Science.gov

Sample records for spin list technique

  1. Interspersal Technique and Behavioral Momentum for Reading Word Lists

    ERIC Educational Resources Information Center

    Burns, Matthew K.; Ardoin, Scott P.; Parker, David C.; Hodgson, Jennifer; Klingbeil, David A.; Scholin, Sarah E.

    2009-01-01

    Academic tasks that include easy responses increase the probability that less preferred and/or more challenging tasks will be performed. The current study applied the process of arranging easier stimuli within reading word lists with behavioral momentum and an interspersal technique. We hypothesized that the behavioral momentum condition, which…

  2. Experimental Test of New Technique to Overcome Spin Depolarizing Resonances

    SciTech Connect

    Raymond, R. S.; Chao, A. W.; Krisch, A. D.; Leonova, M. A.; Morozov, V. S.; Sivers, D. W.; Wong, V. K.; Ganshvili, A.; Gebel, R.; Lehrach, A.; Lorentz, B.; Maier, R.; Prasuhn, D.; Stockhorst, H.; Welsch, D.; Hinterberger, F.; Kondratenko, A. M.

    2009-08-04

    We recently tested a new spin resonance crossing technique, Kondratenko Crossing (KC) by sweeping an rf solenoid's frequency through an rf-induced spin resonance with both the KC an traditional Fast Crossing (FC) patterns. Using both rf bunched and unbunched 1.85 GeV/c polarized deuterons stored in COSY, we varied the parameters of both crossing patterns. Compared to FC with the same crossing speed, KC reduced the depolarization by measured factors of 4.7+-0.3 and 19+-{sub 5}{sup 12} for unbunched and bunched beams, respectively. This clearly showed the large potential benefit of Kondratenko Crossing over Fast Crossing.

  3. Multiple Serial List Learning with Two Mnemonic Techniques.

    ERIC Educational Resources Information Center

    Marston, Paul T.; Young, Robert K.

    The classic mnemonic for learning serial lists, the method of loci, and its modern counterpart, the peg system, were compared by having subjects learn three 20-item serial lists. In addition to the type of mnemonic training, list imagery was either high (rated 6-7) or medium (rated 4-5), and instructions were either progressive elaboration (e.g.,…

  4. Dynamic neutron scattering on incoherent systems using efficient resonance spin flip techniques

    SciTech Connect

    Häussler, Wolfgang; Kredler, Lukas

    2014-05-15

    We have performed numerical ray-tracing Monte-Carlo-simulations of incoherent dynamic neutron scattering experiments. We intend to optimize the efficiency of incoherent measurements depending on the fraction of neutrons scattered without and with spin flip at the sample. In addition to conventional spin echo, we have numerically and experimentally studied oscillating intensity techniques. The results point out the advantages of these different spin echo variants and are an important prerequisite for neutron resonance spin echo instruments like RESEDA (FRM II, Munich), to choose the most efficient technique depending on the scattering vector range and the properties of the sample system under study.

  5. Spin and Time-Reversal Symmetries of Superconducting Electron Pairs Probed by the Muon Spin Rotation and Relaxation Technique

    NASA Astrophysics Data System (ADS)

    Higemoto, Wataru; Aoki, Yuji; MacLaughlin, Douglas E.

    2016-09-01

    Unconventional superconductivity based on the strong correlation of electrons is one of the central issues of solid-state physics. Although many experimental techniques are appropriate for investigating unconventional superconductivity, a complete perspective has not been established yet. The symmetries of electron pairs are crucial properties for understanding the essential state of unconventional superconductivity. In this review, we discuss the investigation of the time-reversal and spin symmetries of superconducting electron pairs using the muon spin rotation and relaxation technique. By detecting a spontaneous magnetic field under zero field and/or the temperature dependence of the muon Knight shift in the superconducting phase, the time-reversal symmetry and spin parity of electron pairs have been determined for several unconventional superconductors.

  6. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials

    PubMed Central

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-01-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials. PMID:27194379

  7. Effects of spin diffusion on electron spin relaxation time measured with a time-resolved microscopic photoluminescence technique

    SciTech Connect

    Ikeda, Kazuhiro Kawaguchi, Hitoshi

    2015-02-07

    We performed measurements at room temperature for a GaAs/AlGaAs multiple quantum well grown on GaAs(110) using a time-resolved microscopic photoluminescence (micro-PL) technique to find what effects spin diffusion had on the measured electron spin relaxation time, τ{sub s}, and developed a method of estimating the spin diffusion coefficient, D{sub s}, using the measured data and the coupled drift-diffusion equations for spin polarized electrons. The spatial nonuniformities of τ{sub s} and the initial degree of electron spin polarization caused by the pump intensity distribution inside the focal spot were taken into account to explain the dependence of τ{sub s} on the measured spot size, i.e., a longer τ{sub s} for a smaller spot size. We estimated D{sub s} as ∼100 cm{sup 2}/s, which is similar to a value reported in the literature. We also provided a qualitative understanding on how spin diffusion lengthens τ{sub s} in micro-PL measurements.

  8. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials.

    PubMed

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-01-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials. PMID:27194379

  9. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-05-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials.

  10. Characterizing Si:P quantum dot qubits with spin resonance techniques.

    PubMed

    Wang, Yu; Chen, Chin-Yi; Klimeck, Gerhard; Simmons, Michelle Y; Rahman, Rajib

    2016-01-01

    Quantum dots patterned by atomically precise placement of phosphorus donors in single crystal silicon have long spin lifetimes, advantages in addressability, large exchange tunability, and are readily available few-electron systems. To be utilized as quantum bits, it is important to non-invasively characterise these donor quantum dots post fabrication and extract the number of bound electron and nuclear spins as well as their locations. Here, we propose a metrology technique based on electron spin resonance (ESR) measurements with the on-chip circuitry already needed for qubit manipulation to obtain atomic scale information about donor quantum dots and their spin configurations. Using atomistic tight-binding technique and Hartree self-consistent field approximation, we show that the ESR transition frequencies are directly related to the number of donors, electrons, and their locations through the electron-nuclear hyperfine interaction.

  11. Characterizing Si:P quantum dot qubits with spin resonance techniques

    PubMed Central

    Wang, Yu; Chen, Chin-Yi; Klimeck, Gerhard; Simmons, Michelle Y.; Rahman, Rajib

    2016-01-01

    Quantum dots patterned by atomically precise placement of phosphorus donors in single crystal silicon have long spin lifetimes, advantages in addressability, large exchange tunability, and are readily available few-electron systems. To be utilized as quantum bits, it is important to non-invasively characterise these donor quantum dots post fabrication and extract the number of bound electron and nuclear spins as well as their locations. Here, we propose a metrology technique based on electron spin resonance (ESR) measurements with the on-chip circuitry already needed for qubit manipulation to obtain atomic scale information about donor quantum dots and their spin configurations. Using atomistic tight-binding technique and Hartree self-consistent field approximation, we show that the ESR transition frequencies are directly related to the number of donors, electrons, and their locations through the electron-nuclear hyperfine interaction. PMID:27550779

  12. Characterizing Si:P quantum dot qubits with spin resonance techniques.

    PubMed

    Wang, Yu; Chen, Chin-Yi; Klimeck, Gerhard; Simmons, Michelle Y; Rahman, Rajib

    2016-01-01

    Quantum dots patterned by atomically precise placement of phosphorus donors in single crystal silicon have long spin lifetimes, advantages in addressability, large exchange tunability, and are readily available few-electron systems. To be utilized as quantum bits, it is important to non-invasively characterise these donor quantum dots post fabrication and extract the number of bound electron and nuclear spins as well as their locations. Here, we propose a metrology technique based on electron spin resonance (ESR) measurements with the on-chip circuitry already needed for qubit manipulation to obtain atomic scale information about donor quantum dots and their spin configurations. Using atomistic tight-binding technique and Hartree self-consistent field approximation, we show that the ESR transition frequencies are directly related to the number of donors, electrons, and their locations through the electron-nuclear hyperfine interaction. PMID:27550779

  13. Characterizing Si:P quantum dot qubits with spin resonance techniques

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Chen, Chin-Yi; Klimeck, Gerhard; Simmons, Michelle Y.; Rahman, Rajib

    2016-08-01

    Quantum dots patterned by atomically precise placement of phosphorus donors in single crystal silicon have long spin lifetimes, advantages in addressability, large exchange tunability, and are readily available few-electron systems. To be utilized as quantum bits, it is important to non-invasively characterise these donor quantum dots post fabrication and extract the number of bound electron and nuclear spins as well as their locations. Here, we propose a metrology technique based on electron spin resonance (ESR) measurements with the on-chip circuitry already needed for qubit manipulation to obtain atomic scale information about donor quantum dots and their spin configurations. Using atomistic tight-binding technique and Hartree self-consistent field approximation, we show that the ESR transition frequencies are directly related to the number of donors, electrons, and their locations through the electron-nuclear hyperfine interaction.

  14. Novel techniques for detection and imaging of spin related phenomena: Towards sub-diffraction limited resolution

    NASA Astrophysics Data System (ADS)

    Wolfe, Christopher Stuart

    The idea that the spin degree of freedom of particles can be used to store and transport information has revolutionized the data storage industry and inspired a huge amount of research activity. Spin electronics, or spintronics, provides a plethora of potential improvements to conventional charge electronics that include increased functionality and energy efficiency. Scientists studying spintronics will need a multitude of characterization tools to sensitively detect spins in new materials and devices. There are already a handful of powerful techniques to image spin-related phenomena, but each has limitations. Magnetic resonance force microscopy, for example, offers sensitive detection of spin moments that are localized or nearly so but requires a high vacuum, cryogenic environment. Magnetometry based on nitrogen vacancy centers in diamond is a powerful approach, but requires the nitrogen vacancy center to be in very close contact to the spin system being studied to be able to measure the field generated by the system. Spin-polarized scanning tunneling microscopy provides perhaps the best demonstrated spatial resolution, but typically requires ultrahigh vacuum conditions and is limited to studying the surface of a sample. Traditional optical techniques such as Faraday or Kerr microscopy are limited in spatial resolution by the optical diffraction limit. In this dissertation I will present three new techniques we have developed to address some of these issues and to provide the community with new tools to help push forward spintronics and magnetism related research. I will start by presenting the first experimental demonstration of scanned spin-precession microscopy. This technique has the potential to turn any spin-sensitive detection technique into an imaging platform by providing the groundwork for incorporating a magnetic field gradient with that technique, akin to magnetic resonance imaging, and the mathematical tools to analyze the data and extract the local

  15. Some flight data extraction techniques used on a general aviation spin research aircraft

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1979-01-01

    Some methods for obtaining flight data from a highly instrumented general aviation spin research aircraft are developed and illustrated. The required correction terms for the measurement of body accelerations, body velocities, and aircraft orientation are presented. In addition, the equations of motion are utilized to derive total aerodynamic coefficients for comparison with model tests and for analysis. Flight test experience is used to evaluate the utility of various instruments and calculation techniques for spin research.

  16. The Spin Move: A Reliable and Cost-Effective Gowning Technique for the 21st Century.

    PubMed

    Ochiai, Derek H; Adib, Farshad

    2015-04-01

    Operating room efficiency (ORE) and utilization are considered one of the most crucial components of quality improvement in every hospital. We introduced a new gowning technique that could optimize ORE. The Spin Move quickly and efficiently wraps a surgical gown around the surgeon's body. This saves the operative time expended through the traditional gowning techniques. In the Spin Move, while the surgeon is approaching the scrub nurse, he or she uses the left heel as the fulcrum. The torque, which is generated by twisting the right leg around the left leg, helps the surgeon to close the gown as quickly and safely as possible. From 2003 to 2012, the Spin Move was performed in 1,725 consecutive procedures with no complication. The estimated average time was 5.3 and 7.8 seconds for the Spin Move and traditional gowning, respectively. The estimated time saving for the senior author during this period was 71.875 minutes. Approximately 20,000 orthopaedic surgeons practice in the United States. If this technique had been used, 23,958 hours could have been saved. The money saving could have been $14,374,800.00 (23,958 hours × $600/operating room hour) during the past 10 years. The Spin Move is easy to perform and reproducible. It saves operating room time and increases ORE.

  17. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  18. Experimental Test of a New Technique to Overcome Spin-Depolarizing Resonances

    SciTech Connect

    Morozov, V. S.; Chao, A. W.; Krisch, A. D.; Leonova, M. A.; Raymond, R. S.; Sivers, D. W.; Wong, V. K.; Garishvili, A.; Gebel, R.; Lehrach, A.; Lorentz, B.; Maier, R.; Prasuhn, D.; Stockhorst, H.; Welsch, D.; Hinterberger, F.; Kondratenko, A. M.

    2009-06-19

    We recently tested a new spin resonance crossing technique, Kondratenko Crossing (KC), by sweeping an rf-solenoid's frequency through an rf-induced spin resonance with both the KC and traditional fast crossing (FC) patterns. Using both rf bunched and unbunched 1.85 GeV/c polarized deuterons stored in COSY, we varied the parameters of both crossing patterns. Compared to FC with the same crossing speed, KC reduced the depolarization by measured factors of 4.7+-0.3 and 19{sub -5}{sup +12} for unbunched and bunched beams, respectively. This clearly showed the large potential benefit of Kondratenko Crossing over fast crossing.

  19. Control-system techniques for improved departure/spin resistance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, L. T.; Gilbert, W. P.; Ogburn, M. E.

    1980-01-01

    Some fundamental information on control system effects on controllability of highly maneuverable aircraft at high angles of attack are summarized as well as techniques for enhancing fighter aircraft departure/spin resistance using control system design. The discussion includes: (1) a brief review of pertinent high angle of attack phenomena including aerodynamics, inertia coupling, and kinematic coupling; (2) effects of conventional stability augmentation systems at high angles of attack; (3) high angle of attack control system concepts designed to enhance departure/spin resistance; and (4) the outlook for applications of these concepts to future fighters, particularly those designs which incorporate relaxed static stability.

  20. Analysis of state-of-the-art single-thruster attitude control techniques for spinning penetrator

    NASA Astrophysics Data System (ADS)

    Raus, Robin; Gao, Yang; Wu, Yunhua; Watt, Mark

    2012-07-01

    The attitude dynamics and manoeuvre survey in this paper is performed for a mission scenario involving a penetrator-type spacecraft: an axisymmetric prolate spacecraft spinning around its minor axis of inertia performing a 90° spin axis reorientation manoeuvre. In contrast to most existing spacecraft only one attitude control thruster is available, providing a control torque perpendicular to the spin axis. Having only one attitude thruster on a spinning spacecraft could be preferred for spacecraft simplicity (lower mass, lower power consumption etc.), or it could be imposed in the context of redundancy/contingency operations. This constraint does yield restrictions on the thruster timings, depending on the ratio of minor to major moments of inertia among other parameters. The Japanese Lunar-A penetrator spacecraft proposal is a good example of such a single-thruster spin-stabilised prolate spacecraft. The attitude dynamics of a spinning rigid body are first investigated analytically, then expanded for the specific case of a prolate and axisymmetric rigid body and finally a cursory exploration of non-rigid body dynamics is made. Next two well-known techniques for manoeuvring a spin-stabilised spacecraft, the Half-cone/Multiple Half-cone and the Rhumb line slew, are compared with two new techniques, the Sector-Arc Slew developed by Astrium Satellites and the Dual-cone developed at Surrey Space Centre. Each technique is introduced and characterised by means of simulation results and illustrations based on the penetrator mission scenario and a brief robustness analysis is performed against errors in moments of inertia and spin rate. Also, the relative benefits of each slew algorithm are discussed in terms of slew accuracy, energy (propellant) efficiency and time efficiency. For example, a sequence of half-cone manoeuvres (a Multi-half-cone manoeuvre) tends to be more energy-efficient than one half-cone for the same final slew angle, but more time-consuming. As another

  1. Evolution of near-extremal-spin black holes using the moving puncture technique

    SciTech Connect

    Liu, Y.T.; Etienne, Zachariah B.; Shapiro, Stuart L.

    2009-12-15

    We propose a new radial coordinate to write the Kerr metric in puncture form. Unlike the quasiradial coordinate introduced previously, the horizon radius remains finite in our radial coordinate in the extreme Kerr limit a/M{yields}1. This significantly improves the accuracy of the evolution of black holes with spins close to the extreme Kerr limit. We are able to evolve accurately both stationary and boosted black holes with spins as high as a/M=0.99 using initial data constructed in these new puncture coordinates. Initial data of compact binaries with rapidly spinning black holes can be constructed using our proposed new puncture metric for the background conformal metric. Our simulations for single black holes suggest that such initial data can be evolved successfully by the moving puncture technique.

  2. Fast all-optical nuclear spin echo technique based on EIT

    NASA Astrophysics Data System (ADS)

    Walther, Andreas; Nilsson, Adam N.; Li, Qian; Rippe, Lars; Kröll, Stefan

    2016-08-01

    We demonstrate an all-optical Raman spin echo technique, using electromagnetically induced transparency (EIT) to create the pulses required for a spin echo sequence: initialization, pi-rotation, and readout. The first pulse of the sequence induces coherence directly from a mixed state, and the technique is used to measure the nuclear spin coherence of an inhomogeneously broadened ensemble of rare-earth ions (Pr3 +) in a crystal. The rephasing pi-rotation is shown to offer an advantage of combining the rephasing action with the operation of a phase gate, particularly useful in e.g. dynamic decoupling sequences. In contrast to many previous experiments the sequence does not require any preparatory hole burning, which greatly shortens the total duration of the sequence. The effect of the different pulses is characterized by quantum state tomography and compared with simulations. We demonstrate two applications of the technique: compensating the magnetic field across our sample by monitoring T2 reductions from stray magnetic fields, and measuring coherence times at temperatures up to 11 K, where standard preparation techniques are difficult to implement. We explore the potential of the technique, in particular for systems with much shorter T2, and other possible applications.

  3. Fast all-optical nuclear spin echo technique based on EIT

    NASA Astrophysics Data System (ADS)

    Walther, Andreas; Nilsson, Adam N.; Li, Qian; Rippe, Lars; Kröll, Stefan

    2016-08-01

    We demonstrate an all-optical Raman spin echo technique, using electromagnetically induced transparency (EIT) to create the pulses required for a spin echo sequence: initialization, pi-rotation, and readout. The first pulse of the sequence induces coherence directly from a mixed state, and the technique is used to measure the nuclear spin coherence of an inhomogeneously broadened ensemble of rare-earth ions (Pr3 +) in a crystal. The rephasing pi-rotation is shown to offer an advantage of combining the rephasing action with the operation of a phase gate, particularly useful in e.g. dynamic decoupling sequences. In contrast to many previous experiments the sequence does not require any preparatory hole burning, which greatly shortens the total duration of the sequence. The effect of the different pulses is characterized by quantum state tomography and compared with simulations. We demonstrate two applications of the technique: compensating the magnetic field across our sample by monitoring T 2 reductions from stray magnetic fields, and measuring coherence times at temperatures up to 11 K, where standard preparation techniques are difficult to implement. We explore the potential of the technique, in particular for systems with much shorter T 2, and other possible applications.

  4. Electron spin-echo techniques for the study of protein motion

    NASA Astrophysics Data System (ADS)

    Kar, Leela; Johnson, Michael E.; Bowman, Michael K.

    Electron spin-echo (ESE) spectroscopy has been used to make the first direct measurements of spin-spin relaxation times of a spin-labeled protein at physiological temperatures. Results from experiments using maleimide-labeled deoxygenated hemoglobin (dHb) from individuals homozygous for sickle cell anemia (dHbS) have been compared with those from control experiments using dHb from normal adults (dHbA). Hb "immobilized" by ammonium sulfate precipitation and by siloxane polymer entrapment have been studied for a suitable "rigid" reference. Two-dimensional ESE (2D-ESE) experiments have been performed using all of these systems. The 2D contour plots show that 2D-ESE is sensitive to the slow motion of dHbS polymers and can differentiate it from both that of immobilized Hb and of HbA molecules in solution at the same temperature and concentration. More importantly, the 2D-ESE technique enables one to select for slower motion and thereby extract the dHbS polymer signal from the total signal generated by the heterogeneous system containing dHbS molecules in solution as well as in the polymer. Computer simulations using current slow motional theories show that detailed motional and structural information may be obtained by such studies. The considerable potential of 2D-ESE spectroscopy in the study of macromolecular motion is illustrated by comparing 2D-ESE with the nonlinear technique of saturation transfer electron paramagnetic resonance.

  5. Variable flip angle imaging and fat suppression in combined gradient and spin-echo (GREASE) techniques

    SciTech Connect

    Vinitski, S.; Mitchell, D.G.; Szumowski, J.; Burk, D.L. Jr.; Rifkin, M.D. )

    1990-01-01

    Conventional proton density and T2-weighted spin-echo images are susceptible to motion induced artifact, which is exacerbated by lipid signals. Gradient moment nulling can reduce motion artifact but lengthens the minimum TE, degrading the proton density contrast. We designed a pulse sequence capable of optimizing proton density and T2-weighted contrast while suppressing lipid signals and motion induced artifacts. Proton density weighting was obtained by rapid readout gradient reversal immediately after the excitation RF pulse, within a conventional spin-echo sequence. By analyzing the behavior of the macroscopic magnetization and optimizing excitation flip angle, we suppressed T1 contribution to the image, thereby enhancing proton density and T2-weighted contrast with a two- to four-fold reduction of repetition time. This permitted an increased number of averages to be used, reducing motion induced artifacts. Fat suppression in the presence of motion was investigated in two groups of 8 volunteers each by (i) modified Dixon technique, (ii) selective excitation, and (iii) hybrid of both. Elimination of fat signal by the first technique was relatively uniform across the field of view, but it did not fully suppress the ghosts originating from fat motion. Selective excitation, while sensitive to the main field inhomogeneity, largely eliminated the ghosts (0.21 +/- 0.05 vs. 0.29 +/- 0.06, p less than 0.01). The hybrid of both techniques combined with bandwidth optimization, however, showed the best results (0.17 +/- 0.04, p less than 0.001). Variable flip-angle imaging allows optimization of image contrast which, along with averaging and effective fat suppression, significantly improves gradient- and spin-echo imaging, particularly in the presence of motion.

  6. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling.

    PubMed

    Wong, E C; Buxton, R B; Frank, L R

    1997-01-01

    We describe here experimental considerations in the implementation of quantitative perfusion imaging techniques for functional MRI using pulsed arterial spin labeling. Three tagging techniques: EPISTAR, PICORE, and FAIR are found to give very similar perfusion results despite large differences in static tissue contrast. Two major sources of systematic error in the perfusion measurement are identified: the transit delay from the tagging region to the imaging slice; and the inclusion of intravascular tagged signal. A modified technique called QUIPSS II is described that decreases sensitivity to these effects by explicitly controlling the time width of the tag bolus and imaging after the bolus is entirely deposited into the slice. With appropriate saturation pulses the pulse sequence can be arranged so as to allow for simultaneous collection of perfusion and BOLD data that can be cleanly separated. Such perfusion and BOLD signals reveal differences in spatial location and dynamics that may be useful both for functional brain mapping and for study of the BOLD contrast mechanism. The implementation of multislice perfusion imaging introduces additional complications, primarily in the elimination of signal from static tissue. In pulsed ASL, this appears to be related to the slice profile of the inversion tag pulse in the presence of relaxation, rather than magnetization transfer effects as in continuous arterial spin labeling, and can be alleviated with careful adjustment of inversion pulse parameters. PMID:9430354

  7. Effect of salt on the structure of middle phase microemulsions using the spin-label technique

    SciTech Connect

    Ramachandran, C.; Vijayan, S.; Shah, D.O.

    1980-06-12

    The middle phases obtained by varying the sodium chloride concentration in surfactant formulations containing 5:3 (wt/wt) TRS 10-410 (a petroleum sulfonate)-isobutyl alcohol and equal volumes of aqueous and oil phases were studied by using spin-labeling techniques. Two different spin-labels, one partially water soluble (5-doxylstearic acid label) and the other water insoluble (3-doxylcholestane label), were used. Extensive measurements of electrical conductivity and phase volumes of the middle phases were also carried out. These physical property results corroborated the spin-label studies in that below 2.0 wt % NaCl the middle phase was essentially a microemulsion of the water external type. Beyond 2.3% NaCl the appearance of a signal component typical of a free label (ketostearic acid) in an oil environment and changes in correlation time characteristics (cholestane label) coupled with physical property data underlined a qualitative change in the microemulsion system. It is believed that these changes are consistent with a transition from a water-external type to an oil-external type microemulsion system. This transition is estimated to be around 2 to 2.3% NaCl. The results are further substantiated by ascorbic acid reduction rate studies. Possible mechanisms of this transition are discussed.

  8. Artificial tektites: an experimental technique for capturing the shapes of spinning drops.

    PubMed

    Baldwin, Kyle A; Butler, Samuel L; Hill, Richard J A

    2015-01-07

    Determining the shapes of a rotating liquid droplet bound by surface tension is an archetypal problem in the study of the equilibrium shapes of a spinning and charged droplet, a problem that unites models of the stability of the atomic nucleus with the shapes of astronomical-scale, gravitationally-bound masses. The shapes of highly deformed droplets and their stability must be calculated numerically. Although the accuracy of such models has increased with the use of progressively more sophisticated computational techniques and increases in computing power, direct experimental verification is still lacking. Here we present an experimental technique for making wax models of these shapes using diamagnetic levitation. The wax models resemble splash-form tektites, glassy stones formed from molten rock ejected from asteroid impacts. Many tektites have elongated or 'dumb-bell' shapes due to their rotation mid-flight before solidification, just as we observe here. Measurements of the dimensions of our wax 'artificial tektites' show good agreement with equilibrium shapes calculated by our numerical model, and with previous models. These wax models provide the first direct experimental validation for numerical models of the equilibrium shapes of spinning droplets, of importance to fundamental physics and also to studies of tektite formation.

  9. Artificial tektites: an experimental technique for capturing the shapes of spinning drops

    NASA Astrophysics Data System (ADS)

    Baldwin, Kyle A.; Butler, Samuel L.; Hill, Richard J. A.

    2015-01-01

    Determining the shapes of a rotating liquid droplet bound by surface tension is an archetypal problem in the study of the equilibrium shapes of a spinning and charged droplet, a problem that unites models of the stability of the atomic nucleus with the shapes of astronomical-scale, gravitationally-bound masses. The shapes of highly deformed droplets and their stability must be calculated numerically. Although the accuracy of such models has increased with the use of progressively more sophisticated computational techniques and increases in computing power, direct experimental verification is still lacking. Here we present an experimental technique for making wax models of these shapes using diamagnetic levitation. The wax models resemble splash-form tektites, glassy stones formed from molten rock ejected from asteroid impacts. Many tektites have elongated or `dumb-bell' shapes due to their rotation mid-flight before solidification, just as we observe here. Measurements of the dimensions of our wax `artificial tektites' show good agreement with equilibrium shapes calculated by our numerical model, and with previous models. These wax models provide the first direct experimental validation for numerical models of the equilibrium shapes of spinning droplets, of importance to fundamental physics and also to studies of tektite formation.

  10. Artificial tektites: an experimental technique for capturing the shapes of spinning drops.

    PubMed

    Baldwin, Kyle A; Butler, Samuel L; Hill, Richard J A

    2015-01-01

    Determining the shapes of a rotating liquid droplet bound by surface tension is an archetypal problem in the study of the equilibrium shapes of a spinning and charged droplet, a problem that unites models of the stability of the atomic nucleus with the shapes of astronomical-scale, gravitationally-bound masses. The shapes of highly deformed droplets and their stability must be calculated numerically. Although the accuracy of such models has increased with the use of progressively more sophisticated computational techniques and increases in computing power, direct experimental verification is still lacking. Here we present an experimental technique for making wax models of these shapes using diamagnetic levitation. The wax models resemble splash-form tektites, glassy stones formed from molten rock ejected from asteroid impacts. Many tektites have elongated or 'dumb-bell' shapes due to their rotation mid-flight before solidification, just as we observe here. Measurements of the dimensions of our wax 'artificial tektites' show good agreement with equilibrium shapes calculated by our numerical model, and with previous models. These wax models provide the first direct experimental validation for numerical models of the equilibrium shapes of spinning droplets, of importance to fundamental physics and also to studies of tektite formation. PMID:25564381

  11. Artificial tektites: an experimental technique for capturing the shapes of spinning drops

    PubMed Central

    Baldwin, Kyle A.; Butler, Samuel L.; Hill, Richard J. A.

    2015-01-01

    Determining the shapes of a rotating liquid droplet bound by surface tension is an archetypal problem in the study of the equilibrium shapes of a spinning and charged droplet, a problem that unites models of the stability of the atomic nucleus with the shapes of astronomical-scale, gravitationally-bound masses. The shapes of highly deformed droplets and their stability must be calculated numerically. Although the accuracy of such models has increased with the use of progressively more sophisticated computational techniques and increases in computing power, direct experimental verification is still lacking. Here we present an experimental technique for making wax models of these shapes using diamagnetic levitation. The wax models resemble splash-form tektites, glassy stones formed from molten rock ejected from asteroid impacts. Many tektites have elongated or ‘dumb-bell' shapes due to their rotation mid-flight before solidification, just as we observe here. Measurements of the dimensions of our wax ‘artificial tektites' show good agreement with equilibrium shapes calculated by our numerical model, and with previous models. These wax models provide the first direct experimental validation for numerical models of the equilibrium shapes of spinning droplets, of importance to fundamental physics and also to studies of tektite formation. PMID:25564381

  12. Application of a system modification technique to dynamic tuning of a spinning rotor blade

    NASA Technical Reports Server (NTRS)

    Spain, C. V.

    1987-01-01

    An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.

  13. Polynomially scaling spin dynamics II: Further state-space compression using Krylov subspace techniques and zero track elimination

    NASA Astrophysics Data System (ADS)

    Kuprov, Ilya

    2008-11-01

    We extend the recently proposed state-space restriction (SSR) technique for quantum spin dynamics simulations [Kuprov et al., J. Magn. Reson. 189 (2007) 241-250] to include on-the-fly detection and elimination of unpopulated dimensions from the system density matrix. Further improvements in spin dynamics simulation speed, frequently by several orders of magnitude, are demonstrated. The proposed zero track elimination (ZTE) procedure is computationally inexpensive, reversible, numerically stable and easy to add to any existing simulation code. We demonstrate that it belongs to the same family of Krylov subspace techniques as the well-known Lanczos basis pruning procedure. The combined SSR + ZTE algorithm is recommended for simulations of NMR, EPR and Spin Chemistry experiments on systems containing between 10 and 10 4 coupled spins.

  14. Polynomially scaling spin dynamics II: further state-space compression using Krylov subspace techniques and zero track elimination.

    PubMed

    Kuprov, Ilya

    2008-11-01

    We extend the recently proposed state-space restriction (SSR) technique for quantum spin dynamics simulations [Kuprov et al., J. Magn. Reson. 189 (2007) 241-250] to include on-the-fly detection and elimination of unpopulated dimensions from the system density matrix. Further improvements in spin dynamics simulation speed, frequently by several orders of magnitude, are demonstrated. The proposed zero track elimination (ZTE) procedure is computationally inexpensive, reversible, numerically stable and easy to add to any existing simulation code. We demonstrate that it belongs to the same family of Krylov subspace techniques as the well-known Lanczos basis pruning procedure. The combined SSR+ZTE algorithm is recommended for simulations of NMR, EPR and Spin Chemistry experiments on systems containing between 10 and 10(4) coupled spins.

  15. Getting the Most Out of Dual-Listed Courses: Involving Undergraduate Students in Discussion through Active Learning Techniques

    ERIC Educational Resources Information Center

    Duncan, Leslie Lyons; Burkhardt, Bethany L.; Benneyworth, Laura M.; Tasich, Christopher M.; Duncan, Benjamin R.

    2015-01-01

    This article provides readers with details concerning the implementation of four active learning techniques used to help undergraduate students critically discuss primary literature. On the basis of undergraduate and graduate student perceptions and experiences, the authors suggest techniques to enhance the quality of dual-listed courses and…

  16. One-step electro-spinning/netting technique for controllably preparing polyurethane nano-fiber/net.

    PubMed

    Hu, Juanping; Wang, Xianfeng; Ding, Bin; Lin, Jinyou; Yu, Jianyong; Sun, Gang

    2011-11-01

    Electro-spinning/netting (ESN) as a cutting-edge technique evokes much interest because of its ability in the one-step preparation of versatile nano-fiber/net (NFN) membranes. Here, a controllable fabrication of polyurethane (PU) NFN membranes with attractive structures, consisting of common electrospun nanofibers and two-dimensional (2D) soap bubble-like structured nano-nets via an ESN process is reported. The unique nanoscaled NFN architecture can be finely controlled by regulating the solution properties and several ESN process parameters. The versatile PU nano-nets comprising interlinked nanowires with ultrathin diameters (5-40 nm) mean that the NFN structured membranes possess several excellent characteristics, such as an extremely large specific surface area, high porosity and large stacking density, which would be particularly useful for applications in ultrafiltration, special protective clothing, ultrasensitive sensors, catalyst support and so on. PMID:21858891

  17. One-step electro-spinning/netting technique for controllably preparing polyurethane nano-fiber/net.

    PubMed

    Hu, Juanping; Wang, Xianfeng; Ding, Bin; Lin, Jinyou; Yu, Jianyong; Sun, Gang

    2011-11-01

    Electro-spinning/netting (ESN) as a cutting-edge technique evokes much interest because of its ability in the one-step preparation of versatile nano-fiber/net (NFN) membranes. Here, a controllable fabrication of polyurethane (PU) NFN membranes with attractive structures, consisting of common electrospun nanofibers and two-dimensional (2D) soap bubble-like structured nano-nets via an ESN process is reported. The unique nanoscaled NFN architecture can be finely controlled by regulating the solution properties and several ESN process parameters. The versatile PU nano-nets comprising interlinked nanowires with ultrathin diameters (5-40 nm) mean that the NFN structured membranes possess several excellent characteristics, such as an extremely large specific surface area, high porosity and large stacking density, which would be particularly useful for applications in ultrafiltration, special protective clothing, ultrasensitive sensors, catalyst support and so on.

  18. Use of spin-labelling techniques to probe the dynamics of He(2 3S) deexcitation at solid surfaces

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Oró, D. M.; Soletsky, P. A.; Zhang, X.; Nordlander, P.; Walters, G. K.

    1994-06-01

    Spin labelling techniques, specifically the use of electron-spin-polarized He(23 S) metastable atoms coupled with energy-resolved spin analysis of the ejected electrons, are used to investigate the dynamics of He(23 S) deexcitation at solid surfaces. Data for a clean Au(100) surface are presented that show that deexcitation occurs exclusively through resonance ionization followed by Auger neutralization. The electrons involved in Auger neutralization are observed to be correlated in spin and possible reasons for this are discussed. Results obtained at Xe and NO films adsorbed on cooled Au(100) and Cu(100) substrates, respectively, show that He(23 S) metastable atom deexcitation is analogous to gas-phase Penning ionization. Detailed differences are apparent that can be attributed to effects associated with the underlying substrate and interactions involving neighboring atoms in the film.

  19. Artificial tektites: an experimental technique for capturing the shapes of spinning drops

    NASA Astrophysics Data System (ADS)

    Baldwin, K. A.

    2014-12-01

    Tektites are small stones formed from rapidly cooling drops of molten rock ejected from high velocity asteroid impacts with the Earth, that freeze into a myriad of shapes during flight. Many splash-form tektites have an elongated or dumb-bell shape owing to their rotation prior to solidification[1]. Here we present a novel method for creating 'artificial tektites' from spinning drops of molten wax, using diamagnetic levitation to suspend the drops[2]. We find that the solid wax models produced this way are the stable equilibrium shapes of a spinning liquid droplet held together by surface tension. In addition to the geophysical interest in tektite formation, the stable equilibrium shapes of liquid drops have implications for many physical phenomena, covering a wide range of length scales, from nuclear physics (e.g. in studies of rapidly rotating atomic nuclei), to astrophysics (e.g. in studies of the shapes of astronomical bodies such as asteroids, rapidly rotating stars and event horizons of rotating black holes). For liquid drops bound by surface tension, analytical and numerical methods predict a series of stable equilibrium shapes with increasing angular momentum. Slowly spinning drops have an oblate-like shape. With increasing angular momentum these shapes become secularly unstable to a series of triaxial pseudo-ellipsoids that then evolve into a family of two-lobed 'dumb-bell' shapes as the angular momentum is increased still further. Our experimental method allows accurate measurements of the drops to be taken, which are useful to validate numerical models. This method has provided a means for observing tektite formation, and has additionally confirmed experimentally the stable equilibrium shapes of liquid drops, distinct from the equivalent shapes of rotating astronomical bodies. Potentially, this technique could be applied to observe the non-equilibrium dynamic processes that are also important in real tektite formation, involving, e.g. viscoelastic

  20. MOS solar cells with oxides deposited by sol-gel spin-coating techniques

    SciTech Connect

    Huang, Chia-Hong; Chang, Chung-Cheng; Tsai, Jung-Hui

    2013-06-15

    The metal-oxide-semiconductor (MOS) solar cells with sol-gel derived silicon dioxides (SiO{sub 2}) deposited by spin coating are proposed in this study. The sol-gel derived SiO{sub 2} layer is prepared at low temperature of 450 Degree-Sign C. Such processes are simple and low-cost. These techniques are, therefore, useful for largescale and large-amount manufacturing in MOS solar cells. It is observed that the short-circuit current (I{sub sc}) of 2.48 mA, the open-circuit voltage (V{sub os}) of 0.44 V, the fill factor (FF) of 0.46 and the conversion efficiency ({eta}%) of 2.01% were obtained by means of the current-voltage (I-V) measurements under AM 1.5 (100 mW/cm{sup 2}) irradiance at 25 Degree-Sign C in the MOS solar cell with sol-gel derived SiO{sub 2}.

  1. Cerebrovascular Reactivity Measured with Arterial Spin Labeling and Blood Oxygen Level Dependent Techniques

    PubMed Central

    Zhou, Yongxia; Rodgers, Zachary B.; Kuo, Anderson H.

    2015-01-01

    Purpose To compare cerebrovascular reactivity (CVR) quantified with pseudo-continuous arterial spin labeling (pCASL) and blood oxygen level dependent (BOLD) fMRI techniques. Materials and Methods Sixteen healthy volunteers (age: 37.8±14.3 years; 6 women and 10 men; education attainment: 17+2.1 years) were recruited and completed a 5% CO2 gas-mixture breathing paradigm at 3T field strength. ASL and BOLD images were acquired for CVR determination assuming that mild hypercapnia does not affect the cerebral metabolic rate of oxygen. Both CVR quantifications were derived as the ratio of the fractional cerebral blood flow (CBF) or BOLD signal change over the change in end-tidal CO2 pressure. Results The absolute CBF, BOLD and CVR measures were consistent with literature values. CBF derived CVR was 5.11 ± 0.87%/mmHg in gray matter (GM) and 4.64 ± 0.37%/mmHg in parenchyma. BOLD CVR was 0.23±0.04 %/mmHg and 0.22±0.04 %/mmHg for GM and parenchyma respectively. The most significant correlations between BOLD and CBF-based CVRs were also in GM structures, with greater vascular response in occipital cortex than in frontal and parietal lobes (6.8 %/mmHg versus 4.5 %/mmHg, 50% greater). Parenchymal BOLD CVR correlated significantly with the fractional change in CBF in response to hypercapnia (r=0.61, P=0.01), suggesting the BOLD response to be significantly flow driven. GM CBF decreased with age in room air (-5.58 mL/100g/min per decade for GM; r=-0.51, P=0.05), but there was no association of CBF with age during hypercapnia. A trend toward increased pCASL CVR with age was observed, scaling as 0.64 %/mmHg per decade for GM. Conclusion Consistent with previously reported CVR values, our results suggest that BOLD and CBF CVR techniques are complementary to each other in evaluating neuronal and vascular underpinning of hemodynamic processes. PMID:25708263

  2. Combining of neutron spin echo and reflectivity: a new technique for probing surface and interface order

    NASA Astrophysics Data System (ADS)

    Major, J.; Dosch, H.; Felcher, G. P.; Habicht, K.; Keller, T.; te Velthuis, S. G. E.; Vorobiev, A.; Wahl, M.

    2003-08-01

    The recently proposed spin-echo resolved grazing-incidence scattering (SERGIS) uses the well-known neutron spin echo effect for encoding the momentum transfer in reflectometry. By the application of tilted magnetic-field borders, SERGIS measures the scattering angle in grazing incidence experiments in absence of any geometrical beam-defining tool, such as slits. The main difficulty in such set-ups is the realization of geometrically flat field borders. The possibility of the application of neutron resonance spin echo (NRSE) for such a purpose is discussed, where the field borders are defined by current sheets. Prototype SERGIS experiments performed on holographically made optical gratings at a NRSE triple-axis spectrometer are shown.

  3. Spin wave study and optical properties in Fe-doped ZnO thin films prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Lmai, F.; Moubah, R.; El Amiri, A.; Abid, Y.; Soumahoro, I.; Hassanain, N.; Colis, S.; Schmerber, G.; Dinia, A.; Lassri, H.

    2016-07-01

    We investigate the magnetic and optical properties of Zn1-xFexO (x = 0, 0.03, 0.05, and 0.07) thin films grown by spray pyrolysis technique. The magnetization as a function of temperature [M (T)] shows a prevailing paramagnetic contribution at low temperature. By using spin wave theory, we separate the M (T) curve in two contributions: one showing intrinsic ferromagnetism and one showing a purely paramagnetic behavior. Furthermore, it is shown that the spin wave theory is consistent with ab-initio calculations only when oxygen vacancies are considered, highlighting the key role played by structural defects in the mechanism driving the observed ferromagnetism. Using UV-visible measurements, the transmittance, reflectance, band gap energy, band tail, dielectric coefficient, refractive index, and optical conductivity were extracted and related to the variation of the Fe content.

  4. Getting the Most Out of Dual-Listed Courses: Involving Undergraduate Students in Discussion Through Active Learning Techniques

    NASA Astrophysics Data System (ADS)

    Tasich, C. M.; Duncan, L. L.; Duncan, B. R.; Burkhardt, B. L.; Benneyworth, L. M.

    2015-12-01

    Dual-listed courses will persist in higher education because of resource limitations. The pedagogical differences between undergraduate and graduate STEM student groups and the underlying distinction in intellectual development levels between the two student groups complicate the inclusion of undergraduates in these courses. Active learning techniques are a possible remedy to the hardships undergraduate students experience in graduate-level courses. Through an analysis of both undergraduate and graduate student experiences while enrolled in a dual-listed course, we implemented a variety of learning techniques used to complement the learning of both student groups and enhance deep discussion. Here, we provide details concerning the implementation of four active learning techniques - role play, game, debate, and small group - that were used to help undergraduate students critically discuss primary literature. Student perceptions were gauged through an anonymous, end-of-course evaluation that contained basic questions comparing the course to other courses at the university and other salient aspects of the course. These were given as a Likert scale on which students rated a variety of statements (1 = strongly disagree, 3 = no opinion, and 5 = strongly agree). Undergraduates found active learning techniques to be preferable to traditional techniques with small-group discussions being rated the highest in both enjoyment and enhanced learning. The graduate student discussion leaders also found active learning techniques to improve discussion. In hindsight, students of all cultures may be better able to take advantage of such approaches and to critically read and discuss primary literature when written assignments are used to guide their reading. Applications of active learning techniques can not only address the gap between differing levels of students, but also serve as a complement to student engagement in any science course design.

  5. Study of Low Energy Electron Inelastic Scattering Mechanisms Using Spin Sensitive Techniques

    NASA Astrophysics Data System (ADS)

    Hsu, Hongbing

    1995-01-01

    Spin sensitive electron spectroscopies were used to study low energy electron inelastic scattering from metal surfaces and thin films. In these experiments, a beam of spin polarized electrons from a GaAs source is directed on the sample surface, and the spin polarization and intensity are measured as a function of energy loss and scattering angle by a Mott electron polarimeter coupled with a concentric hemispherical energy analyzer. Systematic studies of the angular dependence of inelastically scattered electrons were conducted on a Cu(100) surface, and Mo/Cu(100), non-magnetized Fe/Cu(100), and Co/Cu(100) films. The polarization and intensity of scattered electrons were measured as function of energy loss and scattering angle. Further studies were also conducted on Ag(100) surface and amorphous Cu/Ag(100) films. From the experimental results, the angular distributions of dipole and impact scattered electrons can be determined individually and both are found to peak in the specular scattering direction. Preliminary studies were conducted on magnetized Co/Cu(100) films. The spin dependent scattering intensity asymmetry was measured, with a clearly observable peak at energy loss of ~1 eV, which coincides with the band splitting. The polarizations of secondary electrons produced by an unpolarized primary beam were also measured. The polarizations can be related to the band polarization of magnetized cobalt films.

  6. New Techniques to Test Spin-Gravity Coupling with Atomic Clock

    NASA Technical Reports Server (NTRS)

    Maleki, L.

    2000-01-01

    Recent advances in laser technology have produced the opportunity to realize more stable and accurate atomic clocks, by laser excitation, manipulation and cooling of atoms. In this paper we will describe a new scheme based on the use of lasers with atomic clocks to increase the sensitivity of experimental search for a spin-gravity coupling.

  7. Magnetic transitions and structure of a NiMnGa ferromagnetic shape memory alloy prepared by melt spinning technique

    NASA Astrophysics Data System (ADS)

    Panda, A. K.; Ghosh, M.; Kumar, Arvind; Mitra, A.

    A ferromagnetic shape memory alloy with nomial composition Ni 52.5Mn 24.5Ga 23 (at%) was developed by a melt spinning technique. The as-spun ribbon showed dominant L2 1 austenitic (cubic) structure with a splitting of the primary peak in the X-ray diffractogram indicating the existence of a martensitic feature. The quenched-in martensitic plates were revealed in transmission electron microscopy. An increase of magnetization at low temperature indicated a martensite to austenite transformation and its reverse with a drop in magnetization during the cooling cycle. Higher magnetic fields propel martensite-austenite transformation spontaneously.

  8. Note: Electrical detection and quantification of spin rectification effect enabled by shorted microstrip transmission line technique

    SciTech Connect

    Soh, Wee Tee; Ong, C. K.; Peng, Bin; Chai, Guozhi

    2014-02-15

    We describe a shorted microstrip method for the sensitive quantification of Spin Rectification Effect (SRE). SRE for a Permalloy (Ni{sub 80}Fe{sub 20}) thin film strip sputtered onto SiO{sub 2} substrate is demonstrated. Our method obviates the need for simultaneous lithographic patterning of the sample and transmission line, therefore greatly simplifying the SRE measurement process. Such a shorted microstrip method can allow different contributions to SRE (anisotropic magnetoresistance, Hall effect, and anomalous Hall effect) to be simultaneously determined. Furthermore, SRE signals from unpatterned 50 nm thick Permalloy films of area dimensions 5 mm × 10 mm can even be detected.

  9. Development of a 3He nuclear spin flip system on an in-situ SEOP 3He spin filter and demonstration for a neutron reflectometer and magnetic imaging technique

    NASA Astrophysics Data System (ADS)

    Hayashida, H.; Oku, T.; Kira, H.; Sakai, K.; Hiroi, K.; Ino, T.; Shinohara, T.; Imagawa, T.; Ohkawara, M.; Ohoyama, K.; Kakurai, K.; Takeda, M.; Yamazaki, D.; Oikawa, K.; Harada, M.; Miyata, N.; Akutsu, K.; Mizusawa, M.; Parker, J. D.; Matsumoto, Y.; Zhang, S.; Suzuki, J.; Soyama, K.; Aizawa, K.; Arai, M.

    2016-04-01

    We have been developing a 3He neutron spin filter (NSF) using the spin exchange optical pumping (SEOP) technique. The 3He NSF provides a high-energy polarized neutron beam with large beam size. Moreover the 3He NSF can work as a π-flipper for a polarized neutron beam by flipping the 3He nuclear spin using a nuclear magnetic resonance (NMR) technique. For NMR with the in-situ SEOP technique, the polarization of the laser must be reversed simultaneously because a non-reversed laser reduces the polarization of the spin-flipped 3He. To change the polarity of the laser, a half-wavelength plate was installed. The rotation angle of the half-wavelength plate was optimized, and a polarization of 97% was obtained for the circularly polarized laser. The 3He polarization reached 70% and was stable over one week. A demonstration of the 3He nuclear spin flip system was performed at the polarized neutron reflectometer SHARAKU (BL17) and NOBORU (BL10) at J-PARC. Off-specular measurement from a magnetic Fe/Cr thin film and magnetic imaging of a magnetic steel sheet were performed at BL17 and BL10, respectively.

  10. Studies of osmoregulation in salt adaptation of cyanobacteria with ESR spin-probe techniques

    PubMed Central

    Blumwald, Eduardo; Mehlhorn, Rolf J.; Packer, Lester

    1983-01-01

    Sucrose is accumulated in response to NaCl-induced stress in the cyanobacterium Synechococcus 6311. Internal cell volume was measured by ESR spectra with 2,2,6,6-tetramethyl-4-oxopiperidinoxy free radical (TEMPONE) as a spin probe in order to calculate sucrose concentrations inside the cell. This method is rapid and reliable and provides an unambiguous measurement of absolute volumes in different osmotic environments. Because the osmolar concentration of sucrose does not counter-balance the osmolar concentrations of ions in the growth medium, we suggest that sucrose accumulation is one of the mechanisms involved in the process of adaptation to salt of Synechococcus 6311. The accumulation of sucrose in non-N2-fixing cyanobacteria such as Synechococcus 6311 and in N2-fixing cyanobacteria such as Nostoc muscorum suggests a common mechanism of osmoregulation of fresh water cyanobacteria in response to increasing NaCl concentrations in the growth medium. Images PMID:16593309

  11. Improving the prediction of going concern of Taiwanese listed companies using a hybrid of LASSO with data mining techniques.

