of the EEMs from the LGM (27.0-18.0 kyr BP; before present 1950) through the last deglaciation (LD; 18.0-11.5 kyr BP), to the mid-Holocene (11.5-6.0 kyr BP) provided evidence of different types of fluorescent OM composition and origin in the WD ice core over 21.0 kyr. Low excitation-emission wavelength fluorescent PARAFAC component one (C1), associated with chemical species similar to simple lignin phenols was the greatest contributor throughout the ice core, suggesting a strong signature of terrestrial OM in all climate periods. The component two (C2) OM marker, encompassed distinct variability in the ice core describing chemical species similar to tannin- and phenylalanine-like material. Component three (C3), associated with humic-like terrestrial material further resistant to biodegradation, was only characteristic of the Holocene, suggesting that more complex organic polymers such as lignins or tannins may be an ecological marker of warmer climates. We suggest that fluorescent OM markers observed during the LGM were the result of greater continental dust loading of lignin precursor (monolignol) material in a drier climate, with lower marine influences when sea ice extent was higher and continents had more expansive tundra cover. As the climate warmed, the record of OM markers in the WD ice core changed, reflecting shifts in carbon productivity as a result of global ecosystem response.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan

    Here, at room temperature and above, most magnetic materials adopt a spin-disordered (paramagnetic) state whose electronic properties can differ significantly from their low-temperature, spin-ordered counterparts. Yet computational searches for new functional materials usually assume some type of magnetic order. In the present work, we demonstrate a methodology to incorporate spin disorder in computational searches and predict the electronic properties of the paramagnetic phase. We implement this method in a high-throughput framework to assess the potential for thermoelectric performance of 1350 transition-metal sulfides and find that all magnetic systems we identify as promising in the spin-ordered ground state cease to bemore » promising in the paramagnetic phase due to disorder-induced deterioration of the charge carrier transport properties. We also identify promising non-magnetic candidates that do not suffer from these spin disorder effects. In addition to identifying promising materials, our results offer insights into the apparent scarcity of magnetic systems among known thermoelectrics and highlight the importance of including spin disorder in computational searches.« less

  4. Fresh Water Content Variability in the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Proshutinsky, Andrey

    2003-01-01

    Arctic Ocean model simulations have revealed that the Arctic Ocean has a basin wide oscillation with cyclonic and anticyclonic circulation anomalies (Arctic Ocean Oscillation; AOO) which has a prominent decadal variability. This study explores how the simulated AOO affects the Arctic Ocean stratification and its relationship to the sea ice cover variations. The simulation uses the Princeton Ocean Model coupled to sea ice. The surface forcing is based on NCEP-NCAR Reanalysis and its climatology, of which the latter is used to force the model spin-up phase. Our focus is to investigate the competition between ocean dynamics and ice formation/melt on the Arctic basin-wide fresh water balance. We find that changes in the Atlantic water inflow can explain almost all of the simulated fresh water anomalies in the main Arctic basin. The Atlantic water inflow anomalies are an essential part of AOO, which is the wind driven barotropic response to the Arctic Oscillation (AO). The baroclinic response to AO, such as Ekman pumping in the Beaufort Gyre, and ice meldfreeze anomalies in response to AO are less significant considering the whole Arctic fresh water balance.

  5. Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects.

    PubMed

    Ling, Edwin Jee Yang; Uong, Victor; Renault-Crispo, Jean-Sébastien; Kietzig, Anne-Marie; Servio, Phillip

    2016-04-06

    The effects of ice formation and accretion on external surfaces range from being mildly annoying to potentially life-threatening. Ice-shedding materials, which lower the adhesion strength of ice to its surface, have recently received renewed research attention as a means to circumvent the problem of icing. In this work, we investigate how surface wettability and surface topography influence the ice adhesion strength on three different surfaces: (i) superhydrophobic laser-inscribed square pillars on copper, (ii) stainless steel 316 Dutch-weave meshes, and (iii) multiwalled carbon nanotube-covered steel meshes. The finest stainless steel mesh displayed the best performance with a 93% decrease in ice adhesion relative to polished stainless steel, while the superhydrophobic square pillars exhibited an increase in ice adhesion by up to 67% relative to polished copper. Comparisons of dynamic contact angles revealed little correlation between surface wettability and ice adhesion. On the other hand, by considering the ice formation process and the fracture mechanics at the ice-substrate interface, we found that two competing mechanisms governing ice adhesion strength arise on nonplanar surfaces: (i) mechanical interlocking of the ice within the surface features that enhances adhesion, and (ii) formation of microcracks that act as interfacial stress concentrators, which reduce adhesion. Our analysis provides insight toward new approaches for the design of ice-releasing materials through the use of surface topographies that promote interfacial crack propagation.

  6. All-electric spin modulator based on a two-dimensional topological insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Xianbo; Ai, Guoping; Liu, Ying

    2016-01-18

    We propose and investigate a spin modulator device consisting of two ferromagnetic leads connected by a two-dimensional topological insulator as the channel material. It exploits the unique features of the topological spin-helical edge states, such that the injected carriers with a non-collinear spin-polarization direction would travel through both edges and show interference effect. The conductance of the device can be controlled in a simple and all-electric manner by a side-gate voltage, which effectively rotates the spin-polarization of the carrier. At low voltages, the rotation angle is linear in the gate voltage, and the device can function as a good spin-polarizationmore » rotator by replacing the drain electrode with a non-magnetic material.« less

  7. Recent Glaciers on Mars: Description and Solar System Perspective

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.

    2001-11-01

    Active or recently active ice deposits occur on Mars at middle and high latitudes in fretted terrain, around massifs in highlands east of Hellas and in southern Argyre, on crater walls in the highlands, and in the south polar cap. Most mid-latitude icy flows are debris covered, apparently stagnant, and eroded by partial sublimation. Others are scarred by fresh crevasses and gullies, thus suggesting recent deformation and surface melting. Erosional features include a variety of small-scale relief elements due mainly to sublimation, but sublimation has not obliterated evidence of flow. Similar to terrestrial glaciers in many respects, there are also notable differences, especially in the nature of accumulation. Deformation of the south polar cap is indicated by folding, boudinage, strike-slip or normal faulting, forebulge tectonics near scarps, and thrust faulting. The north polar cap locally also exhibits flow indicators. The south cap's glacial features suggest interbedding of two or more types of ice of differing volatility and rheology, plus a locally deforming surficial dry-ice cap overlying the other materials. Major ice types may include two (or more) of the following, in order of highest to lowest mechanical strength: CO2 clathrate hydrate, water ice, water ice containing traces of liquid-soluble salts, water ice containing traces of solid-soluble acids, and CO2 ice; dust is another variable. Within our Solar System, the closest geomorphic analog to icy Martian flows are Earth's alpine glaciers, rock glaciers, and continental ice sheets, though key differences are apparent. If made dominantly of water ice, important and recent climatic shifts seem to be implicated. Ice-flow landforms also occur on some outer planet satellites; among them are Io, Europa, Enceladus, Ariel, and Triton. Volatile flows on these bodies may involve diverse materials, such as sulfur, water ice, hydrated salts, ammonia-water ices, and nitrogen ice. Most of these would not be suitable materials on Mars. This work was funded by grants from the NASA Mars Data Analysis Program.

  8. Influence of temperature fluctuations on equilibrium
    ice sheet volume

    NASA Astrophysics Data System (ADS)

    Bøgeholm Mikkelsen, Troels; Grinsted, Aslak; Ditlevsen, Peter

    2018-01-01

    Forecasting the future sea level relies on accurate modeling of the response of the Greenland and Antarctic ice sheets to changing temperatures. The surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) has a nonlinear response to warming. Cold and warm anomalies of equal size do not cancel out and it is therefore important to consider the effect of interannual fluctuations in temperature. We find that the steady-state volume of an ice sheet is biased toward larger size if interannual temperature fluctuations are not taken into account in numerical modeling of the ice sheet. We illustrate this in a simple ice sheet model and find that the equilibrium ice volume is approximately 1 m SLE (meters sea level equivalent) smaller when the simple model is forced with fluctuating temperatures as opposed to a stable climate. It is therefore important to consider the effect of interannual temperature fluctuations when designing long experiments such as paleo-spin-ups. We show how the magnitude of the potential bias can be quantified statistically. For recent simulations of the Greenland Ice Sheet, we estimate the bias to be 30 Gt yr-1 (24-59 Gt yr-1, 95 % credibility) for a warming of 3 °C above preindustrial values, or 13 % (10-25, 95 % credibility) of the present-day rate of ice loss. Models of the Greenland Ice Sheet show a collapse threshold beyond which the ice sheet becomes unsustainable. The proximity of the threshold will be underestimated if temperature fluctuations are not taken into account. We estimate the bias to be 0.12 °C (0.10-0.18 °C, 95 % credibility) for a recent estimate of the threshold. In light of our findings it is important to gauge the extent to which this increased variability will influence the mass balance of the ice sheets.

  9. Simulations of Sea-Ice Dynamics Using the Material-Point Method

    NASA Technical Reports Server (NTRS)

    Sulsky, D.; Schreyer, H.; Peterson, K.; Nguyen, G.; Coon, G.; Kwok, R.

    2006-01-01

    In recent years, the availability of large volumes of recorded ice motion derived from high-resolution SAR data has provided an amazingly detailed look at the deformation of the ice cover. The deformation is dominated by the appearance of linear kinematic features that have been associated with the presence of leads. These remarkable data put us in a position to begin detailed evaluation of current coupled mechanical and thermodynamic models of sea ice. This presentation will describe the material point method (MPM) for solving these model equations. MPM is a numerical method for continuum mechanics that combines the best aspects of Lagrangian and Eulerian discretizations. The material points provide a Lagrangian description of the ice that models convection naturally. Thus, properties such as ice thickness and compactness are computed in a Lagrangian frame and do not suffer from errors associated with Eulerian advection schemes, such as artificial diffusion, dispersion, or oscillations near discontinuities. This desirable property is illustrated by solving transport of ice in uniform, rotational and convergent velocity fields. Moreover, the ice geometry is represented by unconnected material points rather than a grid. This representation facilitates modeling the large deformations observed in the Arctic, as well as localized deformation along leads, and admits a sharp representation of the ice edge. MPM also easily allows the use of any ice constitutive model. The versatility of MPM is demonstrated by using two constitutive models for simulations of wind-driven ice. The first model is a standard viscous-plastic model with two thickness categories. The MPM solution to the viscous-plastic model agrees with previously published results using finite elements. The second model is a new elastic-decohesive model that explicitly represents leads. The model includes a mechanism to initiate leads, and to predict their orientation and width. The elastic-decohesion model can provide similar overall deformation as the viscous-plastic model; however, explicit regions of opening and shear are predicted. Furthermore, the efficiency of MPM with the elastic-decohesive model is competitive with the current best methods for sea ice dynamics. Simulations will also be presented for an area of the Beaufort Sea, where predictions can be validated against satellite observations of the Arctic.

  10. Spin-transfer torque induced spin waves in antiferromagnetic insulators

    DOE PAGES

    Daniels, Matthew W.; Guo, Wei; Stocks, George Malcolm; ...

    2015-01-01

    We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations.

  11. Simulation study of ballistic spin-MOSFET devices with ferromagnetic channels based on some Heusler and oxide compounds

    NASA Astrophysics Data System (ADS)

    Graziosi, Patrizio; Neophytou, Neophytos

    2018-02-01

    Newly emerged materials from the family of Heuslers and complex oxides exhibit finite bandgaps and ferromagnetic behavior with Curie temperatures much higher than even room temperature. In this work, using the semiclassical top-of-the-barrier FET model, we explore the operation of a spin-MOSFET that utilizes such ferromagnetic semiconductors as channel materials, in addition to ferromagnetic source/drain contacts. Such a device could retain the spin polarization of injected electrons in the channel, the loss of which limits the operation of traditional spin transistors with non-ferromagnetic channels. We examine the operation of four material systems that are currently considered some of the most prominent known ferromagnetic semiconductors: three Heusler-type alloys (Mn2CoAl, CrVZrAl, and CoVZrAl) and one from the oxide family (NiFe2O4). We describe their band structures by using data from DFT (Density Functional Theory) calculations. We investigate under which conditions high spin polarization and significant ION/IOFF ratio, two essential requirements for the spin-MOSFET operation, are both achieved. We show that these particular Heusler channels, in their bulk form, do not have adequate bandgap to provide high ION/IOFF ratios and have small magnetoconductance compared to state-of-the-art devices. However, with confinement into ultra-narrow sizes down to a few nanometers, and by engineering their spin dependent contact resistances, they could prove promising channel materials for the realization of spin-MOSFET transistor devices that offer combined logic and memory functionalities. Although the main compounds of interest in this paper are Mn2CoAl, CrVZrAl, CoVZrAl, and NiFe2O4 alone, we expect that the insight we provide is relevant to other classes of such materials as well.

  12. A predictive framework for the design and fabrication of icephobic polymers

    PubMed Central

    Golovin, Kevin; Tuteja, Anish

    2017-01-01

    Ice accretion remains a costly, hazardous concern worldwide. Icephobic coatings reduce the adhesion between ice and a surface. However, only a handful of the icephobic systems reported to date reduce the ice adhesion sufficiently for the facile and passive removal of ice, such as under its own weight or by mild winds. Most of these icephobic surfaces have relied on sacrificial lubricants, which may be depleted over time, drastically raising the ice adhesion. In contrast, surfaces that use interfacial slippage to lower their adhesion to ice can remain icephobic indefinitely. However, the mechanism of interfacial slippage, as it relates to ice adhesion, is largely unexplored. We investigate how interfacial slippage reduces the ice adhesion of polymeric materials. We propose a new, universally applicable framework that may be used to predict the reduction in the adhesion of ice to surfaces exhibiting interfacial slippage. This framework allows one to rationally engender icephobicity in essentially any polymeric system, including common thermoplastics. Hence, we present several new, extremely icephobic systems fabricated from a wide range of materials, including everyday engineering plastics and sustainable, natural oils. PMID:28948227

  13. CLIMATE PATTERNS OF HABITABLE EXOPLANETS IN ECCENTRIC ORBITS AROUND M DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuwei; Hu, Yongyun; Tian, Feng, E-mail: yyhu@pku.edu.cn

    2014-08-10

    Previous studies show that synchronous rotating habitable exoplanets around M dwarfs should have an ''eyeball'' climate pattern—a limited region of open water on the day side and ice on the rest of the planet. However, exoplanets with nonzero eccentricities could have spin-orbit resonance states different from the synchronous rotation state. Here, we show that a striped-ball climate pattern, with a global belt of open water at low and middle latitudes and ice over both polar regions, should be common on habitable exoplanets in eccentric orbits around M dwarfs. We further show that these different climate patterns can be observed bymore » future exoplanet detection missions.« less

  14. Climate in the absence of ocean heat transport

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2017-12-01

    The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify the absolute climatic impact of OHT using the state-of-the-art CESM simulations by comparing a realistic control climate against a slab ocean simulation in which OHT is disabled. The absence of OHT leads to a massive expansion of sea ice into the subtropics in both hemispheres, and a 24 K global cooling. Analysis of the transient simulation after setting the OHT to zero reveals a global cooling process fueled by a runaway sea ice albedo feedback. This process is eventually self-limiting in the cold climate due to a combination of subtropical cloud feedbacks and surface wind effects that are both connected to a massive spin-up of the atmospheric Hadley circulation. A parameter sensitivity study shows that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is rather uncertain. These simulations provide a graphic illustration of how the intimate coupling between sea ice and ocean circulation governs the present-day climate, and by extension, highlight the importance of modeling ocean - sea ice interaction with high fidelity.

  15. Spin-Driven Emergent Antiferromagnetism and Metal-Insulator Transition in Nanoscale p-Si

    NASA Astrophysics Data System (ADS)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    The entanglement of the charge, spin and orbital degrees of freedom can give rise to emergent behavior especially in thin films, surfaces and interfaces. Often, materials that exhibit those properties require large spin orbit coupling. We hypothesize that the emergent behavior can also occur due to spin, electron and phonon interactions in widely studied simple materials such as Si. That is, large intrinsic spin-orbit coupling is not an essential requirement for emergent behavior. The central hypothesis is that when one of the specimen dimensions is of the same order (or smaller) as the spin diffusion length, then non-equilibrium spin accumulation due to spin injection or spin-Hall effect (SHE) will lead to emergent phase transformations in the non-ferromagnetic semiconductors. In this experimental work, we report spin mediated emergent antiferromagnetism and metal insulator transition in a Pd (1 nm)/Ni81Fe19 (25 nm)/MgO (1 nm)/p-Si (~400 nm) thin film specimen. The spin-Hall effect in p-Si, observed through Rashba spin-orbit coupling mediated spin-Hall magnetoresistance behavior, is proposed to cause the spin accumulation and resulting emergent behavior. The phase transition is discovered from the diverging behavior in longitudinal third harmonic voltage, which is related to the thermal conductivity and heat capacity.

  16. Spin-dependent Seebeck Effect, Thermal Colossal Magnetoresistance and Negative Differential Thermoelectric Resistance in Zigzag Silicene Nanoribbon Heterojunciton.

    PubMed

    Fu, Hua-Hua; Wu, Dan-Dan; Zhang, Zu-Quan; Gu, Lei

    2015-05-22

    Spin-dependent Seebeck effect (SDSE) is one of hot topics in spin caloritronics, which examine the relationships between spin and heat transport in materials. Meanwhile, it is still a huge challenge to obtain thermally induced spin current nearly without thermal electron current. Here, we construct a hydrogen-terminated zigzag silicene nanoribbon heterojunction, and find that by applying a temperature difference between the source and the drain, spin-up and spin-down currents are generated and flow in opposite directions with nearly equal magnitudes, indicating that the thermal spin current dominates the carrier transport while the thermal electron current is much suppressed. By modulating the temperature, a pure thermal spin current can be achieved. Moreover, a thermoelectric rectifier and a negative differential thermoelectric resistance can be obtained in the thermal electron current. Through the analysis of the spin-dependent transport characteristics, a phase diagram containing various spin caloritronic phenomena is provided. In addition, a thermal magnetoresistance, which can reach infinity, is also obtained. Our results put forward an effective route to obtain a spin caloritronic material which can be applied in future low-power-consumption technology.

  17. Emergent thermal kinetic behavior of artificial spin ice

    NASA Astrophysics Data System (ADS)

    Lao, Yuyang; Sheikh, Mohammed; Sklenar, Joseph; Gardeazabal, Daniel; Watts, Justin; Albrecht, Alan; Leighton, Chris; Scholl, Andreas; Chern, Gia-Wei; Dahmen, Karin; Nisoli, Cristiano; Schiffer, Peter

    Artificial spin ice systems are two dimensional arrays of single-domain nanomagnets designed to study frustration phenomena. By careful choice of the geometry of the system, the lattices can have ground states with non-trivial degeneracy. We study the kinetics of such systems through photoemission electron microscopy (PEEM) measurements of the fluctuations of the individual nanomagnet moments, looking at excitations above the magnetic ground states of the systems and how those excitations are impacted by lattice geometry. Detailed analysis of different systems shows non-trivial kinetics that originate from different interaction patterns. The study indicates the important role of effective excitation in the near-ground-state kinetics of these frustrated systems. This work was funded by the US Department of Energy under Grant Number DE-SC0010778. The work of M.S. and K.D. was supported by DOE DE-FE0011194. Work at UMN was supported by the NSF MRSEC under DMR-1420013, and DMR-1507048. The work of C.N. was carried out under the auspices of the US Department of Energy at LANL under Contract Number DE-AC52-06NA253962. The ALS was supported by the US Department of Energy under Contract Number DE-AC02-05CH11231.

  18. Volcanism and Fluvio-Glacial Processes on the Interior Layered Deposits of Valles Marineris, Mars?

    NASA Astrophysics Data System (ADS)

    Chapman, M. G.

    2005-12-01

    The Interior Layered Deposits (ILDs) in Valles Marineris have been suggested to be possible sub-ice volcanoes. Recent images also show evidence of possible fluvio-glacial processes on the ILDs and hence volcano/ice/water interaction. For example, Mars Express Mission anaglyph from Orbit 334 of central Ophir and Candor Chasmata, THEMIS image V10551002, and MOC images E1700142 and E190020 show 2 ILD mounds in central Candor Chasma that have been sheared off at approximately equal elevations by some material that has been subsequently removed. Level shearing of ILD rock materials and subsequent removal of the abrasive material, suggest ice erosion and glacial processes because glacial ice is mobile enough to grind the rock and can melt away. Another adjacent ILD mound in Central Candor shows an abrupt flank termination and damming of material, rather than flank scour. The dammed material appears to be layers piled up in a ridge at the ILD base. This relation is observed on the HRSC anaglyph and MOC images E0101343 and E201146. Another ILD in Melas Chasma, seen on MOC image M0804981, shows lobes of flank material that terminate along a lineation; possibly suggesting lobe confinement against subsequently removed material. This morphology can also be observed on the flank of the Gangis Chasma ILD in MOC image M0705587. A possible terrestrial volcanic analog for this ILD flank morphology is the Helgafell hyaloclasitic ridge (tindar) in Iceland (Chapman et al., 2004), the eastern flank of which has a linear termination interpreted as largely unmodified and caused by hyalotuff material banked against a former ice wall that has since melted away (Schopka et al., 2003). Glacial shearing of some ILDs and confined banking of other ILDs suggest that these mounds formed at different times, as the sheared ILD likely predated ice and the confined ILD may have formed concurrently with ice. Alternatively, the banking may have been due to lack of shear forces (static ice) and confined post-depositional avalanche deposits. However, exposed in the banked cliff faces are near horizontal bedding planes that can be traced upslope into angled flank layers; a relation that may suggest ice concurrent with volcanic ILD formation (Chapman and Smellie, in press). In addition to glacial processes, many Mars ILDs show fluvial gullies cut into mostly low lying flank deposits. Gullies are eroded into all sides of the ILDs including their north-facing slopes, so solar heating likely did not generate the gullies. Although formal work on the subject is lacking, ongoing terrestrial observation by the author (on an edifice north of Helgafell and in Gjalp eruption films) indicate fluvial erosion of subglacial volcanoes on Earth may be concurrent with their formation, occurring after edifices rise above their surrounding ice-confined meltwater lake. Remnant ice on the top of the edifices can melt to generate streams that erode the growing volcanic flanks.

