Hybrid Circuit Quantum Electrodynamics: Coupling a Single Silicon Spin Qubit to a Photon
2015-01-01
HYBRID CIRCUIT QUANTUM ELECTRODYNAMICS: COUPLING A SINGLE SILICON SPIN QUBIT TO A PHOTON PRINCETON UNIVERSITY JANUARY 2015 FINAL...SILICON SPIN QUBIT TO A PHOTON 5a. CONTRACT NUMBER FA8750-12-2-0296 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jason R. Petta...architectures. 15. SUBJECT TERMS Quantum Computing, Quantum Hybrid Circuits, Quantum Electrodynamics, Coupling a Single Silicon Spin Qubit to a Photon
Quantum correlation properties in Matrix Product States of finite-number spin rings
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min; He, Qi-Kai
2018-02-01
The organization and structure of quantum correlation (QC) of quantum spin-chains are very rich and complex. Hence the depiction and measures about the QC of finite-number spin rings deserved to be investigated intensively by using Matrix Product States(MPSs) in addition to the case with infinite-number. Here the dependencies of the geometric quantum discord(GQD) of two spin blocks on the total spin number, the spacing spin number and the environment parameter are presented in detail. We also compare the GQD with the total correlation(TC) and the classical correlation(CC) and illustrate its characteristics. Predictably, our findings may provide the potential of designing the optimal QC experimental detection proposals and pave the way for the designation of optimal quantum information processing schemes.
Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min
2016-09-01
We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.
Quantum Entanglement of Quantum Dot Spin Using Flying Qubits
2015-05-01
QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...been to advance the frontier of quantum entangled semiconductor electrons using ultrafast optical techniques. The approach is based on
Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noiri, A.; Yoneda, J.; Nakajima, T.
2016-04-11
Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantummore » dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.« less
Analytical theory and possible detection of the ac quantum spin Hall effect
Deng, W. Y.; Ren, Y. J.; Lin, Z. X.; ...
2017-07-11
Here, we develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.
NASA Astrophysics Data System (ADS)
Deguchi, Tetsuo; Ranjan Giri, Pulak
2016-04-01
Every solution of the Bethe-ansatz equations (BAEs) is characterized by a set of quantum numbers, by which we can evaluate it numerically. However, no general rule is known how to give quantum numbers for the physical solutions of BAE. For the spin-1/2 XXX chain we rigorously derive all the quantum numbers for the complete set of the Bethe-ansatz eigenvectors in the two down-spin sector with any chain length N. Here we obtain them both for real and complex solutions. We also show that all the solutions associated with them are distinct. Consequently, we prove the completeness of the Bethe ansatz and give an exact expression for the number of real solutions which correspond to collapsed bound-state solutions (i.e., two-string solutions) in the sector: 2[(N-1)/2-(N/π ){{tan}}-1(\\sqrt{N-1})] in terms of Gauss’ symbol. Moreover, we prove in the sector the scheme conjectured by Takahashi for solving BAE systematically. We also suggest that by applying the present method we can derive the quantum numbers for the spin-1/2 XXZ chain.
Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate
Shen, Yao; Li, Yao-Dong; Wo, Hongliang; ...
2016-12-05
A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). In this paper, we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO 4 that reveal broad spin excitations coveringmore » a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle–hole excitation of a spinon Fermi surface. Finally, our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO 4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.« less
Quantum annealing for the number-partitioning problem using a tunable spin glass of ions
Graß, Tobias; Raventós, David; Juliá-Díaz, Bruno; Gogolin, Christian; Lewenstein, Maciej
2016-01-01
Exploiting quantum properties to outperform classical ways of information processing is an outstanding goal of modern physics. A promising route is quantum simulation, which aims at implementing relevant and computationally hard problems in controllable quantum systems. Here we demonstrate that in a trapped ion setup, with present day technology, it is possible to realize a spin model of the Mattis-type that exhibits spin glass phases. Our method produces the glassy behaviour without the need for any disorder potential, just by controlling the detuning of the spin-phonon coupling. Applying a transverse field, the system can be used to benchmark quantum annealing strategies which aim at reaching the ground state of the spin glass starting from the paramagnetic phase. In the vicinity of a phonon resonance, the problem maps onto number partitioning, and instances which are difficult to address classically can be implemented. PMID:27230802
Experimental creation of quantum Zeno subspaces by repeated multi-spin projections in diamond
NASA Astrophysics Data System (ADS)
Kalb, N.; Cramer, J.; Twitchen, D. J.; Markham, M.; Hanson, R.; Taminiau, T. H.
2016-10-01
Repeated observations inhibit the coherent evolution of quantum states through the quantum Zeno effect. In multi-qubit systems this effect provides opportunities to control complex quantum states. Here, we experimentally demonstrate that repeatedly projecting joint observables of multiple spins creates quantum Zeno subspaces and simultaneously suppresses the dephasing caused by a quasi-static environment. We encode up to two logical qubits in these subspaces and show that the enhancement of the dephasing time with increasing number of projections follows a scaling law that is independent of the number of spins involved. These results provide experimental insight into the interplay between frequent multi-spin measurements and slowly varying noise and pave the way for tailoring the dynamics of multi-qubit systems through repeated projections.
Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.
Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao
2017-01-01
Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.
Assessment of bilayer silicene to probe as quantum spin and valley Hall effect
NASA Astrophysics Data System (ADS)
Rehman, Majeed Ur; Qiao, Zhenhua
2018-02-01
Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.
Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.
Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R
2016-05-13
The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.
Physics of lateral triple quantum-dot molecules with controlled electron numbers.
Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel
2012-11-01
We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron-electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet
Lachance-Quirion, Dany; Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Nakamura, Yasunobu
2017-01-01
Combining different physical systems in hybrid quantum circuits opens up novel possibilities for quantum technologies. In quantum magnonics, quanta of collective excitation modes in a ferromagnet, called magnons, interact coherently with qubits to access quantum phenomena of magnonics. We use this architecture to probe the quanta of collective spin excitations in a millimeter-sized ferromagnetic crystal. More specifically, we resolve magnon number states through spectroscopic measurements of a superconducting qubit with the hybrid system in the strong dispersive regime. This enables us to detect a change in the magnetic moment of the ferromagnet equivalent to a single spin flipped among more than 1019 spins. Our demonstration highlights the strength of hybrid quantum systems to provide powerful tools for quantum sensing and quantum information processing. PMID:28695204
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590
The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less
Will spin-relaxation times in molecular magnets permit quantum information processing?
NASA Astrophysics Data System (ADS)
Ardavan, Arzhang
2007-03-01
Certain computational tasks can be efficiently implemented using quantum logic, in which the information-carrying elements are permitted to exist in quantum superpositions. To achieve this in practice, a physical system that is suitable for embodying quantum bits (qubits) must be identified. Some proposed scenarios employ electron spins in the solid state, for example phosphorous donors in silicon, quantum dots, heterostructures and endohedral fullerenes, motivated by the long electron-spin relaxation times exhibited by these systems. An alternative electron-spin based proposal exploits the large number of quantum states and the non-degenerate transitions available in high spin molecular magnets. Although these advantages have stimulated vigorous research in molecular magnets, the key question of whether the intrinsic spin relaxation times are long enough has hitherto remained unaddressed. Using X-band pulsed electron spin resonance, we measure the intrinsic spin-lattice (T1) and phase coherence (T2) relaxation times in molecular nanomagnets for the first time. In Cr7M heterometallic wheels, with M = Ni and Mn, phase coherence relaxation is dominated by the coupling of the electron spin to protons within the molecule. In deuterated samples T2 reaches 3 μs at low temperatures, which is several orders of magnitude longer than the duration of spin manipulations, satisfying a prerequisite for the deployment of molecular nanomagnets in quantum information applications.
Coherent strong field interactions between a nanomagnet and a photonic cavity
NASA Astrophysics Data System (ADS)
Soykal, Oney Orhunc
Strong coupling of light and matter is an essential element of cavity quantum electrodynamics (cavity-QED) and quantum optics, which may lead to novel mixed states of light and matter and to applications such as quantum computation. In the strong-coupling regime, where the coupling strength exceeds the dissipation, the light-matter interaction produces a characteristic vacuum Rabi splitting. Therefore, strong coupling can be utilized as an effective coherent interface between light and matter (in the form of electron charge, spin or superconducting Cooper pairs) to achieve components of quantum information technology including quantum memory, teleportation, and quantum repeaters. Semiconductor quantum dots, nuclear spins and paramagnetic spin systems are only some of the material systems under investigation for strong coupling in solid-state physics. Mixed states of light and matter coupled via electric dipole transitions often suffer from short coherence times (nanoseconds). Even though magnetic transitions appear to be intrinsically more quantum coherent than orbital transitions, their typical coupling strengths have been estimated to be much smaller. Hence, they have been neglected for the purposes of quantum information technology. However, we predict that strong coupling is feasible between photons and a ferromagnetic nanomagnet, due to exchange interactions that cause very large numbers of spins to coherently lock together with a significant increase in oscillator strength while still maintaining very long coherence times. In order to examine this new exciting possibility, the interaction of a ferromagnetic nanomagnet with a single photonic mode of a cavity is analyzed in a fully quantum-mechanical treatment. Exceptionally large quantum-coherent magnet-photon coupling with coupling terms in excess of several THz are predicted to be achievable in a spherical cavity of ˜ 1 mm radius with a nanomagnet of ˜ 100 nm radius and ferromagnet resonance frequency of ˜ 200 GHz. This should substantially exceed the coupling observed in solids between orbital transitions and light. Eigenstates of the nanomagnet-photon system correspond to entangled states of spin orientation and photon number over 105 values of each quantum number. Initial coherent state of definite spin and photon number evolve dynamically to produce large coherent oscillations in the microwave power with exceptionally long dephasing times of few seconds. In addition to dephasing, several decoherence mechanisms including elementary excitation of magnons and crystalline magnetic anisotropy are investigated and shown to not substantially affect coherence upto room temperature. For small nanomagnets the crystalline magnetic anisotropy of the magnet strongly localize the eigenstates in photon and spin number, quenching the potential for coherent states and for a sufficiently large nanomagnet the macrospin approximation breaks down and different domains of the nanomagnet may couple separately to the photonic mode. Thus the optimal nanomagnet size is predicted to be just below the threshold for failure of the macrospin approximation. Moreover, it is shown that initially unentangled coherent states of light (cavity field) and spin (nanomagnet spin orientation) can be phase-locked to evolve into a coherent entangled states of the system under the influence of strong coupling.
Guterding, Daniel; Jeschke, Harald O; Valentí, Roser
2016-05-17
Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.
Exact CNOT gates with a single nonlocal rotation for quantum-dot qubits
NASA Astrophysics Data System (ADS)
Pal, Arijeet; Rashba, Emmanuel I.; Halperin, Bertrand I.
2015-09-01
We investigate capacitively-coupled exchange-only two-qubit quantum gates based on quantum dots. For exchange-only coded qubits electron spin S and its projection Sz are exact quantum numbers. Capacitive coupling between qubits, as distinct from interqubit exchange, preserves these quantum numbers. We prove, both analytically and numerically, that conservation of the spins of individual qubits has a dramatic effect on the performance of two-qubit gates. By varying the level splittings of individual qubits, Ja and Jb, and the interqubit coupling time, t , we can find an infinite number of triples (Ja,Jb,t ) for which the two-qubit entanglement, in combination with appropriate single-qubit rotations, can produce an exact cnot gate. This statement is true for practically arbitrary magnitude and form of capacitive interqubit coupling. Our findings promise a large decrease in the number of nonlocal (two-qubit) operations in quantum circuits.
One-norm geometric quantum discord and critical point estimation in the XY spin chain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Chang-Cheng; Wang, Yao; Guo, Jin-Liang, E-mail: guojinliang80@163.com
2016-11-15
In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain. - Highlights: • Comparingmore » with entanglement and QD, one-norm GQD is more robust versus the temperature. • One-norm GQD is more efficient in characterization of long-range quantum correlation between two distant qubits. • One-norm GQD performs well in highlighting the critical point of QPT at zero or low finite temperature. • One-norm GQD has a number of advantages over QD in detecting the critical point of the spin chain.« less
NASA Astrophysics Data System (ADS)
Teles, João; Auccaise, Ruben; Rivera-Ascona, Christian; Araujo-Ferreira, Arthur G.; Andreeta, José P.; Bonagamba, Tito J.
2018-07-01
Recently, we reported an experimental implementation of quantum information processing (QIP) by nuclear quadrupole resonance (NQR). In this work, we present the first quantum state tomography (QST) experimental implementation in the NQR QIP context. Two approaches are proposed, employing coherence selection by temporal and spatial averaging. Conditions for reduction in the number of cycling steps are analyzed, which can be helpful for larger spin systems. The QST method was applied to the study of spin coherent states, where the alignment-to-orientation phenomenon and the evolution of squeezed spin states show the effect of the nonlinear quadrupole interaction intrinsic to the NQR system. The quantum operations were implemented using a single-crystal sample of KClO3 and observing ^{35}Cl nuclei, which posses spin 3/2.
NASA Astrophysics Data System (ADS)
Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.
2017-09-01
Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.
Heisenberg scaling with weak measurement: a quantum state discrimination point of view
2015-03-18
a quantum state discrimination point of view. The Heisenberg scaling of the photon number for the precision of the interaction parameter between...coherent light and a spin one-half particle (or pseudo-spin) has a simple interpretation in terms of the interaction rotating the quantum state to an...release; distribution is unlimited. Heisenberg scaling with weak measurement: a quantum state discrimination point of view The views, opinions and/or
Scaling analysis and instantons for thermally assisted tunneling and quantum Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Jiang, Zhang; Smelyanskiy, Vadim N.; Isakov, Sergei V.; Boixo, Sergio; Mazzola, Guglielmo; Troyer, Matthias; Neven, Hartmut
2017-01-01
We develop an instantonic calculus to derive an analytical expression for the thermally assisted tunneling decay rate of a metastable state in a fully connected quantum spin model. The tunneling decay problem can be mapped onto the Kramers escape problem of a classical random dynamical field. This dynamical field is simulated efficiently by path-integral quantum Monte Carlo (QMC). We show analytically that the exponential scaling with the number of spins of the thermally assisted quantum tunneling rate and the escape rate of the QMC process are identical. We relate this effect to the existence of a dominant instantonic tunneling path. The instanton trajectory is described by nonlinear dynamical mean-field theory equations for a single-site magnetization vector, which we solve exactly. Finally, we derive scaling relations for the "spiky" barrier shape when the spin tunneling and QMC rates scale polynomially with the number of spins N while a purely classical over-the-barrier activation rate scales exponentially with N .
Quantum entanglement and spin control in silicon nanocrystal.
Berec, Vesna
2012-01-01
Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj.
Hybrid Toffoli gate on photons and quantum spins
Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun
2015-01-01
Quantum computation offers potential advantages in solving a number of interesting and difficult problems. Several controlled logic gates, the elemental building blocks of quantum computer, have been realized with various physical systems. A general technique was recently proposed that significantly reduces the realization complexity of multiple-control logic gates by harnessing multi-level information carriers. We present implementations of a key quantum circuit: the three-qubit Toffoli gate. By exploring the optical selection rules of one-sided optical microcavities, a Toffoli gate may be realized on all combinations of photon and quantum spins in the QD-cavity. The three general controlled-NOT gates are involved using an auxiliary photon with two degrees of freedom. Our results show that photons and quantum spins may be used alternatively in quantum information processing. PMID:26568078
Hybrid Toffoli gate on photons and quantum spins.
Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun
2015-11-16
Quantum computation offers potential advantages in solving a number of interesting and difficult problems. Several controlled logic gates, the elemental building blocks of quantum computer, have been realized with various physical systems. A general technique was recently proposed that significantly reduces the realization complexity of multiple-control logic gates by harnessing multi-level information carriers. We present implementations of a key quantum circuit: the three-qubit Toffoli gate. By exploring the optical selection rules of one-sided optical microcavities, a Toffoli gate may be realized on all combinations of photon and quantum spins in the QD-cavity. The three general controlled-NOT gates are involved using an auxiliary photon with two degrees of freedom. Our results show that photons and quantum spins may be used alternatively in quantum information processing.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A principle of quantum theory, devised in 1925 by Wolfgang Pauli (1900-58), which states that no two fermions may exist in the same quantum state. The quantum state of a particle is defined by a set of numbers that describe quantities such as energy, angular momentum and spin. Fermions are particles such as quarks, protons, neutrons and electrons, that have spin = ½ (in units of h/2π, where h is ...
Phase transition and field effect topological quantum transistor made of monolayer MoS2
NASA Astrophysics Data System (ADS)
Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F. M.
2018-06-01
We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q 2) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q 2 diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q 2 diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.
Theoretical investigations of quantum correlations in NMR multiple-pulse spin-locking experiments
NASA Astrophysics Data System (ADS)
Gerasev, S. A.; Fedorova, A. V.; Fel'dman, E. B.; Kuznetsova, E. I.
2018-04-01
Quantum correlations are investigated theoretically in a two-spin system with the dipole-dipole interactions in the NMR multiple-pulse spin-locking experiments. We consider two schemes of the multiple-pulse spin-locking. The first scheme consists of π /2-pulses only and the delays between the pulses can differ. The second scheme contains φ-pulses (0<φ <π ) and has equal delays between them. We calculate entanglement for both schemes for an initial separable state. We show that entanglement is absent for the first scheme at equal delays between π /2-pulses at arbitrary temperatures. Entanglement emerges after several periods of the pulse sequence in the second scheme at φ =π /4 at milliKelvin temperatures. The necessary number of the periods increases with increasing temperature. We demonstrate the dependence of entanglement on the number of the periods of the multiple-pulse sequence. Quantum discord is obtained for the first scheme of the multiple-pulse spin-locking experiment at different temperatures.
Rapid creation of distant entanglement by multiphoton resonant fluorescence
NASA Astrophysics Data System (ADS)
Cohen, Guy Z.; Sham, L. J.
2013-12-01
We study a simple, effective, and robust method for entangling two separate stationary quantum dot spin qubits with high fidelity using multiphoton Gaussian state. The fluorescence signals from the two dots interfere at a beam splitter. The bosonic nature of photons leads, in analogy with the Hong-Ou-Mandel effect, to selective pairing of photon holes (photon absences in the fluorescent signals). As a result, two odd photon number detections at the outgoing beams herald trion entanglement creation, and subsequent reduction of the trions to the spin ground states leads to spin-spin entanglement. The robustness of the Gaussian states is evidenced by the ability to compensate for photon absorption and noise by a moderate increase in the number of photons at the input. We calculate the entanglement generation rate in the ideal, nonideal, and near-ideal detector regimes and find substantial improvement over single-photon schemes in all three regimes. Fast and efficient spin-spin entanglement creation can form the basis for a scalable quantum dot quantum computing network. Our predictions can be tested using current experimental capabilities.
Quantum phases in circuit QED with a superconducting qubit array
Zhang, Yuanwei; Yu, Lixian; Liang, J. -Q; Chen, Gang; Jia, Suotang; Nori, Franco
2014-01-01
Circuit QED on a chip has become a powerful platform for simulating complex many-body physics. In this report, we realize a Dicke-Ising model with an antiferromagnetic nearest-neighbor spin-spin interaction in circuit QED with a superconducting qubit array. We show that this system exhibits a competition between the collective spin-photon interaction and the antiferromagnetic nearest-neighbor spin-spin interaction, and then predict four quantum phases, including: a paramagnetic normal phase, an antiferromagnetic normal phase, a paramagnetic superradiant phase, and an antiferromagnetic superradiant phase. The antiferromagnetic normal phase and the antiferromagnetic superradiant phase are new phases in many-body quantum optics. In the antiferromagnetic superradiant phase, both the antiferromagnetic and superradiant orders can coexist, and thus the system possesses symmetry. Moreover, we find an unconventional photon signature in this phase. In future experiments, these predicted quantum phases could be distinguished by detecting both the mean-photon number and the magnetization. PMID:24522250
Time-domain multiple-quantum NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitekamp, Daniel P.
1982-11-01
The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species.
NASA Technical Reports Server (NTRS)
Wang, Wenlong; Mandra, Salvatore; Katzgraber, Helmut G.
2016-01-01
In this paper, we propose a patch planting method for creating arbitrarily large spin glass instances with known ground states. The scaling of the computational complexity of these instances with various block numbers and sizes is investigated and compared with random instances using population annealing Monte Carlo and the quantum annealing DW2X machine. The method can be useful for benchmarking tests for future generation quantum annealing machines, classical and quantum mechanical optimization algorithms.
Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, L.; Song, M.; Liu, W.
2017-02-09
Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba 2NaOsO 6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probemore » spin and orbital/lattice degrees of freedom of Ba 2NaOsO 6 provide such tests. As a result, we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.« less
Number-theoretic nature of communication in quantum spin systems.
Godsil, Chris; Kirkland, Stephen; Severini, Simone; Smith, Jamie
2012-08-03
The last decade has witnessed substantial interest in protocols for transferring information on networks of quantum mechanical objects. A variety of control methods and network topologies have been proposed, on the basis that transfer with perfect fidelity-i.e., deterministic and without information loss-is impossible through unmodulated spin chains with more than a few particles. Solving the original problem formulated by Bose [Phys. Rev. Lett. 91, 207901 (2003)], we determine the exact number of qubits in unmodulated chains (with an XY Hamiltonian) that permit transfer with a fidelity arbitrarily close to 1, a phenomenon called pretty good state transfer. We prove that this happens if and only if the number of nodes is n = p - 1, 2p - 1, where p is a prime, or n = 2(m) - 1. The result highlights the potential of quantum spin system dynamics for reinterpreting questions about the arithmetic structure of integers and, in this case, primality.
Quantum mechanical treatment of large spin baths
NASA Astrophysics Data System (ADS)
Röhrig, Robin; Schering, Philipp; Gravert, Lars B.; Fauseweh, Benedikt; Uhrig, Götz S.
2018-04-01
The electronic spin in quantum dots can be described by central spin models (CSMs) with a very large number Neff≈104 to 106 of bath spins posing a tremendous challenge to theoretical simulations. Here, a fully quantum mechanical theory is developed for the limit Neff→∞ by means of iterated equations of motion (iEoM). We find that the CSM can be mapped to a four-dimensional impurity coupled to a noninteracting bosonic bath in this limit. Remarkably, even for infinite bath the CSM does not become completely classical. The data obtained by the proposed iEoM approach are tested successfully against data from other, established approaches. Thus the iEoM mapping extends the set of theoretical tools that can be used to understand the spin dynamics in large CSMs.
Quantum magnetism in different AMO systems.
NASA Astrophysics Data System (ADS)
Rey, Ana Maria
One of the most important goals of modern quantum sciences is to learn how to control and entangle many-body systems and use them to make powerful and improved quantum devices, materials and technologies. However, since performing full state tomography does not scale favorably with the number of particles, as the size of quantum systems grow, it becomes extremely challenging to identify, and quantify the buildup of quantum correlations and coherence. In this talk I will report on a protocol that we have developed and experimentally demonstrated in a trapped ion quantum magnet in a Penning trap, which can perform quantum simulations of Ising spin models. In those experiments strong spin-spin interactions can be engineered through optical dipole forces that excite phonons of the crystals. The number of ions can be varied from tens to hundreds with high fidelity control. The protocol uses time reversal of the many-body dynamics, to measure out-of-time-order correlation functions (OTOCs). By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the build-up of up to 8-body correlations. We also use the protocol and comparisons to a full solution of the master equation to investigate the impact of spin-motion entanglement and decoherence in the quantum dynamics. Future applications of this protocol could enable studies of manybody localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems. Supported by NSF-PHY-1521080, JILA-NSF PFC-1125844, ARO and AFOSR-MURI.
Entangled spins and ghost-spins
NASA Astrophysics Data System (ADS)
Jatkar, Dileep P.; Narayan, K.
2017-09-01
We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves), the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.
Optical control of spin-dependent thermal transport in a quantum ring
NASA Astrophysics Data System (ADS)
Abdullah, Nzar Rauf
2018-05-01
We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron-photon coupling strength on spin-dependent heat and thermoelectric currents are presented.
Entangling spin-spin interactions of ions in individually controlled potential wells
NASA Astrophysics Data System (ADS)
Wilson, Andrew; Colombe, Yves; Brown, Kenton; Knill, Emanuel; Leibfried, Dietrich; Wineland, David
2014-03-01
Physical systems that cannot be modeled with classical computers appear in many different branches of science, including condensed-matter physics, statistical mechanics, high-energy physics, atomic physics and quantum chemistry. Despite impressive progress on the control and manipulation of various quantum systems, implementation of scalable devices for quantum simulation remains a formidable challenge. As one approach to scalability in simulation, here we demonstrate an elementary building-block of a configurable quantum simulator based on atomic ions. Two ions are trapped in separate potential wells that can individually be tailored to emulate a number of different spin-spin couplings mediated by the ions' Coulomb interaction together with classical laser and microwave fields. We demonstrate deterministic tuning of this interaction by independent control of the local wells and emulate a particular spin-spin interaction to entangle the internal states of the two ions with 0.81(2) fidelity. Extension of the building-block demonstrated here to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.
Simulations of defect spin qubits in piezoelectric semiconductors
NASA Astrophysics Data System (ADS)
Seo, Hosung
In recent years, remarkable advances have been reported in the development of defect spin qubits in semiconductors for solid-state quantum information science and quantum metrology. Promising spin qubits include the nitrogen-vacancy center in diamond, dopants in silicon, and the silicon vacancy and divacancy spins in silicon carbide. In this talk, I will highlight some of our recent efforts devoted to defect spin qubits in piezoelectric wide-gap semiconductors for potential applications in mechanical hybrid quantum systems. In particular, I will describe our recent combined theoretical and experimental study on remarkably robust quantum coherence found in the divancancy qubits in silicon carbide. We used a quantum bath model combined with a cluster expansion method to identify the microscopic mechanisms behind the unusually long coherence times of the divacancy spins in SiC. Our study indicates that developing spin qubits in complex crystals with multiple types of atom is a promising route to realize strongly coherent hybrid quantum systems. I will also discuss progress and challenges in computational design of new spin defects for use as qubits in piezoelectric crystals such as AlN and SiC, including a new defect design concept using large metal ion - vacancy complexes. Our first principles calculations include DFT computations using recently developed self-consistent hybrid density functional theory and large-scale many-body GW theory. This work was supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under Award Number DMR-1420709.
Exotic quantum order in low-dimensional systems
NASA Astrophysics Data System (ADS)
Girvin, S. M.
1998-08-01
Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new "dual" types of correlations. Such ordering leads to novel collection modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.
NASA Astrophysics Data System (ADS)
Pareek, Tribhuvan Prasad
2015-09-01
In this article, we develop an exact (nonadiabatic, nonperturbative) density matrix scattering theory for a two component quantum liquid which interacts or scatters off from a generic spin-dependent quantum potential. The generic spin dependent quantum potential [Eq. (1)] is a matrix potential, hence, adiabaticity criterion is ill-defined. Therefore the full matrix potential should be treated nonadiabatically. We succeed in doing so using the notion of vectorial matrices which allows us to obtain an exact analytical expression for the scattered density matrix (SDM), ϱsc [Eq. (30)]. We find that the number or charge density in scattered fluid, Tr(ϱsc), expressions in Eqs. (32) depends on nontrivial quantum interference coefficients, Qα β 0ijk, which arises due to quantum interference between spin-independent and spin-dependent scattering amplitudes and among spin-dependent scattering amplitudes. Further it is shown that Tr(ϱsc) can be expressed in a compact form [Eq. (39)] where the effect of quantum interference coefficients can be included using a vector Qαβ, which allows us to define a vector order parameterQ. Since the number density is obtained using an exact scattered density matrix, therefore, we do not need to prove that Q is non-zero. However, for sake of completeness, we make detailed mathematical analysis for the conditions under which the vector order parameterQ would be zero or nonzero. We find that in presence of spin-dependent interaction the vector order parameterQ is necessarily nonzero and is related to the commutator and anti-commutator of scattering matrix S with its dagger S† [Eq. (78)]. It is further shown that Q≠0, implies four physically equivalent conditions,i.e., spin-orbital entanglement is nonzero, non-Abelian scattering phase, i.e., matrices, scattering matrix is nonunitary and the broken time reversal symmetry for SDM. This also implies that quasi particle excitation are anyonic in nature, hence, charge fractionalization is a natural consequence. This aspect has also been discussed from the perspective of number or charge density conservation, which implies i.e., Tr(ϱ} sc) = Tr(ϱin). On the other hand Q = 0 turns out to be a mathematically forced unphysical solution in presence of spin-dependent potential or scattering which is equivalent to Abelian hydrodynamics, unitary scattering matrix, absence of spin-space entanglement and preserved time reversal symmetry. We have formulated the theory using mesoscopic language, specifically, we have considered two terminal systems connected to spin-dependent scattering region, which is equivalent to having two potential wells separated by a generic spin-dependent potential barrier. The formulation using mesoscopic language is practically useful because it leads directly to the measured quantities such as conductance and spin-polarization density in the leads, however, the presented formulation is not limited to the mesoscopic system only, its generality has been stressed at various places in this article.
NASA Astrophysics Data System (ADS)
Ma, Yue; Hoang, Thai M.; Gong, Ming; Li, Tongcang; Yin, Zhang-qi
2017-08-01
Hybrid spin-mechanical systems have great potential in sensing, macroscopic quantum mechanics, and quantum information science. In order to induce strong coupling between an electron spin and the center-of-mass motion of a mechanical oscillator, a large magnetic gradient usually is required, which is difficult to achieve. Here we show that strong coupling between the electron spin of a nitrogen-vacancy (NV) center and the torsional vibration of an optically levitated nanodiamond can be achieved in a uniform magnetic field. Thanks to the uniform magnetic field, multiple spins can strongly couple to the torsional vibration at the same time. We propose utilizing this coupling mechanism to realize the Lipkin-Meshkov-Glick (LMG) model by an ensemble of NV centers in a levitated nanodiamond. The quantum phase transition in the LMG model and finite number effects can be observed with this system. We also propose generating torsional superposition states and realizing torsional matter-wave interferometry with spin-torsional coupling.
Response to defects in multipartite and bipartite entanglement of isotropic quantum spin networks
NASA Astrophysics Data System (ADS)
Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2018-05-01
Quantum networks are an integral component in performing efficient computation and communication tasks that are not accessible using classical systems. A key aspect in designing an effective and scalable quantum network is generating entanglement between its nodes, which is robust against defects in the network. We consider an isotropic quantum network of spin-1/2 particles with a finite fraction of defects, where the corresponding wave function of the network is rotationally invariant under the action of local unitaries. By using quantum information-theoretic concepts like strong subadditivity of von Neumann entropy and approximate quantum telecloning, we prove analytically that in the presence of defects, caused by loss of a finite fraction of spins, the network, composed of a fixed numbers of lattice sites, sustains genuine multisite entanglement and at the same time may exhibit finite moderate-range bipartite entanglement, in contrast to the network with no defects.
Quantum computation with coherent spin states and the close Hadamard problem
NASA Astrophysics Data System (ADS)
Adcock, Mark R. A.; Høyer, Peter; Sanders, Barry C.
2016-04-01
We study a model of quantum computation based on the continuously parameterized yet finite-dimensional Hilbert space of a spin system. We explore the computational powers of this model by analyzing a pilot problem we refer to as the close Hadamard problem. We prove that the close Hadamard problem can be solved in the spin system model with arbitrarily small error probability in a constant number of oracle queries. We conclude that this model of quantum computation is suitable for solving certain types of problems. The model is effective for problems where symmetries between the structure of the information associated with the problem and the structure of the unitary operators employed in the quantum algorithm can be exploited.
Quantum Numbers of Recently Discovered Ωc0 Baryons from Lattice QCD
NASA Astrophysics Data System (ADS)
Padmanath, M.; Mathur, Nilmani
2017-07-01
We present the ground and excited state spectra of Ωc0 baryons with spin up to 7 /2 from lattice quantum chromodynamics with dynamical quark fields. Based on our lattice results, we predict the quantum numbers of five Ωc0 baryons, which have recently been observed by the LHCb Collaboration. Our results strongly indicate that the observed states Ωc(3000 )0 and Ωc(3050 )0 have spin-parity JP=1 /2-, the states Ωc(3066 )0 and Ωc(3090 )0 have JP=3 /2-, whereas Ωc(3119 )0 is possibly a 5 /2- state.
Quantum Numbers of Recently Discovered Ω_{c}^{0} Baryons from Lattice QCD.
Padmanath, M; Mathur, Nilmani
2017-07-28
We present the ground and excited state spectra of Ω_{c}^{0} baryons with spin up to 7/2 from lattice quantum chromodynamics with dynamical quark fields. Based on our lattice results, we predict the quantum numbers of five Ω_{c}^{0} baryons, which have recently been observed by the LHCb Collaboration. Our results strongly indicate that the observed states Ω_{c}(3000)^{0} and Ω_{c}(3050)^{0} have spin-parity J^{P}=1/2^{-}, the states Ω_{c}(3066)^{0} and Ω_{c}(3090)^{0} have J^{P}=3/2^{-}, whereas Ω_{c}(3119)^{0} is possibly a 5/2^{-} state.
Phonon mediated quantum spin simulator made from a two-dimensional Wigner crystal in Penning traps
NASA Astrophysics Data System (ADS)
Wang, Joseph; Keith, Adam; Freericks, J. K.
2013-03-01
Motivated by recent advances in quantum simulations in a Penning trap, we give a theoretical description for the use of two-dimensional cold ions in a rotating trap as a quantum emulator. The collective axial phonon modes and planar modes are studied in detail, including all effects of the rotating frame. We show the character of the phonon modes and spectrum, which is crucial for engineering exotic spin interactions. In the presence of laser-ion coupling with these coherent phonon excitations, we show theoretically how the spin-spin Hamiltonian can be generated. Specifically, we notice certain parameter regimes in which the level of frustration between spins can be engineered by the coupling to the planar modes. This may be relevant to the quantum simulation of spin-glass physics or other disordered problems. This work was supported under ARO grant number W911NF0710576 with funds from the DARPA OLE Program. J. K. F. also acknowledges the McDevitt bequest at Georgetown University. A. C. K. also acknowledges support of the National Science Foundation under grant
Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve
2011-01-01
Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively. PACS numbers: PMID:21711779
A spin-orbital-entangled quantum liquid on a honeycomb lattice
NASA Astrophysics Data System (ADS)
Kitagawa, K.; Takayama, T.; Matsumoto, Y.; Kato, A.; Takano, R.; Kishimoto, Y.; Bette, S.; Dinnebier, R.; Jackeli, G.; Takagi, H.
2018-02-01
The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin-orbital-entangled pseudospin-1/2 moments have been proposed, including the 5d-electron systems α-Na2IrO3 (ref. 5) and α-Li2IrO3 (ref. 6) and the 4d-electron system α-RuCl3 (ref. 7). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures, owing to non-Kitaev interactions. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5d-electron honeycomb compound H3LiIr2O6. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H3LiIr2O6 is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin-orbit-coupled 5d-electron transition-metal oxide.
Silicon Quantum Dots with Counted Antimony Donor Implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Meenakshi; Pacheco, Jose L.; Perry, Daniel Lee
2015-10-01
Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.
NASA Astrophysics Data System (ADS)
Leibfried, D.; Wineland, D. J.
2018-03-01
Effective spin-spin interactions between ? qubits enable the determination of the eigenvalue of an arbitrary Pauli product of dimension N with a constant, small number of multi-qubit gates that is independent of N and encodes the eigenvalue in the measurement basis states of an extra ancilla qubit. Such interactions are available whenever qubits can be coupled to a shared harmonic oscillator, a situation that can be realized in many physical qubit implementations. For example, suitable interactions have already been realized for up to 14 qubits in ion traps. It should be possible to implement stabilizer codes for quantum error correction with a constant number of multi-qubit gates, in contrast to typical constructions with a number of two-qubit gates that increases as a function of N. The special case of finding the parity of N qubits only requires a small number of operations that is independent of N. This compares favorably to algorithms for computing the parity on conventional machines, which implies a genuine quantum advantage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru
2015-06-15
We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular tomore » an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.« less
Magneto-optical studies of quantum dots
NASA Astrophysics Data System (ADS)
Russ, Andreas Hans
Significant effort in condensed matter physics has recently been devoted to the field of "spintronics" which seeks to utilize the spin degree of freedom of electrons. Unlike conventional electronics that rely on the electron charge, devices exploiting their spin have the potential to yield new and novel technological applications, including spin transistors, spin filters, and spin-based memory devices. Any such application has the following essential requirements: 1) Efficient electrical injection of spin-polarized carriers; 2) Long spin lifetimes; 3) Ability to control and manipulate electron spins; 4) Effective detection of spin-polarized carriers. Recent work has demonstrated efficient electrical injection from ferromagnetic contacts such as Fe and MnAs, utilizing a spin-Light Emitting Diode (spin-LED) as a method of detection. Semiconductor quantum dots (QDs) are attractive candidates for satisfying requirements 2 and 3 as their zero dimensionality significantly suppresses many spin-flip mechanisms leading to long spin coherence times, as well as enabling the localization and manipulation of a controlled number of electrons and holes. This thesis is composed of three projects that are all based on the optical properties of QD structures including: I) Intershell exchange between spin-polarized electrons occupying adjacent shells in InAs QDs; II) Spin-polarized multiexitons in InAs QDs in the presence of spin-orbit interactions; III) The optical Aharonov-Bohm effect in AlxGa1-xAs/AlyGa1-yAs quantum wells (QWs). In the following we introduce some of the basic optical properties of quantum dots, describe the main tool (spin-LED) employed in this thesis to inject and detect spins in these QDs, and conclude with the optical Aharonov-Bohm effect (OAB) in type-II QDs.
Fan-out Estimation in Spin-based Quantum Computer Scale-up.
Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R
2017-10-17
Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.
Quantum logic between remote quantum registers
NASA Astrophysics Data System (ADS)
Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.
2013-02-01
We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.
Quantum information generation, storage and transmission based on nuclear spins
NASA Astrophysics Data System (ADS)
Zaharov, V. V.; Makarov, V. I.
2018-05-01
A new approach to quantum information generation, storage and transmission is proposed. It is shown that quantum information generation and storage using an ensemble of N electron spins encounter unresolvable implementation problems (at least at the present time). As an alternative implementation we discuss two promising radical systems, one with N equivalent nuclear spins and another with N nonequivalent nuclear spins. Detailed analysis shows that only the radical system containing N nonequivalent nuclei is perfectly matched for quantum information generation, storage and transmission. We develop a procedure based on pulsed electron paramagnetic resonance (EPR) and we apply it to the radical system with the set of nonequivalent nuclei. The resulting EPR spectrum contains 2N transition lines, where N is the number of the atoms with the nuclear spin 1/2, and each of these lines may be encoded with a determined qudit sequence. For encoding the EPR lines we propose to submit the radical system to two magnetic pulses in the direction perpendicular to the z axis of the reference frame. As a result, the radical system impulse response may be measured, stored and transmitted through the communications channel. Confirming our development, the ab initio analysis of the system with three anion radicals was done showing matching between the simulations and the theoretical predictions. The developed method may be easily adapted for quantum information generation, storage, processing and transmission in quantum computing and quantum communications applications.
Quantum simulation of interacting spin models with trapped ions
NASA Astrophysics Data System (ADS)
Islam, Kazi Rajibul
The quantum simulation of complex many body systems holds promise for understanding the origin of emergent properties of strongly correlated systems, such as high-Tc superconductors and spin liquids. Cold atomic systems provide an almost ideal platform for quantum simulation due to their excellent quantum coherence, initialization and readout properties, and their ability to support several forms of interactions. In this thesis, I present experiments on the quantum simulation of long range Ising models in the presence of transverse magnetic fields with a chain of up to sixteen ultracold 171Yb+ ions trapped in a linear radio frequency Paul trap. Two hyperfine levels in each of the 171Yb+ ions serve as the spin-1/2 systems. We detect the spin states of the individual ions by observing state-dependent fluorescence with single site resolution, and can directly measure any possible spin correlation function. The spin-spin interactions are engineered by applying dipole forces from precisely tuned lasers whose beatnotes induce stimulated Raman transitions that couple virtually to collective phonon modes of the ion motion. The Ising couplings are controlled, both in sign and strength with respect to the effective transverse field, and adiabatically manipulated to study various aspects of this spin model, such as the emergence of a quantum phase transition in the ground state and spin frustration due to competing antiferromagnetic interactions. Spin frustration often gives rise to a massive degeneracy in the ground state, which can lead to entanglement in the spin system. We detect and characterize this frustration induced entanglement in a system of three spins, demonstrating the first direct experimental connection between frustration and entanglement. With larger numbers of spins we also vary the range of the antiferromagnetic couplings through appropriate laser tunings and observe that longer range interactions reduce the excitation energy and thereby frustrate the ground state order. This system can potentially be scaled up to study a wide range of fully connected spin networks with a few dozens of spins, where the underlying theory becomes intractable on a classical computer.
Quantum Spin Glasses, Annealing and Computation
NASA Astrophysics Data System (ADS)
Chakrabarti, Bikas K.; Inoue, Jun-ichi; Tamura, Ryo; Tanaka, Shu
2017-05-01
List of tables; List of figures, Preface; 1. Introduction; Part I. Quantum Spin Glass, Annealing and Computation: 2. Classical spin models from ferromagnetic spin systems to spin glasses; 3. Simulated annealing; 4. Quantum spin glass; 5. Quantum dynamics; 6. Quantum annealing; Part II. Additional Notes: 7. Notes on adiabatic quantum computers; 8. Quantum information and quenching dynamics; 9. A brief historical note on the studies of quantum glass, annealing and computation.
