Rotational Invariance of the 2d Spin - Spin Correlation Function
NASA Astrophysics Data System (ADS)
Pinson, Haru
2012-09-01
At the critical temperature in the 2d Ising model on the square lattice, we establish the rotational invariance of the spin-spin correlation function using the asymptotics of the spin-spin correlation function along special directions (McCoy and Wu in the two dimensional Ising model. Harvard University Press, Cambridge, 1973) and the finite difference Hirota equation for which the spin-spin correlation function is shown to satisfy (Perk in Phys Lett A 79:3-5, 1980; Perk in Proceedings of III international symposium on selected topics in statistical mechanics, Dubna, August 22-26, 1984, JINR, vol II, pp 138-151, 1985).
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.
1988-01-01
Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) step functions of spin-up and spin-down in a low gravity environment, and (3) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds.
NMR spin-rotation relaxation and diffusion of methane
NASA Astrophysics Data System (ADS)
Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.
2018-05-01
The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.
Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory.
Zuniga-Gutierrez, Bernardo; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso; Simon-Bastida, Patricia; Calaminici, Patrizia; Köster, Andreas M
2015-09-14
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H(12)C-(12)CH-DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.
Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth
2015-08-11
We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.
1988-01-01
Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).
Dynamical behavior of surface tension on rotating fluids in low and microgravity environments
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.
1989-01-01
Consideration is given to the time-dependent evolutions of the free surface profile (bubble shapes) of a cylindrical container, partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry in low and microgravity environments. The dynamics of the bubble shapes are calculated for four cases: linear time-dependent functions of spin-up and spin-down in low and microgravity, linear time-dependent functions of increasing and decreasing gravity at high and low rotating cylinder speeds, time-dependent step functions of spin-up and spin-down in low gravity, and sinusoidal function oscillation of the gravity environment in high and low rotating cylinder speeds. It is shown that the computer algorithms developed by Hung et al. (1988) may be used to simulate the profile of time-dependent bubble shapes under variations of centrifugal, capillary, and gravity forces.
How should spin-weighted spherical functions be defined?
NASA Astrophysics Data System (ADS)
Boyle, Michael
2016-09-01
Spin-weighted spherical functions provide a useful tool for analyzing tensor-valued functions on the sphere. A tensor field can be decomposed into complex-valued functions by taking contractions with tangent vectors on the sphere and the normal to the sphere. These component functions are usually presented as functions on the sphere itself, but this requires an implicit choice of distinguished tangent vectors with which to contract. Thus, we may more accurately say that spin-weighted spherical functions are functions of both a point on the sphere and a choice of frame in the tangent space at that point. The distinction becomes extremely important when transforming the coordinates in which these functions are expressed, because the implicit choice of frame will also transform. Here, it is proposed that spin-weighted spherical functions should be treated as functions on the spin or rotation groups, which simultaneously tracks the point on the sphere and the choice of tangent frame by rotating elements of an orthonormal basis. In practice, the functions simply take a quaternion argument and produce a complex value. This approach more cleanly reflects the geometry involved, and allows for a more elegant description of the behavior of spin-weighted functions. In this form, the spin-weighted spherical harmonics have simple expressions as elements of the Wigner 𝔇 representations, and transformations under rotation are simple. Two variants of the angular-momentum operator are defined directly in terms of the spin group; one is the standard angular-momentum operator L, while the other is shown to be related to the spin-raising operator ð.
NASA Technical Reports Server (NTRS)
1976-01-01
The two-particle, steady-state Schroedinger equation is transformed to center of mass and internuclear distance vector coordinates, leading to the free particle wave equation for the kinetic energy motion of the molecule and a decoupled wave equation for a single particle of reduced mass moving in a spherical potential field. The latter describes the vibrational and rotational energy modes of the diatomic molecule. For fixed internuclear distance, this becomes the equation of rigid rotator motion. The classical partition function for the rotator is derived and compared with the quantum expression. Molecular symmetry effects are developed from the generalized Pauli principle that the steady-state wave function of any system of fundamental particles must be antisymmetric. Nuclear spin and spin quantum functions are introduced and ortho- and para-states of rotators, along with their degeneracies, are defined. Effects of nuclear spin on entropy are deduced. Next, rigid polyatomic rotators are considered and the partition function for this case is derived. The patterns of rotational energy levels for nonlinear molecules are discussed for the spherical symmetric top, for the prolate symmetric top, for the oblate symmetric top, and for the asymmetric top. Finally, the equilibrium energy and specific heat of rigid rotators are derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuniga-Gutierrez, Bernardo, E-mail: bzuniga.51@gmail.com; Camacho-Gonzalez, Monica; Bendana-Castillo, Alfonso
The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-clustermore » level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.« less
All-electric spin modulator based on a two-dimensional topological insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xianbo; Ai, Guoping; Liu, Ying
2016-01-18
We propose and investigate a spin modulator device consisting of two ferromagnetic leads connected by a two-dimensional topological insulator as the channel material. It exploits the unique features of the topological spin-helical edge states, such that the injected carriers with a non-collinear spin-polarization direction would travel through both edges and show interference effect. The conductance of the device can be controlled in a simple and all-electric manner by a side-gate voltage, which effectively rotates the spin-polarization of the carrier. At low voltages, the rotation angle is linear in the gate voltage, and the device can function as a good spin-polarizationmore » rotator by replacing the drain electrode with a non-magnetic material.« less
NASA Astrophysics Data System (ADS)
Wu, R.; Yun, C.; Ding, S. L.; Wen, X.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L.; Yang, J. B.
2016-08-01
The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n-1/2 function. A larger CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, R.; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS; Yun, C.
2016-08-07
The motion of antiferromagnetic interfacial spins is investigated through the temperature evolution of training effect in a Co/CoO film with in-plane biaxial anisotropy. Significant differences in the training effect and its temperature dependence are observed in the magnetic easy axis and hard axis (HA) and ascribed to the different motion modes of antiferromagnetic interfacial spins, the collective spin cluster rotation (CSR) and the single spin reversal (SSR), caused by different magnetization reversal modes of ferromagnetic layer. These motion modes of antiferromagnetic spins are successfully separated using a combination of an exponential function and a classic n{sup −1/2} function. A largermore » CSR to SSR ratio and a shorter lifetime of CSR found in the HA indicates that the domain rotation in the ferromagnetic layer tends to activate and accelerate a CSR mode in the antiferromagnetic spins.« less
Nonlinear equations of dynamics for spinning paraboloidal antennas
NASA Technical Reports Server (NTRS)
Utku, S.; Shoemaker, W. L.; Salama, M.
1983-01-01
The nonlinear strain-displacement and velocity-displacement relations of spinning imperfect rotational paraboloidal thin shell antennas are derived for nonaxisymmetrical deformations. Using these relations with the admissible trial functions in the principle functional of dynamics, the nonlinear equations of stress inducing motion are expressed in the form of a set of quasi-linear ordinary differential equations of the undetermined functions by means of the Rayleigh-Ritz procedure. These equations include all nonlinear terms up to and including the third degree. Explicit expressions are given for the coefficient matrices appearing in these equations. Both translational and rotational off-sets of the axis of revolution (and also the apex point of the paraboloid) with respect to the spin axis are considered. Although the material of the antenna is assumed linearly elastic, it can be anisotropic.