  19. Ice nucleating particles in the high Arctic at the beginning of the melt season

    NASA Astrophysics Data System (ADS)

    Hartmann, M.; Gong, X.; Van Pinxteren, M.; Welti, A.; Zeppenfeld, S.; Herrmann, H.; Stratmann, F.

    2017-12-01

    Ice nucleating particles (INPs) initiate the ice crystal formation in persistent Arctic mixed-phase clouds and are important for the formation of precipitation, which affects the radiative properties of the Arctic pack ice as well as the radiative properties of clouds. Sources of Arctic INP have been suggested to be local emissions from the marine boundary and long-range transport. To what extent local marine sources contribute to the INP population or if the majority of INPs originate from long-range transport is not yet known. Ship-based INP measurements in the PASCAL framework are reported. The field campaign took place from May 24 to July 20 2017 around and north of Svalbard (up to 84°N, between 0° and 35°E) onboard the RV Polarstern. INP concentrations were determined applying in-situ measurements (DMT Spectrometer for Ice Nuclei, SPIN) and offline filter techniques (filter sampling on both quartz fiber and polycarbonate filters with subsequent analysis of filter pieces and water suspension from particles collected on filters by means of immersion freezing experiments on cold stage setups). Additionally the compartments sea-surface micro layer (SML), bulk sea water, snow, sea ice and fog water were sampled and their ice nucleation potential quantified, also utilizing cold stages. The measurements yield comprehensive picture of the spatial and temporal distribution of INPs around Svalbard for the different compartments. The dependence of the INP concentration on meteorological conditions (e.g. wind speed) and the geographical situation (sea ice cover, distance to the ice edge) are investigated. Potential sources of INP are identified by the comparison of INP concentrations in the compartments and by back trajectory analysis.

  20. Saturn's Icy satellites: The Role of Sub-Micron Ice Particles and Nano-sized Contaminants (Invited)

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Cruikshank, D. P.; Dalle Ore, C. M.; Jaumann, R.; Brown, R. H.; Stephan, K.; Buratti, B. J.; Filacchione, G.; Baines, K. H.; Nicholson, P.

    2010-12-01

    The Visual and Infrared Mapping Spectrometer (VIMS) has obtained spatially resolved imaging spectroscopy data on numerous satellites of Saturn. The spectral trends on individual satellites and as compositional gradients within the Saturn system show systematic trends that indicate variable ice grain sizes and contaminants. Compositional mapping shows that the satellite surfaces are composed largely of H2O ice, with small amounts of CO2, trace organics, bound water or OH-bearing minerals, and possible signatures of ammonia, H2O or OH-bearing minerals, and dark, fine-grained materials. The E-ring coats the inner satellites with sub-micron ice particles. The Cassini Rev 49 Iapetus fly-by on September 10, 2007, provided imaging spectroscopy data on both the dark material and the transition zone between the dark material and the visually bright ice on the trailing side. The dark material has very low albedo with a linear increase in reflectance with wavelength, a 3-micron water absorption, and a CO2 absorption. The only reflectance models that can explain the trends include highly absorbing sub-micron materials that create Rayleigh absorption. Radiative transfer models that include diffraction from Rayleigh scattering and Rayleigh absorption are necessary to match observed data. The dark material is well matched by a high component of fine-grained metallic iron plus a small component of nano-phase hematite. Spatially resolved Iapetus data show mixing of dark material with ice and the mixtures display a blue scattering peak and a UV absorption. The blue scattering peak and UV-Visible absorption is observed in spectra of all satellites at some locations where dark material is mixed with the ice. Rayleigh scattering and Rayleigh absorption have also been observed in spectral properties of the Earth's moon. Rayleigh absorption requires high absorption coefficient nano-sized particles, which is also consistent with metallic iron. The UV absorber appears to have increased strength on satellite surfaces close to Saturn, with a corresponding decrease in metallic iron signature. Possible explanations are that the iron is oxidized closer to Saturn by oxygen in the extended atmosphere of Saturn's rings, or coverage by sub-micron E-ring ice particles, or a combination of both.

  1. Looking for Ice

    NASA Image and Video Library

    2016-03-23

    This image was targeted for NASA Mars Reconnaissance Orbiter spacecraft to look at a candidate new crater on a lobate apron. Such aprons are often ice-rich, but the crater shows no bright material that would indicate ice.

  2. Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect.

    PubMed

    Brächer, T; Fabre, M; Meyer, T; Fischer, T; Auffret, S; Boulle, O; Ebels, U; Pirro, P; Gaudin, G

    2017-12-13

    The miniaturization of complementary metal-oxide-semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consumption than conventional semiconductor approaches. Spin waves have been identified as a potential technology that can complement and outperform CMOS in complex logic applications, profiting from the fact that these waves enable wave computing on the nanoscale. The practical application of spin waves, however, requires the demonstration of scalable, CMOS compatible spin-wave detection schemes in material systems compatible with standard spintronics as well as semiconductor circuitry. Here, we report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm by the inverse spin Hall effect in spin-wave waveguides made from ultrathin Ta/Co 8 Fe 72 B 20 /MgO. These findings open up the path for miniaturized scalable interconnects between spin waves and CMOS and the use of ultrathin films made from standard spintronic materials in magnonics.

  3. Enhanced spin Hall ratios by Al and Hf impurities in Pt thin films

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hai; Zhao, Mengnan; Ralph, Daniel C.; Buhrman, Robert A.

    The spin Hall effect (SHE) in Pt has been reported to be strong and hence promising for spintronic applications. In the intrinsic SHE mechanism, which has been shown to be dominant in Pt, the spin Hall conductivity σSH is constant, dependent only on the band structure of the spin Hall material. The spin Hall ratio θSH =σSH . ρ , on the other hand, should be proportional to the electrical resistivity ρ of the spin Hall layer. This suggests the possibility of enhancing the spin Hall ratio by introducing additional diffusive scattering to increase the electrical resistivity of the spin Hall layer. Our previous work has shown that this could be done by increasing the surface scattering by growing thinner Pt films in contact with higher resistivity materials such as Ta. In this talk, we discuss another approach: to introduce impurities of metals with negligible spin orbit torque into the Pt film. Our PtAl and PtHf alloy samples exhibit strong enhancement of the spin Hall torque efficiency with impurity concentration due to increased electrical resistivity. Supported in part by Samsung Electronics.

  4. Ice detector

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1988-01-01

    An ice detector is provided for the determination of the thickness of ice on the outer surface on an object (e.g., aircraft) independently of temperature or the composition of the ice. First capacitive gauge, second capacitive gauge, and temperature gauge are embedded in embedding material located within a hollowed out portion of the outer surface. This embedding material is flush with the outer surface to prevent undesirable drag. The first capacitive gauge, second capacitive gauge, and the temperature gauge are respectively connected to first capacitive measuring circuit, second capacitive measuring circuit, and temperature measuring circuit. The geometry of the first and second capacitive gauges is such that the ratio of the voltage outputs of the first and second capacitance measuring circuits is proportional to the thickness of ice, regardless of ice temperature or composition. This ratio is determined by offset and dividing circuit.

  5. Voltage-controlled spin selection in a magnetic resonant tunneling diode.

    PubMed

    Slobodskyy, A; Gould, C; Slobodskyy, T; Becker, C R; Schmidt, G; Molenkamp, L W

    2003-06-20

    We have fabricated all II-VI semiconductor resonant tunneling diodes based on the (Zn,Mn,Be)Se material system, containing dilute magnetic material in the quantum well, and studied their current-voltage characteristics. When subjected to an external magnetic field the resulting spin splitting of the levels in the quantum well leads to a splitting of the transmission resonance into two separate peaks. This is interpreted as evidence of tunneling transport through spin polarized levels, and could be the first step towards a voltage controlled spin filter.

  6. Increasing spin crossover cooperativity in 2D Hofmann-type materials with guest molecule removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zenere, Katrina A.; Duyker, Samuel G.; Trzop, Elzbieta

    Ambient temperature spin crossover with wide hysteresis has been achieved in 2D Hofmann-type materials, where removal of guest molecules optimises ligand–ligand interactions, resulting in increased cooperativity.

  7. Increasing spin crossover cooperativity in 2D Hofmann-type materials with guest molecule removal

    DOE PAGES

    Zenere, Katrina A.; Duyker, Samuel G.; Trzop, Elzbieta; ...

    2018-01-01

    Ambient temperature spin crossover with wide hysteresis has been achieved in 2D Hofmann-type materials, where removal of guest molecules optimises ligand–ligand interactions, resulting in increased cooperativity.

  8. GUIDELINES ON SELECTION AND USE OF SNOW AND ICE CONTROL MATERIALS.

    DOT National Transportation Integrated Search

    2017-09-19

    This document presents guidelines for the selection of snow and ice control materials for winter weather roadway maintenance applications in Texas. The purpose of this document is to provide Texas Department of Transportation (TxDOT) roadway maintena...

  9. New pathways towards efficient metallic spin Hall spintronics

    DOE PAGES

    Jungfleisch, Matthias Benjamin; Zhang, Wei; Jiang, Wanjun; ...

    2015-11-16

    Spin Hall effects (SHEs) interconvert spin- and charge currents due to spin- orbit interaction, which enables convenient electrical generation and detection of diffusive spin currents and even collective spin excitations in magnetic solids. Here, we review recent experimental efforts exploring efficient spin Hall detector materials as well as new approaches to drive collective magnetization dynamics and to manipulate spin textures by SHEs. As a result, these studies are also expected to impact practical spintronics applications beyond their significance in fundamental research.

  10. Tailoring Spin Textures in Complex Oxide Micromagnets

    DOE PAGES

    Lee, Michael S.; Wynn, Thomas A.; Folven, Erik; ...

    2016-09-12

    Engineered topological spin textures with submicron dimensions in magnetic materials have emerged in recent years as the building blocks for various spin-based memory devices. Examples of these magnetic configurations include magnetic skyrmions, vortices, and domain walls. Here in this paper, we show the ability to control and characterize the evolution of spin textures in complex oxide micromagnets as a function of temperature through the delicate balance of fundamental materials parameters, micromagnet geometries, and epitaxial strain. These results demonstrate that in order to fully describe the observed spin textures, it is necessary to account for the spatial variation of the magneticmore » parameters within the micromagnet. This study provides the framework to accurately characterize such structures, leading to efficient design of spin-based memory devices based on complex oxide thin films.« less

  11. Antiparallel pinned NiO spin valve sensor for GMR head application (invited)

    NASA Astrophysics Data System (ADS)

    Pinarbasi, M.; Metin, S.; Gill, H.; Parker, M.; Gurney, B.; Carey, M.; Tsang, C.

    2000-05-01

    NiO antiferromagnetic material possesses certain advantages for spin valve applications and has attracted considerable attention. Some of the key advantages are its insulating properties, very high corrosion resistance, less sensitivity to composition, and its low reset temperature. This material, however, has a low blocking temperature which prevents its application to simple spin valve designs. The use of this material in spin valve structures required significant improvements in thermal stability, blocking temperature, and the spin valve design. In the present study, the blocking temperature and the blocking temperature distribution of the NiO films have been improved by depositing the films reactively using ion beam sputtering. A number of improvements in the processing method and deposition system had to be made to allow full NiO spin valve deposition for mass production. Another critical part was the use of antiparallel pinned design in place of the simple design to improve the thermal stability of the NiO spin valves as read elements at disk drive temperatures. The selection of the ferromagnetic pinned layers and the Ru spacer thickness in AP-pinned spin valves has significant impact on the behavior of the devices. These spin valves are all bottom type, NiO/PL1/Ru/PL2/Cu/Co/NiFe/Ta, where the metallic portion of the spin valve is deposited on top of the NiO AF layer. The PL1 and PL2 are ferromagnetic layers comprising NiFe and Co layers. Read elements have been made using these spin valves that delivered areal densities of 12 Gbit/in. These topics and other improvements which resulted in successful use of NiO spin valves as GMR heads in hard disk drives will be discussed.

  12. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins

    NASA Astrophysics Data System (ADS)

    Nolting, F.; Scholl, A.; Stöhr, J.; Seo, J. W.; Fompeyrine, J.; Siegwart, H.; Locquet, J.-P.; Anders, S.; Lüning, J.; Fullerton, E. E.; Toney, M. F.; Scheinfein, M. R.; Padmore, H. A.

    2000-06-01

    The arrangement of spins at interfaces in a layered magnetic material often has an important effect on the properties of the material. One example of this is the directional coupling between the spins in an antiferromagnet and those in an adjacent ferromagnet, an effect first discovered in 1956 and referred to as exchange bias. Because of its technological importance for the development of advanced devices such as magnetic read heads and magnetic memory cells, this phenomenon has received much attention. Despite extensive studies, however, exchange bias is still poorly understood, largely due to the lack of techniques capable of providing detailed information about the arrangement of magnetic moments near interfaces. Here we present polarization-dependent X-ray magnetic dichroism spectro-microscopy that reveals the micromagnetic structure on both sides of a ferromagnetic-antiferromagnetic interface. Images of thin ferromagnetic Co films grown on antiferromagnetic LaFeO3 show a direct link between the arrangement of spins in each material. Remanent hysteresis loops, recorded for individual ferromagnetic domains, show a local exchange bias. Our results imply that the alignment of the ferromagnetic spins is determined, domain by domain, by the spin directions in the underlying antiferromagnetic layer.

  13. Michel Borghini as a Mentor and Father of the Theory of Polarization in Polarized Targets

    NASA Astrophysics Data System (ADS)

    de Boer, Wim

    2016-02-01

    This paper is a contribution to the memorial session for Michel Borghini at the Spin 2014 conference in Bejing, honoring his pivotal role for the development of polarized targets in high energy physics. Borghini proposed for the first time the correct mechanism for dynamic polarization in polarized targets using organic materials doped with free radicals. In these amorphous materials the spin levels are broadened by spin-spin interactions and g-factor anisotropy, which allows a high dynamic polarization of nuclei by cooling of the spin-spin interaction reservoir. In this contribution I summarize the experimental evidence for this mechanism. These pertinent experiments were done at CERN in the years 1971 - 1974, when I was a graduate student under the guidance of Michel Borghini. I finish by shortly describing how Borghini’s spin temperature theory is now applied in cancer therapy.

  14. Spin texture of the surface state of three-dimensional Dirac material Ca3PbO

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze

    2015-04-01

    The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca3PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca3PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types.

  15. FMR-driven spin pumping in Y3Fe5O12-based structures

    NASA Astrophysics Data System (ADS)

    Yang, Fengyuan; Hammel, P. Chris

    2018-06-01

    Ferromagnetic resonance driven spin pumping, a topic of steadily increasing interest since its emergence over two decades ago, remains one of the most exciting research fields in condensed matter physics. Among the many materials that have been explored for spin pumping, yttrium iron garnet (YIG) is one of the most extensively studied because of its exceptionally low magnetic damping and insulating nature. There is a great amount of literature in the spin pumping and related research fields, too broad for this review to cover. In this Topical Review, we focus on the YIG-based spin pumping results carried out by our groups, including: the mechanism and technical details of our off-axis sputtering technique for the growth of single-crystalline YIG epitaxial films with a high degree ordering, experimental evidence for the high quality of the YIG films, spin pumping results from YIG into various transition metals and their heterostructures, dynamic spin transport in YIG/antiferromagnet hybrid structures, intralayer spin pumping by localized spin wave modes confined by a micromagnetic probe, dynamic spin coupling between YIG and nitrogen-vacancy centers in diamond, parametric spin pumping from high-wavevector spin waves in YIG, and localized spin wave mode behavior in broadly tunable spatially complex magnetic configurations. These results build on the power and versatility of YIG spin pumping to improve our understanding of spin dynamics, spin currents, spin Hall physics, spin–orbit coupling, dynamic magnetic coupling, and the relationship between these phenomena in a broad range of materials, geometries, and settings.

  16. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses.

    PubMed

    De Meyer, L; Van Bockstal, P-J; Corver, J; Vervaet, C; Remon, J P; De Beer, T

    2015-12-30

    Spin-freezing as alternative freezing approach was evaluated as part of an innovative continuous pharmaceutical freeze-drying concept for unit doses. The aim of this paper was to compare the sublimation rate of spin-frozen vials versus traditionally frozen vials in a batch freeze-dryer, and its impact on total drying time. Five different formulations, each having a different dry cake resistance, were tested. After freezing, the traditionally frozen vials were placed on the shelves while the spin-frozen vials were placed in aluminum vial holders providing radial energy supply during drying. Different primary drying conditions and chamber pressures were evaluated. After 2h of primary drying, the amount of sublimed ice was determined in each vial. Each formulation was monitored in-line using NIR spectroscopy during drying to determine the sublimation endpoint and the influence of drying conditions upon total drying time. For all tested formulations and applied freeze-drying conditions, there was a significant higher sublimation rate in the spin-frozen vials. This can be explained by the larger product surface and the lower importance of product resistance because of the much thinner product layers in the spin frozen vials. The in-line NIR measurements allowed evaluating the influence of applied drying conditions on the drying trajectories. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Improved thermal storage material for portable life support systems

    NASA Technical Reports Server (NTRS)

    Kellner, J. D.

    1975-01-01

    The availability of thermal storage materials that have heat absorption capabilities substantially greater than water-ice in the same temperature range would permit significant improvements in performance of projected portable thermal storage cooling systems. A method for providing increased heat absorption by the combined use of the heat of solution of certain salts and the heat of fusion of water-ice was investigated. This work has indicated that a 30 percent solution of potassium bifluoride (KHF2) in water can absorb approximately 52 percent more heat than an equal weight of water-ice, and approximately 79 percent more heat than an equal volume of water-ice. The thermal storage material can be regenerated easily by freezing, however, a lower temperature must be used, 261 K as compared to 273 K for water-ice. This work was conducted by the United Aircraft Research Laboratories as part of a program at Hamilton Standard Division of United Aircraft Corporation under contract to NASA Ames Research Center.

  18. Magnetic Phase Diagram of α-RuCl3

    NASA Astrophysics Data System (ADS)

    Sears, Jennifer; Kim, Young-June; Zhao, Yang; Lynn, Jeffrey

    The layered honeycomb material α-RuCl3 is thought to possess unusual magnetic interactions including a strong bond-dependent Kitaev term, offering a potential opportunity to study a material near a well understood spin liquid phase. Although this material orders magnetically at low temperatures and is thus not a realization of a Kitaev spin liquid, it does show a broad continuum of magnetic excitations reminiscent of that expected for the spin liquid phase. It has also been proposed that a magnetic field could destabilize the magnetic order in this material and induce a transition into a spin liquid phase. Low temperature magnetization and specific heat measurements in this material have suggested a complex magnetic phase diagram with multiple unidentified magnetic phases present at low temperature. This has provided motivation for our work characterizing the magnetic transitions and phase diagram in α-RuCl3. I will present detailed bulk measurements combined with magnetic neutron diffraction measurements to map out the phase diagram and identify the various phases present.

  19. PREFACE International Symposium on Spintronic Devices and Commercialization 2010

    NASA Astrophysics Data System (ADS)

    Du, You-wei; Judy, Jack; Qian, Zhenghong; Wang, Jianping

    2011-01-01

    SSDC logo Preface The International Symposium on Spintronic Devices and Commercialization (ISSDC' 2010) was held in Beijing, China, from 21 to 24 October 2010. The aim of the symposium was to provide an opportunity for international experts, academics, researchers, practitioners and students working in the areas of spintronic theories, spintronic materials, and spintronic devices to exchange information on the R&D and commercialization of spintronic materials and devices. New developments, concepts, future research trends and potential commercialization areas were also discussed. The topics covered by ISSDC' 2010 were: Fundmental Spintronic Theories/Experiments Spin polarization, spin-dependent scattering, spin relaxation, spin manipulation and optimization, as well as other related characterizations and applications, etc. Spintronic Materials Giant magnetoresistance materials, magnetic tunnel junction materials, magnetic semiconductor materials, molecular spintronic materials. Spintronic Devices Sensors, isolators, spin logic devices and magnetic random access memories (MRAMs), microwave devices, spin diodes, spin transistor, spin filters and detectors, spin optoelectronic devices, spin quantum devices, single chip computer, spin molecule and single electron devices. Other Magnetic Materials Soft magnetic materials, hard magnetic materials, magneto-optical materials, magnetostriction materials. Applications of Spintronic Devices Magnetic position/angle/velocity/rotation velocity sensors, magnetic encoders, magnetic compasses, bio-medical magnetic devices and other applications. Future Research Trends and the Commercialization of Spintronic Devices Approximately 85 scientists from almost 10 countries participated in the conference. The conference featured 6 keynote lectures, 8 invited lectures, 12 contributed lectures and about 30 posters. We would like to express our gratitude to all participants for their presentations and discussions, which made the conference very successful indeed. We are also grateful to the Advisory Committee, the Conference Chairs, the Excutive Chairs, the Academic Committee, the Organization Committee and the Secretariat for their fruitful work. We would especially like to thank all the organizers listed below for their support in all aspects of the conference. We would like to express our thanks to all the authors for their time and genuine efforts, and to the reviewers for their fruitful comments during the preparation of this volume. ISSDC'2010 ORGANIZATION Advisory Committee Chialing Chien, USAJunhao Chu, ChinaBernard Dieny, FranceKoichiro Inomata, Japan Liangmo Mei, ChinaJohn Sivertsen, USAMingjing Tu, ChinaDingsheng Wang, China Zhanguo Wang, ChinaQikun Xue, ChinaWenshan Zhan, China Conference Chairs Jack Judy, USAYouwei Du, China Executive Chairs Zhenghong Qian, USAJianping Wang, USA Organization Committee ChairJiyan Luo, China Vice ChairsGuilin Duan, ChinaLingling Sun, ChinaBaogen Shen, China MembersTiecheng Lu, ChinaDa Ma, ChinaYe Tian, China Jinsong Xu, ChinaQiuling XuChangmao Yang, China Guanghua Yu, ChinaYi Yan, China Academic Committee ChairsZhenghong Qian, USAYongbing Xu, UK Vice ChairsSeongtae Bae, SingaporeYong Jiang, ChinaDexin Wang, USA Huaiwu Zhang, ChinaJianhua Zhao, China MembersJianwang Cai, ChinaXiangdong Chen, ChinaHaifeng Ding, China Chunhong Hou, USAGunther Baubock, USABin Hu, USA Jungchun Huang, TaiwanDexuan Huo, ChinaYoon H Jeong, Korea Chihuang Lai, TaiwanRunwei Li, ChinaWei Liu, China Jing Shi, USAYasushi Takemura, JapanMark Tondra, USA Shan X Wang, USADi Wu, ChinaDesheng Xue, China Minglang Yan, USAShishen Yan, ChinaXiaofei Yang, China Chun Yeol You, KoreaWei Zhao, ChinaShiming Zhou, China Jianguo Zhu, China Secretariat Secretary-generalChangmao Yang, China Vice Secretary-generalJunli Wang, ChinaJinsong Xu, ChinaYe Tian, China MembersRu Bai, ChinaHongliang Zhan, China ISSDC' 2010 Organizers Department of Science and Technology, CSIC, China SpinIC Inc., China Hangzhou Dianzi University, China State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, China Institute of Measurement Technology, China Magnetic Materials and Devices Branch of Electronic Component Association, China Shenyang Academy of Instrumentation Science / National Engineering Research Center for Transducer, China

  20. Comparing kidney perfusion using noncontrast arterial spin labeling MRI and microsphere methods in an interventional swine model.