Optical implementation of spin squeezing
NASA Astrophysics Data System (ADS)
Ono, Takafumi; Sabines-Chesterking, Javier; Cable, Hugo; O'Brien, Jeremy L.; Matthews, Jonathan C. F.
2017-05-01
Quantum metrology enables estimation of optical phase shifts with precision beyond the shot-noise limit. One way to exceed this limit is to use squeezed states, where the quantum noise of one observable is reduced at the expense of increased quantum noise for its complementary partner. Because shot-noise limits the phase sensitivity of all classical states, reduced noise in the average value for the observable being measured allows for improved phase sensitivity. However, additional phase sensitivity can be achieved using phase estimation strategies that account for the full distribution of measurement outcomes. Here we experimentally investigate a model of optical spin-squeezing, which uses post-selection and photon subtraction from the state generated using a parametric downconversion photon source, and we investigate the phase sensitivity of this model. The Fisher information for all photon-number outcomes shows it is possible to obtain a quantum advantage of 1.58 compared to the shot-noise value for five-photon events, even though due to experimental imperfection, the average noise for the relevant spin-observable does not achieve sub-shot-noise precision. Our demonstration implies improved performance of spin squeezing for applications to quantum metrology.
Enhanced quantum spin fluctuations in a binary Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Bisset, R. N.; Kevrekidis, P. G.; Ticknor, C.
2018-02-01
For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper, we propose a fundamentally different regime for enhanced quantum fluctuations without being restricted by any of the above conditions. Instead, our scheme relies on the engineering of an effective attractive interaction in a dilute, two-component Bose-Einstein condensate (BEC) consisting of thousands of atoms. In such a regime, the quantum spin fluctuations are significantly enhanced (atom bunching with respect to the noninteracting limit) since they act to reduce the interaction energy, a remarkable property given that spin fluctuations are normally suppressed (antibunching) at zero temperature. In contrast to the case of true attractive interactions, our approach is not vulnerable to BEC collapse. We numerically demonstrate that these quantum fluctuations are experimentally accessible by either spin or single-component Bragg spectroscopy, offering a useful platform on which to test beyond-mean-field theories. We also develop a variational model and use it to analytically predict the shift of the immiscibility critical point, finding good agreement with our numerics.
Spin 0 and spin 1/2 quantum relativistic particles in a constant gravitational field
NASA Astrophysics Data System (ADS)
Khorrami, M.; Alimohammadi, M.; Shariati, A.
2003-04-01
The Klein-Gordon and Dirac equations in a semi-infinite lab ( x>0), in the background metric d s2= u2( x)(-d t2+d x2)+d y2+d z2, are investigated. The resulting equations are studied for the special case u( x)=1+ gx. It is shown that in the case of zero transverse-momentum, the square of the energy eigenvalues of the spin-1/2 particles are less than the squares of the corresponding eigenvalues of spin-0 particles with same masses, by an amount of mgℏ c. Finally, for non-zero transverse-momentum, the energy eigenvalues corresponding to large quantum numbers are obtained and the results for spin-0 and spin-1/2 particles are compared to each other.
Quantum Information Experiments with Trapped Ions at NIST
NASA Astrophysics Data System (ADS)
Wilson, Andrew
2015-03-01
We present an overview of recent trapped-ion quantum information experiments at NIST. Advancing beyond few-qubit ``proof-of-principle'' experiments to the many-qubit systems needed for practical quantum simulation and information processing, without compromising on the performance demonstrated with small systems, remains a major challenge. One approach to scalable hardware development is surface-electrode traps. Micro-fabricated planar traps can have a number of useful features, including flexible electrode geometries, integrated microwave delivery, and spatio-temporal tuning of potentials for ion transport and spin-spin interactions. In this talk we report on a number of on-going investigations with surface traps. Experiments feature a multi-zone trap with closely spaced ions in a triangular arrangement (a first step towards 2D arrays of ions with tunable spin-spin interactions), a scheme for smooth transport through a junction in a 2D structure based on switchable RF potentials, and a micro-fabricated photo-detector integrated into a trap. We also give a progress report on our latest efforts to improve the fidelity of both optical and microwave 2-qubit gates. This work was supported by IARPA, ONR and the NIST Quantum Information Program. The 3-ion and switchable-RF-junction traps were developed in collaboration with Sandia National Laboratory.
NASA Technical Reports Server (NTRS)
Ting, David Z.
2007-01-01
The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.
Enhancing Spin Filters by Use of Bulk Inversion Asymmetry
NASA Technical Reports Server (NTRS)
Ting, David; Cartoixa,Xavier
2007-01-01
Theoretical calculations have shown that the degrees of spin polarization in proposed nonmagnetic semiconductor resonant tunneling spin filters could be increased through exploitation of bulk inversion asymmetry (BIA). These enhancements would be effected through suitable orientation of spin collectors (or spin-polarization- inducing lateral electric fields), as described below. Spin filters -- more precisely, sources of spin-polarized electron currents -- have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-transport electronics). The proposed spin filters were to be based on the Rashba effect, which is an energy splitting of what would otherwise be degenerate quantum states, caused by a spinorbit interaction in conjunction with a structural-inversion asymmetry (SIA) in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. In a spin filter, the spin-polarized currents produced by the Rashba effect would be extracted by quantum-mechanical resonant tunneling.
Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System
NASA Astrophysics Data System (ADS)
Lee, Kenneth William, III
A fully functional quantum computer must contain at least two important components: a quantum memory for storing and manipulating quantum information and a quantum data bus to securely transfer information between quantum memories. Typically, a quantum memory is composed of a matter system, such as an atom or an electron spin, due to their prolonged quantum coherence. Alternatively, a quantum data bus is typically composed of some propagating degree of freedom, such as a photon, which can retain quantum information over long distances. Therefore, a quantum computer will likely be a hybrid quantum device, consisting of two or more disparate quantum systems. However, there must be a reliable and controllable quantum interface between the memory and bus in order to faithfully interconvert quantum information. The current engineering challenge for quantum computers is scaling the device to large numbers of controllable quantum systems, which will ultimately depend on the choice of the quantum elements and interfaces utilized in the device. In this thesis, we present and characterize a hybrid quantum device comprised of single nitrogen-vacancy (NV) centers embedded in a high quality factor diamond mechanical oscillator. The electron spin of the NV center is a leading candidate for the realization of a quantum memory due to its exceptional quantum coherence times. On the other hand, mechanical oscillators are highly sensitive to a wide variety of external forces, and have the potential to serve as a long-range quantum bus between quantum systems of disparate energy scales. These two elements are interfaced through crystal strain generated by vibrations of the mechanical oscillator. Importantly, a strain interface allows for a scalable architecture, and furthermore, opens the door to integration into a larger quantum network through coupling to an optical interface. There are a few important engineering challenges associated with this device. First, there have been no previous demonstrations of a strain-mediated spin-mechanical interface and hence the system is largely uncharacterized. Second, fabricating high quality diamond mechanical oscillators is difficult due to the robust and chemically inert nature of diamond. Finally, engineering highly coherent NV centers with a coherent optical interface in nanostructured diamond remains an outstanding challenge. In this thesis, we theoretically and experimentally address each of these challenges, and show that with future improvements, this device is suitable for future quantum-enabled applications. First, we theoretically and experimentally demonstrate a dynamic, strain-mediated coupling between the spin and orbital degrees of freedom of the NV center and the driven mechanical motion of a single-crystal diamond cantilever. We employ Ramsey interferometry to demonstrate coherent, mechanical driving of the NV spin evolution. Using this interferometry technique, we present the first demonstration of nanoscale strain imaging, and quantitatively characterize the previously unknown spin-strain coupling constants. Next, we use the driven motion of the cantilever to perform deterministic control of the frequency and polarization dependence of the optical transitions of the NV center. Importantly, this experiment constitutes the first demonstration of on-chip control of both the frequency and polarization state of a single photon produced by a quantum emitter. In the final experiment, we use mechanical driving to engineer a series of spin ``clock" states and demonstrate a significant increase in the spin coherence time of the NV center. We conclude this thesis with a theoretical discussion of prospective applications for this device, including generation of non-classical mechanical states and spin-spin entanglement, as well as an evaluation of the current limitations of our devices, including a possible avenues for improvement to reach the regime of strong spin-phonon coupling.
NASA Astrophysics Data System (ADS)
Gessner, Manuel; Bastidas, Victor Manuel; Brandes, Tobias; Buchleitner, Andreas
2016-04-01
We study the excitation spectrum of a family of transverse-field spin chain models with variable interaction range and arbitrary spin S , which in the case of S =1 /2 interpolates between the Lipkin-Meshkov-Glick and the Ising model. For any finite number N of spins, a semiclassical energy manifold is derived in the large-S limit employing bosonization methods, and its geometry is shown to determine not only the leading-order term but also the higher-order quantum fluctuations. Based on a multiconfigurational mean-field ansatz, we obtain the semiclassical backbone of the quantum spectrum through the extremal points of a series of one-dimensional energy landscapes—each one exhibiting a bifurcation when the external magnetic field drops below a threshold value. The obtained spectra become exact in the limit of vanishing or very strong external, transverse magnetic fields. Further analysis of the higher-order corrections in 1 /√{2 S } enables us to analytically study the dispersion relations of spin-wave excitations around the semiclassical energy levels. Within the same model, we are able to investigate quantum bifurcations, which occur in the semiclassical (S ≫1 ) limit, and quantum phase transitions, which are observed in the thermodynamic (N →∞ ) limit.
Preserving electron spin coherence in solids by optimal dynamical decoupling.
Du, Jiangfeng; Rong, Xing; Zhao, Nan; Wang, Ya; Yang, Jiahui; Liu, R B
2009-10-29
To exploit the quantum coherence of electron spins in solids in future technologies such as quantum computing, it is first vital to overcome the problem of spin decoherence due to their coupling to the noisy environment. Dynamical decoupling, which uses stroboscopic spin flips to give an average coupling to the environment that is effectively zero, is a particularly promising strategy for combating decoherence because it can be naturally integrated with other desired functionalities, such as quantum gates. Errors are inevitably introduced in each spin flip, so it is desirable to minimize the number of control pulses used to realize dynamical decoupling having a given level of precision. Such optimal dynamical decoupling sequences have recently been explored. The experimental realization of optimal dynamical decoupling in solid-state systems, however, remains elusive. Here we use pulsed electron paramagnetic resonance to demonstrate experimentally optimal dynamical decoupling for preserving electron spin coherence in irradiated malonic acid crystals at temperatures from 50 K to room temperature. Using a seven-pulse optimal dynamical decoupling sequence, we prolonged the spin coherence time to about 30 mus; it would otherwise be about 0.04 mus without control or 6.2 mus under one-pulse control. By comparing experiments with microscopic theories, we have identified the relevant electron spin decoherence mechanisms in the solid. Optimal dynamical decoupling may be applied to other solid-state systems, such as diamonds with nitrogen-vacancy centres, and so lay the foundation for quantum coherence control of spins in solids at room temperature.
Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction
NASA Astrophysics Data System (ADS)
Kuzmak, A. R.
2018-04-01
The evolution of an N spin-1/2 system with all-range Ising-type interaction is considered. For this system we study the entanglement of one spin with the rest spins. It is shown that the entanglement depends on the number of spins and the initial state. Also, the geometry of the manifold, which contains entangled states, is obtained. For this case we find the dependence of entanglement on the scalar curvature of the manifold and examine it for different numbers of spins in the system. Finally we show that the transverse magnetic field leads to a change in the manifold topology.
Research on Electrically Driven Single Photon Emitter by Diamond for Quantum Cryptography
2015-03-24
by diamond for quantum cryptography 5a. CONTRACT NUMBER FA2386-14-1-4037 5b. GRANT NUMBE R Grant 14IOA093_144037 5c. PROGRAM ELEMENT...emerged as a highly competitive platform for applications in quantum cryptography , quantum computing, spintronics, and sensing or metrology...15. SUBJECT TERMS Diamond LED, Nitrogen Vacancy Complex, Quantum Computing, Quantum Cryptography , Single Spin Single Photon 16. SECURITY
Orbital-exchange and fractional quantum number excitations in an f-electron metal Yb 2Pt 2Pb
L. S. Wu; Zaliznyak, I. A.; Gannon, W. J.; ...
2016-06-03
Exotic quantum states and fractionalized magnetic excitations, such as spinons in one-dimensional chains, are generally expected to occur in 3d transition metal systems with spin 1/2. Our neutron-scattering experiments on the 4f-electron metal Yb 2Pt 2Pb overturn this conventional wisdom. We observe broad magnetic continuum dispersing in only one direction, which indicates that the underlying elementary excitations are spinons carrying fractional spin-1/2. These spinons are the emergent quantum dynamics of the anisotropic, orbital-dominated Yb moments. Owing to their unusual origin, only longitudinal spin fluctuations are measurable, whereas the transverse excitations such as spin waves are virtually invisible to magnetic neutronmore » scattering. Furthermore, the proliferation of these orbital-spinons strips the electrons of their orbital identity, resulting in charge-orbital separation.« less
Entanglement, number fluctuations and optimized interferometric phase measurement
NASA Astrophysics Data System (ADS)
He, Q. Y.; Vaughan, T. G.; Drummond, P. D.; Reid, M. D.
2012-09-01
We derive a phase-entanglement criterion for two bosonic modes that is immune to number fluctuations, using the generalized Moore-Penrose inverse to normalize the phase-quadrature operator. We also obtain a phase-squeezing criterion that is immune to number fluctuations using similar techniques. These are used to obtain an operational definition of relative phase-measurement sensitivity via the analysis of phase measurement in interferometry. We show that these criteria are proportional to the enhanced phase-measurement sensitivity. The phase-entanglement criterion is the hallmark of a new type of quantum-squeezing, namely planar quantum-squeezing. This has the property that it squeezes simultaneously two orthogonal spin directions, which is possible owing to the fact that the SU(2) group that describes spin symmetry has a three-dimensional parameter space of higher dimension than the group for photonic quadratures. A practical advantage of planar quantum-squeezing is that, unlike conventional spin-squeezing, it allows noise reduction over all phase angles simultaneously. The application of this type of squeezing is to the quantum measurement of an unknown phase. We show that a completely unknown phase requires two orthogonal measurements and that with planar quantum-squeezing it is possible to reduce the measurement uncertainty independently of the unknown phase value. This is a different type of squeezing compared to the usual spin-squeezing interferometric criterion, which is applicable only when the measured phase is already known to a good approximation or can be measured iteratively. As an example, we calculate the phase entanglement of the ground state of a two-well, coupled Bose-Einstein condensate, similarly to recent experiments. This system demonstrates planar squeezing in both the attractive and the repulsive interaction regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchino, Shun; Kobayashi, Michikazu; Ueda, Masahito
2010-06-15
We develop Bogoliubov theory of spin-1 and spin-2 Bose-Einstein condensates (BECs) in the presence of a quadratic Zeeman effect, and derive the Lee-Huang-Yang (LHY) corrections to the ground-state energy, pressure, sound velocity, and quantum depletion. We investigate all the phases of spin-1 and spin-2 BECs that can be realized experimentally. We also examine the stability of each phase against quantum fluctuations and the quadratic Zeeman effect. Furthermore, we discuss a relationship between the number of symmetry generators that are spontaneously broken and that of Nambu-Goldstone (NG) modes. It is found that in the spin-2 nematic phase there are special Bogoliubovmore » modes that have gapless linear dispersion relations but do not belong to the NG modes.« less
Rényi entropies and topological quantum numbers in 2D gapped Dirac materials
NASA Astrophysics Data System (ADS)
Bolívar, Juan Carlos; Romera, Elvira
2017-05-01
New topological quantum numbers are introduced by analyzing complexity measures and relative Rényi entropies in silicene in the presence of perpendicular electric and magnetic fields. These topological quantum numbers characterize the topological insulator and band insulator phases in silicene. In addition, we have found that, these information measures reach extremum values at the charge neutrality points. These results are valid for other 2D gapped Dirac materials analogous to silicene with a buckled honeycomb structure and a significant spin-orbit coupling.
Gardas, Bartłomiej; Dziarmaga, Jacek; Zurek, Wojciech H.; ...
2018-03-14
The shift of interest from general purpose quantum computers to adiabatic quantum computing or quantum annealing calls for a broadly applicable and easy to implement test to assess how quantum or adiabatic is a specific hardware. Here we propose such a test based on an exactly solvable many body system–the quantum Ising chain in transverse field–and implement it on the D-Wave machine. An ideal adiabatic quench of the quantum Ising chain should lead to an ordered broken symmetry ground state with all spins aligned in the same direction. An actual quench can be imperfect due to decoherence, noise, flaws inmore » the implemented Hamiltonian, or simply too fast to be adiabatic. Imperfections result in topological defects: Spins change orientation, kinks punctuating ordered sections of the chain. Therefore, the number of such defects quantifies the extent by which the quantum computer misses the ground state, and is imperfect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardas, Bartłomiej; Dziarmaga, Jacek; Zurek, Wojciech H.
The shift of interest from general purpose quantum computers to adiabatic quantum computing or quantum annealing calls for a broadly applicable and easy to implement test to assess how quantum or adiabatic is a specific hardware. Here we propose such a test based on an exactly solvable many body system–the quantum Ising chain in transverse field–and implement it on the D-Wave machine. An ideal adiabatic quench of the quantum Ising chain should lead to an ordered broken symmetry ground state with all spins aligned in the same direction. An actual quench can be imperfect due to decoherence, noise, flaws inmore » the implemented Hamiltonian, or simply too fast to be adiabatic. Imperfections result in topological defects: Spins change orientation, kinks punctuating ordered sections of the chain. Therefore, the number of such defects quantifies the extent by which the quantum computer misses the ground state, and is imperfect.« less
Electron-Spin Filters Based on the Rashba Effect
NASA Technical Reports Server (NTRS)
Ting, David Z.-Y.; Cartoixa, Xavier; McGill, Thomas C.; Moon, Jeong S.; Chow, David H.; Schulman, Joel N.; Smith, Darryl L.
2004-01-01
Semiconductor electron-spin filters of a proposed type would be based on the Rashba effect, which is described briefly below. Electron-spin filters more precisely, sources of spin-polarized electron currents have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-based electronics). There have been a number of successful demonstrations of injection of spin-polarized electrons from diluted magnetic semiconductors and from ferromagnetic metals into nonmagnetic semiconductors. In contrast, a device according to the proposal would be made from nonmagnetic semiconductor materials and would function without an applied magnetic field. The Rashba effect, named after one of its discoverers, is an energy splitting, of what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. The present proposal evolved from recent theoretical studies that suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling. Accordingly, a device according to the proposal would be denoted an asymmetric resonant interband tunneling diode [a-RITD]. An a-RITD could be implemented in a variety of forms, the form favored in the proposal being a double-barrier heterostructure containing an asymmetric quantum well. It is envisioned that a-RITDs would be designed and fabricated in the InAs/GaSb/AlSb material system for several reasons: Heterostructures in this material system are strong candidates for pronounced Rashba spin splitting because InAs and GaSb exhibit large spin-orbit interactions and because both InAs and GaSb would be available for the construction of highly asymmetric quantum wells. This mate-rial system affords a variety of energy-band alignments that can be exploited to obtain resonant tunneling and other desired effects. The no-common-atom InAs/GaSb and InAs/AlSb interfaces would present opportunities for engineering interface potentials for optimizing Rashba spin splitting.
House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.
2015-01-01
Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon. PMID:26548556
Nonperturbative stochastic method for driven spin-boson model
NASA Astrophysics Data System (ADS)
Orth, Peter P.; Imambekov, Adilet; Le Hur, Karyn
2013-01-01
We introduce and apply a numerically exact method for investigating the real-time dissipative dynamics of quantum impurities embedded in a macroscopic environment beyond the weak-coupling limit. We focus on the spin-boson Hamiltonian that describes a two-level system interacting with a bosonic bath of harmonic oscillators. This model is archetypal for investigating dissipation in quantum systems, and tunable experimental realizations exist in mesoscopic and cold-atom systems. It finds abundant applications in physics ranging from the study of decoherence in quantum computing and quantum optics to extended dynamical mean-field theory. Starting from the real-time Feynman-Vernon path integral, we derive an exact stochastic Schrödinger equation that allows us to compute the full spin density matrix and spin-spin correlation functions beyond weak coupling. We greatly extend our earlier work [P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.032118 82, 032118 (2010)] by fleshing out the core concepts of the method and by presenting a number of interesting applications. Methodologically, we present an analogy between the dissipative dynamics of a quantum spin and that of a classical spin in a random magnetic field. This analogy is used to recover the well-known noninteracting-blip approximation in the weak-coupling limit. We explain in detail how to compute spin-spin autocorrelation functions. As interesting applications of our method, we explore the non-Markovian effects of the initial spin-bath preparation on the dynamics of the coherence σx(t) and of σz(t) under a Landau-Zener sweep of the bias field. We also compute to a high precision the asymptotic long-time dynamics of σz(t) without bias and demonstrate the wide applicability of our approach by calculating the spin dynamics at nonzero bias and different temperatures.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Gwanyong; Jung, Young-Dae
2018-05-01
The dispersion relation for the waves propagating on the surface of a bounded quantum plasma with consideration of electron spin-current and ion-stream is derived and numerically investigated. We have found that one of the real parts of the wave frequency has the branching behavior beyond the instability domains. In such a region where the frequency branching occurs, the waves exhibit purely propagating mode. The resonant instability has also been investigated. We have found that when the phase velocity of the wave is close to the velocity of ion-stream the wave becomes unstable. However, the resonant growth rate is remarkably reduced by the effect of electron spin-current. The growth rate is also decreased by either the reduction of ion-stream velocity or the increase in quantum wavelength. Thus, the quantum effect in terms of the quantum wave number is found to suppress the resonant instability. It is also found that the increase in Fermi energy can reduce the growth rate of the resonant wave in the quantum plasma.
Observation of spinon spin currents in one-dimensional spin liquid
NASA Astrophysics Data System (ADS)
Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji
To date, two types of spin current have been explored experimentally: conduction-electron spin current and spin-wave spin current. Here, we newly present spinon spin current in quantum spin liquid. An archetype of quantum spin liquid is realized in one-dimensional spin-1/2 chains with the spins coupled via antiferromagnetic interaction. Elementary excitation in such a system is known as a spinon. Theories have predicted that the correlation of spinons reaches over a long distance. This suggests that spin current may propagate via one-dimensional spinons even in spin liquid states. In this talk, we report the experimental observation that a spin liquid in a spin-1/2 quantum chain generates and conveys spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow via quantum fluctuation in spite of the absence of magnetic order, suggesting that a variety of quantum spin systems can be applied to spintronics. Spin Quantum Rectification Project, ERATO, JST, Japan; PRESTO, JST, Japan.
Quantum Szilard engines with arbitrary spin.
Zhuang, Zekun; Liang, Shi-Dong
2014-11-01
The quantum Szilard engine (QSZE) is a conceptual quantum engine for understanding the fundamental physics of quantum thermodynamics and information physics. We generalize the QSZE to an arbitrary spin case, i.e., a spin QSZE (SQSZE), and we systematically study the basic physical properties of both fermion and boson SQSZEs in a low-temperature approximation. We give the analytic formulation of the total work. For the fermion SQSZE, the work might be absorbed from the environment, and the change rate of the work with temperature exhibits periodicity and even-odd oscillation, which is a generalization of a spinless QSZE. It is interesting that the average absorbed work oscillates regularly and periodically in a large-number limit, which implies that the average absorbed work in a fermion SQSZE is neither an intensive quantity nor an extensive quantity. The phase diagrams of both fermion and boson SQSZEs give the SQSZE doing positive or negative work in the parameter space of the temperature and the particle number of the system, but they have different behaviors because the spin degrees of the fermion and the boson play different roles in their configuration states and corresponding statistical properties. The critical temperature of phase transition depends sensitively on the particle number. By using Landauer's erasure principle, we give the erasure work in a thermodynamic cycle, and we define an efficiency (we refer to it as information-work efficiency) to measure the engine's ability of utilizing information to extract work. We also give the conditions under which the maximum extracted work and highest information-work efficiencies for fermion and boson SQSZEs can be achieved.
Ultrafast optical control of individual quantum dot spin qubits.
De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa
2013-09-01
Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled with the spin, and these photons are then interfered. We review recent work demonstrating entanglement between a stationary spin qubit and a flying photonic qubit. These experiments utilize the polarization- and frequency-dependent spontaneous emission from the lowest charged exciton state to single spin Zeeman sublevels.
Memory-built-in quantum cloning in a hybrid solid-state spin register
NASA Astrophysics Data System (ADS)
Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.
2015-07-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.
Memory-built-in quantum cloning in a hybrid solid-state spin register.
Wang, W-B; Zu, C; He, L; Zhang, W-G; Duan, L-M
2015-07-16
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.
Quantum spin transistor with a Heisenberg spin chain
Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.
2016-01-01
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438
Quantum spin transistor with a Heisenberg spin chain.
Marchukov, O V; Volosniev, A G; Valiente, M; Petrosyan, D; Zinner, N T
2016-10-10
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.
Electrical control of single hole spins in nanowire quantum dots.
Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P
2013-03-01
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.
Optically programmable electron spin memory using semiconductor quantum dots.
Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J
2004-11-04
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.
Microscopic Studies of Quantum Phase Transitions in Optical Lattices
NASA Astrophysics Data System (ADS)
Bakr, Waseem S.
2011-12-01
In this thesis, I report on experiments that microscopically probe quantum phase transitions of ultracold atoms in optical lattices. We have developed a "quantum gas microscope" that allowed, for the first time, optical imaging and manipulation of single atoms in a quantum-degenerate gas on individual sites of an optical lattice. This system acts as a quantum simulator of strongly correlated materials, which are currently the subject of intense research because of the technological potential of high--T c superconductors and spintronic materials. We have used our microscope to study the superfluid to Mott insulator transition in bosons and a magnetic quantum phase transition in a spin system. In our microscopic study of the superfluid-insulator transition, we have characterized the on-site number statistics in a space- and time-resolved manner. We observed Mott insulators with fidelities as high as 99%, corresponding to entropies of 0.06kB per particle. We also measured local quantum dynamics and directly imaged the shell structure of the Mott insulator. I report on the first quantum magnetism experiments in optical lattices. We have realized a quantum Ising chain in a magnetic field, and observed a quantum phase transition between a paramagnet and antiferromagnet. We achieved strong spin interactions by encoding spins in excitations of a Mott insulator in a tilted lattice. We detected the transition by measuring the total magnetization of the system across the transition using in-situ measurements as well as the Neel ordering in the antiferromagnetic state using noise-correlation techniques. We characterized the dynamics of domain formation in the system. The spin mapping introduced opens up a new path to realizing more exotic states in optical lattices including spin liquids and quantum valence bond solids. As our system sizes become larger, simulating their physics on classical computers will require exponentially larger resources because of entanglement build-up near a quantum phase transition. We have demonstrated a quantum simulator in which all degrees of freedom can be read out microscopically, allowing the simulation of quantum many-body systems with manageable resources. More generally, the ability to image and manipulate individual atoms in optical lattices opens an avenue towards scalable quantum computation.
Electrostatically defined silicon quantum dots with counted antimony donor implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P.
2016-02-08
Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.
Electrostatically defined silicon quantum dots with counted antimony donor implants
NASA Astrophysics Data System (ADS)
Singh, M.; Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Luhman, D. R.; Bielejec, E.; Lilly, M. P.; Carroll, M. S.
2016-02-01
Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.
Versatile microwave-driven trapped ion spin system for quantum information processing
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof
2016-01-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233
Asymmetric band gaps in a Rashba film system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbone, C.; Moras, P.; Sheverdyaeva, P. M.
The joint effect of exchange and Rashba spin-orbit interactions is examined on the surface and quantum well states of Ag 2 Bi -terminated Ag films grown on ferromagnetic Fe(110). The system displays a particular combination of time-reversal and translational symmetry breaking that strongly influences its electronic structure. Angle-resolved photoemission reveals asymmetric band-gap openings, due to spin-selective hybridization between Rashba-split surface states and exchange-split quantum well states. This results in an unequal number of states along positive and negative reciprocal space directions. We suggest that the peculiar asymmetry of the discovered electronic structure can have significant influence on spin-polarized transport properties.
Entanglement measures in embedding quantum simulators with nuclear spins
NASA Astrophysics Data System (ADS)
Xin, Tao; Pedernales, Julen S.; Solano, Enrique; Long, Gui-Lu
2018-02-01
We implement an embedding quantum simulator (EQS) in nuclear spin systems. The experiment consists of a simulator of up to three qubits, plus a single ancillary qubit, where we are able to efficiently measure the concurrence and the three-tangle of two-qubit and three-qubit systems as they undergo entangling dynamics. The EQS framework allows us to drastically reduce the number of measurements needed for this task, which otherwise would require full-state reconstruction of the qubit system. Our simulator is built of the nuclear spins of four 13C atoms in a molecule of trans-crotonic acid manipulated with NMR techniques.
Spin-1 models in the ultrastrong-coupling regime of circuit QED
NASA Astrophysics Data System (ADS)
Albarrán-Arriagada, F.; Lamata, L.; Solano, E.; Romero, G.; Retamal, J. C.
2018-02-01
We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded superconducting quantum interference device (SQUID). The anharmonic spectrum of the qubit-resonator system and the selection rules imposed by the global parity symmetry allow us to activate well controlled two-body quantum gates via ac pulses applied to the SQUID. We show that our proposal has the same simulation time for any number of spin-1 interacting particles. This scheme may be implemented within the state-of-the-art circuit QED in the ultrastrong coupling regime.
Bending strain engineering in quantum spin hall system for controlling spin currents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Bing; Jin, Kyung-Hwan; Cui, Bin
Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less
Bending strain engineering in quantum spin hall system for controlling spin currents
Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; ...
2017-06-16
Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less
Coherent transmutation of electrons into fractionalized anyons.
Barkeshli, Maissam; Berg, Erez; Kivelson, Steven
2014-11-07
Electrons have three quantized properties-charge, spin, and Fermi statistics-that are directly responsible for a vast array of phenomena. Here we show how these properties can be coherently and dynamically stripped from the electron as it enters a certain exotic state of matter known as a quantum spin liquid (QSL). In a QSL, electron spins collectively form a highly entangled quantum state that gives rise to the fractionalization of spin, charge, and statistics. We show that certain QSLs host distinct, topologically robust boundary types, some of which allow the electron to coherently enter the QSL as a fractionalized quasi-particle, leaving its spin, charge, or statistics behind. We use these ideas to propose a number of universal, conclusive experimental signatures that would establish fractionalization in QSLs. Copyright © 2014, American Association for the Advancement of Science.
Zeeman-Field-Tuned Topological Phase Transitions in a Two-Dimensional Class-DIII Superconductor
Deng, W. Y.; Geng, H.; Luo, W.; Sheng, L.; Xing, D. Y.
2016-01-01
We investigate the topological phase transitions in a two-dimensional time-reversal invariant topological superconductor in the presence of a Zeeman field. Based on the spin Chern number theory, we find that the system exhibits a number of topologically distinct phases with changing the out-of-plane component of the Zeeman field, including a quantum spin Hall-like phase, quantum anomalous Hall-like phases with total Chern number C = −2, −1, 1 and 2, and a topologically trivial superconductor phase. The BdG band gap closes at each boundary of the phase transitions. Furthermore, we demonstrate that the zero bias conductance provides clear transport signatures of the different topological phases, which are robust against symmetry-breaking perturbations. PMID:27148675
Shimizu, Kaoru; Tokura, Yasuhiro
2015-12-01
This paper presents a theoretical framework for analyzing the quantum fluctuation properties of a quantum spin chain subject to a quantum phase transition. We can quantify the fluctuation properties by examining the correlation between the fluctuations of two neighboring spins subject to the quantum uncertainty. To do this, we first compute the reduced density matrix ρ of the spin pair from the ground state |Ψ⟩ of a spin chain, and then identify the quantum correlation part ρ(q) embedded in ρ. If the spin chain is translationally symmetric and characterized by a nearest-neighbor two-body spin interaction, we can determine uniquely the form of ρ(q) as W|Φ〉〈Φ| with the weight W ≤1, and quantify the fluctuation properties using the two-spin entangled state |Φ〉. We demonstrate the framework for a transverse-field quantum Ising spin chain and indicate its validity for more general spin chain models.
Memory-built-in quantum cloning in a hybrid solid-state spin register
Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.
2015-01-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science. PMID:26178617
Bell's Inequalities for Any Spin
NASA Astrophysics Data System (ADS)
González-Robles, V. M.
John Ju Sakurai's classical book in quantum mechanics makes a very illuminative presentation that studies entangled states in a two spin s=1/2 particles system in a singlet state. A Bell's inequality emerges as a consequence. Bell's inequality is a relationship among observables that discriminates between Einstein's locality principle and the nonlocal point of view of orthodox quantum mechanics. Following Sakurai's style we propose, by making natural induction, a generalization for Bell's inequality for any two spin-s particles in a singlet state (s integer or half-integer). This inequality is expressed as a function of a θ parameter, which is a measure of the angle between two possible directions in which the spin is measured. Besides the expression for this general inequality we have found that - (a) for any finite half-integer spin Bell's inequality is violated for some interval of the θ-parameter. The right limit of this interval is fixed and equal to π/2, while the left one comes closer and closer to this value as spin number grows. A function fit shows clearly that the size of this θ-interval over which Bell's inequality is violated diminishes asymptotically to zero as 1/s1/2; (b) an analogous behavior for any finite integer spin. For large spins the disagreement between Einstein's locality principle and the nonlocal point of view in orthodox quantum mechanics disappears.
Optoelectronic Control of Spin and Pseudospin in Layered WSe2
NASA Astrophysics Data System (ADS)
Jones, Aaron
2014-03-01
Coherent manipulation of spin-like quantum numbers facilitates the development of new quantum technologies. Layered transition metal dichalcogenides provide an ideal laboratory to exploit such dynamic control of spin, pseudospin, and their interplay. Here, we discuss two examples based on monolayer and bilayer WSe2. Due to the inversion asymmetry in monolayer WSe2, valley pseudospins, which index the degenerate extrema of the energy-momentum bands, possess circularly polarized optical selection rules. In addition to the generation of valley polarization through optical pumping of valley excitons, we demonstrate the creation of a coherent superposition between valley states in monolayer WSe2 by linearly polarized excitation. On the other hand, bilayer WSe2 provides an additional quantum degree of freedom, the layer pseudospin, which corresponds to layer polarization. In AB stacked bilayers, we find the real spin is locked to layer pseudospin for a given valley, which results in the suppression of spin relaxation and electrical control of spin Zeeman splitting without an applied magnetic field. Additionally, we obtain spectroscopic evidence of interlayer and intralayer trion species, an important step toward coherent optical control in van der Waals 2D heterostructures. Aaron Jones partially supported by NSF Grant No. DGE-0718124.
Metrologically useful states of spin-1 Bose condensates with macroscopic magnetization
NASA Astrophysics Data System (ADS)
Kajtoch, Dariusz; Pawłowski, Krzysztof; Witkowska, Emilia
2018-02-01
We study theoretically the usefulness of spin-1 Bose condensates with macroscopic magnetization in a homogeneous magnetic field for quantum metrology. We demonstrate Heisenberg scaling of the quantum Fisher information for states in thermal equilibrium. The scaling applies to both antiferromagnetic and ferromagnetic interactions. The effect preserves as long as fluctuations of magnetization are sufficiently small. Scaling of the quantum Fisher information with the total particle number is derived within the mean-field approach in the zero-temperature limit and exactly in the high-magnetic-field limit for any temperature. The precision gain is intuitively explained owing to subtle features of the quasidistribution function in the phase space.
NASA Astrophysics Data System (ADS)
Ahmed, Ibrahim; Nepomechie, Rafael I.; Wang, Chunguang
2017-07-01
We argue that the Hamiltonians for A(2)2n open quantum spin chains corresponding to two choices of integrable boundary conditions have the symmetries Uq(Bn) and Uq(Cn) , respectively. We find a formula for the Dynkin labels of the Bethe states (which determine the degeneracies of the corresponding eigenvalues) in terms of the numbers of Bethe roots of each type. With the help of this formula, we verify numerically (for a generic value of the anisotropy parameter) that the degeneracies and multiplicities of the spectra implied by the quantum group symmetries are completely described by the Bethe ansatz.
A programmable two-qubit quantum processor in silicon
NASA Astrophysics Data System (ADS)
Watson, T. F.; Philips, S. G. J.; Kawakami, E.; Ward, D. R.; Scarlino, P.; Veldhorst, M.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K.
2018-03-01
Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.
A programmable two-qubit quantum processor in silicon.
Watson, T F; Philips, S G J; Kawakami, E; Ward, D R; Scarlino, P; Veldhorst, M; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K
2018-03-29
Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
Improved Apparatus to Study Matter-Wave Quantum Optics in a Sodium Spinor Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Zhong, Shan; Bhagat, Anita; Zhang, Qimin; Schwettmann, Arne
2017-04-01
We present and characterize our recently improved experimental apparatus for studying matter-wave quantum optics in spin space in ultracold sodium gases. Improvements include our recent addition of a 3D-printed Helmholtz coil frame for field stabilization and a crossed optical dipole trap. Spin-exchange collisions in the F = 1 spinor Bose-Einstein condensate can be precisely controlled by microwave dressing, and generate pairs of entangled atoms with magnetic quantum numbers mF = + 1 and mF = - 1 from pairs of mF = 0 atoms. Spin squeezing generated by the collisions can reduce the noise of population measurements below the shot noise limit. Versatile microwave pulse sequences will be used to implement an interferometer, a phase-sensitive amplifier and other devices with sub-shot noise performance. With an added ion detector to detect Rydberg atoms via pulse-field ionization, we later plan to study the effect of Rydberg excitations on the spin evolution of the ultracold gas.
NASA Astrophysics Data System (ADS)
Maciel, Thiago O.; Vianna, Reinaldo O.; Sarthour, Roberto S.; Oliveira, Ivan S.
2015-11-01
We reconstruct the time dependent quantum map corresponding to the relaxation process of a two-spin system in liquid-state NMR at room temperature. By means of quantum tomography techniques that handle informational incomplete data, we show how to properly post-process and normalize the measurements data for the simulation of quantum information processing, overcoming the unknown number of molecules prepared in a non-equilibrium magnetization state (Nj) by an initial sequence of radiofrequency pulses. From the reconstructed quantum map, we infer both longitudinal (T1) and transversal (T2) relaxation times, and introduce the J-coupling relaxation times ({T}1J,{T}2J), which are relevant for quantum information processing simulations. We show that the map associated to the relaxation process cannot be assumed approximated unital and trace-preserving for times greater than {T}2J.
Haghshenasfard, Zahra; Cottam, M G
2017-05-17
A microscopic (Hamiltonian-based) method for the quantum statistics of bosonic excitations in a two-mode magnon system is developed. Both the exchange and the dipole-dipole interactions, as well as the Zeeman term for an external applied field, are included in the spin Hamiltonian, and the model also contains the nonlinear effects due to parallel pumping and four-magnon interactions. The quantization of spin operators is achieved through the Holstein-Primakoff formalism, and then a coherent magnon state representation is used to study the occupation magnon number and the quantum statistical behaviour of the system. Particular attention is given to the cross correlation between the two coupled magnon modes in a ferromagnetic nanowire geometry formed by two lines of spins. Manipulation of the collapse-and-revival phenomena for the temporal evolution of the magnon number as well as the control of the cross correlation between the two magnon modes is demonstrated by tuning the parallel pumping field amplitude. The role of the four-magnon interactions is particularly interesting and leads to anti-correlation in some cases with coherent states.
Extended spin symmetry and the standard model
NASA Astrophysics Data System (ADS)
Besprosvany, J.; Romero, R.
2010-12-01
We review unification ideas and explain the spin-extended model in this context. Its consideration is also motivated by the standard-model puzzles. With the aim of constructing a common description of discrete degrees of freedom, as spin and gauge quantum numbers, the model departs from q-bits and generalized Hilbert spaces. Physical requirements reduce the space to one that is represented by matrices. The classification of the representations is performed through Clifford algebras, with its generators associated with Lorentz and scalar symmetries. We study a reduced space with up to two spinor elements within a matrix direct product. At given dimension, the demand that Lorentz symmetry be maintained, determines the scalar symmetries, which connect to vector-and-chiral gauge-interacting fields; we review the standard-model information in each dimension. We obtain fermions and bosons, with matter fields in the fundamental representation, radiation fields in the adjoint, and scalar particles with the Higgs quantum numbers. We relate the fields' representation in such spaces to the quantum-field-theory one, and the Lagrangian. The model provides a coupling-constant definition.
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices
NASA Astrophysics Data System (ADS)
Farnell, D. J. J.; Götze, O.; Richter, J.
2016-06-01
The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.
Engineering the quantum anomalous Hall effect in graphene with uniaxial strains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diniz, G. S., E-mail: ginetom@gmail.com; Guassi, M. R.; Qu, F.
2013-12-28
We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of themore » exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency.« less
Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.
Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P
2017-12-01
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.
Engineering the Eigenstates of Coupled Spin-1 /2 Atoms on a Surface
NASA Astrophysics Data System (ADS)
Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D.; Willke, Philip; Lado, Jose L.; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J.; Lutz, Christopher P.
2017-12-01
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1 /2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1 /2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1 /2 atoms on surfaces.
Dynamics of Topological Excitations in a Model Quantum Spin Ice
NASA Astrophysics Data System (ADS)
Huang, Chun-Jiong; Deng, Youjin; Wan, Yuan; Meng, Zi Yang
2018-04-01
We study the quantum spin dynamics of a frustrated X X Z model on a pyrochlore lattice by using large-scale quantum Monte Carlo simulation and stochastic analytic continuation. In the low-temperature quantum spin ice regime, we observe signatures of coherent photon and spinon excitations in the dynamic spin structure factor. As the temperature rises to the classical spin ice regime, the photon disappears from the dynamic spin structure factor, whereas the dynamics of the spinon remain coherent in a broad temperature window. Our results provide experimentally relevant, quantitative information for the ongoing pursuit of quantum spin ice materials.