    PubMed

    Goo, Yeung-Ja James; Chi, Der-Jang; Shen, Zong-De

    2016-01-01

    The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO-NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO-CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO-SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %). PMID:27186503

  12. Improving the prediction of going concern of Taiwanese listed companies using a hybrid of LASSO with data mining techniques.

    PubMed

    Goo, Yeung-Ja James; Chi, Der-Jang; Shen, Zong-De

    2016-01-01

    The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO-NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO-CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO-SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %).

  13. A non-invasive thermal drift compensation technique applied to a spin-valve magnetoresistive current sensor.

    PubMed

    Sánchez Moreno, Jaime; Ramírez Muñoz, Diego; Cardoso, Susana; Casans Berga, Silvia; Navarro Antón, Asunción Edith; Peixeiro de Freitas, Paulo Jorge

    2011-01-01

    A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from -10 A to +10 A.

  14. Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared with high-speed rotary spinning technique.

    PubMed

    Sebe, István; Szabó, Barnabás; Nagy, Zsombor K; Szabó, Dóra; Zsidai, László; Kocsis, Béla; Zelkó, Romána

    2013-12-15

    Poly(vinylpyrrolidone)/poly(vinylpyrrolidone-vinylacetate)/iodine nanofibers of different polymer ratios were successfully prepared by a high-speed rotary spinning technique. The obtained fiber mats were subjected to detailed morphological analysis using an optical and scanning electron microscope (SEM), while the supramolecular structure of the samples was analyzed by positron annihilation lifetime spectroscopy (PALS). The maximum dissolved iodine of the fiber samples was determined, and microbiological assay was carried out to test their effect on the bacterial growth. SEM images showed that the polymer fibers were linear, homogenous, and contained no beads. The PALS results, both the o-positronium (o-Ps) lifetime values and distributions, revealed the changes of the free volume holes of fibers as a function of their composition and the presence of iodine. The micro- and macrostructural characterisation of polymer fiber mats enabled the selection of the required composition from the point of their applicability as a wound dressing.

  15. A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor

    PubMed Central

    Moreno, Jaime Sánchez; Muñoz, Diego Ramírez; Cardoso, Susana; Berga, Silvia Casans; Antón, Asunción Edith Navarro; de Freitas, Paulo Jorge Peixeiro

    2011-01-01

    A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from −10 A to +10 A. PMID:22163748

  16. A non-invasive thermal drift compensation technique applied to a spin-valve magnetoresistive current sensor.

    PubMed

    Sánchez Moreno, Jaime; Ramírez Muñoz, Diego; Cardoso, Susana; Casans Berga, Silvia; Navarro Antón, Asunción Edith; Peixeiro de Freitas, Paulo Jorge

    2011-01-01

    A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from -10 A to +10 A. PMID:22163748

  17. Anomaly Detection Techniques with Real Test Data from a Spinning Turbine Engine-Like Rotor

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj C.; Matthews, Bryan L.

    2012-01-01

    Online detection techniques to monitor the health of rotating engine components are becoming increasingly attractive to aircraft engine manufacturers in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenge to easily implement, especially in the presence of scattered loading conditions, crack size, component geometry, and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini-cracks before any catastrophic event occurs. These techniques go further to evaluate material discontinuities and other anomalies that have grown to the level of critical defects that can lead to failure. Generally, health monitoring is highly dependent on sensor systems capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system.

  18. The evaluation of different MAS techniques at low spinning rates in aqueous samples and in the presence of magnetic susceptibility gradients

    NASA Astrophysics Data System (ADS)

    Zhi Hu, Jian; Wind, Robert A.

    2002-11-01

    It was recently demonstrated that the nuclear magnetic resonance (NMR) linewidths for stationary biological samples are dictated mainly by magnetic susceptibility gradients, and that phase-altered spinning sideband (PASS) and phase-corrected magic angle turning (PHORMAT) solid-state NMR techniques employing slow and ultra-slow magic angle spinning (MAS) frequencies can be used to overcome the static susceptibility broadening to yield high-resolution, spinning sideband (SSB)-free 1H NMR spectra [Magn. Reson. Med. 46 (2001) 213; 47 (2002) 829]. An additional concern is that molecular diffusion in the presence of the susceptibility gradients may limit the minimum useful MAS frequency by broadening the lines and reducing SSB suppression at low spinning frequencies. In this article the performance of PASS, PHORMAT, total sideband suppression (TOSS), and standard MAS techniques were evaluated as a function of spinning frequency. To this end, 300 MHz (7.05 T) 1H NMR spectra were acquired via PASS, TOSS, PHORMAT, and standard MAS NMR techniques for a 230-μm-diameter spherical glass bead pack saturated with water. The resulting strong magnetic susceptibility gradients result in a static linewidth of about 3.7 kHz that is larger than observed for a natural biological sample, constituting a worst-case scenario for examination of susceptibility broadening effects. Results: (I) TOSS produces a distorted centerband and fails in suppressing the SSBs at a spinning rate below ˜1 kHz. (II) Standard MAS requires spinning speeds above a few hundred Hz to separate the centerband from the SSBs. (III) PASS produces nearly SSB-free spectra at spinning speeds as low as 30 Hz, and is only limited by T2-induced signal losses. (IV) With PHORMAT, a SSB-free isotropic projection is obtained at any spinning rate, even at an ultra-slow spinning rate as slow as 1 Hz. (V) It is found empirically that the width of the isotropic peak is proportional to F- x, where F is the spinning frequency, and x

  19. A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques

    NASA Astrophysics Data System (ADS)

    Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.

    1998-05-01

    A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.

  20. A scatter-corrected list-mode reconstruction and a practical scatter/random approximation technique for dynamic PET imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Ju-Chieh Kevin; Rahmim, Arman; Blinder, Stephan; Camborde, Marie-Laure; Raywood, Kelvin; Sossi, Vesna

    2007-04-01

    We describe an ordinary Poisson list-mode expectation maximization (OP-LMEM) algorithm with a sinogram-based scatter correction method based on the single scatter simulation (SSS) technique and a random correction method based on the variance-reduced delayed-coincidence technique. We also describe a practical approximate scatter and random-estimation approach for dynamic PET studies based on a time-averaged scatter and random estimate followed by scaling according to the global numbers of true coincidences and randoms for each temporal frame. The quantitative accuracy achieved using OP-LMEM was compared to that obtained using the histogram-mode 3D ordinary Poisson ordered subset expectation maximization (3D-OP) algorithm with similar scatter and random correction methods, and they showed excellent agreement. The accuracy of the approximated scatter and random estimates was tested by comparing time activity curves (TACs) as well as the spatial scatter distribution from dynamic non-human primate studies obtained from the conventional (frame-based) approach and those obtained from the approximate approach. An excellent agreement was found, and the time required for the calculation of scatter and random estimates in the dynamic studies became much less dependent on the number of frames (we achieved a nearly four times faster performance on the scatter and random estimates by applying the proposed method). The precision of the scatter fraction was also demonstrated for the conventional and the approximate approach using phantom studies. This work was supported by the Canadian Institute of Health Research, a TRIUMF Life Science Grant, the Natural Sciences and Engineering Research Council of Canada UFA (V Sossi) and the Michael Smith Foundation for Health Research Scholarship (V Sossi).

  1. RHIC SPIN FLIPPER

    SciTech Connect

    BAI,M.; ROSER, T.

    2007-06-25

    This paper proposes a new design of spin flipper for RHIC to obtain full spin flip with the spin tune staying at half integer. The traditional technique of using an rf dipole or solenoid as spin flipper to achieve full spin flip in the presence of full Siberian snake requires one to change the snake configuration to move the spin tune away from half integer. This is not practical for an operational high energy polarized proton collider like RHIC where beam lifetime is sensitive to small betatron tune change. The design of the new spin flipper as well as numerical simulations are presented.

  2. Thermoelectric properties of Si/SiB3 sub-micro composite prepared by melt-spinning technique

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Ohishi, Yuji; Miyazaki, Yoshinobu; Yusufu, Aikebaier; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2015-08-01

    This study presents a new self-assembly process to form a fine structure in bulk Si. We fabricated a semiconducting composite material consisting of sub-micro-sized (100-500 nm) SiB3 precipitates distributed in a Si matrix whose grain size was on the order of microns. The sub-micro-sized SiB3 particles were precipitated during the spark plasma sintering process of a metastable Si-B (Si:B = 92:8) supersaturated solid solution prepared by the melt-spinning technique. The composite was a heavily doped (5 × 1020 cm-3) p-type semiconductor. The SiB3 precipitates did not affect the Seebeck coefficient, slightly reduced the carrier mobility, and greatly reduced the lattice thermal conductivity. Specifically, the lattice thermal conductivity was reduced by 44% compared with that of p-type Si without precipitates at room temperature. The SiB3 precipitates improved the thermoelectric figure of merit ZT from 0.17 to 0.23 at 1073 K, which indicates that the formation of small precipitates effectively improves the thermoelectric performance of Si-based thermoelectric materials.

  3. Electrical and optical properties of p-type codoped ZnO thin films prepared by spin coating technique

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok Kumar; Kumar, Vinod; Swart, H. C.; Purohit, L. P.

    2016-03-01

    Undoped, doped and codoped ZnO thin films were synthesized on glass substrates using a spin coating technique. Zinc acetate dihydrate, ammonium acetate and aluminum nitrate were used as precursor for zinc, nitrogen and aluminum, respectively. X-ray diffraction shows that the thin films have a hexagonal wurtzite structure for the undoped, doped and co-doped ZnO. The transmittance of the films was above 80% and the band gap of the film varied from 3.20 eV to 3.24 eV for undoped and doped ZnO. An energy band diagram to describe the photoluminescence from the thin films was also constructed. This diagram includes the various defect levels and possible quasi-Fermi levels. A minimum resistivity of 0.0834 Ω-cm was obtained for the N and Al codoped ZnO thin films with p-type carrier conductivity. These ZnO films can be used as a window layer in solar cells and in UV lasers.

  4. EPR/spin-label technique as an analytical tool for determining the resistance of reactive topical skin protectants (rTSPs) to the breakthrough of vesicant agents.

    PubMed

    Arroyo, C M; Janny, S J

    1995-04-01

    Ointment formulations of reactive topical skin protectants (rTSPs) or topical skin protectants (TSPs) based on perfluorinated polyether material (PFPE, i.e., fomblin RT-15) were prepared and spin labeled. Four N-oxyl-4-4'-dimethyloxazolidine derivatives of stearic acid, 5-NS, 7-NS, 12-NS, and 16-NS, were used as spin probes. The spin-labeled vehicle, fomblin-RT-15, and vehicle containing chloroamide (S-330, an antivesicant) were exposed to various concentrations of half-mustard gas. The order parameter (S) was dependent on the depth of penetration of the paramagnetic group into the vehicle (fomblin) and on the chemical composition of the reactive antivesicant under investigation. The net change of the viscosity of the vehicle and the chemical composition were seen to affect the penetration profile. This will provide a useful in vitro screening technique to develop antivesicant TSPs.

  5. J-Modulation in ID NMR 1H Spectrum of Taurine and Aspartate Using Spin-Echo Technique

    NASA Astrophysics Data System (ADS)

    Oturak, Halil; Sağlam, Adnan; Bahçeli, Semiha

    1999-05-01

    This study reports on a theoretical calculation of Hahn's spin-echo experiment in case of a model A2B2 spin system with a strongly coupling character and gives the experimental results of one-dimension 1H high-resolution NMR spectra of taurine and aspartate. The calculated amplitudes of the spin-echoes for two different proton groups of taurine are given. Using results of our calculations for taurine, the computer simulations of J-modulation are implemented. It is shown that the agreement be-tween the experimental and simulated spectra is good.

  6. Mass and Spin Measurement Techniques (for the Large Hadron Collider):. Lectures Given at TASI 2011, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Lester, Christopher G.

    2013-12-01

    For TASI 2011, I was asked to give a series of lectures on "Mass and Spin Measurement Techniques" with relevance to the Large Hadron Collider. This document provides a written record of those lectures - or more precisely of what I said while giving the lectures - warts and all. It is provided as my contribution to the proceedings primarily for the benefit of those who heard the lectures first hand and may wish to refer back to them. What it is not is a scientific paper or a teaching resource. Though lecture slides may be prepared in advance, what is actually said in a lecture is usually extemporaneous, may be partial, can be influenced by audience reaction, and may not even make sense without a visual record of the concomitant gesticulations of the lecturer. More worryingly, some of the statements made may be down-right false, if the lecturer's tongue is in a twist. Accordingly, these proceedings are provided without warranty of any kind - not least in respect of accuracy or impartiality. The lectures were intended to engage the audience and get them thinking about a number of topics that they had not seen before. They were not expected to be the sort of sombre or well-balanced overview of the field that one might hope to achive in a review. These proceedings are provided to jog the memory of those who saw the lectures first hand, and for little other purpose. Footnotes, where they appear, indicate text/thoughts I have added during the editing process that were not voiced during the lectures themselves. Copies of the lecture slides are inserted at approximately the locations they would have become visible in the lectures.

  7. Comparison of Y2O3:Bi3+ phosphor thin films fabricated by the spin coating and radio frequency magnetron techniques

    NASA Astrophysics Data System (ADS)

    Jafer, R. M.; Yousif, A.; Kumar, Vinod; Pathak, Trilok Kumar; Purohit, L. P.; Swart, H. C.; Coetsee, E.

    2016-09-01

    The reactive radio-frequency (RF) magnetron sputtering and spin coating fabrication techniques were used to fabricate Y2-xO3:Bix=0.5% phosphor thin films. The two techniques were analysed and compared as part of investigations being done on the application of down-conversion materials for a Si solar cell. The morphology, structural and optical properties of these thin films were investigated. The X-ray diffraction results of the thin films fabricated by both techniques showed cubic structures with different space groups. The optical properties showed different results because the Bi3+ ion is very sensitive towards its environment. The luminescence results for the thin film fabricated by the spin coating technique is very similar to the luminescence observed in the powder form. It showed three obvious emission bands in the blue and green regions centered at about 360, 410 and 495 nm. These emissions were related to the 3P1-1S0 transition of the Bi3+ ion situated in the two different sites of the Y2O3 matrix with I a-3(206) space group. Whereas the thin film fabricated by the radio frequency magnetron technique showed a broad single emission band in the blue region centered at about 416 nm. This was assigned to the 3P1-1S0 transition of the Bi3+ ion situated in one of the Y2O3 matrix's sites with a Fm-3 (225) space group. The spin coating fabrication technique is suggested to be the best technique to fabricate the Y2O3:Bi3+ phosphor thin films.

  8. γ -ray decay from neutron-bound and unbound states in 95Mo and a novel technique for spin determination

    NASA Astrophysics Data System (ADS)

    Wiedeking, M.; Krtička, M.; Bernstein, L. A.; Allmond, J. M.; Basunia, M. S.; Bleuel, D. L.; Burke, J. T.; Daub, B. H.; Fallon, P.; Firestone, R. B.; Goldblum, B. L.; Hatarik, R.; Lake, P. T.; Larsen, A. C.; Lee, I.-Y.; Lesher, S. R.; Paschalis, S.; Petri, M.; Phair, L.; Scielzo, N. D.; Volya, A.

    2016-02-01

    The emission of γ rays from neutron-bound and neutron-unbound states in 95Mo, populated in the 94Mo(d ,p ) reaction, has been investigated. Charged particles and γ radiation were detected with arrays of annular silicon and Clover-type high-purity Germanium detectors, respectively. Utilizing p -γ and p -γ -γ coincidences, the 95Mo level scheme was greatly enhanced with 102 new transitions and 43 new states. It agrees well with shell model calculations for excitation energies below ≈2 MeV. From p -γ coincidence data, a new method for the determination of spins of discrete levels is proposed. The method exploits the suppression of high-angular momentum neutron emission from levels with high spins populated in the (d ,p ) reaction above the neutron separation energy. Spins for almost all 95Mo levels below 2 MeV (and for a few levels above) have been determined with this method.

  9. Magic Angle Spinning NMR Spectroscopy: A Versatile Technique for Structural and Dynamic Analysis of Solid-Phase Systems

    PubMed Central

    Polenova, Tatyana; Gupta, Rupal; Goldbourt, Amir

    2016-01-01

    Magic Angle Spinning (MAS) NMR spectroscopy is a powerful method for analysis of a broad range of systems, including inorganic materials, pharmaceuticals, and biomacromolecules. The recent developments in MAS NMR instrumentation and methodologies opened new vistas to atomic-level characterization of a plethora of chemical environments previously inaccessible to analysis, with unprecedented sensitivity and resolution. PMID:25794311

  10. Designer spin systems via inverse statistical mechanics

    NASA Astrophysics Data System (ADS)

    DiStasio, Robert A., Jr.; Marcotte, Étienne; Car, Roberto; Stillinger, Frank H.; Torquato, Salvatore

    2013-10-01

    In this work, we extend recent inverse statistical-mechanical methods developed for many-particle systems to the case of spin systems. For simplicity, we focus in this initial study on the two-state Ising model with radial spin-spin interactions of finite range (i.e., extending beyond nearest-neighbor sites) on the square lattice under periodic boundary conditions. Our interest herein is to find the optimal set of shortest-range pair interactions within this family of Hamiltonians, whose corresponding ground state is a targeted spin configuration such that the difference in energies between the energetically closest competitor and the target is maximized. For an exhaustive list of competitors, this optimization problem is solved exactly using linear programming. The possible outcomes for a given target configuration can be organized into the following three solution classes: unique (nondegenerate) ground state (class I), degenerate ground states (class II), and solutions not contained in the previous two classes (class III). We have chosen to study a general family of striped-phase spin configurations comprised of alternating parallel bands of up and down spins of varying thicknesses and a general family of rectangular block checkerboard spin configurations with variable block size, which is a generalization of the classic antiferromagnetic Ising model. Our findings demonstrate that the structurally anisotropic striped phases, in which the thicknesses of up- and down-spin bands are equal, are unique ground states for isotropic short-ranged interactions. By contrast, virtually all of the block checkerboard targets are either degenerate or fall within class III solutions. The degenerate class II spin configurations are identified up to a certain block size. We also consider other target spin configurations with different degrees of global symmetries and order. Our investigation reveals that the solution class to which a target belongs depends sensitively on the

  11. Spider Spinning for Dummies

    NASA Astrophysics Data System (ADS)

    Bird, Richard S.

    Spider spinning is a snappy name for the problem of listing the ideals of a totally acyclic poset in such a way that each ideal is computed from its predecessor in constant time. Such an algorithm is said to be loopless. Our aim in these lectures is to show how to calculate a loopless algorithm for spider spinning. The calculation makes use of the fundamental laws of functional programming and the real purpose of the exercise is to show these laws in action.

  12. Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly (13)C-labeled proteins.

    PubMed

    Williams, Jonathan K; Schmidt-Rohr, Klaus; Hong, Mei

    2015-11-01

    The four aromatic amino acids in proteins, namely histidine, phenylalanine, tyrosine, and tryptophan, have strongly overlapping (13)C chemical shift ranges between 100 and 160ppm, and have so far been largely neglected in solid-state NMR determination of protein structures. Yet aromatic residues play important roles in biology through π-π and cation-π interactions. To better resolve and assign aromatic residues' (13)C signals in magic-angle-spinning (MAS) solid-state NMR spectra, we introduce two spectral editing techniques. The first method uses gated (1)H decoupling in a proton-driven spin-diffusion (PDSD) experiment to remove all protonated (13)C signals and retain only non-protonated carbon signals in the aromatic region of the (13)C spectra. The second technique uses chemical shift filters and (1)H-(13)C dipolar dephasing to selectively detect the Cα, Cβ and CO cross peaks of aromatic residues while suppressing the signals of all aliphatic residues. We demonstrate these two techniques on amino acids, a model peptide, and the microcrystalline protein GB1, and show that they significantly simplify the 2D NMR spectra and both reveal and permit the ready assignment of the aromatic residues' signals.

  13. Oxygen vacancies induced Spin polarized current in Co-doped ZnO by Andreev reflection technique

    NASA Astrophysics Data System (ADS)

    Yang, Kung-Shang; Chou, Hsiung; Chan, Wen Ling; Chen, Bo-Yu; Shang-Fan Lee Collaboration

    Dilute magnetic semiconductor (DMO) is a semiconducting system with spin-polarized carriers and magnetic properties. However, since most studies had been focused on existence of FM, the proportion of spin-polarized current (SPC) in DMO is far from being determined. We used Point-contact Andreev reflection measurements on various Zn0.95Co0.05O thin films, with controlled oxygen vacancies by sputtering in various H2 partial pressure with Ar atmosphere. We found that conductance versus voltage (G-V) spectra suppresses as oxygen vacancy concentration increases. It indicates oxygen vacancies play significant role in inducing the SPC. To understand the origin of spin polarized current at the interface of the superconducting tip/CZO system, we use modified Blonder-Tinkham-Klapwijk (MBTK) model in ballistic and diffusive regime to interpret GV curve. The extracted SPC value were up to 70% in ballistic regime and 65% in diffusive regime. The results suggest tiny routes have been formed by oxygen vacancies which are extended throughout the whole films. This result confirmed that MBTK model in ballistic regime is more suitable for our GV spectra and this explains the observation of such a high SPC Institute of Physics, Academia Sinica Taiwan.

  14. Vessel-selective, non-contrast enhanced, time-resolved MR angiography with vessel-selective arterial spin labeling technique (CINEMA-SELECT) in intracranial arteries.

    PubMed

    Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Takemura, Atsushi; Obara, Makoto; Tatsuno, Satoshi; Sawano, Seishi

    2013-07-01

    We demonstrate the feasibility of the vessel-selective, non-contrast, time-resolved magnetic resonance angiography (MRA) technique, "contrast inherent inflow enhanced multi-phase angiography combining vessel-selective arterial spin labeling technique (CINEMA-SELECT)". This sequence consists of two major techniques: pulsed star labeling of arterial regions (PULSAR) and Look-Locker sampling. We hypothesize that this technique allows selective labeling of single intracranial arteries, consisting of high-resolution four-dimensional data with a wide coverage of the brain. In this study, a new vessel-selective, time-resolved angiographic technique is demonstrated that can produce individual angiograms non-invasively by labeling the principal arterial vessels proximal to the circle of Willis. Clear vessel delineation is achieved, and the separation of the three vessels is evident in healthy volunteers. This technique could play an important role in the assessment of the structure and hemodynamics of intracranial arteries without the use of contrast agents. PMID:23475783

  15. Spin foams without spins

    NASA Astrophysics Data System (ADS)

    Hnybida, Jeff

    2016-10-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  16. Kinetic effects on double hysteresis in spin crossover molecular magnets analyzed with first order reversal curve diagram technique

    SciTech Connect

    Stan, Raluca-Maria; Gaina, Roxana; Enachescu, Cristian E-mail: radu.tanasa@uaic.ro; Stancu, Alexandru; Tanasa, Radu E-mail: radu.tanasa@uaic.ro; Bronisz, Robert

    2015-05-07

    In this paper, we analyze two types of hysteresis in spin crossover molecular magnets compounds in the framework of the First Order Reversal Curve (FORC) method. The switching between the two stable states in these compounds is accompanied by hysteresis phenomena if the intermolecular interactions are higher than a threshold. We have measured the static thermal hysteresis (TH) and the kinetic light induced thermal hysteresis (LITH) major loops and FORCs for the polycrystalline Fe(II) spin crossover compound [Fe{sub 1−x}Zn{sub x}(bbtr){sub 3}](ClO{sub 4}){sub 2} (bbtr = 1,4-di(1,2,3-triazol-1-yl)butane), either in a pure state (x = 0) or doped with Zn ions (x = 0.33) considering different sweeping rates. Here, we use this method not only to infer the domains distribution but also to disentangle between kinetic and static components of the LITH and to estimate the changes in the intermolecular interactions introduced by dopants. We also determined the qualitative relationship between FORC distributions measured for TH and LITH.

  17. Spin transport in nanoscale spin valves and magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Patibandla, Sridhar

    Spintronics or electronics that utilizes the spin degree of freedom of a single charge carrier (or an ensemble of charge carriers) to store, process, sense or communicate data and information is a rapidly burgeoning field in electronics. In spintronic devices, information is encoded in the spin polarization of a single carrier (or multiple carriers) and the spin(s) of these carrier(s) are manipulated for device operation. This strategy could lead to devices with low power consumption. This dissertation investigates spin transport in one dimensional and two dimensional semiconductors, with a view to applications in spintronic devices. This dissertation is arranged as follows: Chapter 1 gives a detailed introduction and necessary background to understand aspects of spin injection into a semiconductor from a spin polarized source such as a ferromagnet, and spin polarized electron transport in the semiconductor. Chapter 2 discusses the nanoporous alumina technique that is employed to fabricate nanowires and nanowire spin valves for the investigation of spin transport in 1D semiconductors. Chapter 3 investigates the spin transport in quasi one-dimensional spin valves with germanium spacer layer. These spin valves with 50nm in diameter and 1 mum length were fabricated using the porous alumina technique. Spin transport in nanoscale germanium spin valves was demonstrated and the spin relaxation lengths and the spin relaxation times were calculated. Chapter 4 discusses spin transport studies conducted in bulk high purity germanium with a view to comparing spin relaxation mechanisms in low mobility nanowires and high mobility bulk structures. Lateral spin valve with tunnel injectors were employed in this study and the spin transport measurements were conducted at various temperatures. The spin relaxation rates were measured as a function of temperature which allowed us to distinguish between two different mechanisms---D'yakonov-Perel' and Elliott-Yafet---that dominate spin

  18. SEMICONDUCTOR DEVICES Density-controllable nonvolatile memory devices having metal nanocrystals through chemical synthesis and assembled by spin-coating technique

    NASA Astrophysics Data System (ADS)

    Guangli, Wang; Yubin, Chen; Yi, Shi; Lin, Pu; Lijia, Pan; Rong, Zhang; Youdou, Zheng

    2010-12-01

    A novel two-step method is employed, for the first time, to fabricate nonvolatile memory devices that have metal nanocrystals. First, size-averaged Au nanocrystals are synthesized chemically; second, they are assembled into memory devices by a spin-coating technique at room temperature. This attractive approach makes it possible to tailor the diameter and control the density of nanocrystals individually. In addition, processes at room temperature prevent Au diffusion, which is a main concern for the application of metal nanocrystal-based memory. The experimental results, both the morphology characterization and the electrical measurements, reveal that there is an optimum density of nanocrystal monolayer to balance between long data retention and a large hysteresis memory window. At the same time, density-controllable devices could also feed the preferential emphasis on either memory window or retention time. All these facts confirm the advantages and novelty of our two-step method.

  19. Effect of Fe incorporation on the optical behavior of ZnO thin films prepared by sol-gel derived spin coating techniques

    NASA Astrophysics Data System (ADS)

    Rakkesh, R. Ajay; Malathi, R.; Balakumar, S.

    2013-02-01

    In this work, Fe doped Zinc Oxide (ZnO) thin films were fabricated on the glass substrate by sol-gel derived spin coating technique. X-ray Diffraction studies revealed that the obtained pure and Fe doped ZnO thin films were in the wurtzite and spinel phase respectively. The three well defined Raman lines at 432, 543 and 1091 cm-1 also confirmed the lattice structure of the ZnO thin film has wurtzite symmetry. While doping Fe atoms in the ZnO, there was a significant change in the phase from wurtzite to spinel structure; owing to Fe (III) ions being incorporated into the lattice through substitution of Zn (II) ions. Room temperature PL spectra showed that the role of defect mediated red emissions at 612 nm was due to radial recombination of a photogenerated hole with an electron that belongs to the Fe atoms, which were discussed in detail.

  20. Detection of free radical generation in the stunned' myocardium in the conscious dog using spin tripping techniques

    SciTech Connect

    Zughayb, M.; Sekili, S.; Li, X.Y., Triana, J.F.; McCay, P.B.; Bolli, R. Oklahoma Medical Research Foundation, Oklahoma City )

    1991-03-11

    Recent studies have shown that free radicals (FR) are produced in stunned' myocardium. However, since these studies were performed in open-chest animals, artifacts due to anesthesia, trauma, and other unphysiologic conditions cannot be excluded. FR production in conscious models of myocardial ischemia has never been shown. Thus, conscious dogs undergoing a 15-min coronary occlusion (O) followed by reperfusion (R) received i.v. the spin trap alpha-phenyl N-tert-butyl nitron (PBN) starting 5 min pre-O and ending 10 min after R. Local coronary venous effluent plasma was analyzed by electron paramagnetic resonance (EPR) spectroscopy. Myocardial production of PBN adducts was calculated as coronary flow x venous-arterial difference in EPR signal intensity. A burst of PBN adduct production was observed in the first 5 min of R. Adduct production then abated but remained detectable for several hours after R. Coupling constants are consistent with a complex mixture of FR. In 5 control studies, infusion of PBN without ischemia was not associated with appreciable adduct production. These results demonstrate that reversible regional myocardial ischemia in the conscious animal is associated with free radical generation and further support the hypothesis that oxy-radicals contribute to stunning.

  1. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    SciTech Connect

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  2. A new technique of depositing phospholipid bilayers on quartz surfaces: its use in membrane spin-label studies.

    PubMed

    Kawano, I; Floyd, R A; Sridhar, R

    1981-03-01

    We have developed a new improved technique termed the parallel-beam spattering (PBS) method for depositing phospholipid bilayers on quartz surfaces. This technique involves atomizing the phospholipid mixture with a stream of nitrogen gas and passing this atomized mixture through two orifices separated by a distance to achieve a parallel beam of atomized particles before deposition on the quartz plate. A static electric field can easily be applied to the quartz surface. Also a goniometer of new design has been constructed to allow precise positioning of the deposited phospholipid bilayers with reference to the magnetic field. We have utilized the PBS method to deposit phosphatidylcholine/nitroxyl labeled cholestane mixtures on quartz plates and have found that hydrated bilayers of these mixtures yield ESR spectra with essentially the same characteristics as those obtained using more conventional techniques. The distinct advantage of the new technique for depositing bilayers is that there is no spectral anomaly present which usually is present when the more conventional method of depositing bilayers is used. The spectral anomaly is apparently caused by a portion of the bilayers aligned in directions not directly parallel to the quartz surface. For precision work the spectral anomaly is unacceptable. It is not observed with the new PBS method which has yielded highly reproducible results. PMID:6263962

  3. Quantitative analysis of the breath-holding half-Fourier acquisition single-shot turbo spin-echo technique in abdominal MRI

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-01-01

    A consecutive series of 50 patients (28 males and 22 females) who underwent hepatic magnetic resonance imaging (MRI) from August to December 2011 were enrolled in this study. The appropriate parameters for abdominal MRI scans were determined by comparing the images (TE = 90 and 128 msec) produced using the half-Fourier acquisition single-shot turbo spin-echo (HASTE) technique at different signal acquisition times. The patients consisted of 15 normal patients, 25 patients with a hepatoma and 10 patients with a hemangioma. The TE in a single patient was set to either 90 msec or 128 msec. This was followed by measurements using the four normal rendering methods of the biliary tract system and the background signal intensity using the maximal signal intensity techniques in the liver, spleen, pancreas, gallbladder, fat, muscles and hemangioma. The signal-to-noise and the contrast-to-noise ratios were obtained. The image quality was assessed subjectively, and the results were compared. The signal-to-noise and the contrast-to-noise ratios were significantly higher at TE = 128 msec than at TE = 90 when diseases of the liver, spleen, pancreas, gallbladder, and fat and muscles, hepatocellular carcinomas and hemangiomas, and rendering the hepatobiliary tract system based on the maximum signal intensity technique were involved (p < 0.05). In addition, the presence of artifacts, the image clarity and the overall image quality were excellent at TE = 128 msec (p < 0.05). In abdominal MRI, the breath-hold half-Fourier acquisition single-shot turbo spin-echo (HASTE) was found to be effective in illustrating the abdominal organs for TE = 128 msec. Overall, the image quality at TE = 128 msec was better than that at TE = 90 msec due to the improved signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Overall, the HASTE technique for abdominal MRI based on a high-magnetic field (3.0 T) at a TE of 128 msec can provide useful data.

  4. Computer-aided classification of patients with dementia of Alzheimer's type based on cerebral blood flow determined with arterial spin labeling technique

    NASA Astrophysics Data System (ADS)

    Yamashita, Yasuo; Arimura, Hidetaka; Yoshiura, Takashi; Tokunaga, Chiaki; Magome, Taiki; Monji, Akira; Noguchi, Tomoyuki; Toyofuku, Fukai; Oki, Masafumi; Nakamura, Yasuhiko; Honda, Hiroshi

    2010-03-01

    Arterial spin labeling (ASL) is one of promising non-invasive magnetic resonance (MR) imaging techniques for diagnosis of Alzheimer's disease (AD) by measuring cerebral blood flow (CBF). The aim of this study was to develop a computer-aided classification system for AD patients based on CBFs measured by the ASL technique. The average CBFs in cortical regions were determined as functional image features based on the CBF map image, which was non-linearly transformed to a Talairach brain atlas by using a free-form deformation. An artificial neural network (ANN) was trained with the CBF functional features in 10 cortical regions, and was employed for distinguishing patients with AD from control subjects. For evaluation of the method, we applied the proposed method to 20 cases including ten AD patients and ten control subjects, who were scanned a 3.0-Tesla MR unit. As a result, the area under the receiver operating characteristic curve obtained by the proposed method was 0.893 based on a leave-one-out-by-case test in identification of AD cases among 20 cases. The proposed method would be feasible for classification of patients with AD.

  5. Arterial spin labeling-fast imaging with steady-state free precession (ASL-FISP): a rapid and quantitative perfusion technique for high-field MRI.

    PubMed

    Gao, Ying; Goodnough, Candida L; Erokwu, Bernadette O; Farr, George W; Darrah, Rebecca; Lu, Lan; Dell, Katherine M; Yu, Xin; Flask, Chris A

    2014-08-01

    Arterial spin labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either echo-planar imaging (EPI) or true fast imaging with steady-state free precession (true FISP) readouts, which are prone to off-resonance artifacts on high-field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high-field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 s. In this initial implementation, a flow-sensitive alternating inversion recovery (FAIR) ASL preparation was combined with a rapid, centrically encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 and 9.4 T (249 ± 38 and 241 ± 17 mL/min/100 g, respectively). The utility of this method was further demonstrated in the detection of significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high-field MRI scanners with minimal image artifacts.

  6. Ultrafast Optical Spin Echo for Electron Spins in Semiconductors

    SciTech Connect

    Clark, Susan M.; Fu, Kai-Mei C.; Zhang Qiang; Ladd, Thaddeus D.; Yamamoto, Yoshihisa; Stanley, Colin

    2009-06-19

    Spin-based quantum computing and magnetic resonance techniques rely on the ability to measure the coherence time T{sub 2} of a spin system. We report on the experimental implementation of all-optical spin echo to determine the T{sub 2} time of a semiconductor electron-spin system. We use three ultrafast optical pulses to rotate spins an arbitrary angle and measure an echo signal as the time between pulses is lengthened. Unlike previous spin-echo techniques using microwaves, ultrafast optical pulses allow clean T{sub 2} measurements of systems with dephasing times (T{sub 2}*) fast in comparison to the time scale for microwave control. This demonstration provides a step toward ultrafast optical dynamic decoupling of spin-based qubits.

  7. Mitigating the hydraulic compression of nanofiltration hollow fiber membranes through a single-step direct spinning technique.

    PubMed

    Ong, Yee Kang; Chung, Tai-Shung

    2014-12-01

    Most nanofiltration (NF) membranes have been made through complicated multistep or thin-film composite processes. They also suffer the compaction issue that reduces permeate flux in pressure-driven filtration processes. A single-step coextrusion hollow fiber fabrication technique via immiscibility induced phase separation (I(2)PS) process is presented in this study to fabricate NF hollow fiber membranes. A protective layer is concurrently formed on top of the selective layer during the phase inversion process. The fabricated hollow fiber membrane has a narrow pore size distribution with a molecular weight cutoff (MWCO) of 470 Da. The outer layer of the I(2)PS hollow fiber is found to serve as a buffering layer that mitigates hydraulic compression on the compaction of dense-selective layer and sublayer and helps to retain membrane performance during nanofiltration operations. The newly fabricated NF hollow fiber membrane exhibits an average pure water permeability of 3.2 L m(-2) h(-1) bar(-1) and shows good rejections toward the testing dyes. This study may offer a simple, direct, and cost-effective approach to fabricate NF hollow fiber membranes.

  8. Geometrical spin symmetry and spin

    SciTech Connect

    Pestov, I. B.

    2011-07-15

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  9. Single spin magnetic resonance

    NASA Astrophysics Data System (ADS)

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  10. Single spin magnetic resonance.

    PubMed

    Wrachtrup, Jörg; Finkler, Amit

    2016-08-01

    Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.

  11. Towards a Compositional SPIN

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Giannakopoulou, Dimitra

    2006-01-01

    This paper discusses our initial experience with introducing automated assume-guarantee verification based on learning in the SPIN tool. We believe that compositional verification techniques such as assume-guarantee reasoning could complement the state-reduction techniques that SPIN already supports, thus increasing the size of systems that SPIN can handle. We present a "light-weight" approach to evaluating the benefits of learning-based assume-guarantee reasoning in the context of SPIN: we turn our previous implementation of learning for the LTSA tool into a main program that externally invokes SPIN to provide the model checking-related answers. Despite its performance overheads (which mandate a future implementation within SPIN itself), this approach provides accurate information about the savings in memory. We have experimented with several versions of learning-based assume guarantee reasoning, including a novel heuristic introduced here for generating component assumptions when their environment is unavailable. We illustrate the benefits of learning-based assume-guarantee reasoning in SPIN through the example of a resource arbiter for a spacecraft. Keywords: assume-guarantee reasoning, model checking, learning.

  12. Spin current swapping and spin hall effect in disordered metals

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed; Pauyac, Christian; Manchon, Aurelien

    2015-03-01

    The conversion of charge currents into spin currents via the spin Hall effect has attracted intense experimental and theoretical efforts lately, providing an efficient means to generate electric signals and manipulate the magnetization of single layers. More recently, it was proposed that spin-dependent scattering induced by spin-orbit coupled impurities also produces a so-called spin swapping, i.e. an exchange between the spin angular momentum and linear momentum of itinerant electrons. In this work, we investigate the nature of spin swapping and its interplay with extrinsic spin Hall effect and spin relaxation in finite size normal metals. We use two complementary methods based on non-equilibrium Green's function technique. The first method consists in rigorously deriving the drift-diffusion equation of the spin accumulation in the presence of spin-orbit coupled impurities from quantum kinetics using Wigner expansion. The second method is the real-space tight binding modeling of a finite system in the presence of spin-orbit coupled disorder.

  13. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection

    NASA Astrophysics Data System (ADS)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.

    2016-10-01

    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  14. Calculation of the first nonlinear contribution to the general-relativistic spin-spin interaction for binary systems.

    PubMed

    Porto, Rafael A; Rothstein, Ira Z

    2006-07-14

    We use recently developed effective field theory techniques to calculate the third order post-Newtonian correction to the spin-spin potential between two spinning objects. This correction represents the first contribution to the spin-spin interaction due to the nonlinear nature of general relativity and will play an important role in forthcoming gravity wave experiments.

  15. The List

    ERIC Educational Resources Information Center

    Gillespie, Tim

    2007-01-01

    Some days it is difficult to remember why we love being teachers. For those difficult days, high school teacher Tim Gillespie maintains a list of fifteen reasons to keep teaching. He shares his list to remind us of the "greatest pleasures and highest callings" that we can experience as English teachers, believing that we can sustain ourselves and…

  16. TIP list

    SciTech Connect

    Ludwig, M E

    2006-06-22

    Subcontractors and vendors providing services, including the installation of purchased goods, are required to complete a TIP List. This list does not include every Environment, Safety, and Health (ES&H) related concern at LLNL. It is intended to highlight major concerns common to most on-site service activities.

  17. Double-quantum spin vortices in SU(3) spin-orbit-coupled Bose gases

    NASA Astrophysics Data System (ADS)

    Han, Wei; Zhang, Xiao-Fei; Song, Shu-Wei; Saito, Hiroki; Zhang, Wei; Liu, Wu-Ming; Zhang, Shou-Gang

    2016-09-01

    We show that double-quantum spin vortices, which are characterized by doubly quantized circulating spin currents and unmagnetized filled cores, can exist in the ground states of SU(3) spin-orbit-coupled Bose gases. It is found that the SU(3) spin-orbit coupling and spin-exchange interaction play important roles in determining the ground-state phase diagram. In the case of effective ferromagnetic spin interaction, the SU(3) spin-orbit coupling induces a threefold degeneracy to the magnetized ground state, while in the antiferromagnetic spin interaction case, the SU(3) spin-orbit coupling breaks the ordinary phase rule of spinor Bose gases and allows the spontaneous emergence of double-quantum spin vortices. This exotic topological defect is in stark contrast to the singly quantized spin vortices observed in existing experiments and can be readily observed by the current magnetization-sensitive phase-contrast imaging technique.

  18. Spin noise in the anisotropic central spin model

    NASA Astrophysics Data System (ADS)

    Hackmann, Johannes; Anders, Frithjof B.

    2014-01-01

    Spin-noise measurements can serve as a direct probe for the microscopic decoherence mechanism of an electronic spin in semiconductor quantum dots (QDs). We have calculated the spin-noise spectrum in the anisotropic central spin model using a Chebyshev expansion technique which exactly accounts for the dynamics up to an arbitrary long but fixed time in a finite-size system. In the isotropic case, describing QD charge with a single electron, the short-time dynamics is in good agreement with quasistatic approximations for the thermodynamic limit. The spin-noise spectrum, however, shows strong deviations at low frequencies with a power-law behavior of ω-3/4 corresponding to a t-1/4 decay at intermediate and long times. In the Ising limit, applicable to QDs with heavy-hole spins, the spin-noise spectrum exhibits a threshold behavior of (ω-ωL)-1/2 above the Larmor frequency ωL=gμBB. In the generic anisotropic central spin model we have found a crossover from a Gaussian type of spin-noise spectrum to a more Ising-type spectrum with increasing anisotropy in a finite magnetic field. In order to make contact with experiments, we present ensemble averaged spin-noise spectra for QD ensembles charged with single electrons or holes. The Gaussian-type noise spectrum evolves to a more Lorentzian shape spectrum with increasing spread of characteristic time scales and g factors of the individual QDs.

  19. Listing people.

    PubMed

    Delbourgo, James

    2012-12-01

    Historians and commentators have long discussed tensions between specialist and lay expertise in the making of scientific knowledge. Such accounts have often described quarrels over the distribution of expertise in nineteenth-century "popular" and imperial sciences. The "crowdsourcing" of science on a global scale, however, arguably began in the early modern era. This essay examines the lists of specimen suppliers, the artifacts of a worldwide collecting campaign, published by the London apothecary James Petiver at the turn of the eighteenth century. Listing suppliers helped Petiver advertise his status as a global specimen broker in the Republic of Letters. However, publicly listing his sources drew criticism over the social character of his collecting project, while lists became synonymous with the debasement of learning in polemics over natural history.

  20. Listing people.

    PubMed

    Delbourgo, James

    2012-12-01

    Historians and commentators have long discussed tensions between specialist and lay expertise in the making of scientific knowledge. Such accounts have often described quarrels over the distribution of expertise in nineteenth-century "popular" and imperial sciences. The "crowdsourcing" of science on a global scale, however, arguably began in the early modern era. This essay examines the lists of specimen suppliers, the artifacts of a worldwide collecting campaign, published by the London apothecary James Petiver at the turn of the eighteenth century. Listing suppliers helped Petiver advertise his status as a global specimen broker in the Republic of Letters. However, publicly listing his sources drew criticism over the social character of his collecting project, while lists became synonymous with the debasement of learning in polemics over natural history. PMID:23488241

  1. Quantum limited heterodyne detection of spin noise

    NASA Astrophysics Data System (ADS)

    Cronenberger, S.; Scalbert, D.

    2016-09-01

    Spin noise spectroscopy is a powerful technique for studying spin relaxation in semiconductors. In this article, we propose an extension of this technique based on optical heterodyne detection of spin noise, which provides several key advantages compared to conventional spin noise spectroscopy: detection of high frequency spin noise not limited by detector bandwidth or sampling rates of digitizers, quantum limited sensitivity even in case of very weak probe power, and possible amplification of the spin noise signal. Heterodyne detection of spin noise is demonstrated on insulating n-doped GaAs. From measurements of spin noise spectra up to 0.4 Tesla, we determined the distribution of g-factors, Δg/g = 0.49%.

  2. Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves

    NASA Astrophysics Data System (ADS)

    Dejene, F. K.; Flipse, J.; Bauer, G. E. W.; van Wees, B. J.

    2013-10-01

    Since the discovery of the giant magnetoresistance effect the intrinsic angular momentum of the electron has opened up new spin-based device concepts. Our present understanding of the coupled transport of charge, spin and heat relies on the two-channel model for spin-up and spin-down electrons having equal temperatures. Here we report the observation of different (effective) temperatures for the spin-up and spin-down electrons in a nanopillar spin valve subject to a heat current. By three-dimensional finite element modelling of our devices for varying thickness of the non-magnetic layer, spin heat accumulations (the difference of the spin temperatures) of 120mK and 350mK are extracted at room temperature and 77K, respectively, which is of the order of 10% of the total temperature bias over the nanopillar. This technique uniquely allows the study of inelastic spin scattering at low energies and elevated temperatures, which is not possible by spectroscopic methods.

  3. Valley-spin blockade and spin resonance in carbon nanotubes.

    PubMed

    Pei, Fei; Laird, Edward A; Steele, Gary A; Kouwenhoven, Leo P

    2012-10-01

    The manipulation and readout of spin qubits in quantum dots have been successfully achieved using Pauli blockade, which forbids transitions between spin-triplet and spin-singlet states. Compared with spin qubits realized in III-V materials, group IV materials such as silicon and carbon are attractive for this application because of their low decoherence rates (nuclei with zero spins). However, valley degeneracies in the electronic band structure of these materials combined with Coulomb interactions reduce the energy difference between the blocked and unblocked states, significantly weakening the selection rules for Pauli blockade. Recent demonstrations of spin qubits in silicon devices have required strain and spatial confinement to lift the valley degeneracy. In carbon nanotubes, Pauli blockade can be observed by lifting valley degeneracy through disorder, but this makes the confinement potential difficult to control. To achieve Pauli blockade in low-disorder nanotubes, quantum dots have to be made ultrasmall, which is incompatible with conventional fabrication methods. Here, we exploit the bandgap of low-disorder nanotubes to demonstrate robust Pauli blockade based on both valley and spin selection rules. We use a novel stamping technique to create a bent nanotube, in which single-electron spin resonance is detected using the blockade. Our results indicate the feasibility of valley-spin qubits in carbon nanotubes.

  4. γ-ray decay from neutron-bound and unbound states in 95Mo and a novel technique for spin determination

    DOE PAGES

    Wiedeking, M.; Krticka, M.; Bernstein, L. A.; Allmond, James M.; Basunia, M. S.; Bleuel, D. L.; Burke, J. T.; Daub, B. H.; Fallon, P.; Firestone, R. B.; et al

    2016-02-01

    The emission of γ rays from neutron-bound and neutron-unbound states in 95Mo, populated in the 94Mo(d,p) reaction, has been investigated. Charged particles and γ radiation were detected with arrays of annular silicon and Clover-type high-purity Germanium detectors, respectively. Utilizing p-γ and p-γ-γ coincidences, the 95Mo level scheme was greatly enhanced with 102 new transitions and 43 new states. It agrees well with shell model calculations for excitation energies below ≈2 MeV. From p-γ coincidence data, a new method for the determination of spins of discrete levels is proposed. The method exploits the suppression of high-angular momentum neutron emission from levelsmore » with high spins populated in the (d,p) reaction above the neutron separation energy. As a result, spins for almost all 95Mo levels below 2 MeV (and for a few levels above) have been determined with this method.« less

  5. Spectroscopy of composite solid-state spin environments for improved metrology with spin ensembles

    NASA Astrophysics Data System (ADS)

    Bar-Gill, Nir; Pham, Linh; Belthangady, Chinmay; Lesage, David; Cappellaro, Paola; Maze, Jeronimo; Lukin, Mikhail; Yacoby, Amir; Walsworth, Ronald

    2012-02-01

    For precision coherent measurements with ensembles of quantum spins the relevant Figure-of-Merit (FOM) is the product of spin density and coherence lifetime, which is generally limited by the dynamics of spin coupling to the environment. Significant effort has been invested in understanding the causes of decoherence in a diverse range of spin systems in order to increase the FOM and improve measurement sensitivity. Here, we apply a coherent spectroscopic technique to characterize the dynamics of a composite solid-state spin environment consisting of Nitrogen-Vacancy (NV) color centers in room temperature diamond coupled to baths of electronic spin (N) and nuclear spin (13C) impurities. For diamond samples with a wide range of NV densities and impurity spin concentrations we employ a dynamical decoupling technique to minimize coupling to the environment, and find similar values for the FOM, which is three orders of magnitude larger than previously achieved in any room-temperature solid-state spin system, and thus should enable greatly improved precision spin metrology. We also identify a suppression of electronic spin bath dynamics in the presence of a nuclear spin bath of sufficient nuclear spin concentration. This suppression could inform efforts to engineer samples with even larger FOM for solid-state spin ensemble metrology and collective quantum information processing.