NASA Astrophysics Data System (ADS)
Zhang, C.; Yuan, H.; Tang, Z.; Quan, W.; Fang, J. C.
2016-12-01
Rotation measurement in an inertial frame is an important technology for modern advanced navigation systems and fundamental physics research. Inertial rotation measurement with atomic spin has demonstrated potential in both high-precision applications and small-volume low-cost devices. After rapid development in the last few decades, atomic spin gyroscopes are considered a promising competitor to current conventional gyroscopes—from rate-grade to strategic-grade applications. Although it has been more than a century since the discovery of the relationship between atomic spin and mechanical rotation by Einstein [Naturwissenschaften, 3(19) (1915)], research on the coupling between spin and rotation is still a focus point. The semi-classical Larmor precession model is usually adopted to describe atomic spin gyroscope measurement principles. More recently, the geometric phase theory has provided a different view of the rotation measurement mechanism via atomic spin. The theory has been used to describe a gyroscope based on the nuclear spin ensembles in diamond. A comprehensive understanding of inertial rotation measurement principles based on atomic spin would be helpful for future applications. This work reviews different atomic spin gyroscopes and their rotation measurement principles with a historical overlook. In addition, the spin-rotation coupling mechanism in the context of the quantum phase theory is presented. The geometric phase is assumed to be the origin of the measurable rotation signal from atomic spins. In conclusion, with a complete understanding of inertial rotation measurements using atomic spin and advances in techniques, wide application of high-performance atomic spin gyroscopes is expected in the near future.
The rotational dynamics of Titan from Cassini RADAR images
NASA Astrophysics Data System (ADS)
Meriggiola, Rachele; Iess, Luciano; Stiles, Bryan. W.; Lunine, Jonathan. I.; Mitri, Giuseppe
2016-09-01
Between 2004 and 2009 the RADAR instrument of the Cassini mission provided 31 SAR images of Titan. We tracked the position of 160 surface landmarks as a function of time in order to monitor the rotational dynamics of Titan. We generated and processed RADAR observables using a least squares fit to determine the updated values of the rotational parameters. We provide a new rotational model of Titan, which includes updated values for spin pole location, spin rate, precession and nutation terms. The estimated pole location is compatible with the occupancy of a Cassini state 1. We found a synchronous value of the spin rate (22.57693 deg/day), compatible at a 3-σ level with IAU predictions. The estimated obliquity is equal to 0.31°, incompatible with the assumption of a rigid body with fully-damped pole and a moment of inertia factor of 0.34, as determined by gravity measurements.
NASA Astrophysics Data System (ADS)
Chiu, Ying-Nan; Chiu, Lue-Yung Chow
1990-02-01
The spin-forbidden photo-ionization of diatomic molecules is proposed. Spin orbit interaction is invoked, resulting in the correction and mixing of the wave functions of different multiplicities. The rotation-electronic selection rules given by Dixit and McKoy (1986) for Hund's case a based on the conventional mechanism of electric dipole transition are rederived and expressed in a different format. This new format permits the generalization of the selection rules to other photoionization transitions caused by the magnetic dipole, the electric quadrupole, and the two- and three-photon operators. These selection rules, which are for transitions from one specific rotational level of a given Kronig reflection symmetry to another, will help understand rotational branching and the dynamics of interaction in the excited state. They will also help in the selective preparation of well-defined rovibronic states in resonant-enhanced multi-photon ionization processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai,M.; Ptitsyn, V.; Roser, T.
To keep the spin tune in the spin depolarizing resonance free region is required for accelerating polarized protons to high energy. In RHIC, two snakes are located at the opposite side of each accelerator. They are configured to yield a spin tune of 1/2. Two pairs of spin rotators are located at either side of two detectors in each ring in RHIC to provide longitudinal polarization for the experiments. Since the spin rotation from vertical to longitudinal is localized between the two rotators, the spin rotators do not change the spin tune. However, due to the imperfection of the orbitsmore » around the snakes and rotators, the spin tune can be shifted. This note presents the impact of the horizontal orbital angle between the two snakes on the spin tune, as well as the effect of the vertical orbital angle between two rotators at either side of the collision point on the spin tune.« less
Longitudinal nuclear spin relaxation of ortho- and para-hydrogen dissolved in organic solvents.
Aroulanda, Christie; Starovoytova, Larisa; Canet, Daniel
2007-10-25
The longitudinal relaxation time of ortho-hydrogen (the spin isomer directly observable by NMR) has been measured in various organic solvents as a function of temperature. Experimental data are perfectly interpreted by postulating two mechanisms, namely intramolecular dipolar interaction and spin-rotation, with activation energies specific to these two mechanisms and to the solvent in which hydrogen is dissolved. This permits a clear separation of the two contributions at any temperature. Contrary to the self-diffusion coefficients at a given temperature, the rotational correlation times extracted from the dipolar relaxation contribution do not exhibit any definite trend with respect to solvent viscosity. Likewise, the spin-rotation correlation time obeys Hubbard's relation only in the case of hydrogen dissolved in acetone-d6, yielding in that case a spin-rotation constant in agreement with literature data. Concerning para-hydrogen, which is NMR-silent, the only feasible approach is to dissolve para-enriched hydrogen in these solvents and to follow the back-conversion of the para-isomer into the ortho-isomer. Experimentally, this conversion has been observed to be exponential, with a time constant assumed to be the relaxation time of the singlet state (the spin state of the para-isomer). A theory, based on intermolecular dipolar interactions, has been worked out for explaining the very large values of these relaxation times which appear to be solvent-dependent.
The Effects of Nonzero Total Electron Spin in the X˜3B1State of Methylene CH 2
NASA Astrophysics Data System (ADS)
Kozin, Igor N.; Jensen, Per
1997-06-01
We report here how we have incorporated the effects of a nonzero total electron spin in the MORBID Hamiltonian and computer program [P. Jensen,J. Mol. Spectrosc.128,478-501 (1988);J. Chem. Soc. Faraday Trans. 284,1315-1340 (1988);in"Methods in Computational Molecular Physics" (S. Wilson and G. H. F. Diercksen, Eds.), Plenum Press, New York, 1992] for calculating the rovibronic energies of a triatomic molecule directly from the potential energy function. The spin-spin and spin-rotation Hamiltonian terms, given in a form depending on the vibrational coordinates, have been expressed in terms of isotope-independent functions and added to the MORBID rotation-vibration Hamiltonian. The eigenvalues of the resulting Hamiltonian are obtained in a variational procedure. This method is tested on the methylene radical CH2in theX˜3B1electronic ground state for which we describe simultaneously the splittings due to electron spin for the isotopomers12CH2,12CD2, and13CH2. For these molecules, experimental data are available, and we compare the results of least-squares fits to these data with predictions fromab initiotheory.
Nuclear spin circular dichroism.
Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia
2014-04-07
Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demissie, Taye B.
2015-12-31
This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.
Integrability of spinning particle motion in higher-dimensional rotating black hole spacetimes.