The classical and quantum dynamics of molecular spins on graphene.
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2016-02-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
The classical and quantum dynamics of molecular spins on graphene
NASA Astrophysics Data System (ADS)
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2016-02-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
Fisher information of a single qubit interacts with a spin-qubit in the presence of a magnetic field
NASA Astrophysics Data System (ADS)
Metwally, N.
2018-06-01
In this contribution, quantum Fisher information is utilized to estimate the parameters of a central qubit interacting with a single-spin qubit. The effect of the longitudinal, transverse and the rotating strengths of the magnetic field on the estimation degree is discussed. It is shown that, in the resonance case, the number of peaks and consequently the size of the estimation regions increase as the rotating magnetic field strength increases. The precision estimation of the central qubit parameters depends on the initial state settings of the central and the spin-qubit, either encode classical or quantum information. It is displayed that, the upper bounds of the estimation degree are large if the two qubits encode classical information. In the non-resonance case, the estimation degree depends on which of the longitudinal/transverse strength is larger. The coupling constant between the central qubit and the spin-qubit has a different effect on the estimation degree of the weight and the phase parameters, where the possibility of estimating the weight parameter decreases as the coupling constant increases, while it increases for the phase parameter. For large number of spin-particles, namely, we have a spin-bath particles, the upper bounds of the Fisher information with respect to the weight parameter of the central qubit decreases as the number of the spin particle increases. As the interaction time increases, the upper bounds appear at different initial values of the weight parameter.
Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo
2017-09-22
Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.
Quantum spin liquids: a review.
Savary, Lucile; Balents, Leon
2017-01-01
Quantum spin liquids may be considered 'quantum disordered' ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.
Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene.
Hunt, B M; Li, J I A; Zibrov, A A; Wang, L; Taniguchi, T; Watanabe, K; Hone, J; Dean, C R; Zaletel, M; Ashoori, R C; Young, A F
2017-10-16
The high magnetic field electronic structure of bilayer graphene is enhanced by the spin, valley isospin, and an accidental orbital degeneracy, leading to a complex phase diagram of broken symmetry states. Here, we present a technique for measuring the layer-resolved charge density, from which we directly determine the valley and orbital polarization within the zero energy Landau level. Layer polarization evolves in discrete steps across 32 electric field-tuned phase transitions between states of different valley, spin, and orbital order, including previously unobserved orbitally polarized states stabilized by skew interlayer hopping. We fit our data to a model that captures both single-particle and interaction-induced anisotropies, providing a complete picture of this correlated electron system. The resulting roadmap to symmetry breaking paves the way for deterministic engineering of fractional quantum Hall states, while our layer-resolved technique is readily extendable to other two-dimensional materials where layer polarization maps to the valley or spin quantum numbers.The phase diagram of bilayer graphene at high magnetic fields has been an outstanding question, with orders possibly between multiple internal quantum degrees of freedom. Here, Hunt et al. report the measurement of the valley and orbital order, allowing them to directly reconstruct the phase diagram.
Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.
Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D
2009-10-09
Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.
Entanglement-Enhanced Phase Estimation without Prior Phase Information
NASA Astrophysics Data System (ADS)
Colangelo, G.; Martin Ciurana, F.; Puentes, G.; Mitchell, M. W.; Sewell, R. J.
2017-06-01
We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of
Storing quantum information in spins and high-sensitivity ESR
NASA Astrophysics Data System (ADS)
Morton, John J. L.; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.
Storing quantum information in spins and high-sensitivity ESR.
Morton, John J L; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.
Workshop on Quantum Control Theory and its Applications
2004-01-01
for characterization of organic molecules, the use of NMR has spread to areas as diverse pharmaceutics, metabolic studies, structural biology, solid...using rncauth.cls PRACQSYS 13 quantum system (and hence U) is finite dimensional, as in architechtures of coupled spins and in cases where U is...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION California Institute of Technology REPORT NUMBER Pasadena
Topological states of matter in two-dimensional fermionic systems
NASA Astrophysics Data System (ADS)
Beugeling, W.
2012-09-01
Topological states of matter in two-dimensional systems are characterised by the different properties of the edges and the bulk of the system: The edges conduct electrical current while the bulk is insulating. The first well-known example is the quantum Hall effect, which is induced by a perpendicular magnetic field that generates chiral edge channels along which the current propagates. Each channel contributes one quantum to the Hall conductivity. Due to the chirality, i.e., all currents propagate in the same direction, backscattering due to impurities is absent, and the Hall conductivity carried by the edge states is therefore protected from perturbations. Another example is the quantum spin Hall effect, induced by intrinsic spin-orbit coupling in absence of a magnetic field. There the edge states are helical, i.e., spin up and down currents propagate oppositely. In this case, the spin Hall conductivity is quantized, and it is protected by time-reversal symmetry from backscattering due to impurities. In Chapter 2 of the thesis, I discuss the combined effect of the magnetic field and intrinsic spin-orbit coupling. In addition, I discuss the influence of the Rashba spin-orbit coupling and of the Zeeman effect. In particular, I show that in absence of magnetic impurities, a weaker form of the quantum spin Hall state persists in the presence of a magnetic field. In addition, I show that the intrinsic spin-orbit coupling and the Zeeman effect act similarly in the low-flux limit. I furthermore analyse the phase transitions induced by intrinsic spin-orbit coupling at a fixed magnetic field, thereby explaining the change of the Hall and spin Hall conductivities at the transition. I also study the subtle interplay between the effects of the different terms in the Hamiltonian. In Chapter 3, I investigate an effective model for HgTe quantum wells doped with Mn ions. Without doping, HgTe quantum wells may exhibit the quantum spin Hall effect, depending on the thickness of the well. The doping with Mn ions modifies the behaviour of the system in two ways: First, the quantum spin Hall gap is reduced in size, and secondly, the system becomes paramagnetic. The latter effect causes a bending of the Landau levels, which is responsible for reentrant behaviour of the (spin) Hall conductivity. I investigate the different types of reentrant behaviour, and I estimate the experimental resolvability of this effect. In Chapter 4, I present a framework to describe the fractional quantum Hall effect in systems with multiple internal degrees of freedom, e.g., spin or pseudospin. This framework describes the so-called flux attachment in terms of a Chern-Simons theory in Hamiltonian form, proposed earlier for systems without internal degrees of freedom. Here, I show a generalization of these results, by replacing the number of attached flux quanta by a matrix. In particular, the plasma analogy proposed by Laughlin still applies, and Kohn’s theorem remains valid. I also show that the results remain valid when the flux-attachment matrix is singular.
Magneto-transport studies of a few hole GaAs double quantum dot in tilted magnetic fields
NASA Astrophysics Data System (ADS)
Studenikin, Sergei; Bogan, Alex; Tracy, Lisa; Gaudreau, Louis; Sachrajda, Andy; Korkusinski, Marek; Reno, John; Hargett, Terry
Compared to equivalent electron devices, single-hole spins interact weakly with lattice nuclear spins leading to extended quantum coherence times. This makes p-type Quantum Dots (QD) particularly attractive for practical quantum devices such as qubit circuits, quantum repeaters, quantum sensors etc. where long coherence time is required. Another property of holes is the possibility to tune their g-factor as a result of the strong anisotropy of the valance band. Hole g-factors can be conveniently tuned in situ from a large value to almost zero by tilting the magnetic field relative to the 2D hole gas surface normal. In this work we explore high-bias magneto-transport properties of a p-type double quantum dot (DQD) device fabricated from a GaAs/AlGaAs heterostructures using lateral split-gate technology. A charge detection technique is used to monitor number of holes and tune the p-DQD in a single hole regime around (1,1) and (2,0) occupation states where Pauli spin-blockaded transport is expected. Four states are identified in quantizing magnetic fields within the high-bias current stripe - three-fold triplet and a singlet which allows determining effective heavy hole g-factor as a function of the tilt angle from 90 to 0 degrees.
Dynamic spin injection into a quantum well coupled to a spin-split bound state
NASA Astrophysics Data System (ADS)
Maslova, N. S.; Rozhansky, I. V.; Mantsevich, V. N.; Arseyev, P. I.; Averkiev, N. S.; Lähderanta, E.
2018-05-01
We present a theoretical analysis of dynamic spin injection due to spin-dependent tunneling between a quantum well (QW) and a bound state split in spin projection due to an exchange interaction or external magnetic field. We focus on the impact of Coulomb correlations at the bound state on spin polarization and sheet density kinetics of the charge carriers in the QW. The theoretical approach is based on kinetic equations for the electron occupation numbers taking into account high order correlation functions for the bound state electrons. It is shown that the on-site Coulomb repulsion leads to an enhanced dynamic spin polarization of the electrons in the QW and a delay in the carriers tunneling into the bound state. The interplay of these two effects leads to nontrivial dependence of the spin polarization degree, which can be probed experimentally using time-resolved photoluminescence experiments. It is demonstrated that the influence of the Coulomb interactions can be controlled by adjusting the relaxation rates. These findings open a new way of studying the Hubbard-like electron interactions experimentally.
Complete quantum control of a single quantum dot spin using ultrafast optical pulses.
Press, David; Ladd, Thaddeus D; Zhang, Bingyang; Yamamoto, Yoshihisa
2008-11-13
A basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. For qubits based on electron spin, a universal single-qubit gate is realized by a rotation of the spin by any angle about an arbitrary axis. Driven, coherent Rabi oscillations between two spin states can be used to demonstrate control of the rotation angle. Ramsey interference, produced by two coherent spin rotations separated by a variable time delay, demonstrates control over the axis of rotation. Full quantum control of an electron spin in a quantum dot has previously been demonstrated using resonant radio-frequency pulses that require many spin precession periods. However, optical manipulation of the spin allows quantum control on a picosecond or femtosecond timescale, permitting an arbitrary rotation to be completed within one spin precession period. Recent work in optical single-spin control has demonstrated the initialization of a spin state in a quantum dot, as well as the ultrafast manipulation of coherence in a largely unpolarized single-spin state. Here we demonstrate complete coherent control over an initialized electron spin state in a quantum dot using picosecond optical pulses. First we vary the intensity of a single optical pulse to observe over six Rabi oscillations between the two spin states; then we apply two sequential pulses to observe high-contrast Ramsey interference. Such a two-pulse sequence realizes an arbitrary single-qubit gate completed on a picosecond timescale. Along with the spin initialization and final projective measurement of the spin state, these results demonstrate a complete set of all-optical single-qubit operations.
Memory-built-in quantum cloning in a hybrid solid-state spin register
NASA Astrophysics Data System (ADS)
Wang, Weibin; Zu, Chong; He, Li; Zhang, Wengang; Duan, Luming
2015-05-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude, and making it an ideal memory qubit. Our experiment is based on control of an individual nitrogen vacancy (NV) center in the diamond, which is a diamond defect that attracts strong interest in recent years with great potential for implementation of quantum information protocols.
Almost sure convergence in quantum spin glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buzinski, David, E-mail: dab197@case.edu; Meckes, Elizabeth, E-mail: elizabeth.meckes@case.edu
2015-12-15
Recently, Keating, Linden, and Wells [Markov Processes Relat. Fields 21(3), 537-555 (2015)] showed that the density of states measure of a nearest-neighbor quantum spin glass model is approximately Gaussian when the number of particles is large. The density of states measure is the ensemble average of the empirical spectral measure of a random matrix; in this paper, we use concentration of measure and entropy techniques together with the result of Keating, Linden, and Wells to show that in fact the empirical spectral measure of such a random matrix is almost surely approximately Gaussian itself with no ensemble averaging. We alsomore » extend this result to a spherical quantum spin glass model and to the more general coupling geometries investigated by Erdős and Schröder [Math. Phys., Anal. Geom. 17(3-4), 441–464 (2014)].« less
Adiabatic photo-steering theory in topological insulators.
Inoue, Jun-Ichi
2014-12-01
Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane-Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed.
Adiabatic photo-steering theory in topological insulators
NASA Astrophysics Data System (ADS)
Inoue, Jun-ichi
2014-12-01
Feasible external control of material properties is a crucial issue in condensed matter physics. A new approach to achieving this aim, named adiabatic photo-steering, is reviewed. The core principle of this scheme is that several material constants are effectively turned into externally tunable variables by irradiation of monochromatic laser light. Two-dimensional topological insulators are selected as the optimal systems that exhibit a prominent change in their properties following the application of this method. Two specific examples of photo-steered quantum phenomena, which reflect topological aspects of the electronic systems at hand, are presented. One is the integer quantum Hall effect described by the Haldane model, and the other is the quantum spin Hall effect described by the Kane-Mele model. The topological quantities associated with these phenomena are the conventional Chern number and spin Chern number, respectively. A recent interesting idea, time-reversal symmetry breaking via a temporary periodic external stimulation, is also discussed.
NASA Astrophysics Data System (ADS)
Dehghan, E.; Sanavi Khoshnoud, D.; Naeimi, A. S.
2018-01-01
The spin-resolved electron transport through a triangular network of quantum nanorings is studied in the presence of Rashba spin-orbit interaction (RSOI) and a magnetic flux using quantum waveguide theory. This study illustrates that, by tuning Rashba constant, magnetic flux and incoming electron energy, the triangular network of quantum rings can act as a perfect logical spin-filtering with high efficiency. By changing in the energy of incoming electron, at a proper value of the Rashba constant and magnetic flux, a reverse in the direction of spin can take place in the triangular network of quantum nanorings. Furthermore, the triangular network of quantum nanorings can be designed as a device and shows several simultaneous spintronic properties such as spin-splitter and spin-inverter. This spin-splitting is dependent on the energy of the incoming electron. Additionally, different polarizations can be achieved in the two outgoing leads from an originally incoming spin state that simulates a Stern-Gerlach apparatus.
Transverse magnetic focussing of heavy holes in a (100) GaAs quantum well
NASA Astrophysics Data System (ADS)
Rendell, M.; Klochan, O.; Srinivasan, A.; Farrer, I.; Ritchie, D. A.; Hamilton, A. R.
2015-10-01
We perform magnetic focussing of high mobility holes confined in a shallow GaAs/Al0.33Ga0.67As quantum well grown on a (100) GaAs substrate. We observe ballistic focussing of holes over a path length of up to 4.9 μm with a large number of focussing peaks. We show that additional structure on the focussing peaks can be caused by a combination of the finite width of the injector quantum point contact and Shubnikov-de Haas oscillations. These results pave the way to studies of spin-dependent magnetic focussing and spin relaxation lengths in two-dimentional hole systems without complications of crystal anisotropies and anisotropic g-tensors.
Strong electron-hole exchange in coherently coupled quantum dots.
Fält, Stefan; Atatüre, Mete; Türeci, Hakan E; Zhao, Yong; Badolato, Antonio; Imamoglu, Atac
2008-03-14
We have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole-spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where a conditional exciton energy shift in one dot identifies the charging state of the coupled partner.
Wide gap Chern Mott insulating phases achieved by design
NASA Astrophysics Data System (ADS)
Guo, Hongli; Gangopadhyay, Shruba; Köksal, Okan; Pentcheva, Rossitza; Pickett, Warren E.
2017-12-01
Quantum anomalous Hall insulators, which display robust boundary charge and spin currents categorized in terms of a bulk topological invariant known as the Chern number (Thouless et al Phys. Rev. Lett. 49, 405-408 (1982)), provide the quantum Hall anomalous effect without an applied magnetic field. Chern insulators are attracting interest both as a novel electronic phase and for their novel and potentially useful boundary charge and spin currents. Honeycomb lattice systems such as we discuss here, occupied by heavy transition-metal ions, have been proposed as Chern insulators, but finding a concrete example has been challenging due to an assortment of broken symmetry phases that thwart the topological character. Building on accumulated knowledge of the behavior of the 3d series, we tune spin-orbit and interaction strength together with strain to design two Chern insulator systems with bandgaps up to 130 meV and Chern numbers C = -1 and C = 2. We find, in this class, that a trade-off between larger spin-orbit coupling and strong interactions leads to a larger gap, whereas the stronger spin-orbit coupling correlates with the larger magnitude of the Hall conductivity. Symmetry lowering in the course of structural relaxation hampers obtaining quantum anomalous Hall character, as pointed out previously; there is only mild structural symmetry breaking of the bilayer in these robust Chern phases. Recent growth of insulating, magnetic phases in closely related materials with this orientation supports the likelihood that synthesis and exploitation will follow.
The classical and quantum dynamics of molecular spins on graphene
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2015-01-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic1 and quantum computing2 devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics3,4, and electrical spin-manipulation4-11. However, the influence of the graphene environment on the spin systems has yet to be unraveled12. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets13 on graphene. While the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly-developed model. Coupling to Dirac electrons introduces a dominant quantum-relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully-coherent, resonant spin tunneling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin-manipulation in graphene nanodevices. PMID:26641019
Temperature-dependent relaxation of dipole-exchange magnons in yttrium iron garnet films
NASA Astrophysics Data System (ADS)
Mihalceanu, Laura; Vasyuchka, Vitaliy I.; Bozhko, Dmytro A.; Langner, Thomas; Nechiporuk, Alexey Yu.; Romanyuk, Vladyslav F.; Hillebrands, Burkard; Serga, Alexander A.
2018-06-01
Low-energy consumption enabled by charge-free information transport, which is free from Joule heating, and the ability to process phase-encoded data through the use of nanometer-sized interference devices operating at GHz and THz frequencies are just a few benefits of spin-wave-based technologies. Moreover, when approaching cryogenic temperatures, quantum phenomena in spin-wave systems pave the path towards quantum information processing. In view of these applications, the lifetime of magnons—spin-wave quanta—is of high relevance for the fields of magnonics, magnon spintronics, and quantum computing. Here, the relaxation behavior of parametrically excited magnons having wave numbers from zero up to 6 ×105rad cm-1 was experimentally investigated in the temperature range from 20 to 340 K in single-crystal yttrium iron garnet (YIG) films of different thickness epitaxially grown on gallium gadolinium garnet (GGG) substrates as well as in a bulk YIG crystal—the magnonic materials featuring the lowest magnetic damping thus far known. Due to magnon-magnon interactions, the relaxation rate of the parametric magnons increases with an increase of their wave numbers. In the thinner samples, this increase is less pronounced, which can be associated with a stronger quantization of their magnon spectra. For the YIG films, we have found a significant increase in the magnon relaxation rate below 150 K—up to eight times the reference value at 340 K—in the entire range of probed wave numbers, which is in direct opposition to that in ultrapure YIG crystals. This increase is related to rare-earth impurities contaminating the YIG samples with a slight contribution caused by the coupling of spin waves to the spin system of the paramagnetic GGG substrate at the lowest temperatures.
Controlling Spin Coherence with Semiconductor Nanostructures
NASA Astrophysics Data System (ADS)
Awschalom, David D.
We present two emerging opportunities for manipulating and communicating coherent spin states in semiconductors. First, we show that semiconductor microcavities offer unique means of controlling light-matter interactions in confined geometries, resulting in a wide range of applications in optical communications and inspiring proposals for quantum information processing and computational schemes. Studies of spin dynamics in microcavities — a new and promising research field — have revealed novel effects such as polarization beats, stimulated spin scattering, and giant Faraday rotation. Here, we study the electron spin dynamics in optically-pumped GaAs microdisk lasers with quantum wells and interface-fluctuation quantum dots in the active region. In particular, we examine how the electron spin dynamics are modified by the stimulated emission in the disks, and observe an enhancement of the spin coherence time when the optical excitation is in resonance with a high quality (Q ~ 5000) lasing mode.1 This resonant enhancement, contrary to expectations from the observed trend in the carrier recombination time, is then manipulated by altering the cavity design and dimensions. In analogy to devices based on excitonic coherence, this ability to engineer coherent interactions between electron spins and photons may provide novel pathways towards spin dependent quantum optoelectronics. In a second example, the nitrogen-vacancy (N-V) center in diamond has garnered interest as a room-temperature solid-state system not only for exploring electronic and nuclear spin phenomena but also as a candidate for spin-based quantum information processing. Spin coherence times of up to 50 microseconds have been reported for ensembles of N-V centers and a two-qubit gate utilizing the electron spin of a N-V center and the nuclear spin of a nearby C-13 atom has been demonstrated. Here, we present experiments using angle-resolved magneto-photoluminescence microscopy to investigate anisotropic spin interactions of single N-V centers in diamond at room temperature.2 Negative peaks in the photoluminescence intensity are observed as a function of both magnetic field magnitude and angle, and can be explained by coherent spin precession and anisotropic relaxation at spin-level anticrossings. Additionally, precise field alignment with the symmetry axis of a single N-V center reveals the resonant magnetic dipolar coupling of a single "bright" electron spin of an N-V center to small numbers of "dark" spins of nitrogen defects in its immediate vicinity, which are otherwise undetected by photoluminescence. Most recently, we are exploring the possibility of utilizing this magnetic dipole coupling between bright and dark spins to couple two spatially separated single N-V center spins by means of intermediate nitrogen spins. Note from Publisher: This article contains the abstract only.
Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory.
Jobez, Pierre; Laplane, Cyril; Timoney, Nuala; Gisin, Nicolas; Ferrier, Alban; Goldner, Philippe; Afzelius, Mikael
2015-06-12
Long-lived quantum memories are essential components of a long-standing goal of remote distribution of entanglement in quantum networks. These can be realized by storing the quantum states of light as single-spin excitations in atomic ensembles. However, spin states are often subjected to different dephasing processes that limit the storage time, which in principle could be overcome using spin-echo techniques. Theoretical studies suggest this to be challenging due to unavoidable spontaneous emission noise in ensemble-based quantum memories. Here, we demonstrate spin-echo manipulation of a mean spin excitation of 1 in a large solid-state ensemble, generated through storage of a weak optical pulse. After a storage time of about 1 ms we optically read-out the spin excitation with a high signal-to-noise ratio. Our results pave the way for long-duration optical quantum storage using spin-echo techniques for any ensemble-based memory.
A tunable few electron triple quantum dot
NASA Astrophysics Data System (ADS)
Gaudreau, L.; Kam, A.; Granger, G.; Studenikin, S. A.; Zawadzki, P.; Sachrajda, A. S.
2009-11-01
In this paper, we report on a tunable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is important as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by complex charge transfer behavior.
Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain
NASA Astrophysics Data System (ADS)
Bulchandani, Vir B.; Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.
2018-01-01
Quantum integrable systems, such as the interacting Bose gas in one dimension and the XXZ quantum spin chain, have an extensive number of local conserved quantities that endow them with exotic thermalization and transport properties. We discuss recently introduced hydrodynamic approaches for such integrable systems from the viewpoint of kinetic theory and extend the previous works by proposing a numerical scheme to solve the hydrodynamic equations for finite times and arbitrary locally equilibrated initial conditions. We then discuss how such methods can be applied to describe nonequilibrium steady states involving ballistic heat and spin currents. In particular, we show that the spin Drude weight in the XXZ chain, previously accessible only by rigorous techniques of limited scope or controversial thermodynamic Bethe ansatz arguments, may be evaluated from hydrodynamics in very good agreement with density-matrix renormalization group calculations.
Quantum Anomalous Hall Effect in Low-buckled Honeycomb Lattice with In-plane Magnetization
NASA Astrophysics Data System (ADS)
Ren, Yafei; Pan, Hui; Yang, Fei; Li, Xin; Qiao, Zhenhua; Zhenhua Qiao's Group Team; Hui Pan's Group Team
With out-of-plane magnetization, the quantum anomalous Hall effect has been extensively studied in quantum wells and two-dimensional atomic crystal layers. Here, we investigate the possibility of realizing quantum anomalous Hall effect (QAHE) in honeycomb lattices with in-plane magnetization. We show that the QAHE can only occur in low-buckled honeycomb lattice where both intrinsic and intrinsic Rashba spin-orbit coupling appear spontaneously. The extrinsic Rashba spin-orbit coupling is detrimental to this phase. In contrast to the out-of-plane magnetization induced QAHE, the QAHE from in-plane magnetization is achieved in the vicinity of the time reversal symmetric momenta at M points rather than Dirac points. In monolayer case, the QAHE can be characterized by Chern number = +/- 1 whereas additional phases with Chern number = +/- 2 appear in chiral stacked bilayer system. The Chern number strongly depends on the orientation of the magnetization. The bilayer system also provides additional tunability via out-of-plane electric field, which can reduce the critical magnetization strength required to induce QAHE. It can also lead to topological phase transitions from = +/- 2 to +/- 1 and finally to 0 Equal contribution from Yafei Ren and Hui Pan.
Symmetry enriched U(1) quantum spin liquids
NASA Astrophysics Data System (ADS)
Zou, Liujun; Wang, Chong; Senthil, T.
2018-05-01
We classify and characterize three-dimensional U (1 ) quantum spin liquids [deconfined U (1 ) gauge theories] with global symmetries. These spin liquids have an emergent gapless photon and emergent electric/magnetic excitations (which we assume are gapped). We first discuss in great detail the case with time-reversal and SO(3 ) spin rotational symmetries. We find there are 15 distinct such quantum spin liquids based on the properties of bulk excitations. We show how to interpret them as gauged symmetry-protected topological states (SPTs). Some of these states possess fractional response to an external SO (3 ) gauge field, due to which we dub them "fractional topological paramagnets." We identify 11 other anomalous states that can be grouped into three anomaly classes. The classification is further refined by weakly coupling these quantum spin liquids to bosonic symmetry protected topological (SPT) phases with the same symmetry. This refinement does not modify the bulk excitation structure but modifies universal surface properties. Taking this refinement into account, we find there are 168 distinct such U (1 ) quantum spin liquids. After this warm-up, we provide a general framework to classify symmetry enriched U (1 ) quantum spin liquids for a large class of symmetries. As a more complex example, we discuss U (1 ) quantum spin liquids with time-reversal and Z2 symmetries in detail. Based on the properties of the bulk excitations, we find there are 38 distinct such spin liquids that are anomaly-free. There are also 37 anomalous U (1 ) quantum spin liquids with this symmetry. Finally, we briefly discuss the classification of U (1 ) quantum spin liquids enriched by some other symmetries.
Optically Driven Spin Based Quantum Dots for Quantum Computing - Research Area 6 Physics 6.3.2
2015-12-15
quantum dots (SAQD) in Schottky diodes . Based on spins in these dots, a scalable architecture has been proposed [Adv. in Physics, 59, 703 (2010)] by us...housed in two coupled quantum dots with tunneling between them, as described above, may not be scalable but can serve as a node in a quantum network. The... tunneling -coupled two-electron spin ground states in the vertically coupled quantum dots for “universal computation” two spin qubits within the universe of
Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator
NASA Astrophysics Data System (ADS)
Ovartchaiyapong, Preeti; Lee, Kenneth W.; Myers, Bryan A.; Jayich, Ania C. Bleszynski
2014-07-01
The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high-quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy centre spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen-vacancy centre. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen-vacancy ground-state spin. The nitrogen-vacancy centre is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 × 10-6 strain Hz-1/2. Finally, we show how this spin-resonator system could enable coherent spin-phonon interactions in the quantum regime.
Quantum approach of mesoscopic magnet dynamics with spin transfer torque
NASA Astrophysics Data System (ADS)
Wang, Yong; Sham, L. J.
2013-05-01
We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.
Voltage-selective bidirectional polarization and coherent rotation of nuclear spins in quantum dots.
Takahashi, R; Kono, K; Tarucha, S; Ono, K
2011-07-08
We propose and demonstrate that the nuclear spins of the host lattice in GaAs double quantum dots can be polarized in either of two opposite directions, parallel or antiparallel to an external magnetic field. The direction is selected by adjusting the dc voltage. This nuclear polarization manifests itself by repeated controlled electron-nuclear spin scattering in the Pauli spin-blockade state. Polarized nuclei are also controlled by means of nuclear magnetic resonance. This Letter confirms that the nuclear spins in quantum dots are long-lived quantum states with a coherence time of up to 1 ms, and may be a promising resource for quantum-information processing such as quantum memories for electron spin qubits.
Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.
De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa
2012-11-15
Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.
Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons
NASA Astrophysics Data System (ADS)
Koop, Cornelie; Wessel, Stefan
2017-10-01
We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.
NASA Astrophysics Data System (ADS)
Fawzy, Wafaa M.
2010-10-01
A FORTRAN code is developed for simulation and fitting the fine structure of a planar weakly-bonded open-shell complex that consists of a diatomic radical in a Σ3 electronic state and a diatomic or a polyatomic closed-shell molecule. The program sets up the proper total Hamiltonian matrix for a given J value and takes account of electron-spin-electron-spin, electron-spin rotation interactions, and the quartic and sextic centrifugal distortion terms within the complex. Also, R-dependence of electron-spin-electron-spin and electron-spin rotation couplings are considered. The code does not take account of effects of large-amplitude internal rotation of the diatomic radical within the complex. It is assumed that the complex has a well defined equilibrium geometry so that effects of large amplitude motion are negligible. Therefore, the computer code is suitable for a near-rigid rotor. Numerical diagonalization of the matrix provides the eigenvalues and the eigenfunctions that are necessary for calculating energy levels, frequencies, relative intensities of infrared or microwave transitions, and expectation values of the quantum numbers within the complex. Goodness of all the quantum numbers, with exception of J and parity, depends on relative sizes of the product of the rotational constants and quantum numbers (i.e. BJ, CJ, and AK), electron-spin-electron-spin, and electron-spin rotation couplings, as well as the geometry of the complex. Therefore, expectation values of the quantum numbers are calculated in the eigenfunctions basis of the complex. The computational time for the least squares fits has been significantly reduced by using the Hellman-Feynman theory for calculating the derivatives. The computer code is useful for analysis of high resolution infrared and microwave spectra of a planar near-rigid weakly-bonded open-shell complex that contains a diatomic fragment in a Σ3 electronic state and a closed-shell molecule. The computer program was successfully applied to analysis and fitting the observed high resolution infrared spectra of the O 2sbnd HF/O 2sbnd DF and O 2sbnd N 2O complexes. Test input file for simulation and fitting the high resolution infrared spectrum of the O 2sbnd DF complex is provided. Program summaryProgram title: TSIG_COMP Catalogue identifier: AEGM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 030 No. of bytes in distributed program, including test data, etc.: 51 663 Distribution format: tar.gz Programming language: Fortran 90, free format Computer: SGI Origin 3400, workstations and PCs Operating system: Linux, UNIX and Windows (see Restrictions below) RAM: Case dependent Classification: 16.2 Nature of problem: TSIG_COMP calculates frequencies, relative intensities, and expectation values of the various quantum numbers and parities of bound states involved in allowed ro-vibrational transitions in semi-rigid planar weakly-bonded open-shell complexes. The complexes of interest contain a free radical in a Σ3 state and a closed-shell partner, where the electron-spin-electron-spin interaction, electron-spin rotation interaction, and centrifugal forces significantly modify the spectral patterns. To date, ab initio methods are incapable of taking these effects into account to provide accurate predictions for the ro-vibrational energy levels of the complexes of interest. In the TSIG_COMP program, the problem is solved by using the proper effective Hamiltonian and molecular basis set. Solution method: The program uses a Hamiltonian operator that takes into account vibration, end-over-end rotation, electron-spin-electron-spin and electron-spin rotation interactions as well as the various centrifugal distortion terms. The Hamiltonian operator and the molecular basis set are used to set up the Hamiltonian matrix in the inertial axis system of the complex of interest. Diagonalization of the Hamiltonian matrix provides the eigenvalues and the eigenfunctions for the bound ro-vibrational states. These eigenvalues and eigenfunctions are used to calculate frequencies and relative intensities of the allowed infrared or microwave transitions as well as expectation values of all the quantum numbers and parities of states involved in the transitions. The program employs the method of least squares fits to fit the observed frequencies to the calculated frequencies to provide the molecular parameters that determine the geometry of the complex of interest. Restrictions: The number of transitions and parameters included in the fits is limited to 80 parameters and 200 transitions. However, these numbers can be increased by adjusting dimensions of the arrays (not recommended). Running the program under MS windows is recommended for simulations of any number of transitions and for fitting a relatively small number of parameters and transitions (maximum 15 parameters and 82 transitions), for fitting larger number of parameters run time error may occur. Because spectra of weakly bonded complexes are recorded at low temperatures, in most of cases fittings can be performed under MS windows. Running time: Problem-dependent. The provided test input for Linux fits 82 transitions and 21 parameters, the actual run time is 62 minutes. The provided test input file for MS windows fits 82 transitions and 15 parameters; the actual runtime is 5 minutes.
Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling
NASA Astrophysics Data System (ADS)
Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu
2018-04-01
In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.
Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K.
2016-07-25
The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots.more » This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.« less
Fine structure and optical pumping of spins in individual semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.
2008-11-01
We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.
Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru
Separate spin evolution quantum hydrodynamics is generalized to include the Coulomb exchange interaction, which is considered as interaction between the spin-down electrons being in quantum states occupied by one electron. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of concentration, spin polarization, and exchange interaction to the properties of the spin electron acoustic soliton are studied.
Entanglement of 3000 atoms by detecting one photon
NASA Astrophysics Data System (ADS)
Vuletic, Vladan
2016-05-01
Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. In particular, entangled states of many particles can be used to overcome limits on measurements performed with ensembles of independent atoms (standard quantum limit). Metrologically useful entangled states of large atomic ensembles (spin squeezed states) have been experimentally realized. These states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. We report the generation of entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, and verify an entanglement depth (the minimum number of mutually entangled atoms) that comprises 90% of the atomic ensemble containing 3100 atoms. Further technical improvement should allow the generation of more complex Schrödinger cat states, and of states the overcome the standard quantum limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliav, U., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il; Haimovich, A.; Goldbourt, A., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il
2016-01-14
We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling ofmore » the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental {sup 7}Li–{sup 13}C distances in a complex of lithium, glycine, and water. Discussion of the regime for which such an approach is valid is given.« less
NASA Astrophysics Data System (ADS)
Fu, Xi; Zhou, Guang-Hui
2009-02-01
We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density js,xiT and js,yiT (i = x, y, z). We find that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level as js,xxT and js,yyT. We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.
New quantum number for the many-electron Dirac-Coulomb Hamiltonian
NASA Astrophysics Data System (ADS)
Komorovsky, Stanislav; Repisky, Michal; Bučinský, Lukáš
2016-11-01
By breaking the spin symmetry in the relativistic domain, a powerful tool in physical sciences was lost. In this work, we examine an alternative of spin symmetry for systems described by the many-electron Dirac-Coulomb Hamiltonian. We show that the square of many-electron operator K+, defined as a sum of individual single-electron time-reversal (TR) operators, is a linear Hermitian operator which commutes with the Dirac-Coulomb Hamiltonian in a finite Fock subspace. In contrast to the square of a standard unitary many-electron TR operator K , the K+2 has a rich eigenspectrum having potential to substitute spin symmetry in the relativistic domain. We demonstrate that K+ is connected to K through an exponential mapping, in the same way as spin operators are mapped to the spin rotational group. Consequently, we call K+ the generator of the many-electron TR symmetry. By diagonalizing the operator K+2 in the basis of Kramers-restricted Slater determinants, we introduce the relativistic variant of configuration state functions (CSF), denoted as Kramers CSF. A new quantum number associated with K+2 has potential to be used in many areas, for instance, (a) to design effective spin Hamiltonians for electron spin resonance spectroscopy of heavy-element containing systems; (b) to increase efficiency of methods for the solution of many-electron problems in relativistic computational chemistry and physics; (c) to define Kramers contamination in unrestricted density functional and Hartree-Fock theory as a relativistic analog of the spin contamination in the nonrelativistic domain.
Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits
2009-04-29
bulk material and matches that in quantum wells. While these simple linear relationships hold for spin-polarized light-emitting diodes (spin-LEDs...temperature. The quantum efficiency and hence r| increases with decreasing temperature. The individual circuit elements, 33 therefore, exhibit the...Injection, Threshold Reduction and Output Circular Polarization Modulation in Quantum Well and Quantum Dot Semiconductor Spin Polarized Lasers working
Controlling the quantum dynamics of a mesoscopic spin bath in diamond
de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald
2012-01-01
Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing. PMID:22536480
Quantum memory operations in a flux qubit - spin ensemble hybrid system
NASA Astrophysics Data System (ADS)
Saito, S.; Zhu, X.; Amsuss, R.; Matsuzaki, Y.; Kakuyanagi, K.; Shimo-Oka, T.; Mizuochi, N.; Nemoto, K.; Munro, W. J.; Semba, K.
2014-03-01
Superconducting quantum bits (qubits) are one of the most promising candidates for a future large-scale quantum processor. However for larger scale realizations the currently reported coherence times of these macroscopic objects (superconducting qubits) has not yet reached those of microscopic systems (electron spins, nuclear spins, etc). In this context, a superconductor-spin ensemble hybrid system has attracted considerable attention. The spin ensemble could operate as a quantum memory for superconducting qubits. We have experimentally demonstrated quantum memory operations in a superconductor-diamond hybrid system. An excited state and a superposition state prepared in the flux qubit can be transferred to, stored in and retrieved from the NV spin ensemble in diamond. From these experiments, we have found the coherence time of the spin ensemble is limited by the inhomogeneous broadening of the electron spin (4.4 MHz) and by the hyperfine coupling to nitrogen nuclear spins (2.3 MHz). In the future, spin echo techniques could eliminate these effects and elongate the coherence time. Our results are a significant first step in utilizing the spin ensemble as long-lived quantum memory for superconducting flux qubits. This work was supported by the FIRST program and NICT.
Simple and Accurate Method for Central Spin Problems
NASA Astrophysics Data System (ADS)
Lindoy, Lachlan P.; Manolopoulos, David E.
2018-06-01
We describe a simple quantum mechanical method that can be used to obtain accurate numerical results over long timescales for the spin correlation tensor of an electron spin that is hyperfine coupled to a large number of nuclear spins. This method does not suffer from the statistical errors that accompany a Monte Carlo sampling of the exact eigenstates of the central spin Hamiltonian obtained from the algebraic Bethe ansatz, or from the growth of the truncation error with time in the time-dependent density matrix renormalization group (TDMRG) approach. As a result, it can be applied to larger central spin problems than the algebraic Bethe ansatz, and for longer times than the TDMRG algorithm. It is therefore an ideal method to use to solve central spin problems, and we expect that it will also prove useful for a variety of related problems that arise in a number of different research fields.
Generation of heralded entanglement between distant quantum dot hole spins
NASA Astrophysics Data System (ADS)
Delteil, Aymeric
Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. This work lays the groundwork for the realization of quantum repeaters and quantum networks on a chip.
Light-Induced Type-II Band Inversion and Quantum Anomalous Hall State in Monolayer FeSe
NASA Astrophysics Data System (ADS)
Wang, Z. F.; Liu, Zhao; Yang, Jinlong; Liu, Feng
2018-04-01
Coupling a quantum anomalous Hall (QAH) state with a superconducting state offers an attractive approach to detect the signature alluding to a topological superconducting state [Q. L. He et al., Science 357, 294 (2017), 10.1126/science.aag2792], but its explanation could be clouded by disorder effects in magnetic doped QAH materials. On the other hand, an antiferromagnetic (AFM) quantum spin Hall (QSH) state is identified in the well-known high-temperature 2D superconductor of monolayer FeSe [Z. F. Wang et al., Nat. Mater. 15, 968 (2016), 10.1038/nmat4686]. Here, we report a light-induced type-II band inversion (BI) and a QSH-to-QAH phase transition in the monolayer FeSe. Depending on the handedness of light, a spin-tunable QAH state with a high Chern number of ±2 is realized. In contrast to the conventional type-I BI resulting from intrinsic spin-orbital coupling (SOC), which inverts the band an odd number of times and respects time reversal symmetry, the type-II BI results from a light-induced handedness-dependent effective SOC, which inverts the band an even number of times and does not respect time reversal symmetry. The interplay between these two SOC terms makes the spin-up and -down bands of an AFM QSH state respond oppositely to a circularly polarized light, leading to the type-II BI and an exotic topological phase transition. Our finding affords an exciting opportunity to detect Majorana fermions in one single material without magnetic doping.
Superconductivity from a non-Fermi-liquid metal: Kondo fluctuation mechanism in slave-fermion theory
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok
2010-03-01
We propose Kondo fluctuation mechanism of superconductivity, differentiated from the spin-fluctuation theory as the standard model for unconventional superconductivity in the weak-coupling approach. Based on the U(1) slave-fermion representation of an effective Anderson lattice model, where localized spins are described by the Schwinger boson theory and hybridization or Kondo fluctuations weaken antiferromagnetic correlations of localized spins, we found an antiferromagnetic quantum critical point from an antiferromagnetic metal to a heavy-fermion metal in our recent study. The Kondo-induced antiferromagnetic quantum critical point was shown to be described by both conduction electrons and fermionic holons interacting with critical spin fluctuations given by deconfined bosonic spinons with a spin quantum number 1/2. Surprisingly, such critical modes turned out to be described by the dynamical exponent z=3 , giving rise to the well-known non-Fermi-liquid physics such as the divergent Grüneisen ratio with an exponent 2/3 and temperature-linear resistivity in three dimensions. We find that the z=3 antiferromagnetic quantum critical point becomes unstable against superconductivity, where critical spinon excitations give rise to pairing correlations between conduction electrons and between fermionic holons, respectively, via hybridization fluctuations. Such two kinds of pairing correlations result in multigap unconventional superconductivity around the antiferromagnetic quantum critical point of the slave-fermion theory, where s -wave pairing is not favored generically due to strong correlations. We show that the ratio between each superconducting gap for conduction electrons Δc and holons Δf and the transition temperature Tc is 2Δc/Tc˜9 and 2Δf/Tc˜O(10-1) , remarkably consistent with CeCoIn5 . A fingerprint of the Kondo mechanism is emergence of two kinds of resonance modes in not only spin but also charge fluctuations, where the charge resonance mode at an antiferromagnetic wave vector originates from d -wave pairing of spinless holons. We discuss how the Kondo fluctuation theory differs from the spin-fluctuation approach.