  6. Spin-electricity conversion induced by spin injection into topological insulators.

    PubMed

    Shiomi, Y; Nomura, K; Kajiwara, Y; Eto, K; Novak, M; Segawa, Kouji; Ando, Yoichi; Saitoh, E

    2014-11-01

    We report successful spin injection into the surface states of topological insulators by using a spin pumping technique. By measuring the voltage that shows up across the samples as a result of spin pumping, we demonstrate that a spin-electricity conversion effect takes place in the surface states of bulk-insulating topological insulators Bi(1.5)Sb(0.5)Te(1.7)Se(1.3) and Sn-doped Bi(2)Te(2)Se. In this process, the injected spins are converted into a charge current along the Hall direction due to the spin-momentum locking on the surface state.

  7. In vivo monitoring of hydroxyl radical generation caused by x-ray irradiation of rats using the spin trapping/EPR technique.

    PubMed

    Takeshita, Keizo; Fujii, Kaori; Anzai, Kazunori; Ozawa, Toshihiko

    2004-05-01

    Measurement of hydroxyl radical (*OH) in living animals irradiated with ionizing radiation should be required to clarify the mechanisms of radiation injury and the in vivo assessment of radiation protectors, because generation of *OH is believed to be one of the major triggers of radiation injury. In this study, *OH generation was monitored by spin trapping the secondary methyl radical formed by the reaction of *OH with dimethyl sulfoxide (DMSO). Rats were injected intraperitoneally with a DMSO solution of alpha-phenyl-N-tert-butylnitrone (PBN). X-irradiation of the rats remarkedly increased the six-line EPR signal in the bile. The strengthened signal was detectable above 40 Gy. Use of 13C-substituted DMSO revealed that the signal included the methyl radical adduct of PBN as a major component. The EPR signal of the PBN-methyl radical adduct was completely suppressed by preadministration of methyl gallate, a scavenger of *OH but not of methyl radical. Methyl gallate did not reduce the spin adducts to EPR-silent forms. These observations indicate that what we were measuring was *OH generated in vivo by x-irradiation. This is the first report of the in vivo monitoring of *OH generation at a radiation dose close to what people might receive in the case of radiological accident or radiation therapy.

  8. Spin ejector

    DOEpatents

    Andersen, John A.; Flanigan, John J.; Kindley, Robert J.

    1978-01-01

    The disclosure relates to an apparatus for spin ejecting a body having a flat plate base containing bosses. The apparatus has a base plate and a main ejection shaft extending perpendicularly from the base plate. A compressible cylindrical spring is disposed about the shaft. Bearings are located between the shaft and the spring. A housing containing a helical aperture releasably engages the base plate and surrounds the shaft bearings and the spring. A piston having an aperture follower disposed in the housing aperture is seated on the spring and is guided by the shaft and the aperture. The spring is compressed and when released causes the piston to spin eject the body.

  9. Microfabricated Spin Polarized Atomic Magnetometers

    NASA Astrophysics Data System (ADS)

    Jimenez Martinez, Ricardo

    Spin polarized atomic magnetometers involve the preparation of atomic spins and their detection for monitoring magnetic fields. Due to the fact that magnetic fields are ubiquitous in our world, spin polarized atomic magnetometers are used in a wide range of applications from the detection of magnetic fields generated by the human heart and brain to the detection of nuclear magnetic resonance. In this thesis we developed microfabricated spin polarized atomic magnetometers. These sensors are based on optical pumping and spin-exchange collisions between alkali atoms and noble gases contained in microfabricated millimeter-scale vapor cells. In the first part of the thesis, we improved different features of current microfabricated optical magnetometers. Specifically, we improved the bandwidth of these devices, without degrading their magnetic field sensitivity, by broadening their magnetic resonance through spin-exchange collisions between alkali atoms. We also implemented all-optical excitation techniques to avoid problems, such as the magnetic perturbation of the environment, induced by the radio-frequency fields used in some of these sensors. In the second part of the thesis we demonstrated a microfluidic chip for the optical production and detection of hyperpolarized Xe gas through spin-exchange collisions with optically pumped Rb atoms. These devices are critical for the widespread use of spin polarized atomic magnetometers in applications requiring simple, compact, low-cost, and portable instrumentation.

  10. Identification of pH-sensitive regions in the mouse prion by the cysteine-scanning spin-labeling ESR technique

    SciTech Connect

    Watanabe, Yasuko; Inanami, Osamu . E-mail: inanami@vetmed.hokudai.ac.jp; Horiuchi, Motohiro; Hiraoka, Wakako; Shimoyama, Yuhei; Inagaki, Fuyuhiko; Kuwabara, Mikinori

    2006-11-24

    We analyzed the pH-induced mobility changes in moPrP{sup C} {alpha}-helix and {beta}-sheets by cysteine-scanning site-directed spin labeling (SDSL) with ESR. Nine amino acid residues of {alpha}-helix1 (H1, codon 143-151), four amino acid residues of {beta}-sheet1 (S1, codon 127-130), and four amino acid residues of {beta}-sheet2 (S2, codon 160-163) were substituted for by cysteine residues. These recombinant mouse PrP{sup C} (moPrP{sup C}) mutants were reacted with a methane thiosulfonate sulfhydryl-specific spin labeling reagent (MTSSL). The 1/{delta}H of the central ({sup 14}N hyperfine) component (M{sub I} = 0) in the ESR spectrum of spin-labeled moPrP{sup C} was measured as a mobility parameter of nitroxide residues (R1). The mobilities of E145R1 and Y149R1 at pH 7.4, which was identified as a tertiary contact site by a previous NMR study of moPrP, were lower than those of D143R1, R147R1, and R150R1 reported on the helix surface. Thus, the mobility in the H1 region in the neutral solution was observed with the periodicity associated with a helical structure. On the other hand, the values in the S2 region, known to be located in the buried side, were lower than those in the S1 region located in the surface side. These results indicated that the mobility parameter of the nitroxide label was well correlated with the 3D structure of moPrP. Furthermore, the present study clearly demonstrated three pH-sensitive sites in moPrP, i.e. (1) the N-terminal tertiary contact site of H1 (2) the C-terminal end of H1, and (3) the S2 region. In particular, among these pH-sensitive sites, the N-terminal tertiary contact region of H1 was found to be the most pH-sensitive one and was easily converted to a flexible structure by a slight decrease of pH in the solution. These data provided molecular evidence to explain the cellular mechanism for conversion from PrP{sup C} to PrP{sup Sc} in acidic organelles such as the endosome.

  11. Muon spin rotation in solids

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1983-01-01

    The muon spin rotation (MuSR) technique is used to probe the microscopic electron density in materials. High temperature MuSR and magnetization measurements in nickel are in progress to allow an unambiguous determination of the muon impurity interaction and the impurity induced change in local spin density. The first results on uniaxial stress induced frequency shifts in an Fe single crystal are also reported.

  12. The kinematic differences between off-spin and leg-spin bowling in cricket.

    PubMed

    Beach, Aaron J; Ferdinands, René E D; Sinclair, Peter J

    2016-09-01

    Spin bowling is generally coached using a standard technical framework, but this practice has not been based upon a comparative biomechanical analysis of leg-spin and off-spin bowling. This study analysed the three-dimensional (3D) kinematics of 23 off-spin and 20 leg-spin bowlers using a Cortex motion analysis system to identify how aspects of the respective techniques differed. A multivariate ANOVA found that certain data tended to validate some of the stated differences in the coaching literature. Off-spin bowlers had a significantly shorter stride length (p = 0.006) and spin rate (p = 0.001), but a greater release height than leg-spinners (p = 0.007). In addition, a number of other kinematic differences were identified that were not previously documented in coaching literature. These included a larger rear knee flexion (p = 0.007), faster approach speed (p < 0.001), and flexing elbow action during the arm acceleration compared with an extension action used by most of the off-spin bowlers. Off-spin and leg-spin bowlers also deviated from the standard coaching model for the shoulder alignment, front knee angle at release, and forearm mechanics. This study suggests that off-spin and leg-spin are distinct bowling techniques, supporting the development of two different coaching models in spin bowling.

  13. Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique

    NASA Astrophysics Data System (ADS)

    Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad

    2015-11-01

    One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.

  14. Y{sub 3}Fe{sub 5}O{sub 12} spin pumping for quantitative understanding of pure spin transport and spin Hall effect in a broad range of materials (invited)

    SciTech Connect

    Du, Chunhui; Wang, Hailong; Hammel, P. Chris; Yang, Fengyuan

    2015-05-07

    Using Y{sub 3}Fe{sub 5}O{sub 12} (YIG) thin films grown by our sputtering technique, we study dynamic spin transport in nonmagnetic, ferromagnetic, and antiferromagnetic (AF) materials by ferromagnetic resonance spin pumping. From both inverse spin Hall effect and damping enhancement, we determine the spin mixing conductance and spin Hall angle in many metals. Surprisingly, we observe robust spin conduction in AF insulators excited by an adjacent YIG at resonance. This demonstrates that YIG spin pumping is a powerful and versatile tool for understanding spin Hall physics, spin-orbit coupling, and magnetization dynamics in a broad range of materials.

  15. Supramolecular spin valves

    NASA Astrophysics Data System (ADS)

    Urdampilleta, M.; Klyatskaya, S.; Cleuziou, J.-P.; Ruben, M.; Wernsdorfer, W.

    2011-07-01

    Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc2 single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties.

  16. Supramolecular spin valves.

    PubMed

    Urdampilleta, M; Klyatskaya, S; Cleuziou, J-P; Ruben, M; Wernsdorfer, W

    2011-07-01

    Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc(2) single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties. PMID:21685902

  17. Photodynamic action of C-phycocyanins obtained from marine and fresh water cyanobacterial cultures: a comparative study using EPR spin trapping technique.

    PubMed

    Paul, Bibbin Tom; Patel, Anamika; Selvam, Govindan Sadasivam; Mishra, Sandhya; Ghosh, Pushpita Kumar; Murugesan, Ramachandran

    2006-08-01

    C-phycocyanins, major biliproteins of blue green algae (cyanobacteria), widely used as colourants in food and cosmetics are known for their antioxidant as well as therapeutic potential. Recent claims indicating phycobiliproteins exert stronger photodynamic action on tumor cells than clinically approved hematoporphyrin derivatives motivate us to investigate the photodynamic action of two newly isolated C-phycocyanins from Phormidium [PHR] and Lyngbya [LY] spp, respectively in comparison with known C-phycocyanin from Spirulina sp. [SPI]. Photolysis of air saturated solutions of PHR, LY and SPI in the presence of 2,2,6,6-Tetramethyl piperidinol (TEMPL) generated three line EPR spectrum characteristic of 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl (TEMPOL). The increase in intensity of the EPR spectrum with time of irradiation and decrease in intensity, in the presence of 1O2 quencher DABCO confirm the formation of 1O2. Photoirradiation in the presence of spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) generated EPR signal characteristic of O2(-) adduct. Efficiency of 1O2 generation is of the order LY > PHR> SPI. The yield of reactive oxygen species (ROS) generation is found to be 1O2>O2(-) indicating type II mechanism to be the prominent pathway for photosensitation by phycocyanins.

  18. Measurement of spin coherence using Raman scattering

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Delteil, A.; Faelt, S.; Imamoǧlu, A.

    2016-06-01

    Ramsey interferometry provides a natural way to determine the coherence time of most qubit systems. Recent experiments on quantum dots, however, demonstrated that dynamical nuclear spin polarization can strongly influence the measurement process, making it difficult to extract the T2* coherence time using standard optical Ramsey pulses. Here, we demonstrate an alternative method for spin coherence measurement that is based on first-order coherence of photons generated in spin-flip Raman scattering. We show that if a quantum emitter is driven by a weak monochromatic laser, Raman coherence is determined exclusively by spin coherence, allowing for a direct determination of spin T2* time. When combined with coherence measurements on Rayleigh scattered photons, our technique enables us to identify coherent and incoherent contributions to resonance fluorescence, and to minimize the latter. We verify the validity of our technique by comparing our results to those determined from Ramsey interferometry for electron and heavy-hole spins.

  19. Enhanced Atomic-Scale Spin Contrast due to Spin Friction

    NASA Astrophysics Data System (ADS)

    Ouazi, S.; Kubetzka, A.; von Bergmann, K.; Wiesendanger, R.

    2014-02-01

    Atom manipulation with the magnetic tip of a scanning tunneling microscope is a versatile technique to construct and investigate well-defined atomic spin arrangements. Here we explore the possibility of using a magnetic adatom as a local probe to image surface spin textures. As a model system we choose a Néel state with 120° between neighboring magnetic moments. Close to the threshold of manipulation, the adatom resides in the threefold, magnetically frustrated hollow sites, and consequently no magnetic signal is detected in manipulation images. At smaller tip-adatom distances, however, the adatom is moved towards the magnetically active bridge sites and due to the exchange force of the tip the manipulation process becomes spin dependent. In this way the adatom can be used as an amplifying probe for the surface spin texture.

  20. Taming spin decoherence in silicon

    NASA Astrophysics Data System (ADS)

    Lyon, Stephen

    2013-03-01

    Electron spins in semiconductor hosts have been candidate qubits since the early days of experimental quantum computing research, but it was generally assumed that the solid state environment would limit coherence to times much shorter than that seen in isolated atoms or ions. The longest measured electron spin coherence, measured in isotopically enriched silicon, was of order 1 ms. However, over the last 8 or 10 years the measured electron spin coherence times have steadily increased as materials and experimental techniques have improved. Much of the decoherence observed in the early ensemble Electron Spin Resonance (ESR) experiments arose from interactions amongst the spins being measured. In the most highly enriched bulk silicon measured to date, the residual silicon isotopes with nuclear magnetic moments affect the coherence of electrons bound to phosphorus donors on about a 1 second time scale. The remaining decoherence is still dominated by interactions between the donor spins, even in very lightly doped Si. Other decoherence processes have been shown to be at least an order of magnitude weaker. Recent work suggested that longer spin coherence would be obtained in bismuth doped Si, where magnetic-field insensitive ``clock transitions'' occur in the GHz frequency range. Recent experiments are bearing out these suggestions. This work was supported in part by the ARO and NSF.

  1. List based prefetch

    DOEpatents

    Boyle, Peter; Christ, Norman; Gara, Alan; Kim; ,Changhoan; Mawhinney, Robert; Ohmacht, Martin; Sugavanam, Krishnan

    2012-08-28

    A list prefetch engine improves a performance of a parallel computing system. The list prefetch engine receives a current cache miss address. The list prefetch engine evaluates whether the current cache miss address is valid. If the current cache miss address is valid, the list prefetch engine compares the current cache miss address and a list address. A list address represents an address in a list. A list describes an arbitrary sequence of prior cache miss addresses. The prefetch engine prefetches data according to the list, if there is a match between the current cache miss address and the list address.

  2. List based prefetch

    SciTech Connect

    Boyle, Peter; Christ, Norman; Gara, Alan; Kim, Changhoan; Mawhinney, Robert; Ohmacht, Martin; Sugavanam, Krishnan

    2014-08-12

    A list prefetch engine improves a performance of a parallel computing system. The list prefetch engine receives a current cache miss address. The list prefetch engine evaluates whether the current cache miss address is valid. If the current cache miss address is valid, the list prefetch engine compares the current cache miss address and a list address. A list address represents an address in a list. A list describes an arbitrary sequence of prior cache miss addresses. The prefetch engine prefetches data according to the list, if there is a match between the current cache miss address and the list address.

  3. Spinning superconducting electrovacuum soliton

    NASA Astrophysics Data System (ADS)

    Dymnikova, Irina

    2006-08-01

    In nonlinear electrodynamics coupled to general relativity and satisfying the weak energy condition, a spherically symmetric electrically charged electrovacuum soliton has obligatory de Sitter center in which the electric field vanishes while the energy density of electromagnetic vacuum achieves its maximal value. De Sitter vacuum supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry from the de Sitter group in the origin. By the Gürses-Gürsey algorithm based on the Newman-Trautman technique it is transformed into a spinning electrovacuum soliton asymptotically Kerr-Newman for a distant observer. De Sitter center becomes de Sitter equatorial disk which has both perfect conductor and ideal diamagnetic properties. The interior de Sitter vacuum disk displays superconducting behavior within a single spinning soliton. All this concerns both black hole and particle-like structures.

  4. Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction γp → Φp

    DOE PAGES

    Dey, B.; Meyer, C. A.; Bellis, M.; Williams, M.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; et al

    2014-05-27

    High-statistics measurements of differential cross sections and spin density matrix elements for the reaction γ p → Φp have been made using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (√s) from 1.97 to 2.84 GeV, with an extensive coverage in the Φ production angle. The high statistics of the data sample made it necessary to carefully account for the interplay between the Φ natural lineshape and effects of the detector resolution, that are found to be comparable in magnitude. We study both the charged- (Φ → K⁺K⁻) and neutral- (Φ → K0SK0L)more » $$K\\bar{K}$$ decay modes of the Φ. Further, for the charged mode, we differentiate between the cases where the final K⁻ track is directly detected or its momentum reconstructed as the total missing momentum in the event. The two charged-mode topologies and the neutral-mode have different resolutions and are calibrated against each other. Extensive usage is made of kinematic fitting to improve the reconstructed Φ mass resolution. Our final results are reported in 10- and mostly 30-MeV-wide √s bins for the charged- and the neutral-mode, respectively. Possible effects from K⁺Λ* channels with p$$K\\bar{K}$$ final-states are discussed. These present results constitute the most precise and extensive Φ photoproduction measurements to date and in conjunction with the ω photoproduction results recently published by CLAS, will greatly improve our understanding of low energy vector meson photoproduction.« less

  5. Analysis of ingredient lists of commercially available gluten-free and gluten-containing food products using the text mining technique.

    PubMed

    do Nascimento, Amanda Bagolin; Fiates, Giovanna Medeiros Rataichesck; Dos Anjos, Adilson; Teixeira, Evanilda

    2013-03-01

    Ingredients mentioned on the labels of commercially available packaged gluten-free and similar gluten-containing food products were analyzed and compared, using the text mining technique. A total of 324 products' labels were analyzed for content (162 from gluten-free products), and ingredient diversity in gluten-free products was 28% lower. Raw materials used as ingredients of gluten-free products were limited to five varieties: rice, cassava, corn, soy, and potato. Sugar was the most frequently mentioned ingredient on both types of products' labels. Salt and sodium also were among these ingredients. Presence of hydrocolloids, enzymes or raw materials of high nutritional content such as pseudocereals, suggested by academic studies as alternatives to improve nutritional and sensorial quality of gluten-free food products, was not identified in the present study. Nutritional quality of gluten-free diets and health of celiac patients may be compromised.

  6. spin pumping occurred under nonlinear spin precession

    NASA Astrophysics Data System (ADS)

    Zhou, Hengan; Fan, Xiaolong; Ma, Li; Zhou, Shiming; Xue, Desheng

    Spin pumping occurs when a pure-spin current is injected into a normal metal thin layer by an adjacent ferromagnetic metal layer undergoing ferromagnetic resonance, which can be understood as the inverse effect of spin torque, and gives access to the physics of magnetization dynamics and damping. An interesting question is that whether spin pumping occurring under nonlinear spin dynamics would differ from linear case. It is known that nonlinear spin dynamics differ distinctly from linear response, a variety of amplitude dependent nonlinear effect would present. It has been found that for spin precession angle above a few degrees, nonlinear damping term would present and dominated the dynamic energy/spin-moment dissipation. Since spin pumping are closely related to the damping process, it is interesting to ask whether the nonlinear damping term could be involved in spin pumping process. We studied the spin pumping effect occurring under nonlinear spin precession. A device which is a Pt/YIG microstrip coupled with coplanar waveguide was used. High power excitation resulted in spin precession entering in a nonlinear regime. Foldover resonance lineshape and nonlinear damping have been observed. Based on those nonlinear effects, we determined the values of the precession cone angles, and the maximum cone angle can reach a values as high as 21.5 degrees. We found that even in nonlinear regime, spin pumping is still linear, which means the nonlinear damping and foldover would not affect spin pumping process.

  7. Drift transport of helical spin coherence with tailored spin–orbit interactions

    PubMed Central

    Kunihashi, Y.; Sanada, H.; Gotoh, H.; Onomitsu, K.; Kohda, M.; Nitta, J.; Sogawa, T.

    2016-01-01

    Most future information processing techniques using electron spins in non-magnetic semiconductors will require both the manipulation and transfer of spins without their coherence being lost. The spin–orbit effective magnetic field induced by drifting electrons enables us to rotate the electron spins in the absence of an external magnetic field. However, the fluctuations in the effective magnetic field originating from the random scattering of electrons also cause undesirable spin decoherence, which limits the length scale of the spin transport. Here we demonstrate the drift transport of electron spins adjusted to a robust spin structure, namely a persistent spin helix. We find that the persistent spin helix enhances the spatial coherence of drifting spins, resulting in maximized spin decay length near the persistent spin helix condition. Within the enhanced distance of the spin transport, the transport path of electron spins can be modulated by employing time-varying in-plane voltages. PMID:26952129

  8. Evaluation of computer-aided foundation design techniques for fossil fuel power plants. Final report. [Includes list of firms involved, equipment, software, etc

    SciTech Connect

    Kulhawy, F.H.; Dill, J.C.; Trautmann, C.H.

    1984-11-01

    The use of an integrated computer-aided drafting and design system for fossil fuel power plant foundations would offer utilities considerable savings in engineering costs and design time. The technology is available, but research is needed to develop software, a common data base, and data management procedures. An integrated CADD system suitable for designing power plant foundations should include the ability to input, display, and evaluate geologic, geophysical, geotechnical, and survey field data; methods for designing piles, mats, footings, drilled shafts, and other foundation types; and the capability of evaluating various load configurations, soil-structure interactions, and other construction factors that influence design. Although no such integrated system exists, the survey of CADD techniques showed that the technology is available to computerize the whole foundation design process, from single-foundation analysis under single loads to three-dimensional analysis under earthquake loads. The practices of design firms using CADD technology in nonutility applications vary widely. Although all the firms surveyed used computer-aided drafting, only two used computer graphics in routine design procedures, and none had an integrated approach to using CADD for geotechnical engineering. All the firms had developed corporate policies related to system security, supervision, overhead allocation, training, and personnel compensation. A related EPRI project RP2514, is developing guidelines for applying CADD systems to entire generating-plant construction projects. 4 references, 6 figures, 6 tables.

  9. Electrical detection of coherent spin precession using the ballistic intrinsic spin Hall effect.

    PubMed

    Choi, Won Young; Kim, Hyung-jun; Chang, Joonyeon; Han, Suk Hee; Koo, Hyun Cheol; Johnson, Mark

    2015-08-01

    The spin-orbit interaction in two-dimensional electron systems provides an exceptionally rich area of research. Coherent spin precession in a Rashba effective magnetic field in the channel of a spin field-effect transistor and the spin Hall effect are the two most compelling topics in this area. Here, we combine these effects to provide a direct demonstration of the ballistic intrinsic spin Hall effect and to demonstrate a technique for an all-electric measurement of the Datta-Das conductance oscillation, that is, the oscillation in the source-drain conductance due to spin precession. Our hybrid device has a ferromagnet electrode as a spin injector and a spin Hall detector. Results from multiple devices with different channel lengths map out two full wavelengths of the Datta-Das oscillation. We also use the original Datta-Das technique with a single device of fixed length and measure the channel conductance as the gate voltage is varied. Our experiments show that the ballistic spin Hall effect can be used for efficient injection or detection of spin polarized electrons, thereby enabling the development of an integrated spin transistor. PMID:26005997

  10. Random SU(2)-symmetric spin-S chains

    NASA Astrophysics Data System (ADS)

    Quito, V. L.; Hoyos, José A.; Miranda, E.

    2016-08-01

    We study the low-energy physics of a broad class of time-reversal invariant and SU(2)-symmetric one-dimensional spin-S systems in the presence of quenched disorder via a strong-disorder renormalization-group technique. We show that, in general, there is an antiferromagnetic phase with an emergent SU (2 S +1 ) symmetry. The ground state of this phase is a random singlet state in which the singlets are formed by pairs of spins. For integer spins, there is an additional antiferromagnetic phase which does not exhibit any emergent symmetry (except for S =1 ). The corresponding ground state is a random singlet one but the singlets are formed mostly by trios of spins. In each case the corresponding low-energy dynamics is activated, i.e., with a formally infinite dynamical exponent, and related to distinct infinite-randomness fixed points. The phase diagram has two other phases with ferromagnetic tendencies: a disordered ferromagnetic phase and a large spin phase in which the effective disorder is asymptotically finite. In the latter case, the dynamical scaling is governed by a conventional power law with a finite dynamical exponent.

  11. Spin-spin correlations of magnetic adatoms on graphene

    NASA Astrophysics Data System (ADS)

    Güçlü, A. D.; Bulut, Nejat

    2015-03-01

    We study the interaction between two magnetic adatom impurities in graphene using the Anderson model. The two-impurity Anderson Hamiltonian is solved numerically by using the quantum Monte Carlo technique. We find that the interimpurity spin susceptibility is strongly enhanced at low temperatures, significantly diverging from the well-known Ruderman-Kittel-Kasuya-Yoshida result which decays as R-3.

  12. Exact diagonalization of quantum-spin models

    NASA Astrophysics Data System (ADS)

    Lin, H. Q.

    1990-10-01

    We have developed a technique to replace hashing in implementing the Lanczös method for exact diagonalization of quantum-spin models that enables us to carry out numerical studies on substantially larger lattices than previously studied. We describe the algorithm in detail and present results for the ground-state energy, the first-excited-state energy, and the spin-spin correlations on various finite lattices for spins S=1/2, 1, 3/2, and 2. Results for an infinite system are obtained by extrapolation. We also discuss the generalization of our method to other models.

  13. Generation and Detection of Spin Currents in Semiconductor Nanostructures with Strong Spin-Orbit Interaction

    NASA Astrophysics Data System (ADS)

    Nichele, Fabrizio; Hennel, Szymon; Pietsch, Patrick; Wegscheider, Werner; Stano, Peter; Jacquod, Philippe; Ihn, Thomas; Ensslin, Klaus

    2015-05-01

    Storing, transmitting, and manipulating information using the electron spin resides at the heart of spintronics. Fundamental for future spintronics applications is the ability to control spin currents in solid state systems. Among the different platforms proposed so far, semiconductors with strong spin-orbit interaction are especially attractive as they promise fast and scalable spin control with all-electrical protocols. Here we demonstrate both the generation and measurement of pure spin currents in semiconductor nanostructures. Generation is purely electrical and mediated by the spin dynamics in materials with a strong spin-orbit field. Measurement is accomplished using a spin-to-charge conversion technique, based on the magnetic field symmetry of easily measurable electrical quantities. Calibrating the spin-to-charge conversion via the conductance of a quantum point contact, we quantitatively measure the mesoscopic spin Hall effect in a multiterminal GaAs dot. We report spin currents of 174 pA, corresponding to a spin Hall angle of 34%.

  14. Nuclear spin circular dichroism

    SciTech Connect

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  15. SD-CAS: Spin Dynamics by Computer Algebra System.

    PubMed

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples.

  16. SD-CAS: Spin Dynamics by Computer Algebra System

    NASA Astrophysics Data System (ADS)

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples.

  17. Spinning targets for laser fusion

    SciTech Connect

    Baldwin, D.E.; Ryutov, D.D.

    1995-09-01

    Several techniques for spinning the ICF targets up prior to or in the course of their compression are suggested. Interference of the rotational shear flow with Rayleigh-Taylor instability is briefly discussed and possible consequences for the target performance are pointed out.

  18. The Art of Neutron Spin Flipping

    NASA Astrophysics Data System (ADS)

    Lieffers, Justin; Holley, Adam; Snow, W. M.

    2014-09-01

    Low energy precision measurements complement high energy collider results in the search for physics beyond the Standard Model. Neutron spin rotation is a sensitive technique to search for possible exotic velocity and spin-dependent interactions involving the neutron from the exchange of light (~ meV) spin 1 bosons. We plan to conduct such searches using beams of cold neutrons at the Los Alamos Neutron Science Center (LANSCE) and the National Institute of Standards and Technology (NIST). To change the spin state of the neutrons in the apparatus we have developed an Adiabatic Fast Passage (AFP) neutron spin flipper. I will present the mechanical design, static and RF magnetic field modeling and measurements, and spin flip efficiency optimization of the constructed device. I would like to acknowledge the NSF REU program (NSF-REU grant PHY-1156540) and the Indiana University nuclear physics group (NSF grant PHY-1306942) for this opportunity.

  19. Memory of spin polarization in triplet-doublet systems

    SciTech Connect

    Imamura, T.; Onitsuka, O.; Obi, K.

    1986-12-18

    The interaction between triplet molecules and nitroxide radicals is studied in solution by the time-resolved ESR technique. Spin polarization induced in the radical reflects that of the triplet molecule which is an encounter partner. The spin-polarized ESR signals observed in nitroxide radicals are interpreted in terms of electron and/or spin exchange mechanisms.

  20. Electron spin resonance and spin-valley physics in a silicon double quantum dot.

    PubMed

    Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen

    2014-01-01

    Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach. PMID:24828846

  1. Electron spin resonance and spin-valley physics in a silicon double quantum dot.

    PubMed

    Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen

    2014-05-14

    Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.

  2. Preparation of nuclear spin singlet states using spin-lock induced crossing.

    PubMed

    DeVience, Stephen J; Walsworth, Ronald L; Rosen, Matthew S

    2013-10-25

    We introduce a broadly applicable technique to create nuclear spin singlet states in organic molecules and other many-atom systems. We employ a novel pulse sequence to produce a spin-lock induced crossing (SLIC) of the spin singlet and triplet energy levels, which enables triplet-singlet polarization transfer and singlet-state preparation. We demonstrate the utility of the SLIC method by producing a long-lived nuclear spin singlet state on two strongly coupled proton pairs in the tripeptide molecule phenylalanine-glycine-glycine dissolved in D(2)O and by using SLIC to measure the J couplings, chemical shift differences, and singlet lifetimes of the proton pairs. We show that SLIC is more efficient at creating nearly equivalent nuclear spin singlet states than previous pulse sequence techniques, especially when triplet-singlet polarization transfer occurs on the same time scale as spin-lattice relaxation.

  3. Comparative Study of the Coverage of Physics Journals by Two Computerized Data Bases-SPIN (Searchable and Physics Information Notes) and CAC (Chemical Abstracts Condensates)

    ERIC Educational Resources Information Center

    Jerome, S.

    1973-01-01

    SPIN coverage is abnormally low, only 70 journals, versus the coverage of information services in other fields. Every journal listed by SPIN is selectively covered by CAS, resulting in a 76 percent overlap. (3 references) (Author/SJ)

  4. Nuclear spin physics in quantum dots: An optical investigation

    NASA Astrophysics Data System (ADS)

    Urbaszek, Bernhard; Marie, Xavier; Amand, Thierry; Krebs, Olivier; Voisin, Paul; Maletinsky, Patrick; Högele, Alexander; Imamoglu, Atac

    2013-01-01

    The mesoscopic spin system formed by the 104-106 nuclear spins in a semiconductor quantum dot offers a unique setting for the study of many-body spin physics in the condensed matter. The dynamics of this system and its coupling to electron spins is fundamentally different from its bulk counterpart or the case of individual atoms due to increased fluctuations that result from reduced dimensions. In recent years, the interest in studying quantum-dot nuclear spin systems and their coupling to confined electron spins has been further fueled by its importance for possible quantum information processing applications. The fascinating nonlinear (quantum) dynamics of the coupled electron-nuclear spin system is universal in quantum dot optics and transport. In this article, experimental work performed over the last decade in studying this mesoscopic, coupled electron-nuclear spin system is reviewed. Here a special focus is on how optical addressing of electron spins can be exploited to manipulate and read out the quantum-dot nuclei. Particularly exciting recent developments in applying optical techniques to efficiently establish nonzero mean nuclear spin polarizations and using them to reduce intrinsic nuclear spin fluctuations are discussed. Both results critically influence the preservation of electron-spin coherence in quantum dots. This overall recently gained understanding of the quantum-dot nuclear spin system could enable exciting new research avenues such as experimental observations of spontaneous spin ordering or nonclassical behavior of the nuclear spin bath.

  5. Extrinsic Spin Hall effect of AuW alloys

    NASA Astrophysics Data System (ADS)

    Laczkowski, Piotr; Rojas-Sánchez, Juan Carlos; Savero-Torres, Williams; Reyren, Nicolas; Deranlot, Cyril; George, Jean-Marie; Jaffres, Henri; Beigné, Cyril; Notin, Lucien; Collin, Sophie; Marty, Alain; Attané, Jean-Philippe; Vila, Laurent; Petroff, Frederic; Fert, Albert; UMPhy CNRS-Thales Palaiseau Team; CEA-SP2M-INAC Grenoble Team

    The spin Hall effect (SHE) allows a reciprocal conversion between charge and spin currents using spin orbit interactions. Large Spin Hall angle have been reported in transition metals (Pt, W, Beta-Ta) and in alloys made of heavy metals. We will report on SHA in AuW alloys exhibiting a non-monotonic relation with W content. In this regime, it suggests a skew-scattering to side-jump dominant contribution to the spin Hall resistivity, thus allowing precise tuning of SHA vs. W content. We will present experiments by using Lateral Spin Valves with refined spin-absorption model adapted to strong spin-orbit interactions. By using complementary FMR/Spin-Pumping techniques, we demonstrate very large SHA of the order of 15 % at rather high W concentration in rather good agreement with the previous method

  6. Longitudinal spin dynamics in ferrimagnets: Multiple spin wave nature of longitudinal spin excitations

    NASA Astrophysics Data System (ADS)

    Krivoruchko, V. N.

    2016-08-01

    Motivated by the existing controversy about the physical mechanisms that govern longitudinal magnetization dynamics under the effect of ultrafast laser pulses, in this paper we study the microscopic model of longitudinal spin excitations in a two-sublattice ferrimagnet using the diagrammatic technique for spin operators. The diagrammatic approach provides us with an efficient procedure to derive graphical representations for perturbation expansion series for different spin Green's functions and thus to overcome limitations typical for phenomenological approaches. The infinite series involving all distinct loops built from spin wave propagators are summed up. These result in an expression for the longitudinal spin susceptibility χz z(q ,ω ) applicable in all regions of frequency ω and wave vector q space beyond the hydrodynamical and critical regimes. A strong renormalization of the longitudinal spin oscillations due to processes of virtual creation and annihilation of transverse spin waves has been found. We have shown that the spectrum of longitudinal excitations consists of a quasirelaxation mode forming a central peak in χz z(q ,ω ) and two (acoustic and exchange) precessionlike modes. As the main result, it is predicted that both acoustic and exchange longitudinal excitations are energetically above similar modes of transverse spin waves at the same temperature and wave vector. The existence of the exchange longitudinal mode at such frequencies can result in a new form of excitation behavior in ferrimagnetic system, which could be important for understanding the physics of nonequilibrium magnetic dynamics under the effect of ultrafast laser pulses in multisublattice magnetic materials.

  7. On the distribution of stellar-sized black hole spins

    NASA Astrophysics Data System (ADS)

    Nielsen, Alex B.

    2016-05-01

    Black hole spin will have a large impact on searches for gravitational waves with advanced detectors. While only a few stellar mass black hole spins have been measured using X- ray techniques, gravitational wave detectors have the capacity to greatly increase the statistics of black hole spin measurements. We show what we might learn from these measurements and how the black hole spin values are influenced by their formation channels.

  8. Spin Relaxation and Spin Transport in Graphene

    NASA Astrophysics Data System (ADS)

    Wu, M. W.

    2012-02-01

    In this talk we are going to present our theoretical investigations on spin dynamics of graphene under various conditions based on a fully microscopic kinetic-spin-Bloch-equation approach [1]. We manage to nail down the solo spin relaxation mechanism of graphene in measurements from two leading groups, one in US and one in the Netherland. Many novel effects of the electron-electron Coulomb interaction on spin relaxation in graphene are addressed. Our theory can have nice agreement with experimental data.[4pt] [1] M. W. Wu, J. H. Jiang, and M. Q. Weng, ``Spin dynamics in semiconductors,'' Phys. Rep. 493, 61 (2010).

  9. Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

    SciTech Connect

    Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; Sinitsyn, Nikolai A.

    2015-04-30

    Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spin ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.

  10. Quantum control of proximal spins using nanoscale magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Grinolds, M. S.; Maletinsky, P.; Hong, S.; Lukin, M. D.; Walsworth, R. L.; Yacoby, A.

    2011-09-01

    Quantum control of individual spins in condensed-matter systems is an emerging field with wide-ranging applications in spintronics, quantum computation and sensitive magnetometry. Recent experiments have demonstrated the ability to address and manipulate single electron spins through either optical or electrical techniques. However, it is a challenge to extend individual-spin control to nanometre-scale multi-electron systems, as individual spins are often irresolvable with existing methods. Here we demonstrate that coherent individual-spin control can be achieved with few- nanometre resolution for proximal electron spins by carrying out single-spin magnetic resonance imaging (MRI), which is realized using a scanning-magnetic-field gradient that is both strong enough to achieve nanometre spatial resolution and sufficiently stable for coherent spin manipulations. We apply this scanning-field-gradient MRI technique to electronic spins in nitrogen-vacancy (NV) centres in diamond and achieve nanometre resolution in imaging, characterization and manipulation of individual spins. For NV centres, our results in individual-spin control demonstrate an improvement of nearly two orders of magnitude in spatial resolution when compared with conventional optical diffraction-limited techniques. This scanning-field-gradient microscope enables a wide range of applications including materials characterization, spin entanglement and nanoscale magnetometry.

  11. Spin Liquid Condensate of Spinful Bosons

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Zhang, Shoucheng

    2015-03-01

    We introduce the concept of a bosonic spin liquid condensate (SLC), where spinful bosons in a lattice form a zero-temperature spin disordered charge condensate that preserves the spin rotation symmetry, but breaks the U(1) symmetry due to a spinless order parameter with charge one. It has an energy gap to all the spin excitations. We show that such SLC states can be realized in a system of spin S >= 2 bosons. In particular, we analyze the SLC phase diagram in the spin 2 case using a mean-field variational wave function method. We show there is a direct analogy between the SLC and the resonating-valence-bond (RVB) state. The existence of SLC reveals the possible existence of a more general new class of superfluid phases in a lattice.

  12. Spin-Liquid Condensate of Spinful Bosons

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Zhang, Shoucheng

    2014-08-01

    We introduce the concept of a bosonic spin liquid condensate (SLC), where spinful bosons in a lattice form a zero-temperature spin disordered charge condensate that preserves the spin rotation symmetry, but breaks the U(1) symmetry due to a spinless order parameter with charge one. It has an energy gap to all the spin excitations. We show that such SLC states can be realized in a system of spin S ≥2 bosons. In particular, we analyze the SLC phase diagram in the spin 2 case using a mean-field variational wave function method. We show there is a direct analogy between the SLC and the resonating-valence-bond state.

  13. List of Posters

    NASA Astrophysics Data System (ADS)

    List of Posters: Dark matter annihilation in the Galactic galo, by Dokuchaev Vyacheslav, et al. NEMO developments towards km3 telescope in the Mediterranean Sea. The NEMO project. Neutrino Mediterranean Observatory By Antonio Capone, NEMO Collaboration. Alignment as a result from QCD jet production or new still unknown physics at LHC? By Alexander Snigirev. Small-scale fluctuations of extensive air showers: systematics in energy and muon density estimation By Grigory Rubtsov. SHINIE: Simulation of High-Energy Neutrino Interacting with the Earth By Lin Guey-Lin, et al.. Thermodynamics of rotating solutions in n+1 dimensional Einstein - Maxwell -dilation gravity By Ahmad Sheykhi, et al.. Supernova neutrino physics with future large Cherenkov detectors By Daniele Montanino. Crossing of the Cosmological Constant Barrier in the string Inspired Dark Energy Model By S. Yu. Vernov. Calculations of radio signals produced by ultra-high and extremely high energy neutrino induced cascades in Antarctic ice By D. Besson, et al.. Inflation, Cosmic Acceleration and string Gravity By Ischwaree Neupane. Neutrino Physics: Charm and J/Psi production in the atmosphere By Liudmila Volkova. Three generation flavor transitions and decays of supernova relic neutrinos By Daniele Montanino. Lattice calculations & computational quantum field theory: Sonification of Quark and Baryon Spectra By Markum Harald, et al.. Generalized Kramers-Wannier Duality for spin systems with non-commutative symmetry By V. M. Buchstaber, et al.. Heavy ion collisions & quark matter: Nuclear matter jets and multifragmentation By Danut Argintaru, et al.. QCD hard interactions: The qT-spectrum of the Higgs and Slepton-pairs at the LHC By Guiseppe Bozzi. QCD soft interactions: Nonperturbative effects in Single-Spin Asymmetries: Instantons and TMD-parton distributions By Igor Cherednikov, et al.. Gluon dominance model and high multiplicity By Elena Kokoulina. Resonances in eta pi- pi- pi+ system By Dmitry Ryabchikov

  14. RHIC spin physics: Proceedings. Volume 7

    SciTech Connect

    1998-12-01

    This proceedings compiles one-page summaries and five transparencies for each talk, with the intention that the speaker should include a web location for additional information in the summary. Also, email addresses are given with the participant list. The order follows the agenda: gluon, polarimetry, accelerator, W production and quark/antiquark polarization, parity violation searches, transversity, single transverse spin, small angle elastic scattering, and the final talk on ep collisions at RHIC. The authors begin the Proceedings with the full set of transparencies from Bob Jaffe`s colloquium on spin, by popular request.

  15. Ballistic spin resonance.

    PubMed

    Frolov, S M; Lüscher, S; Yu, W; Ren, Y; Folk, J A; Wegscheider, W

    2009-04-16

    The phenomenon of spin resonance has had far-reaching influence since its discovery 70 years ago. Electron spin resonance driven by high-frequency magnetic fields has enhanced our understanding of quantum mechanics, and finds application in fields as diverse as medicine and quantum information. Spin resonance can also be induced by high-frequency electric fields in materials with a spin-orbit interaction; the oscillation of the electrons creates a momentum-dependent effective magnetic field acting on the electron spin. Here we report electron spin resonance due to a spin-orbit interaction that does not require external driving fields. The effect, which we term ballistic spin resonance, is driven by the free motion of electrons that bounce at frequencies of tens of gigahertz in micrometre-scale channels of a two-dimensional electron gas. This is a frequency range that is experimentally challenging to access in spin resonance, and especially difficult on a chip. The resonance is manifest in electrical measurements of pure spin currents-we see a strong suppression of spin relaxation length when the oscillating spin-orbit field is in resonance with spin precession in a static magnetic field. These findings illustrate how the spin-orbit interaction can be harnessed for spin manipulation in a spintronic circuit, and point the way to gate-tunable coherent spin rotations in ballistic nanostructures without external alternating current fields. PMID:19370029

  16. Adiabatic quantum computing with spin qubits hosted by molecules.

    PubMed

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  17. Real-Time "Garbage Collection" for List Processing

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.

    1987-01-01

    Two proposed algorithmic techniques for list processing enable immediate identification of computer memory cells having become inactive through disconnection from active cells, together with addition of these inactive cells to pool of reusable cells. These two "garbage collection" techniques reduce memory requirements of list processors or increase their speed or both. With both techniques, processing continuity maintained, enabling real-time processing.

  18. Squeezed light spin noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan

    2016-05-01

    Spin noise spectroscopy (SNS) has recently emerged as a powerful technique for determining physical properties of an unperturbed spin system from its power noise spectrum both in atomic and solid state physics. In the presence of a transverse magnetic field, we detect spontaneous spin fluctuations of a dense Rb vapor via Faraday rotation of an off-resonance probe beam, resulting in the excess of spectral noise at the Larmor frequency over a white photon shot-noise background. We report quantum enhancement of the signal-to-noise ratio via polarization squeezing of the probe beam up to 3dB over the full density range up to n = 1013 atoms cm-3, covering practical conditions used in optimized SNS experiments. Furthermore, we show that squeezing improves the trade-off between statistical sensitivity and systematic errors due to line broadening, a previously unobserved quantum advantage.

  19. Electrical control of quantum dot spin qubits

    NASA Astrophysics Data System (ADS)

    Laird, Edward Alexander

    This thesis presents experiments exploring the interactions of electron spins with electric fields in devices of up to four quantum dots. These experiments are particularly motivated by the prospect of using electric fields to control spin qubits. A novel hyperfine effect on a single spin in a quantum dot is presented in Chapter 2. Fluctuations of the nuclear polarization allow single-spin resonance to be driven by an oscillating electric field. Spin resonance spectroscopy revealed a nuclear polarization built up inside the quantum dot device by driving the resonance. The evolution of two coupled spins is controlled by the combination of hyperfine interaction, which tends to cause spin dephasing, and exchange, which tends to prevent it. In Chapter 3, dephasing is studied in a device with tunable exchange, probing the crossover between exchange-dominated and hyperfine-dominated regimes. In agreement with theoretical predictions, oscillations of the spin conversion probability and saturation of dephasing are observed. Chapter 4 deals with a three-dot device, suggested as a potential qubit controlled entirely by exchange. Preparation and readout of the qubit state are demonstrated, together with one out of two coherent exchange operations needed for arbitrary manipulations. A new readout technique allowing rapid device measurement is described. In Chapter 5, an attempt to make a two-qubit gate using a four-dot device is presented. Although spin qubit operation has not yet been possible, the electrostatic interaction between pairs of dots was measured to be sufficient in principle for coherent qubit coupling.

  20. Spin state switching in iron coordination compounds

    PubMed Central

    Gaspar, Ana B; Garcia, Yann

    2013-01-01

    Summary The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices. The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST) and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II), with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II) complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property. PMID:23504535

  1. Magnons, Spin Current and Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Maekawa, Sadamichi

    2012-02-01

    When metals and semiconductors are placed in a temperature gradient, the electric voltage is generated. This mechanism to convert heat into electricity, the so-called Seebeck effect, has attracted much attention recently as the mechanism for utilizing wasted heat energy. [1]. Ferromagnetic insulators are good conductors of spin current, i.e., the flow of electron spins [2]. When they are placed in a temperature gradient, generated are magnons, spin current and the spin voltage [3], i.e., spin accumulation. Once the spin voltage is converted into the electric voltage by inverse spin Hall effect in attached metal films such as Pt, the electric voltage is obtained from heat energy [4-5]. This is called the spin Seebeck effect. Here, we present the linear-response theory of spin Seebeck effect based on the fluctuation-dissipation theorem [6-8] and discuss a variety of the devices. [4pt] [1] S. Maekawa et al, Physics of Transition Metal Oxides (Springer, 2004). [0pt] [2] S. Maekawa: Nature Materials 8, 777 (2009). [0pt] [3] Concept in Spin Electronics, eds. S. Maekawa (Oxford University Press, 2006). [0pt] [4] K. Uchida et al., Nature 455, 778 (2008). [0pt] [5] K. Uchida et al., Nature Materials 9, 894 (2010) [0pt] [6] H. Adachi et al., APL 97, 252506 (2010) and Phys. Rev. B 83, 094410 (2011). [0pt] [7] J. Ohe et al., Phys. Rev. B (2011) [0pt] [8] K. Uchida et al., Appl. Phys. Lett. 97, 104419 (2010).

  2. Dressed-state resonant coupling between bright and dark spins in diamond.

    PubMed

    Belthangady, C; Bar-Gill, N; Pham, L M; Arai, K; Le Sage, D; Cappellaro, P; Walsworth, R L

    2013-04-12

    Under ambient conditions, spin impurities in solid-state systems are found in thermally mixed states and are optically "dark"; i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the electronic spin states are "bright"; i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and read out optically, all at room temperature. Here we demonstrate a scheme to resonantly couple bright NV electronic spins to dark substitutional-nitrogen (P1) electronic spins by dressing their spin states with oscillating magnetic fields. This resonant coupling mechanism can be used to transfer spin polarization from NV spins to nearby dark spins and could be used to cool a mesoscopic bath of dark spins to near-zero temperature, thus providing a resource for quantum information and sensing, and aiding studies of quantum effects in many-body spin systems.

  3. Dressed-state resonant coupling between bright and dark spins in diamond.

    PubMed

    Belthangady, C; Bar-Gill, N; Pham, L M; Arai, K; Le Sage, D; Cappellaro, P; Walsworth, R L

    2013-04-12

    Under ambient conditions, spin impurities in solid-state systems are found in thermally mixed states and are optically "dark"; i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the electronic spin states are "bright"; i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and read out optically, all at room temperature. Here we demonstrate a scheme to resonantly couple bright NV electronic spins to dark substitutional-nitrogen (P1) electronic spins by dressing their spin states with oscillating magnetic fields. This resonant coupling mechanism can be used to transfer spin polarization from NV spins to nearby dark spins and could be used to cool a mesoscopic bath of dark spins to near-zero temperature, thus providing a resource for quantum information and sensing, and aiding studies of quantum effects in many-body spin systems. PMID:25167312

  4. Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

    DOE PAGES

    Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; Sinitsyn, Nikolai A.

    2015-04-30

    Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spinmore » ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.« less

  5. Quasiparticle spin resonance and coherence in superconducting aluminium

    PubMed Central

    Quay, C. H. L.; Weideneder, M.; Chiffaudel, Y.; Strunk, C.; Aprili, M.