    PubMed

    Artz, Nathan S; Wentland, Andrew L; Sadowski, Elizabeth A; Djamali, Arjang; Grist, Thomas M; Seo, Songwon; Fain, Sean B

    2011-02-01

    The purpose of this study was to assess the ability of a flow-sensitive alternating inversion recovery-arterial spin labeling (FAIR-ASL) technique to track renal perfusion changes during pharmacologic and physiologic alterations in renal blood flow using microspheres as a gold standard. Fluorescent microsphere and FAIR-ASL perfusion were compared in the cortex of the kidney for 11 swine across 4 interventional time points: (1) under baseline conditions, (2) during an acetylcholine and fluid bolus challenge to increase perfusion, (3) initially after switching to isoflurane anesthesia, and (4) after 2 hours of isoflurane anesthesia. In 10 of the 11 swine, a bag of ice was placed on the hilum of 1 kidney at the beginning of isoflurane administration to further reduce perfusion in 1 kidney. Both ASL and microspheres tracked the expected cortical perfusion changes (P < 0.02) across the interventions, including an increase in perfusion during the acetylcholine challenge and decrease during the administration of isoflurane. Both techniques also measured lower cortical perfusion in the iced compared with the non-iced kidneys (P ≤ 0.01). The ASL values were systematically lower compared with microsphere perfusion. Very good correlation (r = 0.81, P < 0.0001) was observed between the techniques, and the relationship appeared linear for perfusion values in the expected physiologic range (microsphere perfusion <550 mL/min/100 g) although ASL values saturated for perfusion >550 mL/min/100 g. Cortical perfusion measured with ASL correlated with microspheres and reliably detected changes in renal perfusion in response to physiologic challenge.

  1. Synthesis of low-moment CrVTiAl: a potential room temperature spin filter

    NASA Astrophysics Data System (ADS)

    Stephen, Gregory; Wolfsberg, Jacob; McDonald, Ian; Lejeune, Brian; Lewis, Laura; Heiman, Don

    The efficient production of spin-polarized currents at room temperature is fundamental to the advancement of spintronics. Spin-filter materials - semiconductors with unequal band gaps for each spin channel - can generate spin-polarized current without the need for spin-polarizing electrodes. In addition, a spin-filter material with zero magnetic moment would have the advantage of not producing fringing fields to interfere with neighboring components. Several quaternary Heusler compounds have recently been predicted to have spin-filter properties and Curie temperatures TC >1000 K. In this work, CrVTiAl has been synthesized in the Y-type Heusler structure, as confirmed by X-ray diffractometry. Magnetization measurements exhibit an exceptionally small temperature-independent moment of 10-3μB /f.u. up to 400 K, a result that is consistent with zero-moment ferrimagnetism. In addition, temperature dependent resistivity measurements reveal the existence of a semiconducting conduction channel. These results suggest that CrVTiAl is a promising candidate for future spintronic devices.

  2. Quantum spin dynamics at terahertz frequencies in 2D hole gases and improper ferroelectrics

    NASA Astrophysics Data System (ADS)

    Lloyd-Hughes, J.

    2015-08-01

    Terahertz time-domain spectroscopy permits the excitations of novel materials to be examined with exquisite precision. Improper ferroelectric materials such as cupric oxide (CuO) exhibit complex magnetic ground states. CuO is antiferromagnetic below 213K, but has an incommensurate cycloidal magnetic phase between 213K and 230K. Remarkably, the cycloidal magnetic phase drives ferroelectricity, where the material becomes polar. Such improper multiferroics are of great contemporary interest, as a better understanding of the science of magnetoelectric materials may lead to their application in actuators, sensors and solid state memories. Improper multiferroics also have novel quasiparticle excitations: electromagnons form when spin-waves become electric-dipole active. By examining the dynamic response of spins as they interact with THz radiation we gain insights into the underlying physics of multi-ferroics. In contrast to improper ferroelectrics, where magnetism drives structural inversion asymmetry (SIA), two-dimensional electronic systems can exhibit non-degenerate spin states as a consequence of SIA created by strain and/or electric fields. We identify and explore the influence of the Rashba spin-orbit interaction upon cyclotron resonance at terahertz frequencies in high-mobility 2D hole gases in germanium quantum wells. An enhanced Rashba spin-orbit interaction can be linked to the strain of the quantum well, while a time-frequency decomposition method permitted the dynamical formation and decay of spin-split cyclotron resonances to be tracked on picosecond timescales. Long spin-decoherence times concurrent with high hole mobilities highlight the potential of Ge quantum wells in spintronics.

  3. The structure and effect of suture zones in the Larsen C Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel; Steffen, Konrad; Holland, Paul R.; Scambos, Ted; Rajaram, Harihar; Abdalati, Waleed; Rignot, Eric

    2014-03-01

    Ice shelf fractures frequently terminate where they encounter suture zones, regions of material heterogeneity that form between meteoric inflows in ice shelves. This heterogeneity can consist of marine ice, meteoric ice with modified rheological properties, or the presence of fractures. Here, we use radar observations on the Larsen C Ice Shelf, Antarctica, to investigate (i) the termination of a 25 km long rift in the Churchill Peninsula suture zone, which was found to contain 60 m of accreted marine ice, and (ii) the along-flow evolution of a suture zone originating at Cole Peninsula. We determine a steady state field of basal melting/freezing rates and apply it to a flowline model to delineate the along-flow evolution of layers within the ice shelf. The thickening surface wedge of locally accumulated meteoric ice, which likely has limited lateral variation in its mechanical properties, accounts for 60% of the total ice thickness near the calving front. Thus, we infer that the lower 40% of the ice column and the material heterogeneities present there are responsible for resisting fracture propagation and thereby delaying tabular calving events, as demonstrated in the >40 year time series leading up to the 2004/2005 calving event for Larsen C. This likely represents a highly sensitive aspect of ice shelf stability, as changes in the oceanic forcing may lead to the loss of this heterogeneity.

  4. SPH non-Newtonian Model for Ice Sheet and Ice Shelf Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Pan, Wenxiao; Monaghan, Joseph J.

    2012-07-07

    We propose a new three-dimensional smoothed particle hydrodynamics (SPH) non-Newtonian model to study coupled ice sheet and ice shelf dynamics. Most existing ice sheet numerical models use a grid-based Eulerian approach, and are usually restricted to shallow ice sheet and ice shelf approximations of the momentum conservation equation. SPH, a fully Lagrangian particle method, solves the full momentum conservation equation. SPH method also allows modeling of free-surface flows, large material deformation, and material fragmentation without employing complex front-tracking schemes, and does not require re-meshing. As a result, SPH codes are highly scalable. Numerical accuracy of the proposed SPH model ismore » first verified by simulating a plane shear flow with a free surface and the propagation of a blob of ice along a horizontal surface. Next, the SPH model is used to investigate the grounding line dynamics of ice sheet/shelf. The steady position of the grounding line, obtained from our SPH simulations, is in good agreement with laboratory observations for a wide range of bedrock slopes, ice-to-fluid density ratios, and flux. We examine the effect of non-Newtonian behavior of ice on the grounding line dynamics. The non-Newtonian constitutive model is based on Glen's law for a creeping flow of a polycrystalline ice. Finally, we investigate the effect of a bedrock geometry on a steady-state position of the grounding line.« less

  5. Understanding Poly(vinyl alcohol)-Mediated Ice Recrystallization Inhibition through Ice Adsorption Measurement and pH Effects.

    PubMed

    Burkey, Aaron A; Riley, Christopher L; Wang, Lyndsey K; Hatridge, Taylor A; Lynd, Nathaniel A

    2018-01-08

    The development of improved cryopreservative materials is necessary to enable complete recovery of living cells and tissue after frozen storage. Remarkably, poly(vinyl alcohol) (PVA) displays some of the same cryoprotective properties as many antifreeze proteins found in cold tolerant organisms. In particular, PVA is very effective at halting the Ostwald ripening of ice, a process that mechanically damages cells and tissue. Despite the large practical importance of such a property, the mechanism by which PVA interacts with ice is poorly understood, hindering the development of improved cryoprotective materials. Herein, we quantitatively evaluated ice growth kinetics in the presence of PVA at different pH conditions and in the presence of a range of neutral salts. We demonstrated that pH, but not salt identity, alters the ability of PVA to halt ice grain coarsening. These observations are consistent with hydrogen-bonding playing a crucial role in PVA-mediated ice recrystallization inhibition. The evolution of the size distribution of ice crystals with annealing was consistent with incomplete surface coverage of ice with PVA. Binding assay measurements of dissolved fluorescently labeled PVA in an ice slurry showed that PVA interacts with ice through weak adsorption (<9%) to the ice crystal surface, which stands in contrast to fluorescently tagged type III antifreeze peptide, which binds strongly (ca. 64%) under the same conditions.

  6. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Lesne, E.; Fu, Yu; Oyarzun, S.; Rojas-Sánchez, J. C.; Vaz, D. C.; Naganuma, H.; Sicoli, G.; Attané, J.-P.; Jamet, M.; Jacquet, E.; George, J.-M.; Barthélémy, A.; Jaffrès, H.; Fert, A.; Bibes, M.; Vila, L.

    2016-12-01

    The spin-orbit interaction couples the electrons’ motion to their spin. As a result, a charge current running through a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronic functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronic hetero- and mesostructures. Here, we make use of an interface-driven spin-orbit coupling mechanism--the Rashba effect--in the oxide two-dimensional electron system (2DES) LaAlO3/SrTiO3 to achieve spin-to-charge conversion with unprecedented efficiency. Through spin pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES and highlight the importance of a long scattering time to achieve efficient spin-to-charge interconversion.

  7. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution.

    PubMed

    Sizemore, H G; Platz, T; Schorghofer, N; Prettyman, T H; De Sanctis, M C; Crown, D A; Schmedemann, N; Neesemann, A; Kneissl, T; Marchi, S; Schenk, P M; Bland, M T; Schmidt, B E; Hughson, K H G; Tosi, F; Zambon, F; Mest, S C; Yingst, R A; Williams, D A; Russell, C T; Raymond, C A

    2017-07-16

    Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice-rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization.

  8. Entrainment, transport and concentration of meteorites in polar ice sheets

    NASA Technical Reports Server (NTRS)

    Drewry, D. J.

    1986-01-01

    Glaciers and ice sheets act as slow-moving conveyancing systems for material added to both their upper and lower surfaces. Because the transit time for most materials is extremely long the ice acts as a major global storage facility. The effects of horizontal and vertical motions on the flow patterns of Antarctic ice sheets are summarized. The determination of the source areas of meteorites and their transport paths is a problem of central importance since it relates not only directly to concentration mechanisms but also to the wider issues in glaciology and meteorites. The ice and snow into which a meteorite falls, and which moves with it to the concentration area, encodes information about the infall area. The principle environmental conditions being former elevation, temperature (also related to elevation), and age of the ice. This encoded information could be used to identify the infall area.

  9. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution

    USGS Publications Warehouse

    Sizemore, H.G.; Platz, Thomas; Schorghofer, Norbert; Prettyman, Thomas; De Sanctis, Maria Christina; Crown, David A.; Schmedemann, Nico; Nessemann, Andeas; Kneissl, Thomas; Simone Marchi,; Schenk, Paul M.; Bland, Michael T.; Schmidt, B.E.; Hughson, Kynan H.G.; Tosi, F.; Zambon, F; Mest, S.C.; Yingst, R.A.; Williams, D.A.; Russell, C.T.; Raymond, C.A.

    2017-01-01

    Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice-rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization.

  10. Rotationally induced surface slope-instabilities and the activation of CO2 activity on comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan K.; Graves, Kevin; Hirabayashi, Masatoshi; Melosh, H. Jay; Richardson, James E.

    2016-07-01

    Comet 103P/Hartley 2 has diurnally controlled, CO2-driven activity on the tip of the small lobe of its bilobate nucleus. Such activity is unique among the comet nuclei visited by spacecraft, and suggests that CO2 ice is very near the surface, which is inconsistent with our expectations of an object that thermophysically evolved for ∼45 million years prior to entering the Jupiter Family of comets. Here we explain this pattern of activity by showing that a very plausible recent episode of rapid rotation (rotation period of ∼11 [10-13] h) would have induced avalanches in Hartley 2's currently active regions that excavated down to CO2-rich ices and activated the small lobe of the nucleus. At Hartley 2's current rate of spindown about its principal axis, the nucleus would have been spinning fast enough to induce avalanches ∼3-4 orbits prior to the DIXI flyby (∼1984-1991). This coincides with Hartley 2's discovery in 1986, and implies that the initiation of CO2 activity facilitated the comet's discovery. During the avalanches, the sliding material would either be lofted off the surface by gas activity, or possibly gained enough momentum moving downhill (toward the tip of the small lobe) to slide off the tip of the small lobe. Much of this material would have failed to reach escape velocity, and would reimpact the nucleus, forming debris deposits. The similar size frequency distribution of the mounds observed on the surface of Hartley 2 and chunks of material in its inner coma suggest that the 20-40 m mounds observed by the DIXI mission on the surface of Hartley 2 are potentially these fallback debris deposits. As the nucleus spun down (rotation period increased) from a period of ∼11-18.34 h at the time of the DIXI flyby, the location of potential minima, where materials preferentially settle, migrated about the surface, allowing us to place relative ages on most of the terrains on the imaged portion of the nucleus.

  11. Spin pumping driven auto-oscillator for phase-encoded logic—device design and material requirements

    NASA Astrophysics Data System (ADS)

    Rakheja, S.; Kani, N.

    2017-05-01

    In this work, we propose a spin nano-oscillator (SNO) device where information is encoded in the phase (time-shift) of the output oscillations. The spin current required to set up the oscillations in the device is generated through spin pumping from an input nanomagnet that is precessing at RF frequencies. We discuss the operation of the SNO device, in which either the in-plane (IP) or out-of-plane (OOP) magnetization oscillations are utilized toward implementing ultra-low-power circuits. Using physical models of the nanomagnet dynamics and the spin transport through non-magnetic channels, we quantify the reliability of the SNO device using a "scaling ratio". Material requirements for the nanomagnet and the channel to ensure correct logic functionality are identified using the scaling ratio metric. SNO devices consume (2-5)× lower energy compared to CMOS devices and other spin-based devices with similar device sizes and material parameters. The analytical models presented in this work can be used to optimize the performance and scaling of SNO devices in comparison to CMOS devices at ultra-scaled technology nodes.

  12. Electric polarization control of magnetoresistance in complex oxide heterojunctions

    NASA Astrophysics Data System (ADS)

    Swartz, Adrian G.; Inoue, Hisashi; Hwang, Harold Y.

    2016-10-01

    Lorentzian magnetoresistance (L-MR) has been widely observed in three-terminal ferromagnet-nonmagnet (FM-NM) tunnel junctions. One possible explanation for this behavior is ensemble dephasing (Hanle effect) of a spin accumulation, potentially offering a powerful approach for characterizing the spin lifetime of emerging spintronics materials. However, discrepancies between the extracted spin parameters with known materials properties has cast doubt on this interpretation for most implementations. Here, we have developed a method to control band alignments in perovskite oxide heterostructures through the use of epitaxial interface dipoles, providing a highly effective method for manipulating the Schottky barrier height and contact resistance. Using these atomically engineered heterojunctions, we are able to tune key parameters relevant to various spin accumulation models, providing an experimental platform which can test their applicability. We find that the observed L-MR is inconsistent with an interpretation of spin accumulation in either the NM material or in interface states. Rather, we consider a mechanism analogous to Coulomb blockade in quantum dots, where spin-dependent tunneling through an ensemble of interfacial defect states is controlled by local and external magnetic fields.

  13. ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: ELECTRON RADIOLYSIS OF N{sub 2}-, CH{sub 4}-, AND CO-CONTAINING ICES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.

    Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N{sub 2}-, CH{sub 4}-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple icesmore » dominated by N{sub 2}, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ∼ 0.9 and O/C ∼ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.« less

  14. Solution-processed organic spin-charge converter.

    PubMed

    Ando, Kazuya; Watanabe, Shun; Mooser, Sebastian; Saitoh, Eiji; Sirringhaus, Henning

    2013-07-01

    Conjugated polymers and small organic molecules are enabling new, flexible, large-area, low-cost optoelectronic devices, such as organic light-emitting diodes, transistors and solar cells. Owing to their exceptionally long spin lifetimes, these carbon-based materials could also have an important impact on spintronics, where carrier spins play a key role in transmitting, processing and storing information. However, to exploit this potential, a method for direct conversion of spin information into an electric signal is indispensable. Here we show that a pure spin current can be produced in a solution-processed conducting polymer by pumping spins through a ferromagnetic resonance in an adjacent magnetic insulator, and that this generates an electric voltage across the polymer film. We demonstrate that the experimental characteristics of the generated voltage are consistent with it being generated through an inverse spin Hall effect in the conducting polymer. In contrast with inorganic materials, the conducting polymer exhibits coexistence of high spin-current to charge-current conversion efficiency and long spin lifetimes. Our discovery opens a route for a new generation of molecular-structure-engineered spintronic devices, which could lead to important advances in plastic spintronics.

  15. Transnational Sea-Ice Transport in a Warmer, More Mobile Arctic

    NASA Astrophysics Data System (ADS)

    Newton, R.; Tremblay, B.; Pfirman, S. L.; DeRepentigny, P.

    2015-12-01

    As the Arctic sea ice thins, summer ice continues to shrink in its area, and multi-year ice becomes rarer, winter ice is not disappearing from the Arctic Basin. Rather, it is ever more dominated by first year ice. And each summer, as the total coverage withdraws, the first year ice is able travel faster and farther, carrying any ice-rafted material with it. Micro-organisms, sediments, pollutants and river runoff all move across the Arctic each summer and are deposited hundreds of kilometers from their origins. Analyzing Arctic sea ice drift patterns in the context of the exclusive economic zones (EEZs) of the Arctic nations raises concerns about the changing fate of "alien" ice which forms within one country's EEZ, then drifts and melts in another country's EEZ. We have developed a new data set from satellite-based ice-drift data that allows us to track groups of ice "pixels" forward from their origin to their destination, or backwards from their melting location to their point of formation. The software has been integrated with model output to extend the tracking of sea ice to include climate projections. Results indicate, for example, that Russian sea ice dominates "imports" to the EEZ of Norway, as expected, but with increasing ice mobility it is also is exported into the EEZs of other countries, including Canada and the United States. Regions of potential conflict are identified, including several national borders with extensive and/or changing transboundary sea ice transport. These data are a starting point for discussion of transborder questions raised by "alien" ice and the material it may import from one nation's EEZ to another's.

  16. Ice sintering timescales at the surface of Europa and implications for surface properties

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Molaro, J.; Meirion-Griffith, G.

    2017-12-01

    The planned exploration of Europa by NASA's Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa's landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a "neck" between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa's subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts. Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa's surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa's surface age, suggesting that loose surface ice forms a weak and porous crust. Furthermore, our results suggest that existing models do not accurately quantify all stages of the sintering process for ice, emphasizing the need for more laboratory studies on this topic.

  17. Effective temperature in an interacting vertex system: theory and experiment on artificial spin ice.

    PubMed

    Nisoli, Cristiano; Li, Jie; Ke, Xianglin; Garand, D; Schiffer, Peter; Crespi, Vincent H

    2010-07-23

    Frustrated arrays of interacting single-domain nanomagnets provide important model systems for statistical mechanics, as they map closely onto well-studied vertex models and are amenable to direct imaging and custom engineering. Although these systems are manifestly athermal, we demonstrate that an effective temperature, controlled by an external magnetic drive, describes their microstates and therefore their full statistical properties.

  18. New methods and materials for molding and casting ice formations

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Richter, G. Paul

    1987-01-01

    This study was designed to find improved materials and techniques for molding and casting natural or simulated ice shapes that could replace the wax and plaster method. By utilizing modern molding and casting materials and techniques, a new methodology was developed that provides excellent reproduction, low-temperature capability, and reasonable turnaround time. The resulting casts are accurate and tough.