Kubizňák, David; Cariglia, Marco
2012-02-03
We study the motion of a classical spinning particle (with spin degrees of freedom described by a vector of Grassmann variables) in higher-dimensional general rotating black hole spacetimes with a cosmological constant. In all dimensions n we exhibit n bosonic functionally independent integrals of spinning particle motion, corresponding to explicit and hidden symmetries generated from the principal conformal Killing-Yano tensor. Moreover, we demonstrate that in 4-, 5-, 6-, and 7-dimensional black hole spacetimes such integrals are in involution, proving the bosonic part of the motion integrable. We conjecture that the same conclusion remains valid in all higher dimensions. Our result generalizes the result of Page et al. [Phys. Rev. Lett. 98, 061102 (2007)] on complete integrability of geodesic motion in these spacetimes.
Electrically driven spin qubit based on valley mixing
NASA Astrophysics Data System (ADS)
Huang, Wister; Veldhorst, Menno; Zimmerman, Neil M.; Dzurak, Andrew S.; Culcer, Dimitrie
2017-02-01
The electrical control of single spin qubits based on semiconductor quantum dots is of great interest for scalable quantum computing since electric fields provide an alternative mechanism for qubit control compared with magnetic fields and can also be easier to produce. Here we outline the mechanism for a drastic enhancement in the electrically-driven spin rotation frequency for silicon quantum dot qubits in the presence of a step at a heterointerface. The enhancement is due to the strong coupling between the ground and excited states which occurs when the electron wave function overcomes the potential barrier induced by the interface step. We theoretically calculate single qubit gate times tπ of 170 ns for a quantum dot confined at a silicon/silicon-dioxide interface. The engineering of such steps could be used to achieve fast electrical rotation and entanglement of spin qubits despite the weak spin-orbit coupling in silicon.
Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics
Veshtort, Mikhail; Griffin, Robert G.
2011-01-01
Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R2). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two 13C nuclei and about ten 1H nuclei from their nearest environment. Spin diffusion constants computed by this method are in excellent agreement with the spin diffusion constants obtained through equations given by the relaxation theory of PDSD. The constants resulting from these two approaches were also in excellent agreement with the results of 2D rotary resonance recoupling proton-driven spin diffusion (R3-PDSD) experiments performed in three model compounds, where magnetization exchange occurred over distances up to 4.9 Å. With the methodology presented, highly accurate internuclear distances can be extracted from such data. Relayed transfer of magnetization between distant nuclei appears to be the main (and apparently resolvable) source of uncertainty in such measurements. The non-Markovian kinetic equation was applied to the analysis of the R2 spin dynamics. The conventional semi-phenomenological treatment of relxation in R2 has been shown to be equivalent to the assumption of the Lorentzian spectral density function in the relaxatoin theory of PDSD. As this assumption is a poor approximation in real physical systems, the conventional R2 treatment is likely to carry a significant model error that has not been recognized previously. The relaxation theory of PDSD appears to provide an accurate, parameter-free alternative. Predictions of this theory agreed well with the full quantum mechanical simulations of the R2 dynamics in the few simple model systems we considered. PMID:21992326
Spinning superfluid 4He nanodroplets
NASA Astrophysics Data System (ADS)
Ancilotto, Francesco; Barranco, Manuel; Pi, Martí
2018-05-01
We have studied spinning superfluid 4He nanodroplets at zero temperature using density functional theory. Due to the irrotational character of the superfluid flow, the shapes of the spinning nanodroplets are very different from those of a viscous normal fluid drop in steady rotation. We show that when vortices are nucleated inside the superfluid droplets, their morphology, which evolves from axisymmetric oblate to triaxial prolate to two-lobed shapes, is in good agreement with experiments. The presence of vortex arrays confers to the superfluid droplets the rigid-body behavior of a normal fluid in steady rotation, and this is the ultimate reason for the surprising good agreement between recent experiments and the classical models used for their description.
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
NASA Astrophysics Data System (ADS)
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong
2016-07-01
This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.
Coherent spin transfer between molecularly bridged quantum dots.
Ouyang, Min; Awschalom, David D
2003-08-22
Femtosecond time-resolved Faraday rotation spectroscopy reveals the instantaneous transfer of spin coherence through conjugated molecular bridges spanning quantum dots of different size over a broad range of temperature. The room-temperature spin-transfer efficiency is approximately 20%, showing that conjugated molecules can be used not only as interconnections for the hierarchical assembly of functional networks but also as efficient spin channels. The results suggest that this class of structures may be useful as two-spin quantum devices operating at ambient temperatures and may offer promising opportunities for future versatile molecule-based spintronic technologies.
NASA Astrophysics Data System (ADS)
Stich, D.; Zhou, J.; Korn, T.; Schulz, R.; Schuh, D.; Wegscheider, W.; Wu, M. W.; Schüller, C.
2007-11-01
We have studied the spin dynamics of a high-mobility two-dimensional electron system in a GaAs/Al0.3Ga0.7As single quantum well by time-resolved Faraday rotation and time-resolved Kerr rotation in dependence on the initial degree of spin polarization, P , of the electrons. By increasing the initial spin polarization from the low- P regime to a significant P of several percent, we find that the spin dephasing time, T2* , increases from about 20to200ps . Moreover, T2* increases with temperature at small spin polarization but decreases with temperature at large spin polarization. All these features are in good agreement with theoretical predictions by Weng and Wu [Phys. Rev. B 68, 075312 (2003)]. Measurements as a function of spin polarization at fixed electron density are performed to further confirm the theory. A fully microscopic calculation is performed by setting up and numerically solving the kinetic spin Bloch equations, including the D’yakonov-Perel’ and the Bir-Aronov-Pikus mechanisms, with all the scattering explicitly included. We reproduce all principal features of the experiments, i.e., a dramatic decrease of spin dephasing with increasing P and the temperature dependences at different spin polarizations.
More on rotations as spin matrix polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtright, Thomas L.
2015-09-15
Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.
Pressure-induced magnetic order in FeSe: A muon spin rotation study
NASA Astrophysics Data System (ADS)
Khasanov, Rustem; Guguchia, Zurab; Amato, Alex; Morenzoni, Elvezio; Dong, Xiaoli; Zhou, Fang; Zhao, Zhongxian
2017-05-01
The magnetic order induced by the pressure was studied in FeSe by means of muon spin rotation (μ SR ) technique. By following the evolution of the oscillatory part of the μ SR signal as a function of angle between the initial muon spin polarization and 101 axis of the studied FeSe sample, it was found that the pressure-induced magnetic order in FeSe corresponds either to the collinear (single-stripe) antiferromagnetic order as observed in parent compounds of various FeAs-based superconductors or to the bi-collinear order as obtained in the FeTe system, but with the Fe spins turned by 45o within the a b plane. The value of the magnetic moment per Fe atom was estimated to be ≃0.13 -0.14 μB at p ≃1.9 GPa.
Integrability of Spinning Particle Motion in Higher-Dimensional Rotating Black Hole Spacetimes
NASA Astrophysics Data System (ADS)
Kubizňák, David; Cariglia, Marco
2012-02-01
We study the motion of a classical spinning particle (with spin degrees of freedom described by a vector of Grassmann variables) in higher-dimensional general rotating black hole spacetimes with a cosmological constant. In all dimensions n we exhibit n bosonic functionally independent integrals of spinning particle motion, corresponding to explicit and hidden symmetries generated from the principal conformal Killing-Yano tensor. Moreover, we demonstrate that in 4-, 5-, 6-, and 7-dimensional black hole spacetimes such integrals are in involution, proving the bosonic part of the motion integrable. We conjecture that the same conclusion remains valid in all higher dimensions. Our result generalizes the result of Page et al. [Phys. Rev. Lett. 98, 061102 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.061102] on complete integrability of geodesic motion in these spacetimes.