    2015-01-01

    Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (∼100 ps), and its dependence on the sample thickness are consistent with Elliott–Yafet spin–orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (∼10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics. PMID:26497744

  6. Spin Hall effect devices.

    PubMed

    Jungwirth, Tomas; Wunderlich, Jörg; Olejník, Kamil

    2012-05-01

    The spin Hall effect is a relativistic spin-orbit coupling phenomenon that can be used to electrically generate or detect spin currents in non-magnetic systems. Here we review the experimental results that, since the first experimental observation of the spin Hall effect less than 10 years ago, have established the basic physical understanding of the phenomenon, and the role that several of the spin Hall devices have had in the demonstration of spintronic functionalities and physical phenomena. We have attempted to organize the experiments in a chronological order, while simultaneously dividing the Review into sections on semiconductor or metal spin Hall devices, and on optical or electrical spin Hall experiments. The spin Hall device studies are placed in a broader context of the field of spin injection, manipulation, and detection in non-magnetic conductors.

  7. Spin Rotation of Formalism for Spin Tracking

    SciTech Connect

    Luccio,A.

    2008-02-01

    The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.

  8. Conserved higher-spin charges in AdS4

    NASA Astrophysics Data System (ADS)

    Gelfond, O. A.; Vasiliev, M. A.

    2016-03-01

    Gauge invariant conserved conformal currents built from massless fields of all spins in 4d Minkowski space-time and AdS4 are described in the unfolded dynamics approach. The current cohomology associated with non-zero conserved charges is found. The resulting list of charges is shown to match the space of parameters of the conformal higher-spin symmetry algebra in four dimensions.

  9. Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: Use of a T2-weighted fast spin-echo technique.

    PubMed

    Ekizoglu, Oguzhan; Hocaoglu, Elif; Inci, Ercan; Can, Ismail Ozgur; Aksoy, Sema; Kazimoglu, Cemal

    2016-03-01

    Radiation exposure during forensic age estimation is associated with ethical implications. It is important to prevent repetitive radiation exposure when conducting advanced ultrasonography (USG) and magnetic resonance imaging (MRI). The purpose of this study was to investigate the utility of 3.0-T MRI in determining the degree of ossification of the distal femoral and proximal tibial epiphyses in a group of Turkish population. We retrospectively evaluated coronal T2-weighted and turbo spin-echo sequences taken upon MRI of 503 patients (305 males, 198 females; age 10-30 years) using a five-stage method. Intra- and interobserver variations were very low. (Intraobserver reliability was κ=0.919 for the distal femoral epiphysis and κ=0.961 for the proximal tibial epiphysis, and interobserver reliability was κ=0.836 for the distal femoral epiphysis and κ=0.885 for the proximal tibial epiphysis.) Spearman's rank correlation analysis indicated a significant positive relationship between age and the extent of ossification of the distal femoral and proximal tibial epiphyses (p<0.001). Comparison of male and female data revealed significant between-gender differences in the ages at first attainment of stages 2, 3, and 4 ossifications of the distal femoral epiphysis and stage 1 and 4 ossifications of the proximal tibial epiphysis (p<0.05). The earliest ages at which ossification of stages 3, 4, and 5 was evident in the distal femoral epiphysis were 14, 17, and 22 years in males and 13, 16, and 21 years in females, respectively. Proximal tibial epiphysis of stages 3, 4, and 5 ossification was first noted at ages 14, 17, and 18 years in males and 13, 15, and 16 years in females, respectively. MRI of the distal femoral and proximal tibial epiphyses is an alternative, noninvasive, and reliable technique to estimate age.

  10. Ultrafast laser driven spin generation in metallic ferromagnets

    NASA Astrophysics Data System (ADS)

    Choi, Gyung-Min

    This dissertation presents experimental studies of spin generation in metallic ferromagnets (FM) driven by ultrafast laser light using a pump-probe technique. The pump light gives a driving force for spin generation by depositing energy or spin angular momentum on FM. The probe light measures spin responses by magneto-optical Kerr effect or temperature responses by time-domain thermoreflectance. I find that ultrafast laser light generates spins in FM in three distinct mechanisms: (i) demagnetization; (ii) spin-dependent Seebeck effect (SDSE); (iii) optical helicity. The demagnetization-driven spin generation is due to energy transport between electrons and magnons of FM and conservation of angular momentum for electron-magnon coupling. Ultrafast laser light deposits its energy in electrons of metallic layers and leads to a sharp increase of the electron temperature. The excited electrons transport energy to magnons of FM by the electron-magnon coupling. The magnon excitation results in ultrafast demagnetization of FM. I find that the spin loss by magnon excitations during the demagnetization process is converted to the spin generation in electrons of FM by the conservation of angular momentum for electron-magnon coupling. The generated spins diffuse to other layers and leads to spin accumulation in nonmagnetic metals (NM) or spin transfer torque on other FMs. I measure the demagnetization-driven spin accumulation in a NM/FM1/NM structure and spin transfer torque in a NM/FM1/NM/FM2 structure. The SDSE-driven spin generation is due to a heat current at FM/NM interfaces and spin-dependent Seebeck coefficient of FM. Ultrafast laser light deposits its energy in a heat absorbing layer of a multilayer structure and leads to a heat current from the heat absorbing layer to heat sinking layer. When an FM is incorporated in the multilayer structure, the spin-dependent Seebeck coefficient of FM converts the heat current to spin generation at interfaces between FM and NM. The

  11. Fourier Spectroscopy of a Spin-Orbit Coupled Bose Gas

    NASA Astrophysics Data System (ADS)

    Valdes-Curiel, Ana; Trypogeorgos, Dimitris; Marshall, Erin; Spielman, Ian

    2016-05-01

    We generate spin-orbit coupling in a spin-1 Bose-Einstein condensate using Raman transitions. We are able to measure the system's spin and momentum dependent energy spectrum by looking at the time evolution of the three spin states. We drive transitions at different detunings from Raman resonance and extract the Fourier components of the time dependent evolution to reconstruct the spectrum. We also add a periodic modulation to one Raman field which allows us to have a fully tunable spin-orbit coupling dispersion that we can directly measure using our spectroscopy technique.

  12. Tidal deformations of a spinning compact object

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Maselli, Andrea; Ferrari, Valeria

    2015-07-01

    The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.

  13. Acronym master list

    SciTech Connect

    1995-06-01

    This document is a master list of acronyms and other abbreviations that are used by or could be useful to, the personnel at Los Alamos National Laboratory. Many specialized and well-known abbreviations are not included in this list.

  14. Current heating induced spin Seebeck effect

    SciTech Connect

    Schreier, Michael Roschewsky, Niklas; Dobler, Erich; Meyer, Sibylle; Huebl, Hans; Goennenwein, Sebastian T. B.; Gross, Rudolf

    2013-12-09

    A measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end, we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect scales linearly with the induced rise in temperature, as expected for the spin Seebeck effect.

  15. Current heating induced spin Seebeck effect

    NASA Astrophysics Data System (ADS)

    Schreier, Michael; Roschewsky, Niklas; Dobler, Erich; Meyer, Sibylle; Huebl, Hans; Gross, Rudolf; Goennenwein, Sebastian T. B.

    2013-12-01

    A measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end, we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect scales linearly with the induced rise in temperature, as expected for the spin Seebeck effect.

  16. Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation.

    PubMed

    Drew, A J; Hoppler, J; Schulz, L; Pratt, F L; Desai, P; Shakya, P; Kreouzis, T; Gillin, W P; Suter, A; Morley, N A; Malik, V K; Dubroka, A; Kim, K W; Bouyanfif, H; Bourqui, F; Bernhard, C; Scheuermann, R; Nieuwenhuys, G J; Prokscha, T; Morenzoni, E

    2009-02-01

    Electronic devices that use the spin degree of freedom hold unique prospects for future technology. The performance of these 'spintronic' devices relies heavily on the efficient transfer of spin polarization across different layers and interfaces. This complex transfer process depends on individual material properties and also, most importantly, on the structural and electronic properties of the interfaces between the different materials and defects that are common to real devices. Knowledge of these factors is especially important for the relatively new field of organic spintronics, where there is a severe lack of suitable experimental techniques that can yield depth-resolved information about the spin polarization of charge carriers within buried layers of real devices. Here, we present a new depth-resolved technique for measuring the spin polarization of current-injected electrons in an organic spin valve and find the temperature dependence of the measured spin diffusion length is correlated with the device magnetoresistance. PMID:19029892

  17. Spin Transport by Collective Spin Excitations

    NASA Astrophysics Data System (ADS)

    Hammel, P. Chris

    We report studies of angular momentum transport in insulating materials. Our measurements reveal efficient spin pumping from high wavevector k spin waves in thin film Y3Fe5O12 (YIG): spin pumping is independent of wavevector up to k ~ 20 μm-1. Optical detection of YIG FMR by NV centers in diamond reveals a role for spin waves in this insulator-to-insulator spin transfer process. Spin transport is typically suppressed by insulating barriers, but we find that fluctuating antiferromagnetic correlations enable efficient spin transport at nm-scale thicknesses in insulating antiferromagnets, even in the absence of long-range order, and that the spin decay length increases with the strength of the antiferromagnetic correlations. This research is supported by the U.S. DOE through Grants DE-FG02-03ER46054 and DE-SC0001304, by the NSF MRSEC program through Grant No. 1420451 and by the Army Research Office through Grant W911NF0910147.

  18. On estimating the Venus spin vector

    NASA Technical Reports Server (NTRS)

    Argentiero, P. D.

    1972-01-01

    The improvement in spin vector and probe position estimates one may reasonably expect from the processing of such data is indicated. This was done by duplicating the ensemble calculations associated with a weighed least squares with a priori estimation technique applied to range rate data that were assumed to be unbiased and uncorrelated. The weighting matrix was assumed to be the inverse of the covariance matrix of the noise on the data. Attention is focused primarily on the spin vector estimation.

  19. Clinical applications of arterial spin labeling.

    PubMed

    Watts, Jonathan M; Whitlow, Christopher T; Maldjian, Joseph A

    2013-08-01

    MR arterial spin labeling is primarily applied as a neuroimaging method to measure cerebral blood flow. As this technique becomes more widely available, a basic understanding of the clinical applications is necessary for optimal utilization in the setting of patient care. This review focuses on the use of arterial spin labeling imaging for the evaluation of cerebrovascular disease, brain tumors and neuropsychiatric illness. PMID:23378178

  20. Spin structure functions

    SciTech Connect

    Jian-ping Chen, Alexandre Deur, Sebastian Kuhn, Zein-eddine Meziani

    2011-06-01

    Spin-dependent observables have been a powerful tool to probe the internal structure of the nucleon and to understand the dynamics of the strong interaction. Experiments involving spin degrees of freedom have often brought out surprises and puzzles. The so-called "spin crisis" in the 1980s revealed the limitation of naive quark-parton models and led to intensive worldwide efforts, both experimental and theoretical, to understand the nucleon spin structure. With high intensity and high polarization of both the electron beam and targets, Jefferson Lab has the world's highest polarized luminosity and the best figure-of-merit for precision spin structure measurements. It has made a strong impact in this subfield of research. This chapter will highlight Jefferson Lab's unique contributions in the measurements of valence quark spin distributions, in the moments of spin structure functions at low to intermediate Q2, and in the transverse spin structure.

  1. Acquisitions List No. 42.

    ERIC Educational Resources Information Center

    Planned Parenthood--World Population, New York, NY. Katherine Dexter McCormick Library.

    The "Acquisitions List" of demographic books and articles is issued every two months by the Katharine Dexter McCormick Library. Divided into two parts, the first contains a list of books most recently acquired by the Library, each one annotated and also marked with the Library call number. The second part consists of a list of annotated articles,…

  2. Acquisitions List No. 43.

    ERIC Educational Resources Information Center

    Planned Parenthood--World Population, New York, NY. Katherine Dexter McCormick Library.

    The "Acquisitions List" of demographic books and articles is issued every two months by the Katharine Dexter McCormick Library. Divided into two parts, the first contains a list of books most recently acquired by the Library, each one annotated and also marked with the Library call number. The second part consists of a list of annotated articles,…

  3. List mode multichannel analyzer

    SciTech Connect

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  4. Against Reading Lists

    ERIC Educational Resources Information Center

    Davis, Lennard J.

    2012-01-01

    A course's reading list is the skeleton of a semester's body of thought, the inventory that a professor writes up for the departmental Web site and the schedule of courses that lists the goods. Despite the obvious utility of fixed reading lists, one should jettison them when possible. The author has been conducting an informal experiment using a…

  5. Optimized Electron-spin-cavity coupling in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Hu, Xuedong; Liu, Yu-Xi; Nori, Franco

    2011-03-01

    We search for the optimal regime to couple an electron spin in a semiconductor double quantum dot to a superconducting stripline resonator via the electrically driven spin resonance technique. In particular, we calculate the spin relaxation rate in the regime when spin-photon coupling is strong, so that we can identify system parameters that allow the electron spin to reach the strong coupling limit. We thank support by NSA/LPS through ARO.

  6. Spinning Eggs and Ballerinas

    ERIC Educational Resources Information Center

    Cross, Rod

    2013-01-01

    Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…

  7. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    SciTech Connect

    Laczkowski, P.; Rojas-Sánchez, J.-C.

    2014-04-07

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  8. Spin transport and precession in graphene measured by nonlocal and three-terminal methods

    SciTech Connect

    Dankert, André Kamalakar, Mutta Venkata; Bergsten, Johan; Dash, Saroj P.

    2014-05-12

    We investigate the spin transport and precession in graphene by using the Hanle effect in nonlocal and three-terminal measurement geometries. Identical spin lifetimes, spin diffusion lengths, and spin polarizations are observed in graphene devices for both techniques over a wide range of temperatures. The magnitude of the spin signals is well explained by spin transport models. These observations rules out any signal enhancements or additional scattering mechanisms at the interfaces for both geometries. This validates the applicability of both the measurement methods for graphene based spintronics devices and their reliable extractions of spin parameters.

  9. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    NASA Astrophysics Data System (ADS)

    Laczkowski, P.; Rojas-Sánchez, J.-C.; Savero-Torres, W.; Jaffrès, H.; Reyren, N.; Deranlot, C.; Notin, L.; Beigné, C.; Marty, A.; Attané, J.-P.; Vila, L.; George, J.-M.; Fert, A.

    2014-04-01

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  10. Gaussian approximation and single-spin measurement in magnetic resonance force microscopy with spin noise

    SciTech Connect

    Raghunathan, Shesha; Brun, Todd A.; Goan, Hsi-Sheng

    2010-11-15

    A promising technique for measuring single electron spins is magnetic resonance force microscopy (MRFM), in which a microcantilever with a permanent magnetic tip is resonantly driven by a single oscillating spin. The most effective experimental technique is the oscillating cantilever-driven adiabatic reversals (OSCAR) protocol, in which the signal takes the form of a frequency shift. If the quality factor of the cantilever is high enough, this signal will be amplified over time to the point where it can be detected by optical or other techniques. An important requirement, however, is that this measurement process occurs on a time scale that is short compared to any noise which disturbs the orientation of the measured spin. We describe a model of spin noise for the MRFM system and show how this noise is transformed to become time dependent in going to the usual rotating frame. We simplify the description of the cantilever-spin system by approximating the cantilever wave function as a Gaussian wave packet and show that the resulting approximation closely matches the full quantum behavior. We then examine the problem of detecting the signal for a cantilever with thermal noise and spin with spin noise, deriving a condition for this to be a useful measurement.

  11. The Steady Spin

    NASA Technical Reports Server (NTRS)

    Fuchs, Richard; Schmidt, Wilhelm

    1931-01-01

    With the object of further clarifying the problem of spinning, the equilibrium of the forces and moments acting on an airplane is discussed in light of the most recent test data. Convinced that in a spin the flight attitude by only small angles of yaw is more or less completely steady, the study is primarily devoted to an investigation of steady spin with no side slip. At small angles, wholly arbitrary and perfectly steady spins may be forced, depending on the type of control displacements. But at large angles only very steep and only "approaching steady" spins are possible, no matter what the control displacements.

  12. Inverse spin Hall effect by spin injection

    NASA Astrophysics Data System (ADS)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  13. Spin Seebeck devices using local on-chip heating

    SciTech Connect

    Wu, Stephen M. Fradin, Frank Y.; Hoffman, Jason; Hoffmann, Axel; Bhattacharya, Anand

    2015-05-07

    A micro-patterned spin Seebeck device is fabricated using an on-chip heater. Current is driven through a Au heater layer electrically isolated from a bilayer consisting of Fe{sub 3}O{sub 4} (insulating ferrimagnet) and a spin detector layer. It is shown that through this method it is possible to measure the longitudinal spin Seebeck effect (SSE) for small area magnetic devices, equivalent to traditional macroscopic SSE experiments. Using a lock-in detection technique, it is possible to more sensitively characterize both the SSE and the anomalous Nernst effect (ANE), as well as the inverse spin Hall effect in various spin detector materials. By using the spin detector layer as a thermometer, we can obtain a value for the temperature gradient across the device. These results are well matched to values obtained through electromagnetic/thermal modeling of the device structure and with large area spin Seebeck measurements.

  14. Electrically induced ambipolar spin vanishments in carbon nanotubes

    PubMed Central

    Matsumoto, D.; Yanagi, K.; Takenobu, T.; Okada, S.; Marumoto, K.

    2015-01-01

    Carbon nanotubes (CNTs) exhibit various excellent properties, such as ballistic transport. However, their electrically induced charge carriers and the relation between their spin states and the ballistic transport have not yet been microscopically investigated because of experimental difficulties. Here we show an electron spin resonance (ESR) study of semiconducting single-walled CNT thin films to investigate their spin states and electrically induced charge carriers using transistor structures under device operation. The field-induced ESR technique is suitable for microscopic investigation because it can directly observe spins in the CNTs. We observed a clear correlation between the ESR decrease and the current increase under high charge density conditions, which directly demonstrated electrically induced ambipolar spin vanishments in the CNTs. The result provides a first clear evidence of antimagnetic interactions between spins of electrically induced charge carriers and vacancies in the CNTs. The ambipolar spin vanishments would contribute the improvement of transport properties of CNTs because of greatly reduced carrier scatterings. PMID:26148487

  15. Theory of the ac spin-valve effect.

    PubMed

    Kochan, Denis; Gmitra, Martin; Fabian, Jaroslav

    2011-10-21

    The spin-valve complex magnetoimpedance of symmetric ferromagnet-normal-metal-ferromagnet junctions is investigated within the drift-diffusion (standard) model of spin injection. The ac magnetoresistance-the real part difference of the impedances of the parallel and antiparallel magnetization configurations-exhibits an overall damped oscillatory behavior, as an interplay of the diffusion and spin relaxation times. In wide junctions the ac magnetoresistance oscillates between positive and negative values, reflecting resonant amplification and depletion of the spin accumulation, while the line shape for thin tunnel junctions is predicted to be purely Lorentzian. The ac spin-valve effect could be a technique to extract spin transport and spin relaxation parameters in the absence of a magnetic field and for a fixed sample size. PMID:22107552

  16. Multiple-quantum NMR studies of spin clusters in liquid crystals and zeolites

    SciTech Connect

    Pearson, J. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1991-07-01

    This work will describe the use of MQ NMR to study spin clusters in anisotropic materials. A technique known as multiple-quantum spin counting was used to determine average spin cluster sizes liquid crystalline materials and in faujacitic zeolites containing aromatic hydrocarbons. The first half of the thesis will describe MQ NMR and the MQ spin counting technique, and the second half of the thesis will describe the actual experiments and their results.

  17. Kagome spin ice

    NASA Astrophysics Data System (ADS)

    Mellado, Paula

    Spin ice in magnetic pyrochlore oxides is a peculiar magnetic state. Like ordinary water ice, these materials are in apparent violation with the third law of thermodynamics, which dictates that the entropy of a system in thermal equilibrium vanishes as its temperature approaches absolute zero. In ice, a "zero-point" entropy is retained down to low temperatures thanks to a high number of low-energy positions of hydrogen ions associated with the Bernal-Fowler ice-rules. Spins in pyrochlore oxides Ho2Ti 2O7 and Dy2Ti2O7 exhibit a similar degeneracy of ground states and thus also have a sizable zero-point entropy. A recent discovery of excitations carrying magnetic charges in pyrochlore spin ice adds another interesting dimension to these magnets. This thesis is devoted to a theoretical study of a two-dimensional version of spin ice whose spins reside on kagome, a lattice of corner-sharing triangles. It covers two aspects of this frustrated classical spin system: the dynamics of artificial spin ice in a network of magnetic nanowires and the thermodynamics of crystalline spin ice. Magnetization dynamics in artificial spin ice is mediated by the emission, propagation and absorption of domain walls in magnetic nanowires. The dynamics shows signs of self-organized behavior such as avalanches. The theoretical model compares favorably to recent experiments. The thermodynamics of the microscopic version of spin ice on kagome is examined through analytical calculations and numerical simulations. The results show that, in addition to the high-temperature paramagnetic phase and the low-temperature phase with magnetic order, spin ice on kagome may have an intermediate phase with fluctuating spins and ordered magnetic charges. This work is concluded with a calculation of the entropy of kagome spin ice at zero temperature when one of the sublattices is pinned by an applied magnetic field and the system breaks up into independent spin chains, a case of dimensional reduction.

  18. Resonant and Time-Resolved Spin Noise Spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Xinlin; Pursley, Brennan; Sih, Vanessa

    Spin noise spectroscopy is a technique which can probe the system while it remains in equilibrium. It was first demonstrated in atomic gases and then in solid state systems. Most existing spin noise measurement setups digitize the spin fluctuation signal and then analyze the power spectrum. Recently, pulsed lasers have been used to expand the bandwidth of accessible dynamics and allow direct time-domain correlation measurements. Here we develop and test a model for ultrafast pulsed laser spin noise measurements as well as a scheme to measure spin lifetimes longer than the laser repetition period. For the resonant spin noise technique, analog electronics are used to capture correlations from the extended pulse train, and the signal at a fixed time delay is measured as a function of applied magnetic field.

  19. Scaling behavior of spin gap of the bond alternating anisotropic spin-1/2 Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Paul, Susobhan; Ghosh, Asim Kumar

    2016-05-01

    Scaling behavior of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain has been studied both in ferromagnetic (FM) and antiferromagnetic (AFM) cases. Spin gap has been estimated by using exact diagonalization technique. All those quantities have been obtained for a region of anisotropic parameter Δ defined by 0≤Δ≤1. Spin gap is found to develop as soon as the non-uniformity in the alternating bond strength is introduced in the AFM regime which furthermore sustains in the FM regime as well. Scaling behavior of the spin gap has been studied by introducing scaling exponent. The variation of scaling exponents with Δ is fitted with a regular function.

  20. Quadrupolar Spin Orders in FeSe

    NASA Astrophysics Data System (ADS)

    Wang, Zhentao; Nevidomskyy, Andriy

    Motivated by the absence of long-range magnetic order and the strong spin fluctuations observed in the Fe-based superconductor FeSe, we study spin-1 model on a square lattice up to next-nearest neighbor Heisenberg and biquadratic spin exchanges. The zero-temperature variational phase diagram gives the conventional antiferromagnetic order and also more exotic quadrupolar spin phases. These quadrupolar phases do not host long-range magnetic order and preserve time-reversal symmetry, but break the spin SU(2) symmetry. In particular, we observe a robust ferroquadrupolar order (FQ) in immediate proximity to the columnar AFM phase. We envision that FeSe may be positioned within the FQ phase close to the phase boundary. Using the flavor-wave technique, we calculate the structure factor inside the FQ phase and find a Goldstone mode emerging from Q = (0 , 0) , which however bears zero spectral weight at ω = 0 due to time reversal symmetry. At the same time, we observe strong spin fluctuations near (π , 0) / (0 , π) , which agrees with the recent neutron scattering experiments. Further, we calculate the higher order interactions between the (π , 0) and (0 , π) spin fluctuations inside the FQ phase, which may shed light on the C4 symmetry breaking in the nematic phase of FeSe.

  1. Nanoscale imaging of paramagnetic spin labels using a single spin in diamond

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila; Myers, Bryan; Pelliccione, Matthew; Jayich, Ania

    Spin-labeling molecules with paramagnetic species is a powerful technique for probing molecular structure. However, current techniques are ensemble measurements, inherently lacking the sensitivity to detect a single spin or the conformational properties of a single biomolecule. In this talk, we demonstrate an imaging technique that has the promise of single-spin imaging and ultimately molecular structure imaging. We present two-dimensional nanoscale imaging of a monolayer of gadolinium (Gd) atomic spin labels at ambient conditions. The sensing element is a single nitrogen-vacancy (NV) center in diamond. A patterned monolayer of Gd atoms self-assembled on a Si atomic force microscopy tip is controllably interacted with and detected by the NV center. The fluctuating magnetic field generated by GHz-scale Gd spin flips relaxes the NV center in a manner that depends strongly on the Gd-NV separation. Using this technique, we demonstrate a Gd-induced reduction of the T1 relaxation time of the NV center with nm spatial resolution. Our results indicate that nanometer-scale imaging of individual electronic spins at ambient conditions is within reach. This will ultimately enable the study of structural and functional studies of single biomolecules in their native, folded state.

  2. Spin Echo in Spinor Dipolar Bose-Einstein Condensates

    SciTech Connect

    Yasunaga, Masashi; Tsubota, Makoto

    2008-11-28

    We theoretically propose and numerically realize spin echo in a spinor Bose-Einstein condensate (BEC). We investigate the influence on the spin echo of phase separation of the condensate. The equation of motion of the spin density exhibits two relaxation times. We use two methods to separate the relaxation times and hence demonstrate a technique to reveal magnetic dipole-dipole interactions in spinor BECs.

  3. Spin Exchange in Rydberg EIT

    NASA Astrophysics Data System (ADS)

    Nicholson, Travis; Thompson, Jeff; Liang, Qiyu; Cantu, Sergio; Venkatramani, Aditya; Pohl, Thomas; Choi, Soonwon; Lukin, Mikhail; Vuletic, Vladan

    2016-05-01

    The realization of strong optical nonlinearities between two photons has been a longstanding goal in quantum science. We achieve large single-photon-level nonlinearities with Rydberg EIT, which combines slow light techniques with strongly interacting Rydberg states. For two Rydberg atoms in the same state, a Van der Waals interaction is the dominant coupling mechanism. Inherently stronger dipole-dipole interactions are also possible between atoms in different Rydberg states. Using light storage and microwave resonances, we study the effect of dipole-dipole interactions in Rydberg EIT. We observe a coherent spin exchange effect for pairs of states dominated by dipole-dipole interactions. Spin exchange manifests as an increase in optical transmission through a cold Rubidium gas that is highly dissipative in the presence of Van der Waals interactions. We also observe a controlled π / 2 phase shift due to this effect, which paves the way for robust, universal all-optical quantum gates.

  4. Integral dependent spin couplings in CI calculations

    NASA Technical Reports Server (NTRS)

    Iberle, K.; Davidson, E. R.

    1982-01-01

    Although the number of ways to combine Slater determinants to form spin eigenfunctions increases rapidly with the number of open shells, most of these spin couplings will make only a small contribution to a given state, provided the spin coupling is chosen judiciously. The technique of limiting calculations to the interacting subspace pioneered by Bunge (1970) was employed by Munch and Davidson (1975) to the vanadium atom. The use of an interacting space looses its advantage in more complex cases. However, the problem can always be reduced to only one interacting spin coupling by making the coefficients integral dependent. The present investigation is concerned with the performance of integral dependent interacting couplings, taking into account the results of three test calculations.

  5. Spin accumulation in the extrinsic spin Hall effect

    NASA Astrophysics Data System (ADS)

    Tse, Wang-Kong; Fabian, J.; Žutić, I.; Das Sarma, S.

    2005-12-01

    The drift-diffusion formalism for spin-polarized carrier transport in semiconductors is generalized to include spin-orbit coupling. The theory is applied to treat the extrinsic spin Hall effect using realistic boundary conditions. It is shown that carrier and spin-diffusion lengths are modified by the presence of spin-orbit coupling and that spin accumulation due to the extrinsic spin Hall effect is strongly and qualitatively influenced by boundary conditions. Analytical formulas for the spin-dependent carrier recombination rates and inhomogeneous spin densities and currents are presented.

  6. Microscopic understanding of spin current probed by shot noise

    NASA Astrophysics Data System (ADS)

    Arakawa, Tomonori

    The spin currents is one of key issue in the spintronics field and the generation and detection of those have been intensively studied by using various materials. The analysis of experiments, however, relies on phenomenological parameters such as spin relaxation length and spin flip time. The microscopic nature of the spin current such as energy distribution and energy relaxation mechanism, has not yet well understood. To establish a better microscopic understanding of spin currents, I focused on the shot noise measurement which is well established technique in the field of mesoscopic physics [Y. M. Blanter and M. B üttiker, Phys. Rep. 336, 1 (2000).]. Although there are many theoretically works about shot noise in the presence of spin currents, for example detection of spin accumulation [J. Meair, P. Stano, and P. Jacquod, Phys. Rev. B 84 (2011).], estimation of spin flip currents, and so on, these predictions have never been experimentally confirmed. In this context, we reported the first experimental detention of shot noise in the presence of the spin accumulation in a (Ga,Mn)As/tunnel barrier/n-GaAs based lateral spin valve device [T. Arakawa et al., Phys. Rev. Lett. 114, 016601 (2015).]. Together with this result, we found however that the effective temperature of the spin current drastically increases due to the spin injection process. This heating of electron system could be a big problem to realize future spin current devices by using quantum coherence, because the effective temperature rise directly related to the destruction of the coherence of the spin current. Therefore, then we focused on the mechanism of this heating and the energy relaxation in a diffusive channel. By measuring current noise and the DC offset voltage in the usual non-local spin valve signal as a function of the spin diffusion channel length, we clarified that the electron-electron interaction length, which is the characteristic length for the relaxation of the electron system, is

  7. Spin evolution in a radio frequency field studied through muon spin resonance.

    PubMed

    Clayden, Nigel J; Cottrell, Stephen P; McKenzie, Iain

    2012-01-01

    The application of composite inversion pulses to a novel area of magnetic resonance, namely muon spin resonance, is demonstrated. Results confirm that efficient spin inversion can readily be achieved using this technique, despite the challenging experimental setup required for beamline measurements and the short lifetime (≈2.2μs) associated with the positive muon probe. Intriguingly, because the muon spin polarisation is detected by positron emission, the muon magnetisation can be monitored during the radio-frequency (RF) pulse to provide a unique insight into the effect of the RF field on the spin polarisation. This technique is used to explore the application of RF inversion sequences under the non-ideal conditions typically encountered when setting up pulsed muon resonance experiments.

  8. Separation of Spin and Charge Currents in a Superconductor

    NASA Astrophysics Data System (ADS)

    Hershfield, Selman

    1998-03-01

    Injecting electrons from a ferromagnet to a superconductor creates a nonequilibrium spin density. This is the spin analog to the well studied charge imbalance problem in superconductor-normal-metal tunnel junctions. We calculate the charge and spin imbalance in a unified manner.(Hui Lin Zhao and Selman Hershfield, Phys. Rev. B) 52, 3632 (1995). If one measures the charge and spin imbalance with a ferromagnetic voltage probe which has two possible spin configurations, 1 and 2, then the sum of the two voltages, V1 and V_2, measures the nonequilibrium charge density and the difference of the two voltages, V1 - V_2, measures the nonequilibrium spin density. One can use this technique to see the spatial separation of spin and charge currents in a superconductor: In a superconductor the charge current is carried by the condensate within a penetration length of the surface, and the spin current, which is carried by the the quasiparticles, can exist in the bulk. By placing a detection voltage probe within a few spin diffusion lengths of the injected electrons, but much further than the penetration length, one can see a nonequilibrium magnetization (and magnetic current) with no electrical current. We discuss the different spin relaxation rates and present explicit calculations of the spatial dependence of the spin and charge currents.

  9. Spin Hall effects

    NASA Astrophysics Data System (ADS)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  10. Control of propagating spin waves via spin transfer torque in a metallic bilayer waveguide

    NASA Astrophysics Data System (ADS)

    An, Kyongmo; Birt, Daniel R.; Pai, Chi-Feng; Olsson, Kevin; Ralph, Daniel C.; Buhrman, Robert A.; Li, Xiaoqin

    2014-04-01

    We investigate the effect of a direct current on propagating spin waves in a CoFeB/Ta bilayer structure. Using the micro-Brillouin light scattering technique, we observe that the spin-wave damping and amplitude may be attenuated or amplified depending on the direction of the current and the applied magnetic field. Our work suggests an effective approach for electrically controlling the propagation of spin waves in a magnetic waveguide and may be useful in a number of applications such as phase-locked nano-oscillators and hybrid information-processing devices.

  11. Spin caloritronics in graphene

    SciTech Connect

    Ghosh, Angsula; Frota, H. O.

    2015-06-14

    Spin caloritronics, the combination of spintronics with thermoelectrics, exploiting both the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge and temperature, is an emerging technology mainly in the development of low-power-consumption technology. In this work, we study the thermoelectric properties of a Rashba dot attached to two single layer/bilayer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current, which depends on the temperature and chemical potential. We demonstrate that the Rashba dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature, and also the Rashba term have been observed.

  12. Spin caloritronics in graphene

    NASA Astrophysics Data System (ADS)

    Frota, H. O.; Ghosh, Angsula

    2014-08-01

    Spin caloritronics, the combination of spintronics with thermoelectrics, based on spin and heat transport has attracted a great attention mainly in the development of low-power-consumption technology. In this work we study the thermoelectric properties of a quantum dot attached to two single layer graphene sheets as leads. The temperature difference on the two graphene leads induces a spin current which depends on the temperature and chemical potential. We demonstrate that the quantum dot behaves as a spin filter for selected values of the chemical potential and is able to filter electrons by their spin orientation. The spin thermopower has also been studied where the effects of the chemical potential, temperature and also the Coulomb repulsion due to the double occupancy of an energy level have been observed.

  13. Single-spin stochastic optical reconstruction microscopy

    PubMed Central

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Neumann, Philipp; Wrachtrup, Jörg

    2014-01-01

    We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub–diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub–diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations. PMID:25267655

  14. Picosecond Spin Caloritronics

    NASA Astrophysics Data System (ADS)

    Cahill, David G.

    The coupling of spin and heat, i.e., spin caloritronics, gives rise to new physical phenomena in nanoscale spin devices and new ways to manipulate local magnetization. Our work in this field takes advantage of recent advances in the measurement and understanding of heat transport at the nanoscale using ultrafast lasers. We use a picosecond duration pump laser pulses as a source of heat and picosecond duration probe laser pulses to detect changes in temperature, spin accumulation, and spin transfer torque using a combination of time-domain thermoreflectance and time-resolved magneto-optic Kerr effect Our pump-probe optical methods enable us to change the temperature of ferromagnetic layers on a picosecond time-scale and generate enormous heat fluxes on the order of 100 GW m-2 that persist for ~ 30 ps. Thermally-driven ultrafast demagnetization of a perpendicular ferromagnet leads to spin accumulation in a normal metal and spin transfer torque in an in-plane ferromagnet. The data are well described by models of spin generation and transport based on differences and gradients of thermodynamic parameters. The spin-dependent Seebeck effect of a perpendicular ferromagnetic layer converts a heat current into spin current, which in turn can be used to exert a spin transfer torque (STT) on a second ferromagnetic layer with in-plane magnetization. Using a [Co,Ni] multilayer as the source of spin, an energy fluence of ~ 4 J m-2 creates thermal STT sufficient to induce ~ 1 % tilting of the magnetization of a 2 nm-thick CoFeB layer.

  15. Spin coating apparatus

    DOEpatents

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  16. The effect of spin in swing bowling in cricket: model trajectories for spin alone

    NASA Astrophysics Data System (ADS)

    Robinson, Garry; Robinson, Ian

    2015-02-01

    significant. For a given amount of spin the amount of side-ways movement increases as the bowler's delivery arm becomes more horizontal. This technique could also be exploited by normal spin bowlers as well as swing bowlers.

  17. Rockets for spin recovery

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.

    1980-01-01

    The potential effectiveness of rockets as an auxiliary means for an aircraft to effect recovery from spins was investigated. The advances in rocket technology produced by the space effort suggested that currently available systems might obviate many of the problems encountered in earlier rocket systems. A modern fighter configuration known to exhibit a flat spin mode was selected. An analytical study was made of the thrust requirements for a rocket spin recovery system for the subject configuration. These results were then applied to a preliminary systems study of rocket components appropriate to the problem. Subsequent spin tunnel tests were run to evaluate the analytical results.

  18. Parallel algorithms for computing linked list prefix

    SciTech Connect

    Han, Y. )

    1989-06-01

    Given a linked list chi/sub 1/, chi/sub 2/, ....chi/sub n/ with chi/sub i/ following chi/sub i-1/ in the list and an associative operation O, the linked list prefix problem is to compute all prefixes O/sup j//sub i=1/chi/sub 1/, j=1,2,...,n. In this paper the authors study the linked list prefix problem on parallel computation models. A deterministic algorithm for computing a linked list prefix on a completely connected parallel computation model is obtained by applying vector balancing techniques. The time complexity of the algorithm is O(n/rho + rho log rho), where n is the number of elements in the linked list and rho is the number of processors used. Therefore their algorithm is optimal when n {ge}rho/sup 2/logrho. A PRAM linked list prefix algorithm is also presented. This PRAM algorithm has time complexity O(n/rho + log rho) with small multiplicative constant. It is optimal when n {ge}rho log rho.

  19. Course Resource Lists.

    ERIC Educational Resources Information Center

    England, Robert G.

    The Mountain-Plains Course Resource List is presented by job title for 26 curriculum areas. For each area the printed materials, audiovisual aids, and equipment needed for the course are listed. The 26 curriculum areas are: mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution,…

  20. NSSDC Data Listing

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Data available from the National Space Science Data Center (NSSDC) are listed. The spacecraft, principal investigator, the experiment, and time span of the data are given. A listing is also included of ground-based data, models, computer routines and composite spacecraft data that are available from NSSDC.

  1. Associative list processing unit

    DOEpatents

    Hemmert, Karl Scott; Underwood, Keith D.

    2013-01-29

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.

  2. Dissecting a waiting list.

    PubMed

    Pope, C J; Roberts, J A; Black, N A

    1991-07-01

    This study examines a list of 1,283 patients waiting for general and orthopaedic surgery in an outer London borough. In general surgery varicose vein and hernia surgery accounted for 60% of those waiting more than one year. Of those who had waited more than a year on the orthopaedic list 25% were waiting for knee replacement surgery. The average length of time spent waiting was 10 months, with some people waiting over 5 years. The impact of the numbers waiting a long time on aggregate waiting time was highlighted by weighting the numbers waiting by the months spent waiting. Analysis of urgency codes indicates that although there was a statistically significant relationship between urgency and the length of waiting time there were some anomalies. There was considerable inter-consultant variation in list size, waiting times and the case mix. Analysis of the flows onto the list and work done in one month showed that it would take a considerable time to clear some lists at present rates of activity. Disaggregated information such as this which explores the flows of patients on to and off of the lists is essential for the management of waiting lists and will become increasingly important as waiting lists become a feature of--'contracts'--service agreements, in the reformed NHS.

  3. Inverse design of disordered stealthy hyperuniform spin chains

    NASA Astrophysics Data System (ADS)

    Chertkov, Eli; DiStasio, Robert A.; Zhang, Ge; Car, Roberto; Torquato, Salvatore

    2016-02-01

    Positioned between crystalline solids and liquids, disordered many-particle systems which are stealthy and hyperuniform represent new states of matter that are endowed with novel physical and thermodynamic properties. Such stealthy and hyperuniform states are unique in that they are transparent to radiation for a range of wave numbers around the origin. In this work, we employ recently developed inverse statistical-mechanical methods, which seek to obtain the optimal set of interactions that will spontaneously produce a targeted structure or configuration as a unique ground state, to investigate the spin-spin interaction potentials required to stabilize disordered stealthy hyperuniform one-dimensional (1D) Ising-type spin chains. By performing an exhaustive search over the spin configurations that can be enumerated on periodic 1D integer lattices containing N =2 ,3 ,...,36 sites, we were able to identify and structurally characterize all stealthy hyperuniform spin chains in this range of system sizes. Within this pool of stealthy hyperuniform spin configurations, we then utilized such inverse optimization techniques to demonstrate that stealthy hyperuniform spin chains can be realized as either unique or degenerate disordered ground states of radial long-ranged (relative to the spin-chain length) spin-spin interactions. Such exotic ground states appear to be distinctly different from spin glasses in both their inherent structural properties and the nature of the spin-spin interactions required to stabilize them. As such, the implications and significance of the existence of these disordered stealthy hyperuniform ground-state spin systems warrants further study, including whether their bulk physical properties and excited states, like their many-particle system counterparts, are singularly remarkable, and can be experimentally realized.

  4. Electrically-Induced Polarization and the Spin Hall Effect in Semiconductors at Room Temperature

    NASA Astrophysics Data System (ADS)

    Stern, Nathaniel

    2007-03-01

    The capability to generate and manipulate spin polarization through the spin-orbit interaction inspires growing interest in all-electrical techniques to exploit electron spins for applications in semiconductor spintronics. Experiments show spin polarization can be electrically generated by current- induced spin polarization from internal magnetic fields in the bulk of a conducting channel, or accumulation of spin polarization near sample edges due to transverse spin currents generated by the spin Hall. These spin currents can drive spin accumulation over micron length scales in semiconductor arms transverse to a conducting channel. More recently, we investigate electrical generation of spin polarization in n-ZnSe epilayers using Kerr rotation spectroscopy The internal magnetic field is studied and found to only be measurable in strained layers, likely due to the weak spin-orbit interaction in ZnSe. Despite this, unstrained n-ZnSe layers exhibit both in-plane bulk current-induced spin polarization and an out-of-plane spin accumulation of opposite sign on opposite edges of a conducting channel indicative of the spin Hall effect. The spin Hall conductivity is estimated according to a spin accumulation model and is found to be consistent with the extrinsic spin- dependent scattering mechanism. Both the current-induced spin polarization and the spin Hall effect are robust to room temperature in ZnSe. These results suggest the potential for practical utilization of electrically generated spin polarization in room temperature semiconductor devices. V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C. Gossard and D. D. Awschalom, Phys. Rev. Lett. 97, 096605 (2006). N.P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, Phys. Rev. Lett. 97, 126603 (2006).

  5. Enhanced spin pumping at yttrium iron garnet/Au interfaces

    SciTech Connect

    Burrowes, C.; Heinrich, B.; Kardasz, B.; Montoya, E. A.; Girt, E.; Sun Yiyan; Song, Young-Yeal; Wu Mingzhong

    2012-02-27

    Spin injection across the ferrimagnetic insulator yttrium iron garnet (YIG)/normal metal Au interface was studied using ferromagnetic resonance. The spin mixing conductance was determined by comparing the Gilbert damping parameter {alpha} in YIG/Au and YIG/Au/Fe heterostructures. The main purpose of this study was to correlate the spin pumping efficiency with chemical modifications of the YIG film surface using in situ etching and deposition techniques. By means of Ar{sup +} ion beam etching, one is able to increase the spin mixing conductance at the YIG/Au interface by a factor of 5 compared to the untreated YIG/Au interface.

  6. Effect of spin rotation coupling on spin transport

    SciTech Connect

    Chowdhury, Debashree Basu, B.

    2013-12-15

    We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.

  7. Electron spin susceptibility of superconductors

    SciTech Connect

    Levitov, L.S.; Nazarov, Y.V.; Eliashberg, G.M.

    1985-03-10

    The effect of spin polarization due to the Meissner currents on the electron spin susceptibility of a superconductor is studied. This effect accounts for a susceptibility considerably stronger than that of a normal metal. The spin distribution is discussed.

  8. Direct measurement of spin accumulation in the Cu layer due to spin currents from Co

    NASA Astrophysics Data System (ADS)

    Kukreja, Roopali

    Spin transport is the key for reading or writing bits in spintronic devices by utilizing the Giant Magnetoresistance effect or the spin transfer torque effect. Spin currents have also been shown to play important role in the ultrafast manipulation of magnetization via all optical switching. Hence, detailed understanding of spin currents from ferromagnet to non-magnets is a crucial step in development of spintronic devices. However, directly observing these spin currents is extremely challenging due to magnetic moment injected into non-magnet being very small, less than 1/10000 of a regular ferromagnet. In this talk, I will present our recent measurements on the spin currents from a thin film Co ferromagnet into non-magnetic Cu metal in a nanopillar device. We have developed an extremely sensitive spectro-microscopy detection method based on element specific x-ray magnetic circular dichroism where current pulses driving the spin currents into the Cu layer are synchronized with the synchrotron x-ray photons. The sensitivity of this `lock-in' technique has allowed us to detect the extremely small transient Cu magnetization. We observe two spin currents induced effects in the Cu layer. The first effect is the transiently induced magnetization which occurs in bulk of the Cu layer due to spin accumulation and has a magnitude of 0.00003 μB per atom. The second effect occurs at the Co/Cu interface where we observe a 10% increase or 0.004 μB per atom for the hybridized Cu atoms due to spin torque-alignment.

  9. Spin Waves in Quasiequilibrium Spin Systems

    SciTech Connect

    Bedell, Kevin S.; Dahal, Hari P.

    2006-07-28

    Using the Landau Fermi liquid theory we discovered a new propagating transverse spin wave in a paramagnetic system which is driven slightly out of equilibrium without applying an external magnetic field. We find a gapless mode which describes the uniform precession of the magnetization in the absence of a magnetic field. We also find a gapped mode associated with the precession of the spin current around the internal field. The gapless mode has a quadratic dispersion leading to a T{sup 3/2} contribution to the specific heat. These modes significantly contribute to the dynamic structure function.

  10. Spin coating of electrolytes

    DOEpatents

    Stetter, Joseph R.; Maclay, G. Jordan

    1989-01-01

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  11. Coherent spin-networks

    SciTech Connect

    Bianchi, Eugenio; Magliaro, Elena; Perini, Claudio

    2010-07-15

    In this paper we discuss a proposal of coherent states for loop quantum gravity. These states are labeled by a point in the phase space of general relativity as captured by a spin-network graph. They are defined as the gauge-invariant projection of a product over links of Hall's heat kernels for the cotangent bundle of SU(2). The labels of the state are written in terms of two unit vectors, a spin and an angle for each link of the graph. The heat-kernel time is chosen to be a function of the spin. These labels are the ones used in the spin-foam setting and admit a clear geometric interpretation. Moreover, the set of labels per link can be written as an element of SL(2,C). These states coincide with Thiemann's coherent states with the area operator as complexifier. We study the properties of semiclassicality of these states and show that, for large spins, they reproduce a superposition over spins of spin-networks with nodes labeled by Livine-Speziale coherent intertwiners. Moreover, the weight associated to spins on links turns out to be given by a Gaussian times a phase as originally proposed by Rovelli.

  12. Sparkling and Spinning Words.

    ERIC Educational Resources Information Center

    Carlson, Ruth Kearney

    1964-01-01

    Teachers should foster in children's writing the use of words with "sparkle" and "spin"--"sparkle" implying brightness and vitality, "spin" connoting industry, patience, and painstaking work. By providing creative listening experiences with good children's or adult literature, the teacher can encourage students to broaden their imaginations and…

  13. Spin-orbit photonics

    NASA Astrophysics Data System (ADS)

    Cardano, Filippo; Marrucci, Lorenzo

    2015-12-01

    Spin-orbit optical phenomena involve the interaction of the photon spin with the light wave propagation and spatial distribution, mediated by suitable optical media. Here we present a short overview of the emerging photonic applications that rely on such effects.

  14. Single-spin CCD

    NASA Astrophysics Data System (ADS)

    Baart, T. A.; Shafiei, M.; Fujita, T.; Reichl, C.; Wegscheider, W.; Vandersypen, L. M. K.

    2016-04-01

    Spin-based electronics or spintronics relies on the ability to store, transport and manipulate electron spin polarization with great precision. In its ultimate limit, information is stored in the spin state of a single electron, at which point quantum information processing also becomes a possibility. Here, we demonstrate the manipulation, transport and readout of individual electron spins in a linear array of three semiconductor quantum dots. First, we demonstrate single-shot readout of three spins with fidelities of 97% on average, using an approach analogous to the operation of a charge-coupled device (CCD). Next, we perform site-selective control of the three spins, thereby writing the content of each pixel of this ‘single-spin charge-coupled device’. Finally, we show that shuttling an electron back and forth in the array hundreds of times, covering a cumulative distance of 80 μm, has negligible influence on its spin projection. Extrapolating these results to the case of much larger arrays points at a diverse range of potential applications, from quantum information to imaging and sensing.

  15. Observation of the spin Peltier effect for magnetic insulators.

    PubMed

    Flipse, J; Dejene, F K; Wagenaar, D; Bauer, G E W; Ben Youssef, J; van Wees, B J

    2014-07-11

    We report the observation of the spin Peltier effect (SPE) in the ferrimagnetic insulator yttrium iron garnet (YIG), i.e., a heat current generated by a spin current flowing through a platinum (Pt)|YIG interface. The effect can be explained by the spin transfer torque that transforms the spin current in the Pt into a magnon current in the YIG. Via magnon-phonon interactions the magnetic fluctuations modulate the phonon temperature that is detected by a thermopile close to the interface. By finite-element modeling we verify the reciprocity between the spin Peltier and spin Seebeck effect. The observed strong coupling between thermal magnons and phonons in YIG is attractive for nanoscale cooling techniques. PMID:25062233

  16. How well can we measure black hole spin?

    NASA Astrophysics Data System (ADS)

    Bonson, K.; Gallo, L.