  19. Method for uniformly bending conduits

    DOEpatents

    Dekanich, S.J.

    1984-04-27

    The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.

  20. A discrete-element model for viscoelastic deformation and fracture of glacial ice

    NASA Astrophysics Data System (ADS)

    Riikilä, T. I.; Tallinen, T.; Åström, J.; Timonen, J.

    2015-10-01

    A discrete-element model was developed to study the behavior of viscoelastic materials that are allowed to fracture. Applicable to many materials, the main objective of this analysis was to develop a model specifically for ice dynamics. A realistic model of glacial ice must include elasticity, brittle fracture and slow viscous deformations. Here the model is described in detail and tested with several benchmark simulations. The model was used to simulate various ice-specific applications with resulting flow rates that were compatible with Glen's law, and produced under fragmentation fragment-size distributions that agreed with the known analytical and experimental results.

  1. The organic surface of 5145 Pholus: Constraints set by scattering theory

    NASA Technical Reports Server (NTRS)

    Wilson, Peter D.; Sagan, Carl; Thompson, W. Reid

    1994-01-01

    No known body in the Solar System has a spectrum redder than that of object 5145 Pholus. We use Hapke scattering theory and optical constants measured in this laboratory to examine the ability of mixtures of a number of organic solids and ices to reproduce the observed spectrum and phase variation. The primary materials considered are poly-HCN, kerogen, Murchison organic extract, Titan tholin, ice tholin, and water ice. In a computer grid search of over 10 million models, we find an intraparticle mixture of 15% Titan tholin, 10% poly-HCN, and 75% water ice with 10-micrometers particles to provide an excellent fit. Replacing water ice with ammonia ice improves the fits significantly while using a pure hydrocarbon tholin, Tholin alpha, instead of Titan tholin makes only modest improvements. All acceptable fits require Titan tholin or some comparable material to provide the steep slope in the visible, and poly-HCN or some comparable material to provide strong absorption in the near-infrared. A pure Titan tholin surface with 16-micrometers particles, as well as all acceptable Pholus models, fit the present spectrophotometric data for the transplutonian object 1992 QB(sub 1). The feasibility of gas-phase chemistry to generate material like Titan tholin on such small objects is examined. An irradiated transient atmosphere arising from sublimating ices may generate at most a few centimeters of tholin over the lifetime of the Solar System, but this is insignificant compared to the expected lag deposit of primordial contaminants left behind by the sublimating ice. Irradiation of subsurface N2/CH4 or NH3/CH4 ice by cosmic rays may generate approximately 20 cm of tholin in the upper 10 m of regolith in the same time scale but the identity of this tholin to its gas-phase equivalent has not been demonstrated.

  2. Physical modeling of the influence of bedrock topography and ablation on ice flow and meteorite concentration in Antarctica

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio; Belmaggio, Pietro; Folco, Luigi

    2008-03-01

    Three-dimensional laboratory physical experiments have been used to investigate the influence of bedrock topography and ablation on ice flow. Different models were tested in a Plexiglas box, where a transparent silicone simulating ice in nature was allowed to flow. Experimental results show how the flow field (in terms of both flow lines and velocity) and variations in the topography of the free surface and internal layers of the ice are strongly influenced by the presence and height of bedrock obstacles. In particular, the buttressing effect forces the ice to slow down, rise up, and avoid the obstacle; the higher the bedrock barrier, the more pronounced the process. Only limited uplift of internal layers is observed in these experiments. In order to exhume deep material embedded in the ice, ablation (simulated by physically removing portions of silicone from the model surface to maintain a constant topographic depression) must be included in the physical models. In this case, the analogue ice replenishes the area of material removal, thereby allowing deep layers to move vertically to the surface and severely altering the local ice flow pattern. This process is analogous to the ice flow model proposed in the literature for the origin of meteorite concentrations in blue ice areas of the Antarctic plateau.

  3. Recent developments in hydrologic instrumentation

    USGS Publications Warehouse

    Latkovich, Vito J.; Futrell, James C.; Kane, Douglas L.

    1986-01-01

    The programs of the U.S. Geological Survey require instrumentation for collecting and monitoring hydrologic data in cold regions. The availability of space-age materials and implementation of modern electronics and mechanics is making possible the recent developments of hydrologic instrumentation, especially in the area of measuring streamflow under ice cover. Material developments include: synthetic-fiber sounding and tag lines; polymer (plastic) sheaves, pulleys, and sampler components; and polymer (plastic) current-meter bucket wheels. Electronic and mechanical developments include: a current-meter digitizer; a fiber-optic closure system for current-meters; non-contact water-level sensors; an adaptable hydrologic data acquisition system; a minimum data recorder; an ice rod; an ice foot; a handled sediment sampler; a light weight ice auger with improved cutter head and blades; and an ice chisel.

  4. Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions

    PubMed Central

    Hankiewicz, Ewelina M.; Culcer, Dimitrie

    2017-01-01

    Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films, taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In topological insulators, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional Hikami-Larkin-Nagaoka formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In Weyl semimetal thin films having intermediate to large values of the quasiparticle mass, we show that extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. Throughout the paper, we discuss implications for experimental work, and, at the end, we provide a brief comparison with transition metal dichalcogenides. PMID:28773167

  5. Quantum Control and Entanglement of Spins in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Klimov, Paul

    Over the past several decades silicon carbide (SiC) has matured into a versatile material platform for high-power electronics and optoelectronic and micromechanical devices. Recent advances have also established SiC as a promising host for quantum technologies based on the spin of intrinsic defects, with the potential of leveraging existing device fabrication protocols alongside solid-state quantum control. Among these defects are the divacancies and related color centers, which have ground-state electron-spin triplets with coherence times as long as one millisecond and built-in optical interfaces operating near the telecommunication wavelengths. This rapidly developing field has prompted research into the SiC material host to understand how defect-bound electron spins interact with their surrounding nuclear spin bath. Although nuclear spins are a major source of decoherence in color-center spin systems, they are also a valuable resource since they can have coherence times that are orders of magnitude longer than electron spins. In this talk I will discuss our recent efforts to interface defect-bound electron spins in SiC with the nuclear spins of naturally occurring 29Si and 13C isotopic defects. I will discuss how the hyperfine interaction can be used to strongly initialize them, to coherently control them, to read them out, and to produce genuine electron-nuclear ensemble entanglement, all at ambient conditions. These demonstrations motivate further research into spins in SiC for prospective quantum technologies. In collaboration with A. Falk, D. Christle, K. Miao, H. Seo, V. Ivady, A. Gali, G. Galli, and D. D. Awschalom. This research was supported by the AFOSR, the NSF DMR-1306300, and the NSF Materials Research Science and Engineering Center.

  6. Hysteretic Four-Step Spin Crossover within a Three-Dimensional Porous Hofmann-like Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, John E.; Price, Jason R.; Neville, Suzanne M.

    Materials that display multiple stepped spin crossover (SCO) transitions with accompanying hysteresis present the opportunity for ternary, quaternary, and quinary electronic switching and data storage but are rare in existence. Herein, we present the first report of a four-step hysteretic SCO framework. Single-crystal structure analysis of a porous 3D Hofmann-like material showed long-range ordering of spin states: HS, HS 0.67LS 0.33, HS 0.5LS 0.5, HS 0.33LS 0.67, and LS. These detailed structural studies provide insight into how multistep SCO materials can be rationally designed through control of host–host and host–guest interactions.

  7. Constraints on the Within Season and Between Year Variability of the North Residual Cap from MGS-TES

    NASA Technical Reports Server (NTRS)

    Calvin, W. M.; Titus, T. N.; Mahoney, S. A.

    2003-01-01

    There is a long history of telescopic and spacecraft observations of the polar regions of Mars. The finely laminated ice deposits and surrounding layered terrains are commonly thought to contain a record of past climate conditions and change. Understanding the basic nature of the deposits and their mineral and ice constituents is a continued focus of current and future orbited missions. Unresolved issues in Martian polar science include a) the unusual nature of the CO2 ice deposits ("Swiss Cheese", "slab ice" etc.) b) the relationship of the ice deposits to underlying layered units (which differs from the north to the south), c) understanding the seasonal variations and their connections to the finely laminated units observed in high-resolution images and d) the relationship of dark materials in the wind-swept lanes and reentrant valleys to the surrounding dark dune and surface materials. Our work focuses on understanding these issues in relationship to the north residual ice cap. Recent work using Mars Global Surveyor (MGS) data sets have described evolution of the seasonal CO2 frost deposits. In addition, the north polar residual ice cap exhibits albedo variations between Mars years and within the summer season. The Thermal Emission Spectrometer (TES) data set can augment these observations providing additional constraints such as temperature evolution and spectral properties associated with ice and rocky materials. Exploration of these properties is the subject of our current study.

  8. Size Controllable, Transparent, and Flexible 2D Silver Meshes Using Recrystallized Ice Crystals as Templates.

    PubMed

    Wu, Shuwang; Li, Linhai; Xue, Han; Liu, Kai; Fan, Qingrui; Bai, Guoying; Wang, Jianjun

    2017-10-24

    Ice templates have been widely utilized for the preparation of porous materials due to the obvious advantages, such as environmentally benign and applicable to a wide range of materials. However, it remains a challenge to have controlled pore size as well as dimension of the prepared porous materials with the conventional ice template, since it often employs the kinetically not-stable growing ice crystals as the template. For example, there is no report so far for the preparation of 2D metal meshes with tunable pore size based on the ice template, although facile and eco-friendly prepared metal meshes are highly desirable for wearable electronics. Here, we report the preparation of 2D silver meshes with tunable mesh size employing recrystallized ice crystals as templates. Ice recrystallization is a kinetically stable process; therefore, the grain size of recrystallized ice crystals can be easily tuned, e.g., by adding different salts and changing the annealing temperature. Consequently, the size and line width of silver meshes obtained after freeze-drying can be easily adjusted, which in turn varied the conductivity of the obtained 2D silver film. Moreover, the silver meshes are transparent and display stable conductivity after the repeated stretching and bending. It can be envisioned that this approach for the preparation of 2D conducting films is of practical importance for wearable electronics. Moreover, this study provides a generic approach for the fabrication of 2D meshes with a controllable pore size.

  9. Contrail formation in the tropopause region caused by emissions from an Ariane 5 rocket

    NASA Astrophysics Data System (ADS)

    Voigt, Ch.; Schumann, U.; Graf, K.

    2016-07-01

    Rockets directly inject water vapor and aerosol into the atmosphere, which promotes the formation of ice clouds in ice supersaturated layers of the atmosphere. Enhanced mesospheric cloud occurrence has frequently been detected near 80-kilometer altitude a few days after rocket launches. Here, unique evidence for cirrus formation in the tropopause region caused by ice nucleation in the exhaust plume from an Ariane 5-ECA rocket is presented. Meteorological reanalysis data from the European Centre for Medium-Range Weather Forecasts show significant ice supersaturation at the 100-hectopascal level in the American tropical tropopause region on November 26, 2011. Near 17-kilometer altitudes, the temperatures are below the Schmidt-Appleman threshold temperature for rocket condensation trail formation on that day. Immediately after the launch from the Ariane 5-ECA at 18:39 UT (universal time) from Kourou, French Guiana, the formation of a rocket contrail is detected in the high resolution visible channel from the SEVIRI (Spinning Enhanced Visible and InfraRed Imager) on the METEOSAT9 satellite. The rocket contrail is transported to the south and its dispersion is followed in SEVIRI data for almost 2 h. The ice crystals predominantly nucleated on aluminum oxide particles emitted by the Ariane 5-ECA solid booster and further grow by uptake of water vapor emitted from the cryogenic main stage and entrained from the ice supersaturated ambient atmosphere. After rocket launches, the formation of rocket contrails can be a frequent phenomenon under ice supersaturated conditions. However, at present launch rates, the global climate impact from rocket contrail cirrus in the tropopause region is small.

  10. Spin-on metal oxide materials for N7 and beyond patterning applications

    NASA Astrophysics Data System (ADS)

    Mannaert, G.; Altamirano-Sanchez, E.; Hopf, T.; Sebaai, F.; Lorant, C.; Petermann, C.; Hong, S.-E.; Mullen, S.; Wolfer, E.; Mckenzie, D.; Yao, H.; Rahman, D.; Cho, J.-Y.; Padmanaban, M.; Piumi, D.

    2017-04-01

    There is a growing interest in new spin on metal oxide hard mask materials for advanced patterning solutions both in BEOL and FEOL processing. Understanding how these materials respond to plasma conditions may create a competitive advantage. In this study patterning development was done for two challenging FEOL applications where the traditional Si based films were replaced by EMD spin on metal oxides, which acted as highly selective hard masks. The biggest advantage of metal oxide hard masks for advanced patterning lays in the process window improvement at lower or similar cost compared to other existing solutions.

  11. The role of spin-orbit coupling in topologically protected interface states in Dirac materials

    NASA Astrophysics Data System (ADS)

    Abergel, D. S. L.; Edge, Jonathan M.; Balatsky, Alexander V.

    2014-06-01

    We highlight the fact that two-dimensional (2D) materials with Dirac-like low energy band structures and spin-orbit coupling (SOC) will produce linearly dispersing topologically protected Jackiw-Rebbi modes at interfaces where the Dirac mass changes sign. These modes may support persistent spin or valley currents parallel to the interface, and the exact arrangement of such topologically protected currents depends crucially on the details of the SOC in the material. As examples, we discuss buckled 2D hexagonal lattices such as silicene or germanene, and transition metal dichalcogenides such as Mo{{S}_{2}}.

  12. Coherent Spin Amplification Using a Beam Splitter

    NASA Astrophysics Data System (ADS)

    Yan, Chengyu; Kumar, Sanjeev; Thomas, Kalarikad; See, Patrick; Farrer, Ian; Ritchie, David; Griffiths, Jonathan; Jones, Geraint; Pepper, Michael

    2018-03-01

    We report spin amplification using a capacitive beam splitter in n -type GaAs where the spin polarization is monitored via a transverse electron focusing measurement. It is shown that partially spin-polarized current injected by the emitter can be precisely controlled, and the spin polarization associated with it can be amplified by the beam splitter, such that a considerably high spin polarization of around 50% can be obtained. Additionally, the spin remains coherent as shown by the observation of quantum interference. Our results illustrate that spin-polarization amplification can be achieved in materials without strong spin-orbit interaction.

  13. A highly ordered mesostructured material containing regularly distributed phenols: preparation and characterization at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy.

    PubMed

    Roussey, Arthur; Gajan, David; Maishal, Tarun K; Mukerjee, Anhurada; Veyre, Laurent; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe; Thieuleux, Chloé

    2011-03-14

    Highly ordered organic-inorganic mesostructured material containing regularly distributed phenols is synthesized by combining a direct synthesis of the functional material and a protection-deprotection strategy and characterized at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy.

  14. 10 CFR 31.10 - General license for strontium 90 in ice detection devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...

  15. 10 CFR 31.10 - General license for strontium 90 in ice detection devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...

  16. 10 CFR 31.10 - General license for strontium 90 in ice detection devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...

  17. 10 CFR 31.10 - General license for strontium 90 in ice detection devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...

  18. 10 CFR 31.10 - General license for strontium 90 in ice detection devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false General license for strontium 90 in ice detection devices... MATERIAL § 31.10 General license for strontium 90 in ice detection devices. (a) A general license is hereby issued to own, receive, acquire, possess, use, and transfer strontium 90 contained in ice detection...

  19. Preservation of ancient ice at Pavonis and Arsia Mons: Tropical mountain glacier deposits on Mars

    NASA Astrophysics Data System (ADS)

    Head, James W.; Weiss, David K.

    2014-11-01

    Large tropical mountain glacier (TMG) deposits on the northwest flanks of the Tharsis Montes and Olympus Mons volcanoes are interpreted to be the record of ancient climates characteristic of Mars several hundred million years ago when planetary spin-axis obliquity was ~45°. During this era, polar volatiles (predominantly H2O) were mobilized and transferred equatorward, undergoing adiabatic cooling on the Tharsis volcano flanks, and precipitating snow and ice to form cold-based tropical mountain glaciers up to several kilometers in thickness. Subsequent climate change resulted in retreat, sublimation and collapse of the tropical mountain glaciers, leaving the three typical facies observed today: (1) concentric ridges, the ridged facies, interpreted as drop moraines; (2) knobby facies, interpreted as debris-dominated sublimation residue; and (3) the smooth facies, interpreted as remnant alpine glacial deposits. Ring-mold craters (RMCs) are distinctive features formed by impacts into debris-covered ice. We describe a set of relatively fresh ring-mold craters superposed on the Arsia and Pavonis Mons TMG deposits; we interpret these to indicate that the impact events penetrated a veneer of sublimation lag and excavated buried remnant glacial ice, despite the lack of detection of buried ice by orbital radar instruments. The diameter distribution of the RMCs suggest that the remnant ice lies at a depth of at least 16 m. The TMG deposit ages suggest that these ice deposits date from a period in the range of 125-220 million years before the present; the remnant ice may thus preserve records of the ancient atmospheric gas content and microbiota, as is common in terrestrial glacial ice. Preservation of this ice and the lack of any associated fluvial features suggest that the post-glacial climate has been cold, and related surface temperatures have not been sufficient to bring the buried deposits to the melting point of water.

  20. Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2.

    PubMed

    Iwaya, K; Kohsaka, Y; Okawa, K; Machida, T; Bahramy, M S; Hanaguri, T; Sasagawa, T

    2017-10-17

    A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realise long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor β-PdBi 2 that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarisations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarised surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in β-PdBi 2 .Although several materials have been proposed as topological superconductors, spin textures and superconductivity at the surface remain elusive. Here, Iwaya et al. determine the spin textures at the surface of a superconductor β-PdBi 2 and find the superconducting gap opening in all spin-polarised surface states.

  1. Physics of the Kitaev Model: Fractionalization, Dynamic Correlations, and Material Connections

    NASA Astrophysics Data System (ADS)

    Hermanns, M.; Kimchi, I.; Knolle, J.

    2018-03-01

    Quantum spin liquids have fascinated condensed matter physicists for decades because of their unusual properties such as spin fractionalization and long-range entanglement. Unlike conventional symmetry breaking, the topological order underlying quantum spin liquids is hard to detect experimentally. Even theoretical models are scarce for which the ground state is established to be a quantum spin liquid. The Kitaev honeycomb model and its generalizations to other tricoordinated lattices are chief counterexamples - they are exactly solvable, harbor a variety of quantum spin liquid phases, and are also relevant for certain transition metal compounds including the polymorphs of (Na,Li)2IrO3 iridates and RuCl3. In this review, we give an overview of the rich physics of the Kitaev model, including two-dimensional and three-dimensional fractionalization as well as dynamic correlations and behavior at finite temperatures. We discuss the different materials and argue how the Kitaev model physics can be relevant even though most materials show magnetic ordering at low temperatures.

  2. An unusual mechanism for injury of the anterior cruciate ligament in figure skating.

    PubMed

    Wilson, Eugene K; Lahurd, Alexandra P; Wilckens, John H

    2012-03-01

    A 20-year-old competitive figure skater presented with an acute disabling knee injury that occurred in the overhead, non-weight-bearing knee during the performance of a Biellmann spin. Examination and magnetic resonance imaging confirmed the diagnosis of a complete anterior cruciate ligament (ACL) tear. To our knowledge, no previous cases of acute injury of the ACL sustained during the execution of a Biellmann spin have been reported. The ACL injury we report is unique because it occurred without the blade contacting the ice. The mechanism of injury has some features that are similar to those of other noncontact ACL injuries, with the addition of centrifugal force as a potential contributor to the injury.

  3. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking.

    PubMed

    Sunko, Veronika; Rosner, H; Kushwaha, P; Khim, S; Mazzola, F; Bawden, L; Clark, O J; Riley, J M; Kasinathan, D; Haverkort, M W; Kim, T K; Hoesch, M; Fujii, J; Vobornik, I; Mackenzie, A P; King, P D C

    2017-09-27

    Engineering and enhancing the breaking of inversion symmetry in solids-that is, allowing electrons to differentiate between 'up' and 'down'-is a key goal in condensed-matter physics and materials science because it can be used to stabilize states that are of fundamental interest and also have potential practical applications. Examples include improved ferroelectrics for memory devices and materials that host Majorana zero modes for quantum computing. Although inversion symmetry is naturally broken in several crystalline environments, such as at surfaces and interfaces, maximizing the influence of this effect on the electronic states of interest remains a challenge. Here we present a mechanism for realizing a much larger coupling of inversion-symmetry breaking to itinerant surface electrons than is typically achieved. The key element is a pronounced asymmetry of surface hopping energies-that is, a kinetic-energy-coupled inversion-symmetry breaking, the energy scale of which is a substantial fraction of the bandwidth. Using spin- and angle-resolved photoemission spectroscopy, we demonstrate that such a strong inversion-symmetry breaking, when combined with spin-orbit interactions, can mediate Rashba-like spin splittings that are much larger than would typically be expected. The energy scale of the inversion-symmetry breaking that we achieve is so large that the spin splitting in the CoO 2 - and RhO 2 -derived surface states of delafossite oxides becomes controlled by the full atomic spin-orbit coupling of the 3d and 4d transition metals, resulting in some of the largest known Rashba-like spin splittings. The core structural building blocks that facilitate the bandwidth-scaled inversion-symmetry breaking are common to numerous materials. Our findings therefore provide opportunities for creating spin-textured states and suggest routes to interfacial control of inversion-symmetry breaking in designer heterostructures of oxides and other material classes.

  4. Synthetic spider silk production on a laboratory scale.

    PubMed

    Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig

    2012-07-18

    As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks.

  5. Synthetic Spider Silk Production on a Laboratory Scale

    PubMed Central

    Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig

    2012-01-01

    As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks. PMID:22847722

  6. Electron-Spin Filters Based on the Rashba Effect

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y.; Cartoixa, Xavier; McGill, Thomas C.; Moon, Jeong S.; Chow, David H.; Schulman, Joel N.; Smith, Darryl L.