NASA Astrophysics Data System (ADS)
Wang, Chunguang
Integrable quantum spin chains have close connections to integrable quantum field. theories, modern condensed matter physics, string and Yang-Mills theories. Bethe. ansatz is one of the most important approaches for solving quantum integrable spin. chains. At the heart of the algebraic structure of integrable quantum spin chains is. the quantum Yang-Baxter equation and the boundary Yang-Baxter equation. This. thesis focuses on four topics in Bethe ansatz. The Bethe equations for the isotropic periodic spin-1/2 Heisenberg chain with N. sites have solutions containing ±i/2 that are singular: both the corresponding energy and the algebraic Bethe ansatz vector are divergent. Such solutions must be carefully regularized. We consider a regularization involving a parameter that can be. determined using a generalization of the Bethe equations. These generalized Bethe. equations provide a practical way of determining which singular solutions correspond. to eigenvectors of the model. The Bethe equations for the periodic XXX and XXZ spin chains admit singular. solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to bephysical, in which case they correspond to genuine eigenvalues and eigenvectors of. the Hamiltonian. We analyze the ground state of the open spin-1/2 isotropic quantum spin chain. with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots. split evenly into two sets: those that remain finite, and those that become infinite. We. argue that the former satisfy conventional Bethe equations, while the latter satisfy a. generalization of the Richardson-Gaudin equations. We derive an expression for the. leading correction to the boundary energy in terms of the boundary parameters. We argue that the Hamiltonians for A(2) 2n open quantum spin chains corresponding. to two choices of integrable boundary conditions have the symmetries Uq(Bn) and. Uq(Cn), respectively. The deformation of Cn is novel, with a nonstandard coproduct. We find a formula for the Dynkin labels of the Bethe states (which determine the degeneracies of the corresponding eigenvalues) in terms of the numbers of Bethe roots of. each type. With the help of this formula, we verify numerically (for a generic value of. the anisotropy parameter) that the degeneracies and multiplicities of the spectra implied by the quantum group symmetries are completely described by the Bethe ansatz.
Non-Abelian Geometric Phases Carried by the Quantum Noise Matrix
NASA Astrophysics Data System (ADS)
Bharath, H. M.; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael
2017-04-01
Topological phases of matter are characterized by topological order parameters that are built using Berry's geometric phase. Berry's phase is the geometric information stored in the overall phase of a quantum state. We show that geometric information is also stored in the second and higher order spin moments of a quantum spin system, captured by a non-abelian geometric phase. The quantum state of a spin-S system is uniquely characterized by its spin moments up to order 2S. The first-order spin moment is the spin vector, and the second-order spin moment represents the spin fluctuation tensor, i.e., the quantum noise matrix. When the spin vector is transported along a loop in the Bloch ball, we show that the quantum noise matrix picks up a geometric phase. Considering spin-1 systems, we formulate this geometric phase as an SO(3) operator. Geometric phases are usually interpreted in terms of the solid angle subtended by the loop at the center. However, solid angles are not well defined for loops that pass through the center. Here, we introduce a generalized solid angle which is well defined for all loops inside the Bloch ball, in terms of which, we interpret the SO(3) geometric phase. This geometric phase can be used to characterize topological spin textures in cold atomic clouds.
Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models
NASA Astrophysics Data System (ADS)
Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine
2016-06-01
Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.
Electron and Nuclear Spin Interactions in the Optical Spectra of Single GaAs Quantum Dots
2001-05-28
VOLUME 86, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 28 MAY 2001 5 Electron and Nuclear Spin Interactions in the Optical Spectra of Single...GaAs Quantum Dots D. Gammon, Al. L. Efros, T. A. Kennedy, M. Rosen, D. S . Katzer, and D. Park Naval Research Laboratory, Washington, D.C. 20375 S . W...Brown NIST, Gaithersburg, Maryland V. L. Korenev and I. A. Merkulov A. F. Ioffe Institute, St. Petersburg, Russia (Received 18 December 2000) Fine and
NASA Astrophysics Data System (ADS)
Chen, Jiahui; Zhou, Hui; Duan, Changkui; Peng, Xinhua
2017-03-01
Entanglement, a unique quantum resource with no classical counterpart, remains at the heart of quantum information. The Greenberger-Horne-Zeilinger (GHZ) and W states are two inequivalent classes of multipartite entangled states which cannot be transformed into each other by means of local operations and classic communication. In this paper, we present the methods to prepare the GHZ and W states via global controls on a long-range Ising spin model. For the GHZ state, general solutions are analytically obtained for an arbitrary-size spin system, while for the W state, we find a standard way to prepare the W state that is analytically illustrated in three- and four-spin systems and numerically demonstrated for larger-size systems. The number of parameters required in the numerical search increases only linearly with the size of the system.
The integrable quantum group invariant A2n-1(2) and Dn+1(2) open spin chains
NASA Astrophysics Data System (ADS)
Nepomechie, Rafael I.; Pimenta, Rodrigo A.; Retore, Ana L.
2017-11-01
A family of A2n(2) integrable open spin chains with Uq (Cn) symmetry was recently identified in arxiv:arXiv:1702.01482. We identify here in a similar way a family of A2n-1(2) integrable open spin chains with Uq (Dn) symmetry, and two families of Dn+1(2) integrable open spin chains with Uq (Bn) symmetry. We discuss the consequences of these symmetries for the degeneracies and multiplicities of the spectrum. We propose Bethe ansatz solutions for two of these models, whose completeness we check numerically for small values of n and chain length N. We find formulas for the Dynkin labels in terms of the numbers of Bethe roots of each type, which are useful for determining the corresponding degeneracies. In an appendix, we briefly consider Dn+1(2) chains with other integrable boundary conditions, which do not have quantum group symmetry.
Spin and topological order in a periodically driven spin chain
NASA Astrophysics Data System (ADS)
Russomanno, Angelo; Friedman, Bat-el; Dalla Torre, Emanuele G.
2017-07-01
The periodically driven quantum Ising chain has recently attracted a large attention in the context of Floquet engineering. In addition to the common paramagnet and ferromagnet, this driven model can give rise to new topological phases. In this work, we systematically explore its quantum phase diagram by examining the properties of its Floquet ground state. We specifically focus on driving protocols with time-reversal invariant points, and demonstrate the existence of an infinite number of distinct phases. These phases are separated by second-order quantum phase transitions, accompanied by continuous changes of local and string order parameters, as well as sudden changes of a topological winding number and of the number of protected edge states. When one of these phase transitions is adiabatically crossed, the correlator associated to the order parameter is nonvanishing over a length scale which shows a Kibble-Zurek scaling. In some phases, the Floquet ground state spontaneously breaks the discrete time-translation symmetry of the Hamiltonian. Our findings provide a better understanding of topological phases in periodically driven clean integrable models.
Nuclear spin nanomagnet in an optically excited quantum dot.
Korenev, V L
2007-12-21
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins-the nuclear spin nanomagnet.
Topological edge states in ultra thin Bi(110) puckered crystal lattice
NASA Astrophysics Data System (ADS)
Wang, Baokai; Hsu, Chuanghan; Chang, Guoqing; Lin, Hsin; Bansil, Arun
We discuss the electronic structure of a 2-ML Bi(110) film with a crystal structure similar to that of black phosphorene. In the absence of Spin-Orbit coupling (SOC), the film is found to be a semimetal with two kinds of Dirac cones, which are classified by their locations in the Brillouin zone. All Dirac nodes are protected by crystal symmetry and carry non-zero winding numbers. When considering ribbons, along specific directions, projections of Dirac nodes serve as starting or ending points of edge bands depending on the sign of their carried winding number. After the inclusion of the SOC, all Dirac nodes are gapped out. Correspondingly, the edge states connecting Dirac nodes split and cross each other, and thus form a Dirac node at the boundary of the 1D Brillouin zone, which suggests that the system is a Quantum Spin Hall insulator. The nontrivial Quantum Spin Hall phase is also confirmed by counting the product of parities of the occupied bands at time-reversal invariant points.
Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.
Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R
2014-08-01
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. Copyright © 2014, American Association for the Advancement of Science.
New 'phase' of quantum gravity.
Wang, Charles H-T
2006-12-15
The emergence of loop quantum gravity over the past two decades has stimulated a great resurgence of interest in unifying general relativity and quantum mechanics. Among a number of appealing features of this approach is the intuitive picture of quantum geometry using spin networks and powerful mathematical tools from gauge field theory. However, the present form of loop quantum gravity suffers from a quantum ambiguity, owing to the presence of a free (Barbero-Immirzi) parameter. Following the recent progress on conformal decomposition of gravitational fields, we present a new phase space for general relativity. In addition to spin-gauge symmetry, the new phase space also incorporates conformal symmetry making the description parameter free. The Barbero-Immirzi ambiguity is shown to occur only if the conformal symmetry is gauge fixed prior to quantization. By withholding its full symmetries, the new phase space offers a promising platform for the future development of loop quantum gravity. This paper aims to provide an exposition, at a reduced technical level, of the above theoretical advances and their background developments. Further details are referred to cited references.
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Deng, Fu-Guo
2014-12-01
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.
Wei, Hai-Rui; Deng, Fu-Guo
2014-12-18
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.
NASA Astrophysics Data System (ADS)
Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L.-M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.
2013-04-01
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot’s excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×103s-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J
2013-04-19
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
NASA Astrophysics Data System (ADS)
Chung, Chung-Hou; Sun, Shih-Jye; Chang, Yung-Yeh; Tsai, Wei-Feng; Zhang, Fuchun
Large Hubbard U limit of the Kane-Mele model on a zigzag ribbon of honeycomb lattice near half-filling is studied via a renormalized mean-field theory. The ground state exhibits time-reversal symmetry (TRS) breaking dx2 -y2 + idxy -wave superconductivity. At large spin-orbit coupling, the Z2 topological phase with non-trivial spin Chern number in the pure Kane-Mele model is persistent into the TRS broken state (called ``spin-Chern phase''), and has two pairs of counter-propagating helical Majorana modes at the edges. As the spin-orbit coupling is reduced, the system undergoes a topological quantum phase transition from the spin-Chern to chiral superconducting states. Possible relevance of our results to adatom-doped graphene and irridate compounds is discussed.Ref.:Shih-Jye Sun, Chung-Hou Chung, Yung-Yeh Chang, Wei-Feng Tsai, and Fu-Chun Zhang, arXiv:1506.02584. CHC acknowledges support from NSC Grant No. 98-2918-I-009-06, No. 98-2112-M-009-010-MY3, the NCTU-CTS, the MOE-ATU program, the NCTS of Taiwan, R.O.C.
Hydrodynamic description of spin Calogero-Sutherland model
NASA Astrophysics Data System (ADS)
Abanov, Alexander; Kulkarni, Manas; Franchini, Fabio
2009-03-01
We study a non-linear collective field theory for an integrable spin-Calogero-Sutherland model. The hydrodynamic description of this SU(2) model in terms of charge density, charge velocity and spin currents is used to study non-perturbative solutions (solitons) and examine their correspondence with known quantum numbers of elementary excitations [1]. A conventional linear bosonization or harmonic approximation is not sufficient to describe, for example, the physics of spin-charge (non)separation. Therefore, we need this new collective bosonic field description that captures the effects of the band curvature. In the strong coupling limit [2] this model reduces to integrable SU(2) Haldane-Shastry model. We study a non-linear coupling of left and right spin currents which form a Kac-Moody algebra. Our quantum hydrodynamic description for the spin case is an extension for the one found in the spinless version in [3].[3pt] [1] Y. Kato,T. Yamamoto, and M. Arikawa, J. Phys. Soc. Jpn. 66, 1954-1961 (1997).[0pt] [2] A. Polychronakos, Phys Rev Lett. 70,2329-2331(1993).[0pt] [3] A.G.Abanov and P.B. Wiegmann, Phys Rev Lett 95, 076402(2005)
Units of rotational information
NASA Astrophysics Data System (ADS)
Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping
2017-12-01
Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.
NASA Astrophysics Data System (ADS)
Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa
2014-03-01
The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.
High-fidelity projective read-out of a solid-state spin quantum register.
Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald
2011-09-21
Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved
Feynman propagator for spin foam quantum gravity.
Oriti, Daniele
2005-03-25
We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".
Informational correlation between two parties of a quantum system: spin-1/2 chains
NASA Astrophysics Data System (ADS)
Zenchuk, A. I.
2014-12-01
We introduce the informational correlation between two interacting quantum subsystems and of a quantum system as the number of arbitrary parameters of a unitary transformation (locally performed on the subsystem ) which may be detected in the subsystem by the local measurements. This quantity indicates whether the state of the subsystem may be effected by means of the unitary transformation applied to the subsystem . Emphasize that in general. The informational correlations in systems with tensor product initial states are studied in more details. In particular, it is shown that the informational correlation may be changed by the local unitary transformations of the subsystem . However, there is some non-reducible part of which may not be decreased by any unitary transformation of the subsystem at a fixed time instant . Two examples of the informational correlations between two parties of the four-node spin-1/2 chain with mixed initial states are studied. The long chains with a single initially excited spin (the pure initial state) are considered as well.
Toward Quantum Non-demolition of nitrogen-vacancy centers in diamond
NASA Astrophysics Data System (ADS)
Hodges, Jonathan; Jiang, Liang; Maze, Jeronimo; Lukin, Mikhail
2009-05-01
The nitrogen-vacancy color center (NVC) in diamond, which possesses a long-lived electronic spin (S=1) ground state with optical addressability, is a promising platform for quantum networks, single-photon sources, and nanoscale magnetometers. Here, we make use of a nuclear spin based quantum memory to demonstrate quantum non-demolition measurement of a solid-state spin qubit. By entangling the electron spin with a polarized carbon-13 spin (I=1/2) in the lattice, we have repeated optical measurement of the electron spin for the polarization lifetime of the nuclear spin. We show relative improvements in signal-to-noise of greater than 300%. These techniques can be used to improve the sensitivity of NVC magnetometers.
Majorana spin liquids, topology, and superconductivity in ladders
NASA Astrophysics Data System (ADS)
Le Hur, Karyn; Soret, Ariane; Yang, Fan
2017-11-01
We theoretically address spin chain analogs of the Kitaev quantum spin model on the honeycomb lattice. The emergent quantum spin-liquid phases or Anderson resonating valence-bond (RVB) states can be understood, as an effective model, in terms of p -wave superconductivity and Majorana fermions. We derive a generalized phase diagram for the two-leg ladder system with tunable interaction strengths between chains allowing us to vary the shape of the lattice (from square to honeycomb ribbon or brickwall ladder). We evaluate the winding number associated with possible emergent (topological) gapless modes at the edges. In the Az phase, as a result of the emergent Z2 gauge fields and π -flux ground state, one may build spin-1/2 (loop) qubit operators by analogy to the toric code. In addition, we show how the intermediate gapless B phase evolves in the generalized ladder model. For the brick-wall ladder, the B phase is reduced to one line, which is analyzed through perturbation theory in a rung tensor product states representation and bosonization. Finally, we show that doping with a few holes can result in the formation of hole pairs and leads to a mapping with the Su-Schrieffer-Heeger model in polyacetylene; a superconducting-insulating quantum phase transition for these hole pairs is accessible, as well as related topological properties.
Physical implementation of protected qubits
NASA Astrophysics Data System (ADS)
Douçot, B.; Ioffe, L. B.
2012-07-01
We review the general notion of topological protection of quantum states in spin models and its relation with the ideas of quantum error correction. We show that topological protection can be viewed as a Hamiltonian realization of error correction: for a quantum code for which the minimal number of errors that remain undetected is N, the corresponding Hamiltonian model of the effects of the environment noise appears only in the Nth order of the perturbation theory. We discuss the simplest model Hamiltonians that realize topological protection and their implementation in superconducting arrays. We focus on two dual realizations: in one the protected state is stored in the parity of the Cooper pair number, in the other, in the parity of the flux number. In both cases the superconducting arrays allow a number of fault-tolerant operations that should make the universal quantum computation possible.
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.
2017-02-01
These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for entanglement is also derived. Thus we show that spin squeezing becomes a rigorous test for entanglement in a system of massive bosons, when viewed as a test for entanglement between two modes. In addition, other previously proposed tests for entanglement involving spin operators are considered, including those based on the sum of the variances for two spin components. All of the tests are still valid when the present concept of entanglement based on the symmetrization and SSR criteria is applied. These tests also apply in cases of multi-mode entanglement, though with restrictions in the case of sub-systems each consisting of pairs of modes. Tests involving quantum correlation functions are also considered and for global SSR compliant states these are shown to be equivalent to tests involving spin operators. A new weak correlation test is derived for entanglement based on local SSR compliance for separable states, complementing the stronger correlation test obtained previously when this is ignored. The Bloch vector test is equivalent to one case of this weak correlation test. Quadrature squeezing for single modes is also examined but not found to yield a useful entanglement test, whereas two mode quadrature squeezing proves to be a valid entanglement test, though not as useful as the Bloch vector test. The various entanglement tests are considered for well-known entangled states, such as binomial states, relative phase eigenstates and NOON states—sometimes the new tests are satisfied while than those obtained in other papers are not. The present paper II then outlines the theory for a simple two mode interferometer showing that such an interferometer can be used to measure the mean values and covariance matrix for the spin operators involved in entanglement tests for the two mode bosonic system. The treatment is also generalized to cover multi-mode interferometry. The interferometer involves a pulsed classical field characterized by a phase variable and an area variable defined by the time integral of the field amplitude, and leads to a coupling between the two modes. For simplicity the center frequency was chosen to be resonant with the inter-mode transition frequency. Measuring the mean and variance of the population difference between the two modes for the output state of the interferometer for various choices of interferometer variables is shown to enable the mean values and covariance matrix for the spin operators for the input quantum state of the two mode system to be determined. The paper concludes with a discussion of several key experimental papers on spin squeezing.
Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.
Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir
2015-07-17
The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.
Tuning of few-electron states and optical absorption anisotropy in GaAs quantum rings.
Wu, Zhenhua; Li, Jian; Li, Jun; Yin, Huaxiang; Liu, Yu
2017-11-15
The electronic and optical properties of a GaAs quantum ring (QR) with few electrons in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI) have been investigated theoretically. The configuration interaction (CI) method is employed to calculate the eigenvalues and eigenstates of the multiple-electron QR accurately. Our numerical results demonstrate that the symmetry breaking induced by the RSOI and DSOI leads to an anisotropic distribution of multi-electron states. The Coulomb interaction offers additional modulation of the electron distribution and thus the optical absorption indices in the quantum rings. By tuning the magnetic/electric fields and/or electron numbers in a quantum ring, one can change its optical properties significantly. Our theory provides a new way to control the multi-electron states and optical properties of a QR by hybrid modulations or by electrical means only.
Dynamics for a 2-vertex quantum gravity model
NASA Astrophysics Data System (ADS)
Borja, Enrique F.; Díaz-Polo, Jacobo; Garay, Iñaki; Livine, Etera R.
2010-12-01
We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N)-invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.
High-fidelity spin entanglement using optimal control.
Dolde, Florian; Bergholm, Ville; Wang, Ya; Jakobi, Ingmar; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Neumann, Philipp; Schulte-Herbrüggen, Thomas; Biamonte, Jacob; Wrachtrup, Jörg
2014-02-28
Precise control of quantum systems is of fundamental importance in quantum information processing, quantum metrology and high-resolution spectroscopy. When scaling up quantum registers, several challenges arise: individual addressing of qubits while suppressing cross-talk, entangling distant nodes and decoupling unwanted interactions. Here we experimentally demonstrate optimal control of a prototype spin qubit system consisting of two proximal nitrogen-vacancy centres in diamond. Using engineered microwave pulses, we demonstrate single electron spin operations with a fidelity F≈0.99. With additional dynamical decoupling techniques, we further realize high-quality, on-demand entangled states between two electron spins with F>0.82, mostly limited by the coherence time and imperfect initialization. Crosstalk in a crowded spectrum and unwanted dipolar couplings are simultaneously eliminated to a high extent. Finally, by high-fidelity entanglement swapping to nuclear spin quantum memory, we demonstrate nuclear spin entanglement over a length scale of 25 nm. This experiment underlines the importance of optimal control for scalable room temperature spin-based quantum information devices.
Spin relaxation in semiconductor quantum rings and dots--a comparative study.
Zipper, Elżbieta; Kurpas, Marcin; Sadowski, Janusz; Maśka, Maciej M
2011-03-23
We calculate spin relaxation times due to spin-orbit-mediated electron-phonon interactions for experimentally accessible semiconductor quantum ring and dot architectures. We elucidate the differences between the two systems due to different confinement. The estimated relaxation times (at B = 1 T) are in the range between a few milliseconds to a few seconds. This high stability of spin in a quantum ring allows us to test it as a spin qubit. A brief discussion of quantum state manipulations with such a qubit is presented.
Undergraduate computational physics projects on quantum computing
NASA Astrophysics Data System (ADS)
Candela, D.
2015-08-01
Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.
Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet
Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale; ...
2016-10-03
The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less
Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale
The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chida, K.; Yamauchi, Y.; Arakawa, T.
2013-12-04
We performed the resistively-detected nuclear magnetic resonance (RDNMR) to study the electron spin polarization in the non-equilibrium quantum Hall regime. By measuring the Knight shift, we derive source-drain bias voltage dependence of the electron spin polarization in quantum wires. The electron spin polarization shows minimum value around the threshold voltage of the dynamic nuclear polarization.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Non-Markovian dynamics in chiral quantum networks with spins and photons
NASA Astrophysics Data System (ADS)
Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter
2016-06-01
We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.
Fast Single-Shot Hold Spin Readout in Double Quantum Dots
NASA Astrophysics Data System (ADS)
Bogan, Alexander; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry
Solid state spin qubits in quantum dots hold promise as scalable, high-density qubits in quantum information processing architectures. While much of the experimental investigation of these devices and their physics has focused on confined electron spins, hole spins in III-V semiconductors are attractive alternatives to electrons due to the reduced hyperfine coupling between the spin and the incoherent nuclear environment. In this talk, we will discuss a measurement protocol of the hole spin relaxation time T1 in a gated lateral GaAs double quantum dot tuned to the one and two-hole regimes, as well as a new technique for single-shot projective measurement of a single spin in tens of nanoseconds or less. The technique makes use of fast non-spin-conserving inter-dot transitions permitted by strong spin-orbit interactions for holes, as well as the latching of the charge state of the second quantum dot for enhanced sensitivity. This technique allows a direct measurement of the single spin relaxation time on time-scales set by physical device rather than by limitations of the measurement circuit.
Optical Control of a Nuclear Spin in Diamond
NASA Astrophysics Data System (ADS)
Levonian, David; Goldman, Michael; Degreve, Kristiaan; Choi, Soonwon; Markham, Matthew; Twitchen, Daniel; Lukin, Mikhail
2017-04-01
The nitrogen-vacancy (NV) center in diamond has emerged as a promising candidate for quantum information and quantum communication applications. The NV center's potential as a quantum register is due to the long coherence time of its spin-triplet electronic ground state, the optical addressability of its electronic transitions, and the presence of nearby ancillary nuclear spins. The NV center's electronic spin and nearby nuclear spins are most commonly manipulated using applied microwave and RF fields, but this approach would be difficult to scale up for use with an array of NV-based quantum registers. In this context, all-optical manipulation would be more scalable, technically simpler, and potentially faster. Although all-optical control of the electronic spin has been demonstrated, it is an outstanding problem for the nuclear spins. Here, we use an optical Raman scheme to implement nuclear spin-specific control of the electronic spin and coherent control of the 14N nuclear spin.
Ashbrook, Sharon E; Wimperis, Stephen
2009-11-21
Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and (27)Al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiyama, H., E-mail: kiyama@meso.t.u-tokyo.ac.jp; Fujita, T.; Teraoka, S.
2014-06-30
Spin filtering with electrically tunable efficiency is achieved for electron tunneling between a quantum dot and spin-resolved quantum Hall edge states by locally gating the two-dimensional electron gas (2DEG) leads near the tunnel junction to the dot. The local gating can change the potential gradient in the 2DEG and consequently the edge state separation. We use this technique to electrically control the ratio of the dot–edge state tunnel coupling between opposite spins and finally increase spin filtering efficiency up to 91%, the highest ever reported, by optimizing the local gating.
Spin-dependent tunneling recombination in heterostructures with a magnetic layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, K. S., E-mail: denisokonstantin@gmail.com; Rozhansky, I. V.; Averkiev, N. S.
We propose a mechanism for the generation of spin polarization in semiconductor heterostructures with a quantum well and a magnetic impurity layer spatially separated from it. The spin polarization of carriers in a quantum well originates from spin-dependent tunneling recombination at impurity states in the magnetic layer, which is accompanied by a fast linear increase in the degree of circular polarization of photoluminescence from the quantum well. Two situations are theoretically considered. In the first case, resonant tunneling to the spin-split sublevels of the impurity center occurs and spin polarization is caused by different populations of resonance levels in themore » quantum well for opposite spin projections. In the second, nonresonant case, the spin-split impurity level lies above the occupied states of electrons in the quantum well and plays the role of an intermediate state in the two-stage coherent spin-dependent recombination of an electron from the quantum well and a hole in the impurity layer. The developed theory allows us to explain both qualitatively and quantitatively the kinetics of photoexcited electrons in experiments with photoluminescence with time resolution in Mn-doped InGaAs heterostructures.« less
Entanglement in a solid-state spin ensemble.
Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L
2011-02-03
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz’menkov, L.S., E-mail: lsk@phys.msu.ru
We consider quantum plasmas of electrons and motionless ions. We describe separate evolution of spin-up and spin-down electrons. We present corresponding set of quantum hydrodynamic equations. We assume that plasmas are placed in an uniform external magnetic field. We account different occupation of spin-up and spin-down quantum states in equilibrium degenerate plasmas. This effect is included via equations of state for pressure of each species of electrons. We study oblique propagation of longitudinal waves. We show that instead of two well-known waves (the Langmuir wave and the Trivelpiece–Gould wave), plasmas reveal four wave solutions. New solutions exist due to bothmore » the separate consideration of spin-up and spin-down electrons and different occupation of spin-up and spin-down quantum states in equilibrium state of degenerate plasmas.« less
Thermal Quantum Discord and Super Quantum Discord Teleportation Via a Two-Qubit Spin-Squeezing Model
NASA Astrophysics Data System (ADS)
Ahadpour, S.; Mirmasoudi, F.
2018-04-01
We study thermal quantum correlations (quantum discord and super quantum discord) in a two-spin model in an external magnetic field and obtain relations between them and entanglement. We study their dependence on the magnetic field, the strength of the spin squeezing, and the temperature in detail. One interesting result is that when the entanglement suddenly disappears, quantum correlations still survive. We study thermal quantum teleportation in the framework of this model. The main goal is investigating the possibility of increasing the thermal quantum correlations of a teleported state in the presence of a magnetic field, strength of the spin squeezing, and temperature. We note that teleportation of quantum discord and super quantum discord can be realized over a larger temperature range than teleportation of entanglement. Our results show that quantum discord and super quantum discord can be a suitable measure for controlling quantum teleportation with fidelity. Moreover, the presence of entangled states is unnecessary for the exchange of quantum information.
Coherent spin control of a nanocavity-enhanced qubit in diamond
Li, Luozhou; Lu, Ming; Schroder, Tim; ...
2015-01-28
A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy nanocavity systems in strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interfacemore » is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.« less
NASA Astrophysics Data System (ADS)
Schaibley, John; Burgers, Alex; McCracken, Greg; Duan, Luming; Berman, Paul; Steel, Duncan; Bracker, Allan; Gammon, Daniel; Sham, Lu
2013-03-01
A single electron spin confined to a single InAs quantum dot (QD) can serve as a qubit for quantum information processing. By utilizing the QD's optically excited trion states in the presence of an externally applied magnetic field, the QD spin can be rapidly initialized, manipulated and read out. A key resource for quantum information is the ability to entangle distinct QD spins. One approach relies on intermediate spin-photon entanglement to mediate the entanglement between distant QD spin qubits. We report a demonstration of quantum entanglement between a photon's polarization state and the spin state of a single electron confined to a single QD. Here, the photon is spontaneously emitted from one of the QD's trion states. The emitted photon's polarization along the detection axis is entangled with the resulting spin state of the QD. By performing projective measurements on the photon's polarization state and correlating these measurements with the state of the QD spin in two different bases, we obtain a lower bound on the entanglement fidelity of 0.59 (after background correction). The fidelity bound is limited almost entirely by the timing resolution of our single photon detector. The spin-photon entanglement generation rate is 3 ×103 s-1. Supported by: NSF, MURI, AFOSR, DARPA, ARO.
Blok, M S; Kalb, N; Reiserer, A; Taminiau, T H; Hanson, R
2015-01-01
Single defect centers in diamond have emerged as a powerful platform for quantum optics experiments and quantum information processing tasks. Connecting spatially separated nodes via optical photons into a quantum network will enable distributed quantum computing and long-range quantum communication. Initial experiments on trapped atoms and ions as well as defects in diamond have demonstrated entanglement between two nodes over several meters. To realize multi-node networks, additional quantum bit systems that store quantum states while new entanglement links are established are highly desirable. Such memories allow for entanglement distillation, purification and quantum repeater protocols that extend the size, speed and distance of the network. However, to be effective, the memory must be robust against the entanglement generation protocol, which typically must be repeated many times. Here we evaluate the prospects of using carbon nuclear spins in diamond as quantum memories that are compatible with quantum networks based on single nitrogen vacancy (NV) defects in diamond. We present a theoretical framework to describe the dephasing of the nuclear spins under repeated generation of NV spin-photon entanglement and show that quantum states can be stored during hundreds of repetitions using typical experimental coupling parameters. This result demonstrates that nuclear spins with weak hyperfine couplings are promising quantum memories for quantum networks.
Sudden transition and sudden change from open spin environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zheng-Da; School of Science, Jiangnan University, Wuxi 214122; Xu, Jing-Bo, E-mail: xujb@zju.edu.cn
2014-11-15
We investigate the necessary conditions for the existence of sudden transition or sudden change phenomenon for appropriate initial states under dephasing. As illustrative examples, we study the behaviors of quantum correlation dynamics of two noninteracting qubits in independent and common open spin environments, respectively. For the independent environments case, we find that the quantum correlation dynamics is closely related to the Loschmidt echo and the dynamics exhibits a sudden transition from classical to quantum correlation decay. It is also shown that the sudden change phenomenon may occur for the common environment case and stationary quantum discord is found at themore » high temperature region of the environment. Finally, we investigate the quantum criticality of the open spin environment by exploring the probability distribution of the Loschmidt echo and the scaling transformation behavior of quantum discord, respectively. - Highlights: • Sudden transition or sudden change from open spin baths are studied. • Quantum discord is related to the Loschmidt echo in independent open spin baths. • Steady quantum discord is found in a common open spin bath. • The probability distribution of the Loschmidt echo is analyzed. • The scaling transformation behavior of quantum discord is displayed.« less
Observation of entanglement between a quantum dot spin and a single photon.
Gao, W B; Fallahi, P; Togan, E; Miguel-Sanchez, J; Imamoglu, A
2012-11-15
Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.
New Spin Foam Models of Quantum Gravity
NASA Astrophysics Data System (ADS)
Miković, A.
We give a brief and a critical review of the Barret-Crane spin foam models of quantum gravity. Then we describe two new spin foam models which are obtained by direct quantization of General Relativity and do not have some of the drawbacks of the Barret-Crane models. These are the model of spin foam invariants for the embedded spin networks in loop quantum gravity and the spin foam model based on the integration of the tetrads in the path integral for the Palatini action.
NASA Astrophysics Data System (ADS)
Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa
2014-10-01
We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.
Quantum teleportation from a propagating photon to a solid-state spin qubit
NASA Astrophysics Data System (ADS)
Gao, W. B.; Fallahi, P.; Togan, E.; Delteil, A.; Chin, Y. S.; Miguel-Sanchez, J.; Imamoğlu, A.
2013-11-01
A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.
Quantum teleportation from a propagating photon to a solid-state spin qubit.
Gao, W B; Fallahi, P; Togan, E; Delteil, A; Chin, Y S; Miguel-Sanchez, J; Imamoğlu, A
2013-01-01
A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.
Spin Lifetimes in III-V Semiconductor Heterostructures Originating from Zincblende Symmetry
NASA Astrophysics Data System (ADS)
Lau, Wayne; Olesberg, Jon; Flatté, Michael
2000-03-01
Electron spin relaxation in zincblende type semiconductors at room temperature is dominated by the D'yakonov-Perel' mechanism (DP), which is a direct result of the spin splitting of the conduction band due to the bulk inversion asymmetry (BIA) of zincblende materials. To accurately describe the DP spin relaxation mechanism in quantum wells we employ a heterostructure model based on a fourteen bulk band basis, which accounts for the zincblende symmetry of the heterostructure constituents. Electron spin lifetimes are calculated for 75Å n-doped GaAs/Al_0.4Ga_0.6As quantum wells at room temperature. Excellent agreement between theory and experiments is found. In contrast, the calculated spin lifetimes based on the D'yakonov-Kachorovskii theory are an order magnitude shorter than the experimental values. The spin splitting and spin lifetime in no common atom In_0.53Ga_0.47As/InP quantum wells are also investigated. The contribution to the conduction subband spin splitting is dominated by the native interface asymmetry (NIA) mechanism for thin quantum wells; while the spin splitting is governed by the BIA mechanism for thick quantum wells. We find that BIA provides a satisfactory explanation for the spin lifetime measured in an In_0.53Ga_0.47As/InP quantum well with a 97Å barrier and a 70Å well at room temperature.
NASA Astrophysics Data System (ADS)
Sameer, M. Ikhdair; Majid, Hamzavi
2013-04-01
Approximate analytical bound-state solutions of the Dirac particle in the fields of attractive and repulsive Rosen—Morse (RM) potentials including the Coulomb-like tensor (CLT) potential are obtained for arbitrary spin-orbit quantum number κ. The Pekeris approximation is used to deal with the spin-orbit coupling terms κ (κ± 1)r-2. In the presence of exact spin and pseudospin (p-spin) symmetries, the energy eigenvalues and the corresponding normalized two-component wave functions are found by using the parametric generalization of the Nikiforov—Uvarov (NU) method. The numerical results show that the CLT interaction removes degeneracies between the spin and p-spin state doublets.
Coherent spin-exchange via a quantum mediator.
Baart, Timothy Alexander; Fujita, Takafumi; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven Mark Koenraad
2017-01-01
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.
Loop-gap microwave resonator for hybrid quantum systems
NASA Astrophysics Data System (ADS)
Ball, Jason R.; Yamashiro, Yu; Sumiya, Hitoshi; Onoda, Shinobu; Ohshima, Takeshi; Isoya, Junichi; Konstantinov, Denis; Kubo, Yuimaru
2018-05-01
We designed a loop-gap microwave resonator for applications of spin-based hybrid quantum systems and tested it with impurity spins in diamond. Strong coupling with ensembles of nitrogen-vacancy (NV) centers and substitutional nitrogen (P1) centers was observed. These results show that loop-gap resonators are viable in the prospect of spin-based hybrid quantum systems, especially for an ensemble quantum memory or a quantum transducer.
Dissipationless transport of spin-polarized electrons and Cooper pairs in an electron waveguide
NASA Astrophysics Data System (ADS)
Levy, J.; Annadi, A.; Lu, S.; Cheng, G.; Tylan-Tyler, A.; Briggeman, M.; Tomczyk, M.; Huang, M.; Pekker, D.; Irvin, P.; Lee, H.; Lee, J.-W.; Eom, C.-B.
Electron systems undergo profound changes in their behavior when constrained to move along a single axis. To date, clean one-dimensional (1D) electron transport has only been observed in carbon-based nanotubes and nanoribbons, and compound semiconductor nanowires. Complex-oxide heterostructures can possess conductive two-dimensional (2D) interfaces with much richer chemistries and properties, e.g., superconductivity, but with mobilities that appear to preclude ballistic transport in 1D. Here we show that nearly ideal 1D electron waveguides exhibiting ballistic transport of electrons and non-superconducting Cooper pairs can be formed at the interface between the two band insulators LaAlO3 and SrTiO3. The electron waveguides possess gate and magnetic-field selectable spin and charge degrees of freedom, and can be tuned to the one-dimensional limit of a single spin-polarized quantum channel. The strong attractive electron-electron interactions enable a new mode of dissipationless transport of electron pairs that is not superconducting. The selectable spin and subband quantum numbers of these electron waveguides may be useful for quantum simulation, quantum informatio We gratefully acknowledge financial support from ONR N00014-15-1-2847 (JL), AFOSR (FA9550-15-1-0334 (CBE) and FA9550-12-1-0057 (JL, CBE)), AOARD FA2386-15-1-4046 (CBE) and NSF (DMR-1104191 (JL), DMR-1124131 (CBE, JL) and DMR-1234096 (CBE)).
Classification and properties of quantum spin liquids on the hyperhoneycomb lattice
NASA Astrophysics Data System (ADS)
Huang, Biao; Choi, Wonjune; Kim, Yong Baek; Lu, Yuan-Ming
2018-05-01
The family of "Kitaev materials" provides an ideal platform to study quantum spin liquids and their neighboring magnetic orders. Motivated by the possibility of a quantum spin liquid ground state in pressurized hyperhoneycomb iridate β -Li2IrO3 , we systematically classify and study symmetric quantum spin liquids on the hyperhoneycomb lattice, using the Abrikosov-fermion representation. Among the 176 symmetric U (1 ) spin liquids (and 160 Z2 spin liquids), we identify eight "root" U (1 ) spin liquids in proximity to the ground state of the solvable Kitave model on the hyperhonecyomb lattice. These eight states are promising candidates for possible U (1 ) spin liquid ground states in pressurized β -Li2IrO3 . We further discuss physical properties of these eight U (1 ) spin liquid candidates, and show that they all support nodal-line-shaped spinon Fermi surfaces.
Electron spin resonance and spin-valley physics in a silicon double quantum dot.
Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen
2014-05-14
Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.
Effect of quantum tunneling on spin Hall magnetoresistance
NASA Astrophysics Data System (ADS)
Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk
2017-02-01
We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.
Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene
NASA Astrophysics Data System (ADS)
Ferreira, Aires; Milletari, Mirco
Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).
Approximation method for a spherical bound system in the quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehramiz, A.; Sobhanian, S.; Mahmoodi, J.
2010-08-15
A system of quantum hydrodynamic equations has been used for investigating the dielectric tensor and dispersion equation of a semiconductor as a quantum magnetized plasma. Dispersion relations and their modifications due to quantum effects are derived for both longitudinal and transverse waves. The number of states and energy levels are analytically estimated for a spherical bound system embedded in a semiconductor quantum plasma. The results show that longitudinal waves decay rapidly and do not interact with the spherical bound system. The energy shifts caused by the spin-orbit interaction and the Zeeman effect are calculated.
Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2007-12-01
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.
Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots
NASA Astrophysics Data System (ADS)
Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus
2005-01-01
We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.
NASA Astrophysics Data System (ADS)
Abanov, Ar.; Chubukov, Andrey V.; Schmalian, J.
2003-03-01
We present the full analysis of the normal state properties of the spin-fermion model near the antiferromagnetic instability in two dimensions. The model describes low-energy fermions interacting with their own collective spin fluctuations, which soften at the antiferromagnetic transition. We argue that in 2D, the system has two typical energies-an effective spin-fermion interaction bar g and an energy ysf below which the system behaves as a Fermi liquid. The ratio of the two determines the dimensionless coupling constant for spin-fermion interaction lambda (2) alpha /line g /omega _{sf} . We show that u scales with the spin correlation length and diverges at criticality. This divergence implies that the conventional perturbative expansion breaks down. We develop a novel approach to the problem-the expansion in either the inverse number of hot spots in the Brillouin zone, or the inverse number of fermionic flavours-which allows us to explicitly account for all terms which diverge as powers of u, and treat the remaining, O(logu) terms in the RG formalism. We apply this technique to study the properties of the spin-fermion model in various frequency and temperature regimes. We present the results for the fermionic spectral function, spin susceptibility, optical conductivity and other observables. We compare our results in detail with the normal state data for the cuprates, and argue that the spin-fermion model is capable of explaining the anomalous normal state properties of the high Tc materials. We also show that the conventional Ӓ theory of the quantum-critical behaviour is inapplicable in 2D due to the singularity of the Ӓ vertex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunakov, V. E.; Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Lyubashevsky, D. E.
2016-05-15
It is shown that A. Bohr’s classic theory of angular distributions of fragments originating from low-energy fission should be supplemented with quantum corrections based on the involvement of a superposition of a very large number of angular momenta L{sub m} in the description of the relative motion of fragments flying apart along the straight line coincidentwith the symmetry axis. It is revealed that quantum zero-point wriggling-type vibrations of the fissile system in the vicinity of its scission point are a source of these angular momenta and of high fragment spins observed experimentally.
Area law violations and quantum phase transitions in modified Motzkin walk spin chains
NASA Astrophysics Data System (ADS)
Sugino, Fumihiko; Padmanabhan, Pramod
2018-01-01
Area law violations for entanglement entropy in the form of a square root have recently been studied for one-dimensional frustration-free quantum systems based on the Motzkin walks and their variations. Here we consider a Motzkin walk with a different Hilbert space on each step of the walk spanned by the elements of a symmetric inverse semigroup with the direction of each step governed by its algebraic structure. This change alters the number of paths allowed in the Motzkin walk and introduces a ground state degeneracy that is sensitive to boundary perturbations. We study the frustration-free spin chains based on three symmetric inverse semigroups, \
Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin
NASA Astrophysics Data System (ADS)
He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven
2017-08-01
Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.