    2015-07-01

    Being one of only two fundamental properties black holes possess, the spin of supermassive black holes (SMBHs) is of great interest for understanding accretion processes and galaxy evolution. However, in these early days of spin measurements, we often struggle to obtain consistent spin values for the same object because of different modeling approaches. Here we examine various techniques and observing conditions to determine which yield the most accurate spin measurements. We have created and fit over 6500 simulated Seyfert 1 spectra, using both XMM-Newton and NuStar responses, in an effort to uncover any systematic ``blind spots'' and determine how best to approach measuring spin in AGN. With the next generation of high-energy observatories like Astro-H and ATHENA, it is imperative that we understand just how well we are presently measuring spin and how we can maximize the potential of current and future missions.

  17. Probing spin-flip scattering in ballistic nanosystems.

    PubMed

    Zeng, Z M; Feng, J F; Wang, Y; Han, X F; Zhan, W S; Zhang, X-G; Zhang, Z

    2006-09-01

    Because spin-flip length is longer than the electron mean-free path in a metal, past studies of spin-flip scattering are limited to the diffusive regime. We propose to use a magnetic double barrier tunnel junction to study spin-flip scattering in the nanometer sized spacer layer near the ballistic limit. We extract the voltage and temperature dependence of the spin-flip conductance Gs in the spacer layer from magnetoresistance measurements. In addition to spin scattering information including the mean-free path (70 nm) and the spin-flip length (1.0-2.6 microm) at 4.2 K, this technique also yields information on the density of states and quantum well resonance in the spacer layer. PMID:17025839

  18. Spin-labeled polyribonucleotides.

    PubMed Central

    Petrov, A I; Sukhorukov, B I

    1980-01-01

    Poly (U), poly (C) and poly (A) were spin labeled with N-(2,2,5,5-tetramethyl-3-carbonylpyrroline-1-oxyl)-imidazole. This spin label interacts selectively with 2' OH ribose groups of polynucleotides and does not modify the nucleic acid bases. The extent of spin labeling is not dependent upon the nature of the base and is entirely determined by rigidity of the secondary structure of the polynucleotide. The extent of modification for poly (U), poly (C) and poly (A) was 4.2, 1.7 and 1.5 per cent, respectively, the secondary structure of the polynucleotides being practically unchanged. Some physico-chemical properties of the spin-labeled polynucleotides were investigated by ESR spectroscopy. Rotational correlation times of the spin label and activation energy of its motion were calculated. PMID:6253911

  19. Spin-Wave Diode

    NASA Astrophysics Data System (ADS)

    Lan, Jin; Yu, Weichao; Wu, Ruqian; Xiao, Jiang

    2015-10-01

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.

  20. Precessional Instability in Binary Black Holes with Aligned Spins.

    PubMed

    Gerosa, Davide; Kesden, Michael; O'Shaughnessy, Richard; Klein, Antoine; Berti, Emanuele; Sperhake, Ulrich; Trifirò, Daniele

    2015-10-01

    Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.

  1. Precessional Instability in Binary Black Holes with Aligned Spins.

    PubMed

    Gerosa, Davide; Kesden, Michael; O'Shaughnessy, Richard; Klein, Antoine; Berti, Emanuele; Sperhake, Ulrich; Trifirò, Daniele

    2015-10-01

    Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes. PMID:26551802

  2. Spin polarized transport in MoS2

    NASA Astrophysics Data System (ADS)

    Dankert, André; Pashaei, Parham; Mutta, Venkata Kamalakar; Dash, Saroj Prasad; Spintronic SPD Team

    The two-dimensional (2D) semiconductor MoS2 possesses a high potential for spintronic devices due to a rich spin-valley physics and large spin-orbit coupling. While there have been significant advances in studying the spin and valley dynamics in MoS2 using optical spectroscopy techniques, electronic spin transport in semiconducting MoS2 or its heterostructures have not yet been demonstrated. Here we report the electronic and spin transport properties in MoS2 employing ferromagnetic electrodes in a vertical device geometry. Such vertical devices with MoS2 channel length defined by the thickness of the 2D layer allow to investigate the spin injection, transport and detection. We observe a magnetoresistance effect over a large temperature range up to 300 K and investigate the temperature and bias dependence behavior. Using magnetotransport data and calculations we extract spin parameters in the MoS2 spin valve devices. These findings can open new avenues for exploring spin functionalities in 2D semiconductor heterostructures for spin logic applications.

  3. Fractionalized spin-wave continuum in kagome spin liquids

    NASA Astrophysics Data System (ADS)

    Mei, Jia-Wei; Wen, Xiao-Gang

    Motivated by spin-wave continuum (SWC) observed in recent neutron scattering experiments in Herbertsmithite, we use Gutzwiller-projected wave functions to study dynamic spin structure factor S (q , ω) of spin liquid states on the kagome lattice. Spin-1 excited states in spin liquids are represented by Gutzwiller-projected two-spinon excited wave functions. We investigate three different spin liquid candidates, spinon Fermi-surface spin liquid (FSL), Dirac spin liquid (DSL) and random-flux spin liquid (RSL). FSL and RSL have low energy peaks in S (q , ω) at K points in the extended magnetic Brillouin zone, in contrast to experiments where low energy peaks are found at M points. There is no obviuos contradiction between DSL and neutron scattering measurements. Besides a fractionalized spin (i.e. spin-1/2), spinons in DSL carry a fractionalized crystal momentum which is potentially detectable in SWC in the neutron scattering measurements.

  4. Non-diffusive spin dynamics in a two-dimensional electron gas

    SciTech Connect

    Weber, C.P.

    2010-04-28

    We describe measurements of spin dynamics in the two-dimensional electron gas in GaAs/GaAlAs quantum wells. Optical techniques, including transient spin-grating spectroscopy, are used to probe the relaxation rates of spin polarization waves in the wavevector range from zero to 6 x 10{sup 4} cm{sup -1}. We find that the spin polarization lifetime is maximal at nonzero wavevector, in contrast with expectation based on ordinary spin diffusion, but in quantitative agreement with recent theories that treat diffusion in the presence of spin-orbit coupling.

  5. Simulating and detecting the quantum spin Hall effect in the kagome optical lattice

    SciTech Connect

    Liu Guocai; Jiang Shaojian; Sun Fadi; Liu, W. M.; Zhu Shiliang

    2010-11-15

    We propose a model which includes a nearest-neighbor intrinsic spin-orbit coupling and a trimerized Hamiltonian in the kagome lattice and promises to host the transition from the quantum spin Hall insulator to the normal insulator. In addition, we design an experimental scheme to simulate and detect this transition in the ultracold atom system. The lattice intrinsic spin-orbit coupling is generated via the laser-induced-gauge-field method. Furthermore, we establish the connection between the spin Chern number and the spin-atomic density which enables us to detect the quantum spin Hall insulator directly by the standard density-profile technique used in atomic systems.

  6. Spin-Lattice Relaxation Times in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Wink, Donald J.

    1989-01-01

    Discussed are the mechanisms of nuclear magnetic relaxation, and applications of relaxation times. The measurement of spin-lattice relaxations is reviewed. It is stressed that sophisticated techniques such as these are becoming more important to the working chemist. (CW)

  7. High-spin states in odd-odd 168Tm

    SciTech Connect

    Cardona, M. A.; Hojman, D.; Davidson, J.; Davidson, M.; Kreiner, A. J.; Bazzacco, D.; Lenzi, S. M.; Rossi Alvarez, C.; Blasi, N.; Debray, M. E.; Levinton, G.; Marti, G.; De Poli, M.; Napoli, D. R.; Lo Bianco, G.

    2007-02-12

    High-spin states in 168Tm were investigated by means of {gamma}-ray spectroscopy techniques using the GASP multidetector array. Rotational bands have been established and identified in terms of their configurations.

  8. High-Spin Cobalt Hydrides for Catalysis

    SciTech Connect

    Holland, Patrick L.

    2013-08-29

    Organometallic chemists have traditionally used catalysts with strong-field ligands that give low-spin complexes. However, complexes with a weak ligand field have weaker bonds and lower barriers to geometric changes, suggesting that they may lead to more rapid catalytic reactions. Developing our understanding of high-spin complexes requires the use of a broader range of spectroscopic techniques, but has the promise of changing the mechanism and/or selectivity of known catalytic reactions. These changes may enable the more efficient utilization of chemical resources. A special advantage of cobalt and iron catalysts is that the metals are more abundant and cheaper than those currently used for major industrial processes that convert unsaturated organic molecules and biofeedstocks into useful chemicals. This project specifically evaluated the potential of high-spin cobalt complexes for small-molecule reactions for bond rearrangement and cleavage reactions relevant to hydrocarbon transformations. We have learned that many of these reactions proceed through crossing to different spin states: for example, high-spin complexes can flip one electron spin to access a lower-energy reaction pathway for beta-hydride elimination. This reaction enables new, selective olefin isomerization catalysis. The high-spin cobalt complexes also cleave the C-O bond of CO2 and the C-F bonds of fluoroarenes. In each case, the detailed mechanism of the reaction has been determined. Importantly, we have discovered that the cobalt catalysts described here give distinctive selectivities that are better than known catalysts. These selectivities come from a synergy between supporting ligand design and electronic control of the spin-state crossing in the reactions.

  9. Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects

    SciTech Connect

    Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo

    2015-02-14

    We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.

  10. Exploiting adiabatically switched RF-field for manipulating spin hyperpolarization induced by parahydrogen

    SciTech Connect

    Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Lukzen, Nikita N.; Ivanov, Konstantin L.; Vieth, Hans-Martin

    2015-12-21

    A method for precise manipulation of non-thermal nuclear spin polarization by switching a RF-field is presented. The method harnesses adiabatic correlation of spin states in the rotating frame. A detailed theory behind the technique is outlined; examples of two-spin and three-spin systems prepared in a non-equilibrium state by Para-Hydrogen Induced Polarization (PHIP) are considered. We demonstrate that the method is suitable for converting the initial multiplet polarization of spins into net polarization: compensation of positive and negative lines in nuclear magnetic resonance spectra, which is detrimental when the spectral resolution is low, is avoided. Such a conversion is performed for real two-spin and three-spin systems polarized by means of PHIP. Potential applications of the presented technique are discussed for manipulating PHIP and its recent modification termed signal amplification by reversible exchange as well as for preparing and observing long-lived spin states.

  11. NSSDC data listing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The first part of this listing, Satellite Data, is in an abbreviated form compared to the data catalogs published by NSSDC. It is organized by NSSDC spacecraft common name. The launch date and NSSDC ID are printed for each spacecraft. The experiments are listed alphabetically by the principal investigator's or team leader's last name following the spacecraft name. The experiment name and NSSDC ID are printed for each experiment. The data sets are listed by NSSDC ID following the experiment name. The data set name, data form code, quantity of data, and the time span of the data as verified by NSSDC are printed for each data set.

  12. Mesopotamian Star Lists

    NASA Astrophysics Data System (ADS)

    Horowitz, Wayne

    Sumerian and Akkadian names of stars and constellations occur in cuneiform texts for over 2,000 years, from the third millennium BC down to the death of cuneiform in the early first millennium AD, but no fully comprehensive list was ever compiled in antiquity. Lists of stars and constellations are available in both the lexical tradition and astronomical-astrological tradition of the cuneiform scribes. The longest list in the former is that in the series Urra = hubullu, in the latter, those in Mul-Apin.

  13. Experimental Demonstration of Scanned Spin-Precession Microscopy

    NASA Astrophysics Data System (ADS)

    Bhallamudi, V. P.; Wolfe, C. S.; Amin, V. P.; Labanowski, D. E.; Berger, A. J.; Stroud, D.; Sinova, J.; Hammel, P. C.

    2013-09-01

    We present a new tool for imaging spin properties. We show that a spatially averaged spin signal, measured as a function of a scanned magnetic probe’s position, contains information about the local spin properties. In this first demonstration we map the injected spin density in GaAs by measuring spin photoluminescence with a resolution of 1.2μm. The ultimate limit of the technique is set by the gradient of the probe’s field, allowing for a resolution beyond the optical diffraction limit. Such probes can also be integrated with other detection methods. This generality allows the technique to be extended to buried interfaces and optically inactive materials.

  14. SPIN POLARIZED PHOTOELECTRON SPECTROSCOPY AS A PROBE OF MAGNETIC SYSTEMS.

    SciTech Connect

    JOHNSON, P.D.; GUNTHERODT, G.

    2006-11-01

    Spin-polarized photoelectron spectroscopy has developed into a versatile tool for the study of surface and thin film magnetism. In this chapter, we examine the methodology of the technique and its recent application to a number of different problems. We first examine the photoemission process itself followed by a detailed review of spin-polarization measurement techniques and the related experimental requirements. We review studies of spin polarized surface states, interface states and quantum well states followed by studies of the technologically important oxide systems including half-metallic transition metal oxides, ferromagnet/oxide interfaces and the antiferromagnetic cuprates that exhibit high Tc Superconductivity. We also discuss the application of high-resolution photoemission with spin resolving capabilities to the study of spin dependent self energy effects.

  15. Spin-resolved Andreev transport through a double quantum-dot system: Role of the Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Nian, L. L.; Zhang, Lei; Tang, Fu-Rong; Xue, L. P.; Zhang, Rong; Bai, Long

    2014-06-01

    Using the nonequilibrium Green's function technique, spin-related Andreev tunneling through a double quantum-dot device attached to a ferromagnetic and a superconducting leads in the presence of the Rashba spin-orbit interaction is explored. We derive the general formulas of spin-related currents, which provide an insight into the Andreev reflection. Our study demonstrates that the spin-polarized Andreev reflection can be achieved, even the pure spin injection may be realized via the spin-orbit coupling and the Zeeman field. The currents show the interesting step-like behaviors and the pronounced rectification effect in the Andreev reflection regime, and the magnitude of currents can be enhanced with increasing the spin polarization of the ferromagnetic electrode. The strong Zemann field and the relative temperature are not favor of the spin-related Andreev transport; moreover, the existence of negative differential conductance of the spin-polarized current under certain conditions is observed and analyzed. These results provide the new ways to manipulate the spin-dependent transport.

  16. Spin-resolved Andreev transport through a double quantum-dot system: Role of the Rashba spin-orbit interaction

    SciTech Connect

    Nian, L. L.; Zhang, Lei; Tang, Fu-Rong; Xue, L. P.; Zhang, Rong; Bai, Long

    2014-06-07

    Using the nonequilibrium Green's function technique, spin-related Andreev tunneling through a double quantum-dot device attached to a ferromagnetic and a superconducting leads in the presence of the Rashba spin-orbit interaction is explored. We derive the general formulas of spin-related currents, which provide an insight into the Andreev reflection. Our study demonstrates that the spin-polarized Andreev reflection can be achieved, even the pure spin injection may be realized via the spin-orbit coupling and the Zeeman field. The currents show the interesting step-like behaviors and the pronounced rectification effect in the Andreev reflection regime, and the magnitude of currents can be enhanced with increasing the spin polarization of the ferromagnetic electrode. The strong Zemann field and the relative temperature are not favor of the spin-related Andreev transport; moreover, the existence of negative differential conductance of the spin-polarized current under certain conditions is observed and analyzed. These results provide the new ways to manipulate the spin-dependent transport.

  17. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    NASA Astrophysics Data System (ADS)

    Norris, Leigh Morgan

    particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  18. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    NASA Astrophysics Data System (ADS)

    Norris, Leigh Morgan

    particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  19. Anisotropic spin relaxation in graphene.

    PubMed

    Tombros, N; Tanabe, S; Veligura, A; Jozsa, C; Popinciuc, M; Jonkman, H T; van Wees, B J

    2008-07-25

    Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B=0 and B=2 T shows a 20% decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin-orbit effective fields in the in-plane and out-of-plane directions and discuss the role of the Elliott-Yafet and Dyakonov-Perel mechanisms for spin relaxation. PMID:18764351

  20. Spin-orbit coupling and quantum spin Hall effect for neutral atoms without spin flips.

    PubMed

    Kennedy, Colin J; Siviloglou, Georgios A; Miyake, Hirokazu; Burton, William Cody; Ketterle, Wolfgang

    2013-11-27

    We propose a scheme which realizes spin-orbit coupling and the quantum spin Hall effect for neutral atoms in optical lattices without relying on near resonant laser light to couple different spin states. The spin-orbit coupling is created by modifying the motion of atoms in a spin-dependent way by laser recoil. The spin selectivity is provided by Zeeman shifts created with a magnetic field gradient. Alternatively, a quantum spin Hall Hamiltonian can be created by all-optical means using a period-tripling, spin-dependent superlattice. PMID:24329453

  1. Microwave-induced spin currents in ferromagnetic-insulator|normal-metal bilayer system

    SciTech Connect

    Agrawal, Milan; Serga, Alexander A.; Lauer, Viktor; Papaioannou, Evangelos Th.; Hillebrands, Burkard; Vasyuchka, Vitaliy I.

    2014-09-01

    A microwave technique is employed to simultaneously examine the spin pumping and the spin Seebeck effect processes in a YIG|Pt bilayer system. The experimental results show that for these two processes, the spin current flows in opposite directions. The temporal dynamics of the longitudinal spin Seebeck effect exhibits that the effect depends on the diffusion of bulk thermal-magnons in the thermal gradient in the ferromagnetic-insulator|normal-metal system.

  2. Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals

    NASA Astrophysics Data System (ADS)

    Shiozaki, Toru

    2013-03-01

    We present an efficient algorithm for evaluating a class of two-electron integrals of the form {r}_{12}⊗ {r}_{12}/r_{12}^n over one-electron Gaussian basis functions. The full Breit interaction in four-component relativistic theories beyond the Gaunt term is such an operator with n = 3. Another example is the direct spin-spin coupling term in the quasi-relativistic Breit-Pauli Hamiltonian (n = 5). These integrals have been conventionally evaluated by expensive derivative techniques. Our algorithm is based on tailored Gaussian quadrature, similar to the Rys quadrature for electron repulsion integrals (ERIs), and can utilize the so-called horizontal recurrence relation to reduce the computational cost. The CPU time for computing all six Cartesian components of the Breit or spin-spin coupling integrals is found to be only 3 to 4 times that of the ERI evaluation.

  3. Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals.

    PubMed

    Shiozaki, Toru

    2013-03-21

    We present an efficient algorithm for evaluating a class of two-electron integrals of the form r12⊗r12/r12(n) over one-electron Gaussian basis functions. The full Breit interaction in four-component relativistic theories beyond the Gaunt term is such an operator with n = 3. Another example is the direct spin-spin coupling term in the quasi-relativistic Breit-Pauli Hamiltonian (n = 5). These integrals have been conventionally evaluated by expensive derivative techniques. Our algorithm is based on tailored Gaussian quadrature, similar to the Rys quadrature for electron repulsion integrals (ERIs), and can utilize the so-called horizontal recurrence relation to reduce the computational cost. The CPU time for computing all six Cartesian components of the Breit or spin-spin coupling integrals is found to be only 3 to 4 times that of the ERI evaluation. PMID:23534619

  4. Simulation of slow-motion CW EPR spectrum using stochastic Liouville equation for an electron spin coupled to two nuclei with arbitrary spins: Matrix elements of the Liouville superoperator

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.

    2007-11-01

    An algorithm is developed that extends the well known nitroxide slow-motional continuous wave electron paramagnetic resonance (EPR) simulation technique developed originally by Meirovitch et al. [E. Meirovitch, D. Inger, E. Inger, G. Moro, J.H. Freed, J. Chem. Phys. 77 (1982) 3915-3938], and implemented by Schneider and Freed [D.J. Schneider, J.H. Freed, Calculating slow motional magnetic resonance spectra: a user's guide, in: Biological Magnetic Resonance, vol. 6, Plenum Publishing Corporation, 1989]. This paper deals with the more general case of coupling of one electron spin to two nuclear spins. A complete listing of the matrix elements of the Liouville superoperator for this extension has been included. This advance has been successfully tested by reproducing the observed spectral lineshapes of a solution of the novel radical Mes ∗(CH 3)P-PMes ∗ [Mes ∗ = 2,4,6 (tBu) 3C 2H 2] in tetrahydrofuran (THF), in which the radical is undergoing slow tumbling, with the coupling of one electron spin to two physically and magnetically inequivalent phosphorus ( 31P) nuclei.

  5. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  6. An Energy Resource List.

    ERIC Educational Resources Information Center

    VocEd, 1979

    1979-01-01

    Selected energy resource information, from both federal and private sources, is listed under funding, general information and assistance, recycling, solar, transportation, utilities, and wind power. Books, pamphlets, films, journals, newsletters, and other materials are included. (MF)

  7. Associative list processing unit

    DOEpatents

    Hemmert, Karl Scott; Underwood, Keith D

    2014-04-01

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full.

  8. NSSDC data listing

    NASA Technical Reports Server (NTRS)

    Horowitz, Richard

    1991-01-01

    The purpose here is to identify, in a highly summarized way, data available from the National Space Science Data Center (NSSDC). Most data are maintained as offline data sets gathered from individual instruments carried on spacecraft; these comprise the Satellite Data Listing. Descriptive names, time spans, data form, and quality of these data sets are identified in the listing, which is sorted alphabetically, first by spacecraft name and then by the principal investigator's or team leader's last name. Several data sets not associated with individual spaceflight instruments are identified in separate listings following the Satellite Data Listing. These include composite spacecraft data sets, ground based data, models, and computer routines. NSSDC also offers data via special services and systems in a number of areas, including the Astronomical Data Center, Coordinated Data Analysis Workshops, NASA Climate Data System, Pilot Land Data System, and Crustal Dynamics Data Information System.

  9. List identifies threatened ecosystems

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    The International Union for Conservation of Nature (IUCN) announced on 9 September that it will develop a new Red List of Ecosystems that will identify which ecosystems are vulnerable or endangered. The list, which is modeled on the group's Red List of Threatened Species™, could help to guide conservation activities and influence policy processes such as the Convention on Biological Diversity, according to the group. “We will assess the status of marine, terrestrial, freshwater, and subterranean ecosystems at local, regional, and global levels,” stated Jon Paul Rodriguez, leader of IUCN's Ecosystems Red List Thematic Group. “The assessment can then form the basis for concerted implementation action so that we can manage them sustainably if their risk of collapse is low or restore them if they are threatened and then monitor their recovery.”

  10. French Vocabulary Lists

    ERIC Educational Resources Information Center

    Reed, J.

    1970-01-01

    Reviews French vocabulary lists and bilingual dictionaries and evaluates their usefulness for the preparation of materials for the language laboratory as well as for any programed approach to vocabulary teaching. (FB)

  11. Spin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian order

    SciTech Connect

    Porto, Rafael A.; Ross, Andreas; Rothstein, Ira Z. E-mail: andreasr@andrew.cmu.edu

    2011-03-01

    Using effective field theory techniques we calculate the source multipole moments needed to obtain the spin contributions to the power radiated in gravitational waves from inspiralling compact binaries to third Post-Newtonian order (3PN). The multipoles depend linearly and quadratically on the spins and include both spin(1)spin(2) and spin(1)spin(1) components. The results in this paper provide the last missing ingredient required to determine the phase evolution to 3PN including all spin effects which we will report in a separate paper.

  12. Higher spins and holography

    NASA Astrophysics Data System (ADS)

    Kraus, Per; Ross, Simon F.

    2013-05-01

    The principles of quantum mechanics and relativity impose rigid constraints on theories of massless particles with nonzero spin. Indeed, Yang-Mills theory and General Relativity are the unique solution in the case of spin-1 and spin-2. In asymptotically flat spacetime, there are fundamental obstacles to formulating fully consistent interacting theories of particles of spin greater than 2. However, indications are that such theories are just barely possible in asymptotically anti-de Sitter or de Sitter spacetimes, where the non-existence of an S-matrix provides an escape from the theorems restricting theories in Minkowski spacetime. These higher spin gravity theories are therefore of great intrinsic interest, since they, along with supergravity, provide the only known field theories generalizing the local invariance principles of Yang-Mills theory and General Relativity. While work on higher spin gravity goes back several decades, the subject has gained broader appeal in recent years due to its appearance in the AdS/CFT correspondence. In three and four spacetime dimensions, there exist duality proposals linking higher spin gravity theories to specific conformal field theories living in two and three dimensions respectively. The enlarged symmetry algebra of the conformal field theories renders them exactly soluble, which makes them excellent laboratories for understanding in detail the holographic mechanism behind AdS/CFT duality. Steady progress is also being made on better understanding the space of possible higher spin gravity theories and their physical content. This work includes classifying the possible field multiplets and their interactions, constructing exact solutions of the nonlinear field equations, and relating higher spin theories to string theory. A full understanding of these theories will involve coming to grips with the novel symmetry principles that enlarge those of General Relativity and Yang-Mills theory, and one can hope that this will provide

  13. Freezing distributed entanglement in spin chains

    SciTech Connect

    D'Amico, Irene; Lovett, Brendon W.; Spiller, Timothy P.

    2007-09-15

    We show how to freeze distributed entanglement that has been created from the natural dynamics of spin chain systems. The technique that we propose simply requires single-qubit operations and isolates the entanglement in specific qubits at the ends of branches. Such frozen entanglement provides a useful resource, for example for teleportation or distributed quantum processing. The scheme can be applied to a wide range of systems--including actual spin systems and alternative qubit embodiments in strings of quantum dots, molecules, or atoms.

  14. Toward Ultrafast Spin Dynamics in Low Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Chiu, Yi-Hsin

    Since the discovery of long spin relaxation times of itinerant electrons up to 100 nanoseconds and spin diffusion lengths over 100 mum in GaAs, extraordinary advances in semiconductor spintronics have been made in the past one and half decades. Incorporating spins in semiconductors requires the following essential capabilities: (i) injection of spins into semiconductors, (ii) manipulation of spins, and (iii) sensitive detection of spin coherence. The solutions to these challenges lie in a deeper understanding of spin interactions and spin relaxation in semiconductors as well as appropriate tools to probe spin dynamics. In particular, recent experiments have suggested the important role of dimensionality in spin dynamics. For example, spin-orbit interaction, the dominant source of spin relaxation in most II-VI and III-V semiconductors, has been shown to be significantly suppressed in reduced dimensions. Low-dimensional semiconductors are therefore appealing candidates for exploring spin physics and device applications. This dissertation aims at exploring spin dynamics in low dimensional semiconductor systems using time-resolved optical techniques. The time resolution allows for a direct measurement of the equilibrium and non-equilibrium carrier spins and various spin interactions in the time domain. Optical approaches are also a natural fit for probing optically active nanostructures where electric approaches can often encounter challenges. For instance, fabricating electric contacts with nanostructures is a proven challenge because of their reduced size and modified electronic structure. This dissertation is divided into three sections targeting an ultimate goal of employing optical methods to explore spin dynamics in low dimensional semiconductors. First, the time-resolved Kerr rotation technique is employed to study spin relaxation in Fe/MgO/GaAs heterostructures. The results reveal rich interactions between the GaAs electron spins, nuclear spins, and the

  15. SPINning parallel systems software.

    SciTech Connect

    Matlin, O.S.; Lusk, E.; McCune, W.

    2002-03-15

    We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin.

  16. Quantum spin Hall effect.

    PubMed

    Bernevig, B Andrei; Zhang, Shou-Cheng

    2006-03-17

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. The existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2(e/4pi). The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  17. Quantum Spin Hall Effect

    SciTech Connect

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.

  18. Spin tracking in RHIC

    SciTech Connect

    Luccio, A.U.; Katayama, T.; Wu, H.

    1997-07-01

    In the acceleration of polarized protons in RHIC many spin depolarizing resonances are encountered. Helical Siberian snakes will be used to overcome depolarizing effects. The behavior of polarization can be studied by numerical tracking in a model accelerator. That allows one to check the strength of the resonances, to study the effect of snakes, to find safe lattice tune regions, and finally to study the operation of special devices like spin flippers. In this paper the authors describe numerical spin tracking. Results show that, for the design corrected distorted orbit and the design beam emittance, the polarization of the beam will be preserved in the whole range of proton energies in RHIC.

  19. Highly Efficient Room Temperature Spin Injection Using Spin Filtering in MgO

    NASA Astrophysics Data System (ADS)

    Jiang, Xin

    2007-03-01

    Efficient electrical spin injection into GaAs/AlGaAs quantum well structures was demonstrated using CoFe/MgO tunnel spin injectors at room temperature. The spin polarization of the injected electron current was inferred from the circular polarization of electroluminescence from the quantum well. Polarization values as high as 57% at 100 K and 47% at 290 K were obtained in a perpendicular magnetic field of 5 Tesla. The interface between the tunnel spin injector and the GaAs interface remained stable even after thermal annealing at 400 ^oC. The temperature dependence of the electron-hole recombination time and the electron spin relaxation time in the quantum well was measured using time-resolved optical techniques. By taking into account of these properties of the quantum well, the intrinsic spin injection efficiency can be deduced. We conclude that the efficiency of spin injection from a CoFe/MgO spin injector is nearly independent of temperature and, moreover, is highly efficient with an efficiency of ˜ 70% for the temperature range studied (10 K to room temperature). Tunnel spin injectors are thus highly promising components of future semiconductor spintronic devices. Collaborators: Roger Wang^1, 3, Gian Salis^2, Robert Shelby^1, Roger Macfarlane^1, Seth Bank^3, Glenn Solomon^3, James Harris^3, Stuart S. P. Parkin^1 ^1 IBM Almaden Research Center, San Jose, CA 95120 ^2 IBM Zurich Research Laboratory, S"aumerstrasse 4, 8803 R"uschlikon, Switzerland ^3 Solid States and Photonics Laboratory, Stanford University, Stanford, CA 94305

  20. Spin pumping and inverse spin Hall effects—Insights for future spin-orbitronics (invited)

    SciTech Connect

    Zhang, Wei Jungfleisch, Matthias B.; Jiang, Wanjun; Fradin, Frank Y.; Pearson, John E.; Hoffmann, Axel; Sklenar, Joseph; Ketterson, John B.

    2015-05-07

    Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts as a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. We apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We quantify the spin Hall effects in Ir and W using the conventional bilayer structures and discuss the self-induced voltage in a single layer of ferromagnetic permalloy. Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.

  1. Spin waves in a persistent spin-current Fermi liquid

    SciTech Connect

    Feldmann, J. D.; Bedell, K. S.

    2010-06-15

    We report two theoretical results for transverse spin waves, which arise in a system with a persistent spin current. Using Fermi liquid theory, we introduce a spin current in the ground state of a polarized or unpolarized Fermi liquid, and we derive the resultant spin waves using the Landau kinetic equation. The resulting spin waves have a q{sup 1} and q{sup 1/2} dispersion to leading order for the polarized and unpolarized systems, respectively.

  2. Spin transfer torques in the nonlocal lateral spin valve.

    PubMed

    Xu, Yuan; Xia, Ke; Ma, Zhongshui

    2008-06-11

    We report a theoretical study on the spin and electron transport in the nonlocal lateral spin valve with a non-collinear magnetic configuration. The nonlocal magnetoresistance, defined as the voltage difference on the detection lead over the injected current, is derived analytically. The spin transfer torques on the detection lead are calculated. It is found that spin transfer torques are symmetrical for parallel and antiparallel magnetic configurations, in contrast to that in a conventional sandwiched spin valve. PMID:21825793

  3. Spin noise spectroscopy from acoustic to GHz frequencies

    NASA Astrophysics Data System (ADS)

    Hübner, Jens

    2010-03-01

    Performing perturbation free measurements on semiconductor quantum systems has long been banished to textbooks on quantum mechanics. The emergent technique of spin noise spectroscopy is challenging this restriction. Empowered only by the ever present intrinsic spin fluctuation dynamics in thermal equilibrium, spin noise spectroscopy is capable to directly deduce several physical properties of carriers spins in semiconductors from these fluctuations. Originating from spin noise measurements on alkali metal vapors in quantum optics [1] the method has become a powerful technique to unravel the intrinsic spin dynamics in semiconductors [2]. In this talk I will present the recent progress of spin noise spectroscopy and how it is used to monitor the spin dynamic in semiconductor quantum wells at thermal equilibrium and as a consequence thereof directly detect the spatial dynamics of the carriers being marked with their own spin on a microscopic scale [3]. Further I will present measurements of how the non-perturbative nature of spin noise spectroscopy gives valuable insight into the delicate dependence of the spin relaxation time of electrons on doping density and temperature in semiconductors n-doped in the vicinity of the metal-insulator transition where hyperfine and intra-band depolarization compete [4]. Also the measurement bandwidth can be extended to GHz frequencies by ultrafast optical probing [5] yielding in conjunction with depth resolved spin noise measurements insights into the origin of inhomogeneous spin dephasing effects at high magnetic fields [5]. Additionally I will present how spin noise spectroscopy can be employed to spatially depth resolve doping profiles with optical resolution [6] and give a summary on easy to implement techniques of spin noise spectroscopy at acoustic frequencies in alkali metal vapors. [4pt] [1] E. Aleksandrov and V. Zapassky, Zh. Eksp. Teor. Fiz. 81, 132 (1981); S. A. Crooker, D. G. Rickel, A. V. Balatsky, and D. L. Smith

  4. Techniques for Vocal Health.

    ERIC Educational Resources Information Center

    Wiest, Lori

    1997-01-01

    Outlines a series of simple yet effective practices, techniques, and tips for improving the singing voice and minimizing stress on the vocal chords. Describes the four components for producing vocal sound: respiration, phonation, resonation, and articulation. Provides exercises for each and lists symptoms of sickness and vocal strain. (MJP)

  5. Pluto's Spinning Moons

    NASA Video Gallery

    Most inner moons in the solar system keep one face pointed toward their central planet; this animation shows that certainly isn’t the case with the small moons of Pluto, which behave like spinning ...

  6. MMS Spin Test

    NASA Video Gallery

    The four Magnetospheric Multiscale observatories all undergo what's called a spin test, to learn how well the spacecraft are balanced. It also provides information on how well the mass properties o...

  7. The spin deep within

    SciTech Connect

    Stackhouse, S.

    2008-10-08

    The electronic configuration of iron impurities in lower-mantle minerals influences their physical properties, but it is not well constrained. New studies suggest that ferrous iron in silicate phases exists mainly in an intermediate spin state.

  8. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins

    NASA Astrophysics Data System (ADS)

    Grinolds, M. S.; Warner, M.; de Greve, K.; Dovzhenko, Y.; Thiel, L.; Walsworth, R. L.; Hong, S.; Maletinsky, P.; Yacoby, A.

    2014-04-01

    Magnetic resonance imaging (MRI) has revolutionized biomedical science by providing non-invasive, three-dimensional biological imaging. However, spatial resolution in conventional MRI systems is limited to tens of micrometres, which is insufficient for imaging on molecular scales. Here, we demonstrate an MRI technique that provides subnanometre spatial resolution in three dimensions, with single electron-spin sensitivity. Our imaging method works under ambient conditions and can measure ubiquitous `dark' spins, which constitute nearly all spin targets of interest. In this technique, the magnetic quantum-projection noise of dark spins is measured using a single nitrogen-vacancy (NV) magnetometer located near the surface of a diamond chip. The distribution of spins surrounding the NV magnetometer is imaged with a scanning magnetic-field gradient. To evaluate the performance of the NV-MRI technique, we image the three-dimensional landscape of electronic spins at the diamond surface and achieve an unprecedented combination of resolution (0.8 nm laterally and 1.5 nm vertically) and single-spin sensitivity. Our measurements uncover electronic spins on the diamond surface that can potentially be used as resources for improved magnetic imaging. This NV-MRI technique is immediately applicable to diverse systems including imaging spin chains, readout of spin-based quantum bits, and determining the location of spin labels in biological systems.

  9. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Sun, Dali; van Schooten, Kipp J.; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z.

    2016-08-01

    Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule’s surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.

  10. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling.

    PubMed

    Sun, Dali; van Schooten, Kipp J; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z

    2016-08-01

    Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials. PMID:27088233

  11. Itinerant spin ice

    NASA Astrophysics Data System (ADS)

    Udagawa, Masafumi

    2014-03-01

    Spin ice is a prototypical frustrated magnet defined on a pyrochlore lattice. The ground state of spin ice is described by a simple rule called ``ice rule'': out of four spins on a tetrahedron, two spins point inward, while the other two outward. This simple rule is not sufficient to determine the spin configuration uniquely, but it leaves macroscopic degeneracy in the ground state. Despite the macroscopic degeneracy, however, the ground state is not completely disordered, but it exhibits algebraic spatial correlation, which characterizes this state as ``Coulomb phase'' where various exotic properties, such as monopole excitations and unusual magnetic responses are observed. Given the peculiar spatial correlation, it is interesting to ask what happens if itinerant electrons coexist and interact with spin ice. Indeed, this setting is relevant to several metallic Ir pyrochlore oxides, such as Ln2Ir2O7 (Ln=Pr, Nd), where Ir 5d itinerant electrons interact with Ln 4f localized moments. In these compounds, anomalous transport phenomena have been reported, such as non-monotonic magnetic field dependence of Hall conductivity and low-temperature resistivity upturn. To address these issues, we adopt a spin-ice-type Ising Kondo lattice model on a pyrochlore lattice, and solve this model by applying the cluster dynamical mean-field theory and the perturbation expansion in terms of the spin-electron coupling. As a result, we found that (i) the resistivity shows a minimum at a characteristic temperature below which spin ice correlation sets in. Moreover, (ii) the Hall conductivity shows anisotropic and non-monotonic magnetic field dependence due to the scattering from the spatially extended spin scalar chirality incorporated in spin ice manifold. These results give unified understanding to the thermodynamic and transport properties of Ln2Ir2O7 (Ln=Pr, Nd), and give new insights into the role of geometrical frustration in itinerant systems. This work has been done in

  12. High Spin States in ^24Mg

    NASA Astrophysics Data System (ADS)

    Schwartz, J.; Lister, C. J.; Wuosmaa, A.; Betts, R. R.; Blumenthal, D.; Carpenter, M. P.; Davids, C. N.; Fischer, S. M.; Hackman, G.; Janssens, R. V. F.

    1996-05-01

    The ^12C(^16O,α)^24Mg reaction was used at 51.5MeV to populate high angular momentum states in ^24Mg. Gamma-rays de-exciting high spin states were detected in a 20 detector spectrometer (the AYE-ball) triggered by the ANL Fragment Mass Analyser (FMA). Channel selection, through detection of ^24Mg nuclei with the appropriate time of flight, was excellent. All the known decays from high spin states were seen in a few hours, with the exception of the 5.04 MeV γ-decay of the J^π=9^- state at 16.904 MeV footnote A.E.Smith et al., Phys. Lett. \\underlineB176, (1986)292. which could not be confirmed. The potential of the technique for studying the radiative decay of states with very high spin in light nuclei will be discussed.

  13. Pauli spin blockade in double molecular magnets

    NASA Astrophysics Data System (ADS)

    Płomińska, Anna; Weymann, Ireneusz

    2016-07-01

    The Pauli spin blockade effect in transport through two, coupled in series, single molecular magnets weakly attached to external leads is considered theoretically. By using the real-time diagrammatic technique in the lowest-order perturbation theory with respect to the coupling strength, the behavior of the current and the shot noise is studied in the nonlinear response regime. It is shown that the current suppression occurs due to the occupation of highest-weight spin states of the system. Moreover, transport properties are found to strongly depend on parameters of the double molecular magnet, such as the magnitude of spin, internal exchange interaction and the hopping between the molecules. It is also demonstrated that the current suppression may be accompanied by negative differential conductance and a large super-Poissonian shot noise. The mechanisms leading to those effects are discussed.

  14. Incomplete fusion dynamics by spin distribution measurements

    SciTech Connect

    Singh, D.; Ali, R.; Ansari, M. Afzal; Singh, Pushpendra P.; Sharma, M. K.; Singh, B. P.; Babu, K. Surendra; Sinha, Rishi K.; Kumar, R.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2010-02-15

    Spin distributions for various evaporation residues populated via complete and incomplete fusion of {sup 16}O with {sup 124}Sn at 6.3 MeV/nucleon have been measured, using charged particles (Z=1,2)-{gamma} coincidence technique. Experimentally measured spin distributions of the residues produced as incomplete fusion products associated with 'fast'{alpha}- and 2{alpha}-emission channels observed in the 'forward cone' are found to be distinctly different from those of the residues produced as complete fusion products. Moreover, 'fast'{alpha}-particles that arise from larger angular momentum in the entrance channel are populated at relatively higher driving input angular momentum than those produced through complete fusion. The incomplete fusion residues are populated in a limited, higher-angular-momentum range, in contrast to the complete fusion products, which are populated over a broad spin range.

  15. Analytic prediction of airplane equilibrium spin characteristics

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.

    1972-01-01

    The nonlinear equations of motion are solved algebraically for conditions for which an airplane is in an equilibrium spin. Constrained minimization techniques are employed in obtaining the solution. Linear characteristics of the airplane about the equilibrium points are also presented and their significance in identifying the stability characteristics of the equilibrium points is discussed. Computer time requirements are small making the method appear potentially applicable in airplane design. Results are obtained for several configurations and are compared with other analytic-numerical methods employed in spin prediction. Correlation with experimental results is discussed for one configuration for which a rather extensive data base was available. A need is indicated for higher Reynolds number data taken under conditions which more accurately simulate a spin.

  16. Slowest local operators in quantum spin chains.

    PubMed

    Kim, Hyungwon; Bañuls, Mari Carmen; Cirac, J Ignacio; Hastings, Matthew B; Huse, David A

    2015-07-01

    We numerically construct slowly relaxing local operators in a nonintegrable spin-1/2 chain. Restricting the support of the operator to M consecutive spins along the chain, we exhaustively search for the operator that minimizes the Frobenius norm of the commutator with the Hamiltonian. We first show that the Frobenius norm bounds the time scale of relaxation of the operator at high temperatures. We find operators with significantly slower relaxation than the slowest simple "hydrodynamic" mode due to energy diffusion. Then we examine some properties of the nontrivial slow operators. Using both exhaustive search and tensor network techniques, we find similar slowly relaxing operators for a Floquet spin chain; this system is hydrodynamically "trivial," with no conservation laws restricting their dynamics. We argue that such slow relaxation may be a generic feature following from locality and unitarity. PMID:26274145

  17. Optical detection of spin Hall effect in metals

    SciTech Connect

    Erve, O. M. J. van ‘t Hanbicki, A. T.; McCreary, K. M.; Li, C. H.; Jonker, B. T.

    2014-04-28

    Optical techniques have been widely used to probe the spin Hall effect in semiconductors. In metals, however, only electrical methods such as nonlocal spin valve transport, ferromagnetic resonance, or spin torque transfer experiments have been successful. These methods require complex processing techniques and measuring setups. We show here that the spin Hall effect can be observed in non-magnetic metals such as Pt and β-W, using a standard bench top magneto-optical Kerr system with very little sample preparation. Applying a square wave current and using Fourier analysis significantly improve our detection level. One can readily determine the angular dependence of the induced polarization on the bias current direction (very difficult to do with voltage detection), the orientation of the spin Hall induced polarization, and the sign of the spin Hall angle. This optical approach is free from the complications of various resistive effects, which can compromise voltage measurements. This opens up the study of spin Hall effect in metals to a variety of spin dynamic and spatial imaging experiments.

  18. Spin qubits in quantum dots - beyond nearest-neighbour exchange

    NASA Astrophysics Data System (ADS)

    Vandersypen, Lieven

    The spin of a single electron is the canonical two-level quantum system. When isolated in a semiconductor quantum dot, a single electron spin provides a well-controlled and long-lived quantum bit. So far, two-qubit gates in this system have relied on the spin exchange interaction that arises when the wave functions of neighbouring electrons overlap. Furthermore, experimental demonstrations of controlled spin-exchange have been limited to 1D quantum dot arrays only. Here we explore several avenues for scaling beyond 1D arrays with nearest-neighbour coupling. First, we show that second-order tunnel processes allow for coherent spin-exchange between non-nearest neighbour quantum dots. The detuning of the intermediate quantum dot controls the frequency of the exchange-driven oscillations of the spins. Second, we demonstrate shuttling of electrons in quantum dot arrays preserving the spin projection for more than 500 hops. We use this technique to read out multiple spins in a way analogous to the operation of a CCD. Finally, we develop superconducting resonators that are resilient to magnetic field and with a predicted tenfold increase in vacuum electric field amplitudes. This makes coupling spin qubits via superconducting resonators in a circuit-QED approach a realistic possibility. Supported by ERC, FOM, NWO, IARPA, ARO, EU.

  19. Spin Dependent Transport Properties of Metallic and Semiconducting Nanostructures

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.

    Present computing and communication devices rely on two different classes of technologies; information processing devices are based on electrical charge transport in semiconducting materials while information storage devices are based on orientation of electron spins in magnetic materials. A realization of a hybrid-type device that is based on charge as well as spin properties of electrons would perform both of these actions thereby enhancing computation power to many folds and reducing power consumptions. This dissertation focuses on the fabrication of such spin-devices based on metallic and semiconducting nanostructures which can utilize spin as well as charge properties of electrons. A simplified design of the spin-device consists of a spin injector, a semiconducting or metallic channel, and a spin detector. The channel is the carrier of the spin signal from the injector to the detector and therefore plays a crucial role in the manipulation of spin properties in the device. In this work, nanostructures like nanowires and nanostripes are used to function the channel in the spin-device. Methods like electrospinning, hydrothermal, and wet chemical were used to synthesize nanowires while physical vapor deposition followed by heat treatment in controlled environment was used to synthesis nanostripes. Spin-devices fabrication of the synthesized nanostructures were carried out by electron beam lithography process. The details of synthesis of nanostructures, device fabrication procedures and measurement techniques will be discussed in the thesis. We have successfully fabricated the spin-devices of tellurium nanowire, indium nanostripe, and indium oxide nanostripe and studied their spin transport properties for the first time. These spin-devices show large spin relaxation length compared to normal metals like copper and offer potentials for the future technologies. Further, Heusler alloys nanowires like nanowires of Co 2FeAl were synthesized and studied for electrical

  20. NSSDC data listing

    NASA Technical Reports Server (NTRS)

    Horowitz, Richard; King, Joseph H.

    1990-01-01

    In a highly summarized way, data available from the National Space Science Data Center (NSSDC) is identified. Most data are offline data sets (on magnetic tape or as film/print products of various sizes) from individual instruments carried on spacecraft; these compose the Satellite Data Listing. Descriptive names, time spans, data form, and quantity of these data sets are identified in the listing, which is sorted alphabetically-first by spacecraft name and then by the principal investigator's or team leader's last name. Several data sets held at NSSDC, not associated with individual spaceflight instruments, are identified in separate listings following the Satellite Data Listing. These data sets make up the Supplementary Data Listings and include composite spacecraft data sets, ground-based data, models, and computer routines. The identifiers used in the Supplementary Data Listings were created by NSSDC and are explained in the pages preceding the listings. Data set form codes are listed. NSSDC offers primarily archival, retrieval, replication, and dissemination services associated with the data sets discussed in the two major listings identified above. NSSDC also provides documentation which enables the data recipient to use the data received. NSSDC is working toward expanding presently limited capabilities for data subsetting and for promotion of data files to online residence for user downloading. NSSDC data holdings span the range of scientific disciplines in which NASA is involved, and include astrophysics, lunar and planetary science, solar physics, space plasma physics, and Earth science. In addition to the functions mentioned above, NSSDC offers data via special services and systems in a number of areas, including Astronomical Data Center (ADC), Coordinated Data Analysis Workshops (CDAWs), NASA Climate Data System (NCDS), Pilot Land Data System (PLDS), and Crustal Dynamics Data Information System (CDDIS). Furthermore, NSSDC has a no-password account on its

  1. Spin-spin cross relaxation and spin-Hamiltonian spectroscopy by optical pumping of Pr/sup 3+/:LaF/sub 3/

    SciTech Connect

    Lukac, M.; Otto, F.W.; Hahn, E.L.

    1989-02-01

    We report the observation of an anticrossing in solid-state laser spectroscopy produced by cross relaxation. Spin-spin cross relaxation between the /sup 141/Pr- and /sup 19/F-spin reservoirs in Pr/sup 3+/:LaF/sub 3/ and its influence on the /sup 141/Pr NMR spectrum is detected by means of optical pumping. The technique employed combines optical pumping and hole burning with either external magnetic field sweep or rf resonance saturation in order to produce slow transient changes in resonant laser transmission. At a certain value of the external Zeeman field, where the energy-level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr/sup 3+/ NMR lines is observed. This effect is interpreted as the ''anticrossing'' of the combined Pr-F spin-spin reservoir energy states. The Zeeman-quadrupole-Hamiltonian spectrum of the hyperfine optical ground states of Pr/sup 3+/:LaF/sub 3/ is mapped out over a wide range of Zeeman magnetic fields. A new scheme is proposed for dynamic polarization of nuclei by means of optical pumping, based on resonant cross relaxation between rare spins and spin reservoirs.

  2. Local spin analyses using density functional theory

    NASA Astrophysics Data System (ADS)

    Abate, Bayileyegn; Peralta, Juan

    Local spin analysis is a valuable technique in computational investigations magnetic interactions on mono- and polynuclear transition metal complexes, which play vital roles in catalysis, molecular magnetism, artificial photosynthesis, and several other commercially important materials. The relative size and complex electronic structure of transition metal complexes often prohibits the use of multi-determinant approaches, and hence, practical calculations are often limited to single-determinant methods. Density functional theory (DFT) has become one of the most successful and widely used computational tools for the electronic structure study of complex chemical systems; transition metal complexes in particular. Within the DFT formalism, a more flexible and complete theoretical modeling of transition metal complexes can be achieved by considering noncollinear spins, in which the spin density is 'allowed to' adopt noncollinear structures in stead of being constrained to align parallel/antiparallel to a universal axis of magnetization. In this meeting, I will present local spin analyses results obtained using different DFT functionals. Local projection operators are used to decompose the expectation value of the total spin operator; first introduced by Clark and Davidson.