    2004-01-01

    Semiconductor electron-spin filters of a proposed type would be based on the Rashba effect, which is described briefly below. Electron-spin filters more precisely, sources of spin-polarized electron currents have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-based electronics). There have been a number of successful demonstrations of injection of spin-polarized electrons from diluted magnetic semiconductors and from ferromagnetic metals into nonmagnetic semiconductors. In contrast, a device according to the proposal would be made from nonmagnetic semiconductor materials and would function without an applied magnetic field. The Rashba effect, named after one of its discoverers, is an energy splitting, of what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. The present proposal evolved from recent theoretical studies that suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling. Accordingly, a device according to the proposal would be denoted an asymmetric resonant interband tunneling diode [a-RITD]. An a-RITD could be implemented in a variety of forms, the form favored in the proposal being a double-barrier heterostructure containing an asymmetric quantum well. It is envisioned that a-RITDs would be designed and fabricated in the InAs/GaSb/AlSb material system for several reasons: Heterostructures in this material system are strong candidates for pronounced Rashba spin splitting because InAs and GaSb exhibit large spin-orbit interactions and because both InAs and GaSb would be available for the construction of highly asymmetric quantum wells. This mate-rial system affords a variety of energy-band alignments that can be exploited to obtain resonant tunneling and other desired effects. The no-common-atom InAs/GaSb and InAs/AlSb interfaces would present opportunities for engineering interface potentials for optimizing Rashba spin splitting.

  7. Ice nucleation by particles immersed in supercooled cloud droplets.

    PubMed

    Murray, B J; O'Sullivan, D; Atkinson, J D; Webb, M E

    2012-10-07

    The formation of ice particles in the Earth's atmosphere strongly affects the properties of clouds and their impact on climate. Despite the importance of ice formation in determining the properties of clouds, the Intergovernmental Panel on Climate Change (IPCC, 2007) was unable to assess the impact of atmospheric ice formation in their most recent report because our basic knowledge is insufficient. Part of the problem is the paucity of quantitative information on the ability of various atmospheric aerosol species to initiate ice formation. Here we review and assess the existing quantitative knowledge of ice nucleation by particles immersed within supercooled water droplets. We introduce aerosol species which have been identified in the past as potentially important ice nuclei and address their ice-nucleating ability when immersed in a supercooled droplet. We focus on mineral dusts, biological species (pollen, bacteria, fungal spores and plankton), carbonaceous combustion products and volcanic ash. In order to make a quantitative comparison we first introduce several ways of describing ice nucleation and then summarise the existing information according to the time-independent (singular) approximation. Using this approximation in combination with typical atmospheric loadings, we estimate the importance of ice nucleation by different aerosol types. According to these estimates we find that ice nucleation below about -15 °C is dominated by soot and mineral dusts. Above this temperature the only materials known to nucleate ice are biological, with quantitative data for other materials absent from the literature. We conclude with a summary of the challenges our community faces.

  8. A two-dimensional spin field-effect switch

    NASA Astrophysics Data System (ADS)

    Casanova, Felix

    The integration of the spin degree of freedom in charge-based electronic devices has revolutionised both sensing and memory capability in microelectronics. Further development in spintronic devices requires electrical manipulation of spin current for logic operations. The mainstream approach followed so far, inspired by the seminal proposal of the Datta and Das spin modulator, has relied on the spin-orbit field as a medium for electrical control of the spin state. However, the still standing challenge is to find a material whose spin-orbit coupling (SOC) is weak enough to transport spins over long distances, while also being strong enough to allow their electrical manipulation. In our recent work, we demonstrate a radically different approach by engineering a van der Waals heterostructure from atomically thin crystals, and which combines the superior spin transport properties of graphene with the strong SOC of MoS2, a transition metal dichalcogenide with semiconducting properties. The spin transport in the graphene channel is modulated between ON and OFF states by tuning the spin absorption into the MoS2 layer with a gate electrode. Our demonstration of a spin field-effect switch using two-dimensional (2D) materials identifies a new route towards spin logic operations for beyond CMOS technology. Furthermore, the van der Waals heterostructure at the core of our experiments opens the path for fundamental research of exotic transport properties predicted for transition metal dichalcogenides, in which electrical spin injection has so far been elusive.

  9. Study on heat transfer performance of water-borne and oily graphene coatings using anti-/de-icing component

    NASA Astrophysics Data System (ADS)

    Chen, Long; Zhang, Yidu; Wu, Qiong; Jie, Zhang

    2018-02-01

    A graphene coating anti-/de-icing experiment was proposed by employing water-borne and oily graphene coatings on the composite material anti-/de-icing component. Considering the characteristics of helicopter rotor sensitivity to icing, a new graphene coating enhancing thermal conductivity of anti-/de-icing component was proposed. The anti-/de-icing experiment was conducted to validate the effectiveness of graphene coating. The results of the experiment show that the graphene coatings play a prominent role in controlling the heat transfer of anti-/de-icing component. The anti-/de-icing effect of oily graphene coating is superior to water-borne graphene.

  10. Oxide materials for spintronic device applications

    NASA Astrophysics Data System (ADS)

    Prestgard, Megan Campbell

    Spintronic devices are currently being researched as next-generation alternatives to traditional electronics. Electronics, which utilize the charge-carrying capabilities of electrons to store information, are fundamentally limited not only by size constraints, but also by limits on current flow and degradation, due to electro-migration. Spintronics devices are able to overcome these limitations, as their information storage is in the spin of electrons, rather than their charge. By using spin rather than charge, these current-limiting shortcomings can be easily overcome. However, for spintronic devices to be fully implemented into the current technology industry, their capabilities must be improved. Spintronic device operation relies on the movement and manipulation of spin-polarized electrons, in which there are three main processes that must be optimized in order to maximize device efficiencies. These spin-related processes are: the injection of spin-polarized electrons, the transport and manipulation of these carriers, and the detection of spin-polarized currents. In order to enhance the rate of spin-polarized injection, research has been focused on the use of alternative methods to enhance injection beyond that of a simple ferromagnetic metal/semiconductor injector interface. These alternatives include the use of oxide-based tunnel barriers and the modification of semiconductors and insulators for their use as ferromagnetic injector materials. The transport of spin-polarized carriers is heavily reliant on the optimization of materials' properties in order to enhance the carrier mobility and to quench spin-orbit coupling (SOC). However, a certain degree of SOC is necessary in order to allow for the electric-field, gate-controlled manipulation of spin currents. Spin detection can be performed via both optical and electrical techniques. Using electrical methods relies on the conversion between spin and charge currents via SOC and is often the preferred method for device-based applications. This dissertation presents experimental results on the use of oxides for fulfilling the three spintronic device requirements. In the case of spin injection, the study of dilute magnetic dielectrics (DMDs) shows the importance of doping on the magnetic properties of the resulting tunnel barriers. The study of spin transport in ZnO has shown that, even at room temperature, the spin diffusion length is relatively long, on the order of 100 nm. These studies have also probed the spin relaxation mechanics in ZnO and have shown that Dyakonov-Perel spin relaxation, operating according to Fermi-Dirac statistics, is the dominant spin relaxation mechanism in zinc oxide. Finally, spin detection in ZnO has shown that, similar to other semiconductors, by modifying the resistivity of the ZnO thin films, the spin Hall angle (SHA) can be enhanced to nearly that of metals. This is possible by enhancing extrinsic SOC due to skew-scattering from impurities as well as phonons. In addition, thermal spin injection has also been detected using ZnO, which results support the independently measured inverse spin-Hall effect studies. The work represented herein illustrates that oxide materials have the potential to enhance spintronic device potential in all processes pertinent to spintronic applications.

  11. WATSON: Detecting organic material in subsurface ice using deep-UV fluorescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Wanger, G.; Manatt, K.; Malaska, M.; Willis, M.; Abbey, W.; Doloboff, I.; Beegle, L. W.; DeFlores, L. P.; Priscu, J. C.; Lane, A. L.; Carrier, B. L.; Mellerowicz, B.; Kim, D.; Paulsen, G.; Zacny, K.; Bhartia, R.

    2017-12-01

    Future astrobiological missions to Europa and other ocean worlds may benefit from next-generation instrumentation capable of in situ organic and life detection in subsurface ice environments. WATSON (Wireline Analysis Tool for in Situ Observation of Northern ice sheets) is an instrument under development at NASA's Jet Propulsion Laboratory. WATSON contains high-TRL instrumentation developed for SHERLOC, the Mars 2020 deep-UV fluorescence and Raman spectrometer, including a 248.6 nm NeCu hollow cathode laser as an excitation source. In WATSON, these technologies provide spectroscopic capabilities highly sensitive to many organic compounds, including microbes, in an instrument package approximately 1.2 m long with a 101.6 mm diameter, designed to accommodate a 108 mm ice borehole. Interrogation into the ice wall with a laser allows for a non-destructive in situ measurement that preserves the spatial distribution of material within the ice. We report on a successful deployment of WATSON to Kangerlussuaq, Greenland, where the instrument was lowered to a 4.5 m depth in a hand-cored hole on the Kangerlussuaq sector of the Greenland ice sheet. Motorized stages within the instrument were used to raster a laser across cm-scale regions of the interior surface of the borehole, obtaining fluorescence spectral maps with a 200 µm spatial resolution and a spectral range from 265 nm to 440 nm. This region includes the UV emission bands of many aromatic compounds and microbes, and includes the water and ice Raman O-H stretching modes. We additionally report on experiments designed to inform an early-2018 deployment to Kangerlussuaq where WATSON will be incorporated into a Honeybee Robotics planetary deep drill, with a goal of drilling to a depth of 100 m and investigating the distribution of organic material within the ice sheet. These experiments include laboratory calibrations to determine the sensitivity to organic compounds embedded in ice at various depths, as well as analysis of ice cores obtained during the deployment and returned for subsequent study.

  12. Disorder induced spin coherence in polyfluorene thin film semiconductors

    NASA Astrophysics Data System (ADS)

    Miller, Richard G.; van Schooten, Kipp; Malissa, Hans; Waters, David P.; Lupton, John M.; Boehme, Christoph

    2014-03-01

    Charge carrier spins in polymeric organic semiconductors significantly influence magneto-optoelectronic properties of these materials. In particular, spin relaxation times influence magnetoresistance and electroluminescence. We have studied the role of structural and electronic disorder in polaron spin-relaxation times. As a model polymer, we used polyfluorene, which can exist in two distinct morphologies: an amorphous (glassy) and an ordered (beta) phase. The phases can be controlled in thin films by preparation parameters and verified by photoluminescence spectroscopy. We conducted pulsed electrically detected magnetic resonance (pEDMR) measurements to determine spin-dephasing times by transient current measurements under bipolar charge carrier injection conditions and a forward bias. The measurements showed that, contrary to intuition, spin-dephasing times increase with material disorder. We attribute this behavior to a reduction in hyperfine field strength for carriers in the glassy phase due to increased structural disorder in the hydrogenated side chains, leading to longer spin coherence times. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.

  13. Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides.

    PubMed

    de la Barrera, Sergio C; Sinko, Michael R; Gopalan, Devashish P; Sivadas, Nikhil; Seyler, Kyle L; Watanabe, Kenji; Taniguchi, Takashi; Tsen, Adam W; Xu, Xiaodong; Xiao, Di; Hunt, Benjamin M

    2018-04-12

    Systems simultaneously exhibiting superconductivity and spin-orbit coupling are predicted to provide a route toward topological superconductivity and unconventional electron pairing, driving significant contemporary interest in these materials. Monolayer transition-metal dichalcogenide (TMD) superconductors in particular lack inversion symmetry, yielding an antisymmetric form of spin-orbit coupling that admits both spin-singlet and spin-triplet components of the superconducting wavefunction. Here, we present an experimental and theoretical study of two intrinsic TMD superconductors with large spin-orbit coupling in the atomic layer limit, metallic 2H-TaS 2 and 2H-NbSe 2 . We investigate the superconducting properties as the material is reduced to monolayer thickness and show that high-field measurements point to the largest upper critical field thus reported for an intrinsic TMD superconductor. In few-layer samples, we find the enhancement of the upper critical field is sustained by the dominance of spin-orbit coupling over weak interlayer coupling, providing additional candidate systems for supporting unconventional superconducting states in two dimensions.

  14. Multiscale modeling of current-induced switching in magnetic tunnel junctions using ab initio spin-transfer torques

    NASA Astrophysics Data System (ADS)

    Ellis, Matthew O. A.; Stamenova, Maria; Sanvito, Stefano

    2017-12-01

    There exists a significant challenge in developing efficient magnetic tunnel junctions with low write currents for nonvolatile memory devices. With the aim of analyzing potential materials for efficient current-operated magnetic junctions, we have developed a multi-scale methodology combining ab initio calculations of spin-transfer torque with large-scale time-dependent simulations using atomistic spin dynamics. In this work we introduce our multiscale approach, including a discussion on a number of possible schemes for mapping the ab initio spin torques into the spin dynamics. We demonstrate this methodology on a prototype Co/MgO/Co/Cu tunnel junction showing that the spin torques are primarily acting at the interface between the Co free layer and MgO. Using spin dynamics we then calculate the reversal switching times for the free layer and the critical voltages and currents required for such switching. Our work provides an efficient, accurate, and versatile framework for designing novel current-operated magnetic devices, where all the materials details are taken into account.

  15. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, Peter; Müller, Jens; Krohns, Stephan; Schrettle, Florian; Loidl, Alois; Hartmann, Benedikt; Rommel, Robert; de Souza, Mariano; Hotta, Chisa; Schlueter, John A.; Lang, Michael

    2012-09-01

    Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.

  16. Spectral properties of ice-particulate mixtures and implications for remote sensing. 1. Intimate mixtures.

    USGS Publications Warehouse

    Clark, R.N.; Lucey, P.G.

    1984-01-01

    The spectral properties of water ice-partitioning mixtures are studied for the purpose of deriving the ice and particulate abundances from remotely obtained spectra (particulates referring to non-icy materials in the form of grains). Reflectance levels and ice absorption band depths are a complex function of the single scattering albedo of the particulates embedded in the ice. The ice absorption band depths are related to the mean optical path length of photons in ice through Beers law, Fresnel reflection from the ice-crystal faces on the surface, and ice absorption coefficient as a function of wavelength. Laboratory spectra of many ice- particulate mixtures are studied with high-, medium-, and low-albedo particulates.-from Authors

  17. A bilayer Double Semion Model with Symmetry-Enriched Topological Order

    NASA Astrophysics Data System (ADS)

    Ortiz, Laura; Martin-Delgado, Miguel Angel

    We construct a new model of two-dimensional quantum spin systems that combines intrinsic topological orders and a global symmetry called flavour symmetry. It is referred as the bilayer Doubled Semion model (bDS) and is an instance of symmetry-enriched topological order. A honeycomb bilayer lattice is introduced to combine a Double Semion Topolgical Order with a global spin-flavour symmetry to get the fractionalization of its quasiparticles. The bDS model exhibits non-trival braiding self-statistics of excitations and its dual model constitutes a Symmetry-Protected Topological Order with novel edge states. This dual model gives rise to a bilayer Non-Trivial Paramagnet that is invariant under the flavour symmetry and the well-known spin flip symmetry. We acknowledge financial support from the Spanish MINECO Grants FIS2012-33152, FIS2015-67411, and the CAM research consortium QUITEMAD+, Grant No. S2013/ICE-2801. The research of M.A.M.-D. has been supported in part by the U.S. Army Research Office throu.

  18. Porous carbon-free SnSb anodes for high-performance Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Hee; Ha, Choong-Wan; Choi, Hae-Young; Seong, Jae-Wook; Park, Cheol-Min; Lee, Sang-Min

    2018-05-01

    A simple melt-spinning/chemical-etching process is developed to create porous carbon-free SnSb anodes. Sodium ion batteries (SIBs) incorporating these anodes exhibit excellent electrochemical performances by accomodating large volume changes during repeated cycling. The porous carbon-free SnSb anode produced by the melt-spinning/chemical-etching process shows a high reversible capacity of 481 mAh g-1, high ICE of 80%, stable cyclability with a high capacity retention of 99% after 100 cycles, and a fast rate capability of 327 mAh g-1 at 4C-rate. Ex-situ X-ray diffraction and high resolution-transmission electron microscopy analyses demonstrate that the synthesized porous carbon-free SnSb anodes involve the highly reversible reaction with sodium through the conversion and recombination reactions during sodiation/desodiation process. The novel and simple melt-spinning/chemical-etching synthetic process represents a technological breakthrough in the commercialization of Na alloy-able anodes for SIBs.

  19. Spintronics Based on Topological Insulators

    NASA Astrophysics Data System (ADS)

    Fan, Yabin; Wang, Kang L.

    2016-10-01

    Spintronics using topological insulators (TIs) as strong spin-orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin-orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin-torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its potential applications in ultralow power dissipation spintronic memory and logic devices.

  20. Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model.

    PubMed

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Chen, Chun-Nan; Wang, Wan-Tsang; Hsu, Yu-Chi; Ren, Chung-Yuan; Lee, Meng-En; Wu, Chieh-Lung; Gau, Ming-Hong

    2012-10-17

    We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion k at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.

  1. Intuitive approach to the unified theory of spin relaxation

    NASA Astrophysics Data System (ADS)

    Szolnoki, Lénárd; Dóra, Balázs; Kiss, Annamária; Fabian, Jaroslav; Simon, Ferenc

    2017-12-01

    Spin relaxation is conventionally discussed using two different approaches for materials with and without inversion symmetry. The former is known as the Elliott-Yafet (EY) theory and for the latter the D'yakonov-Perel' (DP) theory applies. We discuss herein a simple and intuitive approach to demonstrate that the two seemingly disparate mechanisms are closely related. A compelling analogy between the respective Hamiltonians is presented, and that the usual derivation of spin-relaxation times, in the respective frameworks of the two theories, can be performed. The result also allows us to obtain less canonical spin-relaxation regimes, i.e. the generalization of the EY when the material has a large quasiparticle broadening, and the DP mechanism in ultrapure semiconductors. The method also allows a practical and intuitive numerical implementation of the spin-relaxation calculation, which is demonstrated for MgB2, which has anomalous spin-relaxation properties.

  2. Electron Spin Relaxation: The Role of Spin-Orbit Coupling in Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Willis, M.; Nuccio, L.; Schulz, L.; Gillin, W.; Kreouzis, T.; Pratt, F.; Lord, J.; Heeney, M.; Fratini, S.; Bernhard, C.; Drew, A.

    2012-02-01

    Rapid development of organic materials has lead to their availability in commercial products. Until now, the spin degree of freedom has not generally been used in organic materials. As well as engineering difficulties, there are fundamental questions with respect to the electron spin relaxation (eSR) mechanisms in organic molecules. Muons used as a microscopic spin probe, localized to a single molecule, can access information needed to identify the relevant model for eSR. In this presentation I will introduce the ALC-MuSR technique describing how eSR can be extracted and the expected effects. I will show how the technique has been applied to small organic molecules such as the group III Quinolate series and functionalized molecules with a pentacene-like backbone. Lastly I will present the Z-number and temperature dependence in these organic molecules and show strong evidence for a spin-orbit based eSR mechanism.

  3. Slip resistant properties of footwear on ice.

    PubMed

    Gao, Chuansi; Abeysekera, John; Hirvonen, Mikko; Grönqvist, Raoul

    2004-05-15

    Current research on slipperiness of footwear has mainly focused on floors and lubricated floors. Slips and falls on icy and snowy surfaces involve not only outdoor workers, but also pedestrians and the general public; and occur in cold regions and in winter season in many parts of the world. However, in comparison with the size of the problem, research on slips and falls on icy and snowy surfaces has been scarce. The objective of this paper is to explore the slip resistant properties of footwear (soling materials, roughness and hardness) on ice. The coefficients of kinetic friction of four different soling materials (synthetic rubber, nitrile rubber, natural rubber and polyurethane) were measured on ice (-12 degrees C). The outsole roughness and hardness were also measured. Results showed that the polyurethane soling did not perform better than synthetic rubber, nitrile rubber and natural rubber on pure hard ice (-12 degrees C). Soling roughness was positively correlated with the coefficient of kinetic friction. The most slip resistant soling material (polyurethane) on floors and lubricated floors may not provide sufficient slip resistance on ice.

  4. Process optimization electrospinning fibrous material based on polyhydroxybutyrate

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Tyubaeva, P. M.; Staroverova, O. V.; Mastalygina, E. E.; Popov, A. A.; Ischenko, A. A.; Iordanskii, A. L.

    2016-05-01

    The article analyzes the influence of the main technological parameters of electrostatic spinning on the morphology and properties of ultrathin fibers on the basis of polyhydroxybutyrate. It is found that the electric conductivity and viscosity of the spinning solution affects the process of forming fibers macrostructure. The fiber-based materials PHB lets control geometry and optimize the viscosity and conductivity of a spinning solution. The resulting fibers have found use in medicine, particularly in the construction elements musculoskeletal.

  5. Detection of ice and organics on an asteroidal surface.

    PubMed

    Rivkin, Andrew S; Emery, Joshua P

    2010-04-29

    Recent observations, including the discovery in typical asteroidal orbits of objects with cometary characteristics (main-belt comets, or MBCs), have blurred the line between comets and asteroids, although so far neither ice nor organic material has been detected on the surface of an asteroid or directly proven to be an asteroidal constituent. Here we report the spectroscopic detection of water ice and organic material on the asteroid 24 Themis, a detection that has been independently confirmed. 24 Themis belongs to the same dynamical family as three of the five known MBCs, and the presence of ice on 24 Themis is strong evidence that it also is present in the MBCs. We conclude that water ice is more common on asteroids than was previously thought and may be widespread in asteroidal interiors at much smaller heliocentric distances than was previously expected.