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.
2016-07-14
This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e.,more » to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e{sup ±niα}. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A{sub 1} and A{sub 2} states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.« less
Chen, Lixiang; She, Weilong
2008-09-15
We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.
Practical method for transversely measuring the spin polarization of optically pumped alkali atoms
NASA Astrophysics Data System (ADS)
Ding, Zhichao; Yuan, Jie; Long, Xingwu
2018-06-01
A practical method to measure the spin polarization of optically pumped alkali atoms is demonstrated. In order to realize transverse measurement, the transverse spin component of spin-polarized alkali atoms is created by a rotating exciting magnetic field, and detected using the optical rotation of a near-resonant probe beam for realizing a high detection sensitivity. The dependency of the optical rotation on the spin polarization of 133Cs atoms is derived theoretically and verified experimentally. By changing the direction of the rotating magnetic field, we realize the transverse measurement of the spin polarization of 133Cs atoms in either ground-state hyperfine level.
Spin Rotation of Formalism for Spin Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luccio,A.
The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.
Generalized YORP evolution: Onset of tumbling and new asymptotic states
NASA Astrophysics Data System (ADS)
Vokrouhlický, D.; Breiter, S.; Nesvorný, D.; Bottke, W. F.
2007-11-01
Asteroids have a wide range of rotation states. While the majority spin a few times to several times each day in principal axis rotation, a small number spin so slowly that they have somehow managed to enter into a tumbling rotation state. Here we investigate whether the Yarkovsky-Radzievskii-O'Keefe-Paddack (YORP) thermal radiation effect could have produced these unusual spin states. To do this, we developed a Lie-Poisson integrator of the orbital and rotational motion of a model asteroid. Solar torques, YORP, and internal energy dissipation were included in our model. Using this code, we found that YORP can no longer drive the spin rates of bodies toward values infinitely close to zero. Instead, bodies losing too much rotation angular momentum fall into chaotic tumbling rotation states where the spin axis wanders randomly for some interval of time. Eventually, our model asteroids reach rotation states that approach regular motion of the spin axis in the body frame. An analytical model designed to describe this behavior does a good job of predicting how and when the onset of tumbling motion should take place. The question of whether a given asteroid will fall into a tumbling rotation state depends on the efficiency of its internal energy dissipation and on the precise way YORP modifies the spin rates of small bodies.
Field tuning the g factor in InAs nanowire double quantum dots.
Schroer, M D; Petersson, K D; Jung, M; Petta, J R
2011-10-21
We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control. © 2011 American Physical Society
NASA Astrophysics Data System (ADS)
Yao, J. M.; Itagaki, N.; Meng, J.
2014-11-01
A study of the 4 α linear-chain structure in high-lying collective excitation states of 16O with covariant density functional theory is presented. The low-spin states are obtained by configuration mixing of particle-number and angular-momentum projected quadrupole deformed mean-field states with the generator coordinate method. The high-spin states are determined by cranking calculations. These two calculations are based on the same energy density functional PC-PK1. We have found a rotational band at low spin with the dominant intrinsic configuration considered to be the one whereby 4 α clusters stay along a common axis. The strongly deformed rod shape also appears in the high-spin region with the angular momentum 13 ℏ to18 ℏ ; however, whether the state is a pure 4 α linear chain is less obvious than for the low-spin states.
Implications of the Small Spin Changes Measured for Large Jupiter-Family Comet Nuclei
NASA Astrophysics Data System (ADS)
Kokotanekova, R.; Snodgrass, C.; Lacerda, P.; Green, S. F.; Nikolov, P.; Bonev, T.
2018-06-01
Rotational spin-up due to outgassing of comet nuclei has been identified as a possible mechanism for considerable mass-loss and splitting. We report a search for spin changes for three large Jupiter-family comets (JFCs): 14P/Wolf, 143P/Kowal-Mrkos, and 162P/Siding Spring. None of the three comets has detectable period changes, and we set conservative upper limits of 4.2 (14P), 6.6 (143P) and 25 (162P) minutes per orbit. Comparing these results with all eight other JFCs with measured rotational changes, we deduce that none of the observed large JFCs experiences significant spin changes. This suggests that large comet nuclei are less likely to undergo rotationally-driven splitting, and therefore more likely to survive more perihelion passages than smaller nuclei. We find supporting evidence for this hypothesis in the cumulative size distributions of JFCs and dormant comets, as well as in recent numerical studies of cometary orbital dynamics. We added 143P to the sample of 13 other JFCs with known albedos and phase-function slopes. This sample shows a possible correlation of increasing phase-function slopes for larger geometric albedos. Partly based on findings from recent space missions to JFCs, we hypothesise that this correlation corresponds to an evolutionary trend for JFCs. We propose that newly activated JFCs have larger albedos and steeper phase functions, which gradually decrease due to sublimation-driven erosion. If confirmed, this could be used to analyse surface erosion from ground and to distinguish between dormant comets and asteroids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirac, J. Ignacio; Sierra, German; Instituto de Fisica Teorica, UAM-CSIC, Madrid
We generalize the matrix product states method using the chiral vertex operators of conformal field theory and apply it to study the ground states of the XXZ spin chain, the J{sub 1}-J{sub 2} model and random Heisenberg models. We compute the overlap with the exact wave functions, spin-spin correlators, and the Renyi entropy, showing that critical systems can be described by this method. For rotational invariant ansatzs we construct an inhomogenous extension of the Haldane-Shastry model with long-range exchange interactions.
Spin Transparent Siberian Snake And Spin Rotator With Solenoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koop, I. A.; Otboyev, A. V.; Shatunov, P. Yu.
2007-06-13
For intermediate energies of electrons and protons it happens that it is more convenient to construct Siberian snakes and spin rotators using solenoidal fields. Strong coupling caused by the solenoids is suppressed by a number of skew and normal quadrupole magnets. More complicate problem of the spin transparency of such devices also can be solved. This paper gives two examples: spin rotator for electron ring in the eRHIC project and Siberian snake for proton (antiproton) storage ring HESR, which cover whole machines working energy region.
Hindered rotation and nuclear spin isomers separation of molecularly chemisorbed H2 on Pd(210)
NASA Astrophysics Data System (ADS)
Arguelles, Elvis F.; Kasai, Hideaki
2018-03-01
We investigated the hindered rotation and nuclear spin isomer separation of H2 on Pd(210) for various pre-adsorbed atomic hydrogen coverages (Θ), by total energy calculations based on density functional theory. Our results revealed that H2 is in the molecularly chemisorbed state and the adsorption is characterized by a highly anisotropic potential energy surface. Further, we found that J = 1 degenerate level splitting is insensitive to the increase in Θ from 1 to 2 ML. This is due to the comparable potential strengths hindering/restricting the polar rotations in both coverages. On a fully H passivated (3 ML) Pd(210), H2 is in a weakly physisorbed state with a negligible potential anisotropy. Our findings suggest that the activation barrier for polar rotational motion does not strongly depend on the adsorption energy but rather on the surface-molecule bond. The estimated rotational state desorption energies show a separation of ortho and para isomers by around 7.0 meV.
Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings
NASA Astrophysics Data System (ADS)
Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.
2017-08-01
Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.
Complete quantum control of a single quantum dot spin using ultrafast optical pulses.
Press, David; Ladd, Thaddeus D; Zhang, Bingyang; Yamamoto, Yoshihisa
2008-11-13
A basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. For qubits based on electron spin, a universal single-qubit gate is realized by a rotation of the spin by any angle about an arbitrary axis. Driven, coherent Rabi oscillations between two spin states can be used to demonstrate control of the rotation angle. Ramsey interference, produced by two coherent spin rotations separated by a variable time delay, demonstrates control over the axis of rotation. Full quantum control of an electron spin in a quantum dot has previously been demonstrated using resonant radio-frequency pulses that require many spin precession periods. However, optical manipulation of the spin allows quantum control on a picosecond or femtosecond timescale, permitting an arbitrary rotation to be completed within one spin precession period. Recent work in optical single-spin control has demonstrated the initialization of a spin state in a quantum dot, as well as the ultrafast manipulation of coherence in a largely unpolarized single-spin state. Here we demonstrate complete coherent control over an initialized electron spin state in a quantum dot using picosecond optical pulses. First we vary the intensity of a single optical pulse to observe over six Rabi oscillations between the two spin states; then we apply two sequential pulses to observe high-contrast Ramsey interference. Such a two-pulse sequence realizes an arbitrary single-qubit gate completed on a picosecond timescale. Along with the spin initialization and final projective measurement of the spin state, these results demonstrate a complete set of all-optical single-qubit operations.
Units of rotational information
NASA Astrophysics Data System (ADS)
Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping
2017-12-01
Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.
Explicit expressions of quantum mechanical rotation operators for spins 1 to 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocakoç, Mehpeyker, E-mail: mkocakoc@cu.edu.tr; Tapramaz, Recep, E-mail: recept@omu.edu.tr
2016-03-25
Quantum mechanical rotation operators are the subject of quantum mechanics, mathematics and pulsed magnetic resonance spectroscopies, namely NMR, EPR and ENDOR. They are also necessary for spin based quantum information systems. The rotation operators of spin 1/2 are well known and can be found in related textbooks. But rotation operators of other spins greater than 1/2 can be found numerically by evaluating the series expansions of exponential operator obtained from Schrödinger equation, or by evaluating Wigner-d formula or by evaluating recently established expressions in polynomial forms discussed in the text. In this work, explicit symbolic expressions of x, y andmore » z components of rotation operators for spins 1 to 2 are worked out by evaluating series expansion of exponential operator for each element of operators and utilizing linear curve fitting process. The procedures gave out exact expressions of each element of the rotation operators. The operators of spins greater than 2 are under study and will be published in a separate paper.« less
Rotational dynamics and heating of trapped nanovaterite particles (Conference Presentation)
NASA Astrophysics Data System (ADS)
Arita, Yoshihiko; Richards, Joseph M.; Mazilu, Michael; Spalding, Gabriel C.; Skelton Spesyvtseva, Susan E.; Craig, Derek; Dholakia, Kishan
2016-09-01
Rotational control over optically trapped particles has gained significant prominence in recent years. The marriage between light fields possessing optical angular momentum and the material properties of microparticles has been useful to controllably spin particles in liquid, air and vacuum. The rotational degree of freedom adds new functionality to optical traps: in addition to allowing fundamental tests of optical angular momentum, the transfer of spin angular momentum in particular can allow measurements of local viscosity and exert local stresses on cellular systems. We demonstrate optical trapping and controlled rotation of nanovaterite crystals. These particles represent the smallest birefringent crystals ever trapped and set into rotation. Rotation rates of up to 5kHz in water are recorded, representing the fastest rotation to date for dielectric particles in liquid. Laser-induced heating results in the superlinear behaviour of the rotation rate as a function of trap power. We study both the rotational and translational modes of trapped nanovaterite crystals. The particle temperatures derived from those two optomechanical modes are in good agreement, which is supported by a numerical model revealing that the observed heating is dominated by absorption of light by the particles rather than by the surrounding liquid. A comparison is performed with trapped silica particles of similar size. The use of nanovaterite particles open up new studies for levitated optomechanics in vacuum as well as microrheological properties of cells or biological media. Their size and low heating offers prospects of viscosity measurements in ultra-small volumes and potentially simpler uptake by cellular media.
NASA Astrophysics Data System (ADS)
Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.
2017-12-01
A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, I.Y.; Tirziu, A.; Tseytlin, A.A.
We consider circular strings rotating with equal spins S{sub 1}=S{sub 2}=S in two orthogonal planes in AdS{sub 5} and suggest that they may be dual to long gauge-theory operators built out of self-dual components of gauge field strength. As was found in hep-th/0404187, the one-loop anomalous dimensions of the such gauge-theory operators are described by an antiferromagnetic XXX{sub 1} spin chain and scale linearly with length L>>1. We find that in the case of rigid rotating string both the classical energy E{sub 0} and the 1-loop string correction E{sub 1} depend linearly on the spin S (within the stability regionmore » of the solution). This supports the identification of the rigid rotating string with the gauge-theory operator corresponding to the maximal-spin (ferromagnetic) state of the XXX{sub 1} spin chain. The energy of more general rotating and pulsating strings also happens to scale linearly with both the spin and the oscillation number. Such solutions should be dual to other lower-spin states of the spin chain, with the antiferromagnetic ground state presumably corresponding to the string pulsating in two planes with no rotation.« less
Spin-up of a rapidly rotating star by angular momentum loss - Effects of general relativity
NASA Technical Reports Server (NTRS)
Cook, Gregory B.; Shapiro, Stuart L.; Teukolsky, Saul A.
1992-01-01
It has recently been shown that a rapidly rotating Newtonian star can spin up by radiating angular momentum. Extremely fast pulsars losing energy and angular momentum by magnetic dipole radiation or gravitational radiation may exhibit this behavior. Here, we show that this phenomenon is more widespread for rapidly rotating stars in general relativity. We construct and tabulate polytropic sequences of fully relativistic rotating stars of constant rest mass and entropy. We find that the range of adiabatic indices allowing spin-up extends somewhat above 4/3 because of the nonlinear effects of relativistic gravity. In addition, there is a new class of 'supramassive' stars which will inevitably spin up by losing angular momentum regardless of their equation of state. A supramassive star, spinning up via angular momentum loss, will ultimately evolve until it becomes unstable to catastrophic collapse to a black hole. Spin-up in a rapidly rotating star may thus be an observational precursor to such collapse.
Clean Os(0001) electronic surface states: A first-principle fully relativistic investigation
NASA Astrophysics Data System (ADS)
Urru, Andrea; Dal Corso, Andrea
2018-05-01
We analyze the electronic structure of the Os(0001) surface by means of first-principle calculations based on Fully Relativistic (FR) Density Functional Theory (DFT) and a Projector Augmented-Wave (PAW) approach. We investigate surface states and resonances analyzing their spin-orbit induced energy splitting and their spin polarization. The results are compared with previously studied surfaces Ir(111), Pt(111), and Au(111). We do not find any surface state in the gap similar to the L-gap of the (111) fcc surfaces, but find Rashba split resonances that cross the Fermi level and, as in the recently studied Ir(111) surface, have a characteristic downward dispersion. Moreover, for some selected surface states we study the spin polarization with respect to k∥, the wave-vector parallel to the surface. In some cases, such as the Rashba split resonances, the spin polarization shows a smooth behavior with slow rotations, in others the rotation is faster, due to mixing and anti-crossing of the states.