  3. Spin-current emission governed by nonlinear spin dynamics

    PubMed Central

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-01-01

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712

  4. Quantifying spin Hall angles from spin pumping: experiments and theory.

    PubMed

    Mosendz, O; Pearson, J E; Fradin, F Y; Bauer, G E W; Bader, S D; Hoffmann, A

    2010-01-29

    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni{80}Fe{20}|normal metal (N) bilayers into a coplanar waveguide. A dc spin current in N can be generated by spin pumping in a controllable way by ferromagnetic resonance. The transverse dc voltage detected along the Ni{80}Fe{20}|N has contributions from both the anisotropic magnetoresistance and the spin Hall effect, which can be distinguished by their symmetries. We developed a theory that accounts for both. In this way, we determine the spin Hall angle quantitatively for Pt, Au, and Mo. This approach can readily be adapted to any conducting material with even very small spin Hall angles.

  5. Designing electron spin textures and spin interferometers by shape deformations

    NASA Astrophysics Data System (ADS)

    Ying, Zu-Jian; Gentile, Paola; Ortix, Carmine; Cuoco, Mario

    2016-08-01

    We demonstrate that the spin orientation of an electron propagating in a one-dimensional nanostructure with Rashba spin-orbit (SO) coupling can be manipulated on demand by changing the geometry of the nanosystem. Shape deformations that result in a nonuniform curvature give rise to complex three-dimensional spin textures in space. We employ the paradigmatic example of an elliptically deformed quantum ring to unveil the way to get an all-geometrical and all-electrical control of the spin orientation. The resulting spin textures exhibit a tunable topological character with windings around the radial and the out-of-plane directions. We show that these topologically nontrivial spin patterns affect the spin interference effect in the deformed ring, thereby resulting in different geometry-driven ballistic electronic transport behaviors. Our results establish a deep connection between electronic spin textures, spin transport, and the nanoscale shape of the system.

  6. Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling.

    PubMed

    Caetano, R A

    2016-01-01

    The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices. PMID:27009836

  7. Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling

    PubMed Central

    Caetano, R. A.

    2016-01-01

    The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices. PMID:27009836

  8. Measurements of nuclear spin dynamics by spin-noise spectroscopy

    SciTech Connect

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, K. V.; Glazov, M. M.; Vladimirova, M.; Scalbert, D.; Cronenberger, S.; Lemaître, A.; Bloch, J.

    2015-06-15

    We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.

  9. Magnetization plateaux in Bethe ansatz solvable spin-S ladders

    NASA Astrophysics Data System (ADS)

    Maslen, M.; Batchelor, M.; de Gier, J.

    2003-07-01

    We examine the properties of the Bethe ansatz solvable two- and three-leg spin-S ladders. These models include Heisenberg rung interactions of arbitrary strength and thus capture the physics of the spin-S Heisenberg ladders for strong rung coupling. The discrete values derived for the magnetization plateaux are seen to fit with the general prediction based on the Lieb-Schultz-Mattis theorem. We examine the magnetic phase diagram of the spin-1 ladder in detail and find an extended magnetization plateau at the fractional value =1/2 in agreement with the experimental observation for the organic polyradical spin-1 ladder compound BIP-TENO.

  10. Spin glasses and error-correcting codes

    NASA Technical Reports Server (NTRS)

    Belongie, M. L.

    1994-01-01

    In this article, we study a model for error-correcting codes that comes from spin glass theory and leads to both new codes and a new decoding technique. Using the theory of spin glasses, it has been proven that a simple construction yields a family of binary codes whose performance asymptotically approaches the Shannon bound for the Gaussian channel. The limit is approached as the number of information bits per codeword approaches infinity while the rate of the code approaches zero. Thus, the codes rapidly become impractical. We present simulation results that show the performance of a few manageable examples of these codes. In the correspondence that exists between spin glasses and error-correcting codes, the concept of a thermal average leads to a method of decoding that differs from the standard method of finding the most likely information sequence for a given received codeword. Whereas the standard method corresponds to calculating the thermal average at temperature zero, calculating the thermal average at a certain optimum temperature results instead in the sequence of most likely information bits. Since linear block codes and convolutional codes can be viewed as examples of spin glasses, this new decoding method can be used to decode these codes in a way that minimizes the bit error rate instead of the codeword error rate. We present simulation results that show a small improvement in bit error rate by using the thermal average technique.

  11. Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements

    PubMed Central

    Zhou, Xinxing; Ling, Xiaohui; Zhang, Zhiyou; Luo, Hailu; Wen, Shuangchun

    2014-01-01

    Photonic spin Hall effect (SHE) manifesting itself as spin-dependent splitting escapes detection in previous photon tunneling experiments due to the fact that the induced beam centroid shift is restricted to a fraction of wavelength. In this work, we report on the first observation of this tiny effect in photon tunneling via weak measurements based on preselection and postselection technique on the spin states. We find that the spin-dependent splitting is even larger than the potential barrier thickness when spin-polarized photons tunneling through a potential barrier. This photonic SHE is attributed to spin-redirection Berry phase which can be described as a consequence of the spin-orbit coupling. These findings provide new insight into photon tunneling effect and thereby offer the possibility of developing spin-based nanophotonic applications. PMID:25487043

  12. Dynamical theory of spin noise and relaxation: Prospects for real-time NMR measurements.

    PubMed

    Field, Timothy R

    2014-11-01

    Recent developments in theoretical aspects of spin noise and relaxation and their interrelationship reveal a modified spin density, distinct from the density matrix, as the necessary object to describe fluctuations in spin systems. These fluctuations are to be viewed as an intrinsic quantum mechanical property of such systems immersed in random magnetic environments and are observed as "spin noise" in the absence of any radio frequency excitation. With the prospect of ultrafast digitization, the role of spin noise in real-time parameter extraction for (NMR) spin systems, and the advantage over standard techniques, is of essential importance, especially for systems containing a small number of spins. In this article we outline prospects for harnessing the recent dynamical theory in terms of spin-noise measurement, with attention to real-time properties.

  13. Thermal spin fluctuations in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Melé-Messeguer, M.; Juliá-Díaz, B.; Polls, A.; Santos, L.

    2013-03-01

    We study the thermal activation of spin fluctuations in dynamically stable spinor Bose-Einstein condensates. We analyze the specific cases of a nondipolar spin-1 condensate in the state m=0, where thermal activation results from spin-changing collisions, and of a chromium condensate in the maximally stretched state m=-3, where thermal spin fluctuations are due to dipole-induced spin relaxation. In both cases, we show that the low energy associated to the spinor physics may be employed for thermometry purposes down to extremely low temperatures, typically impossible to measure in Bose-Einstein condensates with the usual thermometric techniques. Moreover, the peculiar dependence of the system's entropy with the applied Zeeman energy opens a possible route for adiabatic cooling.

  14. Evaluation of thermal gradients in longitudinal spin Seebeck effect measurements

    NASA Astrophysics Data System (ADS)

    Sola, A.; Kuepferling, M.; Basso, V.; Pasquale, M.; Kikkawa, T.; Uchida, K.; Saitoh, E.

    2015-05-01

    In the framework of the longitudinal spin Seebeck effect (LSSE), we developed an experimental setup for the characterization of LSSE devices. This class of device consists in a layered structure formed by a substrate, a ferrimagnetic insulator (YIG) where the spin current is thermally generated, and a paramagnetic metal (Pt) for the detection of the spin current via the inverse spin-Hall effect. In this kind of experiments, the evaluation of a thermal gradient through the thin YIG layer is a crucial point. In this work, we perform an indirect determination of the thermal gradient through the measurement of the heat flux. We developed an experimental setup using Peltier cells that allow us to measure the heat flux through a given sample. In order to test the technique, a standard LSSE device produced at Tohoku University was measured. We find a spin Seebeck SSSE coefficient of 2.8 × 10 - 7 V K-1.

  15. Dynamics, synchronization, and quantum phase transitions of two dissipative spins

    SciTech Connect

    Orth, Peter P.; Le Hur, Karyn; Roosen, David; Hofstetter, Walter

    2010-10-01

    We analyze the static and dynamic properties of two Ising-coupled quantum spins embedded in a common bosonic bath as an archetype of dissipative quantum mechanics. First, we elucidate the ground-state phase diagram for an Ohmic and a sub-Ohmic bath using a combination of bosonic numerical renormalization group (NRG), analytical techniques, and intuitive arguments. Second, by employing the time-dependent NRG we investigate the system's rich dynamical behavior arising from the complex interplay between spin-spin and spin-bath interactions. Interestingly, spin oscillations can synchronize due to the proximity of the common non-Markovian bath and the system displays highly entangled steady states for certain nonequilibrium initial preparations. We complement our nonperturbative numerical results by exact analytical solutions when available and provide quantitative limits on the applicability of the perturbative Bloch-Redfield approach at weak coupling.

  16. Gate-controlled electron spins in quantum dots

    SciTech Connect

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis L.

    2013-12-16

    In this paper we study the properties of anisotropic semiconductor quantum dots (QDs) formed in the conduction band in the presence of the magnetic field. The Kane-type model is formulated and is analyzed by using both analytical and finite element techniques. Among other things, we demonstrate that in such quantum dots, the electron spin states in the phonon-induced spin-flip rate can be manipulated with the application of externally applied anisotropic gate potentials. More precisely, such potentials enhance the spin flip rates and reduce the level crossing points to lower quantum dot radii. This happens due to the suppression of the g-factor towards bulk crystal. We conclude that the phonon induced spin-flip rate can be controlled through the application of spin-orbit coupling. Numerical examples are shown to demonstrate these findings.

  17. Observation and modelling of ferromagnetic contact-induced spin relaxation in Hanle spin precession measurements

    NASA Astrophysics Data System (ADS)

    O'Brien, L.; Spivak, D.; Krueger, N.; Peterson, T. A.; Erickson, M. J.; Bolon, B.; Geppert, C. C.; Leighton, C.; Crowell, P. A.

    2016-09-01

    In the nonlocal spin valve (NLSV) geometry, four-terminal electrical Hanle effect measurements have the potential to provide a particularly simple determination of the lifetime (τs) and diffusion length (λN) of spins injected into nonmagnetic (N) materials. Recent papers, however, have demonstrated that traditional models typically used to fit such data provide an inaccurate measurement of τs in ferromagnet (FM)/N metal devices with low interface resistance, particularly when the separation of the source and detector contacts is small. In the transparent limit, this shortcoming is due to the back diffusion and subsequent relaxation of spins within the FM contacts, which is not properly accounted for in standard models of the Hanle effect. Here we have used the separation dependence of the spin accumulation signal in NLSVs with multiple FM/N combinations, and interfaces in the diffusive limit, to determine λN in traditional spin valve measurements. We then compare these results to Hanle measurements as analyzed using models that either include or exclude spin sinking. We demonstrate that differences between the spin valve and Hanle measurements of λN can be quantitatively modelled provided that both the FM contact-induced isotropic spin sinking and the full three-dimensional geometry of the devices, which is particularly important at small contact separations, are accounted for. We find, however, that considerable difficulties persist, in particular due to the sensitivity of fitting to the contact interface resistance and the FM contact magnetization rotation, in precisely determining λN with the Hanle technique alone, particularly at small contact separations.

  18. Basic spin physics.

    PubMed

    Pipe, J G

    1999-11-01

    Magnetic resonance imaging is fundamentally a measurement of the magnetism inherent in some nuclear isotopes; of these the proton, or hydrogen atom, is of particular interest for clinical applications. The magnetism in each nucleus is often referred to as spin. A strong, static magnetic field B0 is used to align spins, forming a magnetic density within the patient. A second, rotating magnetic field B1 (RF pulse) is applied for a short duration, which rotates the spins away from B0 in a process called excitation. After the spins are rotated away from B0, the RF pulse is turned off, and the spins precess about B0. As long as the spins are all pointing in the same direction at any one time (have phase coherence), they act in concert to create rapidly oscillating magnetic fields. These fields in turn create a current in an appropriately placed receiver coil, in a manner similar to that of an electrical generator. The precessing magnetization decays rapidly in a duration roughly given by the T2 time constant. At the same time, but at a slower rate, magnetization forms again along the direction of B0; the duration of this process is roughly expressed by the T1 time constant. The precessional frequency of each spin is proportional to the magnetic field experienced at the nucleus. Small variations in this magnetic field can have dramatic effects on the MR image, caused in part by loss of phase coherence. These magnetic field variations can arise because of magnet design, the magnetic properties (susceptibility) of tissues and other materials, and the nuclear environment unique to various sites within any given molecule. The loss of phase coherence can be effectively eliminated by the use of RF refocusing pulses. Conventional MR imaging experiments can be characterized as either gradient echo or spin echo, the latter indicating the use of a RF refocusing pulse, and by the parameters TR, TE, and flip angle alpha. Tissues, in turn, are characterized by their individual spin

  19. Spin Hall and Spin Nernst effect from first principles

    NASA Astrophysics Data System (ADS)

    Mertig, Ingrid

    2013-03-01

    Spintronics without magnetic materials is an interesting alternative to the existing spintronics applications. The spin Hall effect creates spin currents in nonmagnetic materials and avoids the problem of spin injection. Future applications of the spin Hall effect require two properties of the materials, a large spin Hall angle and a long spin diffusion length. Ab intio calculations based on density functional theory are a powerful tool to design the desired materials and to get insight into the underlying microscopic processes. We investigated the spin Hall effect in dilute alloys, in particular the intrinsic effect based on the Berry curvature as well as side-jump and the skew-scattering contributions. The results demonstrate that a large extrinsic spin Hall effect is determined by the differences between host and impurity concerning the spin-orbit interaction. It can be caused by light p scatterers as C and N in Au. A comparable large effect is observed for heavy p scatterers as Bi in Cu. An alternative way is to deposit impurities in the adatom position. Furthermore, we predict a spin current perpendicular to a temperature gradient. The phenomenon is called spin Nernst effect. The predicted spin currents can be comparably large as in the case of the spin Hall effect.

  20. Spin pumping by magnetopolaritons

    NASA Astrophysics Data System (ADS)

    Cao, Yunshan; Yan, Peng; Huebl, Hans; Goennenwein, Sebastian; Bauer, Gerrit

    2015-03-01

    Recent experiments report the strong coupling of microwaves to the magnetic insulator yttrium iron garnet with weakly damped magnetization dynamics. We developed a scattering approach to study the coupled magnetization and microwave cavities beyond the paramagnetic/macrospin and rotating wave approximations that are implicit in the Tavis-Cummings model. To this end we solve the coupled Landau-Lifshitz-Gilbert and Maxwell's equations for a thin film magnet in a microwave cavity, leading to rich ferromagnetic spin wave resonance spectra of the transmitted or absorbed microwaves. Our method is valid for the full parameter range spanning the weak to strong coupling limits. We demonstrate strong coupling achievement not only for the FMR mode but also for standing spin waves, although the lowest excitation has a decisive leading role for coupling strength. Spin pumping in FI|N bilayers as detected by inverse spin Hall voltages provides additional access to study strong coupling electrically. Funding from the European Union Seventh Framework Programme [FP7-People-2012-ITN] under Grant Agreement 316657 (SpinIcur).

  1. Spin hydrodynamic generation

    NASA Astrophysics Data System (ADS)

    Takahashi, R.; Matsuo, M.; Ono, M.; Harii, K.; Chudo, H.; Okayasu, S.; Ieda, J.; Takahashi, S.; Maekawa, S.; Saitoh, E.

    2016-01-01

    Magnetohydrodynamic generation is the conversion of fluid kinetic energy into electricity. Such conversion, which has been applied to various types of electric power generation, is driven by the Lorentz force acting on charged particles and thus a magnetic field is necessary. On the other hand, recent studies of spintronics have revealed the similarity between the function of a magnetic field and that of spin-orbit interactions in condensed matter. This suggests the existence of an undiscovered route to realize the conversion of fluid dynamics into electricity without using magnetic fields. Here we show electric voltage generation from fluid dynamics free from magnetic fields; we excited liquid-metal flows in a narrow channel and observed longitudinal voltage generation in the liquid. This voltage has nothing to do with electrification or thermoelectric effects, but turned out to follow a universal scaling rule based on a spin-mediated scenario. The result shows that the observed voltage is caused by spin-current generation from a fluid motion: spin hydrodynamic generation. The observed phenomenon allows us to make mechanical spin-current and electric generators, opening a door to fluid spintronics.

  2. Geometrically representing spin correlations

    NASA Astrophysics Data System (ADS)

    White, Ian G.; Mirasola, Anthony; Hollingsworth, Jacob; Mukherjee, Rick; Hazzard, Kaden R. A.

    2016-05-01

    We develop a general method to visualize spin correlations, and we demonstrate its usefulness in ultracold matter from fermions in lattices to trapped ions and ultracold molecules. Correlations are of fundamental interest in many-body physics: they characterize phases in condensed matter and AMO, and are required for quantum sensing and computing. However, it is often difficult to understand even the simplest correlations - for example between two spin-1/2's - directly from the components Cab = - for { a , b } ∈ { x , y , z } . Not only are the nine independent Cab unwieldy, but considering the components also obscures the natural geometric structure. For example, simple spin rotations lead to complex transformations among the nine Cab. We provide a one-to-one map between the spin correlations and certain three-dimensional objects, analogous to the map between single spins and Bloch vectors. This object makes the geometric structure of the correlations manifest. Moreover, much as one can reason geometrically about dynamics using a Bloch vector - e.g. a magnetic field causes it to precess and dephasing causes it to shrink - we show that analogous reasoning holds for our visualization method.

  3. Spin squeezing a cold molecule

    NASA Astrophysics Data System (ADS)

    Bhattacharya, M.

    2015-12-01

    In this article we present a concrete proposal for spin squeezing the cold ground-state polar paramagnetic molecule OH, a system currently under fine control in the laboratory. In contrast to existing work, we consider a single, noninteracting molecule with angular momentum greater than 1 /2 . Starting from an experimentally relevant effective Hamiltonian, we identify an adiabatic regime where different combinations of static electric and magnetic fields can be used to realize the single-axis twisting Hamiltonian of Kitagawa and Ueda [M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993), 10.1103/PhysRevA.47.5138], the uniform field Hamiltonian proposed by Law et al. [C. K. Law, H. T. Ng, and P. T. Leung, Phys. Rev. A 63, 055601 (2001), 10.1103/PhysRevA.63.055601], and a model of field propagation in a Kerr medium considered by Agarwal and Puri [G. S. Agarwal and R. R. Puri, Phys. Rev. A 39, 2969 (1989), 10.1103/PhysRevA.39.2969]. We then consider the situation in which nonadiabatic effects are quite large and show that the effective Hamiltonian supports spin squeezing even in this case. We provide analytical expressions as well as numerical calculations, including optimization of field strengths and accounting for the effects of field misalignment. Our results have consequences for applications such as precision spectroscopy, techniques such as magnetometry, and stereochemical effects such as the orientation-to-alignment transition.

  4. Harnessing spin precession with dissipation

    PubMed Central

    Crisan, A. D.; Datta, S.; Viennot, J. J.; Delbecq, M. R.; Cottet, A.; Kontos, T.

    2016-01-01

    Non-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors. PMID:26816050

  5. Harnessing spin precession with dissipation

    NASA Astrophysics Data System (ADS)

    Crisan, A. D.; Datta, S.; Viennot, J. J.; Delbecq, M. R.; Cottet, A.; Kontos, T.

    2016-01-01

    Non-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors.

  6. Spin-nematic and spin-density-wave orders in spatially anisotropic frustrated magnets in a magnetic field.

    PubMed

    Sato, Masahiro; Hikihara, Toshiya; Momoi, Tsutomu

    2013-02-15

    We develop a microscopic theory of finite-temperature spin-nematic orderings in three-dimensional spatially anisotropic magnets consisting of weakly coupled frustrated spin-1/2 chains with nearest-neighbor and next-nearest-neighbor couplings in a magnetic field. Combining a field theoretical technique with density-matrix renormalization group results, we complete finite-temperature phase diagrams in a wide magnetic-field range that possess spin-bond-nematic and incommensurate spin-density-wave ordered phases. The effects of a four-spin interaction are also studied. The relevance of our results to quasi-one-dimensional edge-shared cuprate magnets such as LiCuVO(4) is discussed.

  7. NSSDC data listing

    NASA Technical Reports Server (NTRS)

    Horowitz, Richard; King, Joseph H.

    1993-01-01

    This document identifies, in a highly summarized way, all the data held at the NSSDC. These data cover astrophysics and astronomy, solar and space physics, planetary and lunar, and Earth science disciplines. They are primarily, but not exclusively, from past and ongoing NASA spaceflight missions. We first identify all the data electronically available through NSSDC's principal online (magnetic disk-based) and nearline (robotics jukebox-based) systems, and then those data available on CDROM's. Finally, we identify all NSSDC-held data, the majority of which are still offline on magnetic tape, film, etc., but including the electronically accessible and CD-ROM resident data of earlier sections. These comprehensive identifications are in the form of two listings, one for the majority of NSSDC-held data sets resulting from individual instruments flown on individual spacecraft, and the other listing for the remainder of NSSDC-held data sets which do not adhere to this spacecraft/experiment/dataset hierarchy. The latter listing is presented in two parts, one for the numerous source catalogs of the NSSDC-operated Astronomical Data Center, and the other for the remainder. Access paths to all these data, and to further information about each, are also given in the related sections of this Data Listing. Note that this document is a companion to the electronically accessible information files (in particular, the NASA Master Directory) at NSSDC which also identify NSSDC-resident (and other) data.

  8. Water Conservation Resource List.

    ERIC Educational Resources Information Center

    NJEA Review, 1981

    1981-01-01

    Alarmed by the growing water shortage, the New Jersey State Office of Dissemination has prepared this annotated list of free or inexpensive instructional materials for teaching about water conservation, K-l2. A tipsheet for home water conservation is appended. (Editor/SJL)

  9. List 47: currants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This summary presents the descriptions of two newly released black currant (Ribes nigrum L.) for the List of New Fruit and Nut Cultivars. These black currant cultivars were just released and now hold US plant patents. The cultivars are 'Ben Chaska' and 'Ben Como'. These black currants have quality f...

  10. Getting on the List

    MedlinePlus

    ... length of time because there are not enough donor organs for all who need them. The National Waiting ... transplant candidate, you are registered on the national organ transplant waiting list. A living donor may also be identified and evaluated for living ...

  11. Computer Courseware. Advisory List.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Media Evaluation Service.

    Computer courseware appropriate for instruction in grades K-12 is listed in this document. Entries are classified by subject or application: (1) communication skills, which include instruction in reading, writing, and research sources; (2) mathematics; (3) college selection services; (4) problem solving; and (5) social studies. Information on each…

  12. 77 FR 2561 - Agency Information Collection Activities: Passenger List/Crew List (CBP Form I-418)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... of automated collection techniques or the use of other forms of information technology; and (e... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Passenger List/Crew.... ACTION: 60-Day notice and request for comments; Extension of an existing information collection:...

  13. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  14. Spin rectification induced by spin Hall magnetoresistance at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, P.; Jiang, S. W.; Luan, Z. Z.; Zhou, L. F.; Ding, H. F.; Zhou, Y.; Tao, X. D.; Wu, D.

    2016-09-01

    We have experimentally and theoretically investigated the dc voltage generation in the heterostructure of Pt and yttrium iron garnet under the ferromagnetic resonance. Besides a symmetric Lorenz line shape dc voltage, an antisymmetric Lorenz line shape dc voltage is observed in field scan, which can solely originate from the spin rectification effect due to the spin Hall magnetoresistance. The angular dependence of the dc voltage is theoretically analyzed by taking into account both the spin pumping and the spin rectification effects. We find that the experimental results are in excellent agreement with the theoretical model, further identifying the spin Hall magnetoresistance origin of the spin rectification effect. Moreover, the spin pumping and the spin rectification effects are quantitatively separated by their different angular dependence at particular experimental geometry.

  15. Quantum spin transistor with a Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-10-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.

  16. Quantum spin transistor with a Heisenberg spin chain

    PubMed Central

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  17. Spin-orbit coupling and spin relaxation in phosphorene

    NASA Astrophysics Data System (ADS)

    Kurpas, Marcin; Gmitra, Martin; Fabian, Jaroslav

    We employ first principles density functional theory calculations to study intrinsic and extrinsic spin-orbit coupling in monolayer phosphorene. We also extract the spin-mixing amplitudes of the Bloch wave functions to give realistic estimates of the Elliott-Yafet spin relaxation rate. The most remarkable result is the striking anisotropy in both spin-orbit coupling and spin relaxation rates, which could be tested experimentally in spin injection experiments. We also identify spin hot spots in the electronic structure of phosphorene at accidental bands anticrossings. We compare the Elliott-Yafet with Dyakonov-Perel spin relaxation times, obtained from extrinsic couplings in an applied electric field. We also compare the results in phosphorene with those of black phosphorous. This work is supported by the DFG SPP 1538, SFB 689, and by the EU Seventh Framework Programme under Grant Agreement No. 604391 Graphene Flagship.

  18. Spin-Orbit Twisted Spin Waves: Group Velocity Control

    NASA Astrophysics Data System (ADS)

    Perez, F.; Baboux, F.; Ullrich, C. A.; D'Amico, I.; Vignale, G.; Karczewski, G.; Wojtowicz, T.

    2016-09-01

    We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves.

  19. Spin filter and spin valve in ferromagnetic graphene

    NASA Astrophysics Data System (ADS)

    Song, Yu; Dai, Gang

    2015-06-01

    We propose and demonstrate that a EuO-induced and top-gated graphene ferromagnetic junction can be simultaneously operated as a spin filter and a spin valve. We attribute such a remarkable result to a coexistence of a half-metal band and a common energy gap for opposite spins in ferromagnetic graphene. We show that both the spin filter and the spin valve can be effectively controlled by a back gate voltage, and they survive for practical metal contacts and finite temperature. Specifically, larger single spin currents and on-state currents can be reached with contacts with work functions similar to graphene, and the spin filter can operate at higher temperature than the spin valve.

  20. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  1. Spinning electroweak sphalerons

    SciTech Connect

    Radu, Eugen; Volkov, Mikhail S.

    2009-03-15

    We present numerical evidence for the existence of stationary spinning generalizations for the static sphaleron in the Weinberg-Salam theory. Our results suggest that, for any value of the mixing angle {theta}{sub W} and for any Higgs mass, the spinning sphalerons comprise a family labeled by their angular momentum J. For {theta}{sub W}{ne}0 they possess an electric charge Q=eJ, where e is the electron charge. Inside they contain a monopole-antimonopole pair and a spinning loop of electric current, and for large J, a Regge-type behavior. It is likely that these sphalerons mediate the topological transitions in sectors with J{ne}0, thus enlarging the number of transition channels. Their action decreases with J, which may considerably affect the total transition rate.

  2. Nonlinear Amplification of Small Spin Precession Using Long-Range Dipolar Interactions

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Savukov, I. M.; Romalis, M. V.

    2005-02-01

    In measurements of small signals using spin precession the precession angle usually grows linearly in time. We show that a dynamic instability caused by spin interactions can lead to an exponentially growing spin-precession angle, amplifying small signals and raising them above the noise level of a detection system. We demonstrate amplification by a factor of greater than 8 of a spin-precession signal due to a small magnetic field gradient in a spherical cell filled with hyperpolarized liquid 129Xe. This technique can improve the sensitivity in many measurements that are limited by the noise of the detection system, rather than the fundamental spin-projection noise.

  3. Spin Hall effect-controlled magnetization dynamics in NiMnSb

    SciTech Connect

    Dürrenfeld, P. Ranjbar, M.; Gerhard, F.; Gould, C.; Molenkamp, L. W.; Åkerman, J.

    2015-05-07

    We investigate the influence of a spin current generated from a platinum layer on the ferromagnetic resonance (FMR) properties of an adjacent ferromagnetic layer composed of the halfmetallic half-Heusler material NiMnSb. Spin Hall nano-oscillator devices are fabricated, and the technique of spin torque FMR is used to locally study the magnetic properties as in-plane anisotropies and resonance fields. A change in the FMR linewidth, in accordance with the additional spin torque produced by the spin Hall effect, is present for an applied dc current. For sufficiently large currents, this should yield auto-oscillations, which however are not achievable in the present device geometry.

  4. MnO spin-wave dispersion curves from neutron powder diffraction

    SciTech Connect

    Goodwin, Andrew L.; Dove, Martin T.; Tucker, Matthew G.; Keen, David A.

    2007-02-15

    We describe a model-independent approach for the extraction of spin-wave dispersion curves from powder neutron total scattering data. Our approach is based on a statistical analysis of real-space spin configurations to calculate spin-dynamical quantities. The RMCPROFILE implementation of the reverse Monte Carlo refinement process is used to generate a large ensemble of supercell spin configurations from MnO powder diffraction data collected at 100 K. Our analysis of these configurations gives spin-wave dispersion curves for MnO that agree well with those determined independently using neutron triple-axis spectroscopic techniques.

  5. Ultrasensitive atomic spin measurements with a nonlinear interferometer

    NASA Astrophysics Data System (ADS)

    Sewell, Robert J.; Napolitano, Mario; Behbood, Naeimeh; Colangelo, Giorgio; Martin Curiana, Ferran; Mitchell, Morgan W.

    2015-05-01

    We study nonlinear interferometry applied to a measurement of atomic spin and demonstrate a sensitivity that cannot be achieved by any linear-optical measurement with the same experimental resources. We use alignment-to-orientation conversion, a nonlinear-optical technique from optical magnetometry, to perform a nondestructive measurement of the spin alignment of a cold Rb-87 atomic ensemble. We observe state-of-the-art spin sensitivity in a single-pass measurement, in good agreement with covariance-matrix theory. Taking the degree of measurement-induced spin squeezing as a figure of merit, we find that the nonlinear technique's experimental performance surpasses the theoretical performance of any linear-optical measurement on the same system, including optimization of probe strength and tuning. The results confirm the central prediction of nonlinear metrology, that superior scaling can lead to superior absolute sensitivity. Supported by European Research Council Starting Grant ``AQUMET''.

  6. Zero-bias spin separation

    NASA Astrophysics Data System (ADS)

    Ganichev, Sergey D.; Bel'Kov, Vasily V.; Tarasenko, Sergey A.; Danilov, Sergey N.; Giglberger, Stephan; Hoffmann, Christoph; Ivchenko, Eougenious L.; Weiss, Dieter; Wegscheider, Werner; Gerl, Christian; Schuh, Dieter; Stahl, Joachim; de Boeck, Jo; Borghs, Gustaaf; Prettl, Wilhelm

    2006-09-01

    The generation, manipulation and detection of spin-polarized electrons in low-dimensional semiconductors are at the heart of spintronics. Pure spin currents, that is, fluxes of magnetization without charge current, are quite attractive in this respect. A paradigmatic example is the spin Hall effect, where an electrical current drives a transverse spin current and causes a non-equilibrium spin accumulation observed near the sample boundary. Here we provide evidence for an another effect causing spin currents which is fundamentally different from the spin Hall effect. In contrast to the spin Hall effect, it does not require an electric current to flow: without bias the spin separation is achieved by spin-dependent scattering of electrons in media with suitable symmetry. We show, by free-carrier absorption of terahertz (THz) radiation, that spin currents flow in a wide range of temperatures. Moreover, the experimental results provide evidence that simple electron gas heating by any means is already sufficient to yield spin separation due to spin-dependent energy-relaxation processes.

  7. Squeezed spin states: Squeezing the spin uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kitagawa, Masahiro; Ueda, Masahito

    1993-01-01

    The notion of squeezing in spin systems is clarified, and the principle for spin squeezing is shown. Two twisting schemes are proposed as building blocks for spin squeezing and are shown to reduce the standard quantum noise, s/2, of the coherent S-spin state down to the order of S(sup 1/3) and 1/2. Applications to partition noise suppression are briefly discussed.

  8. Resiliency Techniques in School Practice

    ERIC Educational Resources Information Center

    Molony, Terry; Henwood, Maureen; Gilroy, Shawn

    2010-01-01

    School psychologists can help build resilience in youth in many ways. This article offers a list of some easy techniques to use when working with individuals or groups, most based on basic cognitive-behavior therapy (CBT) techniques. They include: (1) Emotional awareness; (2) Emotional Regulation; (3) Cognitive Flexibility; (4) Self-efficacy; and…

  9. Spin Echo in Synchrotrons

    SciTech Connect

    Chao, Alexander W.; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an

  10. Measuring Black Hole Spin

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    1999-09-01

    WE PROPOSE TO CARRY OUT A SYSTEMATIC STUDY OF EMISSION AND ABSORPTION SPECTRAL FEATURES THAT ARE OFTEN SEEN IN X-RAY SPECTRA OF BLACK HOLE BINARIES. THE EXCELLENT SENSITIVITY AND ENERGY RESOLUTION OF THE ACIS/HETG COMBINATION WILL NOT ONLY HELP RESOLVE AMBIGUITIES IN INTERPRETING THESE FEATURES, BUT MAY ALLOW MODELLING OF THE EMISSION LINE PROFILES IN DETAIL. THE PROFILES MAY CONTAIN INFORMATION ON SUCH FUNDAMENTAL PROPERTIES AS THE SPIN OF BLACK HOLES. THEREFORE, THIS STUDY COULD LEAD TO A MEASUREMENT OF BLACK HOLE SPIN FOR SELECTED SOURCES. THE RESULT CAN THEN BE DIRECTLY COMPARED WITH THOSE FROM PREVIOUS STUDIES BASED ON INDEPENDENT METHODS.

  11. Spin Wave Genie

    SciTech Connect

    2015-02-16

    The four-dimensional scattering function S(Q,w) obtained by inelastic neutron scattering measurements provides unique "dynamical fingerprints" of the spin state and interactions present in complex magnetic materials. Extracting this information however is currently a slow and complex process that may take an expert -depending on the complexity of the system- up to several weeks of painstaking work to complete. Spin Wave Genie was created to abstract and automate this process. It strives to both reduce the time to complete this analysis and make these calculations more accessible to a broader group of scientists and engineers.

  12. Spin Wave Genie

    2015-02-16

    The four-dimensional scattering function S(Q,w) obtained by inelastic neutron scattering measurements provides unique "dynamical fingerprints" of the spin state and interactions present in complex magnetic materials. Extracting this information however is currently a slow and complex process that may take an expert -depending on the complexity of the system- up to several weeks of painstaking work to complete. Spin Wave Genie was created to abstract and automate this process. It strives to both reduce themore » time to complete this analysis and make these calculations more accessible to a broader group of scientists and engineers.« less

  13. Spin Hamiltonian Spectroscopy in PRASEODYMIUM(3):LANTHANUM Trifluoride.

    NASA Astrophysics Data System (ADS)

    Otto, Frederick William

    An optically detected anticrossing in solid state laser spectroscopy produced by cross-relaxation is reported. Spin -spin cross-relaxation between the ^{141 }Pr and ^{19}F spin reservoirs in Pr^{+3}:LaF _3 and its influence on the ^{141}Pr NMR spectrum is observed. The detection technique employed combines optical pumping and hole burning with either an external magnetic field sweep or rf resonance saturation producing slow transient changes in resonant laser transmission. At a certain value of the external magnetic field, where the energy level splittings of Pr and F spins match, a level repulsion and discontinuity of the Pr^{+3} NMR lines is observed. This effect is interpreted as the "anticrossing" of the combined Pr-F spin-spin reservoir energy states. The Zeeman - Quadrupole Hamiltonian spectrum of the lowest hyperfine optical ground state manifold of Pr^ {+3}:LaF_3 is mapped out over a wide range of Zeeman magnetic fields. A new method is proposed for dynamically polarizing nuclei by means of optical pumping, using resonant cross-relaxation between rare spins and spin reservoirs.

  14. A bifunctional spin detector made of quantum anomalous Hall insulator

    NASA Astrophysics Data System (ADS)

    Shi, Zhangsheng; Wu, Jiansheng

    2016-10-01

    The spin selection of the topological boundary states (TBS) which are protected by the chiral-like symmetry in quantum anomalous Hall insulator (QAHI) can be used to construct a bifunctional spin detector (SD). Such device made of QAHIs in parallel with opposite chirality can divide an incoming spin-polarized current into two outgoing currents. The agreement between numerical and analytical calculation proves that the SD device functions as both spin filter and spin separator well in reflecting the spin polarization of source material from the ratio of two currents. The monotonic relation of spin polarization and current ratio suggests that using such kind of device, the spin polarization can be obtained directly. We also find that such device has a broad working energy region attributed by the TBS within the bulk gap. Combining with the result that the current ratio is barely dependent on the coupling between candidate materials and device, it is reasonable to apply this technique with a stable measuring accuracy. Furthermore, the features such as having simple geometry, being manipulated without external magnetic field, and the prospect of working at room temperature make this proposed device seem promising in developing future low-power-consumption spintronic device.

  15. Half-metallic superconducting triplet spin valve

    NASA Astrophysics Data System (ADS)

    Halterman, Klaus; Alidoust, Mohammad

    2016-08-01

    We theoretically study a finite-size S F1N F2 spin valve, where a normal metal (N ) insert separates a thin standard ferromagnet (F1) and a thick half-metallic ferromagnet (F2). For sufficiently thin superconductor (S ) widths close to the coherence length ξ0, we find that changes to the relative magnetization orientations in the ferromagnets can result in substantial variations in the transition temperature Tc, consistent with experimental results [Singh et al., Phys. Rev. X 5, 021019 (2015), 10.1103/PhysRevX.5.021019]. Our results demonstrate that, in good agreement with the experiment, the variations are largest in the case where F2 is in a half-metallic phase and thus supports only one spin direction. To pinpoint the origins of this strong spin-valve effect, both the equal-spin f1 and opposite-spin f0 triplet correlations are calculated using a self-consistent microscopic technique. We find that when the magnetization in F1 is tilted slightly out of plane, the f1 component can be the dominant triplet component in the superconductor. The coupling between the two ferromagnets is discussed in terms of the underlying spin currents present in the system. We go further and show that the zero-energy peaks of the local density of states probed on the S side of the valve can be another signature of the presence of superconducting triplet correlations. Our findings reveal that for sufficiently thin S layers, the zero-energy peak at the S side can be larger than its counterpart in the F2 side.

  16. Optical control of a spin switch in the weak spin-orbit coupling limit

    SciTech Connect

    Sola, Ignacio R.; Gonzalez-Vazquez, Jesus; Malinovsky, Vladimir S.

    2006-10-15

    A method to optically control a dark transition, for instance, the coupling between different spin states, is proposed. The control is achieved by manipulating the direction, amplitude, and duration of dynamic Stark shifts. Laser-driven spin switches can be prepared by conveniently generalizing different optical techniques, such as {pi}-pulse schemes and adiabatic passage schemes. The efficiency and robustness of the schemes is analyzed for both two-level and multilevel systems, implying quantum state selective wave packet transfer between states of different multiplicity.

  17. Spin guides and spin splitters: waveguide analogies in one-dimensional spin chains.

    PubMed

    Makin, Melissa I; Cole, Jared H; Hill, Charles D; Greentree, Andrew D

    2012-01-01

    Here we show a mapping between waveguide theory and spin-chain transport, opening an alternative approach to solid-state quantum information transport. By applying temporally varying control profiles to a spin chain, we design a virtual waveguide or "spin guide" to conduct spin excitations along defined space-time trajectories of the chain. We show that the concepts of confinement, adiabatic bend loss, and beam splitting can be mapped from optical waveguide theory to spin guides, and hence to "spin splitters." Importantly, the spatial scale of applied control pulses is required to be large compared to the interspin spacing, thereby allowing the design of scalable control architectures.

  18. Unstable flip-flopping spinning binary black holes

    NASA Astrophysics Data System (ADS)

    Lousto, Carlos O.; Healy, James

    2016-06-01

    We provide a unified description of the flip-flop and the antialignment instability effects in spinning black hole binaries in terms of real and imaginary flip-flop frequencies. We find that this instability is only effective for mass ratios 0.5 spin magnitudes and mass ratio (α1,α2;q ). This restricts the priors of parameter estimation techniques for the observation of gravitational waves from quasialigned spinning binary black holes and it is relevant for their astrophysical modeling and final recoil computations.

  19. Engineering shallow spins in diamond with nitrogen delta-doping

    SciTech Connect

    Ohno, Kenichi; Joseph Heremans, F.; Bassett, Lee C.; Myers, Bryan A.; Toyli, David M.; Bleszynski Jayich, Ania C.; Palmstrom, Christopher J.; Awschalom, David D.

    2012-08-20

    We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of synthetic diamond using an in situ nitrogen delta-doping technique during plasma-enhanced chemical vapor deposition. Despite their proximity to the surface, doped NV centers with depths (d) ranging from 5 to 100 nm display long spin coherence times, T{sub 2} > 100 {mu}s at d = 5 nm and T{sub 2} > 600 {mu}s at d {>=} 50 nm. The consistently long spin coherence observed in such shallow NV centers enables applications such as atomic-scale external spin sensing and hybrid quantum architectures.

  20. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    SciTech Connect

    Yang, Luyi

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly

  1. The theory of spin noise spectroscopy: a review

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Nikolai A.; Pershin, Yuriy V.

    2016-10-01

    Direct measurements of spin fluctuations are becoming the mainstream approach for studies of complex condensed matter, molecular, nuclear, and atomic systems. This review covers recent progress in the field of optical spin noise spectroscopy (SNS) with an additional goal to establish an introduction into its theoretical foundations. Various theoretical techniques that have been recently used to interpret results of SNS measurements are explained alongside examples of their applications.

  2. NMR studies of selective population inversion and spin clustering

    SciTech Connect

    Baum, J.S.

    1986-02-01

    This work describes the development and application of selective excitation techniques in Nuclear Magnetic Resonance. Composite pulses and multiple-quantum methods are used to accomplish various goals, such as broadband and narrowband excitation in liquids, and collective excitation of groups of spins in solids. These methods are applied to a variety of problems, including non-invasive spatial localization, spin cluster size characterization in disordered solids and solid state NMR imaging.

  3. Dynamical properties of the hypercell spin-glass model

    NASA Astrophysics Data System (ADS)

    Gleiser, P. M.; Tamarit, F. A.

    1998-02-01

    The spreading of damage technique is used to study the dynamical phase diagram of the spin-glass hypercubic cell model in a heat bath Monte Carlo simulation. Since the hypercubic cell in dimension 2D and the hypercubic lattice in dimension D resemble each other closely at finite dimensions and both converge to a mean field when dimension goes to infinity, we can study the effects of dimensionality on the dynamical behavior of spin glasses.

  4. Voltage modulation of propagating spin waves in Fe

    SciTech Connect

    Nawaoka, Kohei; Shiota, Yoichi; Miwa, Shinji; Tamura, Eiiti; Tomita, Hiroyuki; Mizuochi, Norikazu; Shinjo, Teruya; Suzuki, Yoshishige

    2015-05-07

    The effect of a voltage application on propagating spin waves in single-crystalline 5 nm-Fe layer was investigated. Two micro-sized antennas were employed to excite and detect the propagating spin waves. The voltage effect was characterized using AC lock-in technique. As a result, the resonant field of the magnetostatic surface wave in the Fe was clearly modulated by the voltage application. The modulation is attributed to the voltage induced magnetic anisotropy change in ferromagnetic metals.

  5. Polariton condensates: Electrical spin switching

    NASA Astrophysics Data System (ADS)

    Liew, T. C. H.

    2016-10-01

    Ultra-low-power electronic switching of stable exciton-polariton spin states has now been achieved in a semiconductor microcavity. This opens a new route to the integration of spin-based photonics and electronics.

  6. Collective mode evidence of high-spin bosonization in a trapped one-dimensional atomic Fermi gas with tunable spin

    SciTech Connect

    Liu, Xia-Ji Hu, Hui

    2014-11-15

    We calculate the frequency of collective modes of a one-dimensional repulsively interacting Fermi gas with high-spin symmetry confined in harmonic traps at zero temperature. This is a system realizable with fermionic alkaline-earth-metal atoms such as {sup 173}Yb, which displays an exact SU(κ) spin symmetry with κ⩾2 and behaves like a spinless interacting Bose gas in the limit of infinite spin components κ→∞, namely high-spin bosonization. We solve the homogeneous equation of state of the high-spin Fermi system by using Bethe ansatz technique and obtain the density distribution in harmonic traps based on local density approximation. The frequency of collective modes is calculated by exactly solving the zero-temperature hydrodynamic equation. In the limit of large number of spin-components, we show that the mode frequency of the system approaches that of a one-dimensional spinless interacting Bose gas, as a result of high-spin bosonization. Our prediction of collective modes is in excellent agreement with a very recent measurement for a Fermi gas of {sup 173}Yb atoms with tunable spin confined in a two-dimensional tight optical lattice.

  7. Stochastic Evolution of Halo Spin

    NASA Astrophysics Data System (ADS)

    Kim, Juhan

    2015-08-01

    We will introduce an excursion set model for the evolution of halo spin from cosmological N-body simulations. A stochastic differential equation is derived from the definition of halo spin and the distribution of angular momentum changes are measured from simulations. The log-normal distribution of halo spin is found to be a natural consequence of the stochastic differential equation and the resulting spin distribution is found be a function of local environments, halo mass, and redshift.

  8. Linearized kinetic theory of spin-1/2 particles in magnetized plasmas

    SciTech Connect

    Lundin, J.; Brodin, G.

    2010-11-15

    We have considered linear kinetic theory, including the electron-spin properties in a magnetized plasma. The starting point is a mean-field Vlasov-like equation, derived from a fully quantum-mechanical treatment, where effects from the electron-spin precession and the magnetic dipole force are taken into account. The general conductivity tensor is derived, including both the free current contribution and the magnetization current associated with the spin contribution. We conclude the paper with an extensive discussion of the quantum-mechanical boundary where we list parameter conditions that must be satisfied for various quantum effects to be influential.

  9. Nucleon spin structure

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Ruan, Jianhong

    2015-10-01

    This paper contains three parts relating to the nucleon spin structure in a simple picture of the nucleon: (i) The polarized gluon distribution in the proton is dynamically predicted starting from a low scale by using a nonlinear quantum chromodynamics (QCD) evolution equation — the Dokshitzer-Gribov-Lipatov-Altarelli-Paris (DGLAP) equation with the parton recombination corrections, where the nucleon is almost consisted only of valence quarks. We find that the contribution of the gluon polarization to the nucleon spin structure is much larger than the predictions of most other theories. This result suggests that a significant orbital angular momentum of the gluons is required to balance the gluon spin momentum. (ii) The spin structure function g1p of the proton is studied, where the perturbative evolution of parton distributions and nonperturbative vector meson dominance (VMD) model are used. We predict g1p asymptotic behavior at small x from lower Q2 to higher Q2. The results are compatible with the data including the early HERA estimations and COMPASS new results. (iii) The generalized Gerasimov-Drell-Hearn (GDH) sum rule is understood based on the polarized parton distributions of the proton with the higher twist contributions. A simple parameterized formula is proposed to clearly present the contributions of different components in the proton to Γ 1p(Q2). The results suggest a possible extended objects with size 0.2-0.3 fm inside the proton.

  10. Artificial frustrated spin systems

    NASA Astrophysics Data System (ADS)

    Perrin, Y.; Chioar, I. A.; Nguyen, V. D.; Lacour, D.; Hehn, M.; Montaigne, F.; Canals, B.; Rougemaille, N.

    2015-09-01

    Complex architectures of nanostructures are routinely elaborated using bottom-up or nanofabrication processes. This technological capability allows scientists to engineer materials with properties that do not exist in nature, but also to manufacture model systems to explore fundamental issues in condensed matter physics. Two-dimensional frustrated arrays of magnetic nanostructures are one class of systems for which theoretical predictions can be tested experimentally. These systems have been the subject of intense research in the last few years and allowed the investigation of a rich physics and fascinating phenomena, such as the exploration of the extensively degenerate ground-state manifolds of spin ice systems, the evidence of new magnetic phases in purely two-dimensional lattices, and the observation of pseudoexcitations involving classical analogues of magnetic monopoles. We show here, experimentally and theoretically, that simple magnetic geometries can lead to unconventional, non-collinear spin textures. For example, kagome arrays of inplane magnetized nano-islands do not show magnetic order. Instead, these systems are characterized by spin textures with intriguing properties, such as chirality, coexistence of magnetic order and disorder, and charge crystallization. Magnetic frustration effects in lithographically patterned kagome arrays of nanomagnets with out-of-plane magnetization also lead to an unusal, and still unknown, magnetic ground state manifold. Besides the influence of the lattice geometry, the micromagnetic nature of the elements constituting the arrays introduce the concept of chiral magnetic monopoles, bringing additional complexity into the physics of artificial frustrated spin systems.

  11. Stabilizing a spinning Skylab.

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.; Justice, D. W.; Schweitzer, G.; Patel, J. S.

    1972-01-01

    This paper presents the results of a study of the dynamics of a spinning Skylab space station. The stability of motion of several simplified models with flexible appendages was investigated. A digital simulation model that more accurately portrays the complex Skylab vehicle is described, and simulation results are compared with analytically derived results.

  12. Stabilizing a spinning Skylab

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.; Patel, J. S.; Justice, D. W.; Schweitzer, G. E.

    1972-01-01

    The results are presented of a study of the dynamics of a spinning Skylab space station. The stability of motion of several simplified models with flexible appendages was investigated. A digital simulation model that more accurately portrays the complex Skylab vehicle is described, and simulation results are compared with analytically derived results.