  6. The tensile strength of ice and dust aggregates and its dependence on particle properties

    NASA Astrophysics Data System (ADS)

    Gundlach, B.; Schmidt, K. P.; Kreuzig, C.; Bischoff, D.; Rezaei, F.; Kothe, S.; Blum, J.; Grzesik, B.; Stoll, E.

    2018-06-01

    The knowledge of the tensile strength of astrophysical dust and ice aggregates is of major importance to understand the early stages of planet formation in our solar system and cometary activity. In this letter we report on an experimental setup, developed to measure the tensile strength of granular, astrophysical relevant materials, such as water ice and silica aggregates. We found that the tensile strength of aggregates composed of monodisperse silica particles depends on the grain size of the used material and is in a good agreement with the predictions of earlier works. For aggregates consisting of polydisperse water-ice particles, the measured tensile strength is very low compared to the theoretical prediction, which indicates that the specific surface energy of water ice at low temperatures is lower than previously assumed.

  7. 29 CFR 779.333 - Goods sold for use as raw materials in other products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use in laundries, bakeries, nurseries, canneries, or for space heating, or ice for use by grocery stores or meat markets in cooling and preserving groceries and meat to be sold. Similarly, ice used for cooling soft drinks while in storage will not be considered sold for resale. On the other hand, ice or ice...

  8. 29 CFR 779.333 - Goods sold for use as raw materials in other products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use in laundries, bakeries, nurseries, canneries, or for space heating, or ice for use by grocery stores or meat markets in cooling and preserving groceries and meat to be sold. Similarly, ice used for cooling soft drinks while in storage will not be considered sold for resale. On the other hand, ice or ice...

  9. 29 CFR 779.333 - Goods sold for use as raw materials in other products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... use in laundries, bakeries, nurseries, canneries, or for space heating, or ice for use by grocery stores or meat markets in cooling and preserving groceries and meat to be sold. Similarly, ice used for cooling soft drinks while in storage will not be considered sold for resale. On the other hand, ice or ice...

  10. Environmental Effects on Volcanic Eruptions:From Deep Ocean to Deep Space. Chapter 3. Volcanism and Ice Interactions on Earth and Mars. Chapter 3

    NASA Technical Reports Server (NTRS)

    Chapman, Mary G.; Allen, Carlton C.; Gudmundsson, Magnus T.; Gulick, Virginia C.; Jakobsson, Sveinn P.; Lucchitta, Baerbel K.; Skilling, Ian P.; Waitt, Richard B.

    2000-01-01

    CONCLUSION Volcano/ice interactions produce meltwater. Meltwater can enter the groundwater cycle and under the influence of hydrothermal systems, it can be later discharged to form channels and valleys or cycled upward to melt permafrost. Water or ice-saturated ground can erupt into phreatic craters when covered by lava. Violent mixing of meltwater and volcanic material and rapid release can generate lahars or jokulhlaups, that have the ability to freight coarse material, great distances downslope from the vent. Eruption into meltwater generate unique appearing edifices, that are definitive indicators of volcano/ice interaction. These features are hyaloclastic ridges or mounds and if capped by lava, tuyas. On Earth, volcano/ice interactions are limited to alpine regions and ice-capped polar and temperate regions. On Mars, where precipitation may be an ancient phenomenon, these interactions may be limited to areas of ground ice accumulation or the northern lowlands where water may have ponded fairly late in martian history. The recognition of features caused by volcano/ice interactions could provide strong constraints for the history of volatiles on Mars.

  11. Radar evidence for ice in lobate debris aprons in the mid- latitudes of Mars

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.; Holt, J. W.; Safaeinili, A.; Head, J. W.; Phillips, R. J.; Seu, R.

    2008-12-01

    Martian "lobate debris aprons" (LDAs) are masses of material 100s of m thick up to 10s of km wide that occur adjacent to escarpments in certain mid-latitude regions of Mars. Their morphology has led many workers to hypothesize that ice played an important role in their formation and subsequent evolution. Data from the Shallow Radar (SHARAD) instrument on the Mars Reconnaissance Orbiter indicate that LDAs indeed consist predominantly of ice. SHARAD signals penetrate the LDA material to depths up to 1 km. A reflection is typically observed at a time delay consistent with detection of an interface between the LDA material and the pre-depositional substrate. The echo strength of the basal reflections is strong, indicating minimal attenuation of the signal, which is consistent with a water-ice-dominated composition. The largest populations of ice-cored LDAs are in the Deuteronilus Mensae (40-51° N, 14-35° E) and Eastern Hellas (40-46° N, 100- 108° E) areas. At these latitudes, water ice is unstable at the surface. LDAs appear to be mantled by a relatively thin (<10 m) debris layer that protects the ice core from sublimation. Mass wasting of slopes of massifs, valley and crater walls maintains this debris mantle and explains the local preservation of LDAs adjacent to these slopes. LDAs are likely the remnants of much larger ice sheets and glaciers from an epoch in Martian history when substantial precipitation occurred at the mid-latitudes. The water ice currently preserved in LDAs likely represents the largest reservoir of near surface H2O outside of the polar regions. Their presence at the mid-latitudes make them intriguing targets for in situ exploration and possible resource utilization.

  12. Detecting the phonon spin in magnon-phonon conversion experiments

    NASA Astrophysics Data System (ADS)

    Holanda, J.; Maior, D. S.; Azevedo, A.; Rezende, S. M.

    2018-05-01

    Recent advances in the emerging field of magnon spintronics have stimulated renewed interest in phenomena involving the interaction between spin waves, the collective excitations of spins in magnetic materials that quantize as magnons, and the elastic waves that arise from excitations in the crystal lattice, which quantize as phonons. In magnetic insulators, owing to the magnetostrictive properties of materials, spin waves can become strongly coupled to elastic waves, forming magnetoelastic waves—a hybridized magnon-phonon excitation. While several aspects of this interaction have been subject to recent scrutiny, it remains unclear whether or not phonons can carry spin. Here we report experiments on a film of the ferrimagnetic insulator yttrium iron garnet under a non-uniform magnetic field demonstrating the conversion of coherent magnons generated by a microwave field into phonons that have spin. While it is well established that photons in circularly polarized light carry a spin, the spin of phonons has had little attention in the literature. By means of wavevector-resolved Brillouin light-scattering measurements, we show that the magnon-phonon conversion occurs with constant energy and varying linear momentum, and that the light scattered by the phonons is circularly polarized, thus demonstrating that the phonons have spin.

  13. Antiferromagnetic domain wall as spin wave polarizer and retarder.

    PubMed

    Lan, Jin; Yu, Weichao; Xiao, Jiang

    2017-08-02

    As a collective quasiparticle excitation of the magnetic order in magnetic materials, spin wave, or magnon when quantized, can propagate in both conducting and insulating materials. Like the manipulation of its optical counterpart, the ability to manipulate spin wave polarization is not only important but also fundamental for magnonics. With only one type of magnetic lattice, ferromagnets can only accommodate the right-handed circularly polarized spin wave modes, which leaves no freedom for polarization manipulation. In contrast, antiferromagnets, with two opposite magnetic sublattices, have both left and right-circular polarizations, and all linear and elliptical polarizations. Here we demonstrate theoretically and confirm by micromagnetic simulations that, in the presence of Dzyaloshinskii-Moriya interaction, an antiferromagnetic domain wall acts naturally as a spin wave polarizer or a spin wave retarder (waveplate). Our findings provide extremely simple yet flexible routes toward magnonic information processing by harnessing the polarization degree of freedom of spin wave.Spin waves are promising candidates as carriers for energy-efficient information processing, but they have not yet been fully explored application wise. Here the authors theoretically demonstrate that antiferromagnetic domain walls are naturally spin wave polarizers and retarders, two key components of magnonic devices.

  14. Electrical detection of proton-spin motion in a polymer device at room temperature

    NASA Astrophysics Data System (ADS)

    Boehme, Christoph

    With the emergence of spintronics concepts based on organic semiconductors there has been renewed interest in the role of both, electron as well as nuclear spin states for the magneto-optoelectronic properties of these materials. In spite of decades of research on these molecular systems, there is still much need for an understanding of some of the fundamental properties of spin-controlled charge carrier transport and recombination processes. This presentation focuses on mechanisms that allow proton spin states to influence electronic transition rates in organic semiconductors. Remarkably, even at low-magnetic field conditions and room temperature, nuclear spin states with energy splittings orders of magnitude below thermal energies are able to influence observables like magnetoresistance and fluorescence. While proton spins couple to charge carrier spins via hyperfine interaction, there has been considerable debate about the nature of the electronic processes that are highly susceptible to these weak hyperfine fields. Here, experiments are presented which show how the magnetic resonant manipulation of electron and nuclear spin states in a π-conjugated polymer device causes changes of the device current. The experiments confirm the extraordinary sensitivity of electronic transitions to very weak magnetic field changes and underscore the potential significance of spin-selection rules for highly sensitive absolute magnetic fields sensor concepts. However, the relevance of these magnetic-field sensitive spin-dependent electron transitions is not just limited to semiconductor materials but also radical pair chemistry and even avian magnetoreceptors This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0000909. The Utah NSF - MRSEC program #DMR 1121252 is acknowledged for instrumentation support.

  15. Concentric crater fill on Mars - An aeolian alternative to ice-rich mass wasting

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.; Clifford, S. M.; Williams, S. H.

    1989-01-01

    Concentric crater fill, a distinctive martian landform represented by a concentric pattern of surface undulations confined within a crater rim, has been interpreted as an example of ice-enhanced regolith creep at midlatitudes (e.g., Squyres and Carr, 1986). Theoretical constraints on the stability and mobility of ground ice limit the applicability of an ice-rich soil in effectively mobilizing downslope movement at latitudes poleward of + or - 30 deg, where concentric crater fill is observed. High-resolution images of concentric crater fill material in the Utopia Planitia region (45 deg N, 271 deg W) show it to be an eroded, multiple-layer deposit. Layering should not be preserved if the crater fill material moved by slow deformation throughout its thickness, as envisioned in the ice-enhanced creep model. Multiple layers are also exposed in the plains material surrounding the craters, indicating a recurrent depositional process that was at least regional in extent. Mantling layers are observed in high-resolution images of many other locations around Mars, suggesting that deposition occurred on a global scale and was not limited to the Utopia Planitia region. It is suggested that an aeolian interpretation for the origin and modification of concentric crater fill material is most consistent with morphologic and theoretical constraints.

  16. Large spin-orbit torques in Pt/Co-Ni/W heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jiawei; Qiu, Xuepeng; Legrand, William

    2016-07-25

    The spin orbit torques (SOTs) in perpendicularly magnetized Co-Ni multilayers sandwiched between two heavy metals (HM) have been studied. By exploring various HM materials, we show an efficient enhancement or cancellation of the total SOT, depending on the combination of the two HM materials. The maximum SOT effective field is obtained in Pt/Co-Ni/W heterostructures. We also model our double HM system and show that the effective spin Hall angle has a peak value at certain HM thicknesses. Measuring the SOT in Pt/Co-Ni/W for various W thicknesses confirms an effective spin Hall angle up to 0.45 in our double HM system.

  17. Finger-gate manipulated quantum transport in Dirac materials

    NASA Astrophysics Data System (ADS)

    Kleftogiannis, Ioannis; Tang, Chi-Shung; Cheng, Shun-Jen

    2015-05-01

    We investigate the quantum transport properties of multichannel nanoribbons made of materials described by the Dirac equation, under an in-plane magnetic field. In the low energy regime, positive and negative finger-gate potentials allow the electrons to make intra-subband transitions via hole-like or electron-like quasibound states (QBS), respectively, resulting in dips in the conductance. In the high energy regime, double dip structures in the conductance are found, attributed to spin-flip or spin-nonflip inter-subband transitions through the QBSs. Inverting the finger-gate polarity offers the possibility to manipulate the spin polarized electronic transport to achieve a controlled spin-switch.

  18. Phonon induced magnetism in ionic materials

    NASA Astrophysics Data System (ADS)

    Restrepo, Oscar D.; Antolin, Nikolas; Jin, Hyungyu; Heremans, Joseph P.; Windl, Wolfgang

    2014-03-01

    Thermoelectric phenomena in magnetic materials create exciting possibilities in future spin caloritronic devices by manipulating spin information using heat. An accurate understanding of the spin-lattice interactions, i.e. the coupling between magnetic excitations (magnons) and lattice vibrations (phonons), holds the key to unraveling their underlying physics. We report ab initio frozen-phonon calculations of CsI that result in non-zero magnetization when the degeneracy between spin-up and spin-down electronic density of states is lifted for certain phonon displacement patterns. For those, the magnetization as a function of atomic displacement shows a sharp resonance due to the electronic states on the displaced Cs atoms, while the electrons on indium form a continuous background magnetization. We relate this resonance to the generation of a two-level system in the spin-polarized Cs partial density of states as a function of displacement, which we propose to be described by a simple resonant-susceptibility model. Current work extends these investigations to semiconductors such as InSb. ODR and WW are supported by the Center for Emergent Materials, an NSF MRSEC at OSU (Grant DMR-0820414).HJ and JPH are supported by AFOSR MURI Cryogenic Peltier Cooling, Contract #FA9550-10-1-0533.

  19. Helical Spin Order from Topological Dirac and Weyl Semimetals

    DOE PAGES

    Sun, Xiao-Qi; Zhang, Shou-Cheng; Wang, Zhong

    2015-08-14

    In this paper, we study dynamical mass generation and the resultant helical spin orders in topological Dirac and Weyl semimetals, including the edge states of quantum spin Hall insulators, the surface states of weak topological insulators, and the bulk materials of Weyl semimetals. In particular, the helical spin textures of Weyl semimetals manifest the spin-momentum locking of Weyl fermions in a visible manner. Finally, the spin-wave fluctuations of the helical order carry electric charge density; therefore, the spin textures can be electrically controlled in a simple and predictable manner.

  20. KSC-07pd1094

    NASA Image and Video Library

    2007-05-10

    KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton

  1. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, technicians secure the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  2. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    An overhead crane lowers the backshell with the Phoenix Mars Lander inside toward a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  3. KSC-07pd1095

    NASA Image and Video Library

    2007-05-10

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians secure the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton

  4. KSC-07pd1093

    NASA Image and Video Library

    2007-05-10

    KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell with the Phoenix Mars Lander inside toward a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton

  5. KSC-07pd1096

    NASA Image and Video Library

    2007-05-10

    KENNEDY SPACE CENTER, FLA. -- Secured on the spin table, the backshell with the Phoenix Mars Lander inside is ready for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton

  6. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft is ready for spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  7. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft will undergo spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  8. Identification and analysis of low-molecular-weight dissolved organic carbon in subglacial basal ice ecosystems by ion chromatography

    NASA Astrophysics Data System (ADS)

    O'Donnell, Emily C.; Wadham, Jemma L.; Lis, Grzegorz P.; Tranter, Martyn; Pickard, Amy E.; Stibal, Marek; Dewsbury, Paul; Fitzsimons, Sean

    2016-07-01

    Determining the concentration and composition of dissolved organic carbon (DOC) in glacial ecosystems is important for assessments of in situ microbial activity and contributions to wider biogeochemical cycles. Nonetheless, there is limited knowledge of the abundance and character of DOC in basal ice and the subglacial environment and a lack of quantitative data on low-molecular-weight (LMW) DOC components, which are believed to be highly bioavailable to microorganisms. We investigated the abundance and composition of DOC in basal ice via a molecular-level DOC analysis. Spectrofluorometry and a novel ion chromatographic method, which has been little utilized in glacial science for LMW-DOC determinations, were employed to identify and quantify the major LMW fractions (free amino acids, carbohydrates, and carboxylic acids) in basal ice from four glaciers, each with a different type of overridden material (i.e. the pre-entrainment sedimentary type such as lacustrine material or palaeosols). Basal ice from Joyce Glacier (Antarctica) was unique in that 98 % of the LMW-DOC was derived from the extremely diverse free amino acid (FAA) pool, comprising 14 FAAs. LMW-DOC concentrations in basal ice were dependent on the bioavailability of the overridden organic carbon (OC), which in turn was influenced by the type of overridden material. Mean LMW-DOC concentrations in basal ice from Russell Glacier (Greenland), Finsterwalderbreen (Svalbard), and Engabreen (Norway) were low (0-417 nM C), attributed to the relatively refractory nature of the OC in the overridden palaeosols and bedrock. In contrast, mean LMW-DOC concentrations were an order of magnitude higher (4430 nM C) in basal ice from Joyce Glacier, a reflection of the high bioavailability of the overridden lacustrine material (> 17 % of the sediment OC comprised extractable carbohydrates, a proxy for bioavailable OC). We find that the overridden material may act as a direct (via abiotic leaching) and indirect (via microbial cycling) source of DOC to the subglacial environment and provides a range of LMW-DOC compounds that may stimulate microbial activity in wet subglacial sediments.

  9. Pluto and Charon: Surface Colors and Compositions - A Hypothesis

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.

    2016-01-01

    The surface of Pluto displays an array of colors ranging from yellow to red to brown, while the surface of Charon is largely gray with a north polar zone of red color similar to regions on Pluto. Pluto's surface shows layers of intensely colored material in tilted and transported blocks, and fractured geo-graphical units. This arrangement suggests episodes of formation or deposition of that material interspersed with episodes of emplacement of ices having little or no color. The ices identified on the surfaces of these two bodies (N2, CH4, CO, C2H6, H2O on Pluto, and H2O and NH3 on Charon) are colorless, as are nearly all ices in a powdery state. The colors on Pluto probably arise from the in situ formation of a macro-molecular carbonaceous material generated by energetic processing of the ices on the surface. Laboratory experiments producing refractory tholins particularly relevant to Pluto explored the chemistry of both UV and low-energy electron bombardment of a mix of Pluto ices (N2:CH4:CO = 100:1:1). We can term this Pluto ice tholin PIT. Water ice in the crystalline state characterizes Charon's surface, and while most of Charon's surface is neutral in color, with geometric albedo approximately 0.38, the polar zone and a light cover of fainter but similar reddish color over some surface regions suggest a common origin with the colored material on Pluto. NH3 or NH3 x nH2O was identified from disk-integrated Earth-based spectra, and a few concentrated NH3 exposures have been found in the New Horizons spectral images.

  10. Investigation of the spin Seebeck effect and anomalous Nernst effect in a bulk carbon material

    NASA Astrophysics Data System (ADS)

    Wongjom, Poramed; Pinitsoontorn, Supree

    2018-03-01

    Since the discovery of the spin Seebeck effect (SSE) in 2008, it has become one of the most active topics in the spin caloritronics research field. It opened up a new way to create the spin current by a combination of magnetic fields and heat. The SSE was observed in many kinds of materials including metallic, semiconductor, or insulating magnets, as well as non-magnetic materials. On the other hand, carbon-based materials have become one of the most exciting research areas recently due to its low cost, abundance and some exceptional functionalities. In this work, we have investigated the possibility of the SSE in bulk carbon materials for the first time. Thin platinum film (Pt), coated on the smoothened surface of the bulk carbon, was used as the spin detector via the inverse spin Hall effect (ISHE). The experiment for observing longitudinal SSE in the bulk carbon was set up by applying a magnetic field up to 30 kOe to the sample with the direction perpendicular to the applied temperature gradient. The induced voltage from the SSE was extracted. However, for conductive materials, e.g. carbon, the voltage signal under this set up could be a combination of the SSE and the anomalous Nernst effect (ANE). Therefore, two measurement configurations were carried out, i.e. the in-plane magnetization (IM), and the perpendicular-to-plane magnetization (PM). For the IM configuration, the SSE + ANE signals were detected where as the only ANE signal existed in the PM configuration. The results showed that there were the differences between the voltage signals from the IM and PM configurations implying the possibility of the SSE in the bulk carbon material. Moreover, it was found that the difference in the IM and PM signals was a function of the magnetic field strength, temperature difference, and measurement temperature. Although the magnitude of the possible SSE voltage in this experiment was rather low (less than 0.5 μV at 50 K), this research showed that potential of using low cost and abundant bulk carbon as spin current supplier or thermoelectric power generators.

  11. Hot Electron Injection into Uniaxially Strained Silicon

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Soo

    In semiconductor spintronics, silicon attracts great attention due to the long electron spin lifetime. Silicon is also one of the most commonly used semiconductor in microelectronics industry. The spin relaxation process of diamond crystal structure such as silicon is dominant by Elliot-Yafet mechanism. Yafet shows that intravalley scattering process is dominant. The conduction electron spin lifetime measured by electron spin resonance measurement and electronic measurement using ballistic hot electron method well agrees with Yafet's theory. However, the recent theory predicts a strong contribution of intervalley scattering process such as f-process in silicon. The conduction band minimum is close the Brillouin zone edge, X point which causes strong spin mixing at the conduction band. A recent experiment of electric field-induced hot electron spin relaxation also shows the strong effect of f-process in silicon. In uniaxially strained silicon along crystal axis [100], the suppression of f-process is predicted which leads to enhance electron spin lifetime. By inducing a change in crystal structure due to uniaxial strain, the six fold degeneracy becomes two fold degeneracy, which is valley splitting. As the valley splitting increases, intervalley scattering is reduced. A recent theory predicts 4 times longer electron spin lifetime in 0.5% uniaxially strained silicon. In this thesis, we demonstrate ballistic hot electron injection into silicon under various uniaxial strain. Spin polarized hot electron injection under strain is experimentally one of the most challenging part to measure conduction electron spin lifetime in silicon. Hot electron injection adopts tunnel junction which is a thin oxide layer between two conducting materials. Tunnel barrier, which is an oxide layer, is only 4 ˜ 5 nm thick. Also, two conducting materials are only tens of nanometer. Therefore, under high pressure to apply 0.5% strain on silicon, thin films on silicon substrate can be easily destroyed. In order to confirm the performance of tunnel junction, we use tunnel magnetoresistance(TMR). TMR consists of two kinds of ferromagnetic materials and an oxide layer as tunnel barrier in order to measure spin valve effect. Using silicon as a collector with Schottky barrier interface between metal and silicon, ballistic hot spin polarized electron injection into silicon is demonstrated. We also observed change of coercive field and magnetoresistance due to modification of local states in ferromagnetic materials and surface states at the interface between metal and silicon due to strain.