The Influence of Stellar Spin on Ignition of Thermonuclear Runaways
NASA Astrophysics Data System (ADS)
Galloway, Duncan K.; in ’t Zand, Jean J. M.; Chenevez, Jérôme; Keek, Laurens; Sanchez-Fernandez, Celia; Worpel, Hauke; Lampe, Nathanael; Kuulkers, Erik; Watts, Anna; Ootes, Laura; The MINBAR collaboration
2018-04-01
Runaway thermonuclear burning of a layer of accumulated fuel on the surface of a compact star provides a brief but intense display of stellar nuclear processes. For neutron stars accreting from a binary companion, these events manifest as thermonuclear (type-I) X-ray bursts, and recur on typical timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast (>400 Hz) rotation encourages stabilization of nuclear burning, suggesting a dynamical dependence of nuclear ignition on the spin rate. This dependence is unexpected, because faster rotation entails less shear between the surrounding accretion disk and the star. Large-scale circulation in the fuel layer, leading to enhanced mixing of the burst ashes into the fuel layer, may explain this behavior; further numerical simulations are required to confirm this.
Zerbetto, Mirco; Carlotto, Silvia; Polimeno, Antonino; Corvaja, Carlo; Franco, Lorenzo; Toniolo, Claudio; Formaggio, Fernando; Barone, Vincenzo; Cimino, Paola
2007-03-15
In this work we address the interpretation, via an ab initio integrated computational approach, of the CW-ESR spectra of the double spin labeled, 310-helical, peptide Fmoc-(Aib-Aib-TOAC)2-Aib-OMe dissolved in acetonitrile. Our approach is based on the determination of geometric and local magnetic parameters of the heptapeptide by quantum mechanical density functional calculations taking into account solvent and, when needed, vibrational averaging contributions. The system is then described by a stochastic Liouville equation for the two electron spins interacting with each other and with two 14N nuclear spins, in the presence of diffusive rotational dynamics. Parametrization of the diffusion rotational tensor is provided by a hydrodynamic model. CW-ESR spectra are simulated with minimal resorting to fitting procedures, proving that the combination of sensitive ESR spectroscopy and sophisticated modeling can be highly helpful in providing 3D structural and dynamic information on molecular systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, P. -N.; Barron-Palos, L.; Bowman, J. D.
2008-01-01
High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beammore » with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.« less
All electrical propagating spin wave spectroscopy with broadband wavevector capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciubotaru, F., E-mail: Florin.Ciubotaru@imec.be; KU Leuven, Departement Electrotechniek; Devolder, T.
2016-07-04
We developed an all electrical experiment to perform the broadband phase-resolved spectroscopy of propagating spin waves in micrometer sized thin magnetic stripes. The magnetostatic surface spin waves are excited and detected by scaled down to 125 nm wide inductive antennas, which award ultra broadband wavevector capability. The wavevector selection can be done by applying an excitation frequency above the ferromagnetic resonance. Wavevector demultiplexing is done at the spin wave detector thanks to the rotation of the spin wave phase upon propagation. A simple model accounts for the main features of the apparatus transfer functions. Our approach opens an avenue for themore » all electrical study of wavevector-dependent spin wave properties including dispersion spectra or non-reciprocal propagation.« less
NASA Astrophysics Data System (ADS)
Bondorf, Linda; Beutel, Manfred; Thiemann, Markus; Dressel, Martin; Bothner, Daniel; Sichelschmidt, Jörg; Kliemt, Kristin; Krellner, Cornelius; Scheffler, Marc
2018-05-01
We present a new experimental approach to investigate the magnetic properties of the anisotropic heavy-fermion system YbRh2Si2 as a function of crystallographic orientation. Angle-dependent electron spin resonance (ESR) measurements are performed at a low temperature of 1.6 K and at an ESR frequency of 4.4 GHz utilizing a superconducting planar microwave resonator in a 4He-cryostat in combination with in-situ sample rotation. The obtained ESR g-factor of YbRh2Si2 as a function of the crystallographic angle is consistent with results of previous measurements using conventional ESR spectrometers at higher frequencies and fields. Perspectives to implement this experimental approach into a dilution refrigerator and to reach the magnetically ordered phase of YbRh2Si2 are discussed.
Materials science with muon spin rotation
NASA Technical Reports Server (NTRS)
1988-01-01
During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.
Electrically-Generated Spin Polarization in Non-Magnetic Semiconductors
2016-03-31
resolved Faraday rotation data due to electron spin polarization from previous pump pulses was characterized, and an analytic solution for this phase...electron spin polarization was shown to produce nuclear hyperpolarization through dynamic nuclear polarization. Time-resolved Faraday rotation...Distribution approved for public release. 3 Figure 3. Total magnetic field measured using time-resolved Faraday rotation with the electrically
Quantum computing with acceptor spins in silicon.
Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie
2016-06-17
The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.
NASA Astrophysics Data System (ADS)
Aryanpour, Karan
2003-03-01
We employ the Dynamical Mean Field Approximation (DMFA) to study the Janko-Zarand model [1] for the combination of large spin-orbit coupling and spatial disorder effects in GaAs doped with Mn. In this model the electronic dispersion and the spin-orbit coupling are simultaneously diagonalized and therefore, the Hamiltonian for the pure system takes a surprisingly simple form. The price for this simplicity is that the quantization axis for the spin must be rotated along the direction of momentum. This chiral basis greatly complicates the form of the hole-impurity interaction at a single site i. In the DMFA, since all the crossing Feynman diagrams for the hole-impurity interaction vanish, the problem simplifies to the local diagrams for the holes scattering off of a single Mn impurity site only. The diagrammatics for the self-energy reduces to the local Green functions and potentials in the non-chiral basis in which they have very simple forms. We first calculate the initial green function G(k) in the chiral basis and then rotate G(k) back into the non chiral basis and coarse grain it over all the k momenta. The hole-impurity interaction is greatly simplified in the non-chiral basis and can be averaged over all the spin configurations and orientations of the Mn atoms on the lattice.The self energy may be extracted from the averaged Green function, and used to recalculate the initial cluster Green function, etc. completing the DMFA self-consistent loop. We intend to calculate the spin and charge transport coefficients, and spectra such as the AC susceptibility and the ARPES which may be directly compared with experiment. [1] Phys. Rev. Lett.89,047201/1-4 (2002)
Spin-stabilized magnetic levitation without vertical axis of rotation
Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aaronson, Gene [Albuquerque, NM
2009-06-09
The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Curatolo, Ben S.; Woike, Mark R.