  13. Layered kagome spin ice

    NASA Astrophysics Data System (ADS)

    Hamp, James; Dutton, Sian; Mourigal, Martin; Mukherjee, Paromita; Paddison, Joseph; Ong, Harapan; Castelnovo, Claudio

    Spin ice materials provide a rare instance of emergent gauge symmetry and fractionalisation in three dimensions: the effective degrees of freedom of the system are emergent magnetic monopoles, and the extensively many `ice rule' ground states are those devoid of monopole excitations. Two-dimensional (kagome) analogues of spin ice have also been shown to display a similarly rich behaviour. In kagome ice however the ground-state `ice rule' condition implies the presence everywhere of magnetic charges. As temperature is lowered, an Ising transition occurs to a charge-ordered state, which can be mapped to a dimer covering of the dual honeycomb lattice. A second transition, of Kosterlitz-Thouless or three-state Potts type, occurs to a spin-ordered state at yet lower temperatures, due to small residual energy differences between charge-ordered states. Inspired by recent experimental capabilities in growing spin ice samples with selective (layered) substitution of non-magnetic ions, in this work we investigate the fate of the two ordering transitions when individual kagome layers are brought together to form a three-dimensional pyrochlore structure coupled by long range dipolar interactions. We also consider the response to substitutional disorder and applied magnetic fields.

  14. Does the Moon Spin?

    ERIC Educational Resources Information Center

    Collins, Robert; Simpson, Frances

    2007-01-01

    In this article, the authors explore the question, "Does the Moon spin?", and show how the question is investigated. They emphasise the importance of the process by which people work out what they know, by "learning from the inside out." They stress that those involved in science education have to challenge current conceptions and ideas, making…

  15. Transverse Spin at RHIC

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorong

    2016-03-01

    In recent years, there has been exciting development in both experimental and theoretical studies of transverse spin asymmetries in polarized p+p and and DIS collisions. As a unique polarized proton-proton collider, Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) provides a unique opportunity to investigate the novel physics mechanisms that cause the large single spin asymmetry at the forward rapidity. Both PHENIX and STAR experiments have been studying the transverse spin asymmetries with a variety of final state particles in different kinematic regimes since 2006. Especially, recent theoretical development on scattering a polarized probe on the saturated nuclear may provide a unique way to probe the gluon and quark TMDs. RHIC successfully ran polarized p+Au collisions in 2015. We will expect to have new results from polarized d+Au to compare with existing results from p+p collision to extend our understanding of QCD. Further more, In 2015, PHENIX installed MPC-ex calorimeter at very forward region to measure direct photon AN and STAR installed Roman Pots to study the diffractive events in polarized p+p and p+Au collisions. The recent results on transverse polarized p+p and p+Au collisions from both PHENIX and STAR experiments will be presented in this talk. I will also briefly discuss the possibility for the transverse Spin program at future experiments sPHENIX and forward sPHENIX at RHIC. Supported by US Department of Energy and RIKEN Brookhaven Research Center.

  16. An overview of spin physics

    SciTech Connect

    Prescott, C.Y.

    1991-07-01

    Spin physics is playing an increasingly important role in high energy experiments and theory. This review looks at selected topics in high energy spin physics that were discussed at the 9th International Symposium on High Energy Spin Physics at Bonn in September 1990.

  17. Spin Transport in Semiconductor heterostructures

    SciTech Connect

    Domnita Catalina Marinescu

    2011-02-22

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  18. Microwave generation by spin Hall nanooscillators with nanopatterned spin injector

    SciTech Connect

    Zholud, A. Urazhdin, S.

    2014-09-15

    We experimentally study spin Hall nano-oscillators based on Pt/ferromagnet bilayers with nanopatterned Pt spin injection layer. We demonstrate that both the spectral characteristics and the electrical current requirements can be simultaneously improved by reducing the spin injection area. Moreover, devices with nanopatterned Pt spin injector exhibit microwave generation over a wide temperature range that extends to room temperature. Studies of devices with additional Pt spacers under the device electrodes show that the oscillation characteristics are affected not only by the spin injection geometry but also by the effects of Pt/ferromagnet interface on the dynamical properties of the ferromagnet.

  19. Gluonic Spin Contribution to Proton Spin at NLO

    SciTech Connect

    Casey, Andrew

    2011-05-24

    In 1988, when the EMC results showed that the quarks had a much smaller contribution to the spin of the proton than previously thought, the 'Proton Spin Crisis' began. Since then, considerable effort has been directed into discovering the main contributors to proton spin and how much each contributes. One such contributor is the gluonic spin component. QCD NLO evolution equations are combined with boundary conditions obtained from heavy quark decoupling expressions to evolve the equations from infinity to the mass of the charm quark in order to determine the gluonic spin contribution.

  20. Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses

    NASA Astrophysics Data System (ADS)

    Munsch, Mathieu; Wüst, Gunter; Kuhlmann, Andreas V.; Xue, Fei; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Poggio, Martino; Warburton, Richard J.

    2014-09-01

    The nuclear spins in nanostructured semiconductors play a central role in quantum applications. The nuclear spins represent a useful resource for generating local magnetic fields but nuclear spin noise represents a major source of dephasing for spin qubits. Controlling the nuclear spins enhances the resource while suppressing the noise. NMR techniques are challenging: the group III and V isotopes have large spins with widely different gyromagnetic ratios; in strained material there are large atom-dependent quadrupole shifts; and nanoscale NMR is hard to detect. We report NMR on 100,000 nuclear spins of a quantum dot using chirped radiofrequency pulses. Following polarization, we demonstrate a reversal of the nuclear spin. We can flip the nuclear spin back and forth a hundred times. We demonstrate that chirped NMR is a powerful way of determining the chemical composition, the initial nuclear spin temperatures and quadrupole frequency distributions for all the main isotopes. The key observation is a plateau in the NMR signal as a function of sweep rate: we achieve inversion at the first quantum transition for all isotopes simultaneously. These experiments represent a generic technique for manipulating nanoscale inhomogeneous nuclear spin ensembles and open the way to probe the coherence of such mesoscopic systems.

  1. NSSDC Data listing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A convenient reference to space science and supportive data available from the National Space Science Data Center (NSSDC) is provided. Satellite data are organized by NSSDC spacecraft common name. The launch date and NSSDC ID are given. Experiments are listed alphabetically by the principal investigator or team leader. The experiment name and NSSDC ID, data set ID, data set name, data form code, quantity of data, and the time span of the data as verified by NSSDC are shown. Ground-based data, models, computer routines, and composite spacecraft data that are available from NSSDC are listed alphabetically by discipline, source, data type, data content, and data set. The data set name, data form code, quantity of data, and the time span covered where appropriate are included.

  2. Lists as Research Technologies

    PubMed Central

    Müller-Wille, Staffan; Charmantier, Isabelle

    2013-01-01

    The Swedish naturalist Carl Linnaeus (1707-1778) is famous for having turned botany into a systematic discipline, through his classification systems – most notably the sexual system – and his nomenclature. Throughout his life, Linnaeus experimented with various paper technologies designed to display information synoptically. The list took pride of place among these and is also the common element of more complex representations he produced, such as genera descriptions or his “natural system.” Taking our clues from the anthropology of writing, we want to demonstrate that lists can be considered as genuine research technologies. They possess a potential to generate research problems of their own but also pose limitations to inquiries that can only be overcome by the use of new media. PMID:23488242

  3. Lists as research technologies.

    PubMed

    Müller-Wille, Staffan; Charmantier, Isabelle

    2012-12-01

    The Swedish naturalist Carl Linnaeus (1707-1778) is famous for having turned botany into a systematic discipline, through his classification systems--most notably the sexual system--and his nomenclature. Throughout his life, Linnaeus experimented with various paper technologies designed to display information synoptically. The list took pride of place among these and is also the common element of more complex representations he produced, such as genera descriptions and his "natural system." Taking clues from the anthropology of writing, this essay seeks to demonstrate that lists can be considered as genuine research technologies. They possess a potential to generate research problems of their own but also pose limitations to inquiries that can be overcome only by the use of new media.

  4. Control of Propagating Spin Waves via Spin Transfer Torque in a Metallic Bilayer Waveguide

    NASA Astrophysics Data System (ADS)

    An, Kyongmo; Birt, Daniel; Pai, Chi-Feng; Olsson, Kevin; Ralph, Daniel; Buhrman, Robert; Li, Xiaoqin

    2014-03-01

    We investigate the effect of a direct current on propagating spin waves in a CoFeB/Ta bilayer structure. Using the micro-Brillouin light scattering technique, we observe that the spin wave amplitude may be attenuated or amplified depending on the direction of the current and the applied magnetic field. Our work suggests an effective approach for electrically controlling the propagation of spin waves in a magnetic waveguide and may be useful in a number of applications such as phase locked nano-oscillators and hybrid information processing devices. AFOSR FA9550-08-1-0463, AFOSR FA-9550-08-1-0058 and the NSF-IGERT program via grant DGE-0549417.

  5. Spin transfer torque effects in magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Tingyong

    Spin transfer torque (STT) effects have been studied using a point-contact spin injection technique in (1) magnetic trilayers, (2) a single exchange-biased ferromagnetic layer, and (3) magnetic granular solids. In the point-contact spin injection, a sharp metallic tip is in contact with a thin film structure. The high current density (e.g. 10 8 A/cm²) required for the STT effects is achieved by concentrating a current of a few milli-amperes into a point contact with a cross section less than 100 nanometers. Spin (polarized electrons) is injected into the contact region via a spin polarizer, a ferromagnetic film underneath the film structure. Resistance and differential resistance of the contact as a function of the current in the contact are measured at the same time using a lock-in technique. Steps in the resistance and spikes in the differential resistance indicate non-collinear spin structures are induced by the STT effect. The non-collinear spin structures are verified by the magnetoresistance of the contact with a small current without causing any STT effect. The experiments are carried out at cryogenic temperatures obtained by a liquid helium dewar and in magnetic fields up to 9 Tesla provided by a superconductor magnet. In magnetic trilayers such as Co/Cu/Co film where the STT effect is an inverse effect of the giant magnetoresistance (GMR) effect, a magnetic bit can be reversibly written by a spin polarized current injected through a point contact into the continuous film. The magnetic states written depend on the polarity of the injection currents, and remain stable at room temperature. The reversible writing can be achieved for a wide range of contact resistances with a well-defined voltage for the reversal. With the assistance of the exchange coupling of an antiferromagnetic CoO layer, a nanodomain has been created and manipulated by the inhomogeneous current density within a ferromagnetic Co layer, showing hysteretic switching loops at low fields. At

  6. Development and Application of Spin Traps, Spin Probes, and Spin Labels.

    PubMed

    Bagryanskaya, Elena G; Krumkacheva, Olesya A; Fedin, Matvey V; Marque, Sylvain R A

    2015-01-01

    This chapter focuses on major achievements of the last decade in the synthesis and applications of spin traps, spin probes, and spin labels. Our discussion on spin trapping is mainly concerned with novel aspects of nitrones used as spin traps and with the kinetics caused by bioreductants. The second part of the chapter deals with recent developments in site-directed spin labeling (SDSL) for studying structure and functions of proteins and nucleic acids. We focus on SDSL EPR distance measurements using advanced trityl and nitroxide labels, on new approaches for incorporation of spin labels in biomolecules, and finally, on recent room/physiological temperature measurements made feasible by these novel spin labels. PMID:26478492

  7. Spin Circuit Representation of Spin Pumping in Topological Insulators

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal

    Earlier we developed spin circuit representation of spin pumping and combined it with the spin circuit representation for the inverse spin Hall effect to show that it reproduces the established results in literature. Here we construct the spin circuit representation of spin pumping in topological insulators. The discovery of spin-polarized surface states in three-dimensional (3D) topological insulators (TIs) with strong spin-orbit coupling is promising for the development of spintronics. There is considerable bulk conduction too in 3D TIs (e.g., Bi2Se3) apart from possessing the surface states. We utilize the spin circuit model for spin orbit torques in topological insulator surface states to develop the equivalent circuit model of spin pumping in topological insulators. Such equivalent circuit model developed here can be utilized to analyze available experimental results and evaluate more complex structures. This work was supported by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  8. Thermal creation of a spin current by Seebeck spin tunneling

    NASA Astrophysics Data System (ADS)

    Jansen, R.; Le Breton, J. C.; Deac, A. M.; Saito, H.; Yuasa, S.

    2013-09-01

    The thermoelectric analog of spin-polarized tunneling, namely Seebeck spin tunneling, is a recently discovered phenomenon that arises from the spin-dependent Seebeck coefficient of a magnetic tunnel contact. In a tunnel junction with one ferromagnetic electrode and one non-magnetic electrode, a temperature difference between the two electrodes creates a spin current across the contact. Here, the basic principle and the observation of Seebeck spin tunneling are described. It is shown how it can be used to create a spin accumulation in silicon driven by a heat flow across a magnetic tunnel contact, without a charge tunnel current. The sign of the spin current depends on the direction of the heat flow, whereas its magnitude is anisotropic, i.e., dependent on the absolute orientation of the magnetization of the ferromagnet. The connection between Seebeck spin tunneling and the tunnel magneto-Seebeck effect, observed in metal magnetic tunnel junctions, is also clarified. Seebeck spin tunneling may be used to convert waste heat into useful thermal spin currents that aid or replace electrical spin current, and thereby improve the energy efficiency of spintronic devices and technologies.

  9. Spin Hall Conductivity and Spin Chern Number for Dirac Systems

    NASA Astrophysics Data System (ADS)

    Yunt, Elif; Dayi, Omer Faruk

    A semiclassical differential form formalism of the spin Hall effect for Dirac systems is presented. In this formalism, space coordinates and momenta are usual dynamical variables, whereas spin is not a dynamical degree of freedom. Spin depicts itself in the matrix-valuedness of equations of motion. We demonstrate that the main contribution to the spin Hall conductivity is given by the spin Chern number whether the spin is conserved or not at the quantum level. We illustrated the formulation within the Kane-Mele model of graphene in the absence and in the presence of the Rashba spin-orbit coupling term. Kane-Mele Model of graphene, which incorporates intrinsic spin-orbit interaction, constitutes the first example of a two dimensional topological insulator. We established the anomalous Hall conductivity as well as the spin Hall conductivity from the term linear in the electric field and the Berry curvature in the the anamolous velocity term. In a basis where the component of spin under consideration is diagonal this term is diagonal. We argue that this semiclassical procedure of calculating the spin Hall conductivity can be generalized to any dimension.

  10. Spin-transfer torque induced spin waves in antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Daniels, Matthew; Guo, Wei; Stocks, G. Malcolm; Xiao, Di; Xiao, Jiang

    2015-03-01

    We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations. Supported by NSF EFRI-1433496 (M.W.D), U.S. DOE Office of Basic Energy Sciences, Materials Sciences and Engineering (D.X. & G.M.S.), Major State Basic Research Project of China and National Natural Science Foundation of China (W.G. and J.X.).

  11. Excitation of coherent propagating spin waves by pure spin currents

    PubMed Central

    Demidov, Vladislav E.; Urazhdin, Sergei; Liu, Ronghua; Divinskiy, Boris; Telegin, Andrey; Demokritov, Sergej O.

    2016-01-01

    Utilization of pure spin currents not accompanied by the flow of electrical charge provides unprecedented opportunities for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. It was recently shown that pure spin currents can be used to excite coherent magnetization dynamics in magnetic nanostructures. However, because of the intrinsic nonlinear self-localization effects, magnetic auto-oscillations in the demonstrated devices were spatially confined, preventing their applications as sources of propagating spin waves in magnonic circuits using these waves as signal carriers. Here, we experimentally demonstrate efficient excitation and directional propagation of coherent spin waves generated by pure spin current. We show that this can be achieved by using the nonlocal spin injection mechanism, which enables flexible design of magnetic nanosystems and allows one to efficiently control their dynamic characteristics. PMID:26818232

  12. State diagram of an orthogonal spin transfer spin valve device

    SciTech Connect

    Ye, Li; Wolf, Georg; Pinna, Daniele; Chaves-O'Flynn, Gabriel D.; Kent, Andrew D.

    2015-05-21

    We present the switching characteristics of a spin-transfer device that incorporates a perpendicularly magnetized spin-polarizing layer with an in-plane magnetized free and fixed magnetic layer, known as an orthogonal spin transfer spin valve device. This device shows clear switching between parallel (P) and antiparallel (AP) resistance states and the reverse transition (AP → P) for both current polarities. Further, hysteretic transitions are shown to occur into a state with a resistance intermediate between that of the P and AP states, again for both current polarities. These unusual spin-transfer switching characteristics can be explained within a simple macrospin model that incorporates thermal fluctuations and considers a spin-polarized current that is tilted with respect to the free layer's plane, due to the presence of the spin-transfer torque from the polarizing layer.

  13. Hydrodynamics of spin-polarized transport and spin pendulum

    SciTech Connect

    Gurzhi, R. N. Kalinenko, A. N.; Kopeliovich, A. I.; Pyshkin, P. V.; Yanovsky, A. V.

    2007-07-15

    The dynamics of a nonequilibrium spin system dominated by collisions preserving the total quasimomentum of the interacting electrons and quasiparticles is considered. An analysis of the derived hydrodynamic equations shows that weakly attenuated spin-polarization waves associated with an oscillating drift current can exist in a magnetically inhomogeneous conducting ring. Spin-polarized transport in a ballistic regime of wave propagation through a conductor is also considered, and a simple method is proposed for distinguishing these waves from spin and current oscillations that develop in the hydrodynamic regime. It is shown that a potential difference arises between the leads of an open nonuniformly spin-polarized conductor as a manifestation of spin polarization of electron density. This spin-mediated electrical phenomenon occurs in both hydrodynamic and diffusive limits.

  14. Spinning compact binary : Independent variables and dynamically preserved spin configurations

    SciTech Connect

    Gergely, Laszlo Arpad

    2010-04-15

    We establish the set of independent variables suitable to monitor the complicated evolution of the spinning compact binary during the inspiral. Our approach is valid up to the second post-Newtonian order, including leading order spin-orbit, spin-spin and mass quadrupole-mass monopole effects, for generic (noncircular, nonspherical) orbits. Then, we analyze the conservative spin dynamics in terms of these variables. We prove that the only binary black hole configuration allowing for spin precessions with equal angular velocities about a common instantaneous axis roughly aligned to the normal of the osculating orbit, is the equal mass and parallel (aligned or antialigned) spin configuration. This analytic result puts limitations on what particular configurations can be selected in numerical investigations of compact binary evolutions, even in those including only the last orbits of the inspiral.

  15. Pseudospin, real spin, and spin polarization of photoemitted electrons

    NASA Astrophysics Data System (ADS)

    Yu, Rui; Weng, Hongming; Fang, Zhong; Dai, Xi

    2016-08-01

    In this paper, we discuss the connections between pseudospin, real spin of electrons in a material, and spin polarization of photoemitted electrons out of a material. By investigating these three spin textures for Bi2Se3 and SmB6 compounds, we find that the spin orientation of photoelectrons for SmB6 has a different correspondence to pseudospin and real spin compared to Bi2Se3 , due to the different symmetry properties of the photoemission matrix between the initial and final states. We calculate the spin polarization and circular dichroism spectra of photoemitted electrons for both compounds, which can be detected by spin-resolved and circular dichroism angle-resolved photoemission spectroscopy experiments.

  16. A quantum spin-probe molecular microscope

    NASA Astrophysics Data System (ADS)

    Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L. C. L.

    2016-10-01

    Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy.

  17. A quantum spin-probe molecular microscope

    PubMed Central

    Perunicic, V. S.; Hill, C. D.; Hall, L. T.; Hollenberg, L.C.L.

    2016-01-01

    Imaging the atomic structure of a single biomolecule is an important challenge in the physical biosciences. Whilst existing techniques all rely on averaging over large ensembles of molecules, the single-molecule realm remains unsolved. Here we present a protocol for 3D magnetic resonance imaging of a single molecule using a quantum spin probe acting simultaneously as the magnetic resonance sensor and source of magnetic field gradient. Signals corresponding to specific regions of the molecule's nuclear spin density are encoded on the quantum state of the probe, which is used to produce a 3D image of the molecular structure. Quantum simulations of the protocol applied to the rapamycin molecule (C51H79NO13) show that the hydrogen and carbon substructure can be imaged at the angstrom level using current spin-probe technology. With prospects for scaling to large molecules and/or fast dynamic conformation mapping using spin labels, this method provides a realistic pathway for single-molecule microscopy. PMID:27725630

  18. A technique for constructing an integrated scene from multiple viewing angles using a tactical ranging sensor

    NASA Astrophysics Data System (ADS)

    VanMaasdam, Peter J.; Riddle, Jack G.

    2003-09-01

    The problem of seamless scene integration from multiple 3-dimensional views of a location for surveillance or recognition purposes is one that continues to receive much interest. This technique holds the promise of increased ability to detect concealed targets, as well as better visualization of the scene itself. The process of creating an integrated scene 'model' from multiple range images taken at different views of the scene consists of several basic steps: (1) Matching of scene points across views, (2) Registration of the multiple views to a common reference frame, and (3) Integration of the multiple views into a complete 3D representation (such as a mesh or voxel space). We propose using a technique known as spin-map correlation to compute the initial scene point correspondences between views. This technique has the advantage of being able to perform the registration with minimal knowledge of viewing geometry or viewer location - the only requirement is that there is overlap between views. Registration is performed using the correspondences generated from spin-map matching to seed an Iterative Closest Point (ICP) algorithm. The ICP algorithm grows the list of correspondences and estimates the rigid transformation between the multiple views. Following registration of the disparate views, the surface is represented probabilistically in a voxel space that is then polygonised into a triangular facet model using the well-known marching cubes algorithm. We demonstrate this procedure using LADAR range images of an armored vehicle of interest.

  19. Magic angle spinning NMR of viruses.

    PubMed

    Quinn, Caitlin M; Lu, Manman; Suiter, Christopher L; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  20. Magic Angle Spinning NMR of Viruses

    PubMed Central

    Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-01-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  1. Graphene based spin-FET devices: Spin current manipulation through spatially modulated Rashba Field

    NASA Astrophysics Data System (ADS)

    Souza Diniz, Ginetom; Vernek, Edson; Macedo de Souza, Fabricio

    We have calculated the spin dependent conductance in a two-terminal device made of zigzag graphene nanoribbon in the presence of a spatially modulated Rashba spin-orbit coupling (SOC). The modulated Rashba SOC can be achieved by using local gates that generate strong localized electric fields perpendicular to the plane underneath. We have used the equilibrium surface Green's function technique in real space using tight-binding approximation in order to calculate the electronic transport. We demonstrate that by an appropriate architecture of the gate width, and tuning the strength and direction of the electric field in the gates is possible to effectively control the spin-charge current flow along the device. In addition, we also discuss the effect of uniaxial strain in the spin-resolved conductance profiles, which demonstrates to be an additional tool as an on-off electronic current flow switch. Our results suggest suitable application of graphene-based nanostructures in the spintronic field, using spatially modulated Rashba SOC, and uniaxial strains to effectively manipulate the spin-polarized current in nanoelectronic devices. Supported by CAPES, CNPq and FAPEMIG.

  2. Electron spin resonance and muon spin relaxation studies of single molecule magnets

    NASA Astrophysics Data System (ADS)

    Blundell, Stephen

    2005-03-01

    We use a combination of electron spin resonance, muon-spin relaxation and SQUID magnetometry to study polycrystalline and single crystal samples of various novel single molecule magnets (SMMs). We also describe a theoretical framework which can be used to analyse the results from each technique. Electron spin resonance measurements are performed using a millimetre vector network analyser and data are presented on several SMM systems using microwave frequencies from 40-300 GHz. Muon-spin relaxation measurements have been performed on several SMM systems in applied longitudinal magnetic field and in temperatures down to 20 mK. The results suggest that dynamic local magnetic field fluctuations are responsible for the relaxation of the muon spin ensemble. We discuss what can be learned from these experiments concerning SMMs and suggest experiments which can probe the quantum nature of SMMs. (Work in collaboration with S Sharmin, T Lancaster, A Ardavan, F L Pratt, E J L McInnes and R E P Winpenny) References: S. J. Blundell and F. L. Pratt, J. Phys.: Condens. Matter 16, R771 (2004); T. Lancaster et al., J. Phys.: Condens. Matter 16, S4563 (2004); S. Sharmin et al., Appl. Phys. Lett. in press.

  3. Spin Hall controlled magnonic microwaveguides

    SciTech Connect

    Demidov, V. E.; Urazhdin, S.; Rinkevich, A. B.; Reiss, G.; Demokritov, S. O.

    2014-04-14

    We use space-resolved magneto-optical spectroscopy to study the influence of spin Hall effect on the excitation and propagation of spin waves in microscopic magnonic waveguides. We find that the spin Hall effect not only increases the spin-wave propagation length, but also results in an increased excitation efficiency due to the increase of the dynamic susceptibility in the vicinity of the inductive antenna. We show that the efficiency of the propagation length enhancement is strongly dependant on the type of the excited spin-wave mode and its wavelength.

  4. RHIC spin flipper commissioning results

    SciTech Connect

    Bai M.; Roser, T.; Dawson, C.; Kewisch, J.; Makdisi, Y.; Oddo, P.; Pai, C.; Pile, P.

    2012-05-20

    The five AC dipole RHIC spin flipper design in the RHIC Blue ring was first tested during the RHIC 2012 polarized proton operation. The advantage of this design is to eliminate the vertical coherent betatron oscillations outside the spin flipper. The closure of each ac dipole vertical bump was measured with orbital response as well as spin. The effect of the rotating field on the spin motion by the spin flipper was also confirmed by measuring the suppressed resonance at Q{sub s} = 1 - Q{sub osc}.

  5. Coherent spin manipulation in molecular semiconductors: getting a handle on organic spintronics.

    PubMed

    Lupton, John M; McCamey, Dane R; Boehme, Christoph

    2010-10-01

    Organic semiconductors offer expansive grounds to explore fundamental questions of spin physics in condensed matter systems. With the emergence of organic spintronics and renewed interest in magnetoresistive effects, which exploit the electron spin degree of freedom to encode and transmit information, there is much need to illuminate the underlying properties of spins in molecular electronic materials. For example, one may wish to identify over what length of time a spin maintains its orientation with respect to an external reference field. In addition, it is crucial to understand how adjacent spins arising, for example, in electrostatically coupled charge-carrier pairs, interact with each other. A periodic perturbation of the field may cause the spins to precess or oscillate, akin to a spinning top experiencing a torque. The quantum mechanical characteristic of the spin is then defined as the coherence time, the time over which an oscillating spin, or spin pair, maintains a fixed phase with respect to the driving field. Electron spins in organic semiconductors provide a remarkable route to performing "hands-on" quantum mechanics since permutation symmetries are controlled directly. Herein, we review some of the recent advances in organic spintronics and organic magnetoresistance, and offer an introductory description of the concept of pulsed, electrically detected magnetic resonance as a technique to manipulate and thus characterize the fundamental properties of electron spins. Spin-dependent dissociation and recombination allow the observation of coherent spin motion in a working device, such as an organic light-emitting diode. Remarkably, it is possible to distinguish between electron and hole spin resonances. The ubiquitous presence of hydrogen nuclei gives rise to strong hyperfine interactions, which appear to provide the basis for many of the magnetoresistive effects observed in these materials. Since hyperfine coupling causes quantum spin beating in electron

  6. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon

    PubMed Central

    Averyanov, Dmitry V.; Karateeva, Christina G.; Karateev, Igor A.; Tokmachev, Andrey M.; Vasiliev, Alexander L.; Zolotarev, Sergey I.; Likhachev, Igor A.; Storchak, Vyacheslav G.

    2016-01-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics. PMID:26957146

  7. Spin current pumped by a rotating magnetic field in zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chan, K. S.

    2010-10-01

    We study electron spin resonance in zigzag graphene nanoribbons by applying a rotating magnetic field on the system without any bias. By using the nonequilibrium Green's function technique, the spin-resolved pumped current is explicitly derived in a rotating reference frame. The pumped spin current density increases with the system size and the intensity of the transverse rotating magnetic field. For graphene nanoribbons with an even number of zigzag chains, there is a nonzero pumped charge current in addition to the pumped spin current owing to the broken spatial inversion symmetry of the system, but its magnitude is much smaller than the spin current. The short-ranged static disorder from either impurities or defects in the ribbon can depress the spin current greatly due to the localization effect, whereas the long-ranged disorder from charge impurities can avoid inter-valley scattering so that the spin current can survive in the strong disorder for the single-energy mode.

  8. Conversion of pure spin current to charge current in amorphous bismuth

    SciTech Connect

    Emoto, H.; Ando, Y.; Shinjo, T.; Shiraishi, M.; Shikoh, E.; Fuseya, Y.

    2014-05-07

    Spin Hall angle and spin diffusion length in amorphous bismuth (Bi) are investigated by using conversion of a pure spin current to a charge current in a spin pumping technique. In Bi/Ni{sub 80}Fe{sub 20}/Si(100) sample, a clear direct current (DC) electromotive force due to the inverse spin Hall effect of the Bi layer is observed at room temperature under a ferromagnetic resonance condition of the Ni{sub 80}Fe{sub 20} layer. From the Bi thickness dependence of the DC electromotive force, the spin Hall angle and the spin diffusion length of the amorphous Bi film are estimated to be 0.02 and 8 nm, respectively.

  9. Spin dynamics of an individual Cr atom in a semiconductor quantum dot under optical excitation

    NASA Astrophysics Data System (ADS)

    Lafuente-Sampietro, A.; Utsumi, H.; Boukari, H.; Kuroda, S.; Besombes, L.

    2016-08-01

    We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Cr interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.

  10. Atomic-Scale Engineering of Abrupt Interface for Direct Spin Contact of Ferromagnetic Semiconductor with Silicon

    NASA Astrophysics Data System (ADS)

    Averyanov, Dmitry V.; Karateeva, Christina G.; Karateev, Igor A.; Tokmachev, Andrey M.; Vasiliev, Alexander L.; Zolotarev, Sergey I.; Likhachev, Igor A.; Storchak, Vyacheslav G.

    2016-03-01

    Control and manipulation of the spin of conduction electrons in industrial semiconductors such as silicon are suggested as an operating principle for a new generation of spintronic devices. Coherent injection of spin-polarized carriers into Si is a key to this novel technology. It is contingent on our ability to engineer flawless interfaces of Si with a spin injector to prevent spin-flip scattering. The unique properties of the ferromagnetic semiconductor EuO make it a prospective spin injector into silicon. Recent advances in the epitaxial integration of EuO with Si bring the manufacturing of a direct spin contact within reach. Here we employ transmission electron microscopy to study the interface EuO/Si with atomic-scale resolution. We report techniques for interface control on a submonolayer scale through surface reconstruction. Thus we prevent formation of alien phases and imperfections detrimental to spin injection. This development opens a new avenue for semiconductor spintronics.

  11. Generalizing spin and pseudospin symmetries for relativistic spin 1/2 fermions

    NASA Astrophysics Data System (ADS)

    Alberto, P.; Malheiro, M.; Frederico, T.; de Castro, A.

    2016-08-01

    We propose a generalization of pseudospin and spin symmetries, the SU(2) symmetries of Dirac equation with scalar and vector mean-field potentials originally found independently in the 70’s by Smith and Tassie, and Bell and Ruegg. As relativistic symmetries, they have been extensively researched and applied to several physical systems for the last 18 years. The main feature of these symmetries is the suppression of the spin-orbit coupling either in the upper or lower components of the Dirac spinor, thereby turning the respective second-order equations into Schrödinger-like equations, i.e, without a matrix structure. In this paper we use the original formalism of Bell and Ruegg to derive general requirements for the Lorentz structures of potentials in order to have these SU(2) symmetries in the Dirac equation, again allowing for the suppression of the matrix structure of the second-order equation of either the upper or lower components of the Dirac spinor. Furthermore, we derive equivalent conditions for spin and pseudospin symmetries with 2- and 1-dimensional potentials and list some possible candidates for 3, 2, and 1 dimensions. We suggest applications for physical systems in three and two dimensions, namely electrons in graphene.

  12. Control and Detection of the Larmor Precession of F = 2 87Rb Bose-Einstein Condensates by Ramsey Interferometry and Spin-Echo

    NASA Astrophysics Data System (ADS)

    Eto, Yujiro; Sekine, Sawako; Hasegawa, Sho; Sadgrove, Mark; Saito, Hiroki; Hirano, Takuya

    2013-05-01

    Radio-frequency pulses are applied to probe and control the Larmor precession of a spin-2 Bose-Einstein condensate subject to a magnetic field gradient. Using the techniques of Ramsey interferometry and Stern-Gerlach absorption imaging, a helical spin pattern was clearly observed as spatial variations in the atomic density distribution. We experimentally show that the spin echo technique reduces the effects of spatially inhomogeneous and temporally fluctuating spin evolution, and improves the repeatability of the interferometry.

  13. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    PubMed Central

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  14. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  15. All-electric spin transistor using perpendicular spins

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Bae, Joohyung; Min, Byoung-Chul; Kim, Hyung-jun; Chang, Joonyeon; Koo, Hyun Cheol

    2016-04-01

    All-electric spin transistor is demonstrated using perpendicular spins in an InAs quantum well channel. For the injection and detection of perpendicular spins in the quantum well channel, we use Tb20Fe62Co18/Co40Fe40B20 electrodes, where the Tb20Fe62Co18 layer produces the perpendicular magnetization and the Co40Fe40B20 layer enhances the spin polarization. In this spin transistor device, a gate-controlled spin signal as large as 80 mΩ is observed at 10 K without an external magnetic field. In order to confirm the spin injection and relaxation independently, we measure the three-terminal Hanle effect with an in-plane magnetic field, and obtain a spin signal of 1.7 mΩ at 10 K. These results clearly present that the electric field is an efficient way to modulate spin orientation in a strong spin-orbit interaction system.

  16. Spin Funneling for Enhanced Spin Injection into Ferromagnets.

    PubMed

    Sayed, Shehrin; Diep, Vinh Q; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  17. Spin squeezing and entanglement for an arbitrary spin

    NASA Astrophysics Data System (ADS)

    Vitagliano, Giuseppe; Apellaniz, Iagoba; Egusquiza, Iñigo L.; Tóth, Géza

    2014-03-01

    A complete set of generalized spin-squeezing inequalities is derived for an ensemble of particles with an arbitrary spin. Our conditions are formulated with the first and second moments of the collective angular momentum coordinates. A method for mapping the spin-squeezing inequalities for spin-1/2 particles to entanglement conditions for spin-j particles is also presented. We apply our mapping to obtain a generalization of the original spin-squeezing inequality to higher spins. We show that, for large particle numbers, a spin-squeezing parameter for entanglement detection based on one of our inequalities is strictly stronger than the original spin-squeezing parameter defined in Sørensen et al. [Nature (London) 409, 63 (2001), 10.1038/35051038]. We present a coordinate system independent form of our inequalities that contains, besides the correlation and covariance tensors of the collective angular momentum operators, the nematic tensor appearing in the theory of spin nematics. Finally, we discuss how to measure the quantities appearing in our inequalities in experiments.

  18. Pure spin current transport in Alq3 by spin pumping

    NASA Astrophysics Data System (ADS)

    Jiang, Shengwei; Wang, Peng; Luan, Zhongzhi; Tao, Xinde; Ding, Haifeng; Wu, Di

    2015-03-01

    The use of organic semiconductors (OSCs) in spintronics has aroused considerable interests, owing to their much longer spin-relaxation times of OSCs than those of inorganic counterparts. The most studied example is the organic spin valve (OSV), in which magnetoresistance (MR) effect is frequently reported. However, studies on pure spin current injection and transport in OSCs are scarce. Recently, the pioneering work by Watanabe et al. demonstrated that pure spin current can be pumped into and propagates in semiconducting polymers. In the present work we extend the study to small molecule OSCs, and demonstrate that pure spin current can be injected into Alq3 from the adjacent magnetic insulator Y3Fe5O12 (YIG) by spin pumping. The pure spin current is detected by inverse spin Hall effect (ISHE) in Pd after propagation through Alq3. From the ISHE voltage VISHE as a function of the Alq3 thickness, the spin diffusion length is determined to be ~ 50 nm and does not depend on temperature. This result indicates the MR decrease as increasing temperature in OSVs is not due to the reduced spin diffusion length.

  19. Accessing long-lived nuclear singlet states between chemically equivalent spins without breaking symmetry

    PubMed Central

    Feng, Yesu; Davis, Ryan M.; Warren, Warren S.

    2013-01-01

    Long-lived nuclear spin states could greatly enhance the applicability of hyperpolarized nuclear magnetic resonance. Using singlet states between inequivalent spin pairs has been shown to extend the signal lifetime by more than an order of magnitude compared to the spin lattice relaxation time (T1), but they have to be prevented from evolving into other states. In the most interesting case the singlet is between chemically equivalent spins, as it can then be inherently an eigenstate. However this presents major challenges in the conversion from bulk magnetization to singlet. In the only case demonstrated so far, a reversible chemical reaction to break symmetry was required. Here we present a pulse sequence technique that interconverts between singlet spin order and bulk magnetization without breaking the symmetry of the spin system. This technique is independent of field strength and is applicable to a broad range of molecules. PMID:23505397

  20. Dynamic detection of electron spin accumulation in ferromagnet–semiconductor devices by ferromagnetic resonance

    PubMed Central

    Liu, Changjiang; Patel, Sahil J.; Peterson, Timothy A.; Geppert, Chad C.; Christie, Kevin D.; Stecklein, Gordon; Palmstrøm, Chris J.; Crowell, Paul A.

    2016-01-01

    A distinguishing feature of spin accumulation in ferromagnet–semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this approach enables a measurement of short spin lifetimes (<100 ps), a regime that is not accessible in semiconductors using traditional Hanle techniques. PMID:26777243

  1. Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.

    PubMed

    Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H

    2011-12-06

    Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.

  2. Muon spin rotation studies

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  3. Neutron spin echo scattering angle measurement (SESAME)

    SciTech Connect

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-05-15

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-{mu}m-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for.

  4. Simulating spin dynamics in organic solids under heteronuclear decoupling.

    PubMed

    Frantsuzov, Ilya; Ernst, Matthias; Brown, Steven P; Hodgkinson, Paul

    2015-09-01

    Although considerable progress has been made in simulating the dynamics of multiple coupled nuclear spins, predicting the evolution of nuclear magnetisation in the presence of radio-frequency decoupling remains challenging. We use exact numerical simulations of the spin dynamics under simultaneous magic-angle spinning and RF decoupling to determine the extent to which numerical simulations can be used to predict the experimental performance of heteronuclear decoupling for the CW, TPPM and XiX sequences, using the methylene group of glycine as a model system. The signal decay times are shown to be strongly dependent on the largest spin order simulated. Unexpectedly large differences are observed between the dynamics with and without spin echoes. Qualitative trends are well reproduced by modestly sized spin system simulations, and the effects of finite spin-system size can, in favourable cases, be mitigated by extrapolation. Quantitative prediction of the behaviour in complex parameter spaces is found, however, to be very challenging, suggesting that there are significant limits to the role of numerical simulations in RF decoupling problems, even when specialist techniques, such as state-space restriction, are used.

  5. Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh

    NASA Technical Reports Server (NTRS)

    Green, Steven T.; Burkey, Russell C.; Sudermann, James

    2010-01-01

    Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft.

  6. Spin-driven inflation

    NASA Astrophysics Data System (ADS)

    Obukhov, Yuri N.

    1993-11-01

    Following recent studies of Ford, we suggest - in the framework of general relativity - an inflationary cosmological model with self-interacting spinning matter. A generalization of the standard fluid model is discussed and estimates of the physical parameters of the evolution are given. I would like to thank Professor Friedrich W. Hehl for the careful reading of the manuscript and useful advice. This research was supported by the Alexander von Humboldt Foundation (Bonn).

  7. Dusty spin plasmas

    SciTech Connect

    Brodin, G.; Marklund, M.; Zamanian, J.

    2008-09-07

    A fluid model is derived, taking into account the effect of spin magnetization of electrons as well as of magnetized dust grains. The model is analyzed, and it is found that both the acoustic velocity and the Alfven velocity is decreased due to the magnetization effects. Furthermore, for low-temperature high density plasmas, it is found that the linear wave modes can be unstable, due to the magnetic attraction of individual fluid elements. The significance of our results are discussed.

  8. Spin and gravitation

    NASA Technical Reports Server (NTRS)

    Ray, J. R.

    1982-01-01

    The fundamental variational principle for a perfect fluid in general relativity is extended so that it applies to the metric-torsion Einstein-Cartan theory. Field equations for a perfect fluid in the Einstein-Cartan theory are deduced. In addition, the equations of motion for a fluid with intrinsic spin in general relativity are deduced from a special relativistic variational principle. The theory is a direct extension of the theory of nonspinning fluids in special relativity.

  9. Identification list of binaries

    NASA Astrophysics Data System (ADS)

    Malkov,, O.; Karchevsky,, A.; Kaygorodov, P.; Kovaleva, D.

    The Identification List of Binaries (ILB) is a star catalogue constructed to facilitate cross-referencing between different catalogues of binary stars. As of 2015, it comprises designations for approximately 120,000 double/multiple systems. ILB contains star coordinates and cross-references to the Bayer/Flemsteed, DM (BD/CD/CPD), HD, HIP, ADS, WDS, CCDM, TDSC, GCVS, SBC9, IGR (and some other X-ray catalogues), PSR designations, as well as identifications in the recently developed BSDB system. ILB eventually became a part of the BDB stellar database.

  10. Updated Spin Ephemeris for the Cataclysmic Variable EX Hydrae

    SciTech Connect

    Mauche, C W; Brickhouse, N S; Hoogerwerf, R; Luna, G M; Mukai, K; Sterken, C

    2009-01-23

    Recent satellite observations demonstrate that the phase of maximum flux of the 67 min spin modulation of the white dwarf in the cataclysmic variable EX Hya is drifting away from the optical quadratic ephemeris of Hellier & Sproats (1992, hereafter HS92). Relative to that ephemeris, the peak of the spin-phase extreme ultraviolet (EUV) flux modulation measured with the Extreme Ultraviolet Explorer (EUVE) was {phi}{sub 67} = 0.040 {+-} 0.002 in 1994 May (Mauche 1999) and {phi}{sub 67} = 0.115 {+-} 0.001 in 2000 May (Belle et al. 2002). Similarly, the peak of the spin-phase X-ray flux modulation measured with the Chandra X-ray Observatory was {phi}{sub 67} {approx} 0.1 in 2000 May (Hoogerwerf, Brickhouse, & Mauche 2004) and {phi}{sub 67} {approx} 0.2 in 2007 May (Luna, Brickhouse, & Mauche 2008). Because the discrepancy between the observed O and calculated C phases of the spin-phase flux modulation of EX Hya is now approaching a significant fraction of a spin cycle, we have undertaken the task of updating the ephemeris. Toward that end, we have combined the optical data of Vogt, Krzeminski, & Sterken (1980, hereafter VKS80), Gilliland (1982), Sterken et al. (1983), Hill & Watson (1984), Jablonski & Busko (1985), Bond & Freeth (1988), HS92, Walker & Allen (2000), and Belle et al. (2005) with the optical, EUV, and X-ray data listed in Table 1. The optical data were obtained by CS at ESO La Silla using the Danish 1.5-m telescope and the DFOSC CCD camera. Differential V-band magnitudes were obtained by aperture photometry extracted from flat-fielded and bias-corrected CCD frames. Other than the EXOSAT and Ginga data, which have been taken from the given references, all other times of spin maximum in the table have been derived by us from the various datasets. In the processes, we have corrected an error in the (spin and orbit) phases of the ASCA data published by Ishida, Mukai, & Osborne (1994) and the RXTE data published by Mukai et al. (1998). We note that our result

  11. Global Landslides on Rapidly Spinning Spheroids

    NASA Astrophysics Data System (ADS)

    Scheeres, Daniel J.; Sanchez, P.

    2013-10-01

    The angle of repose and conditions for global landslides on the surfaces of small, rapidly spinning, spheroidal asteroids are studied. Applying techniques of soil mechanics, we develop a theory for, and examples of, how regolith will fail and flow in this microgravity environment. Our motivation is to develop an understanding of the "top-shaped" class of asteroids based on analytical soil mechanics. Our analysis transforms the entire asteroid surface into a local frame where we can model it as a conventional granular pile with a surface slope, acceleration and height variations as a function of the body's spin rate, shape and density. A general finding is that the lowest point on a rapidly spinning spheroid is at the equator with the effective height of surface material monotonically increasing towards the polar regions, where the height can be larger than the physical radius of the body. We study the failure conditions of both cohesionless and cohesive regolith, and develop specific predictions of the surface profile as a function of the regolith angle of friction and the maximum spin rate experienced by the body. The theory also provides simple guidelines on what the shape may look like, although we do not analyze gravitationally self-consistent evolution of the body shape. The theory is tested with soft-sphere discrete element method granular mechanics simulations to better understand the dynamical aspects of global asteroid landslides. We find significant differences between failure conditions for cohesive and cohesionless regolith. In the case of cohesive regolith, we show that extremely small values of strength (much less than that found in lunar regolith) can stabilize a surface even at very rapid spin rates. Cohesionless surfaces, as expected, fail whenever their surface slopes exceed the angle of friction. Based on our analysis we propose that global landslides and the flow of material towards the equator on spheroidal bodies are precipitated by exogenous

  12. Horizontal SPINning of transposons.

    PubMed

    Gilbert, Clément; Pace, John K; Feschotte, Cédric

    2009-01-01

    The term 'horizontal transfer (HT)' refers to the transfer of genetic material between two reproductively isolated organisms. HT is thought to occur rarely in eukaryotes compared to vertical inheritance, the transmission of DNA from parent to offspring. In a recent study we have provided evidence that a family of DNA transposons, called SPACE INVADERS or SPIN, independently invaded horizontally the genome of seven distantly related tetrapod species and subsequently amplified to high copy number in each of them. This discovery calls for further investigations to better characterize the extent to which genomes have been shaped through HT events. In this addendum, we briefly discuss some general issues regarding the study of HT and further speculate on the sequence of events that could explain the current taxonomic distribution of SPIN. We propose that the presence of SPIN in the opossum (Monodelphis domestica), a taxon endemic to South America, reflects a transoceanic HT event that occurred from Old to New World, between 46 and 15 million years ago.

  13. Tunable spin-orbit coupling via strong driving in ultracold-atom systems.

    PubMed

    Jiménez-García, K; LeBlanc, L J; Williams, R A; Beeler, M C; Qu, C; Gong, M; Zhang, C; Spielman, I B

    2015-03-27

    Spin-orbit coupling is an essential ingredient in topological materials, conventional and quantum-gas-based alike. Engineered spin-orbit coupling in ultracold-atom systems-unique in their experimental control and measurement opportunities-provides a major opportunity to investigate and understand topological phenomena. Here we experimentally demonstrate and theoretically analyze a technique for controlling spin-orbit coupling in a two-component Bose-Einstein condensate using amplitude-modulated Raman coupling.

  14. Tunable Spin-Orbit Coupling via Strong Driving in Ultracold-Atom Systems

    NASA Astrophysics Data System (ADS)

    Jiménez-García, K.; LeBlanc, L. J.; Williams, R. A.; Beeler, M. C.; Qu, C.; Gong, M.; Zhang, C.; Spielman, I. B.

    2015-03-01

    Spin-orbit coupling is an essential ingredient in topological materials, conventional and quantum-gas-based alike. Engineered spin-orbit coupling in ultracold-atom systems—unique in their experimental control and measurement opportunities—provides a major opportunity to investigate and understand topological phenomena. Here we experimentally demonstrate and theoretically analyze a technique for controlling spin-orbit coupling in a two-component Bose-Einstein condensate using amplitude-modulated Raman coupling.

  15. Spin-bus concept of spin quantum computing

    SciTech Connect

    Mehring, Michael; Mende, Jens

    2006-05-15

    We present a spin-bus concept of quantum computing where an electron spin S=1/2 acts as a bus qubit connected to a finite number N of nuclear spins I=1/2 serving as client qubits. Spin-bus clusters are considered as local processing units and may be interconnected with other spin-bus clusters via electron-electron coupling in a scaled up version. Here we lay the ground for the basic functional unit with long qubit registers, provide the theory and experimental verification of correlated qubit states, and demonstrate the Deutsch algorithm. Experiments were performed on a qubyte plus one nuclear spin in a solid state system.

  16. FAST AND EXACT SPIN-s SPHERICAL HARMONIC TRANSFORMS

    SciTech Connect

    Huffenberger, Kevin M.; Wandelt, Benjamin D.

    2010-08-15

    We demonstrate a fast spin-s spherical harmonic transform algorithm, which is flexible and exact for band-limited functions. In contrast to previous work, where spin transforms are computed independently, our algorithm permits the computation of several distinct spin transforms simultaneously. Specifically, only one set of special functions is computed for transforms of quantities with any spin, namely the Wigner d matrices evaluated at {pi}/2, which may be computed with efficient recursions. For any spin, the computation scales as O(L{sup 3}), where L is the band limit of the function. Our publicly available numerical implementation permits very high accuracy at modest computational cost. We discuss applications to the cosmic microwave background and gravitational lensing.

  17. Variational Monte Carlo study of a gapless spin liquid in the spin-1/2 XXZ antiferromagnetic model on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Jun; Gong, Shou-Shu; Becca, Federico; Sheng, D. N.

    2015-11-01

    By using the variational Monte Carlo technique, we study the spin-1/2 XXZ antiferromagnetic model (with easy-plane anisotropy) on the kagome lattice. A class of Gutzwiller projected fermionic states with a spin Jastrow factor is considered to describe either spin liquids [with U (1 ) or Z2 symmetry] or magnetically ordered phases [with q =(0 ,0 ) or q =(4 π /3 ,0 ) ]. We find that the magnetic states are not stable in the thermodynamic limit. Moreover, there is no energy gain to break the gauge symmetry from U (1 ) to Z2 within the spin-liquid states, as previously found in the Heisenberg model. The best variational wave function is therefore the U (1 ) Dirac state, supplemented by the spin Jastrow factor. Furthermore, a vanishing S =2 spin gap is obtained at the variational level, in the whole regime from the X Y to the Heisenberg model.