  12. From Interstellar Polycyclic Aromatic Hydrocarbons and Ice to the Origin of Life

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis

    2004-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, abundances, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the presolar nebula, the materials frozen into the interstellar/precometary ices are photoprocessed by ultraviolet light and produce more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex materials on the early Earth and their composition may be related to the origin of life.

  13. Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)

    DOE PAGES

    Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...

    2015-03-13

    Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. Here, we apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We also quantify the spin Hall effects in Ir and W using the conventional bilayer structures, and discuss the self-induced voltage in a single layer of ferromagnetic permalloy.more » Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.« less

  14. Heat-transfer optimization of a high-spin thermal battery

    NASA Astrophysics Data System (ADS)

    Krieger, Frank C.

    Recent advancements in thermal battery technology have produced batteries incorporating a fusible material heat reservoir for operating temperature control that operate reliably under the high spin rates often encountered in ordnance applications. Attention is presently given to the heat-transfer optimization of a high-spin thermal battery employing a nonfusible steel heat reservoir, on the basis of a computer code that simulated the effect of an actual fusible material heat reservoir on battery performance. Both heat paper and heat pellet employing thermal battery configurations were considered.

  15. Snow and Ice Control Materials for Texas Roads; VOLUME 1: Literature and Best Practices Review; VOLUME 2: Field Trials and Laboratory Study

    DOT National Transportation Integrated Search

    2017-03-01

    This report provides findings from a four-year research study of snow and ice control materials for winter weather roadway maintenance applications in Texas. The report is presented in two volumes. Volume 1 is a literature review and best practices r...

  16. Effects of the Electronic Spin-Orbit Interaction on the Anomalous Asymmetric Scattering of the Spin-Polarized He+ Beam with Paramagnetic Target Materials II. Partial Wave Representation

    NASA Astrophysics Data System (ADS)

    Sakai, Osamu; Suzuki, Taku T.

    2018-05-01

    The scattering of an electron-spin-polarized 4He+ beam on paramagnetic materials has an anomalously large asymmetric scattering component (ASC) around 10%, which is 104 times that expected from the spin-orbit coupling for the potential of the target nucleus. The scattering angle (θ) dependence of the ASC has been measured. It changes sign near 90° for some materials (for example, Au and Pt), while it does not change sign for other materials (for example, Pb and Bi). It has been noted that the spin-orbit interaction of electrons on the target in the electron-transfer intermediate state causes the ASC of He nucleus motion, and it has also been predicted that the sign change in the θ dependence occurs when the d electron transfer is dominant. This seems to correspond to the cases of Au and Pt, but not to the cases of Pb and Bi. The previous approach is refined on the basis of the partial wave representation, which can give a more correct estimation of the ASC. It is shown that the sign change appears in the weak-resonance domain in the case of d electron excitation, whereas the sign change disappears in the strong-resonance domain. Our calculated results qualitatively agree with the material dependence of the ASC observed experimentally.

  17. A nuclear magnetic resonance spectrometer concept for hermetically sealed magic angle spinning investigations on highly toxic, radiotoxic, or air sensitive materials.

    PubMed

    Martel, L; Somers, J; Berkmann, C; Koepp, F; Rothermel, A; Pauvert, O; Selfslag, C; Farnan, I

    2013-05-01

    A concept to integrate a commercial high-resolution, magic angle spinning nuclear magnetic resonance (MAS-NMR) probe capable of very rapid rotation rates (70 kHz) in a hermetically sealed enclosure for the study of highly radiotoxic materials has been developed and successfully demonstrated. The concept centres on a conventional wide bore (89 mm) solid-state NMR magnet operating with industry standard 54 mm diameter probes designed for narrow bore magnets. Rotor insertion and probe tuning take place within a hermetically enclosed glovebox, which extends into the bore of the magnet, in the space between the probe and the magnet shim system. Oxygen-17 MAS-NMR measurements demonstrate the possibility of obtaining high quality spectra from small sample masses (~10 mg) of highly radiotoxic material and the need for high spinning speeds to improve the spectral resolution when working with actinides. The large paramagnetic susceptibility arising from actinide paramagnetism in (Th(1-x)U(x))O2 solid solutions gives rise to extensive spinning sidebands and poor resolution at 15 kHz, which is dramatically improved at 55 kHz. The first (17)O MAS-NMR measurements on NpO(2+x) samples spinning at 55 kHz are also reported. The glovebox approach developed here for radiotoxic materials can be easily adapted to work with other hazardous or even air sensitive materials.

  18. Driving magnetization dynamics with interfacial spin-orbit torques (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Axel F.; Zhang, Wei; Sklenar, Joseph; Jungfleisch, Matthias Benjamin; Jiang, Wanjun; Hsu, Bo; Xiao, Jiao; Pearson, John E.; Fradin, Frank Y.; Liu, Yaohua; Ketterson, John B.; Yang, Zheng

    2016-10-01

    Bulk spin Hall effects are well know to provide spin orbit torques, which can be used to drive magnetization dynamics [1]. But one of the reoccurring questions is to what extend spin orbit torques may also originate at the interface between materials with strong spin orbit coupling and the ferromagnets. Using spin torque driven ferromagnetic resonance we show for two systems, where interfacial torques dominate, that they can be large enough to be practically useful. First, we show spin transfer torque driven magnetization dynamics based on Rashba-Edelstein effects at the Bi/Ag interface [2]. Second, we will show that combining permalloy with monolayer MoS2 gives rise to sizable spin-orbit torques. Given the monolayer nature of MoS2 it is clear that bilk spin Hall effects are negligible and therefore the spin transfer torques are completely interfacial in nature. Interestingly the spin orbit torques with MoS2 show a distinct dependence on the orientation of the magnetization in the permalloy, and become strongly enhanced, when the magnetization is pointing perpendicular to the interfacial plane. This work was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division. [1] A. Hoffmann, IEEE Trans. Mag. 49, 5172 (2013). [2] W. Zhang et al., J. Appl. Phys. 117, 17C727 (2015). [3] M. B. Jungfleisch et al., arXiv:1508.01410.

  19. Towards electrical spin injection into LaAlO3-SrTiO3.

    PubMed

    Bibes, M; Reyren, N; Lesne, E; George, J-M; Deranlot, C; Collin, S; Barthélémy, A; Jaffrès, H

    2012-10-28

    Future spintronics devices will be built from elemental blocks allowing the electrical injection, propagation, manipulation and detection of spin-based information. Owing to their remarkable multi-functional and strongly correlated character, oxide materials already provide such building blocks for charge-based devices such as ferroelectric field-effect transistors (FETs), as well as for spin-based two-terminal devices such as magnetic tunnel junctions, with giant responses in both cases. Until now, the lack of suitable channel materials and the uncertainty of spin-injection conditions in these compounds had however prevented the exploration of similar giant responses in oxide-based lateral spin transport structures. In this paper, we discuss the potential of oxide-based spin FETs and report magnetotransport data that suggest electrical spin injection into the LaAlO(3)-SrTiO(3) interface system. In a local, three-terminal measurement scheme, we analyse the voltage variation associated with the precession of the injected spin accumulation driven by perpendicular or longitudinal magnetic fields (Hanle and 'inverted' Hanle effects). The spin accumulation signal appears to be much larger than expected, probably owing to amplification effects by resonant tunnelling through localized states in the LaAlO(3). We give perspectives on how to achieve direct spin injection with increased detection efficiency, as well on the implementation of efficient top gating schemes for spin manipulation.

  20. In-place burning of crude oil in broken ice: 1985 testing at OHMSETT (Oil and Hazardous Materials Simulated Environmental Test Tank)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, N.K.; Diaz, A.

    1985-08-01

    In January and March of 1985, in-place oil burning tests were conducted at the U.S. Environmental Protection Agency's Oil and Hazardous Materials Simulated Environmental Test Tank. (OHMSETT) facility in Leonardo, New Jersey. In-place combustion of Prudhoe Bay and Amauligak crude oil slicks was attempted in varying ice coverages, oil conditions, and ambient conditions. An emulsion of Amauligak crude oil and water was also ignited three times and burned in 80% ice cover, removing nearly 50% of the emulsion.

  1. Physical and mechanical properties of icebergs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammon, P.H.; Bobby, W.; Gagnon, R.E.

    1983-05-01

    Physical and mechanical characteristics of iceberg ice were studied from samples collected near the shores of eastern Newfoundland. Although the physical characteristics show considerable diversity, iceberg ice has some common features and is generally porous, lacks significant concentrations of dissolved materials, contains internal cracks and has an irregular interlocking grain structure. A review of mechanical testing of ice was carried out and an experimental setup was devised to reduce effects of improper contact between specimen and loading apparatus. Uniaxial compressive strength for iceberg ice was determined and compared with that for lake ice. The strength of iceberg ice was highermore » than that of lake ice but Young's Modulus for lake ice was higher.« less

  2. Ice sintering timescales at the surface of Europa and implications for surface properties

    NASA Astrophysics Data System (ADS)

    Molaro, Jamie; Phillips, Cynthia B.; Meirion-Griffith, Gareth

    2017-10-01

    The planned exploration of Europa by NASA’s Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa’s landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a “neck” between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa’s subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts.Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa’s surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa’s surface age, suggesting that loose surface ice forms a weak and porous crust. Furthermore, our results suggest that existing models do not accurately quantify all stages of the sintering process for ice, emphasizing the need for more laboratory studies on this topic.

  3. Literature Review of Spin On Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Reuben James

    2016-03-02

    Spin on glass (SOG) is a promising material that combines the planarization properties of a low-viscosity liquid with a dielectric constant lower than that of silicon dioxide. However, as this paper will show, this material comes with significant processing and material properties challenges that must be understood and overcome. Significant research has been accomplished through a variety of processing techniques that will be reviewed here.

  4. Neoglacial Antarctic sea-ice expansion driven by mid-Holocene retreat of the Ross Ice Shelf.

    NASA Astrophysics Data System (ADS)

    Bendle, J. A.; Newton, K.; Mckay, R. M.; Crosta, X.; Etourneau, J.; Anya, A. B.; Seki, O.; Golledge, N. R.; Bertler, N. A. N.; Willmott, V.; Schouten, S.; Riesselman, C. R.; Masse, G.; Dunbar, R. B.

    2017-12-01

    Recent decades have seen expanding Antarctic sea-ice coverage, coeval with thinning West Antarctic Ice Sheet (WAIS) ice shelves and the rapid freshening of surface and bottom waters along the Antarctic margin. The mid-Holocene Neoglacial transition represents the last comparable baseline shift in sea-ice behaviour. The drivers and feedbacks involved in both the recent and Holocene events are poorly understood and characterised by large proxy-model mismatches. We present new records of compound specific fatty acid isotope analyses (δ2H-FA), highly-branched isoprenoid alkenes (HBIs) TEX86L temperatures, grain-size, mass accumulations rates (MARs) and image analyses from a 171m Holocene sediment sequence from Site U1357 (IODP leg 318). In combination with published records we reconstruct Holocene changes in glacial meltwater, sedimentary inputs and sea-ice. The early Holocene (11 to 10 ka) is characterised by large fluctuations in inputs of deglacial meltwater and sediments and seismic evidence of downlapping material from the south, suggesting a dominating influence from glacial retreat of the local outlet glaciers. From 10 to 8 ka there is decreasing meltwater inputs, an onlapping drift and advection of material from the east. After ca. 8 ka positively correlated δ2H-FA and MARs infer that pulses of glacial melt correlate to stronger easterly currents, driving erosion of material from upstream banks and that the Ross Ice Shelf (RIS) becomes a major influence. A large mid-Holocene meltwater pulse (preceded by warming TEX86L temperatures) is evident between ca. 6 to 4.5 ka, culminating in a rapid and permanent increase in sea-ice from 4.5 ka. This is coeval with cosmogenic nuclide evidence for a rapid thinning of the Antarctic ice sheet during the mid-Holocene (Hein et al., 2016). We suggest this represents a final major pulse of deglaciation from the Ross Ice Shelf, which initiates the Neoglacial, driving cool surface waters along the coast and greater sea-ice production in the Adélie and more widely. Our work provides a mechanism for rapid expansion of Antarctic sea ice with a background of a warming climate and highlights how better representation of meltwater inputs and sea ice dynamics will be fundamental to improving projections for future climate change in the Antarctic. Hein, et al,. Nat. Comms, 12511, 2016.

  5. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Weinbruch, S.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Schneider, J.; Schmidt, S.; Ebert, M.

    2014-09-01

    In the present work, three different techniques are used to separate ice-nucleating particles (INP) and ice particle residuals (IPR) from non-ice-active particles: the Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI), which sample ice particles from mixed phase clouds and allow for the analysis of the residuals, as well as the combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Virtual Impactor (IN-PCVI), which provides ice-activating conditions to aerosol particles and extracts the activated ones for analysis. The collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Samples were taken during January/February 2013 at the High Alpine Research Station Jungfraujoch. All INP/IPR-separating techniques had considerable abundances (median 20-70%) of contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). Also, potential measurement artifacts (soluble material) occurred (median abundance < 20%). After removal of the contamination particles, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Minor types include soot and Pb-bearing particles. Sea-salt and sulfates were identified by all three methods as INP/IPR. Lead was identified in less than 10% of the INP/IPR. It was mainly present as an internal mixture with other particle types, but also external lead-rich particles were found. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 μm, while the Ice-CVI also sampled many submicron particles. Probably owing to the different meteorological conditions, the INP/IPR composition was highly variable on a sample to sample basis. Thus, some part of the discrepancies between the different techniques may result from the (unavoidable) non-parallel sampling. The observed differences of the particles group abundances as well as the mixing state of INP/IPR point to the need of further studies to better understand the influence of the separating techniques on the INP/IPR chemical composition.

  6. Convection in Icy Satellites: Implications for Habitability and Planetary Protection

    NASA Technical Reports Server (NTRS)

    Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    Solid-state convection and endogenic resurfacing in the outer ice shells of the icy Galilean satellites (especially Europa) may contribute to the habitability of their internal oceans and to the detectability of any biospheres by spacecraft. If convection occurs in an ice I layer, fluid motions are confined beneath a thick stagnant lid of cold, immobile ice that is too stiff to participate in convection. The thickness of the stagnant lid varies from 30 to 50% of the total thickness of the ice shell, depending on the grain size of ice. Upward convective motions deliver approximately 10(exp 9) to 10(exp 13) kg yr(sup -1) of ice to the base of the stagnant lid, where resurfacing events driven by compositional or tidal effects (such as the formation of domes or ridges on Europa, or formation of grooved terrain on Ganymede) may deliver materials from the stagnant lid onto the surface. Conversely, downward convective motions deliver the same mass of ice from the base of the stagnant lid to the bottom of the satellites ice shells. Materials from the satellites surfaces may be delivered to their oceans by downward convective motions if material from the surface can reach the base of the stagnant lid during resurfacing events. Triggering convection from an initially conductive ice shell requires modest amplitude (a few to tens of kelvins) temperature anomalies to soften the ice to permit convection, which may require tidal heating. Therefore, tidal heating, compositional buoyancy, and solid-state convection in combination may be required to permit mass transport between the surfaces and oceans of icy satellites. Callisto and probably Ganymede have thick stagnant lids with geologically inactive surfaces today, so forward contamination of their surfaces is not a significant issue. Active convection and breaching of the stagnant lid is a possibility on Europa today, so is of relevance to planetary protection policy.

  7. Terminal zone glacial sediment transfer at a temperate overdeepened glacier system

    NASA Astrophysics Data System (ADS)

    Swift, D. A.; Cook, S. J.; Graham, D. J.; Midgley, N. G.; Fallick, A. E.; Storrar, R.; Toubes Rodrigo, M.; Evans, D. J. A.

    2018-01-01

    Continuity of sediment transfer through glacial systems is essential to maintain subglacial bedrock erosion, yet transfer at temperate glaciers with overdeepened beds, where subglacial fluvial sediment transport should be greatly limited by adverse slopes, remains poorly understood. Complex multiple transfer processes in temperate overdeepened systems has been indicated by the presence of large frontal moraine systems, supraglacial debris of mixed transport origin, thick basal ice sequences, and englacial thrusts and eskers. At Svínafellsjökull, thrusts comprising decimetre-thick debris-rich bands of stratified facies ice of basal origin, with a coarser size distribution and higher clast content than that observed in basal ice layers, contribute substantially to the transfer of subglacial material in the terminal zone. Entrainment and transfer of material occurs by simple shear along the upper surface of bands and by strain-induced deformation of stratified and firnified glacier ice below. Thrust material includes rounded and well-rounded clasts that are also striated, indicating that fluvial bedload is deposited as subglacial channels approach the overdeepening and then entrained along thrusts. Substantial transfer also occurs within basal ice, with facies type and debris content dependent on the hydrological connectedness of the adverse slope. A process model of transfer at glaciers with terminal overdeepenings is proposed, in which the geometry of the overdeepening influences spatial patterns of ice deformation, hydrology, and basal ice formation. We conclude that the significance of thrusting in maintaining sediment transfer continuity has likely been overlooked by glacier sediment budgets and glacial landscape evolution studies.

  8. Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution

    PubMed Central

    Platz, T.; Schorghofer, N.; Prettyman, T. H.; De Sanctis, M. C.; Crown, D. A.; Schmedemann, N.; Neesemann, A.; Kneissl, T.; Marchi, S.; Schenk, P. M.; Bland, M. T.; Schmidt, B. E.; Hughson, K. H. G.; Tosi, F.; Zambon, F.; Mest, S. C.; Yingst, R. A.; Williams, D. A.; Russell, C. T.; Raymond, C. A.

    2017-01-01

    Abstract Prior to the arrival of the Dawn spacecraft at Ceres, the dwarf planet was anticipated to be ice‐rich. Searches for morphological features related to ice have been ongoing during Dawn's mission at Ceres. Here we report the identification of pitted terrains associated with fresh Cerean impact craters. The Cerean pitted terrains exhibit strong morphological similarities to pitted materials previously identified on Mars (where ice is implicated in pit development) and Vesta (where the presence of ice is debated). We employ numerical models to investigate the formation of pitted materials on Ceres and discuss the relative importance of water ice and other volatiles in pit development there. We conclude that water ice likely plays an important role in pit development on Ceres. Similar pitted terrains may be common in the asteroid belt and may be of interest to future missions motivated by both astrobiology and in situ resource utilization. PMID:28989206

  9. High-fidelity readout and control of a nuclear spin qubit in silicon.

    PubMed

    Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2013-04-18

    Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing.

  10. Excitation of propagating spin waves by pure spin current

    NASA Astrophysics Data System (ADS)

    Demokritov, Sergej

    Recently it was demonstrated that pure spin currents can be utilized to excite coherent magnetization dynamics, which enables development of novel magnetic nano-oscillators. Such oscillators do not require electric current flow through the active magnetic layer, which can help to reduce the Joule power dissipation and electromigration. In addition, this allows one to use insulating magnetic materials and provides an unprecedented geometric flexibility. The pure spin currents can be produced by using the spin-Hall effect (SHE). However, SHE devices have a number of shortcomings. In particular, efficient spin Hall materials exhibit a high resistivity, resulting in the shunting of the driving current through the active magnetic layer and a significant Joule heating. These shortcomings can be eliminated in devices that utilize spin current generated by the nonlocal spin-injection (NLSI) mechanism. Here we review our recent studies of excitation of magnetization dynamics and propagating spin waves by using NLSI. We show that NLSI devices exhibit highly-coherent dynamics resulting in the oscillation linewidth of a few MHz at room temperature. Thanks to the geometrical flexibility of the NLSI oscillators, one can utilize dipolar fields in magnetic nano-patterns to convert current-induced localized oscillations into propagating spin waves. The demonstrated systems exhibit efficient and controllable excitation and directional propagation of coherent spin waves characterized by a large decay length. The obtained results open new perspectives for the future-generation electronics using electron spin degree of freedom for transmission and processing of information on the nanoscale.

  11. Overcoming thermal noise in non-volatile spin wave logic.

    PubMed

    Dutta, Sourav; Nikonov, Dmitri E; Manipatruni, Sasikanth; Young, Ian A; Naeemi, Azad

    2017-05-15

    Spin waves are propagating disturbances in magnetically ordered materials, analogous to lattice waves in solid systems and are often described from a quasiparticle point of view as magnons. The attractive advantages of Joule-heat-free transmission of information, utilization of the phase of the wave as an additional degree of freedom and lower footprint area compared to conventional charge-based devices have made spin waves or magnon spintronics a promising candidate for beyond-CMOS wave-based computation. However, any practical realization of an all-magnon based computing system must undergo the essential steps of a careful selection of materials and demonstrate robustness with respect to thermal noise or variability. Here, we aim at identifying suitable materials and theoretically demonstrate the possibility of achieving error-free clocked non-volatile spin wave logic device, even in the presence of thermal noise and clock jitter or clock skew.

  12. Investigations of the effect of nonmagnetic Ca substitution for magnetic Dy on spin-freezing in Dy₂Ti₂O₇.

    PubMed

    Anand, V K; Tennant, D A; Lake, B

    2015-11-04

    Physical properties of partially Ca substituted hole-doped Dy2Ti2O7 have been investigated by ac magnetic susceptibility χ(ac)(T), dc magnetic susceptibility χ(T), isothermal magnetization M(H) and heat capacity C(p)(T) measurements on Dy1.8Ca0.2Ti2O7. The spin-ice system Dy2Ti2O7 exhibits a spin-glass type freezing behavior near 16 K. Our frequency dependent χ(ac)(T) data of Dy1.8Ca0.2Ti2O7 show that the spin-freezing behavior is significantly influenced by Ca substitution. The effect of partial nonmagnetic Ca(2+) substitution for magnetic Dy(3+) is similar to the previous study on nonmagnetic isovalent Y(3+) substituted Dy(2-x)Y(x) Ti2O7 (for low levels of dilution), however the suppression of spin-freezing behavior is substantially stronger for Ca than Y. The Cole-Cole plot analysis reveals semicircular character and a single relaxation mode in Dy1.8Ca0.2Ti2O7 as for Dy2Ti2O7. No noticeable change in the insulating behavior of Dy2Ti2O7 results from the holes produced by 10% Ca(2+) substitution for Dy(3+) ions.