A 2D Array of 100's of Ions for Quantum Simulation and Many-Body Physics in a Penning Trap
NASA Astrophysics Data System (ADS)
Bohnet, Justin; Sawyer, Brian; Britton, Joseph; Bollinger, John
2015-05-01
Quantum simulations promise to reveal new materials and phenomena for experimental study, but few systems have demonstrated the capability to control ensembles in which quantum effects cannot be directly computed. One possible platform for intractable quantum simulations may be a system of 100's of 9Be+ ions in a Penning trap, where the valence electron spins are coupled with an effective Ising interaction in a 2D geometry. Here we report on results from a new Penning trap designed for 2D quantum simulations. We characterize the ion crystal stability and describe progress towards bench-marking quantum effects of the spin-spin coupling using a spin-squeezing witness. We also report on the successful photodissociation of BeH+ contaminant molecular ions that impede the use of such crystals for quantum simulation. This work lays the foundation for future experiments such as the observation of spin dynamics under the quantum Ising Hamiltonian with a transverse field. Supported by a NIST-NRC Research Associateship.
Scheme for Quantum Computing Immune to Decoherence
NASA Technical Reports Server (NTRS)
Williams, Colin; Vatan, Farrokh
2008-01-01
A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.
Spin-based quantum computation in multielectron quantum dots
NASA Astrophysics Data System (ADS)
Hu, Xuedong; Das Sarma, S.
2001-10-01
In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.
Spin fine structure of optically excited quantum dot molecules
NASA Astrophysics Data System (ADS)
Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.
2007-06-01
The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.
Storage and retrieval of quantum information with a hybrid optomechanics-spin system
NASA Astrophysics Data System (ADS)
Feng, Zhi-Bo; Zhang, Jian-Qi; Yang, Wan-Li; Feng, Mang
2016-08-01
We explore an efficient scheme for transferring the quantum state between an optomechanical cavity and an electron spin of diamond nitrogen-vacancy center. Assisted by a mechanical resonator, quantum information can be controllably stored (retrieved) into (from) the electron spin by adjusting the external field-induced detuning or coupling. Our scheme connects effectively the cavity photon and the electron spin and transfers quantum states between two regimes with large frequency difference. The experimental feasibility of our protocol is justified with accessible laboratory parameters.
N-scaling of timescales in long-range N-body quantum systems
NASA Astrophysics Data System (ADS)
Kastner, Michael
2017-01-01
Long-range interacting many-body systems exhibit a number of peculiar and intriguing properties. One of those is the scaling of relaxation times with the number N of particles in a system. In this paper I give a survey of results on long-range quantum spin models that illustrate this scaling behaviour, and provide indications for its common occurrence by making use of Lieb-Robinson bounds. I argue that these findings may help in understanding the extraordinarily short equilibration timescales predicted by typicality techniques.
On the semi-classical limit of scalar products of the XXZ spin chain
NASA Astrophysics Data System (ADS)
Jiang, Yunfeng; Brunekreef, Joren
2017-03-01
We study the scalar products between Bethe states in the XXZ spin chain with anisotropy |Δ| > 1 in the semi-classical limit where the length of the spin chain and the number of magnons tend to infinity with their ratio kept finite and fixed. Our method is a natural yet non-trivial generalization of similar methods developed for the XXX spin chain. The final result can be written in a compact form as a contour integral in terms of Faddeev's quantum dilogarithm function, which in the isotropic limit reduces to the classical dilogarithm function.
Wójcik, Paweł; Adamowski, Janusz
2017-01-01
The spin filtering effect in the bilayer nanowire with quantum point contact is investigated theoretically. We demonstrate the new mechanism of the spin filtering based on the lateral inter-subband spin-orbit coupling, which for the bilayer nanowires has been reported to be strong. The proposed spin filtering effect is explained as the joint effect of the Landau-Zener intersubband transitions caused by the hybridization of states with opposite spin (due to the lateral Rashba SO interaction) and the confinement of carriers in the quantum point contact region. PMID:28358141
Global constraints on Z2 fluxes in two different anisotropic limits of a hypernonagon Kitaev model
NASA Astrophysics Data System (ADS)
Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi
2018-05-01
The Kitaev model is an exactly-soluble quantum spin model, whose ground state provides a canonical example of a quantum spin liquid. Spin excitations from the ground state are fractionalized into emergent matter fermions and Z2 fluxes. The Z2 flux excitation is pointlike in two dimensions, while it comprises a closed loop in three dimensions because of the local constraint for each closed volume. In addition, the fluxes obey global constraints involving (semi)macroscopic number of fluxes. We here investigate such global constraints in the Kitaev model on a three-dimensional lattice composed of nine-site elementary loops, dubbed the hypernonagon lattice, whose ground state is a chiral spin liquid. We consider two different anisotropic limits of the hypernonagon Kitaev model where the low-energy effective models are described solely by the Z2 fluxes. We show that there are two kinds of global constraints in the model defined on a three-dimensional torus, namely, surface and volume constraints: the surface constraint is imposed on the even-odd parity of the total number of fluxes threading a two-dimensional slice of the system, while the volume constraint is for the even-odd parity of the number of the fluxes through specific plaquettes whose total number is proportional to the system volume. In the two anisotropic limits, therefore, the elementary excitation of Z2 fluxes occurs in a pair of closed loops so as to satisfy both two global constraints as well as the local constraints.
Noise-Resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins.
Casanova, J; Wang, Z-Y; Plenio, M B
2016-09-23
Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid-state systems. Here we present a protocol that achieves a complete set of selective electron-nuclear gates and single nuclear rotations in such an ensemble in diamond facilitated by a nearby nitrogen-vacancy (NV) center. The protocol suppresses internuclear interactions as well as unwanted coupling between the NV center and other spins of the ensemble to achieve quantum gate fidelities well exceeding 99%. Notably, our method can be applied to weakly coupled, distant spins representing a scalable procedure that exploits the exceptional properties of nuclear spins in diamond as robust quantum memories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafuente-Sampietro, A.; CNRS, Institut Néel, F-38000 Grenoble; Institute of Materials Science, University of Tsukuba, 305-8573 Tsukuba
We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Crmore » interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.« less
Strong spin-photon coupling in silicon
NASA Astrophysics Data System (ADS)
Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.
2018-03-01
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.
Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D
2015-11-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.
Quantum Rotational Effects in Nanomagnetic Systems
NASA Astrophysics Data System (ADS)
O'Keeffe, Michael F.
Quantum tunneling of the magnetic moment in a nanomagnet must conserve the total angular momentum. For a nanomagnet embedded in a rigid body, reversal of the magnetic moment will cause the body to rotate as a whole. When embedded in an elastic environment, tunneling of the magnetic moment will cause local elastic twists of the crystal structure. In this thesis, I will present a theoretical study of the interplay between magnetization and rotations in a variety of nanomagnetic systems which have some degree of rotational freedom. We investigate the effect of rotational freedom on the tunnel splitting of a nanomagnet which is free to rotate about its easy axis. Calculating the exact instanton of the coupled equations of motion shows that mechanical freedom of the particle renormalizes the easy axis anisotropy, increasing the tunnel splitting. To understand magnetization dynamics in free particles, we study a quantum mechanical model of a tunneling spin embedded in a rigid rotor. The exact energy levels for a symmetric rotor exhibit first and second order quantum phase transitions between states with different values the magnetic moment. A quantum phase diagram is obtained in which the magnetic moment depends strongly on the moments of inertia. An intrinsic contribution to decoherence of current oscillations of a flux qubit must come from the angular momentum it transfers to the surrounding body. Within exactly solvable models of a qubit embedded in a rigid body and an elastic medium, we show that slow decoherence is permitted if the solid is macroscopically large. The spin-boson model is one of the simplest representations of a two-level system interacting with a quantum harmonic oscillator, yet has eluded a closed-form solution. I investigate some possible approaches to understanding its spectrum. The Landau-Zener dynamics of a tunneling spin coupled to a torsional resonator show that for certain parameter ranges the system exhibits multiple Landau-Zener transitions. These transitions coincide in time with changes in the oscillator dynamics. A large number of spins on a single oscillator coupled only through the in-phase oscillations behaves as a single large spin, greatly enhancing the spin-phonon coupling.
Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance.
Jiang, Min; Wu, Teng; Blanchard, John W; Feng, Guanru; Peng, Xinhua; Budker, Dmitry
2018-06-01
Demonstration of coherent control and characterization of the control fidelity is important for the development of quantum architectures such as nuclear magnetic resonance (NMR). We introduce an experimental approach to realize universal quantum control, and benchmarking thereof, in zero-field NMR, an analog of conventional high-field NMR that features less-constrained spin dynamics. We design a composite pulse technique for both arbitrary one-spin rotations and a two-spin controlled-not (CNOT) gate in a heteronuclear two-spin system at zero field, which experimentally demonstrates universal quantum control in such a system. Moreover, using quantum information-inspired randomized benchmarking and partial quantum process tomography, we evaluate the quality of the control, achieving single-spin control for 13 C with an average fidelity of 0.9960(2) and two-spin control via a CNOT gate with a fidelity of 0.9877(2). Our method can also be extended to more general multispin heteronuclear systems at zero field. The realization of universal quantum control in zero-field NMR is important for quantum state/coherence preparation, pulse sequence design, and is an essential step toward applications to materials science, chemical analysis, and fundamental physics.
Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance
Feng, Guanru
2018-01-01
Demonstration of coherent control and characterization of the control fidelity is important for the development of quantum architectures such as nuclear magnetic resonance (NMR). We introduce an experimental approach to realize universal quantum control, and benchmarking thereof, in zero-field NMR, an analog of conventional high-field NMR that features less-constrained spin dynamics. We design a composite pulse technique for both arbitrary one-spin rotations and a two-spin controlled-not (CNOT) gate in a heteronuclear two-spin system at zero field, which experimentally demonstrates universal quantum control in such a system. Moreover, using quantum information–inspired randomized benchmarking and partial quantum process tomography, we evaluate the quality of the control, achieving single-spin control for 13C with an average fidelity of 0.9960(2) and two-spin control via a CNOT gate with a fidelity of 0.9877(2). Our method can also be extended to more general multispin heteronuclear systems at zero field. The realization of universal quantum control in zero-field NMR is important for quantum state/coherence preparation, pulse sequence design, and is an essential step toward applications to materials science, chemical analysis, and fundamental physics. PMID:29922714
Protecting solid-state spins from a strongly coupled environment
NASA Astrophysics Data System (ADS)
Chen, Mo; Calvin Sun, Won Kyu; Saha, Kasturi; Jaskula, Jean-Christophe; Cappellaro, Paola
2018-06-01
Quantum memories are critical for solid-state quantum computing devices and a good quantum memory requires both long storage time and fast read/write operations. A promising system is the nitrogen-vacancy (NV) center in diamond, where the NV electronic spin serves as the computing qubit and a nearby nuclear spin as the memory qubit. Previous works used remote, weakly coupled 13C nuclear spins, trading read/write speed for long storage time. Here we focus instead on the intrinsic strongly coupled 14N nuclear spin. We first quantitatively understand its decoherence mechanism, identifying as its source the electronic spin that acts as a quantum fluctuator. We then propose a scheme to protect the quantum memory from the fluctuating noise by applying dynamical decoupling on the environment itself. We demonstrate a factor of 3 enhancement of the storage time in a proof-of-principle experiment, showing the potential for a quantum memory that combines fast operation with long coherence time.
Quantum dust magnetosonic waves with spin and exchange correlation effects
NASA Astrophysics Data System (ADS)
Maroof, R.; Mushtaq, A.; Qamar, A.
2016-01-01
Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).
Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer
NASA Astrophysics Data System (ADS)
Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.
2016-03-01
Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95+/-5% and have potential to serve as the basis of spin-logic and network implementations.
Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer
Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.
2016-01-01
Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations. PMID:27029961
Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer.
Coles, R J; Price, D M; Dixon, J E; Royall, B; Clarke, E; Kok, P; Skolnick, M S; Fox, A M; Makhonin, M N
2016-03-31
Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations.
Topical review: spins and mechanics in diamond
NASA Astrophysics Data System (ADS)
Lee, Donghun; Lee, Kenneth W.; Cady, Jeffrey V.; Ovartchaiyapong, Preeti; Bleszynski Jayich, Ania C.
2017-03-01
There has been rapidly growing interest in hybrid quantum devices involving a solid-state spin and a macroscopic mechanical oscillator. Such hybrid devices create exciting opportunities to mediate interactions between disparate quantum bits (qubits) and to explore the quantum regime of macroscopic mechanical objects. In particular, a system consisting of the nitrogen-vacancy defect center (NV center) in diamond coupled to a high-quality-factor mechanical oscillator is an appealing candidate for such a hybrid quantum device, as it utilizes the highly coherent and versatile spin properties of the defect center. In this paper, we will review recent experimental progress on diamond-based hybrid quantum devices in which the spin and orbital dynamics of single defects are driven by the motion of a mechanical oscillator. In addition, we discuss prospective applications for this device, including long-range, phonon-mediated spin-spin interactions, and phonon cooling in the quantum regime. We conclude the review by evaluating the experimental limitations of current devices and identifying alternative device architectures that may reach the strong coupling regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Tzu-Chieh; C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840; Raussendorf, Robert
2011-10-15
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Duer, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain canmore » be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Duer-Briegel state.« less
Claassen, Martin; Jiang, Hong -Chen; Moritz, Brian; ...
2017-10-30
The search for quantum spin liquids in frustrated quantum magnets recently has enjoyed a surge of interest, with various candidate materials under intense scrutiny. However, an experimental confirmation of a gapped topological spin liquid remains an open question. Here, we show that circularly polarized light can provide a knob to drive frustrated Mott insulators into a chiral spin liquid, realizing an elusive quantum spin liquid with topological order. We find that the dynamics of a driven Kagome Mott insulator is well-captured by an effective Floquet spin model, with heating strongly suppressed, inducing a scalar spin chirality S i · (Smore » j × S k) term which dynamically breaks time-reversal while preserving SU(2) spin symmetry. We fingerprint the transient phase diagram and find a stable photo-induced chiral spin liquid near the equilibrium state. Furthermore, the results presented suggest employing dynamical symmetry breaking to engineer quantum spin liquids and access elusive phase transitions that are not readily accessible in equilibrium.« less
Macrorealism from entropic Leggett-Garg inequalities
NASA Astrophysics Data System (ADS)
Devi, A. R. Usha; Karthik, H. S.; Sudha; Rajagopal, A. K.
2013-05-01
We formulate entropic Leggett-Garg inequalities, which place constraints on the statistical outcomes of temporal correlations of observables. The information theoretic inequalities are satisfied if macrorealism holds. We show that the quantum statistics underlying correlations between time-separated spin component of a quantum rotor mimics that of spin correlations in two spatially separated spin-s particles sharing a state of zero total spin. This brings forth the violation of the entropic Leggett-Garg inequality by a rotating quantum spin-s system in a similar manner as does the entropic Bell inequality [S. L. Braunstein and C. M. Caves, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.61.662 61, 662 (1988)] by a pair of spin-s particles forming a composite spin singlet state.
NASA Astrophysics Data System (ADS)
Sambale, S.; Williams, G. V. M.; Stephen, J.; Chong, S. V.
2014-12-01
Electronic transport and magnetic measurements have been made on FeSr2Y1.3Ce0.7Cu2O10-x. We observe a spin-glass at ˜23 K and a magnetoresistance that reaches -22% at 8 T. The magnetoresistance is due to variable range hopping quantum interference where at low temperatures each hop is over a large number of scatterers. This magnetoresistance is negative at and above 5 K and can be described by the Nguen, Spivak, and Shklovskii (NSS) model. However, there is an increasingly positive contribution to the magnetoresistance for temperatures below 5 K that may be due to scattering from localized free spins during each hop that is not accounted for in the NSS model.
Electrically tunable hole g factor of an optically active quantum dot for fast spin rotations
NASA Astrophysics Data System (ADS)
Prechtel, Jonathan H.; Maier, Franziska; Houel, Julien; Kuhlmann, Andreas V.; Ludwig, Arne; Wieck, Andreas D.; Loss, Daniel; Warburton, Richard J.
2015-04-01
We report a large g factor tunability of a single hole spin in an InGaAs quantum dot via an electric field. The magnetic field lies in the in-plane direction x , the direction required for a coherent hole spin. The electrical field lies along the growth direction z and is changed over a large range, 100 kV/cm. Both electron and hole g factors are determined by high resolution laser spectroscopy with resonance fluorescence detection. This, along with the low electrical-noise environment, gives very high quality experimental results. The hole g factor ghx depends linearly on the electric field Fz,d ghx/d Fz=(8.3 ±1.2 ) ×10-4 cm/kV, whereas the electron g factor gex is independent of electric field d gex/d Fz=(0.1 ±0.3 ) ×10-4 cm/kV (results averaged over a number of quantum dots). The dependence of ghx on Fz is well reproduced by a 4 ×4 k .p model demonstrating that the electric field sensitivity arises from a combination of soft hole confining potential, an In concentration gradient, and a strong dependence of material parameters on In concentration. The electric field sensitivity of the hole spin can be exploited for electrically driven hole spin rotations via the g tensor modulation technique and based on these results, a hole spin coupling as large as ˜1 GHz can be envisaged.
Classification of trivial spin-1 tensor network states on a square lattice
NASA Astrophysics Data System (ADS)
Lee, Hyunyong; Han, Jung Hoon
2016-09-01
Classification of possible quantum spin liquid (QSL) states of interacting spin-1/2's in two dimensions has been a fascinating topic of condensed matter for decades, resulting in enormous progress in our understanding of low-dimensional quantum matter. By contrast, relatively little work exists on the identification, let alone classification, of QSL phases for spin-1 systems in dimensions higher than one. Employing the powerful ideas of tensor network theory and its classification, we develop general methods for writing QSL wave functions of spin-1 respecting all the lattice symmetries, spin rotation, and time reversal with trivial gauge structure on the square lattice. We find 25 distinct classes characterized by five binary quantum numbers. Several explicit constructions of such wave functions are given for bond dimensions D ranging from two to four, along with thorough numerical analyses to identify their physical characters. Both gapless and gapped states are found. The topological entanglement entropy of the gapped states is close to zero, indicative of topologically trivial states. In D =4 , several different tensors can be linearly combined to produce a family of states within the same symmetry class. A rich "phase diagram" can be worked out among the phases of these tensors, as well as the phase transitions among them. Among the states we identified in this putative phase diagram is the plaquette-ordered phase, gapped resonating valence bond phase, and a critical phase. A continuous transition separates the plaquette-ordered phase from the resonating valence bond phase.
Control of spin defects in wide-bandgap semiconductors for quantum technologies
Heremans, F. Joseph; Yale, Christopher G.; Awschalom, David D.
2016-05-24
Deep-level defects are usually considered undesirable in semiconductors as they typically interfere with the performance of present-day electronic and optoelectronic devices. However, the electronic spin states of certain atomic-scale defects have recently been shown to be promising quantum bits for quantum information processing as well as exquisite nanoscale sensors due to their local environmental sensitivity. In this review, we will discuss recent advances in quantum control protocols of several of these spin defects, the negatively charged nitrogen-vacancy (NV -) center in diamond and a variety of forms of the neutral divacancy (VV 0) complex in silicon carbide (SiC). These defectsmore » exhibit a spin-triplet ground state that can be controlled through a variety of techniques, several of which allow for room temperature operation. Microwave control has enabled sophisticated decoupling schemes to extend coherence times as well as nanoscale sensing of temperature along with magnetic and electric fields. On the other hand, photonic control of these spin states has provided initial steps toward integration into quantum networks, including entanglement, quantum state teleportation, and all-optical control. Electrical and mechanical control also suggest pathways to develop quantum transducers and quantum hybrid systems. In conclusion, the versatility of the control mechanisms demonstrated should facilitate the development of quantum technologies based on these spin defects.« less
Collective coupling in hybrid superconducting circuits
NASA Astrophysics Data System (ADS)
Saito, Shiro
Hybrid quantum systems utilizing superconducting circuits have attracted significant recent attention, not only for quantum information processing tasks but also as a way to explore fundamentally new physics regimes. In this talk, I will discuss two superconducting circuit based hybrid quantum system approaches. The first is a superconducting flux qubit - electron spin ensemble hybrid system in which quantum information manipulated in the flux qubit can be transferred to, stored in and retrieved from the ensemble. Although the coherence time of the ensemble is short, about 20 ns, this is a significant first step to utilize the spin ensemble as quantum memory for superconducting flux qubits. The second approach is a superconducting resonator - flux qubit ensemble hybrid system in which we fabricated a superconducting LC resonator coupled to a large ensemble of flux qubits. Here we observed a dispersive frequency shift of approximately 250 MHz in the resonators transmission spectrum. This indicates thousands of flux qubits are coupling to the resonator collectively. Although we need to improve our qubits inhomogeneity, our system has many potential uses including the creation of new quantum metamaterials, novel applications in quantum metrology and so on. This work was partially supported by JSPS KAKENHI Grant Number 25220601.
Atomic spin-chain realization of a model for quantum criticality
NASA Astrophysics Data System (ADS)
Toskovic, R.; van den Berg, R.; Spinelli, A.; Eliens, I. S.; van den Toorn, B.; Bryant, B.; Caux, J.-S.; Otte, A. F.
2016-07-01
The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be used as fundamental building blocks for the realization of textbook many-body quantum models, illustrating key concepts such as quantum phase transitions, topological order or frustration as a function of system size. Here, we use low-temperature scanning tunnelling microscopy to construct arrays of magnetic atoms on a surface, designed to behave like spin-1/2 XXZ Heisenberg chains in a transverse field, for which a quantum phase transition from an antiferromagnetic to a paramagnetic phase is predicted in the thermodynamic limit. Site-resolved measurements on these finite-size realizations reveal a number of sudden ground state changes when the field approaches the critical value, each corresponding to a new domain wall entering the chains. We observe that these state crossings become closer for longer chains, suggesting the onset of critical behaviour. Our results present opportunities for further studies on quantum behaviour of many-body systems, as a function of their size and structural complexity.
Quantum Correlation in the XY Spin Model with Anisotropic Three-Site Interaction
NASA Astrophysics Data System (ADS)
Wang, Yao; Chai, Bing-Bing; Guo, Jin-Liang
2018-05-01
We investigate pairwise entanglement and quantum discord (QD) in the XY spin model with anisotropic three-site interaction at zero and finite temperatures. For both the nearest-neighbor spins and the next nearest-neighbor spins, special attention is paid to the dependence of entanglement and QD on the anisotropic parameter δ induced by the next nearest-neighbor spins. We show that the behavior of QD differs in many ways from entanglement under the influences of the anisotropic three-site interaction at finite temperatures. More important, comparing the effects of δ on the entanglement and QD, we find the anisotropic three-site interaction plays an important role in the quantum correlations at zero and finite temperatures. It is found that δ can strengthen the quantum correlation for both the nearest-neighbor spins and the next nearest-neighbor spins, especially for the nearest-neighbor spins at low temperature.
Input-output theory for spin-photon coupling in Si double quantum dots
NASA Astrophysics Data System (ADS)
Benito, M.; Mi, X.; Taylor, J. M.; Petta, J. R.; Burkard, Guido
2017-12-01
The interaction of qubits via microwave frequency photons enables long-distance qubit-qubit coupling and facilitates the realization of a large-scale quantum processor. However, qubits based on electron spins in semiconductor quantum dots have proven challenging to couple to microwave photons. In this theoretical work we show that a sizable coupling for a single electron spin is possible via spin-charge hybridization using a magnetic field gradient in a silicon double quantum dot. Based on parameters already shown in recent experiments, we predict optimal working points to achieve a coherent spin-photon coupling, an essential ingredient for the generation of long-range entanglement. Furthermore, we employ input-output theory to identify observable signatures of spin-photon coupling in the cavity output field, which may provide guidance to the experimental search for strong coupling in such spin-photon systems and opens the way to cavity-based readout of the spin qubit.
Dynamical control of a quantum Kapitza pendulum in a spin-1 BEC
NASA Astrophysics Data System (ADS)
Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael
2013-05-01
We demonstrate dynamic stabilization of an unstable strongly interacting quantum many-body system by periodic manipulation of the phase of the collective states. The experiment employs a spin-1 atomic Bose condensate that has spin dynamics analogous to a non-rigid pendulum in the mean-field limit. The condensate spin is initialized to an unstable (hyperbolic) fixed point of the phase space, where subsequent free evolution gives rise to spin-nematic squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that manipulate the spin-nematic fluctuations and limit their growth. The range of pulse periods and phase shifts with which the condensate can be stabilized is measured and compares well with a linear stability analysis of the problem. C.D. Hamley, et al., ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).
Quantum chaos in the Heisenberg spin chain: The effect of Dzyaloshinskii-Moriya interaction.
Vahedi, J; Ashouri, A; Mahdavifar, S
2016-10-01
Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider the three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, whereas no such evidence is observed for the XX model. We also discuss the relationship between quantum chaos and thermalization.
Suppression of Pauli Spin Blockade in Few Hole Laterally Gated Double Quantum Dots
NASA Astrophysics Data System (ADS)
Gaudreau, Louis; Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry; National Research Council Team; Sandia Labs Team
Hole spins have attracted increasing attention as candidates for qubits in quantum information applications. The p-type character of their wavefunction leads to smaller hyperfine interaction with the nuclei resulting in longer coherence times. Additionally, strong spin-orbit interaction allows for enhanced all-electrical manipulation of spin qubit states. Single hole spins have been electrically studied in InSb and Si nanowire quantum dots, however, electrostatically confined hole spins in a 2D hole gas have thus far been limited to the many hole regime. In this talk we will present a full description of the two-hole spin spectrum in a lateral GaAs/AlGaAs double quantum. High-bias magneto-transport spectroscopy reveals all four states of the spectrum (singlet and triplets) in both the (1,1) and (2,0) configurations, essential for spin readout based on Pauli spin blockade. We show that spin-flip tunneling between dots is as strong as spin conserving tunneling, a consequence of the strong spin-orbit interaction. This suppresses the Pauli spin blockade. Our results suggest that alternate techniques for single hole spin qubit readout need to be explored.
Discovery of Emergent Photon and Monopoles in a Quantum Spin Liquid
NASA Astrophysics Data System (ADS)
Tokiwa, Yoshifumi; Yamashita, Takuya; Terazawa, Daiki; Kimura, Kenta; Kasahara, Yuichi; Onishi, Takafumi; Kato, Yasuyuki; Halim, Mario; Gegenwart, Philipp; Shibauchi, Takasada; Nakatsuji, Satoru; Moon, Eun-Gook; Matsuda, Yuji
2018-06-01
Quantum spin liquid (QSL) is an exotic quantum phase of matter whose ground state is quantum-mechanically entangled without any magnetic ordering. A central issue concerns emergent excitations that characterize QSLs, which are hypothetically associated with quasiparticle fractionalization and topological order. Here we report highly unusual heat conduction generated by the spin degrees of freedom in a QSL state of the pyrochlore magnet Pr2Zr2O7, which hosts spin-ice correlations with strong quantum fluctuations. The thermal conductivity in high temperature regime exhibits a two-gap behavior, which is consistent with the gapped excitations of magnetic (M-) and electric monopoles (E-particles). At very low temperatures below 200 mK, the thermal conductivity unexpectedly shows a dramatic enhancement, which well exceeds purely phononic conductivity, demonstrating the presence of highly mobile spin excitations. This new type of excitations can be attributed to emergent photons (ν-particle), coherent gapless spin excitations in a spin-ice manifold.
Ligare, Martin
2016-05-01
Multiple-pulse NMR experiments are a powerful tool for the investigation of molecules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi-classical vector representations. In this paper I present a new way in which to interpret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identically to those of classical moments. Pictorial representations of these classically evolving states provide a way to calculate the time evolution of ensembles of weakly coupled spins without the full machinery of quantum mechanics, offering insight to anyone who understands precession of magnetic moments in magnetic fields.
Spin squeezing as an indicator of quantum chaos in the Dicke model.
Song, Lijun; Yan, Dong; Ma, Jian; Wang, Xiaoguang
2009-04-01
We study spin squeezing, an intrinsic quantum property, in the Dicke model without the rotating-wave approximation. We show that the spin squeezing can reveal the underlying chaotic and regular structures in phase space given by a Poincaré section, namely, it acts as an indicator of quantum chaos. Spin squeezing vanishes after a very short time for an initial coherent state centered in a chaotic region, whereas it persists over a longer time for the coherent state centered in a regular region of the phase space. We also study the distribution of the mean spin directions when quantum dynamics takes place. Finally, we discuss relations among spin squeezing, bosonic quadrature squeezing, and two-qubit entanglement in the dynamical processes.
NASA Astrophysics Data System (ADS)
Hosten, Onur
This dissertation investigates several physical phenomena in atomic and optical physics, and quantum information science, by utilizing various types and techniques of quantum measurements. It is the deeper concepts of these measurements, and the way they are integrated into the seemingly unrelated topics investigated, which binds together the research presented here. The research comprises three different topics: Counterfactual quantum computation, the spin Hall effect of light, and ultra-high-efficiency photon detectors based on atomic vapors. Counterfactual computation entails obtaining answers from a quantum computer without actually running it, and is accomplished by preparing the computer as a whole into a superposition of being activated and not activated. The first experimental demonstration is presented, including the best performing implementation of Grover's quantum search algorithm to date. In addition, we develop new counterfactual computation protocols that enable unconditional and completely deterministic operation. These methods stimulated a debate in the literature, on the meaning of counterfactuality in quantum processes, which we also discuss. The spin Hall effect of light entails tiny spin-dependent displacements, unsuspected until 2004, of a beam of light when it changes propagation direction. The first experimental demonstration of the effect during refraction at an air-glass interface is presented, together with a novel enabling metrological tool relying on the concepts of quantum weak measurements. Extensions of the effect to smoothly varying media are also presented, along with utilization of a time-varying version of the weak measurement techniques. Our approach to ultra-high-efficiency photon detection develops and extends a recent novel non-solid-state scheme for photo-detection based on atomic vapors. This approach is in principle capable of resolving the number of photons in a pulse, can be extended to non-destructive detection of photons, and most importantly is proposed to operate with single-photon detection efficiencies exceeding 99%, ideally without dark counts. Such a detector would have tremendous implications, e.g., for optical quantum information processing. The feasibility of operation of this approach at the desired level is studied theoretically and several promising physical systems are investigated.
Complex-network description of thermal quantum states in the Ising spin chain
NASA Astrophysics Data System (ADS)
Sundar, Bhuvanesh; Valdez, Marc Andrew; Carr, Lincoln D.; Hazzard, Kaden R. A.
2018-05-01
We use network analysis to describe and characterize an archetypal quantum system—an Ising spin chain in a transverse magnetic field. We analyze weighted networks for this quantum system, with link weights given by various measures of spin-spin correlations such as the von Neumann and Rényi mutual information, concurrence, and negativity. We analytically calculate the spin-spin correlations in the system at an arbitrary temperature by mapping the Ising spin chain to fermions, as well as numerically calculate the correlations in the ground state using matrix product state methods, and then analyze the resulting networks using a variety of network measures. We demonstrate that the network measures show some traits of complex networks already in this spin chain, arguably the simplest quantum many-body system. The network measures give insight into the phase diagram not easily captured by more typical quantities, such as the order parameter or correlation length. For example, the network structure varies with transverse field and temperature, and the structure in the quantum critical fan is different from the ordered and disordered phases.
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-01-01
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516
Aging dynamics of quantum spin glasses of rotors
NASA Astrophysics Data System (ADS)
Kennett, Malcolm P.; Chamon, Claudio; Ye, Jinwu
2001-12-01
We study the long time dynamics of quantum spin glasses of rotors using the nonequilibrium Schwinger-Keldysh formalism. These models are known to have a quantum phase transition from a paramagnetic to a spin-glass phase, which we approach by looking at the divergence of the spin-relaxation rate at the transition point. In the aging regime, we determine the dynamical equations governing the time evolution of the spin response and correlation functions, and show that all terms in the equations that arise solely from quantum effects are irrelevant at long times under time reparametrization group (RPG) transformations. At long times, quantum effects enter only through the renormalization of the parameters in the dynamical equations for the classical counterpart of the rotor model. Consequently, quantum effects only modify the out-of-equilibrium fluctuation-dissipation relation (OEFDR), i.e. the ratio X between the temperature and the effective temperature, but not the form of the classical OEFDR.
NASA Astrophysics Data System (ADS)
Paredes-Gutiérrez, H.; Pérez-Merchancano, S. T.; Beltran-Rios, C. L.
2017-12-01
In this work, we study the quantum electron transport through a Quantum Dots Structure (QDs), with different geometries, embedded in a Quantum Well (QW). The behaviour of the current through the nanostructure (dot and well) is studied considering the orbital spin coupling of the electrons and the Rashba effect, by means of the second quantization theory and the standard model of Green’s functions. Our results show the behaviour of the current in the quantum system as a function of the electric field, presenting resonant states for specific values of both the external field and the spin polarization. Similarly, the behaviour of the current on the nanostructure changes when the geometry of the QD and the size of the same are modified as a function of the polarization of the electron spin and the potential of quantum confinement.
Investigations of quantum pendulum dynamics in a spin-1 BEC
NASA Astrophysics Data System (ADS)
Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael
2013-05-01
We investigate the quantum spin dynamics of a spin-1 BEC initialized to an unstable critical point of the dynamical phase space. The subsequent evolution of the collective states of the system is analogous to an inverted simple pendulum in the quantum limit and yields non-classical states with quantum correlations. For short evolution times in the low depletion limit, we observe squeezed states and for longer times beyond the low depletion limit we observe highly non-Gaussian distributions. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, and M.S. Chapman, ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).
Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal
2016-01-01
Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.
Chen, Lixiang; She, Weilong
2008-09-15
We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.
Spin–cavity interactions between a quantum dot molecule and a photonic crystal cavity
Vora, Patrick M.; Bracker, Allan S.; Carter, Samuel G.; Sweeney, Timothy M.; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G.; Economou, Sophia E.; Gammon, Daniel
2015-01-01
The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin–cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet–triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network. PMID:26184654
Spin interactions in InAs quantum dots
NASA Astrophysics Data System (ADS)
Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.
2006-03-01
Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)
Yu, Jiadong; Wang, Lai; Di Yang; Zheng, Jiyuan; Xing, Yuchen; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao
2016-10-19
The spin and optical polarization based on a coupled InGaN/GaN quantum well (QW) and quantum dots (QDs) structure is investigated. In this structure, spin-electrons can be temporarily stored in QW, and spin injection from the QW into QDs via spin-conserved tunneling is enabled. Spin relaxation can be suppressed owing to the small energy difference between the initial state in the QW and the final states in the QDs. Photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements are carried out on optical spin-injection and -detection. Owing to the coupled structure, spin-conserved tunneling mechanism plays a significant role in preventing spin relaxation process. As a result, a higher circular polarization degree (CPD) (~49.1%) is achieved compared with conventional single layer of QDs structure. Moreover, spin relaxation time is also extended to about 2.43 ns due to the weaker state-filling effect. This coupled structure is believed an appropriate candidate for realization of spin-polarized light source.
Quantum communication beyond the localization length in disordered spin chains.
Allcock, Jonathan; Linden, Noah
2009-03-20
We study the effects of localization on quantum state transfer in spin chains. We show how to use quantum error correction and multiple parallel spin chains to send a qubit with high fidelity over arbitrary distances, in particular, distances much greater than the localization length of the chain.
Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiong-Peng; Shao, Bin, E-mail: sbin610@bit.edu.cn; Hu, Shuai
Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that themore » scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.« less
Controlled rephasing of single spin-waves in a quantum memory based on cold atoms
NASA Astrophysics Data System (ADS)
Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team
2015-05-01
Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.
Lifting SU(2) spin networks to projected spin networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupuis, Maiete; Livine, Etera R.
2010-09-15
Projected spin network states are the canonical basis of quantum states of geometry for the recent EPRL-FK spinfoam models for quantum gravity introduced by Engle-Pereira-Rovelli-Livine and Freidel-Krasnov. They are functionals of both the Lorentz connection and the time-normal field. We analyze in detail the map from these projected spin networks to the standard SU(2) spin networks of loop quantum gravity. We show that this map is not one to one and that the corresponding ambiguity is parameterized by the Immirzi parameter. We conclude with a comparison of the scalar products between projected spin networks and SU(2) spin network states.
Spin Hamiltonian Analysis of the SMM V15 Using High Field ESR
NASA Astrophysics Data System (ADS)
Martens, Mathew; van Tol, Hans; Bertaina, Sylvain; Barbara, Bernard; Muller, Achim; Chiorescu, Irinel
2014-03-01
We have studied molecular magnets using high field / high frequency Electron Spin Resonance. Such molecular structures contain many quantum spins linked by exchange interactions and consequently their energy structure is often complex and require a good understanding of the molecular spin Hamiltonian. In particular, we studied the V15 molecule, comprised of 15 spins 1/2 and a total spin 1/2, which is a system that recently showed quantum Rabi oscillations of its total quantum spin. This type of molecule is an essential system for advancing molecular structures into quantum computing. We used high frequency characterization techniques (of hundreds of GHz) to gain insight into the exchange anisotropy interactions, crystal field, and anti-symmetric interactions present in this system. We analyzed the data using a detailed numerical analysis of spin interactions and our findings regarding the V15 spin Hamiltonian will be discussed. Supported by the NSF Cooperative Agreement Grant No. DMR-0654118 and No. NHMFL UCGP 5059, NSF grant No. DMR-0645408.
Wei, Hai-Rui; Deng, Fu-Guo
2014-01-13
We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.
Negative exchange interactions in coupled few-electron quantum dots
NASA Astrophysics Data System (ADS)
Deng, Kuangyin; Calderon-Vargas, F. A.; Mayhall, Nicholas J.; Barnes, Edwin
2018-06-01
It has been experimentally shown that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin tripletlike rather than singletlike ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both tripletlike and singletlike ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that tripletlike ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons.
Quantum criticality among entangled spin chains
Blanc, N.; Trinh, J.; Dong, L.; ...
2017-12-11
Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less
Quantum criticality among entangled spin chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, N.; Trinh, J.; Dong, L.
Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less
Quantum criticality among entangled spin chains
NASA Astrophysics Data System (ADS)
Blanc, N.; Trinh, J.; Dong, L.; Bai, X.; Aczel, A. A.; Mourigal, M.; Balents, L.; Siegrist, T.; Ramirez, A. P.
2018-03-01
An important challenge in magnetism is the unambiguous identification of a quantum spin liquid1,2, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems3,4 wherein classical order is suppressed by a frustrating lattice5, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at the quantum critical point, with little entropy available for quantum fluctuations6. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K2PbCu(NO2)6. Across the temperature-magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.
Morello, A; Millán, A; de Jongh, L J
2014-03-21
A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.
NASA Astrophysics Data System (ADS)
Chekhovich, E. A.; Ulhaq, A.; Zallo, E.; Ding, F.; Schmidt, O. G.; Skolnick, M. S.
2017-10-01
Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC (ref. ) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent `dark' nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed--the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.
Optical pumping of electron and nuclear spin in a negatively-charged quantum dot
NASA Astrophysics Data System (ADS)
Bracker, Allan; Gershoni, David; Korenev, Vladimir
2005-03-01
We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.
Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G
2016-08-12
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
NASA Astrophysics Data System (ADS)
Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.
2016-08-01
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
Cavity-Enhanced Optical Readout of a Single Solid-State Spin
NASA Astrophysics Data System (ADS)
Sun, Shuo; Kim, Hyochul; Solomon, Glenn S.; Waks, Edo
2018-05-01
We demonstrate optical readout of a single spin using cavity quantum electrodynamics. The spin is based on a single trapped electron in a quantum dot that has a poor branching ratio of 0.43. Selectively coupling one of the optical transitions of the quantum dot to the cavity mode results in a spin-dependent cavity reflectivity that enables spin readout by monitoring the reflected intensity of an incident optical field. Using this approach, we demonstrate spin-readout fidelity of 0.61. Achieving this fidelity using resonance fluorescence from a bare dot would require 43 times improvement in photon collection efficiency.
Dynamic Stabilization of a Quantum Many-Body Spin System
NASA Astrophysics Data System (ADS)
Hoang, T. M.; Gerving, C. S.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.
2013-08-01
We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis.
Spin relaxation in quantum dots due to electron exchange with leads.
Vorontsov, A B; Vavilov, M G
2008-11-28
We calculate spin relaxation rates in lateral quantum dot systems due to electron exchange between dots and leads. Using rate equations, we develop a theoretical description of the experimentally observed electric current in the spin blockade regime of double quantum dots. A single expression fits the entire current profile and describes the structure of both the conduction peaks and the suppressed ("valley") region. Extrinsic rates calculated here have to be taken into account for accurate extraction of intrinsic relaxation rates due to the spin-orbit and hyperfine spin scattering mechanisms from spin blockade measurements.
Deep Neural Network Detects Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki
2018-03-01
We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble
Klimov, Paul V.; Falk, Abram L.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.