2011-01-01
In jet engines, turbines spin at high rotational speeds. The forces generated from these high speeds make the rotating components of the turbines susceptible to developing cracks that can lead to major engine failures. The current inspection technologies only allow periodic examinations to check for cracks and other anomalies due to the requirements involved, which often necessitate entire engine disassembly. Also, many of these technologies cannot detect cracks that are below the surface or closed when the crack is at rest. Therefore, to overcome these limitations, efforts at NASA Glenn Research Center are underway to develop techniques and algorithms to detect cracks in rotating engine components. As a part of these activities, a high-precision spin laboratory is being utilized to expand and conduct highly specialized tests to develop methodologies that can assist in detecting predetermined cracks in a rotating turbine engine rotor. This paper discusses the various features involved in the ongoing testing at the spin laboratory and elaborates on its functionality and on the supporting data system tools needed to enable successfully running optimal tests and collecting accurate results. The data acquisition system and the associated software were updated and customized to adapt to the changes implemented on the test rig system and to accommodate the data produced by various sensor technologies. Discussion and presentation of these updates and the new attributes implemented are herein reported
Subramanian, Sankaran; Koscielniak, Janusz W.; Devasahayam, Nallathamby; Pursley, Randall H.; Pohida, Thomas J.; Krishna, Murali C.
2007-01-01
Rapid field scan on the order of T/s using high frequency sinusoidal or triangular sweep fields superimposed on the main Zeeman field, was used for direct detection of signals without low-frequency field modulation. Simultaneous application of space-encoding rotating field gradients have been employed to perform fast CW EPR imaging using direct detection that could, in principle, approach the speed of pulsed FT EPR imaging. The method takes advantage of the well-known rapid-scan strategy in CW NMR and EPR that allows arbitrarily fast field sweep and the simultaneous application of spinning gradients that allows fast spatial encoding. This leads to fast functional EPR imaging and, depending on the spin concentration, spectrometer sensitivity and detection band width, can provide improved temporal resolution that is important to interrogate dynamics of spin perfusion, pharmacokinetics, spectral spatial imaging, dynamic oxymetry, etc. PMID:17350865
Role of viscous friction in the reverse rotation of a disk.
de Castro, Pablo; Parisio, Fernando
2014-07-01
The mechanical response of a circularly driven disk in a dissipative medium is considered. We focus on the role played by viscous friction in the spinning motion of the disk, especially on the effect called reverse rotation, where the intrinsic and orbital rotations are antiparallel. Contrary to what happens in the frictionless case, where steady reverse rotations are possible, we find that this dynamical behavior may exist only as a transient when dissipation is considered. Whether or not reverse rotations in fact occur depends on the initial conditions and on two parameters, one related to dragging, inertia, and driving, the other associated with the geometric configuration of the system. The critical value of this geometric parameter (separating the regions where reverse rotation is possible from those where it is forbidden) as a function of viscosity is well adjusted by a q-exponential function.
Yarkovsky-O'Keefe-Radzievskii-Paddack effect on tumbling objects
NASA Astrophysics Data System (ADS)
Breiter, S.; Rożek, A.; Vokrouhlický, D.
2011-11-01
A semi-analytical model of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect on an asteroid spin in a non-principal axis rotation state is developed. The model describes the spin-state evolution in Deprit-Elipe variables, first-order averaged with respect to rotation and Keplerian orbital motion. Assuming zero conductivity, the YORP torque is represented by spherical harmonic series with vectorial coefficients, allowing us to use any degree and order of approximation. Within the quadrupole approximation of the illumination function we find the same first integrals involving rotational momentum, obliquity and dynamical inertia that were obtained by Cicaló & Scheeres. The integrals do not exist when higher degree terms of the illumination function are included, and then the asymptotic states known from Vokrouhlický et al. appear. This resolves an apparent contradiction between earlier results. Averaged equations of motion admit stable and unstable limit cycle solutions that were not previously detected. Non-averaged numerical integration by the Taylor series method for an exemplary shape of 3103 Eger is in good agreement with the semi-analytical theory.
NMR system and method having a permanent magnet providing a rotating magnetic field
Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA
2009-05-19
Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.
Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature
NASA Astrophysics Data System (ADS)
Sasaki, Tomoyuki; Ando, Yuichiro; Kameno, Makoto; Tahara, Takayuki; Koike, Hayato; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi
2014-09-01
Spin transport in nondegenerate semiconductors is expected to pave the way to the creation of spin transistors, spin logic devices, and reconfigurable logic circuits, because room-temperature (RT) spin transport in Si has already been achieved. However, RT spin transport has been limited to degenerate Si, which makes it difficult to produce spin-based signals because a gate electric field cannot be used to manipulate such signals. Here, we report the experimental demonstration of spin transport in nondegenerate Si with a spin metal-oxide-semiconductor field-effect transistor (MOSFET) structure. We successfully observe the modulation of the Hanle-type spin-precession signals, which is a characteristic spin dynamics in nondegenerate semiconductors. We obtain long spin transport of more than 20 μm and spin rotation greater than 4π at RT. We also observe gate-induced modulation of spin-transport signals at RT. The modulation of the spin diffusion length as a function of a gate voltage is successfully observed, which we attribute to the Elliott-Yafet spin relaxation mechanism. These achievements are expected to lead to the creation of practical Si-based spin MOSFETs.
On the Origin of the Spin of Planets and Stars and its Connection with Gravitomagnetism
NASA Astrophysics Data System (ADS)
Elbeze, Alexandre Chaloum
2012-06-01
The origin of the spin of planets and stars is, to a certain extent, still unexplained. In general, we attribute their rotation to the swirl of their constituent primitive gases. In this paper, we try to show that the rotation of celestial bodies depends only on their mass, apparent radius and tilt of their spin axes. We reach this conclusion within the framework of gravitomagnetism, implied by the Einstein's general relativity theory (GR). Our results show that it might possible, in principle, to calculate the mass of spinning objects by measuring their apparent radius, the speed of rotation and the tilt of the axis of rotation.
Tidal friction and generalized Cassini's laws in the solar system. [for planetary spin axis rotation
NASA Technical Reports Server (NTRS)
Ward, W. R.
1975-01-01
The tidal drift toward a generalized Cassini state of rotation of the spin axis of a planet or satellite in a precessing orbit is described. Generalized Cassini's laws are applied to several solar system objects and the location of their spin axes estimated. Of those considered only the moon definitely occupies state 2 with the spin axis near to the normal of the invariable plane. Most objects appear to occupy state 1 with the spin axis near to the orbit normal. Iapetus could occupy either state depending on its oblateness. In addition, the resonant rotation of Mercury is found to have little effect on the tidal drift of its spin axis toward state 1.
Rotatable spin-polarized electron source for inverse-photoemission experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolwijk, S. D., E-mail: Sebastian.Stolwijk@wwu.de; Wortelen, H.; Schmidt, A. B.
2014-01-15
We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111)more » highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces.« less
Persistent spin helix manipulation by optical doping of a CdTe quantum well
NASA Astrophysics Data System (ADS)
Passmann, F.; Anghel, S.; Tischler, T.; Poshakinskiy, A. V.; Tarasenko, S. A.; Karczewski, G.; Wojtowicz, T.; Bristow, A. D.; Betz, M.
2018-05-01
Time-resolved Kerr-rotation microscopy explores the influence of optical doping on the persistent spin helix in a [001]-grown CdTe quantum well at cryogenic temperatures. Electron spin-diffusion dynamics reveal a momentum-dependent effective magnetic field providing SU(2) spin-rotation symmetry, consistent with kinetic theory. The Dresselhaus and Rashba spin-orbit coupling parameters are extracted independently from rotating the spin helix with external magnetic fields applied parallel and perpendicular to the effective magnetic field. Most importantly, a nonuniform spatiotemporal precession pattern is observed. The kinetic-theory framework of spin diffusion allows for modeling of this finding by incorporating the photocarrier density into the Rashba (α) and the Dresselhaus (β3) parameters. Corresponding calculations are further validated by an excitation-density-dependent measurement. This work shows universality of the persistent spin helix by its observation in a II-VI compound and the ability to fine-tune it by optical doping.