  18. Almost sure convergence in quantum spin glasses

    NASA Astrophysics Data System (ADS)

    Buzinski, David; Meckes, Elizabeth

    2015-12-01

    Recently, Keating, Linden, and Wells [Markov Processes Relat. Fields 21(3), 537-555 (2015)] showed that the density of states measure of a nearest-neighbor quantum spin glass model is approximately Gaussian when the number of particles is large. The density of states measure is the ensemble average of the empirical spectral measure of a random matrix; in this paper, we use concentration of measure and entropy techniques together with the result of Keating, Linden, and Wells to show that in fact the empirical spectral measure of such a random matrix is almost surely approximately Gaussian itself with no ensemble averaging. We also extend this result to a spherical quantum spin glass model and to the more general coupling geometries investigated by Erdős and Schröder [Math. Phys., Anal. Geom. 17(3-4), 441-464 (2014)].

  19. Spin-Coated Polyelectrolyte Coacervate Films.

    PubMed

    Kelly, Kristopher D; Schlenoff, Joseph B

    2015-07-01

    Thin films of complexes made from oppositely charged polyelectrolytes have applications as supported membranes for separations, cell growth substrates, anticorrosion coatings, biocompatible coatings, and drug release media, among others. The relatively recent technique of layer-by-layer assembly reliably yields conformal coatings on substrates but is impractically slow for films with thickness greater than about 1 μm, even when accelerated many fold by spraying and/or spin assembly. In the present work, thin, uniform, smooth films of a polyelectrolyte complex (PEC) are rapidly made by spin-coating a polyelectrolyte coacervate, a strongly hydrated viscoelastic liquidlike form of PEC, on a substrate. While the apparatus used to deposit the PEC film is conventional, the behavior of the coacervate, especially the response to salt concentration, is highly nontraditional. After glassification by immersion in water, spun-on films may be released from their substrates to yield free-standing membranes of thickness in the micrometer range.

  20. Almost sure convergence in quantum spin glasses

    SciTech Connect

    Buzinski, David Meckes, Elizabeth

    2015-12-15

    Recently, Keating, Linden, and Wells [Markov Processes Relat. Fields 21(3), 537-555 (2015)] showed that the density of states measure of a nearest-neighbor quantum spin glass model is approximately Gaussian when the number of particles is large. The density of states measure is the ensemble average of the empirical spectral measure of a random matrix; in this paper, we use concentration of measure and entropy techniques together with the result of Keating, Linden, and Wells to show that in fact the empirical spectral measure of such a random matrix is almost surely approximately Gaussian itself with no ensemble averaging. We also extend this result to a spherical quantum spin glass model and to the more general coupling geometries investigated by Erdős and Schröder [Math. Phys., Anal. Geom. 17(3-4), 441–464 (2014)].

  1. High-spin structure in 40K

    NASA Astrophysics Data System (ADS)

    Söderström, P.-A.; Recchia, F.; Nyberg, J.; Gadea, A.; Lenzi, S. M.; Poves, A.; Ataç, A.; Aydin, S.; Bazzacco, D.; Bednarczyk, P.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Boston, A. J.; Boston, H. C.; Bruyneel, B.; Bucurescu, D.; Calore, E.; Cederwall, B.; Charles, L.; Chavas, J.; Colosimo, S.; Crespi, F. C. L.; Cullen, D. M.; de Angelis, G.; Désesquelles, P.; Dosme, N.; Duchêne, G.; Eberth, J.; Farnea, E.; Filmer, F.; Görgen, A.; Gottardo, A.; Grębosz, J.; Gulmini, M.; Hess, H.; Hughes, T. A.; Jaworski, G.; Jolie, J.; Joshi, P.; Judson, D. S.; Jungclaus, A.; Karkour, N.; Karolak, M.; Kempley, R. S.; Khaplanov, A.; Korten, W.; Ljungvall, J.; Lunardi, S.; Maj, A.; Maron, G.; Męczyński, W.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Nolan, P. J.; Norman, M.; Obertelli, A.; Podolyak, Zs.; Pullia, A.; Quintana, B.; Redon, N.; Regan, P. H.; Reiter, P.; Robinson, A. P.; Şahin, E.; Simpson, J.; Salsac, M. D.; Smith, J. F.; Stézowski, O.; Theisen, Ch.; Tonev, D.; Unsworth, C.; Ur, C. A.; Valiente-Dobón, J. J.; Wiens, A.

    2012-11-01

    High-spin states of 40K have been populated in the fusion-evaporation reaction 12C(30Si,np)40K and studied by means of γ-ray spectroscopy techniques using one triple-cluster detector of the Advanced Gamma Tracking Array at the Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro. Several states with excitation energy up to 8 MeV and spin up to 10- have been discovered. These states are discussed in terms of J=3 and T=0 neutron-proton hole pairs. Shell-model calculations in a large model space have shown good agreement with the experimental data for most of the energy levels. The evolution of the structure of this nucleus is here studied as a function of excitation energy and angular momentum.

  2. Sea Quark Contribution to the Nucleon Spin

    NASA Astrophysics Data System (ADS)

    Benmokhtar, Fatiha

    2015-10-01

    The widespread belief is that proton and neutron, commonly known as nucleons, are each composed of three elementary particles called quarks. But in the last two decades experiments showed that the mass, momentum, spin and electromagnetic properties of the three quarks do not add up to the known proprieties of the nucleon. Theory predicts that a ``sea'' of virtual pairs of quarks and anti-quarks, along with the strong force carrier particles called gluons, should account for the difference. I will present ongoing work on the preparation of an experiment to isolate the contributions of the sea to the nucleon spin using semi-inclusive deep inelastic scattering technique at the Thomas Jefferson National Accelerator Facility.

  3. Simulation of Spin-orbit Dynamics in Storage Rings

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Andrianov, S.; Senichev, Yu.

    2016-09-01

    In the article a mapping approach based on nonlinear matrix integration for longterm spin-orbit dynamics simulation is briefly described. Using this technique the nonlinear effects of spin dynamics in an electrostatics storage ring are investigated. Namely, the fringe fields, the energy conservation law and the random field errors are considered. The necessity of examination of such effects arises, for example, in the storage ring design for search the Electrical Dipole Moment of proton and deuteron. The EDM ring is proposed to measure EDM using the spin transformation of polarized particle in the magneto-electrostatic elements of the ring. The article consists of short description of the spin-orbit simulation results based on the nonlinear model.

  4. Neutron Resonance Spin Determination Using Multi-Segmented Detector DANCE

    SciTech Connect

    Baramsai, B.; Mitchell, G. E.; Chyzh, A.; Dashdorj, D.; Walker, C.; Agvaanluvsan, U.; Becvar, F.; Krticka, M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.

    2011-06-01

    A sensitive method to determine the spin of neutron resonances is introduced based on the statistical pattern recognition technique. The new method was used to assign the spins of s-wave resonances in {sup 155}Gd. The experimental neutron capture data for these nuclei were measured with the DANCE (Detector for Advanced Neutron Capture Experiment) calorimeter at the Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture {gamma}-rays. Using this information, the spins of the neutron capture resonances were determined. With these new spin assignments, level spacings are determined separately for s-wave resonances with J{sup {pi}} = 1{sup -} and 2{sup -}.

  5. NSSDC data listing

    NASA Technical Reports Server (NTRS)

    Horowitz, Richard; King, Joseph H.

    1994-01-01

    This document identifies, in a highly summarized way, all the data held at the National Space Science Data Center (NSSDC). These data cover astrophysics and astronomy, solar and space physics, planetary and lunar, and Earth science disciplines. They are primarily but not exclusively from past and on-going NASA spaceflight missions. We first identify all the data electronically available through NSSDC's principal on-line (magnetic disk-based) and near-line (robotics jukebox-based) systems and then those data available on CD-ROM's. Finally, we identify all NSSDC-held data, the majority of which are still off line on magnetic tape, film, etc., but include the electronically accessible and CD-ROM-resident data of earlier sections. These comprehensive identifications are in the form of two listings, one for the majority of NSSDC-held data sets resulting from individual instruments flown on individual spacecraft and the other for the remainder of NSSDC-held data sets that do not adhere to this spacecraft/experiment/data set hierarchy. The latter listing is presented in two parts, one for the numerous source catalogs of the NSSDC-operated Astronomical Data Center and the other for the remainder.

  6. Listing Occupational Carcinogens

    PubMed Central

    Siemiatycki, Jack; Richardson, Lesley; Straif, Kurt; Latreille, Benoit; Lakhani, Ramzan; Campbell, Sally; Rousseau, Marie-Claude; Boffetta, Paolo

    2004-01-01

    The occupational environment has been a most fruitful one for investigating the etiology of human cancer. Many recognized human carcinogens are occupational carcinogens. There is a large volume of epidemiologic and experimental data concerning cancer risks in different work environments. It is important to synthesize this information for both scientific and public health purposes. Various organizations and individuals have published lists of occupational carcinogens. However, such lists have been limited by unclear criteria for which recognized carcinogens should be considered occupational carcinogens, and by inconsistent and incomplete information on the occupations and industries in which the carcinogenic substances may be found and on their target sites of cancer. Based largely on the evaluations published by the International Agency for Research on Cancer, and augmented with additional information, the present article represents an attempt to summarize, in tabular form, current knowledge on occupational carcinogens, the occupations and industries in which they are found, and their target organs. We have considered 28 agents as definite occupational carcinogens, 27 agents as probable occupational carcinogens, and 113 agents as possible occupational carcinogens. These tables should be useful for regulatory or preventive purposes and for scientific purposes in research priority setting and in understanding carcinogenesis. PMID:15531427

  7. Coherent spin mixing dynamics in a spin-1 atomic condensate

    SciTech Connect

    Zhang Wenxian; Chang, M.-S.; Chapman, M.S.; Zhou, D.L.; You, L.

    2005-07-15

    We study the coherent off-equilibrium spin mixing inside an atomic condensate. Using mean-field theory and adopting the single-spatial-mode approximation, the condensate spin dynamics is found to be well described by that of a nonrigid pendulum and displays a variety of periodic oscillations in an external magnetic field. Our results illuminate several recent experimental observations and provide critical insights into the observation of coherent interaction-driven oscillations in a spin-1 condensate.

  8. Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale

    NASA Astrophysics Data System (ADS)

    Sebastian, Thomas; Schultheiss, Katrin; Obry, Björn; Hillebrands, Burkard; Schultheiss, Helmut; Obry, Björn

    2015-06-01

    Spin waves constitute an important part of research in the field of magnetization dynamics. Spin waves are the elementary excitations of the spin system in a magnetically ordered material state and magnons are their quasi particles. In the following article, we will discuss the optical method of Brillouin light scattering (BLS) spectroscopy which is a now a well established tool for the characterization of spin waves. BLS is the inelastic scattering of light from spin waves and confers several benefits: the ability to map the spin wave intensity distribution with spatial resolution and high sensitivity as well as the potential to simultaneously measure the frequency and the wave vector and, therefore, the dispersion properties. For several decades, the field of spin waves gained huge interest by the scientific community due to its relevance regarding fundamental issues of spindynamics in the field of solid states physics. The ongoing research in recent years has put emphasis on the high potential of spin waves regarding information technology. In the emerging field of textit{magnonics}, several concepts for a spin-wave based logic have been proposed and realized. Opposed to charge-based schemes in conventional electronics and spintronics, magnons are charge-free currents of angular momentum, and, therefore, less subject to scattering processes that lead to heating and dissipation. This fact is highlighted by the possibility to utilize spin waves as information carriers in electrically insulating materials. These developments have propelled the quest for ways and mechanisms to guide and manipulate spin-wave transport. In particular, a lot of effort is put into the miniaturization of spin-wave waveguides and the excitation of spin waves in structures with sub-micrometer dimensions. For the further development of potential spin-wave-based devices, the ability to directly observe spin-wave propagation with spatial resolution is crucial. As an optical technique BLS do

  9. Quantum control and engineering of single spins in diamond

    NASA Astrophysics Data System (ADS)

    Toyli, David M.

    The past two decades have seen intensive research efforts aimed at creating quantum technologies that leverage phenomena such as coherence and entanglement to achieve device functionalities surpassing those attainable with classical physics. While the range of applications for quantum devices is typically limited by their cryogenic operating temperatures, in recent years point defects in semiconductors have emerged as potential candidates for room temperature quantum technologies. In particular, the nitrogen vacancy (NV) center in diamond has gained prominence for the ability to measure and control its spin under ambient conditions and for its potential applications in magnetic sensing. Here we describe experiments that probe the thermal limits to the measurement and control of single NV centers to identify the origin of the system's unique temperature dependence and that define novel thermal sensing applications for single spins. We demonstrate the optical measurement and coherent control of the spin at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements provide important information for the electronic structure responsible for the optical spin initialization and readout processes and, moreover, suggest that the coherence of the NV center's spin states could be harnessed for thermometry applications. To that end, we develop novel quantum control techniques that selectively probe thermally induced shifts in the spin resonance frequencies while minimizing the defect's interactions with nearby nuclear spins. We use these techniques to extend the NV center's spin coherence for thermometry by 45-fold to achieve thermal sensitivities approaching 10 mK Hz-1/2 . We show the versatility of these techniques by performing measurements in a range of magnetic environments and at temperatures as high as 500 K. Together with diamond's ideal thermal, mechanical, and chemical

  10. Decoupling a hole spin qubit from the nuclear spins

    NASA Astrophysics Data System (ADS)

    Prechtel, Jonathan H.; Kuhlmann, Andreas V.; Houel, Julien; Ludwig, Arne; Valentin, Sascha R.; Wieck, Andreas D.; Warburton, Richard J.

    2016-09-01

    A huge effort is underway to develop semiconductor nanostructures as low-noise hosts for qubits. The main source of dephasing of an electron spin qubit in a GaAs-based system is the nuclear spin bath. A hole spin may circumvent the nuclear spin noise. In principle, the nuclear spins can be switched off for a pure heavy-hole spin. In practice, it is unknown to what extent this ideal limit can be achieved. A major hindrance is that p-type devices are often far too noisy. We investigate here a single hole spin in an InGaAs quantum dot embedded in a new generation of low-noise p-type device. We measure the hole Zeeman energy in a transverse magnetic field with 10 neV resolution by dark-state spectroscopy as we create a large transverse nuclear spin polarization. The hole hyperfine interaction is highly anisotropic: the transverse coupling is <1% of the longitudinal coupling. For unpolarized, randomly fluctuating nuclei, the ideal heavy-hole limit is achieved down to nanoelectronvolt energies; equivalently dephasing times up to a microsecond. The combination of large and strong optical dipole makes the single hole spin in a GaAs-based device an attractive quantum platform.

  11. Correlation functions of the integrable spin-s chain

    NASA Astrophysics Data System (ADS)

    Ribeiro, G. A. P.; Klümper, A.

    2016-06-01

    We study the correlation functions of su(2) invariant spin-s chains in the thermodynamic limit. We derive nonlinear integral equations for an auxiliary correlation function ω for any spin s and finite temperature T. For the spin-3/2 chain for arbitrary temperature and zero magnetic field we obtain algebraic expressions for the reduced density matrix of two-sites. In the zero temperature limit, the density matrix elements are evaluated analytically and appear to be given in terms of Riemann’s zeta function values of even and odd arguments. Dedicated to Professor Rodney Baxter on the occasion of his 75th birthday.

  12. Chiral spin liquids in arrays of spin chains

    NASA Astrophysics Data System (ADS)

    Gorohovsky, Gregory; Pereira, Rodrigo G.; Sela, Eran

    2015-06-01

    We describe a coupled-chain construction for chiral spin liquids in two-dimensional spin systems. Starting from a one-dimensional zigzag spin chain and imposing SU(2) symmetry in the framework of non-Abelian bosonization, we first show that our approach faithfully describes the low-energy physics of an exactly solvable model with a three-spin interaction. Generalizing the construction to the two-dimensional case, we obtain a theory that incorporates the universal properties of the chiral spin liquid predicted by Kalmeyer and Laughlin: charge-neutral edge states, gapped spin-1/2 bulk excitations, and ground-state degeneracy on the torus signaling the topological order of this quantum state. In addition, we show that the chiral spin liquid phase is more easily stabilized in frustrated lattices containing corner-sharing triangles, such as the extended kagome lattice, than in the triangular lattice. Our field-theoretical approach invites generalizations to more exotic chiral spin liquids and may be used to assess the existence of the chiral spin liquid as the ground state of specific lattice systems.

  13. Ballistic Spin Hall Transistor Using a Heterostructure Channel and Its Application to Logic Devices

    NASA Astrophysics Data System (ADS)

    Choi, Won Young; Kim, Hyung-Jun; Chang, Joonyeon; Han, Suk Hee; Koo, Hyun Cheol

    2016-09-01

    In a ballistic spin transport channel, spin Hall and Rashba effects are utilized to provide a gate-controlled spin Hall transistor. A ferromagnetic electrode and a spin Hall probe are employed for spin injection and detection, respectively, in a two-dimensional Rashba system. We utilize the spin current of which polarization direction is controlled by the gate electric field which determines the strength of the Rashba effective field. By observing the spin Hall voltage, spin injection and coherent spin precession are electrically monitored. From the original Datta-Das technique, we measure the channel conductance oscillation as the gate voltage is varied. When the magnetization orientation of the injector is reversed by 180°, the phase of the Datta-Das oscillation shifts by 180° as expected. Depending on the magnetization direction, the spin Hall transistor behaves as an n- or p-type transistor. Thus, we can implement the complementary transistors which are analogous to the conventional complementary metal oxide semiconductor transistors. Using the experimental data extracted from the spin Hall transistor, the logic operation is also presented.

  14. Imaging Drift and Diffusion of Accumulation from the Spin Hall Effect

    NASA Astrophysics Data System (ADS)

    Stern, N. P.; Steuerman, D. W.; Mack, S.; Gossard, A. C.; Awschalom, D. D.

    2008-03-01

    The spontaneous generation of spin polarization near sample edges by the spin Hall effect when electron currents flow in a metal or semiconductor with spin-orbit coupling has attracted recent attention due to the elegant and complex spin-orbit physics as well as the potential for all-electrical spin generation in spintronics devices. Optical techniques in semiconductors allow for spatial resolution of the electrically generated spin accumulation, a feature not present in all-electrical measurements. We use Kerr rotation microscopy to image the spatial and temporal evolution of spin accumulation produced by the extrinsic spin Hall effect in n-GaAs devices. Measurements in a variety of device geometries, including arms transverse to a channel, reveal the unambiguous contribution of longitudinal spin drift in accumulation profilesootnotetextN. P. Stern, D. W. Steuerman, S. Mack, A.C. Gossard, and D. D. Awschalom, Appl. Phys. Rev. Lett. 91, 062109 (2007). We develop one- and two- dimensional drift-diffusion modeling to explain the observed features, providing a more complete understanding of observations of spin accumulation and the spin Hall effect.

  15. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond

    PubMed Central

    Toyli, David M.; de las Casas, Charles F.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.

    2013-01-01

    We demonstrate fluorescence thermometry techniques with sensitivities approaching 10 mK⋅Hz−1/2 based on the spin-dependent photoluminescence of nitrogen vacancy (NV) centers in diamond. These techniques use dynamical decoupling protocols to convert thermally induced shifts in the NV center's spin resonance frequencies into large changes in its fluorescence. By mitigating interactions with nearby nuclear spins and facilitating selective thermal measurements, these protocols enhance the spin coherence times accessible for thermometry by 45-fold, corresponding to a 7-fold improvement in the NV center’s temperature sensitivity. Moreover, we demonstrate these techniques can be applied over a broad temperature range and in both finite and near-zero magnetic field environments. This versatility suggests that the quantum coherence of single spins could be practically leveraged for sensitive thermometry in a wide variety of biological and microscale systems. PMID:23650364

  16. Semicircular Rashba arc spin polarizer

    SciTech Connect

    Bin Siu, Zhuo; Jalil, Mansoor B. A.; Ghee Tan, Seng

    2014-05-07

    In this work, we study the generation of spin polarized currents using curved arcs of finite widths, in which the Rashba spin orbit interaction (RSOI) is present. Compared to the 1-dimensional RSOI arcs with zero widths studied previously, the finite width presents charge carriers with another degree of freedom along the transverse width of the arc, in addition to the longitudinal degree of freedom along the circumference of the arc. The asymmetry in the transverse direction due to the difference in the inner and outer radii of the arc breaks the antisymmetry of the longitudinal spin z current in a straight RSOI segment. This property can be exploited to generate spin z polarized current output from the RSOI arc by a spin unpolarized current input. The sign of the spin current can be manipulated by varying the arc dimensions.

  17. Inductance due to spin current

    SciTech Connect

    Chen, Wei

    2014-03-21

    The inductance of spintronic devices that transport charge neutral spin currents is discussed. It is known that in a media that contains charge neutral spins, a time-varying electric field induces a spin current. We show that since the spin current itself produces an electric field, this implies existence of inductance and electromotive force when the spin current changes with time. The relations between the electromotive force and the corresponding flux, which is a vector calculated by the cross product of electric field and the trajectory of the device, are clarified. The relativistic origin generally renders an extremely small inductance, which indicates the advantage of spin current in building low inductance devices. The same argument also explains the inductance due to electric dipole current and applies to physical dipoles consist of polarized bound charges.

  18. Parameters of spinning FM reticles.

    PubMed

    Driggers, R G; Halford, C E; Boreman, G D; Lattman, D; Williams, K F

    1991-03-01

    The literature describes tracking devices that allow a single detector coupled to a spinning FM reticle to determine target location. The spinning FM reticles presented were limited to single parameter reticles of frequency vs angle, frequency vs radius, or phase. This study presents these parameters with their capabilities and limitations and shows that multiple parameters can be integrated into a single reticle. Also, a general equation is developed that describes any FM reticle of the spinning type. PMID:20582075

  19. Understanding the proton's spin structure

    SciTech Connect

    Fred Myhrer; Thomas, Anthony W.

    2010-02-01

    We discuss the tremendous progress that has been towards an understanding of how the spin of the proton is distributed on its quark and gluon constituents. This is a problem that began in earnest twenty years ago with the discovery of the proton "spin crisis" by the European Muon Collaboration. The discoveries prompted by that original work have given us unprecedented insight into the amount of spin carried by polarized gluons and the orbital angular momentum of the quarks.

  20. Electrical control of spin in topological insulators

    NASA Astrophysics Data System (ADS)

    Chang, Kai

    2012-02-01

    by changing the gate voltage. It provides us a new way to control surface magnetism electrically. The gap opened by doped magnetic ions can lead to a short-range Bloembergen-Rowland interaction. The competition among the Heisenberg, Ising, and DM terms leads to rich spin configurations and an anomalous Hall effect on different lattices [4]. There are many proposals for quantum computation scheme are based on the spin in semiconductor quantum dots. Topological insulator quantum dots display a very different behavior with that of conventional semiconductor quantum dots [5]. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of the HgTe QD are fully spin-polarized and show ring-like density distributions near the boundary of the QD and optically dark. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observed in such a QD structure. This feature offers us a practical way to detect these exotic ring-like edge states by using the SQUID technique. [0pt]Refs: [1] W. Yang, Kai Chang, and S. C. Zhang, Phys. Rev. Lett. 100, 056602 (2008); J. Li and Kai Chang, Appl. Phys. Lett. 95, 222110 (2009). [2] L. B. Zhang, Kai Chang, X. C. Xie, H. Buhmann and L. W. Molenkamp, New J. Phys. 12, 083058 (2010). [3] L. B. Zhang, F. Cheng, F. Zhai and Kai Chang, Phys. Rev. B 83 081402(R) (2011); Z. H. Wu, F. Zhai, F. M. Peeters, H. Q. Xu and Kai Chang, Phys, Rev. Lett. 106, 176802 (2011). [4] J. J. Zhu, D. X. Yao, S. C. Zhang, and Kai Chang, Phys. Rev. Lett. 106, 097201 (2011). [5] Kai Chang, and Wen-Kai Lou, Phys. Rev. Lett. 106, 206802 (2011).

  1. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    SciTech Connect

    Mueller, K.T. California Univ., Berkeley, CA . Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  2. 14 CFR 23.221 - Spinning.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Spinning. 23.221 Section 23.221 Aeronautics... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Spinning § 23.221 Spinning. (a...-turn spin or a three-second spin, whichever takes longer, in not more than one additional turn...

  3. 14 CFR 23.221 - Spinning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Spinning. 23.221 Section 23.221 Aeronautics... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Spinning § 23.221 Spinning. (a...-turn spin or a three-second spin, whichever takes longer, in not more than one additional turn...

  4. 14 CFR 23.221 - Spinning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spinning. 23.221 Section 23.221 Aeronautics... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Spinning § 23.221 Spinning. (a...-turn spin or a three-second spin, whichever takes longer, in not more than one additional turn...

  5. The straintronic spin-neuron.

    PubMed

    Biswas, Ayan K; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-17

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons. PMID:26112081

  6. Alkali-Metal Spin Maser.

    PubMed

    Chalupczak, W; Josephs-Franks, P

    2015-07-17

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra. PMID:26230788

  7. The straintronic spin-neuron

    NASA Astrophysics Data System (ADS)

    Biswas, Ayan K.; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-01

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a ‘spin-neuron’ realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons.

  8. The straintronic spin-neuron.

    PubMed

    Biswas, Ayan K; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-17

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons.

  9. Alkali-Metal Spin Maser

    NASA Astrophysics Data System (ADS)

    Chalupczak, W.; Josephs-Franks, P.

    2015-07-01

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra.

  10. Observation of electron spin resonance of negative ions in liquid helium

    NASA Technical Reports Server (NTRS)

    Reichert, J. F.; Dahm, A. J.

    1973-01-01

    Electron spin resonance signals of negative ions in liquid helium were observed. The line width and g-value were measured. Electrons injected into helium by field emission from ferromagnetic tips are shown to be polarized. A new technique for the measurement of electron spin polarization is presented.

  11. RHIC spin program

    SciTech Connect

    Bunce, G.

    1995-12-31

    Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W{sup +} boson production measures u and d quark polarization.

  12. Spin-Hall effect and spin-Coulomb drag in doped semiconductors.

    PubMed

    Hankiewicz, E M; Vignale, G

    2009-06-24

    In this review, we describe in detail two important spin-transport phenomena: the extrinsic spin-Hall effect (coming from spin-orbit interactions between electrons and impurities) and the spin-Coulomb drag. The interplay of these two phenomena is analyzed. In particular, we discuss the influence of scattering between electrons with opposite spins on the spin current and the spin accumulation produced by the spin-Hall effect. Future challenges and open questions are briefly discussed.

  13. TOPICAL REVIEW: Spin-Hall effect and spin-Coulomb drag in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Hankiewicz, E. M.; Vignale, G.

    2009-06-01

    In this review, we describe in detail two important spin-transport phenomena: the extrinsic spin-Hall effect (coming from spin-orbit interactions between electrons and impurities) and the spin-Coulomb drag. The interplay of these two phenomena is analyzed. In particular, we discuss the influence of scattering between electrons with opposite spins on the spin current and the spin accumulation produced by the spin-Hall effect. Future challenges and open questions are briefly discussed.

  14. Spin resonance strength calculations

    SciTech Connect

    Courant,E.D.

    2008-10-06

    In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  15. Spin waves in the (

    SciTech Connect

    Lipscombe, O. J.; Chen, G. F.; Fang, Chen; Perring, T. G.; Abernathy, Douglas L; Christianson, Andrew D; Egami, Takeshi; Wang, Nanlin; Hu, Jiangping; Dai, Pengcheng

    2011-01-01

    We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.

  16. Spin-SILC: CMB polarisation component separation with spin wavelets

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Peiris, Hiranya V.; Leistedt, Boris; McEwen, Jason D.; Pontzen, Andrew

    2016-08-01

    We present Spin-SILC, a new foreground component separation method that accurately extracts the cosmic microwave background (CMB) polarisation E and B modes from raw multifrequency Stokes Q and U measurements of the microwave sky. Spin-SILC is an internal linear combination method that uses spin wavelets to analyse the spin-2 polarisation signal P = Q + iU. The wavelets are additionally directional (non-axisymmetric). This allows different morphologies of signals to be separated and therefore the cleaning algorithm is localised using an additional domain of information. The advantage of spin wavelets over standard scalar wavelets is to simultaneously and self-consistently probe scales and directions in the polarisation signal P = Q + iU and in the underlying E and B modes, therefore providing the ability to perform component separation and E-B decomposition concurrently for the first time. We test Spin-SILC on full-mission Planck simulations and data and show the capacity to correctly recover the underlying cosmological E and B modes. We also demonstrate a strong consistency of our CMB maps with those derived from existing component separation methods. Spin-SILC can be combined with the pseudo- and pure E-B spin wavelet estimators presented in a companion paper to reliably extract the cosmological signal in the presence of complicated sky cuts and noise. Therefore, it will provide a computationally-efficient method to accurately extract the CMB E and B modes for future polarisation experiments.

  17. Spin voltage generation across rare earth spin filter barriers

    NASA Astrophysics Data System (ADS)

    Miao, Guoxing; Chang, Joonyeon; Moodera, Jagadeesh

    2011-03-01

    When a metal is in close contact with a rare-earth based magnetic compound, strong exchange interaction exists between the localized 4f electrons and the free moving conduction electrons. One important consequence is that the spin degeneracy among the conduction electrons is lifted, showing up as an effective Zeeman splitting higher than tens of Tesla in low dimensional systems such as graphene and other 2DEG. We perform our work using a vertical transport geometry, which consists of double spin filtering barriers based on a ferromagnetic Eu chalcogenide - EuS. A thin Al metallic layer is sandwiched in the middle and its conduction electrons thus experience the strong spin splitting, which is subsequently detected via the spin filtering effect. A spontaneous spin dependent voltage appears across such a device, and its polarity is directly determined by the EuS/Al interface. The voltage level difference between the spin-parallel and -antiparallel configurations is as large as a few mV. Such spin splitting also induces a clear universal behavior in the observed TMR bias dependence. Such spin voltage effect offers a possibility of directly converting magnetic exchange energy into electrical power. This work is supported by NSF DMR 0504158, ONR N00014-06-1-0235, and KIST-MIT project funds.

  18. Spin pumping and spin-transfer torques in antiferromagnet

    NASA Astrophysics Data System (ADS)

    Niu, Qian

    2015-03-01

    Spin pumping and spin-transfer torques are key elements of coupled dynamics of magnetization and conduction electron spin, which have been widely studied in various ferromagnetic materials. Recent progress in spintronics suggests that a spin current can significantly affects the behavior of an antiferromagnetic material, and the electron motion become adiabatic when the staggered field varies sufficiently slowly. However, pumping from antiferromagnets and its relation to current-induced torques is yet unclear. In a recent study, we have solved this puzzle analytically by calculating how electrons scatter off a normal metal-antiferromagnetic interface. The pumped spin and staggered spin currents are derived in terms of the staggered field, the magnetization, and their rates of change. We find that for both compensated and uncompensated interfaces, spin pumping is of a similar magnitude as in ferromagnets; the direction of spin pumping is controlled by the polarization of the driving microwave. Via the Onsager reciprocity relations, the current-induced torques are also derived, the salient feature of which is illustrated by a terahertz nano-oscillator. In collaboration with Ran Cheng, Jiang Xiao, and A. Brataas.

  19. Tensor spin observables and spin stucture at low Q2

    SciTech Connect

    Slifer, Karl J.

    2015-04-01

    We discuss recent spin structure results from Jefferson Lab, and outline an emerging program to study tensor spin observables using solid deuteron targets. These new experiments open the potential to study hidden color, the tensor nature of short range correlations, and to probe for exotic gluonic states.

  20. Solvent removal during synthetic and Nephila fiber spinning.

    PubMed

    Kojic, Nikola; Kojic, Milos; Gudlavalleti, Sauri; McKinley, Gareth

    2004-01-01

    The process by which spiders make their mechanically superior fiber involves removal of solvent (water) from a concentrated protein solution while the solution flows through a progressively narrowing spinning canal. Our aim was to determine a possible mechanism of spider water removal by using a computational model. To develop appropriate computational techniques for modeling of solvent removal during fiber spinning, a study was first performed using a synthetic solution. In particular, the effect of solvent removal during elongational flow (also exhibited in the spinning canal of the spider) on fiber mechanical properties was examined. The study establishes a model for solvent removal during dry spinning of synthetic fibers, assuming that internal diffusion governs solvent removal and that convective resistance is small. A variable internal solvent diffusion coefficient, dependent on solvent concentration, is also taken into account in the model. An experimental setup for dry (air) spinning was used to make fibers whose diameter was on the order of those made by spiders (approximately 1 microm). Two fibers of different thickness, corresponding to different spinning conditions, were numerically modeled for solvent removal and then mechanically tested. These tests showed that the thinner fiber, which lost more solvent under elongational flow, had 5-fold better mechanical properties (elastic modulus of 100 MPa and toughness of 15 MJ/m3) than the thicker fiber. Even though the mechanical properties were far from those of dragline spider silk (modulus of 10 GPa and toughness of 150 MJ/m3), the experimental methodology and numerical principles developed for the synthetic case proved to be valuable when establishing a model for the Nephila spinning process. In this model, an assumption of rapid convective water removal at the spinning canal wall was made, with internal diffusion of water through the fiber as the governing process. Then the diffusion coefficient of water

  1. Spin-dependent electron transport in nanoscale samples

    NASA Astrophysics Data System (ADS)

    Wei, Yaguang

    In this thesis, we describe the research in which we use metallic nanoparticles to explore spin-dependent electron transport at nanometer scale. Nanoscale samples were fabricated by using a state of the art electron beam lithography and shadow evaporation technique. We have investigated spin relaxation and decoherence in metallic grains as a function of bias voltage and magnetic field at low temperatures (down to ˜30mK). At low temperatures, the discrete energy levels within a metallic nanoparticle provides a new means to study the physics of the spin-polarized electron tunneling. We describe measurements of spin-polarized tunneling via discrete energy levels of single Aluminum grain. Spin polarized current saturates quickly as a function of bias voltage, which demonstrates that the ground state and the lowest excited states carry spin polarized current. The ratio of electron-spin relaxation time (T1) to the electron-phonon relaxation rate is in quantitative agreement with the Elliot-Yafet scaling, an evidence that spin-relaxation in Al grains is driven by the spin-orbit interaction. The spin-relaxation time of the low-lying excited states is T1 ≈ 0.7 mus and 0.1 mus in two samples, showing that electron spin in a metallic grain could be a potential candidate for quantum information research. We also present measurements of mesoscopic resistance fluctuations in cobalt nanoparticles at low temperature and study how the fluctuations with bias voltage, bias fingerprints, respond to magnetization-reversal processes. Bias fingerprints rearrange when domains are nucleated or annihilated. The domain wall causes an electron wave function-phase shift of ˜5 pi. The phase shift is not caused by the Aharonov-Bohm effect; we explain how it arises from the mistracking effect, where electron spins lag in orientation with respect to the moments inside the domain wall. The dephasing length at low temperatures is only 30 nm, which is attributed to the large magnetocrystalline

  2. Historical review of the List of Occupational Diseases recommended by the International Labour organization (ILO).

    PubMed

    Kim, Eun-A; Kang, Seong-Kyu

    2013-08-05

    The list of occupational diseases established in the international and national legal system has played important roles in both prevention of and compensation for workers' diseases. This report reviewed the historical development in the ILO list of occupational diseases and suggested implications of the trends. Since the first establishment of the ILO list of occupational diseases in 1925, the list has played a key role in harmonizing the development of policies on occupational diseases at the international level. The three occupational diseases (anthrax, lead poisoning, and mercury poisoning) in the first ILO list of occupational diseases, set up in 1925 as workmen's compensation convention represented an increase of occupational diseases from the Industrial Revolution. Until the 1960s, 10 occupational diseases had been representative compensable occupational diseases listed in Convention No. 121, which implies that occupational diseases in this era were equated to industrial poisoning. Since 1980, with advancements in diagnostic techniques and medical science, noise-induced hearing loss, and several bronchopulmonary diseases have been incorporated into the ILO occupational list. Since 2002, changes in the structure of industries, emerging new chemicals, and advanced national worker's compensation schemes have provoked the ILO to revise the occupational disease list. A new format of ILO list appended in Recommendation 194 (R194) was composed of two dimensions (causes and diseases) and subcategories. Among 50 member states that had provided their national lists of occupational diseases, until 2012 thirty countries were found to have the list occupational diseases having similar structure to ILO list in R194.

  3. Study of the temperature influence on catalase using spin labelling method

    NASA Astrophysics Data System (ADS)

    Bartoszek, M.; Kściuczyk, M.

    2005-06-01

    Electron paramagnetic resonance (EPR) spectroscopy has been used to study the temperature influence on spin labelled catalase. The measurements were made in the temperature range 300-345 K. The spin label technique allows to observe the structural changes in catalase with increasing temperature. The rotational correlation time of the 3-(2-iodoacetamido)-proxyl spin marker placed in metalloenzyme was determined. The details of ESR spectra contain information on the character of the spin label motion. It indicates the changes in the structure of catalase before the denaturation temperature, determined with dsc microcalorimetry.

  4. Electron spin echo study of doxyl spin probes in micellar systems of ammonium perfluorooctanoate

    SciTech Connect

    Romanelli, M.; Ristori, S.; Martini, G. ); Kang, Y.S.; Kevan, L. )

    1994-02-24

    The two-phase and three-pulse electron spin echo techniques were applied to investigate the behavior of doxyl stearic acid spin probes in micellar aqueous solutions of ammonium perfluorooctanoate. Three doxyl stearic acids with the nitroxide group in different positions on the alkyl chain were used as spin probes, and deuteriated water was used to study the deuterium modulation of the echo signals. The experimental patterns were interpreted by best-fit spectra calculated by taking into account both the echo decay and the nuclear modulation. The analysis determines the number of deuterium nuclei in the surroundings of the NO groups and the time constant for the electron spin reorientation causing spectral diffusion and echo decay. From these data we conclude that water molecules belonging to the NO solvation sphere were maintained in the micelles and that the long-chain nitroxide probes were tilted in the micelle core in order to occupy regions with relatively easy water accessibility which was slightly higher for 12-DXSA than for 5- and 16-DXSA. The modulation of the hyperfine couplings of the methyl protons due to their rotational motion was the main mechanism contributing to the echo decay. 44 refs., 4 figs., 2 tabs.

  5. Spin-dependent exciton quenching and spin coherence in CdSe/CdS nanocrystals.

    PubMed

    van Schooten, Kipp J; Huang, Jing; Baker, William J; Talapin, Dmitri V; Boehme, Christoph; Lupton, John M

    2013-01-01

    Large surface-to-volume ratios of semiconductor nanocrystals cause susceptibility to charge trapping, which can modify luminescence yields and induce single-particle blinking. Optical spectroscopies cannot differentiate between bulk and surface traps in contrast to spin-resonance techniques, which in principle avail chemical information on such trap sites. Magnetic resonance detection via spin-controlled photoluminescence enables the direct observation of interactions between emissive excitons and trapped charges. This approach allows the discrimination of three radical species located in two functionally different trap states in CdSe/CdS nanocrystals, underlying the fluorescence quenching and thus blinking mechanisms: a spin-dependent Auger process in charged particles; and a charge-separated state pair process, which leaves the particle neutral. The paramagnetic trap centers offer control of the energy transfer yield from the wide-gap CdS to the narrow-gap CdSe, that is, light harvesting within the heterostructure. Coherent spin motion within the trap states of the CdS arms of nanocrystal tetrapods is reflected by spatially remote luminescence from CdSe cores with surprisingly long coherence times of >300 ns at 3.5 K, illustrating coherent control of light harvesting. PMID:23189974

  6. Dynamics of hot random quantum spin chains: from anyons to Heisenberg spins

    NASA Astrophysics Data System (ADS)

    Parameswaran, Siddharth; Potter, Andrew; Vasseur, Romain

    2015-03-01

    We argue that the dynamics of the random-bond Heisenberg spin chain are ergodic at infinite temperature, in contrast to the many-body localized behavior seen in its random-field counterpart. First, we show that excited-state real-space renormalization group (RSRG-X) techniques suffer from a fatal breakdown of perturbation theory due to the proliferation of large effective spins that grow without bound. We repair this problem by deforming the SU (2) symmetry of the Heisenberg chain to its `anyonic' version, SU(2)k , where the growth of effective spins is truncated at spin S = k / 2 . This enables us to construct a self-consistent RSRG-X scheme that is particularly simple at infinite temperature. Solving the flow equations, we compute the excited-state entanglement and show that it crosses over from volume-law to logarithmic scaling at a length scale ξk ~eαk3 . This reveals that (a) anyon chains have random-singlet-like excited states for any finite k; and (b) ergodicity is restored in the Heisenberg limit k --> ∞ . We acknowledge support from the Quantum Materials program of LBNL (RV), the Gordon and Betty Moore Foundation (ACP), and UC Irvine startup funds (SAP).

  7. Unconventional spin texture in a noncentrosymmetric quantum spin Hall insulator

    NASA Astrophysics Data System (ADS)

    Mera Acosta, C.; Babilonia, O.; Abdalla, L.; Fazzio, A.

    2016-07-01

    We propose that the simultaneous presence of both Rashba and band inversion can lead to a Rashba-like spin splitting formed by two bands with the same in-plane helical spin texture. Because of this unconventional spin texture, the backscattering is forbidden in edge and bulk conductivity channels. We propose a noncentrosymmetric honeycomb-lattice quantum spin Hall (QSH) insulator family formed by the IV, V, and VII elements with this property. The system formed by Bi, Pb, and I atoms is mechanically stable and has both a large Rashba spin splitting of 60 meV and a large nontrivial band gap of 0.14 eV. Since the edge and the bulk states are protected by the time-reversal (TR) symmetry, contrary to what happens in most doped QSH insulators, the bulk states do not contribute to the backscattering in the electronic transport, allowing the construction of a spintronic device with less energy loss.

  8. Spin slush in an extended spin ice model

    PubMed Central

    Rau, Jeffrey G.; Gingras, Michel J. P.

    2016-01-01

    We present a new classical spin liquid on the pyrochlore lattice by extending spin ice with further neighbour interactions. We find that this disorder-free spin model exhibits a form of dynamical heterogeneity with extremely slow relaxation for some spins, while others fluctuate quickly down to zero temperature. We thus call this state spin slush, in analogy to the heterogeneous mixture of solid and liquid water. This behaviour is driven by the structure of the ground-state manifold which extends the celebrated two-in/two-out ice states to include branching structures built from three-in/one-out, three-out/one-in and all-in/all-out tetrahedra defects. Distinctive liquid-like patterns in the magnetic correlations serve as a signature of this intermediate range order. Possible applications to materials as well the effects of quantum tunnelling are discussed. PMID:27470199

  9. Spin slush in an extended spin ice model.

    PubMed

    Rau, Jeffrey G; Gingras, Michel J P

    2016-01-01

    We present a new classical spin liquid on the pyrochlore lattice by extending spin ice with further neighbour interactions. We find that this disorder-free spin model exhibits a form of dynamical heterogeneity with extremely slow relaxation for some spins, while others fluctuate quickly down to zero temperature. We thus call this state spin slush, in analogy to the heterogeneous mixture of solid and liquid water. This behaviour is driven by the structure of the ground-state manifold which extends the celebrated two-in/two-out ice states to include branching structures built from three-in/one-out, three-out/one-in and all-in/all-out tetrahedra defects. Distinctive liquid-like patterns in the magnetic correlations serve as a signature of this intermediate range order. Possible applications to materials as well the effects of quantum tunnelling are discussed. PMID:27470199

  10. Spin slush in an extended spin ice model

    NASA Astrophysics Data System (ADS)

    Rau, Jeffrey G.; Gingras, Michel J. P.

    2016-07-01

    We present a new classical spin liquid on the pyrochlore lattice by extending spin ice with further neighbour interactions. We find that this disorder-free spin model exhibits a form of dynamical heterogeneity with extremely slow relaxation for some spins, while others fluctuate quickly down to zero temperature. We thus call this state spin slush, in analogy to the heterogeneous mixture of solid and liquid water. This behaviour is driven by the structure of the ground-state manifold which extends the celebrated two-in/two-out ice states to include branching structures built from three-in/one-out, three-out/one-in and all-in/all-out tetrahedra defects. Distinctive liquid-like patterns in the magnetic correlations serve as a signature of this intermediate range order. Possible applications to materials as well the effects of quantum tunnelling are discussed.

  11. Spin injection and spin transport in paramagnetic insulators

    DOE PAGES

    Okamoto, Satoshi

    2016-02-22

    We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow access to both paramagnetic states above magnetic transition temperatures and magnetic states at low temperatures. It is predicted that the spin injection at an interface with a normal metal is rather insensitive to temperatures above the magnetic transition temperature. On the other hand below the transition temperature, it decreases monotonically and disappears at zero temperature. We also analyze the bulk spin conductance. We show that the conductance becomes zero at zero temperature as predictedmore » by linear spin wave theory but increases with temperature and is maximized around the magnetic transition temperature. These findings suggest that the compromise between the two effects determines the optimal temperature for spintronics applications utilizing magnetic insulators.« less

  12. Intrinsic spin torque without spin-orbit coupling

    PubMed Central

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, M. D.

    2016-01-01

    We derive an intrinsic contribution to the non-adiabatic spin torque for non-uniform magnetic textures. It differs from previously considered contributions in several ways and can be the dominant contribution in some models. It does not depend on the change in occupation of the electron states due to the current flow but rather is due to the perturbation of the electronic states when an electric field is applied. Therefore it should be viewed as electric-field-induced rather than current-induced. Unlike previously reported non-adiabatic spin torques, it does not originate from extrinsic relaxation mechanisms nor spin-orbit coupling. This intrinsic non-adiabatic spin torque is related by a chiral connection to the intrinsic spin-orbit torque that has been calculated from the Berry phase for Rashba systems. PMID:26877628

  13. Cosmetology Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains the occupational duty/task lists for three occupations in the cosmetology series. Each occupation is divided into a number of duties. A separate page for each duty in the occupation lists the tasks in that duty along with its code number and columns to indicate whether that particular duty has been taught and to provide…

  14. Toxic Substances List. 1972 Edition.

    ERIC Educational Resources Information Center

    Christensen, Herbert E., Ed.; And Others

    The second edition of the Toxic Substances List, containing some 13,000 entries, is prepared annually by the National Institute for Occupational Safety and Health (NIOSH) in compliance with the Occupational Safety and Health Act of 1970. The purpose of the List is to identify all known toxic substances but not to quantitate the hazard. The List…

  15. Receptionist: Task List Competency Record.

    ERIC Educational Resources Information Center

    Minnesota Instructional Materials Center, White Bear Lake.

    One of a series of 12 in the secretarial/clerical area, this booklet for the vocational instructor contains a job description for the receptionist, a task list of areas of competency, an occupational tasks competency record (suggested as replacement for the traditional report card), a list of industry representatives and educators involved in…

  16. Advisory List of Computer Courseware.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Educational Media.

    Computer courseware appropriate for instruction in grades K-12 is listed in two advisory lists. Entries, selected from materials submitted by producers which received favorable reviews by educators, are arranged in the following categories: arts education, communication skills, mathematics, science, utility (a quiz generator), word processing, and…

  17. Welding Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains the occupational duty/task lists for six occupations in the welding series. Each occupation is divided into a number of duties. A separate page for each duty in the occupation lists the tasks in that duty along with its code number and columns to indicate whether that particular duty has been taught and to provide space for…

  18. Horticulture Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains the occupational duty/task lists for 9 occupations in the horticulture series. Each occupation is divided into a number of duties. A separate page for each duty in the occupation lists the tasks in that duty along with its code number and columns to indicate whether that particular duty has been taught and to provide space…

  19. Magnetar Spin-Down.

    PubMed

    Harding; Contopoulos; Kazanas

    1999-11-10

    We examine the effects of a relativistic wind on the spin-down of a neutron star and apply our results to the study of soft gamma repeaters (SGRs), which are thought to be neutron stars with magnetic fields greater than 1014 G. We derive a spin-down formula that includes torques from both dipole radiation and episodic or continuous particle winds. We find that if SGR 1806-20 puts out a continuous particle wind of 1037 ergs s-1, then the pulsar age is consistent with that of the supernova remnant, but the derived surface dipole magnetic field is only 3x1013 G, in the range of normal radio pulsars. If instead the particle wind flows are episodic with small duty cycle, then the observed period derivatives imply magnetar-strength fields, while still allowing characteristic ages within a factor of 2 of the estimated supernova remnant age. Close monitoring of the periods of SGRs will allow us to establish or place limits on the wind duty cycle and thus the magnetic field and age of the neutron star.

  20. SAMPEX Spin Stabilized Mode

    NASA Technical Reports Server (NTRS)

    Tsai, Dean C.; Markley, F. Landis; Watson, Todd P.

    2008-01-01

    The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the first of the Small Explorer series of spacecraft, was launched on July 3, 1992 into an 82' inclination orbit with an apogee of 670 km and a perigee of 520 km and a mission lifetime goal of 3 years. After more than 15 years of continuous operation, the reaction wheel began to fail on August 18,2007. With a set of three magnetic torquer bars being the only remaining attitude actuator, the SAMPEX recovery team decided to deviate from its original attitude control system design and put the spacecraft into a spin stabilized mode. The necessary operations had not been used for many years, which posed a challenge. However, on September 25, 2007, the spacecraft was successfully spun up to 1.0 rpm about its pitch axis, which points at the sun. This paper describes the diagnosis of the anomaly, the analysis of flight data, the simulation of the spacecraft dynamics, and the procedures used to recover the spacecraft to spin stabilized mode.