2015-01-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 103 identical registers in a 40-μm3 volume (with 0.95−0.07+0.05 fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology. PMID:26702444
Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence
Ma, Wen-Long; Wolfowicz, Gary; Zhao, Nan; Li, Shu-Shen; Morton, John J.L.; Liu, Ren-Bao
2014-01-01
Central spin decoherence caused by nuclear spin baths is often a critical issue in various quantum computing schemes, and it has also been used for sensing single-nuclear spins. Recent theoretical studies suggest that central spin decoherence can act as a probe of many-body physics in spin baths; however, identification and detection of many-body correlations of nuclear spins in nanoscale systems are highly challenging. Here, taking a phosphorus donor electron spin in a 29Si nuclear spin bath as our model system, we discover both theoretically and experimentally that many-body correlations in nanoscale nuclear spin baths produce identifiable signatures in decoherence of the central spin under multiple-pulse dynamical decoupling control. We demonstrate that under control by an odd or even number of pulses, the central spin decoherence is principally caused by second- or fourth-order nuclear spin correlations, respectively. This study marks an important step toward studying many-body physics using spin qubits. PMID:25205440
Electronic Phenomena in Two-Dimensional Topological Insulators
NASA Astrophysics Data System (ADS)
Hart, Sean
In recent years, two-dimensional electron systems have played an integral role at the forefront of discoveries in condensed matter physics. These include the integer and fractional quantum Hall effects, massless electron physics in graphene, the quantum spin and quantum anomalous Hall effects, and many more. Investigation of these fascinating states of matter brings with it surprising new results, challenges us to understand new physical phenomena, and pushes us toward new technological capabilities. In this thesis, we describe a set of experiments aimed at elucidating the behavior of two such two-dimensional systems: the quantum Hall effect, and the quantum spin Hall effect. The first experiment examines electronic behavior at the edge of a two-dimensional electron system formed in a GaAs/AlGaAs heterostructure, under the application of a strong perpendicular magnetic field. When the ratio between the number of electrons and flux quanta in the system is tuned near certain integer or fractional values, the electrons in the system can form states which are respectively known as the integer and fractional quantum Hall effects. These states are insulators in the bulk, but carry gapless excitations at the edge. Remarkably, in certain fractional quantum Hall states, it was predicted that even as charge is carried downstream along an edge, heat can be carried upstream in a neutral edge channel. By placing quantum dots along a quantum Hall edge, we are able to locally monitor the edge temperature. Using a quantum point contact, we can locally heat the edge and use the quantum dot thermometers to detect heat carried both downstream and upstream. We find that heat can be carried upstream when the edge contains structure related to the nu = 2/3 fractional quantum Hall state. We further find that this fractional edge physics can even be present when the bulk is tuned to the nu = 1integer quantum Hall state. Our experiments also demonstrate that the nature of this fractional reconstruction can be tuned by modifying the sharpness of the confining potential at the edge. In the second set of experiments, we focus on an exciting new two-dimensional system known as a quantum spin Hall insulator. Realized in quantum well heterostructures formed by layers of HgTe and HgCdTe, this material belongs to a set of recently discovered topological insulators. Like the quantum Hall effect, the quantum spin Hall effect is characterized by an insulating bulk and conducting edge states. However, the quantum spin Hall effect occurs in the absence of an external magnetic field, and contains a pair of counter propagating edge states which are the time-reversed partners of one another. It was recently predicted that a Josephson junction based around one of these edge states could host a new variety of excitation called a Majorana fermion. Majorana fermions are predicted to have non-Abelian braiding statistics, a property which holds promise as a robust basis for quantum information processing. In our experiments, we place a section of quantum spin Hall insulator between two superconducting leads, to form a Josephson junction. By measuring Fraunhofer interference, we are able to study the spatial distribution of supercurrent in the junction. In the quantum spin Hall regime, this supercurrent becomes confined to the topological edge states. In addition to providing a microscopic picture of these states, our measurement scheme generally provides a way to investigate the edge structure of any topological insulator. In further experiments, we tune the chemical potential into the conduction band of the HgTe system, and investigate the behavior of Fraunhofer interference as a magnetic field is applied parallel to the plane of the quantum well. By theoretically analyzing the interference in a parallel field, we find that Cooper pairs in the material acquire a tunable momentum that grows with the magnetic field strength. This finite pairing momentum leads to the appearance of triplet pair correlations at certain locations within the junction, which we are able to control with the external magnetic field. Our measurements and analysis also provide a method to obtain information about the Fermi surface properties and spin-orbit coupling in two-dimensional materials.
Dzhioev, R I; Korenev, V L
2007-07-20
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.
NASA Astrophysics Data System (ADS)
Dzhioev, R. I.; Korenev, V. L.
2007-07-01
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.
Quantum gap and spin-wave excitations in the Kitaev model on a triangular lattice
NASA Astrophysics Data System (ADS)
Avella, Adolfo; Di Ciolo, Andrea; Jackeli, George
2018-05-01
We study the effects of quantum fluctuations on the dynamical generation of a gap and on the evolution of the spin-wave spectra of a frustrated magnet on a triangular lattice with bond-dependent Ising couplings, analog of the Kitaev honeycomb model. The quantum fluctuations lift the subextensive degeneracy of the classical ground-state manifold by a quantum order-by-disorder mechanism. Nearest-neighbor chains remain decoupled and the surviving discrete degeneracy of the ground state is protected by a hidden model symmetry. We show how the four-spin interaction, emergent from the fluctuations, generates a spin gap shifting the nodal lines of the linear spin-wave spectrum to finite energies.
Spinon confinement in a quasi-one-dimensional XXZ Heisenberg antiferromagnet
NASA Astrophysics Data System (ADS)
Lake, Bella; Bera, Anup K.; Essler, Fabian H. L.; Vanderstraeten, Laurens; Hubig, Claudius; Schollwock, Ulrich; Islam, A. T. M. Nazmul; Schneidewind, Astrid; Quintero-Castro, Diana L.
Half-integer spin Heisenberg chains constitute a key paradigm for quantum number fractionalization: flipping a spin creates a minimum of two elementary spinon excitations. These have been observed in numerous experiments. We report on inelastic neutron scattering experiments on the quasi-one-dimensional anisotropic spin-1/2 Heisenberg antiferromagnet SrCo2V2O8. These reveal a mechanism for temperature-induced spinon confinement, manifesting itself in the formation of sequences of spinon bound states. A theoretical description of this effect is achieved by a combination of analytical and numerical methods.
Highly excited and exotic meson spectrum from dynamical lattice QCD.
Dudek, Jozef J; Edwards, Robert G; Peardon, Michael J; Richards, David G; Thomas, Christopher E
2009-12-31
Using a new quark-field construction algorithm and a large variational basis of operators, we extract a highly excited isovector meson spectrum on dynamical anisotropic lattices. We show how carefully constructed operators can be used to reliably identify the continuum spin of extracted states, overcoming the reduced cubic symmetry of the lattice. Using this method we extract, with confidence, excited states, states with exotic quantum numbers (0+-, 1-+, and 2+-), and states of high spin, including, for the first time in lattice QCD, spin-four states.
A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%
NASA Astrophysics Data System (ADS)
Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo
2018-02-01
The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility1-4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5-7. Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations8-10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.
Vindication of Yb2Ti2O7 as a model exchange quantum spin ice.
Applegate, R; Hayre, N R; Singh, R R P; Lin, T; Day, A G R; Gingras, M J P
2012-08-31
We use numerical linked-cluster expansions to compute the specific heat C(T) and entropy S(T) of a quantum spin ice Hamiltonian for Yb2Ti2O7 using anisotropic exchange interactions, recently determined from inelastic neutron scattering measurements, and find good agreement with experimental calorimetric data. This vindicates Yb2Ti2O7 as a model quantum spin ice. We find that in the perturbative weak quantum regime, such a system has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signaling the paramagnetic to spin ice crossover, followed at a lower temperature by a sharp peak accompanying a first-order phase transition to the ordered state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We anticipate that the conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan
2011-10-01
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Dür, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.052309 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Dür-Briegel state.
2010-06-01
Demonstration of an area-enclosing guided-atom interferometer for rotation sensing, Phys. Rev. Lett. 99, 173201 (2007). 4. Heralded Single- Magnon Quantum...excitations are quantized spin waves ( magnons ), such that transitions between its energy levels ( magnon number states) correspond to highly directional...polarization storage in the form of a single collective-spin excitation ( magnon ) that is shared between two spatially overlapped atomic ensembles
Sensitive Spin Detection Using An On-Chip Squid-Waveguide Resonator
NASA Astrophysics Data System (ADS)
Yue, Guang
Quantum computing gives novel way of computing using quantum mechanics, which furthers human knowledge and has exciting applications. Quantum systems with diluted spins such as rare earth ions hosted in single crystal, molecule-based magnets etc. are promising qubits candidates to form the basis of a quantum computer. High sensitivity measurement and coherent control of these spin systems are crucial for their practical usage as qubits. The micro-SQUID (direct-current micrometer-sized Superconducting QUantum Interference Device) is capable to measure magnetization of spin system with high sensitivity. For example, the micro-SQUID technique can measure magnetic moments as small as several thousand muB as shown by the study of [W. Wernsdorfer, Supercond. Sci. Technol. 22, 064013 (2009)]. Here we develop a novel on-chip setup that combines the micro-SQUID sensitivity with microwave excitation. Such setup can be used for electron spin resonance measurements or coherent control of spins utilizing the high sensitivity of micro-SQUID for signal detection. To build the setup, we studied the fabrication process of the micro-SQUID, which is made of weak-linked Josephson junctions. The SQUID as a detector is integrated on the same chip with a shorted coplanar waveguide, so that the microwave pulses can be applied through the waveguide to excite the sample for resonance measurements. The whole device is plasma etched from a thin (˜ 20nm) niobium film, so that the SQUID can work at in large in-plane magnetic fields of several tesla. In addition, computer simulations are done to find the best design of the waveguide such that the microwave excitation field is sufficiently strong and uniformly applied to the sample. The magnetization curve of Mn12 molecule-based magnet sample is measured to prove the proper working of the micro-SQUID. Electron spin resonance measurement is done on the setup for gadolinium ions diluted in a CaWO4 single crystal. The measurement shows clear evidence of the resonance signal from the 1st transition of the gadolinium ions' energy levels, which shows the setup is successfully built. Due to the high sensitivity of micro-SQUID and the ability to concentrate microwave energy in small areas of the chip, this setup can detect signals from a small number of spins (107) in a small volume (several mum 3).
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid
NASA Astrophysics Data System (ADS)
Korenev, V. L.; Akimov, I. A.; Zaitsev, S. V.; Sapega, V. F.; Langer, L.; Yakovlev, D. R.; Danilov, Yu. A.; Bayer, M.
2012-07-01
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid.
Korenev, V L; Akimov, I A; Zaitsev, S V; Sapega, V F; Langer, L; Yakovlev, D R; Danilov, Yu A; Bayer, M
2012-07-17
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
Quantum Spin Ice under a [111] Magnetic Field: From Pyrochlore to Kagome
NASA Astrophysics Data System (ADS)
Bojesen, Troels Arnfred; Onoda, Shigeki
2017-12-01
Quantum spin ice, modeled for magnetic rare-earth pyrochlores, has attracted great interest for hosting a U(1) quantum spin liquid, which involves spin-ice monopoles as gapped deconfined spinons, as well as gapless excitations analogous to photons. However, the global phase diagram under a [111] magnetic field remains open. Here we uncover by means of unbiased quantum Monte Carlo simulations that a supersolid of monopoles, showing both a superfluidity and a partial ionization, intervenes the kagome spin ice and a fully ionized monopole insulator, in contrast to classical spin ice where a direct discontinuous phase transition takes place. We also show that on cooling, kagome spin ice evolves towards a valence-bond solid similar to what appears in the associated kagome lattice model [S. V. Isakov et al., Phys. Rev. Lett. 97, 147202 (2006), 10.1103/PhysRevLett.97.147202]. Possible relevance to experiments is discussed.
Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems
Ma, Xiao-song; Dakić, Borivoje; Kropatschek, Sebastian; Naylor, William; Chan, Yang-hao; Gong, Zhe-xuan; Duan, Lu-ming; Zeilinger, Anton; Walther, Philip
2014-01-01
Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by comparing the entanglement dynamics using pairwise concurrence. We also study theoretically a four-site square lattice with next-nearest neighbor interactions and a six-site checkerboard lattice, which might be in reach of current technology. PMID:24394808
NASA Astrophysics Data System (ADS)
Godina-Nava, Juan José; Torres-Vega, Gabino; López-Riquelme, Germán Octavio; López-Sandoval, Eduardo; Samana, Arturo Rodolfo; García Velasco, Fermín; Hernández-Aguilar, Claudia; Domínguez-Pacheco, Arturo
2017-02-01
Using the conventional Haberkorn approach, it is evaluated the recombination of the radical pair (RP) singlet spin state to study theoretically the cytoprotective effect of an extremely-low-frequency electromagnetic field (ELF-EMF) on early stages of hepatic cancer chemically induced in rats. The proposal is that ELF-EMF modulates the interconversion rate of singlet and triplet spin states of the RP populations modifying the products from the metabolization of carcinogens. Previously, we found that the daily treatment with ELF-EMF 120 Hz inhibited the number and area of preneoplastic lesions in chemical carcinogenesis. The singlet spin population is evaluated diagonalizing the spin density matrix through the Lanczos method in a radical pair mechanism (RPM). Using four values of the interchange energy, we have studied the variations over the singlet population. The low magnetic field effect as a test of the influence over the enzymatic chemical reaction is evaluated calculating the quantum yield. Through a bootstrap technique the range is found for the singlet decay rate for the process. Applying the quantum measurements concept, we addressed the impact toward hepatic cells. The result contributes to improving our understanding of the chemical carcinogenesis process affected by charged particles that damage the DNA.
Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-T c cuprates
Harrison, N.; Ramshaw, B. J.; Shekhter, A.
2015-06-03
The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high T c. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems,more » whose primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y« less
Enhanced Optical and Electric Manipulation of a Quantum Gas of KRb Molecules
NASA Astrophysics Data System (ADS)
Covey, Jacob P.
Polar molecules are an ideal platform for studying quantum information and quantum simulation due to their long-range dipolar interactions. However, they have many degrees of freedom at disparate energy scales and thus are difficult to cool. Ultracold KRb molecules near quantum degeneracy were first produced in 2008. Nevertheless, it was found that even when prepared in the absolute lowest state chemical reactions can make the gas unstable. During my PhD we worked to mitigate these limitations by loading molecules into an optical lattice where the tunneling rates, and thus the chemistry, can be exquisitely controlled. This setting allowed us to start using the rotational degree of freedom as a pseudo-spin, and paved the way for studying models of quantum magnetism, such as the t-J model and the XXZ model. Further, by allowing molecules of two "spin''-states to tunnel in the lattice, we were able to observe a continuous manifestion of the quantum Zeno effect, where increased mobility counterintuitively suppresses dissipation from inelastic collisions. In a deep lattice we observed dipolar spin-exchange interactions, and we were able to elucidate their truly many-body nature. These two sets of experiments informed us that the filling fraction of the molecules in the lattice was only 5-10%, and so we implemented a quantum synthesis approach where atomic insulators were used to maximize the number of sites with one K and one Rb, and then these "doublons'' were converted to molecules with a filling of 30%. Despite these successes, a number of tools such as high resolution detection and addressing as well as large, stable electric fields were unavailable. Also during my PhD I led efforts to design, build, test, and implement a new apparatus which provides access to these tools and more. We have successfully produced ultracold molecules in this new apparatus, and we are now applying AC and DC electric fields with in vacuum electrodes. This apparatus will allow us to study quantum magnetism in a large electric field, and to detect the dynamics of out-of-equilibrium many-body states.
Prediction of Spin-Polarization Effects in Quantum Wire Transport
NASA Astrophysics Data System (ADS)
Fasol, Gerhard; Sakaki, Hiroyuki
1994-01-01
We predict a new effect for transport in quantum wires: spontaneous spin polarization. Most work on transport in mesoscopic devices has assumed a model of non interacting, spin-free electrons. We introduce spin, electron pair scattering and microscopic crystal properties into the design of mesoscopic devices. The new spin polarization effect results from the fact that in a single mode quantum wire, electron and hole bands still have two spin subbands. In general, these two spin subbands are expected to be split even in zero magnetic field. At sufficiently low temperatures the electron pair scattering rates for one spin subband ( e.g., the spin-down) can be much larger than for the other spin subband. This effect can be used for an active spin polarizer device: hot electrons in one subband ( e.g., `spin up') pass with weak pair scattering, while electrons in the opposite subband ( e.g., `spin down'), have high probability of scattering into the `spin-up' subband, resulting in spin polarization of a hot electron beam.
Room temperature spin diffusion in (110) GaAs/AlGaAs quantum wells
2011-01-01
Transient spin grating experiments are used to investigate the electron spin diffusion in intrinsic (110) GaAs/AlGaAs multiple quantum well at room temperature. The measured spin diffusion length of optically excited electrons is about 4 μm at low spin density. Increasing the carrier density yields both a decrease of the spin relaxation time and the spin diffusion coefficient Ds. PMID:21711662
The birth of quantum networks: merging remote entanglement with local multi-qubit control
NASA Astrophysics Data System (ADS)
Hanson, Ronald
The realization of a highly connected network of qubit registers is a central challenge for quantum information processing and long-distance quantum communication. Diamond spins associated with NV centers are promising building blocks for such a network: they combine a coherent spin-photon interface that has already enabled creation of spin-spin entanglement over 1km with a local register of robust and well-controlled nuclear spin qubits for information processing and error correction. We are now entering a new research stage in which we can exploit these features simultaneously and build multi-qubit networks. I will present our latest results towards the first of such experiments: entanglement distillation between remote quantum network nodes. Finally, I will discuss the challenges and opportunities ahead on the road to large-scale networks of qubit registers for quantum computation and communication.
Bonizzoni, C; Ghirri, A; Atzori, M; Sorace, L; Sessoli, R; Affronte, M
2017-10-12
Electron spins are ideal two-level systems that may couple with microwave photons so that, under specific conditions, coherent spin-photon states can be realized. This represents a fundamental step for the transfer and the manipulation of quantum information. Along with spin impurities in solids, molecular spins in concentrated phases have recently shown coherent dynamics under microwave stimuli. Here we show that it is possible to obtain high cooperativity regime between a molecular Vanadyl Phthalocyanine (VOPc) spin ensemble and a high quality factor superconducting YBa 2 Cu 3 O 7 (YBCO) coplanar resonator at 0.5 K. This demonstrates that molecular spin centers can be successfully integrated in hybrid quantum devices.
Rapid creation of distant entanglement by multi-photon resonant fluorescence
NASA Astrophysics Data System (ADS)
Cohen, Guy Z.; Sham, L. J.
2014-03-01
We study a simple, effective and robust method for entangling two separate stationary quantum dot spin qubits with high fidelity using multi-photon Gaussian state. The fluorescence signals from the two dots interfere at a beam splitter. The bosonic nature of photons leads, in analogy with the Hong-Ou-Mandel (HOM) effect, to selective pairing of photon holes (photon absences in the fluorescent signals). By the HOM effect, two photon holes with the same polarization end up at the same beam splitter output. As a result, two odd photon number detections at the outgoing beams, which must correspond to two photon holes with different polarizations, herald entanglement creation. The robustness of the Gaussian states is evidenced by the ability to compensate for photon absorption and noise by a moderate increase in the number of photons at the input. We calculate the entanglement generation rate in the ideal, non-ideal and near-ideal detector regimes and find substantial improvement over single-photon schemes in all three regimes. Fast and efficient spin-spin entanglement creation can form the basis for a scalable quantum dot quantum computing network. Our predictions can be tested using current experimental capabilities. This research was supported by the U.S. Army Research Office MURI award W911NF0910406, by NSF grant PHY-1104446 and by ARO (IARPA, W911NF-08-1-0487). The authors thank D. G. Steel for useful discussions.
Phase-Tuned Entangled State Generation between Distant Spin Qubits.
Stockill, R; Stanley, M J; Huthmacher, L; Clarke, E; Hugues, M; Miller, A J; Matthiesen, C; Le Gall, C; Atatüre, M
2017-07-07
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ^{(+)}⟩ and |ψ^{(-)}⟩ states of 61.6±2.3% and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
Phase-Tuned Entangled State Generation between Distant Spin Qubits
NASA Astrophysics Data System (ADS)
Stockill, R.; Stanley, M. J.; Huthmacher, L.; Clarke, E.; Hugues, M.; Miller, A. J.; Matthiesen, C.; Le Gall, C.; Atatüre, M.
2017-07-01
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ(+)⟩ and |ψ(-)⟩ states of 61.6 ±2.3 % and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
Coherent spin transfer between molecularly bridged quantum dots.
Ouyang, Min; Awschalom, David D
2003-08-22
Femtosecond time-resolved Faraday rotation spectroscopy reveals the instantaneous transfer of spin coherence through conjugated molecular bridges spanning quantum dots of different size over a broad range of temperature. The room-temperature spin-transfer efficiency is approximately 20%, showing that conjugated molecules can be used not only as interconnections for the hierarchical assembly of functional networks but also as efficient spin channels. The results suggest that this class of structures may be useful as two-spin quantum devices operating at ambient temperatures and may offer promising opportunities for future versatile molecule-based spintronic technologies.
NASA Astrophysics Data System (ADS)
Wang, F.; Huang, Y.-Y.; Zhang, Z.-Y.; Zu, C.; Hou, P.-Y.; Yuan, X.-X.; Wang, W.-B.; Zhang, W.-G.; He, L.; Chang, X.-Y.; Duan, L.-M.
2017-10-01
We experimentally demonstrate room-temperature storage of quantum entanglement using two nuclear spins weakly coupled to the electronic spin carried by a single nitrogen-vacancy center in diamond. We realize universal quantum gate control over the three-qubit spin system and produce entangled states in the decoherence-free subspace of the two nuclear spins. By injecting arbitrary collective noise, we demonstrate that the decoherence-free entangled state has coherence time longer than that of other entangled states by an order of magnitude in our experiment.
Extraordinary SEAWs under influence of the spin-spin interaction and the quantum Bohm potential
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.
2018-06-01
The separate spin evolution (SSE) of electrons causes the existence of the spin-electron acoustic wave. Extraordinary spin-electron acoustic waves (SEAWs) propagating perpendicular to the external magnetic field have a large contribution of the transverse electric field. Its spectrum has been studied in the quasi-classical limit at the consideration of the separate spin evolution. The spin-spin interaction and the quantum Bohm potential give contribution in the spectrum extraordinary SEAWs. This contribution is studied in this paper. Moreover, it is demonstrated that the spin-spin interaction leads to the existence of the extraordinary SEAWs if the SSE is neglected. It has been found that the SSE causes the instability of the extraordinary SEAW at the large wavelengths, but the quantum Bohm potential leads to the full stabilization of the spectrum.
Towards Simulating the Transverse Ising Model in a 2D Array of Trapped Ions
NASA Astrophysics Data System (ADS)
Sawyer, Brian
2013-05-01
Two-dimensional Coulomb crystals provide a useful platform for large-scale quantum simulation. Penning traps enable confinement of large numbers of ions (>100) and allow for the tunable-range spin-spin interactions demonstrated in linear ion strings, facilitating simulation of quantum magnetism at a scale that is currently intractable on classical computers. We readily confine hundreds of Doppler laser-cooled 9Be+ within a Penning trap, producing a planar array of ions with self-assembled triangular order. The transverse ``drumhead'' modes of our 2D crystal along with the valence electron spin of Be+ serve as a resource for generating spin-motion and spin-spin entanglement. Applying a spin-dependent optical dipole force (ODF) to the ion array, we perform spectroscopy and thermometry of individual drumhead modes. This ODF also allows us to engineer long-range Ising spin couplings of either ferromagnetic or anti-ferromagnetic character whose approximate power-law scaling with inter-ion distance, d, may be varied continuously from 1 /d0 to 1 /d3. An effective transverse magnetic field is applied via microwave radiation at the ~124-GHz spin-flip frequency, and ground states of the effective Ising Hamiltonian may in principle be prepared adiabatically by slowly decreasing this transverse field in the presence of the induced Ising coupling. Long-range anti-ferromagnetic interactions are of particular interest due to their inherent spin frustration and resulting large, near-degenerate manifold of ground states. We acknowledge support from NIST and the DARPA-OLE program.
Direct Identification of Dilute Surface Spins on Al2 O3 : Origin of Flux Noise in Quantum Circuits
NASA Astrophysics Data System (ADS)
de Graaf, S. E.; Adamyan, A. A.; Lindström, T.; Erts, D.; Kubatkin, S. E.; Tzalenchuk, A. Ya.; Danilov, A. V.
2017-02-01
An on-chip electron spin resonance technique is applied to reveal the nature and origin of surface spins on Al2 O3 . We measure a spin density of 2.2 ×1 017 spins/m2 , attributed to physisorbed atomic hydrogen and S =1 /2 electron spin states on the surface. This is direct evidence for the nature of spins responsible for flux noise in quantum circuits, which has been an issue of interest for several decades. Our findings open up a new approach to the identification and controlled reduction of paramagnetic sources of noise and decoherence in superconducting quantum devices.
NASA Astrophysics Data System (ADS)
Lima, Leonardo S.
2018-04-01
We have propose the Meissner mechanism for the spin supercurrent in quantum spin systems. Besides, we study the behavior of the AC spin conductivity in neighborhood of quantum phase transition in a frustrated spin model such as the antiferromagnet in the union jack lattice with single ion anisotropy at T = 0 . We investigate the spin conductivity for this model that presents exchange interactions J1 and J2 . Our results show a single peak for the conductivity with the height varying with the behavior of critical anisotropy Dc with J2 . We obtain the conductivity tending to zero in the limit ω → 0 .
NASA Astrophysics Data System (ADS)
Liu, Weiwen
The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.
Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots.
Bracker, A S; Stinaff, E A; Gammon, D; Ware, M E; Tischler, J G; Shabaev, A; Efros, Al L; Park, D; Gershoni, D; Korenev, V L; Merkulov, I A
2005-02-04
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots
NASA Astrophysics Data System (ADS)
Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.
2005-02-01
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Hybrid spin and valley quantum computing with singlet-triplet qubits.
Rohling, Niklas; Russ, Maximilian; Burkard, Guido
2014-10-24
The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.
Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent
NASA Astrophysics Data System (ADS)
Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.; Dzurak, A. S.; Ishihara, R.; Morello, A.; Reilly, D. J.; Schreiber, L. R.; Veldhorst, M.
2017-09-01
Semiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the success of conventional semiconductor integrated circuits. However, the wiring and interconnect requirements for quantum circuits are completely different from those for classical circuits, as individual direct current, pulsed and in some cases microwave control signals need to be routed from external sources to every qubit. This is further complicated by the requirement that these spin qubits currently operate at temperatures below 100 mK. Here, we review several strategies that are considered to address this crucial challenge in scaling quantum circuits based on electron spin qubits. Key assets of spin qubits include the potential to operate at 1 to 4 K, the high density of quantum dots or donors combined with possibilities to space them apart as needed, the extremely long-spin coherence times, and the rich options for integration with classical electronics based on the same technology.
NASA Astrophysics Data System (ADS)
Karľová, Katarína; Strečka, Jozef; Lyra, Marcelo L.
2018-03-01
The spin-1/2 Ising-Heisenberg pentagonal chain is investigated with use of the star-triangle transformation, which establishes a rigorous mapping equivalence with the effective spin-1/2 Ising zigzag ladder. The investigated model has a rich ground-state phase diagram including two spectacular quantum antiferromagnetic ground states with a fourfold broken symmetry. It is demonstrated that these long-period quantum ground states arise due to a competition between the effective next-nearest-neighbor and nearest-neighbor interactions of the corresponding spin-1/2 Ising zigzag ladder. The concurrence is used to quantify the bipartite entanglement between the nearest-neighbor Heisenberg spin pairs, which are quantum-mechanically entangled in two quantum ground states with or without spontaneously broken symmetry. The pair correlation functions between the nearest-neighbor Heisenberg spins as well as the next-nearest-neighbor and nearest-neighbor Ising spins were investigated with the aim to bring insight into how a relevant short-range order manifests itself at low enough temperatures. It is shown that the specific heat displays temperature dependencies with either one or two separate round maxima.
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-08-24
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less
Intrinsic errors in transporting a single-spin qubit through a double quantum dot
NASA Astrophysics Data System (ADS)
Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.
2017-07-01
Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.
NASA Astrophysics Data System (ADS)
Tasaki, Hal
2018-06-01
We study a quantum spin system on the d-dimensional hypercubic lattice Λ with N=L^d sites with periodic boundary conditions. We take an arbitrary translation invariant short-ranged Hamiltonian. For this system, we consider both the canonical ensemble with inverse temperature β _0 and the microcanonical ensemble with the corresponding energy U_N(β _0) . For an arbitrary self-adjoint operator \\hat{A} whose support is contained in a hypercubic block B inside Λ , we prove that the expectation values of \\hat{A} with respect to these two ensembles are close to each other for large N provided that β _0 is sufficiently small and the number of sites in B is o(N^{1/2}) . This establishes the equivalence of ensembles on the level of local states in a large but finite system. The result is essentially that of Brandao and Cramer (here restricted to the case of the canonical and the microcanonical ensembles), but we prove improved estimates in an elementary manner. We also review and prove standard results on the thermodynamic limits of thermodynamic functions and the equivalence of ensembles in terms of thermodynamic functions. The present paper assumes only elementary knowledge on quantum statistical mechanics and quantum spin systems.
High-fidelity readout and control of a nuclear spin qubit in silicon.
Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea
2013-04-18
Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing.
Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells
NASA Astrophysics Data System (ADS)
McGuinness, L. P.; Yan, Y.; Stacey, A.; Simpson, D. A.; Hall, L. T.; MacLaurin, D.; Prawer, S.; Mulvaney, P.; Wrachtrup, J.; Caruso, F.; Scholten, R. E.; Hollenberg, L. C. L.
2011-06-01
Fluorescent particles are routinely used to probe biological processes. The quantum properties of single spins within fluorescent particles have been explored in the field of nanoscale magnetometry, but not yet in biological environments. Here, we demonstrate optically detected magnetic resonance of individual fluorescent nanodiamond nitrogen-vacancy centres inside living human HeLa cells, and measure their location, orientation, spin levels and spin coherence times with nanoscale precision. Quantum coherence was measured through Rabi and spin-echo sequences over long (>10 h) periods, and orientation was tracked with effective 1° angular precision over acquisition times of 89 ms. The quantum spin levels served as fingerprints, allowing individual centres with identical fluorescence to be identified and tracked simultaneously. Furthermore, monitoring decoherence rates in response to changes in the local environment may provide new information about intracellular processes. The experiments reported here demonstrate the viability of controlled single spin probes for nanomagnetometry in biological systems, opening up a host of new possibilities for quantum-based imaging in the life sciences.
Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange
NASA Astrophysics Data System (ADS)
Taillefumier, Mathieu; Benton, Owen; Yan, Han; Jaubert, L. D. C.; Shannon, Nic
2017-10-01
Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2 Ti2 O7 and Dy2 Ti2 O7 exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related "quantum spin-ice" materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.
Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond
NASA Astrophysics Data System (ADS)
Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.
2005-11-01
Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.
Dynamical quantum phase transitions in extended transverse Ising models
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sourav; Dutta, Amit
2018-04-01
We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.
NASA Astrophysics Data System (ADS)
Hu, C. Y.
2016-12-01
The realization of quantum computers and quantum Internet requires not only quantum gates and quantum memories, but also transistors at single-photon levels to control the flow of information encoded on single photons. Single-photon transistor (SPT) is an optical transistor in the quantum limit, which uses a single photon to open or block a photonic channel. In sharp contrast to all previous SPT proposals which are based on single-photon nonlinearities, here I present a design for a high-gain and high-speed (up to THz) SPT based on a linear optical effect: giant circular birefringence induced by a single spin in a double-sided optical microcavity. A gate photon sets the spin state via projective measurement and controls the light propagation in the optical channel. This spin-cavity transistor can be directly configured as diodes, routers, DRAM units, switches, modulators, etc. Due to the duality as quantum gate and transistor, the spin-cavity unit provides a solid-state platform ideal for future Internet: a mixture of all-optical Internet with quantum Internet.
Quantum Computational Universality of the 2D Cai-Miyake-D"ur-Briegel Quantum State
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan
2012-02-01
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, D"ur, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by constructing single- and two-qubit universal gates. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. Furthermore, a two-dimensional cluster state can be distilled from the Cai-Miyake-D"ur-Briegel state.
Mode locking of electron spin coherences in singly charged quantum dots.
Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M
2006-07-21
The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.
Andreev, Pavel A
2015-03-01
The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin-polarized degenerate neutron matter are also considered.
Deterministic entanglement generation from driving through quantum phase transitions.
Luo, Xin-Yu; Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Han, Ming-Fei; Tey, Meng Khoon; You, Li
2017-02-10
Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a arubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs. Copyright © 2017, American Association for the Advancement of Science.
Towards scalable quantum communication and computation: Novel approaches and realizations
NASA Astrophysics Data System (ADS)
Jiang, Liang
Quantum information science involves exploration of fundamental laws of quantum mechanics for information processing tasks. This thesis presents several new approaches towards scalable quantum information processing. First, we consider a hybrid approach to scalable quantum computation, based on an optically connected network of few-qubit quantum registers. Specifically, we develop a novel scheme for scalable quantum computation that is robust against various imperfections. To justify that nitrogen-vacancy (NV) color centers in diamond can be a promising realization of the few-qubit quantum register, we show how to isolate a few proximal nuclear spins from the rest of the environment and use them for the quantum register. We also demonstrate experimentally that the nuclear spin coherence is only weakly perturbed under optical illumination, which allows us to implement quantum logical operations that use the nuclear spins to assist the repetitive-readout of the electronic spin. Using this technique, we demonstrate more than two-fold improvement in signal-to-noise ratio. Apart from direct application to enhance the sensitivity of the NV-based nano-magnetometer, this experiment represents an important step towards the realization of robust quantum information processors using electronic and nuclear spin qubits. We then study realizations of quantum repeaters for long distance quantum communication. Specifically, we develop an efficient scheme for quantum repeaters based on atomic ensembles. We use dynamic programming to optimize various quantum repeater protocols. In addition, we propose a new protocol of quantum repeater with encoding, which efficiently uses local resources (about 100 qubits) to identify and correct errors, to achieve fast one-way quantum communication over long distances. Finally, we explore quantum systems with topological order. Such systems can exhibit remarkable phenomena such as quasiparticles with anyonic statistics and have been proposed as candidates for naturally error-free quantum computation. We propose a scheme to unambiguously detect the anyonic statistics in spin lattice realizations using ultra-cold atoms in an optical lattice. We show how to reliably read and write topologically protected quantum memory using an atomic or photonic qubit.
NASA Astrophysics Data System (ADS)
Álvarez, Gonzalo A.; Levstein, Patricia R.; Pastawski, Horacio M.
2007-09-01
We have observed an environmentally induced quantum dynamical phase transition in the dynamics of a two-spin experimental swapping gate [G.A. Álvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124 (2006) 194507]. There, the exchange of the coupled states |↑,↓> and |↓,↑> gives an oscillation with a Rabi frequency b/ℏ (the spin-spin coupling). The interaction, ℏ/τSE with a spin-bath degrades the oscillation with a characteristic decoherence time. We showed that the swapping regime is restricted only to bτSE≳ℏ. However, beyond a critical interaction with the environment the swapping freezes and the system enters to a Quantum Zeno dynamical phase where relaxation decreases as coupling with the environment increases. Here, we solve the quantum dynamics of a two-spin system coupled to a spin-bath within a Liouville-von Neumann quantum master equation and we compare the results with our previous work within the Keldysh formalism. Then, we extend the model to a three interacting spin system where only one is coupled to the environment. Beyond a critical interaction the two spins not coupled to the environment oscillate with the bare Rabi frequency and relax more slowly. This effect is more pronounced when the anisotropy of the system-environment (SE) interaction goes from a purely XY to an Ising interaction form.
Enhancing coherence in molecular spin qubits via atomic clock transitions
NASA Astrophysics Data System (ADS)
Shiddiq, Muhandis; Komijani, Dorsa; Duan, Yan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Hill, Stephen
2016-03-01
Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest. There are many competing candidates for qubits, including superconducting circuits, quantum optical cavities, ultracold atoms and spin qubits, and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction. To minimize it, spins are typically diluted in a diamagnetic matrix. For example, this dilution can be taken to the extreme of a single phosphorus atom in silicon, whereas in molecular matrices a typical ratio is one magnetic molecule per 10,000 matrix molecules. However, there is a fundamental contradiction between reducing decoherence by dilution and allowing quantum operations via the interaction between spin qubits. To resolve this contradiction, the design and engineering of quantum hardware can benefit from a ‘bottom-up’ approach whereby the electronic structure of magnetic molecules is chemically tailored to give the desired physical behaviour. Here we present a way of enhancing coherence in solid-state molecular spin qubits without resorting to extreme dilution. It is based on the design of molecular structures with crystal field ground states possessing large tunnelling gaps that give rise to optimal operating points, or atomic clock transitions, at which the quantum spin dynamics become protected against dipolar decoherence. This approach is illustrated with a holmium molecular nanomagnet in which long coherence times (up to 8.4 microseconds at 5 kelvin) are obtained at unusually high concentrations. This finding opens new avenues for quantum computing based on molecular spin qubits.
Addressable single-spin control in multiple quantum dots coupled in series
NASA Astrophysics Data System (ADS)
Nakajima, Takashi
2015-03-01
Electron spin in semiconductor quantum dots (QDs) is promising building block of quantum computers for its controllability and potential scalability. Recent experiments on GaAs QDs have demonstrated necessary ingredients of universal quantum gate operations: single-spin rotations by electron spin resonance (ESR) which is virtually free from the effect of nuclear spin fluctuation, and pulsed control of two-spin entanglement. The scalability of this architecture, however, has remained to be demonstrated in the real world. In this talk, we will present our recent results on implementing single-spin-based qubits in triple, quadruple, and quintuple QDs based on a series coupled architecture defined by gate electrodes. Deterministic initialization of individual spin states and spin-state readout were performed by the pulse operation of detuning between two neighboring QDs. The spin state was coherently manipulated by ESR, where each spin in different QDs is addressed by the shift of the resonance frequency due to the inhomogeneous magnetic field induced by the micro magnet deposited on top of the QDs. Control of two-spin entanglement was also demonstrated. We will discuss key issues for implementing quantum algorithms based on three or more qubits, including the effect of a nuclear spin bath, single-shot readout fidelity, and tuning of multiple qubit devices. Our approaches to these issues will be also presented. This research is supported by Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) from JSPS, IARPA project ``Multi-Qubit Coherent Operations'' through Copenhagen University, and Grant-in-Aid for Scientific Research from JSPS.
Müller, K; Kaldewey, T; Ripszam, R; Wildmann, J S; Bechtold, A; Bichler, M; Koblmüller, G; Abstreiter, G; Finley, J J
2013-01-01
The ability to control and exploit quantum coherence and entanglement drives research across many fields ranging from ultra-cold quantum gases to spin systems in condensed matter. Transcending different physical systems, optical approaches have proven themselves to be particularly powerful, since they profit from the established toolbox of quantum optical techniques, are state-selective, contact-less and can be extremely fast. Here, we demonstrate how a precisely timed sequence of monochromatic ultrafast (~ 2-5 ps) optical pulses, with a well defined polarisation can be used to prepare arbitrary superpositions of exciton spin states in a semiconductor quantum dot, achieve ultrafast control of the spin-wavefunction without an applied magnetic field and make high fidelity read-out the quantum state in an arbitrary basis simply by detecting a strong (~ 2-10 pA) electric current flowing in an external circuit. The results obtained show that the combined quantum state preparation, control and read-out can be performed with a near-unity (≥97%) fidelity.
Highly retrievable spin-wave-photon entanglement source.
Yang, Sheng-Jun; Wang, Xu-Jie; Li, Jun; Rui, Jun; Bao, Xiao-Hui; Pan, Jian-Wei
2015-05-29
Entanglement between a single photon and a quantum memory forms the building blocks for a quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spin-wave-photon entanglement. Polarization entanglement is created through interaction of a single photon with an ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spin-wave modes, which thus enables efficient retrieval of the spin-wave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
ERIC Educational Resources Information Center
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory
NASA Astrophysics Data System (ADS)
Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei
2015-09-01
Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.
Observation of an anomalous decoherence effect in a quantum bath at room temperature
Huang, Pu; Kong, Xi; Zhao, Nan; Shi, Fazhan; Wang, Pengfei; Rong, Xing; Liu, Ren-Bao; Du, Jiangfeng
2011-01-01
The decoherence of quantum objects is a critical issue in quantum science and technology. It is generally believed that stronger noise causes faster decoherence. Strikingly, recent theoretical work suggests that under certain conditions, the opposite is true for spins in quantum baths. Here we report an experimental observation of an anomalous decoherence effect for the electron spin-1 of a nitrogen-vacancy centre in high-purity diamond at room temperature. We demonstrate that, under dynamical decoupling, the double-transition can have longer coherence time than the single-transition even though the former couples to the nuclear spin bath as twice strongly as the latter does. The excellent agreement between the experimental and theoretical results confirms the controllability of the weakly coupled nuclear spins in the bath, which is useful in quantum information processing and quantum metrology. PMID:22146389
Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.
Vasseur, Romain; Moore, Joel E
2014-04-11
The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.
Quantum Hall effect in graphene with interface-induced spin-orbit coupling
NASA Astrophysics Data System (ADS)
Cysne, Tarik P.; Garcia, Jose H.; Rocha, Alexandre R.; Rappoport, Tatiana G.
2018-02-01
We consider an effective model for graphene with interface-induced spin-orbit coupling and calculate the quantum Hall effect in the low-energy limit. We perform a systematic analysis of the contribution of the different terms of the effective Hamiltonian to the quantum Hall effect (QHE). By analyzing the spin splitting of the quantum Hall states as a function of magnetic field and gate voltage, we obtain different scaling laws that can be used to characterize the spin-orbit coupling in experiments. Furthermore, we employ a real-space quantum transport approach to calculate the quantum Hall conductivity and investigate the robustness of the QHE to disorder introduced by hydrogen impurities. For that purpose, we combine first-principles calculations and a genetic algorithm strategy to obtain a graphene-only Hamiltonian that models the impurity.