  13. Three-dimensional artificial spin ice in nanostructured Co on an inverse opal-like lattice

    NASA Astrophysics Data System (ADS)

    Mistonov, A. A.; Grigoryeva, N. A.; Chumakova, A. V.; Eckerlebe, H.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Menzel, D.; Grigoriev, S. V.

    2013-06-01

    The evolution of the magnetic structure for an inverse opal-like structure under an applied magnetic field is studied by small-angle neutron scattering. The samples were produced by filling the voids of an artificial opal film with Co. It is shown that the local configuration of magnetization is inhomogeneous over the basic element of the inverse opal-like lattice structure (IOLS) but follows its periodicity. Applying the “ice-rule” concept to the structure, we describe the local magnetization of this ferromagnetic three-dimensional lattice. We have developed a model of the remagnetization process predicting the occurrence of an unusual perpendicular component of the magnetization in the IOLS which is defined only by the direction and strength of the applied magnetic field.

  14. Spin-orbit coupling effects in indium antimonide quantum well structures

    NASA Astrophysics Data System (ADS)

    Dedigama, Aruna Ruwan

    Indium antimonide (InSb) is a narrow band gap material which has the smallest electron effective mass (0.014m0) and the largest electron Lande g-facture (-51) of all the III-V semiconductors. Spin-orbit effects of III-V semiconductor heterostructures arise from two different inversion asymmetries namely bulk inversion asymmetry (BIA) and structural inversion asymmetry (SIA). BIA is due to the zinc-blende nature of this material which leads to the Dresselhaus spin splitting consisting of both linear and cubic in-plane wave vector terms. As its name implies SIA arises due to the asymmetry of the quantum well structure, this leads to the Rashba spin splitting term which is linear in wave vector. Although InSb has theoretically predicted large Dresselhaus (760 eVA3) and Rashba (523 eA 2) coefficients there has been relatively little experimental investigation of spin-orbit coefficients. Spin-orbit coefficients can be extracted from the beating patterns of Shubnikov--de Haas oscillations (SdH), for material like InSb it is hard to use this method due to the existence of large electron Lande g-facture. Therefore it is essential to use a low field magnetotransport technique such as weak antilocalization to extract spin-orbit parameters for InSb. The main focus of this thesis is to experimentally determine the spin-orbit parameters for both symmetrically and asymmetrically doped InSb/InxAl 1-xSb heterostructures. During this study attempts have been made to tune the Rashba spin-orbit coupling coefficient by using a back gate to change the carrier density of the samples. Dominant phase breaking mechanisms for InSb/InxAl1-xSb heterostructures have been identified by analyzing the temperature dependence of the phase breaking field from weak antilocalization measurements. Finally the strong spin-orbit effects on InSb/InxAl1-xSb heterostructures have been demonstrated with ballistic spin focusing devices.

  15. Equilibrium, metastability, and hysteresis in a model spin-crossover material with nearest-neighbor antiferromagnetic-like and long-range ferromagnetic-like interactions

    NASA Astrophysics Data System (ADS)

    Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji; Omand, Conor; Nishino, Masamichi

    2016-02-01

    Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean-field method for a simplified model of a spin-crossover material with a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S =1 /2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley (equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shaped regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. We believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.

  16. Making an Ice Core.

    ERIC Educational Resources Information Center

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  17. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice.

    PubMed

    Qiu, Yuqing; Odendahl, Nathan; Hudait, Arpa; Mason, Ryan; Bertram, Allan K; Paesani, Francesco; DeMott, Paul J; Molinero, Valeria

    2017-03-01

    Heterogeneous nucleation of ice induced by organic materials is of fundamental importance for climate, biology, and industry. Among organic ice-nucleating surfaces, monolayers of long chain alcohols are particularly effective, while monolayers of fatty acids are significantly less so. As these monolayers expose to water hydroxyl groups with an order that resembles the one in the basal plane of ice, it was proposed that lattice matching between ice and the surface controls their ice-nucleating efficiency. Organic monolayers are soft materials and display significant fluctuations. It has been conjectured that these fluctuations assist in the nucleation of ice. Here we use molecular dynamic simulations and laboratory experiments to investigate the relationship between the structure and fluctuations of hydroxylated organic surfaces and the temperature at which they nucleate ice. We find that these surfaces order interfacial water to form domains with ice-like order that are the birthplace of ice. Both mismatch and fluctuations decrease the size of the preordered domains and monotonously decrease the ice freezing temperature. The simulations indicate that fluctuations depress the freezing efficiency of monolayers of alcohols or acids to half the value predicted from lattice mismatch alone. The model captures the experimental trend in freezing efficiencies as a function of chain length and predicts that alcohols have higher freezing efficiency than acids of the same chain length. These trends are mostly controlled by the modulation of the structural mismatch to ice. We use classical nucleation theory to show that the freezing efficiencies of the monolayers are directly related to their free energy of binding to ice. This study provides a general framework to relate the equilibrium thermodynamics of ice binding to a surface and the nonequilibrium ice freezing temperature and suggests that these could be predicted from the structure of interfacial water.

  18. A comprehensive interpretation of the NEEM basal ice build-up using a multi-parametric approach

    NASA Astrophysics Data System (ADS)

    Goossens, Thomas; Sapart, Célia J.; Dahl-Jensen, Dorthe; Popp, Trevor; El Amri, Saïda; Tison, Jean-Louis

    2016-03-01

    Basal ice is a common expression to describe bottom ice layers of glaciers, ice caps and ice sheets in which the ice is primarily conditioned by processes operating at the bed. It is chemically and/or physically distinct from the ice above and can be characterized by a component of basally derived sediments. The study of basal ice properties provides a rare opportunity to improve our understanding of subglacial environments and processes and to refine ice sheet behaviour modelling. Here, we present and discuss the results of water stable isotopes (δ18O and δD), ice fabrics, debris weight/size distribution and gas content of the basal part of the NEEM (North Greenland Eemian Ice Drilling Project) ice core. Below a depth of 2533.85 m, almost 10 m of basal debris-rich material was retrieved from the borehole, and regular occurrence of frozen sediments with only interstitial ice lenses in the bottom 5 m suggest that the ice-bedrock interface was reached. The sequence is composed of an alternation of three visually contrasting types of ice: clear ice with specks (very small amounts) of particulate inclusions, stratified debris-rich layers and ice containing dispersed debris. The use of water stable isotope signatures (δ18O and δD), together with other parameters, allows discrimination between the different types of ice and to unravel the processes involved in their formation and transformation. The basal debris-rich material presents δ18O values [-39.9 ‰; -34.4 ‰] within the range of the above last 300 m of unaltered meteoric ice [-44.9 ‰; -30.6 ‰] spanning a glacial-interglacial range of values. This rules out the hypothesis of a basal ice layer originating from pre-ice sheet ice overridden by the growing ice sheet, as previously suggested e.g. in the case of GRIP (Greenland Ice Core Project). We show that clear basal ice with specks corresponds to altered meteoric glacial ice where some of the climatic signal could have been preserved. However, the stratified debris-rich layers and the ice containing dispersed debris layers respectively express an "open" or "closed" system melting/refreezing signature, somewhat blurred by mixing processes in the upper part of the sequence. Climatic reconstruction is therefore prohibited from these ice types. We propose a first interpretative framework for the build-up of the NEEM basal ice sequence, based on the origin of the various ice types.

  19. Spin relaxation 1/f noise in graphene

    NASA Astrophysics Data System (ADS)

    Omar, S.; Guimarães, M. H. D.; Kaverzin, A.; van Wees, B. J.; Vera-Marun, I. J.

    2017-02-01

    We report the first measurement of 1/f type noise associated with electronic spin transport, using single layer graphene as a prototypical material with a large and tunable Hooge parameter. We identify the presence of two contributions to the measured spin-dependent noise: contact polarization noise from the ferromagnetic electrodes, which can be filtered out using the cross-correlation method, and the noise originated from the spin relaxation processes. The noise magnitude for spin and charge transport differs by three orders of magnitude, implying different scattering mechanisms for the 1/f fluctuations in the charge and spin transport processes. A modulation of the spin-dependent noise magnitude by changing the spin relaxation length and time indicates that the spin-flip processes dominate the spin-dependent noise.

  20. Directly probing spin dynamics in insulating antiferromagnets using ultrashort terahertz pulses

    DOE PAGES

    Bowlan, Pamela Renee; Trugman, Stuart Alan; Wang, X.; ...

    2016-11-22

    We investigate spin dynamics in the antiferromagnetic (AFM) multiferroic TbMnO3 using opticalpump, terahertz (THz)-probe spectroscopy. Photoexcitation results in a broadband THz transmission change, with an onset time of 25 ps at 6 K that becomes faster at higher temperatures. We attribute this time constant to spin-lattice thermalization. The excellent agreement between our measurements and previous ultrafast resonant x-ray diffraction measurements on the same material confirms that our THz pulse directly probes spin order. We suggest that this could be the case in general for insulating AFM materials, if the origin of the static absorption in the THz spectral range ismore » magnetic.« less

  1. Spin-dependent dwell times of electron tunneling through double- and triple-barrier structures

    NASA Astrophysics Data System (ADS)

    Erić, Marko; Radovanović, Jelena; Milanović, Vitomir; Ikonić, Zoran; Indjin, Dragan

    2008-04-01

    We have analyzed the influence of Dresselhaus and Rashba spin-orbit couplings (caused by the bulk inversion asymmetry and the structural asymmetry, respectively) on electron tunneling through a double- and triple-barrier structures, with and without an externally applied electric field. The results indicate that the degree of structural asymmetry and external electric field can greatly affect the dwell times of electrons with opposite spin orientation. This opens up the possibilities of obtaining efficient spin separation in the time domain. The material system of choice is AlxGa1-xSb, and the presented model takes into account the position dependence of material parameters, as well as the effects of band nonparabolicity.

  2. The finite element simulation analysis research of 38CrSi cylindrical power spinning

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Lv, Qiongying; Zhao, Yujuan; Lv, Yunxia

    2018-01-01

    In order to grope for the influence of the main cylindrical spinning process parameters on the spinning process, this paper combines with real tube power spinning process and uses ABAQUS finite element analysis software to simulate the tube power spinning process of 38CrSi steel materials, through the analysis of the stress, strain of the part forming process, analyzes the influence of the thickness reduction and the feed rate to the forming process, and analyzes the variation of the spinning force, finally determines the reasonable main spinning process parameters combination.

  3. Recent trends in spin-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  4. Spinning angle optical calibration apparatus

    DOEpatents

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  5. Comparison between spin-orbit torques measured by domain-wall motions and harmonic measurements

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Sung; Nam, Yune-Seok; Kim, Dae-Yun; Park, Yong-Keun; Park, Min-Ho; Choe, Sug-Bong

    2018-05-01

    Here we report the comparison of the spin torque efficiencies measured by three different experimental schemes for Pt/Co/X stacks with material X (= Pt, Ta, Ti, Al, Au, Pd, and Ru. 7 materials). The first two spin torque efficiencies ɛDW (1 ) and ɛDW (2 ) are quantified by the measurement of spin-torque-induced effective field for domain-wall depinning and creeping motions, respectively. The last one—longitudinal spin torque efficiency ɛL—is measured by harmonic signal measurement of the magnetization rotation with uniform magnetization configuration. The results confirm that, for all measured Pt/Co/X stacks, ɛDW (1 ) and ɛDW (2 ) are exactly consistent to each other and these two efficiencies are roughly proportional to ɛL with proportionality constant π/2, which comes from the integration over the domain-wall configuration.

  6. Bioinspired Surfaces with Superwettability for Anti-Icing and Ice-Phobic Application: Concept, Mechanism, and Design.

    PubMed

    Zhang, Songnan; Huang, Jianying; Cheng, Yan; Yang, Hui; Chen, Zhong; Lai, Yuekun

    2017-12-01

    Ice accumulation poses a series of severe issues in daily life. Inspired by the nature, superwettability surfaces have attracted great interests from fundamental research to anti-icing and ice-phobic applications. Here, recently published literature about the mechanism of ice prevention is reviewed, with a focus on the anti-icing and ice-phobic mechanisms, encompassing the behavior of condensate microdrops on the surface, wetting, ice nucleation, and freezing. Then, a detailed account of the innovative fabrication and fundamental research of anti-icing materials with special wettability is summarized with a focus on recent progresses including low-surface energy coatings and liquid-infused layered coatings. Finally, special attention is paid to a discussion about advantages and disadvantages of the technologies, as well as factors that affect the anti-icing and ice-phobic efficiency. Outlooks and the challenges for future development of the anti-icing and ice-phobic technology are presented and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits

    DTIC Science & Technology

    2009-04-29

    bulk material and matches that in quantum wells. While these simple linear relationships hold for spin-polarized light-emitting diodes (spin-LEDs...temperature. The quantum efficiency and hence r| increases with decreasing temperature. The individual circuit elements, 33 therefore, exhibit the...Injection, Threshold Reduction and Output Circular Polarization Modulation in Quantum Well and Quantum Dot Semiconductor Spin Polarized Lasers working

  8. Spin-phonon coupling in BaFe{sub 12}O{sub 19} M-type hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva Júnior, Flávio M.; Paschoal, Carlos W. A., E-mail: paschoal.william@gmail.com

    2014-12-28

    The spin-phonon coupling in magnetic materials is due to the modulation of the exchange integral by lattice vibrations. BaFe{sub 12}O{sub 19} M-type hexaferrite, which is the most used magnetic material as permanent magnet, transforms into ferrimagnet at high temperatures, but no spin-phonon coupling was previously observed at this transition. In this letter, we investigated the temperature-dependent Raman spectra of polycrystalline BaFe{sub 12}O{sub 19} M-type hexaferrite from room temperature up to 780 K to probe spin-phonon coupling at the ferrimagnetic transition. An anomaly was observed in the position of the phonon attributed to the Fe{sup (4)}O{sub 6}, Fe{sup (5)}O{sub 6}, and Fe{supmore » (1)}O{sub 6} octahedra, evidencing the presence of a spin-phonon coupling in BaM in the ferrimagnetic transition at 720 K. The results also confirmed the spin-phonon coupling is different for each phonon even when they couple with the same spin configuration.« less

  9. Spin state switching in iron coordination compounds

    PubMed Central

    Gaspar, Ana B; Garcia, Yann

    2013-01-01

    Summary The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices. The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST) and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II), with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II) complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property. PMID:23504535

  10. Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior

    NASA Astrophysics Data System (ADS)

    Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle; Hartmann, Susan; Schneider, Johannes; Schmidt, Susann; Ebert, Martin; Stratmann, Frank

    2016-05-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility-Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most sensitive method. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the pure biological particles. We verified this by modeling the freezing behavior of the mixed particles with the Soccerball model (SBM). It can be concluded that a single INM located on a mineral dust particle determines the freezing behavior of that particle with the result that freezing occurs at temperatures at which pure mineral dust particles are not yet ice active.

  11. An electrically reconfigurable logic gate intrinsically enabled by spin-orbit materials.

    PubMed

    Kazemi, Mohammad

    2017-11-10

    The spin degree of freedom in magnetic devices has been discussed widely for computing, since it could significantly reduce energy dissipation, might enable beyond Von Neumann computing, and could have applications in quantum computing. For spin-based computing to become widespread, however, energy efficient logic gates comprising as few devices as possible are required. Considerable recent progress has been reported in this area. However, proposals for spin-based logic either require ancillary charge-based devices and circuits in each individual gate or adopt principals underlying charge-based computing by employing ancillary spin-based devices, which largely negates possible advantages. Here, we show that spin-orbit materials possess an intrinsic basis for the execution of logic operations. We present a spin-orbit logic gate that performs a universal logic operation utilizing the minimum possible number of devices, that is, the essential devices required for representing the logic operands. Also, whereas the previous proposals for spin-based logic require extra devices in each individual gate to provide reconfigurability, the proposed gate is 'electrically' reconfigurable at run-time simply by setting the amplitude of the clock pulse applied to the gate. We demonstrate, analytically and numerically with experimentally benchmarked models, that the gate performs logic operations and simultaneously stores the result, realizing the 'stateful' spin-based logic scalable to ultralow energy dissipation.

  12. High-Strain-Rate Compression Testing of Ice

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Lerch, Bradley A.

    2006-01-01

    In the present study a modified split Hopkinson pressure bar (SHPB) was employed to study the effect of strain rate on the dynamic material response of ice. Disk-shaped ice specimens with flat, parallel end faces were either provided by Dartmouth College (Hanover, NH) or grown at Case Western Reserve University (Cleveland, OH). The SHPB was adapted to perform tests at high strain rates in the range 60 to 1400/s at test temperatures of -10 and -30 C. Experimental results showed that the strength of ice increases with increasing strain rates and this occurs over a change in strain rate of five orders of magnitude. Under these strain rate conditions the ice microstructure has a slight influence on the strength, but it is much less than the influence it has under quasi-static loading conditions. End constraint and frictional effects do not influence the compression tests like they do at slower strain rates, and therefore the diameter/thickness ratio of the samples is not as critical. The strength of ice at high strain rates was found to increase with decreasing test temperatures. Ice has been identified as a potential source of debris to impact the shuttle; data presented in this report can be used to validate and/or develop material models for ice impact analyses for shuttle Return to Flight efforts.

  13. Inhibition of Ice Growth and Recrystallization by Zirconium Acetate and Zirconium Acetate Hydroxide

    PubMed Central

    Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido

    2013-01-01

    The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications. PMID:23555701

  14. μ SR Investigation of Superconducting PbTaSe2

    NASA Astrophysics Data System (ADS)

    Wilson, Murray; Hallas, Alannah; Cai, Yipeng; Guo, Shengli; Gong, Zizhou; Ali, Mazhar; Cava, Robert; Uemura, Yasutomo; Luke, Graeme

    Noncentrosymmetric superconductors are a topic of considerable interest in the condensed matter physics community. These materials have the potential to exhibit exotic superconducting states, particularly in the presence of strong spin orbit coupling. PbTaSe2 is a noncentrosymmetric material which has very strong spin orbit coupling, and is superconducting with a TC of 3.6 K. Previous studies of this material have identified exotic properties such as Dirac cones gapped by spin-orbit coupling, a topological semi-metal state, and possible multi-band superconductivity. To further explore this material, it is of considerable interest to investigate the pairing symmetry of the superconducting state, and determine whether odd-parity superconductivity may exist. In this talk we will present a μSR investigation of the penetration depth temperature dependece to infer the pairing symmetry. We will also present zero field μSR measurements which suggest that this material has an even-parity superconducting state.

  15. Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy

    NASA Astrophysics Data System (ADS)

    Wu, Jun-Chi; Peng, Xu; Guo, Yu-Qiao; Zhou, Hao-Dong; Zhao, Ji-Yin; Ruan, Ke-Qin; Chu, Wang-Sheng; Wu, Changzheng

    2018-06-01

    Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.

  16. Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Bue, Grant C.

    2009-01-01

    A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.

  17. Coupled macrospins: Mode dynamics in symmetric and asymmetric vertices

    NASA Astrophysics Data System (ADS)

    Bang, Wonbae; Jungfleisch, Matthias B.; Montoncello, Federico; Farmer, Barry W.; Lapa, Pavel N.; Hoffmann, Axel; Giovannini, Loris; De Long, Lance E.; Ketterson, John B.

    2018-05-01

    We report the microwave response of symmetric and asymmetric threefold clusters with nearly contacting segments that can serve as the node in a Kagome artificial spin ice lattice. The structures are patterned on a coplanar waveguide and consist of elongated and nearly-contacting ellipses with uniform thickness. Branches of the ferromagnetic resonance spectra display mode softening that correlates well with the calculations, whereas agreement between the measured and simulated static magnetization is more qualitative.

  18. Coupled macrospins: Mode dynamics in symmetric and asymmetric vertices

    DOE PAGES

    Bang, Wonbae; Jungfleisch, Matthias B.; Montoncello, Federico; ...

    2017-12-29

    We report the microwave response of symmetric and asymmetric threefold clusters with nearly contacting segments that can serve as the node in a Kagome artificial spin ice lattice. The structures are patterned on a coplanar waveguide and consist of elongated and nearly-contacting ellipses with uniform thickness. Branches of the ferromagnetic resonance spectra display mode softening that correlates well with the calculations, whereas agreement between the measured and simulated static magnetization is more qualitative.

  19. Spin-flop states in a synthetic antiferromagnet and variations of unidirectional anisotropy in FeMn-based spin valves

    NASA Astrophysics Data System (ADS)

    Milyaev, M. A.; Naumova, L. I.; Chernyshova, T. A.; Proglyado, V. V.; Kulesh, N. A.; Patrakov, E. I.; Kamenskii, I. Yu.; Ustinov, V. V.

    2016-12-01

    Spin valves with a synthetic antiferromagnet have been prepared by magnetron sputtering. Regularities of the formation of single- and two-phase spin-flop states in the synthetic antiferromagnet have been studied using magnetoresistance measurements and imaging the magnetic structure. A thermomagnetic treatment of spin valve in a field that corresponds to the single-phase spin-flop state of synthetic antiferromagnet was shown to allow us to obtain a magnetically sensitive material characterized by hysteresis-free field dependence of the magnetoresistance.

  20. Tidal Heating in Multilayered Terrestrial Exoplanets

    NASA Technical Reports Server (NTRS)

    Henning, Wade G.; Hurford, Terry

    2014-01-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R(sub E) is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

Top