Topological winding properties of spin edge states in the Kane-Mele graphene model
NASA Astrophysics Data System (ADS)
Wang, Zhigang; Hao, Ningning; Zhang, Ping
2009-09-01
We study the spin edge states in the quantum spin-Hall (QSH) effect on a single-atomic layer graphene-ribbon system with both intrinsic and Rashba spin-orbit couplings. The Harper equation for solving the energies of the spin edge states is derived. The results show that in the QSH phase, there are always two pairs of gapless spin-filtered edge states in the bulk energy gap, corresponding to two pairs of zero points of the Bloch function on the complex-energy Riemann surface (RS). The topological aspect of the QSH phase can be distinguished by the difference of the winding numbers of the spin edge states with different polarized directions cross the holes of the RS, which is equivalent to the Z2 topological invariance proposed by Kane and Mele [Phys. Rev. Lett. 95, 146802 (2005)].
Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State
NASA Astrophysics Data System (ADS)
Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon
2016-10-01
Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.
Epitaxy of advanced nanowire quantum devices
NASA Astrophysics Data System (ADS)
Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.
2017-08-01
Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.
Capacity of a quantum memory channel correlated by matrix product states
NASA Astrophysics Data System (ADS)
Mulherkar, Jaideep; Sunitha, V.
2018-04-01
We study the capacity of a quantum channel where channel acts like controlled phase gate with the control being provided by a one-dimensional quantum spin chain environment. Due to the correlations in the spin chain, we get a quantum channel with memory. We derive formulas for the quantum capacity of this channel when the spin state is a matrix product state. Particularly, we derive exact formulas for the capacity of the quantum memory channel when the environment state is the ground state of the AKLT model and the Majumdar-Ghosh model. We find that the behavior of the capacity for the range of the parameters is analytic.
Experimental investigation of spin-orbit coupling in n-type PbTe quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peres, M. L.; Monteiro, H. S.; Castro, S. de
2014-03-07
The spin-orbit coupling is studied experimentally in two PbTe quantum wells by means of weak antilocalization effect. Using the Hikami-Larkin-Nagaoka model through a computational global optimization procedure, we extracted the spin-orbit and inelastic scattering times and estimated the strength of the zero field spin-splitting energy Δ{sub so}. The values of Δ{sub so} are linearly dependent on the Fermi wave vector (k{sub F}) confirming theoretical predictions of the existence of large spin-orbit coupling in IV-VI quantum wells originated from pure Rashba effect.
Teleportation between distant qudits via scattering of mobile qubits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciccarello, Francesco; Zarcone, Michelangelo; Bose, Sougato
2010-04-15
We consider a one-dimensional structure where noninteracting spin-s scattering centers, such as quantum impurities or multilevel atoms, are embedded at given positions. We show that the injection into the structure of unpolarized flying qubits, such as electrons or photons, along with path detection suffice to accomplish spin-state teleportation between two centers via a third ancillary one. No action over the internal quantum state of both the spin-s particles and the flying qubits is required. The protocol enables the transfer of quantum information between well-separated static entities in nanostructures by exploiting a very low control mechanism, namely scattering.
Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator
2013-05-03
quantum entanglement . Here, we engineer frustrated antiferromagnetic interactions between spins stored in a crystal of up to 16 trapped 171Yb+ atoms. We...individual trapped ion spins (10–14) and the observation of spin frus- tration and quantum entanglement in the smallest system of three spins (15). Here...monroe@umd.edu www.sciencemag.org SCIENCE VOL 340 3 MAY 2013 583 and the excitation gap (Fig. 1A) closes, leading to a finite entropy density in the
Acetylcholine molecular arrays enable quantum information processing
NASA Astrophysics Data System (ADS)
Tamulis, Arvydas; Majauskaite, Kristina; Talaikis, Martynas; Zborowski, Krzysztof; Kairys, Visvaldas
2017-09-01
We have found self-assembly of four neurotransmitter acetylcholine (ACh) molecular complexes in a water molecules environment by using geometry optimization with DFT B97d method. These complexes organizes to regular arrays of ACh molecules possessing electronic spins, i.e. quantum information bits. These spin arrays could potentially be controlled by the application of a non-uniform external magnetic field. The proper sequence of resonant electromagnetic pulses would then drive all the spin groups into the 3-spin entangled state and proceed large scale quantum information bits.
EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology
NASA Astrophysics Data System (ADS)
Loss, Daniel
2009-10-01
Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation of quantum cellular automata, a new paradigm for computing as reported by Craig S Lent and colleagues (Lent C S, Tougaw P D, Porod W and Bernstein G H 1993 Nanotechnology 4 49-57). The increasingly sophisticated manipulation of spin has been an enduring theme of research throughout this decade, providing a number of interesting developments such as spin pumping (Cota E, Aguado R, Creffield C E and Platero G 2003 Nanotechnology 14 152-6). The idea of spin qubits, proposed by D Loss and D P DiVincenzo (1998 Phys. Rev. A 57 120), developed into an established option for advancing research in quantum computing and continues to drive fruitful avenues of research, such as the integrated superconductive magnetic nanosensor recently devised by researchers in Italy (Granata C, Esposito E, Vettoliere A, Petti L and Russo M 2008 Nanotechnology 19 275501). The device has a spin sensitivity in units of the Bohr magneton of 100 spin Hz-1/2 and has large potential for applications in the measurement of nanoscale magnetization and quantum computing. The advance of science and technology at the nanoscale is inextricably enmeshed with advances in our understanding of quantum effects. As Nanotechnology celebrates its 20th volume, research into fundamental quantum phenomena continues to be an active field of research, providing fertile pasture for developing nanotechnologies.
Thermodynamic effects of single-qubit operations in silicon-based quantum computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lougovski, Pavel; Peters, Nicholas A.
Silicon-based quantum logic is a promising technology to implement universal quantum computing. It is widely believed that a millikelvin cryogenic environment will be necessary to accommodate silicon-based qubits. This prompts a question of the ultimate scalability of the technology due to finite cooling capacity of refrigeration systems. In this work, we answer this question by studying energy dissipation due to interactions between nuclear spin impurities and qubit control pulses. Furthermore, we demonstrate that this interaction constrains the sustainable number of single-qubit operations per second for a given cooling capacity.
Thermodynamic effects of single-qubit operations in silicon-based quantum computing
Lougovski, Pavel; Peters, Nicholas A.
2018-05-21
Silicon-based quantum logic is a promising technology to implement universal quantum computing. It is widely believed that a millikelvin cryogenic environment will be necessary to accommodate silicon-based qubits. This prompts a question of the ultimate scalability of the technology due to finite cooling capacity of refrigeration systems. In this work, we answer this question by studying energy dissipation due to interactions between nuclear spin impurities and qubit control pulses. Furthermore, we demonstrate that this interaction constrains the sustainable number of single-qubit operations per second for a given cooling capacity.
Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide
NASA Astrophysics Data System (ADS)
Javadi, Alisa; Ding, Dapeng; Appel, Martin Hayhurst; Mahmoodian, Sahand; Löbl, Matthias Christian; Söllner, Immo; Schott, Rüdiger; Papon, Camille; Pregnolato, Tommaso; Stobbe, Søren; Midolo, Leonardo; Schröder, Tim; Wieck, Andreas Dirk; Ludwig, Arne; Warburton, Richard John; Lodahl, Peter
2018-05-01
The spin of an electron is a promising memory state and qubit. Connecting spin states that are spatially far apart will enable quantum nodes and quantum networks based on the electron spin. Towards this goal, an integrated spin-photon interface would be a major leap forward as it combines the memory capability of a single spin with the efficient transfer of information by photons. Here, we demonstrate such an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared in the ground state with a fidelity of up to 96%. Subsequently, the system is used to implement a single-spin photonic switch, in which the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates, single-photon transistors and the efficient generation of a photonic cluster state.
Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot.
Kawakami, E; Scarlino, P; Ward, D R; Braakman, F R; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K
2014-09-01
Nanofabricated quantum bits permit large-scale integration but usually suffer from short coherence times due to interactions with their solid-state environment. The outstanding challenge is to engineer the environment so that it minimally affects the qubit, but still allows qubit control and scalability. Here, we demonstrate a long-lived single-electron spin qubit in a Si/SiGe quantum dot with all-electrical two-axis control. The spin is driven by resonant microwave electric fields in a transverse magnetic field gradient from a local micromagnet, and the spin state is read out in the single-shot mode. Electron spin resonance occurs at two closely spaced frequencies, which we attribute to two valley states. Thanks to the weak hyperfine coupling in silicon, a Ramsey decay timescale of 1 μs is observed, almost two orders of magnitude longer than the intrinsic timescales in GaAs quantum dots, whereas gate operation times are comparable to those reported in GaAs. The spin echo decay time is ~40 μs, both with one and four echo pulses, possibly limited by intervalley scattering. These advances strongly improve the prospects for quantum information processing based on quantum dots.
Control of electron spin decoherence in nuclear spin baths
NASA Astrophysics Data System (ADS)
Liu, Ren-Bao
2011-03-01
Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath. This work was supported by Hong Kong RGC/GRF CUHK402207, CUHK402209, and CUHK402410. The author acknowledges collaboration with Nan Zhao, Jian-Liang Hu, Sai Wah Ho, Jones T. K. Wan, and Jiangfeng Du.
Anisotropic exchange interaction induced by a single photon in semiconductor microcavities
NASA Astrophysics Data System (ADS)
Chiappe, G.; Fernández-Rossier, J.; Louis, E.; Anda, E. V.
2005-12-01
We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K : spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.
Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders
Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko; ...
2017-09-11
Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG)we show studies of concrete S U ( 2 ) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids (CSLs) emerge as descendants of triple- Q spin crystals with tetrahedral magnetic order and a large scalar spin chirality. Suchmore » ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs field theories. We provides a distinct unifying perspective on the emergence of CSLs and suggests that materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.« less
Electron spin control of optically levitated nanodiamonds in vacuum.
Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-07-19
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.
NASA Astrophysics Data System (ADS)
Zou, Haiyuan; Zhao, Erhai; Liu, W. Vincent
2017-08-01
Motivated by the experimental realization of quantum spin models of polar molecule KRb in optical lattices, we analyze the spin 1 /2 dipolar Heisenberg model with competing anisotropic, long-range exchange interactions. We show that, by tilting the orientation of dipoles using an external electric field, the dipolar spin system on square lattice comes close to a maximally frustrated region similar, but not identical, to that of the J1-J2 model. This provides a simple yet powerful route to potentially realize a quantum spin liquid without the need for a triangular or kagome lattice. The ground state phase diagrams obtained from Schwinger-boson and spin-wave theories consistently show a spin disordered region between the Néel, stripe, and spiral phase. The existence of a finite quantum paramagnetic region is further confirmed by an unbiased variational ansatz based on tensor network states and a tensor renormalization group.
Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko
Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG)we show studies of concrete S U ( 2 ) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids (CSLs) emerge as descendants of triple- Q spin crystals with tetrahedral magnetic order and a large scalar spin chirality. Suchmore » ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs field theories. We provides a distinct unifying perspective on the emergence of CSLs and suggests that materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.« less
Electron spin control of optically levitated nanodiamonds in vacuum
NASA Astrophysics Data System (ADS)
Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-07-01
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.
NASA Astrophysics Data System (ADS)
Resita Arum, Sari; A, Suparmi; C, Cari
2016-01-01
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function. Project supported by the Higher Education Project (Grant No. 698/UN27.11/PN/2015).
Computer studies of multiple-quantum spin dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murdoch, J.B.
The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.
Giorgioni, Anna; Paleari, Stefano; Cecchi, Stefano; Vitiello, Elisa; Grilli, Emanuele; Isella, Giovanni; Jantsch, Wolfgang; Fanciulli, Marco; Pezzoli, Fabio
2016-01-01
Control of electron spin coherence via external fields is fundamental in spintronics. Its implementation demands a host material that accommodates the desirable but contrasting requirements of spin robustness against relaxation mechanisms and sizeable coupling between spin and orbital motion of the carriers. Here, we focus on Ge, which is a prominent candidate for shuttling spin quantum bits into the mainstream Si electronics. So far, however, the intrinsic spin-dependent phenomena of free electrons in conventional Ge/Si heterojunctions have proved to be elusive because of epitaxy constraints and an unfavourable band alignment. We overcome these fundamental limitations by investigating a two-dimensional electron gas in quantum wells of pure Ge grown on Si. These epitaxial systems demonstrate exceptionally long spin lifetimes. In particular, by fine-tuning quantum confinement we demonstrate that the electron Landé g factor can be engineered in our CMOS-compatible architecture over a range previously inaccessible for Si spintronics. PMID:28000670
Electric-field-induced interferometric resonance of a one-dimensional spin-orbit-coupled electron
Fan, Jingtao; Chen, Yuansen; Chen, Gang; Xiao, Liantuan; Jia, Suotang; Nori, Franco
2016-01-01
The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, and quantum information processing. We theoretically formulate an electric mechanism to probe the electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant patterns. We also reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-dot-based interferometry. This interferometry has potential applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, as well as the Landé factor. PMID:27966598
Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite
NASA Astrophysics Data System (ADS)
Shaginyan, V. R.; Msezane, A. Z.; Stephanovich, V. A.; Popov, K. G.; Japaridze, G. S.
2018-04-01
We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to expose the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field. We consider an experimental manifestation (optical conductivity) of a new state of matter (so-called fermion condensate) realized in quantum spin liquids, for, in many ways, they exhibit typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite produce important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of a strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to reveal the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field.
Scalable quantum computer architecture with coupled donor-quantum dot qubits
Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey
2014-08-26
A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.
Quantum Properties of Dichroic Silicon Vacancies in Silicon Carbide
NASA Astrophysics Data System (ADS)
Nagy, Roland; Widmann, Matthias; Niethammer, Matthias; Dasari, Durga B. R.; Gerhardt, Ilja; Soykal, Öney O.; Radulaski, Marina; Ohshima, Takeshi; Vučković, Jelena; Son, Nguyen Tien; Ivanov, Ivan G.; Economou, Sophia E.; Bonato, Cristian; Lee, Sang-Yun; Wrachtrup, Jörg
2018-03-01
Although various defect centers have displayed promise as either quantum sensors, single photon emitters, or light-matter interfaces, the search for an ideal defect with multifunctional ability remains open. In this spirit, we study the dichroic silicon vacancies in silicon carbide that feature two well-distinguishable zero-phonon lines and analyze the quantum properties in their optical emission and spin control. We demonstrate that this center combines 40% optical emission into the zero-phonon lines showing the contrasting difference in optical properties with varying temperature and polarization, and a 100% increase in the fluorescence intensity upon the spin resonance, and long spin coherence time of their spin-3 /2 ground states up to 0.6 ms. These results single out this defect center as a promising system for spin-based quantum technologies.
Superconducting quantum spin-Hall systems with giant orbital g-factors
NASA Astrophysics Data System (ADS)
Hankiewicz, Ewelina; Reinthaler, Rolf; Tkachov, Grigory
Topological aspects of superconductivity in quantum spin-Hall systems (QSHSs) such as thin layers of three-dimensional topological insulators (3D Tis) or two-dimensional Tis are in the focus of current research. Here, we describe a novel superconducting quantum spin-Hall effect (quantum spin Hall system in the proximity to the s-wave superconductor and in the orbital in-plane magnetic field), which is protected against elastic backscattering by combined time-reversal and particle-hole symmetry. This effect is characterized by spin-polarized edge states, which can be manipulated in weak magnetic fields due to a giant effective orbital g-factor, allowing the generation of spin currents. The phenomenon provides a novel solution to the outstanding challenge of detecting the spin-polarization of the edge states. Here we propose the detection of the edge polarization in the three-terminal junction using unusual transport properties of superconducting quantum Hall-effect: a non-monotonic excess current and a zero-bias conductance splitting. We thank for the financial support the German Science Foundation (DFG), Grants No HA 5893/4-1 within SPP 1666, HA5893/5-2 within FOR1162 and TK60/1-1 (G.T.), as well the ENB graduate school ``Topological insulators''.
NASA Astrophysics Data System (ADS)
Korenblit, Simcha
A collection of trapped atomic ions represents one of the most attractive platforms for the quantum simulation of interacting spin networks and quantum magnetism. Spin-dependent optical dipole forces applied to an ion crystal create long-range effective spin-spin interactions and allow the simulation of spin Hamiltonians that possess nontrivial phases and dynamics. We trap linear chains of 171Yb+ ions in a Paul trap, and constrain the occupation of energy levels to the ground hyperne clock-states, creating a qubit or pseudo-spin 1/2 system. We proceed to implement spin-spin couplings between two ions using the far detuned Molmer-Sorenson scheme and perform adiabatic quantum simulations of Ising Hamiltonians with long-range couplings. We then demonstrate our ability to control the sign and relative strength of the interaction between three ions. Using this control, we simulate a frustrated triangular lattice, and for the first time establish an experimental connection between frustration and quantum entanglement. We then scale up our simulation to show phase transitions from paramagnetism to ferromagnetism for nine ions, and to anti-ferromagnetism for sixteen ions. The experimental work culminates with our most complicated Hamiltonian---a long range anti-ferromagnetic Ising interaction between 10 ions with a biasing axial field. Theoretical work presented in this thesis shows how the approach to quantum simulation utilized in this thesis can be further extended and improved. It is shown how appropriate design of laser fields can provide for arbitrary multidimensional spin-spin interaction graphs even for the case of a linear spatial array of ions. This scheme uses currently existing trap technology and is scalable to levels where classical methods of simulation are intractable.
Das, Tanmoy; Balatsky, A. V.
2013-01-01
Topological insulators represent a new class of quantum phase defined by invariant symmetries and spin-orbit coupling that guarantees metallic Dirac excitations at its surface. The discoveries of these states have sparked the hope of realizing non-trivial excitations and novel effects such as a magnetoelectric effect and topological Majorana excitations. Here we develop a theoretical formalism to show that a three-dimensional topological insulator can be designed artificially via stacking bilayers of two-dimensional Fermi gases with opposite Rashba-type spin-orbit coupling on adjacent layers, and with interlayer quantum tunneling. We demonstrate that in the stack of bilayers grown along a (001)-direction, a non-trivial topological phase transition occurs above a critical number of Rashba bilayers. In the topological phase, we find the formation of a single spin-polarized Dirac cone at the -point. This approach offers an accessible way to design artificial topological insulators in a set up that takes full advantage of the atomic layer deposition approach. This design principle is tunable and also allows us to bypass limitations imposed by bulk crystal geometry. PMID:23739724
Oblique propagation of E.M. wave in magnetized quantum plasma with two different spin states
NASA Astrophysics Data System (ADS)
Kumar, Punit; Ahmad, Nafees; Singh, Shiv
2018-05-01
The dispersion relation for the oblique propagation of electromagnetic wave in high density homogeneous quantum plasma is established. The growth rate has been evaluated. The difference in the concentration of spin-up and spin-down electrons have taken in to account and effects of spin polarization is analyzed.
Global Dirac bispinor entanglement under Lorentz boosts
NASA Astrophysics Data System (ADS)
Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo
2018-03-01
The effects of Lorentz boosts on the quantum entanglement encoded by a pair of massive spin-1/2 particles are described according to the Lorentz covariant structure described by Dirac bispinors. The quantum system considered incorporates four degrees of freedom: two of them related to the bispinor intrinsic parity and the other two related to the bispinor spin projection, i.e., the Dirac particle helicity. Because of the natural multipartite structure involved, the Meyer-Wallach global measure of entanglement is preliminarily used for computing global quantum correlations, while the entanglement separately encoded by spin degrees of freedom is measured through the negativity of the reduced two-particle spin-spin state. A general framework to compute the changes on quantum entanglement induced by a boost is developed and then specialized to describe three particular antisymmetric two-particle states. According to the results obtained, two-particle spin-spin entanglement cannot be created by the action of a Lorentz boost in a spin-spin separable antisymmetric state. On the other hand, the maximal spin-spin entanglement encoded by antisymmetric superpositions is degraded by Lorentz boosts driven by high-speed frame transformations. Finally, the effects of boosts on chiral states are shown to exhibit interesting invariance properties, which can only be obtained through such a Lorentz covariant formulation of the problem.
Strain-mediated mechanical coupling to diamond spins
NASA Astrophysics Data System (ADS)
Bleszynski Jayich, Ania
2015-03-01
Nitrogen-vacancy (NV) centers in diamond are atomic-scale spin systems with remarkable quantum properties that persist to room temperature. The recent demonstration of high-quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of NV spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. We demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded NV. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen-vacancy ground-state spin. The nitrogen-vacancy center is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3x10-6 strain Hz1/2. We discuss prospects for reaching the regime of quantum coupling between phonons and spins, and we present our results in this direction. This hybrid system has exciting prospects for a phonon-based approach to integrating NVs into quantum networks. Funding from the AFOSR MURI and NSF CAREER programs are gratefully acknowledged.
Quantum speed limit time in a magnetic resonance
NASA Astrophysics Data System (ADS)
Ivanchenko, E. A.
2017-12-01
A visualization for dynamics of a qudit spin vector in a time-dependent magnetic field is realized by means of mapping a solution for a spin vector on the three-dimensional spherical curve (vector hodograph). The obtained results obviously display the quantum interference of precessional and nutational effects on the spin vector in the magnetic resonance. For any spin the bottom bounds of the quantum speed limit time (QSL) are found. It is shown that the bottom bound goes down when using multilevel spin systems. Under certain conditions the non-nil minimal time, which is necessary to achieve the orthogonal state from the initial one, is attained at spin S = 2. An estimation of the product of two and three standard deviations of the spin components are presented. We discuss the dynamics of the mutual uncertainty, conditional uncertainty and conditional variance in terms of spin standard deviations. The study can find practical applications in the magnetic resonance, 3D visualization of computational data and in designing of optimized information processing devices for quantum computation and communication.
Experiments with bosonic atoms for quantum gas assembly
NASA Astrophysics Data System (ADS)
Brown, Mark; Lin, Yiheng; Lester, Brian; Kaufman, Adam; Ball, Randall; Brossard, Ludovic; Isaev, Leonid; Thiele, Tobias; Lewis-Swan, Robert; Schymik, Kai-Niklas; Rey, Ana Maria; Regal, Cindy
2017-04-01
Quantum gas assembly is a promising platform for preparing and observing neutral atom systems on the single-atom level. We have developed a toolbox that includes ground-state laser cooling, high-fidelity loading techniques, addressable spin control, and dynamic spatial control and coupling of atoms. Already, this platform has enabled us to pursue a number of experiments studying entanglement and interference of pairs of bosonic atoms. We discuss our recent work in probabilistically entangling neutral atoms via interference, measurement, and post-selection as well as our future pursuits of interesting spin-motion dynamics of larger arrays of atoms. This work was supported by the David and Lucile Packard Foundation, National Science Foundation Physics Frontier Centers, and the National Defense Science and Engineering Graduate Fellowships program.
There are many ways to spin a photon: Half-quantization of a total optical angular momentum
Ballantine, Kyle E.; Donegan, John F.; Eastham, Paul R.
2016-01-01
The angular momentum of light plays an important role in many areas, from optical trapping to quantum information. In the usual three-dimensional setting, the angular momentum quantum numbers of the photon are integers, in units of the Planck constant ħ. We show that, in reduced dimensions, photons can have a half-integer total angular momentum. We identify a new form of total angular momentum, carried by beams of light, comprising an unequal mixture of spin and orbital contributions. We demonstrate the half-integer quantization of this total angular momentum using noise measurements. We conclude that for light, as is known for electrons, reduced dimensionality allows new forms of quantization. PMID:28861467
OPTICS. Quantum spin Hall effect of light.
Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco
2015-06-26
Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Tartakovskii, Alexander
2012-07-01
Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by Lithographic Techniques: III-V Semiconductors and Carbon: 15. Electrically controlling single spin coherence in semiconductor nanostructures Y. Dovzhenko, K. Wang, M. D. Schroer and J. R. Petta; 16. Theory of electron and nuclear spins in III-V semiconductor and carbon-based dots H. Ribeiro and G. Burkard; 17. Graphene quantum dots: transport experiments and local imaging S. Schnez, J. Guettinger, F. Molitor, C. Stampfer, M. Huefner, T. Ihn and K. Ensslin; Part VI. Single Dots for Future Telecommunications Applications: 18. Electrically operated entangled light sources based on quantum dots R. M. Stevenson, A. J. Bennett and A. J. Shields; 19. Deterministic single quantum dot cavities at telecommunication wavelengths D. Dalacu, K. Mnaymneh, J. Lapointe, G. C. Aers, P. J. Poole, R. L. Williams and S. Hughes; Index.
Ground-state information geometry and quantum criticality in an inhomogeneous spin model
NASA Astrophysics Data System (ADS)
Ma, Yu-Quan
2015-09-01
We investigate the ground-state Riemannian metric and the cyclic quantum distance of an inhomogeneous quantum spin-1/2 chain in a transverse field. This model can be diagonalized by using a general canonical transformation to the fermionic Hamiltonian mapped from the spin system. The ground-state Riemannian metric is derived exactly on a parameter manifold ring S1, which is introduced by performing a gauge transformation to the spin Hamiltonian through a twist operator. The cyclic ground-state quantum distance and the second derivative of the ground-state energy are studied in different exchange coupling parameter regions. Particularly, we show that, in the case of exchange coupling parameter Ja = Jb, the quantum ferromagnetic phase can be characterized by an invariant quantum distance and this distance will decay to zero rapidly in the paramagnetic phase. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404023 and 11347131).
Fallahi, P; Yilmaz, S T; Imamoğlu, A
2010-12-17
We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.
Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera.
Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng
2018-03-23
We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting-henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.
Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera
NASA Astrophysics Data System (ADS)
Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng
2018-03-01
We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting—henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Roeck, W., E-mail: wojciech.deroeck@fys.kuleuven.be, E-mail: christian.maes@fys.kuleuven.be, E-mail: netocny@fzu.cz, E-mail: marius.schutz@fys.kuleuven.be; Maes, C., E-mail: wojciech.deroeck@fys.kuleuven.be, E-mail: christian.maes@fys.kuleuven.be, E-mail: netocny@fzu.cz, E-mail: marius.schutz@fys.kuleuven.be; Schütz, M., E-mail: wojciech.deroeck@fys.kuleuven.be, E-mail: christian.maes@fys.kuleuven.be, E-mail: netocny@fzu.cz, E-mail: marius.schutz@fys.kuleuven.be
2015-02-15
We study the projection on classical spins starting from quantum equilibria. We show Gibbsianness or quasi-locality of the resulting classical spin system for a class of gapped quantum systems at low temperatures including quantum ground states. A consequence of Gibbsianness is the validity of a large deviation principle in the quantum system which is known and here recovered in regimes of high temperature or for thermal states in one dimension. On the other hand, we give an example of a quantum ground state with strong nonlocality in the classical restriction, giving rise to what we call measurement induced entanglement andmore » still satisfying a large deviation principle.« less
Hardy's argument and successive spin-s measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahanj, Ali
2010-07-15
We consider a hidden-variable theoretic description of successive measurements of noncommuting spin observables on an input spin-s state. In this scenario, the hidden-variable theory leads to a Hardy-type argument that quantum predictions violate it. We show that the maximum probability of success of Hardy's argument in quantum theory is ((1/2)){sup 4s}, which is more than in the spatial case.
2016-09-01
TECHNICAL REPORT 3046 September 2016 GENERATION OF QUALITY PULSES FOR CONTROL OF QUBIT/QUANTUM MEMORY SPIN STATES: EXPERIMENTAL AND SIMULATION...control circuitry for control of electron/ nuclear spin states of qubits/quantum memory applicable to semiconductor, superconductor, ionic, and...coherence time of the qubit/ memory , we present as an example the integration of cryogenic superconductor components, including filters and
Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics.
Linnemann, D; Strobel, H; Muessel, W; Schulz, J; Lewis-Swan, R J; Kheruntsyan, K V; Oberthaler, M K
2016-07-01
We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.
Delayed entanglement echo for individual control of a large number of nuclear spins
Wang, Zhen-Yu; Casanova, Jorge; Plenio, Martin B.
2017-01-01
Methods to selectively detect and manipulate nuclear spins by single electrons of solid-state defects play a central role for quantum information processing and nanoscale nuclear magnetic resonance (NMR). However, with standard techniques, no more than eight nuclear spins have been resolved by a single defect centre. Here we develop a method that improves significantly the ability to detect, address and manipulate nuclear spins unambiguously and individually in a broad frequency band by using a nitrogen-vacancy (NV) centre as model system. On the basis of delayed entanglement control, a technique combining microwave and radio frequency fields, our method allows to selectively perform robust high-fidelity entangling gates between hardly resolved nuclear spins and the NV electron. Long-lived qubit memories can be naturally incorporated to our method for improved performance. The application of our ideas will increase the number of useful register qubits accessible to a defect centre and improve the signal of nanoscale NMR. PMID:28256508
Delayed entanglement echo for individual control of a large number of nuclear spins.
Wang, Zhen-Yu; Casanova, Jorge; Plenio, Martin B
2017-03-03
Methods to selectively detect and manipulate nuclear spins by single electrons of solid-state defects play a central role for quantum information processing and nanoscale nuclear magnetic resonance (NMR). However, with standard techniques, no more than eight nuclear spins have been resolved by a single defect centre. Here we develop a method that improves significantly the ability to detect, address and manipulate nuclear spins unambiguously and individually in a broad frequency band by using a nitrogen-vacancy (NV) centre as model system. On the basis of delayed entanglement control, a technique combining microwave and radio frequency fields, our method allows to selectively perform robust high-fidelity entangling gates between hardly resolved nuclear spins and the NV electron. Long-lived qubit memories can be naturally incorporated to our method for improved performance. The application of our ideas will increase the number of useful register qubits accessible to a defect centre and improve the signal of nanoscale NMR.
Relay entanglement and clusters of correlated spins
NASA Astrophysics Data System (ADS)
Doronin, S. I.; Zenchuk, A. I.
2018-06-01
Considering a spin-1/2 chain, we suppose that the entanglement passes from a given pair of particles to another one, thus establishing the relay transfer of entanglement along the chain. Therefore, we introduce the relay entanglement as a sum of all pairwise entanglements in a spin chain. For more detailed studying the effects of remote pairwise entanglements, we use the partial sums collecting entanglements between the spins separated by up to a certain number of nodes. The problem of entangled cluster formation is considered, and the geometric mean entanglement is introduced as a characteristic of quantum correlations in a cluster. Generally, the lifetime of a cluster decreases with an increase in its size.
Effect of crystal quality on performance of spin-polarized photocathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xiuguang; Ozdol, Burak; Yamamoto, Masahiro
2014-11-17
GaAs/GaAsP strain-compensated superlattices (SLs) with thickness up to 90-pair were fabricated. Transmission electron microscopy revealed the SLs are of high crystal quality and the introduced strain in SLs layers are fixed in the whole SL layers. With increasing SL pair number, the strain-compensated SLs show a less depolarization than the conventional strained SLs. In spite of the high crystal quality, the strain-compensated SLs also remain slightly depolarized with increasing SL pairs and the decrease in spin-polarization contributes to the spin relaxation time. 24-pair of GaAs/GaAsP strain-compensated SL demonstrates a maximum spin-polarization of 92% with a high quantum efficiency of 1.6%.
Double line groups: structure, irreducible representations and spin splitting of the bands
NASA Astrophysics Data System (ADS)
Lazić, N.; Milivojević, M.; Vuković, T.; Damnjanović, M.
2018-06-01
Double line groups are derived, structurally examined and classified within 13 infinite families. Their irreducible representations, found and tabulated, single out the complete set of conserved quantum numbers in fermionic quasi-one-dimensional systems possessing either translational periodicity or incommensurate helical symmetry. Spin–orbit interaction is analyzed: the induced orbital band splitting and the consequent removal of the spin degeneracy are completely explained. Being incompatible with vertical mirror symmetry, as well as with simultaneous invariance under time-reversal and horizontal (roto)reflections, spin splitting and spin polarized currents may occur only in the systems with the first and the fifth family double line group symmetry. The effects are illustrated on carbon nanotubes.
Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry
Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; ...
2015-05-26
The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy,more » and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. Finally, this indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.« less
NASA Astrophysics Data System (ADS)
Doty, Matthew F.; Ma, Xiangyu; Zide, Joshua M. O.; Bryant, Garnett W.
2017-09-01
Self-assembled InAs Quantum Dots (QDs) are often called "artificial atoms" and have long been of interest as components of quantum photonic and spintronic devices. Although there has been substantial progress in demonstrating optical control of both single spins confined to a single QD and entanglement between two separated QDs, the path toward scalable quantum photonic devices based on spins remains challenging. Quantum Dot Molecules, which consist of two closely-spaced InAs QDs, have unique properties that can be engineered with the solid state analog of molecular engineering in which the composition, size, and location of both the QDs and the intervening barrier are controlled during growth. Moreover, applied electric, magnetic, and optical fields can be used to modulate, in situ, both the spin and optical properties of the molecular states. We describe how the unique photonic properties of engineered Quantum Dot Molecules can be leveraged to overcome long-standing challenges to the creation of scalable quantum devices that manipulate single spins via photonics.
Low temperature nano-spin filtering using a diluted magnetic semiconductor core-shell quantum dot
NASA Astrophysics Data System (ADS)
Chattopadhyay, Saikat; Sen, Pratima; Andrews, Joshep Thomas; Sen, Pranay Kumar
2014-07-01
The spin polarized electron transport properties and spin polarized tunneling current have been investigated analytically in a diluted magnetic semiconductor core-shell quantum dot in the presence of applied electric and magnetic fields. Assuming the electron wave function to satisfy WKB approximation, the electron energy eigenvalues have been calculated. The spin polarized tunneling current and the spin dependent tunneling coefficient are obtained by taking into account the exchange interaction and Zeeman splitting. Numerical estimates made for a specific diluted magnetic semiconductor, viz., Zn1-xMnxSe/ZnS core-shell quantum dot establishes the possibility of a nano-spin filter for a particular biasing voltage and applied magnetic field. Influence of applied voltage on spin polarized electron transport has been investigated in a CSQD.
Spin supercurrent and effect of quantum phase transition in the two-dimensional XY model
NASA Astrophysics Data System (ADS)
Lima, L. S.
2018-04-01
We have verified the influence of quantum phase transition on spin transport in the spin-1 two-dimensional XY model on the square lattice, with easy plane, single ion and exchange anisotropy. We analyze the effect of the phase transition from the Néel phase to the paramagnetic phase on the AC spin conductivity. Our results show a bit influence of the quantum phase transition on the conductivity. We also obtain a conventional spin transport for ω > 0 and an ideal spin transport in the limit of DC conductivity and therefore, a superfluid spin transport for the DC current in this limit. We have made the diagrammatic expansion for the Green-function with objective to include the effect exciton-exciton scattering on the results.
Quantum simulation of transverse Ising models with Rydberg atoms
NASA Astrophysics Data System (ADS)
Schauss, Peter
2018-04-01
Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1/{r}6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.
Robust thermal quantum correlation and quantum phase transition of spin system on fractal lattices
NASA Astrophysics Data System (ADS)
Xu, Yu-Liang; Zhang, Xin; Liu, Zhong-Qiang; Kong, Xiang-Mu; Ren, Ting-Qi
2014-06-01
We investigate the quantum correlation measured by quantum discord (QD) for thermalized ferromagnetic Heisenberg spin systems in one-dimensional chains and on fractal lattices using the decimation renormalization group approach. It is found that the QD between two non-nearest-neighbor end spins exhibits some interesting behaviors which depend on the anisotropic parameter Δ, the temperature T, and the size of system L. With increasing Δ continuously, the QD possesses a cuspate change at Δ = 0 which is a critical point of quantum phase transition (QPT). There presents the "regrowth" tendency of QD with increasing T at Δ < 0, in contrast to the "growth" of QD at Δ > 0. As the size of the system L becomes large, there still exists considerable thermal QD between long-distance end sites in spin chains and on the fractal lattices even at unentangled states, and the long-distance QD can spotlight the presence of QPT. The robustness of QD on the diamond-type hierarchical lattices is stronger than that in spin chains and Koch curves, which indicates that the fractal can affect the behaviors of quantum correlation.
Field-Driven Quantum Criticality in the Spinel Magnet ZnCr2 Se4
NASA Astrophysics Data System (ADS)
Gu, C. C.; Zhao, Z. Y.; Chen, X. L.; Lee, M.; Choi, E. S.; Han, Y. Y.; Ling, L. S.; Pi, L.; Zhang, Y. H.; Chen, G.; Yang, Z. R.; Zhou, H. D.; Sun, X. F.
2018-04-01
We report detailed dc and ac magnetic susceptibilities, specific heat, and thermal conductivity measurements on the frustrated magnet ZnCr2 Se4 . At low temperatures, with an increasing magnetic field, this spinel material goes through a series of spin state transitions from the helix spin state to the spiral spin state and then to the fully polarized state. Our results indicate a direct quantum phase transition from the spiral spin state to the fully polarized state. As the system approaches the quantum criticality, we find strong quantum fluctuations of the spins with behaviors such as an unconventional T2 -dependent specific heat and temperature-independent mean free path for the thermal transport. We complete the full phase diagram of ZnCr2 Se4 under the external magnetic field and propose the possibility of frustrated quantum criticality with extended densities of critical modes to account for the unusual low-energy excitations in the vicinity of the criticality. Our results reveal that ZnCr2 Se4 is a rare example of a 3D magnet exhibiting a field-driven quantum criticality with unconventional properties.
Perturbation approach for nuclear magnetic resonance solid-state quantum computation
Berman, G. P.; Kamenev, D. I.; Tsifrinovich, V. I.
2003-01-01
A dynmore » amics of a nuclear-spin quantum computer with a large number ( L = 1000 ) of qubits is considered using a perturbation approach. Small parameters are introduced and used to compute the error in an implementation of an entanglement between remote qubits, using a sequence of radio-frequency pulses. The error is computed up to the different orders of the perturbation theory and tested using exact numerical solution.« less
Quantum decoration transformation for spin models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de
2016-09-15
It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models.more » To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.« less
Quantum decoration transformation for spin models
NASA Astrophysics Data System (ADS)
Braz, F. F.; Rodrigues, F. C.; de Souza, S. M.; Rojas, Onofre
2016-09-01
It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the "classical" limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising-Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.
Light nuclei of even mass number in the Skyrme model
NASA Astrophysics Data System (ADS)
Battye, R. A.; Manton, N. S.; Sutcliffe, P. M.; Wood, S. W.
2009-09-01
We consider the semiclassical rigid-body quantization of Skyrmion solutions of mass numbers B=4,6,8,10, and 12. We determine the allowed quantum states for each Skyrmion and find that they often match the observed states of nuclei. The spin and isospin inertia tensors of these Skyrmions are accurately calculated for the first time and are used to determine the excitation energies of the quantum states. We calculate the energy level splittings, using a suitably chosen parameter set for each mass number. We find good qualitative and encouraging quantitative agreement with experiment. In particular, the rotational bands of beryllium-8 and carbon-12, along with isospin 1 triplets and isospin 2 quintets, are especially well reproduced. We also predict the existence of states that have not yet been observed and make predictions for the unknown quantum numbers of some observed states.
Engineered long-range interactions on a 2D array of trapped ions
NASA Astrophysics Data System (ADS)
Britton, Joseph W.; Sawyer, Brian C.; Bollinger, John J.; Freericks, James K.
2014-03-01
Ising interactions are one paradigm used to model quantum magnetism in condensed matter systems. At NIST Boulder we confine and Doppler laser cool hundreds of 9Be+ ions in a Penning trap. The valence electron of each ion behaves as an ideal spin-1/2 particle and, in the limit of weak radial confinement relative to axial confinement, the ions naturally form a two-dimensional triangular lattice. A variable-range anti-ferromagnetic Ising interaction is engineered with a spin-dependent optical dipole force (ODF) through spin-dependent excitation of collective modes of ion motion. We have also exploited this spin-dependent force to perform spectroscopy and thermometry of the normal modes of the trapped ion crystal. The high spin-count and long-range spin-spin couplings achievable in the NIST Penning trap brings within reach simulation of computationally intractable problems in quantum magnetism. Examples include modeling quantum magnetic phase transitions and propagation of spin correlations resulting from a quantum quench. The Penning system may also be amenable to observation of spin-liquid behavior thought to arise in systems where the underlying lattice structure can frustrate long-range ordering. Supported by DARPA OLE and NIST.
Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states
NASA Technical Reports Server (NTRS)
Aragone, C.; Mundarain, D.
1993-01-01
We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.
NASA Astrophysics Data System (ADS)
Chang, Shu-Wei; Chang-Hasnain, Connie J.; Wang, Hailin
2005-03-01
The electromagnetically induced transparency from spin coherence has been proposed in [001] quantum wells recently. [1] The spin coherence is a potential candidate to demonstrate semiconductor-based slow light at room temperature. However, the spin coherence time is not long enough to demonstrate a significant slowdown factor in [001] quantum wells. Further, the required transition of light-hole excitons lies in the absorption of heavy-hole continuum states. The extra dephasing and absorption from these continuum states are drawbacks for slow light. Here, we propose to use [110] strained quantum wells instead of [001] quantum wells. The long spin relaxation time in [110] quantum wells at room temperature, and thus more robust spin coherence, [2] as well as the strain-induced separation [3, 4] of the light-hole exciton transition from the heavy-hole continuum absorption can help to slow down light in quantum wells. [1] T. Li, H. Wang, N. H. Kwong, and R. Binder, Opt. Express 11, 3298 (2003). [2] Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 83, 4196 (1999). [3] C. Y. P. Chao and S. L. Chuang, Phys. Rev. B 46, 4110 (1992). [4] C. Jagannath, E. S. Koteles, J. Lee, Y. J. Chen, B. S. Elman, and J. Y. Chi, Phys. Rev. B 34, 7027 (1986).
Julius Edgar Lilienfeld Prize Talk: Quantum spintronics: abandoning perfection for new technologies
NASA Astrophysics Data System (ADS)
Awschalom, David D.
2015-03-01
There is a growing interest in exploiting the quantum properties of electronic and nuclear spins for the manipulation and storage of information in the solid state. Such schemes offer qualitatively new scientific and technological opportunities by leveraging elements of standard electronics to precisely control coherent interactions between electrons, nuclei, and electromagnetic fields. We provide an overview of the field, including a discussion of temporally- and spatially-resolved magneto-optical measurements designed for probing local moment dynamics in electrically and magnetically doped semiconductor nanostructures. These early studies provided a surprising proof-of-concept that quantum spin states can be created and controlled with high-speed optoelectronic techniques. However, as electronic structures approach the atomic scale, small amounts of disorder begin to have outsized negative effects. An intriguing solution to this conundrum is emerging from recent efforts to embrace semiconductor defects themselves as a route towards quantum machines. Individual defects in carbon-based materials possess an electronic spin state that can be employed as a solid state quantum bit at and above room temperature. Developments at the frontier of this field include gigahertz coherent control, nanofabricated spin arrays, nuclear spin quantum memories, and nanometer-scale sensing. We will describe advances towards quantum information processing driven by both physics and materials science to explore electronic, photonic, and magnetic control of spin. Work supported by the AFOSR, ARO, DARPA, NSF, and ONR.
Robust Learning Control Design for Quantum Unitary Transformations.
Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi
2017-12-01
Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.
Magnetic Molecules from Chemist's Point of View
NASA Astrophysics Data System (ADS)
Hendrickson, David
2002-03-01
A single-molecule magnet (SMM) is a molecule that functions as a nanoscale, single-domain magnetic particle that, below its blocking temperature, exhibits magnetization hysteresis [1]. SMMs have attracted considerable interest because they : (1) can serve as the smallest nanomagnet, monodisperse in size, shape and anisotropy; (2) exhibit quantum tunneling of magnetization (QTM); and (3) may function as memory devices in a quantum computer. SMM’s are synthetically designed nanomagnets, built from a core containing metal ion unpaired spin carriers bridged by oxide or other simple ions which is surrounded by organic ligands. Many systematic changes can be made in the structure of these molecular nanomagnets. Manganese-containing SMM’s are known with from Mn4 to Mn_30 compositions. The magnetic bistability, which is desirable for data storage applications, is achievable at temperatures below 3K. The largest spin of the ground state of a SMM is presently S = 13. Appreciable largely uniaxial magnetoanisotropy in the ground state leads to magnetic bistability. Rather than a continuum of higher energy states separating the “spin-up” and “spin-down” ground states, the quantum nature of the molecular nanomagnets result in a well defined ladder of discrete quantum states. Recent studies have definitively shown that, under conditions that can be controlled via the application of external perturbations, quantum tunneling may occur through the energy separating the “spin-up” and “spin-down” states. The tunneling is due to weak symmetry breaking perturbations that give rise to long-lived quantum states consisting of coherent superpositions of the “spin-up” and “spin-down” states. It is the ability to manipulate these coherent states that makes SMMs particularly attractive for quantum computation. Reference: [1] G. Christou, D. Gatteschi, D. N. Hendrickson, R. Sessoli, “Single-molecule Magnets”, M.R.S. Bull. 25, 66 (2001).
Production and Detection of Spin-Entangled Electrons in Mesoscopic Conductors
NASA Astrophysics Data System (ADS)
Burkard, Guido
2006-03-01
Electron spins are an extremely versatile form of quantum bits. When localized in quantum dots, they can form a register for quantum computation. Moreover, being attached to a charge in a mesoscopic conductor allows the electron spin to play the role of a mobile carrier of quantum information similarly to photons in optical quantum communication. Since entanglement is a basic resource in quantum communication, the production and detection of spin-entangled Einstein-Podolsky-Rosen (EPR) pairs of electrons are of great interest. Besides the practical importance, it is of fundamental interest to test quantum non-locality for electrons. I review the theoretical schemes for the entanglement production in superconductor-normal junctions [1] and other systems. The electron spin entanglement can be detected and quantified from measurements of the fluctuations (shot noise) of the charge current after the electrons have passed through an electronic beam splitter [2,3]. This two-particle interference effect is related to the Hanbury-Brown and Twiss experiment and leads to a doubling of the shot noise SI=<δI δI>φ=0 for spin-entangled states, allowing their differentiation from unentangled pairs. I report on the role of spin-orbit coupling (Rashba and Dresselhaus) in a complete characterization of the spin entanglement [4]. Finally, I address the effects of a discrete level spectrum in the mesoscopic leads and of backscattering and decoherence.[1] P. Recher, E. V. Sukhorukov, D. Loss, Phys. Rev. B 63, 165314 (2001)[2] G. Burkard, D. Loss, E. V. Sukhorukov, Phys. Rev. B 61, R16303 (2000)[3] G. Burkard and D. Loss, Phys. Rev. Lett.91, 087903 (2003)[4] J. C. Egues, G. Burkard, D. Saraga, J. Schliemann, D. Loss, cond-mat/0509038, to appear in Phys.Rev.B (2005).
Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet.
Ulloa, Camilo; Duine, R A
2018-04-27
Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.
Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet
NASA Astrophysics Data System (ADS)
Ulloa, Camilo; Duine, R. A.
2018-04-01
Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.
Electron spin control of optically levitated nanodiamonds in vacuum
NASA Astrophysics Data System (ADS)
Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-05-01
Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect.
Spin-wave utilization in a quantum computer
NASA Astrophysics Data System (ADS)
Khitun, A.; Ostroumov, R.; Wang, K. L.
2001-12-01
We propose a quantum computer scheme using spin waves for quantum-information exchange. We demonstrate that spin waves in the antiferromagnetic layer grown on silicon may be used to perform single-qubit unitary transformations together with two-qubit operations during the cycle of computation. The most attractive feature of the proposed scheme is the possibility of random access to any qubit and, consequently, the ability to recognize two qubit gates between any two distant qubits. Also, spin waves allow us to eliminate the use of a strong external magnetic field and microwave pulses. By estimate, the proposed scheme has as high as 104 ratio between quantum system coherence time and the time of a single computational step.
A scalable quantum computer with ions in an array of microtraps
Cirac; Zoller
2000-04-06
Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).
Colloquium: Herbertsmithite and the search for the quantum spin liquid
Norman, M. R.
2016-12-02
Quantum spin liquids form a novel class of matter where, despite the existence of strong exchange interactions, spins do not order down to the lowest measured temperature. Typically, these occur in lattices that act to frustrate the appearance of magnetism. In two dimensions, the classic example is the kagome lattice composed of corner sharing triangles. There are a variety of minerals whose transition metal ions form such a lattice. Hence, a number of them have been studied and were then subsequently synthesized in order to obtain more pristine samples. Of particular note was the report in 2005 by Dan Nocera'smore » group of the synthesis of herbertsmithite, composed of a lattice of copper ions sitting on a kagome lattice, which indeed does not order down to the lowest measured temperature despite the existence of a large exchange interaction of 17 meV. Over the past decade, this material has been extensively studied, yielding a number of intriguing surprises that have in turn motivated a resurgence of interest in the theoretical study of the spin 1/2 Heisenberg model on a kagome lattice. In this paper, this Colloquium reviews these developments and then discusses potential future directions, both experimental and theoretical, as well as the challenge of doping these materials with the hope that this could lead to the discovery of novel topological and superconducting phases.« less
NASA Astrophysics Data System (ADS)
Poszwa, A.
2018-05-01
We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.
Quantum ring with the Rashba spin-orbit interaction in the regime of strong light-matter coupling
NASA Astrophysics Data System (ADS)
Kozin, V. K.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.
2018-04-01
We developed the theory of electronic properties of semiconductor quantum rings with the Rashba spin-orbit interaction irradiated by an off-resonant high-frequency electromagnetic field (dressing field). Within the Floquet theory of periodically driven quantum systems, it is demonstrated that the dressing field drastically modifies all electronic characteristics of the rings, including spin-orbit coupling, effective electron mass, and optical response. In particular, the present effect paves the way to controlling the spin polarization of electrons with light in prospective ring-shaped spintronic devices.
Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa
2007-07-27
We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.
NASA Astrophysics Data System (ADS)
Dolui, Kapildeb; Nikolić, Branislav K.
2017-12-01
Spin-memory loss (SML) of electrons traversing ferromagnetic-metal/heavy-metal (FM/HM), FM/normal-metal (FM/NM), and HM/NM interfaces is a fundamental phenomenon that must be invoked to explain consistently large numbers of spintronic experiments. However, its strength extracted by fitting experimental data to phenomenological semiclassical theory, which replaces each interface by a fictitious bulk diffusive layer, is poorly understood from a microscopic quantum framework and/or materials properties. Here we describe an ensemble of flowing spin quantum states using spin-density matrix, so that SML is measured like any decoherence process by the decay of its off-diagonal elements or, equivalently, by the reduction of the magnitude of polarization vector. By combining this framework with density functional theory, we examine how all three components of the polarization vector change at Co/Ta, Co/Pt, Co/Cu, Pt/Cu, and Pt/Au interfaces embedded within Cu/FM/HM/Cu vertical heterostructures. In addition, we use ab initio Green's functions to compute spectral functions and spin textures over FM, HM, and NM monolayers around these interfaces which quantify interfacial spin-orbit coupling and explain the microscopic origin of SML in long-standing puzzles, such as why it is nonzero at the Co/Cu interface; why it is very large at the Pt/Cu interface; and why it occurs even in the absence of disorder, intermixing and magnons at the interface.
Phase-tunable temperature amplifier
NASA Astrophysics Data System (ADS)
Paolucci, F.; Marchegiani, G.; Strambini, E.; Giazotto, F.
2017-06-01
Coherent caloritronics, the thermal counterpart of coherent electronics, has drawn growing attention since the discovery of heat interference in 2012. Thermal interferometers, diodes, transistors and nano-valves have been theoretically proposed and experimentally demonstrated by exploiting the quantum phase difference between two superconductors coupled through a Josephson junction. So far, the quantum-phase modulator has been realized in the form of a superconducting quantum interference device (SQUID) or a superconducting quantum interference proximity transistor (SQUIPT). Thence, an external magnetic field is necessary in order to manipulate the heat transport. Here, we theoretically propose the first on-chip fully thermal caloritronic device: the phase-tunable temperature amplifier (PTA). Taking advantage of a recently discovered thermoelectric effect in spin-split superconductors coupled to a spin-polarized system, we generate the magnetic flux controlling the transport through a temperature-biased SQUIPT by applying a temperature gradient. We simulate the behavior of the device and define a number of figures of merit in full analogy with voltage amplifiers. Notably, our architecture ensures almost infinite input thermal impedance, maximum gain of about 11 and efficiency reaching the 95%. This concept paves the way for applications in radiation sensing, thermal logics and quantum information.
Spin-valleytronics of silicene based nanodevices (SBNs)
NASA Astrophysics Data System (ADS)
Ahmed, Ibrahim Sayed; Asham, Mina Danial; Phillips, Adel Helmy
2018-06-01
The quantum spin and valley characteristics in normal silicene/ferromagnetic silicene/normal silicene junction are investigated under the effects of both electric field and the exchange field of the ferromagnetic silicene. The spin resolved conductance and valley resolved conductance are deduced by solving the Dirac equation. Results show resonant oscillations of both spin and valley conductance. These oscillations might be due to confined states of ferromagnetic silicene. The spin and valley polarizations are also computed. Their trends of figures show that they might be tuned and modulated by the electric field and the exchange field of the ferromagnetic silicene. The present investigated silicene nanodevice might be good for spin-valleytronics applications which are needed for quantum information processing and quantum logic circuits.
Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.
Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H
2011-12-06
Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.
Manipulating Topological Edge Spins in One-Dimensional Optical Lattice
NASA Astrophysics Data System (ADS)
Liu, Xiong-Jun; Liu, Zheng-Xin; Cheng, Meng
2013-03-01
We propose to observe and manipulate topological edge spins in 1D optical lattice based on currently available experimental platforms. Coupling the atomic spin states to a laser-induced periodic Zeeman field, the lattice system can be driven into a symmetry protected topological (SPT) phase, which belongs to the chiral unitary (AIII) class protected by particle number conservation and chiral symmetries. In free-fermion case the SPT phase is classified by a Z invariant which reduces to Z4 with interactions. The zero edge modes of the SPT phase are spin-polarized, with left and right edge spins polarized to opposite directions and forming a topological spin-qubit (TSQ). We demonstrate a novel scheme to manipulate the zero modes and realize single spin control in optical lattice. The manipulation of TSQs has potential applications to quantum computation. We acknowledge the support from JQI-NSF-PFC, Microsoft-Q, and DARPA- QuEST.
Relativistic particle in a box: Klein-Gordon versus Dirac equations
NASA Astrophysics Data System (ADS)
Alberto, Pedro; Das, Saurya; Vagenas, Elias C.
2018-03-01
The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.
Crystallization of spin superlattices with pressure and field in the layered magnet SrCu 2(BO 3) 2
Haravifard, S.; Graf, D.; Feiguin, A. E.; ...
2016-06-20
An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu 2(BO 3) 2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices.more » In conclusion, the magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems.« less
Matsuo, Sadashige; Ueda, Kento; Baba, Shoji; Kamata, Hiroshi; Tateno, Mizuki; Shabani, Javad; Palmstrøm, Christopher J; Tarucha, Seigo
2018-02-22
The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices.
Spin qubit transport in a double quantum dot
NASA Astrophysics Data System (ADS)
Zhao, Xinyu; Hu, Xuedong
Long distance spin communication is a crucial ingredient to scalable quantum computer architectures based on electron spin qubits. One way to transfer spin information over a long distance on chip is via electron transport. Here we study the transport of an electron spin qubit in a double quantum dot by tuning the interdot detuning voltage. We identify a parameter regime where spin relaxation hot-spots can be avoided and high-fidelity spin transport is possible. Within this parameter space, the spin transfer fidelity is determined by the operation speed and the applied magnetic field. In particular, near zero detuning, a proper choice of operation speed is essential to high fidelity. In addition, we also investigate the modification of the effective g-factor by the interdot detuning, which could lead to a phase error between spin up and down states. The results presented in this work could be a useful guidance for experimentally achieving high-fidelity spin qubit transport. We thank financial support by US ARO via Grant W911NF1210609.
Spin Foam Models of Quantum Gravity
NASA Astrophysics Data System (ADS)
Miković, A.
2005-03-01
We give a short review of the spin foam models of quantum gravity, with an emphasis on the Barret-Crane model. After explaining the shortcomings of the Barret-Crane model, we briefly discuss two new approaches, one based on the 3d spin foam state sum invariants for the embedded spin networks, and the other based on representing the string scattering amplitudes as 2d spin foam state sum invariants.
Spin-Orbit Coupled Bose-Einstein Condensates
2016-11-03
generalized the new concepts to interacting spin-1/2 bosons in optical lattices and described a superfluid-to-Mott insulator transition in spin-orbit...and quantum phase transitions in topological insulators , Physical Review B, (09 2010): 0. doi: 10.1103/PhysRevB.82.115125 Christopher Varney, Kai...109.235308 J. Radi?, A. Di Ciolo, K. Sun, V. Galitski. Exotic Quantum Spin Models in Spin-Orbit-Coupled Mott Insulators , Physical Review Letters
Coherent control with optical pulses for deterministic spin-photon entanglement
NASA Astrophysics Data System (ADS)
Truex, Katherine; Webster, L. A.; Duan, L.-M.; Sham, L. J.; Steel, D. G.
2013-11-01
We present a procedure for the optical coherent control of quantum bits within a quantum dot spin-exciton system, as a preliminary step to implementing a proposal by Yao, Liu, and Sham [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.030504 95, 030504 (2005)] for deterministic spin-photon entanglement. The experiment proposed here utilizes a series of picosecond optical pulses from a single laser to coherently control a single self-assembled quantum dot in a magnetic field, creating the precursor state in 25 ps with a predicted fidelity of 0.991. If allowed to decay in an appropriate cavity, the ideal precursor superposition state would create maximum spin-photon entanglement. Numerical simulations using values typical of InAs quantum dots give a predicted entropy of entanglement of 0.929, largely limited by radiative decay and electron spin flips.
2016-09-01
TECHNICAL REPORT 3046 September 2016 GENERATION OF QUALITY PULSES FOR CONTROL OF QUBIT/QUANTUM MEMORY SPIN STATES: EXPERIMENTAL AND SIMULATION...nuclear spin states of qubits/quantum memory applicable to semiconductor, superconductor, ionic, and superconductor-ionic hybrid technologies. As the...pulse quality and need for development of single pulses with very high quality will impact directly the coherence time of the qubit/ memory , we present
NASA Astrophysics Data System (ADS)
Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper
2017-12-01
Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.
A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques
NASA Astrophysics Data System (ADS)
Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.
1998-05-01
A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.
Ultracoherent operation of spin qubits with superexchange coupling
NASA Astrophysics Data System (ADS)
Rančić, Marko J.; Burkard, Guido
2017-11-01
With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits) have evolved to become among the most coherent systems for quantum information processing. The new frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange, as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the existence of "supersweet spots", in which the qubit operations implemented by superexchange interaction are simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.
Non-Abelian fractional quantum Hall states for hard-core bosons in one dimension
NASA Astrophysics Data System (ADS)
Paredes, Belén
2012-05-01
I present a family of one-dimensional bosonic liquids analogous to non-Abelian fractional quantum Hall states. A new quantum number is introduced to characterize these liquids, the chiral momentum, which differs from the usual angular or linear momentum in one dimension. As their two-dimensional counterparts, these liquids minimize a k-body hard-core interaction with the minimum total chiral momentum. They exhibit global order, with a hidden organization of the particles in k identical copies of a one-dimensional Laughlin state. For k=2 the state is a p-wave paired phase corresponding to the Pfaffian quantum Hall state. By imposing conservation of the total chiral momentum, an exact parent Hamiltonian is derived which involves long-range tunneling and interaction processes with an amplitude decaying with the chord distance. This family of non-Abelian liquids is shown to be in formal correspondence with a family of spin-(k)/(2) liquids which are total singlets made out of k indistinguishable resonating valence bond states. The corresponding spin Hamiltonians are obtained.
Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Anquez, M.; Robbins, B. A.; Bharath, H. M.; Boguslawski, M.; Hoang, T. M.; Chapman, M. S.
2016-04-01
The dynamics of a quantum phase transition are explored using slow quenches from the polar to the broken-axisymmetry phases in a small spin-1 ferromagnetic Bose-Einstein condensate. Measurements of the evolution of the spin populations reveal a power-law scaling of the temporal onset of excitations versus quench speed as predicted from quantum extensions of the Kibble-Zurek mechanism. The satisfactory agreement of the measured scaling exponent with the analytical theory and numerical simulations provides experimental confirmation of the quantum Kibble-Zurek model.
Renormalization Group Studies and Monte Carlo Simulation for Quantum Spin Systems.
NASA Astrophysics Data System (ADS)
Pan, Ching-Yan
We have discussed the extended application of various real space renormalization group methods to the quantum spin systems. At finite temperature, we extended both the reliability and range of application of the decimation renormalization group method (DRG) for calculating the thermal and magnetic properties of low-dimensional quantum spin chains, in which we have proposed general models of the three-state Potts model and the general Heisenberg model. Some interesting finite-temperature behavior of the models has been obtained. We also proposed a general formula for the critical properties of the n-dimensional q-state Potts model by using a modified migdal-Kadanoff approach which is in very good agreement with all available results for general q and d. For high-spin systems, we have investigated the famous Haldane's prediction by using a modified block renormalization group approach in spin -1over2, spin-1 and spin-3 over2 cases. Our result supports Haldane's prediction and a novel property of the spin-1 Heisenberg antiferromagnet has been predicted. A modified quantum monte Carlo simulation approach has been developed in this study which we use to treat quantum interacting problems (we only work on quantum spin systems in this study) without the "negative sign problem". We also obtain with the Monte Carlo approach the numerical derivative directly. Furthermore, using this approach we have obtained the energy spectrum and the thermodynamic properties of the antiferromagnetic q-state Potts model, and have studied the q-color problem with the result which supports Mattis' recent conjecture of entropy for the n -dimensional q-state Potts antiferromagnet. We also find a general solution for the q-color problem in d dimensions.
Universality classes of order parameters composed of many-body bound states
Tsvelik, A. M.
2016-11-28
This theoretical paper discusses microscopic models giving rise to special types of order in which conduction electrons are bound together with localized spins to create composite order parameters. It is shown that composite order is related to the formation of a spin liquid with gapped excitations carrying quantum numbers which are a fraction of those of electron. These spin liquids are special in the sense that their formation necessarily involves spin degrees of freedom of both the conduction and the localized electrons and can be characterized by nonlocal order parameters. A detailed description of such spin liquid states is presentedmore » with a special care given to a demonstration of their robustness against local perturbations preserving the Lie group symmetry and the translational invariance.« less
Altintas, Ferdi; Müstecaplıoğlu, Özgür E
2015-08-01
We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.
NASA Astrophysics Data System (ADS)
Altintas, Ferdi; Müstecaplıoǧlu, Ã.-zgür E.
2015-08-01
We investigate a quantum heat engine with a working substance of two particles, one with a spin-1 /2 and the other with an arbitrary spin (spin s ), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.
NASA Astrophysics Data System (ADS)
Gali, Adam; Thiering, Gergő
Dopants in solids are promising candidates for implementations of quantum bits for quantum computing. In particular, the high-spin negatively charged nitrogen-vacancy defect (NV) in diamond has become a leading contender in solid-state quantum information processing. The initialization and readout of the spin is based on the spin-selective decay of the photo-excited electron to the ground state which is mediated by spin-orbit coupling between excited states states and phonons. Generally, the spin-orbit coupling plays a crucial role in the optical spinpolarization and readout of NV quantum bit (qubit) and alike. Strong electron-phonon coupling in dynamic Jahn-Teller (DJT) systems can substantially influence the effective strength of spin-orbit coupling. Here we show by ab initio supercell density functional theory (DFT) calculations that the intrinsic spin-orbit coupling is strongly damped by DJT effect in the triplet excited state that has a consequence on the rate of non-radiative decay. This theory is applied to the ground state of silicon-vacancy (SiV) and germanium-vacancy (GeV) centers in their negatively charged state that can also act like qubits. We show that the intrinsic spin-orbit coupling in SiV and GeV centers is in the 100 GHz region, in contrast to the NV center of 10 GHz region. Our results provide deep insight in the nature of SiV and GeV qubits in diamond. EU FP7 DIADEMS project (Contract No. 611143).
NASA Astrophysics Data System (ADS)
Ishioka, Sachio; Fujikawa, Kazuo
2009-06-01
Committee -- Obituary: Professor Sadao Nakajima -- Opening address / H. Fukuyama -- Welcoming address / N. Osakabe -- Cold atoms and molecules. Pseudopotential method in cold atom research / C. N. Yang. Symmetry breaking in Bose-Einstein condensates / M. Ueda. Quantized vortices in atomic Bose-Einstein condensates / M. Tsubota. Quantum degenerate gases of Ytterbium atoms / S. Uetake ... [et al.]. Superfluid properties of an ultracold fermi gas in the BCS-BEC crossover region / Y. Ohashi, N. Fukushima. Fermionic superfluidity and the BEC-BCS crossover in ultracold atomic fermi gases / M. W. Zwierlein. Kibble-Zurek mechanism in magnetization of a spinor Bose-Einstein condensate / H. Saito, Y. Kawaguchi, M. Ueda. Quasiparticle inducing Josephson effect in a Bose-Einstein condensate / S. Tsuchiya, Y. Ohashi. Stability of superfluid fermi gases in optical lattices / Y. Yunomae ... [et al.]. Z[symbol] symmetry breaking in multi-band bosonic atoms confined by a two-dimensional harmonic potential / M. Sato, A. Tokuno -- Spin hall effect and anomalous hall effect. Recent advances in anomalous hall effect and spin hall effect / N. Nagaosa. Topological insulators and the quantum spin hall effect / C. L. Kane. Application of direct and inverse spin-hall effects: electric manipulation of spin relaxation and electric detection of spin currents / K. Ando, E. Saitoh. Novel current pumping mechanism by spin dynamics / A. Takeuchi, K. Hosono, G. Tatara. Quantum spin hall phase in bismuth ultrathin film / S. Murakami. Anomalous hall effect due to the vector chirality / K. Taguchi, G. Tatara. Spin current distributions and spin hall effect in nonlocal magnetic nanostructures / R. Sugano ... [et al.]. New boundary critical phenomenon at the metal-quantum spin hall insulator transition / H. Obuse. On scaling behaviors of anomalous hall conductivity in disordered ferromagnets studied with the coherent potential approximation / S. Onoda -- Magnetic domain wall dynamics and spin related phenomena. Dynamical magnetoelectric effects in multiferroics / Y. Tokura. Exchange-stabilization of spin accumulation in the two-dimensional electron gas with Rashba-type of spin-orbit interaction / H. M. Saarikoski, G. E. W. Bauer. Electronic Aharonov-Casher effect in InGaAs ring arrays / J. Nitta, M. Kohda, T. Bergsten. Microscopic theory of current-spin interaction in ferromagnets / H. Kohno ... [et al.]. Spin-polarized carrier injection effect in ferromagnetic semiconductor / diffusive semiconductor / superconductor junctions / H. Takayanagi ... [et al.]. Low voltage control of ferromagnetism in a semiconductor P-N junction / J. Wunderlich ... [et al.].Measurement of nanosecond-scale spin-transfer torque magnetization switching / K. Ito ... [et al.]. Current-induced domain wall creep in magnetic wires / J. Ieda, S. Maekawa, S. E. Barnes. Pure spin current injection into superconducting niobium wire / K. Ohnishi, T. Kimura, Y. Otani. Switching of a single atomic spin induced by spin injection: a model calculation / S. Kokado, K. Harigaya, A. Sakuma. Spin transfer torque in magnetic tunnel junctions with synthetic ferrimagnetic layers / M. Ichimura ... [et al.]. Gapless chirality excitations in one-dimensional spin-1/2 frustrated magnets / S. Furukawa ... [et al.] -- Dirac fermions in condensed matter. Electronic states of graphene and its multi-layers / T. Ando, M. Koshino. Inter-layer magnetoresistance in multilayer massless dirac fermions system [symbol]-(BEDT-TTF)[symbol]I[symbol] / N. Tajima ... [et al.]. Theory on electronic properties of gapless states in molecular solids [symbol]-(BEDT-TTF)[symbol]I[symbol] / A. Kobayashi, Y. Suzumura, H. Fukuyama. Hall effect and diamagnetism of bismuth / Y. Fuseya, M. Ogata, H. Fukuyama. Quantum Nernst effect in a bismuth single crystal / M. Matsuo ... [et al.] -- Quantum dot systems. Kondo effect and superconductivity in single InAs quantum dots contacted with superconducting leads / S. Tarucha ... [et al.]. Electron transport through a laterally coupled triple quantum dot forming Aharonov-Bohm interferometer / T. Kubo ... [et al.]. Aharonov-Bohm oscillations in parallel coupled vertical double quantum dot / T. Hatano ... [et al.]. Laterally coupled triple self-assembled quantum dots / S. Amaha ... [et al.]. Spectroscopy of charge states of a superconducting single-electron transistor in an engineered electromagnetic environment / E. Abe ... [et al.]. Numerical study of the coulomb blockade in an open quantum dot / Y. Hamamoto, T. Kato. Symmetry in the full counting statistics, the fluctuation theorem and an extension of the Onsager theorem in nonlinear transport regime / Y. Utsumi, K. Saito. Single-artificial-atom lasing and its suppression by strong pumping / J. R. Johansson ... [et al.] -- Entanglement and quantum information processing, qubit manipulations. Photonic entanglement in quantum communication and quantum computation / A. Zeilinger. Quantum non-demolition measurement of a superconducting flux qubit / J. E. Mooij. Atomic physics and quantum information processing with superconducting circuits / F. Nori. Theory of macroscopic quantum dynamics in high-T[symbol] Josephson junctions / S. Kawabata. Silicon isolated double quantum-dot qubit architectures / D. A. Williams ... [et al.]. Controlled polarisation of silicon isolated double quantum dots with remote charge sensing for qubit use / M. G. Tanner ... [et al.].Modelling of charge qubits based on Si/SiO[symbol] double quantum dots / P. Howard, A. D. Andreev, D. A. Williams. InAs based quantum dots for quantum information processing: from fundamental physics to 'plug and play' devices / X. Xu ... [et al.]. Quantum aspects in superconducting qubit readout with Josephson bifurcation amplifier / H. Nakano ... [et al.]. Double-loop Josephson-junction flux qubit with controllable energy gap / Y. Shimazu, Y. Saito, Z. Wada. Noise characteristics of the Fano effect and Fano-Kondo effect in triple quantum dots, aiming at charge qubit detection / T. Tanamoto, Y. Nishi, S. Fujita. Geometric universal single qubit operation of cold two-level atoms / H. Imai, A. Morinaga. Entanglement dynamics in quantum Brownian motion / K. Shiokawa. Coupling superconducting flux qubits using AC magnetic flxues / Y. Liu, F. Nori. Entanglement purification using natural spin chain dynamics and single spin measurements / K. Maruyama, F. Nori. Experimental analysis of spatial qutrit entanglement of down-converted photon pairs / G. Taguchi ... [et al.]. On the phase sensitivity of two path interferometry using path-symmetric N-photon states / H. F. Hofmann. Control of multi-photon coherence using the mixing ratio of down-converted photons and weak coherent light / T. Ono, H. F. Hofmann -- Mechanical properties of confined geometry. Rattling as a novel anharmonic vibration in a solid / Z. Hiroi, J. Yamaura. Micro/nanomechanical systems for information processing / H. Yamaguchi, I. Mahboob -- Precise measurements. Electron phase microscopy for observing superconductivity and magnetism / A. Tonomura. Ratio of the Al[symbol] and Hg[symbol] optical clock frequencies to 17 decimal places / W. M. Itano ... [et al.]. STM and STS observation on titanium-carbide metallofullerenes: [symbol] / N. Fukui ... [et al.]. Single shot measurement of a silicon single electron transistor / T. Ferrus ... [et al.]. Derivation of sensitivity of a Geiger mode APDs detector from a given efficiency to estimate total photon counts / K. Hammura, D. A. Williams -- Novel properties in nano-systems. First principles study of electroluminescence in ultra-thin silicon film / Y. Suwa, S. Saito. First principles nonlinear optical spectroscopy / T. Hamada, T. Ohno. Field-induced disorder and carrier localization in molecular organic transistors / M. Ando ... [et al.]. Switching dynamics in strongly coupled Josephson junctions / H. Kashiwaya ... [et al.]. Towards quantum simulation with planar coulomb crystals / I. M. Buluta, S. Hasegawa -- Fundamental problems in quantum physics. The negative binomial distribution in quantum physics / J. Söderholm, S. Inoue. On the elementary decay process / D. Kouznetsov -- List of participants.
Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.
Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J
2009-06-25
A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less
Kim, M. G.; Wang, M.; Tucker, G. S.; ...
2015-12-02
We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe 0.957Cu 0.043) 2As 2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe 2As 2 and superconducting Ba(Fe 1–xNi x) 2As 2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe 0.957Cu 0.043) 2As 2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouplesmore » the interaction between quasiparticles and the spin fluctuations. In addition, we show that the spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Man, Zhong-Xiao, E-mail: zxman@mail.qfnu.edu.cn; An, Nguyen Ba, E-mail: nban@iop.vast.ac.vn; Xia, Yun-Jie, E-mail: yjxia@mail.qfnu.edu.cn
In combination with the theories of open system and quantum recovering measurement, we propose a quantum state transfer scheme using spin chains by performing two sequential operations: a projective measurement on the spins of ‘environment’ followed by suitably designed quantum recovering measurements on the spins of interest. The scheme allows perfect transfer of arbitrary multispin states through multiple parallel spin chains with finite probability. Our scheme is universal in the sense that it is state-independent and applicable to any model possessing spin–spin interactions. We also present possible methods to implement the required measurements taking into account the current experimental technologies.more » As applications, we consider two typical models for which the probabilities of perfect state transfer are found to be reasonably high at optimally chosen moments during the time evolution. - Highlights: • Scheme that can achieve perfect quantum state transfer is devised. • The scheme is state-independent and applicable to any spin-interaction models. • The scheme allows perfect transfer of arbitrary multispin states. • Applications to two typical models are considered in detail.« less
All-electric control of donor nuclear spin qubits in silicon
NASA Astrophysics Data System (ADS)
Sigillito, Anthony J.; Tyryshkin, Alexei M.; Schenkel, Thomas; Houck, Andrew A.; Lyon, Stephen A.
2017-10-01
The electronic and nuclear spin degrees of freedom of donor impurities in silicon form ultra-coherent two-level systems that are potentially useful for applications in quantum information and are intrinsically compatible with industrial semiconductor processing. However, because of their smaller gyromagnetic ratios, nuclear spins are more difficult to manipulate than electron spins and are often considered too slow for quantum information processing. Moreover, although alternating current magnetic fields are the most natural choice to drive spin transitions and implement quantum gates, they are difficult to confine spatially to the level of a single donor, thus requiring alternative approaches. In recent years, schemes for all-electrical control of donor spin qubits have been proposed but no experimental demonstrations have been reported yet. Here, we demonstrate a scalable all-electric method for controlling neutral 31P and 75As donor nuclear spins in silicon. Using coplanar photonic bandgap resonators, we drive Rabi oscillations on nuclear spins exclusively using electric fields by employing the donor-bound electron as a quantum transducer, much in the spirit of recent works with single-molecule magnets. The electric field confinement leads to major advantages such as low power requirements, higher qubit densities and faster gate times. Additionally, this approach makes it possible to drive nuclear spin qubits either at their resonance frequency or at its first subharmonic, thus reducing device bandwidth requirements. Double quantum transitions can be driven as well, providing easy access to the full computational manifold of our system and making it convenient to implement nuclear spin-based qudits using 75As donors.
Quantum spin liquid signatures in Kitaev-like frustrated magnets
NASA Astrophysics Data System (ADS)
Gohlke, Matthias; Wachtel, Gideon; Yamaji, Youhei; Pollmann, Frank; Kim, Yong Baek
2018-02-01
Motivated by recent experiments on α -RuCl3 , we investigate a possible quantum spin liquid ground state of the honeycomb-lattice spin model with bond-dependent interactions. We consider the K -Γ model, where K and Γ represent the Kitaev and symmetric-anisotropic interactions between spin-1/2 moments on the honeycomb lattice. Using the infinite density matrix renormalization group, we provide compelling evidence for the existence of quantum spin liquid phases in an extended region of the phase diagram. In particular, we use transfer-matrix spectra to show the evolution of two-particle excitations with well-defined two-dimensional dispersion, which is a strong signature of a quantum spin liquid. These results are compared with predictions from Majorana mean-field theory and used to infer the quasiparticle excitation spectra. Further, we compute the dynamical structure factor using finite-size cluster computations and show that the results resemble the scattering continuum seen in neutron-scattering experiments on α -RuCl3 . We discuss these results in light of recent and future experiments.
Observation of vacuum-enhanced electron spin resonance of optically levitated nanodiamonds
NASA Astrophysics Data System (ADS)
Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon
Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potential applications of NV centers in gas sensing.
Electron spin control and torsional optomechanics of an optically levitated nanodiamond in vacuum
NASA Astrophysics Data System (ADS)
Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon
Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centers, indicating potential applications of NV centers in oxygen gas sensing. For spin-optomechanics, it is important to control the orientation of the nanodiamond and NV centers in a magnetic field. Recently, we have observed the angular trapping and torsional vibration of a levitated nanodiamond, which paves the way towards levitated torsional optomechanics in the quantum regime. NSF 1555035-PHY.
Single-spin stochastic optical reconstruction microscopy
Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Neumann, Philipp; Wrachtrup, Jörg
2014-01-01
We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub–diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub–diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations. PMID:25267655
Optical pumping and negative luminescence polarization in charged GaAs quantum dots
NASA Astrophysics Data System (ADS)
Shabaev, Andrew; Stinaff, Eric A.; Bracker, Allan S.; Gammon, Daniel; Efros, Alexander L.; Korenev, Vladimir L.; Merkulov, Igor
2009-01-01
Optical pumping of electron spins and negative photoluminescence polarization are observed when interface quantum dots in a GaAs quantum well are excited nonresonantly by circularly polarized light. Both observations can be explained by the formation of long-lived dark excitons through hole spin relaxation in the GaAs quantum well prior to exciton capture. In this model, optical pumping of resident electron spins is caused by capture of dark excitons and recombination in charged quantum dots. Negative polarization results from accumulation of dark excitons in the quantum well and is enhanced by optical pumping. The dark exciton model describes the experimental results very well, including intensity and bias dependence of the photoluminescence polarization and the Hanle effect.
Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...
2015-03-30
Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less
Nanoscale solid-state quantum computing
NASA Astrophysics Data System (ADS)
Ardavan, A.; Austwick, M.; Benjamin, S.C.; Briggs, G.A.D.; Dennis, T.J.S.; Ferguson, A.; Hasko, D.G.; Kanai, M.; Khlobystov, A.N.; Lovett, B.W.; Morley, G.W.; Oliver, R.A.; Pettifor, D.G.; Porfyrakis, K.; Reina, J.H.; Rice, J.H.; Smith, J.D.; Taylor, R.A.; Williams, D.A.; Adelmann, C.; Mariette, H.; Hamers, R.J.
2003-07-01
Most experts agree that it is too early to say how quantum computers will eventually be built, and several nanoscale solid-state schemes are being implemented in a range of materials. Nanofabricated quantum dots can be made in designer configurations, with established technology for controlling interactions and for reading out results. Epitaxial quantum dots can be grown in vertical arrays in semiconductors, and ultrafast optical techniques are available for controlling and measuring their excitations. Single-walled carbon nanotubes can be used for molecular self-assembly of endohedral fullerenes, which can embody quantum information in the electron spin. The challenges of individual addressing in such tiny structures could rapidly become intractable with increasing numbers of qubits, but these schemes are amenable to global addressing methods for computation.
Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
NASA Astrophysics Data System (ADS)
Lamata, Lucas
2017-03-01
We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.
Digital-analog quantum simulation of generalized Dicke models with superconducting circuits
Lamata, Lucas
2017-01-01
We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. PMID:28256559
Stacked bilayer phosphorene: strain-induced quantum spin Hall state and optical measurement
Zhang, Tian; Lin, Jia-He; Yu, Yan-Mei; Chen, Xiang-Rong; Liu, Wu-Ming
2015-01-01
Bilayer phosphorene attracted considerable interest, giving a potential application in nanoelectronics owing to its natural bandgap and high carrier mobility. However, very little is known regarding the possible usefulness in spintronics as a quantum spin Hall (QSH) state of material characterized by a bulk energy gap and gapless spin-filtered edge states. Here, we report a strain-induced topological phase transition from normal to QSH state in bilayer phosphorene, accompanied by band-inversion that changes number from 0 to 1, which is highly dependent on interlayer stacking. When the bottom layer is shifted by 1/2 unit-cell along zigzag/armchair direction with respect to the top layer, the maximum topological bandgap 92.5 meV is sufficiently large to realize QSH effect even at room-temperature. An optical measurement of QSH effect is therefore suggested in view of the wide optical absorption spectrum extending to far infra-red, making bilayer phosphorene a promising candidate for opto-spintronic devices. PMID:26370771
Quantifying matrix product state
NASA Astrophysics Data System (ADS)
Bhatia, Amandeep Singh; Kumar, Ajay
2018-03-01
Motivated by the concept of quantum finite-state machines, we have investigated their relation with matrix product state of quantum spin systems. Matrix product states play a crucial role in the context of quantum information processing and are considered as a valuable asset for quantum information and communication purpose. It is an effective way to represent states of entangled systems. In this paper, we have designed quantum finite-state machines of one-dimensional matrix product state representations for quantum spin systems.
Quantum gyroscope based on Berry phase of spins in diamond
NASA Astrophysics Data System (ADS)
Song, Xuerui; Wang, Liujun; Diao, Wenting; Duan, Chongdi
2018-02-01
Gyroscope is the crucial sensor of the inertial navigation system, there is always high demand to improve the sensitivity and reduce the size of the gyroscopes. Using the NV center electronic spin and nuclear spin qubits in diamond, we introduce the research of new types of quantum gyroscopes based on the Berry phase shifts of the spin states during the rotation of the sensor systems. Compared with the performance of the traditional MEMS gyroscope, the sensitivity of the new types of quantum gyroscopes was highly improved and the spatial resolution was reduced to nano-scale. With the help of micro-manufacturing technology in the semiconductor industry, the quantum gyroscopes introduced here can be further integrated into chip-scale sensors.
USSR and Eastern Europe Scientific Abstracts- Physics - Number 45
1978-10-02
compound, a function of the angle between the electrical vector of the ’ light wave and the optical c-axis of the crystal. Heterodiodes have first...of naturally radioactive U, Th and K in a 1-liter sample. USSR A VECTOR MESON IN A QUANTUM ELECTROMAGNETIC FIELD Moscow TEORETICHESKAYA I...arbitrary spin in a classical plane electromagnetic field are used to find the exact wave function of a vector meson in the quantum field of a linearly