NASA Astrophysics Data System (ADS)
Chen, Wei; Deng, Wei-Yin; Hou, Jing-Min; Shi, D. N.; Sheng, L.; Xing, D. Y.
2016-08-01
The quantum spin Hall insulator is characterized by helical edge states, with the spin polarization of the electron being locked to its direction of motion. Although the edge-state conduction has been observed, unambiguous evidence of the helical spin texture is still lacking. Here, we investigate the coherent edge-state transport in an interference loop pinched by two point contacts. Because of the helical character, the forward interedge scattering enforces a π spin rotation. Two successive processes can only produce a nontrivial 2 π or trivial 0 spin rotation, which can be controlled by the Rashba spin-orbit coupling. The nontrivial spin rotation results in a geometric π Berry phase, which can be detected by a π phase shift of the conductance oscillation relative to the trivial case. Our results provide smoking gun evidence for the helical spin texture of the edge states. Moreover, it also provides the opportunity to all electrically explore the trajectory-dependent spin Berry phase in condensed matter.
Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes
NASA Astrophysics Data System (ADS)
Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien; Waintal, Xavier
2014-05-01
Current-driven spin torques in metallic spin valves composed of antiferromagnets are theoretically studied using the nonequilibrium Green's function method implemented on a tight-binding model. We focus our attention on G-type and L-type antiferromagnets in both clean and disordered regimes. In such structures, spin torques can either rotate the magnetic order parameter coherently (coherent torque) or compete with the internal antiferromagnetic exchange (exchange torque). We show that, depending on the symmetry of the spin valve, the coherent and exchange torques can either be in the plane, ∝n×(q×n) or out of the plane ∝n×q, where q and n are the directions of the order parameter of the polarizer and the free antiferromagnetic layers, respectively. Although disorder conserves the symmetry of the torques, it strongly reduces the torque magnitude, pointing out the need for momentum conservation to ensure strong spin torque in antiferromagnetic spin valves.
Quantum measurement of a rapidly rotating spin qubit in diamond.
Wood, Alexander A; Lilette, Emmanuel; Fein, Yaakov Y; Tomek, Nikolas; McGuinness, Liam P; Hollenberg, Lloyd C L; Scholten, Robert E; Martin, Andy M
2018-05-01
A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T 2 . We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors.
Quantum measurement of a rapidly rotating spin qubit in diamond
Fein, Yaakov Y.; Hollenberg, Lloyd C. L.; Scholten, Robert E.
2018-01-01
A controlled qubit in a rotating frame opens new opportunities to probe fundamental quantum physics, such as geometric phases in physically rotating frames, and can potentially enhance detection of magnetic fields. Realizing a single qubit that can be measured and controlled during physical rotation is experimentally challenging. We demonstrate quantum control of a single nitrogen-vacancy (NV) center within a diamond rotated at 200,000 rpm, a rotational period comparable to the NV spin coherence time T2. We stroboscopically image individual NV centers that execute rapid circular motion in addition to rotation and demonstrate preparation, control, and readout of the qubit quantum state with lasers and microwaves. Using spin-echo interferometry of the rotating qubit, we are able to detect modulation of the NV Zeeman shift arising from the rotating NV axis and an external DC magnetic field. Our work establishes single NV qubits in diamond as quantum sensors in the physically rotating frame and paves the way for the realization of single-qubit diamond-based rotation sensors. PMID:29736417
Hansen, J S; Daivis, Peter J; Todd, B D
2009-10-01
In this paper we present equilibrium molecular-dynamics results for the shear, rotational, and spin viscosities for fluids composed of linear molecules. The density dependence of the shear viscosity follows a stretched exponential function, whereas the rotational viscosity and the spin viscosities show approximately power-law dependencies. The frequency-dependent shear and spin viscosities are also studied. It is found that viscoelastic behavior is first manifested in the shear viscosity and that the real part of the spin viscosities features a maximum for nonzero frequency. The calculated transport coefficients are used together with the extended Navier-Stokes equations to investigate the effect of the coupling between the intrinsic angular momentum and linear momentum for highly confined fluids. Both steady and oscillatory flows are studied. It is shown, for example, that the fluid flow rate for Poiseuille flow is reduced by up to 10% in a 2 nm channel for a buta-triene fluid at density 236 kg m(-3) and temperature 306 K. The coupling effect may, therefore, become very important for nanofluidic applications.
Effect of the stellar spin history on the tidal evolution of close-in planets
NASA Astrophysics Data System (ADS)
Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.
2012-08-01
Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.
Design and Functional Validation of a Mechanism for Dual-Spinning CubeSats
NASA Technical Reports Server (NTRS)
Peters, Eric; Dave, Pratik; Kingsbury, Ryan; Marinan, Anne; Wise, Evan; Pong, Chris; Prinkey, Meghan; Cahoy, Kerri; Miller, David W.; Sklair, Devon
2014-01-01
The mission of the Micro-sized Microwave Atmospheric Satellite (MicroMAS) is to collect useful atmospheric images using a miniature passive microwave radiometer payload hosted on a low-cost CubeSat platform. In order to collect this data, the microwave radiometer payload must rotate to scan the ground-track perpendicular to the satellite's direction of travel. A custom motor assembly was developed to facilitate the rotation of the payload while allowing the spacecraft bus to remained fixed in the local-vertical, local-horizontal (LVLH) frame for increased pointing accuracy. This paper describes the mechanism used to enable this dual-spinning operation for CubeSats, and the lessons learned during the design, fabrication, integration, and testing phases of the mechanism's development lifecycle.
Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan
2016-08-21
In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per, E-mail: jensen@uni-wuppertal.de
In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thusmore » far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.« less
Molecular spinning by a chiral train of short laser pulses
NASA Astrophysics Data System (ADS)
Floß, Johannes; Averbukh, Ilya Sh.
2012-12-01
We provide a detailed theoretical analysis of molecular rotational excitation by a chiral pulse train, a sequence of linearly polarized pulses with the polarization direction rotating from pulse to pulse by a controllable angle. Molecular rotation with a preferential rotational sense (clockwise or counterclockwise) can be excited by this scheme. We show that the directionality of the rotation is caused by quantum interference of different excitation pathways. The chiral pulse train is capable of selective excitation of molecular isotopologs and nuclear spin isomers in a mixture. We demonstrate this using 14N2 and 15N2 as examples for isotopologs and para- and ortho-nitrogen as examples for nuclear-spin isomers.
Spin-orbit-coupled Bose-Einstein condensates of rotating polar molecules
NASA Astrophysics Data System (ADS)
Deng, Y.; You, L.; Yi, S.
2018-05-01
An experimental proposal for realizing spin-orbit (SO) coupling of pseudospin 1 in the ground manifold 1Σ (υ =0 ) of (bosonic) bialkali polar molecules is presented. The three spin components are composed of the ground rotational state and two substates from the first excited rotational level. Using hyperfine resolved Raman processes through two select excited states resonantly coupled by a microwave, an effective coupling between the spin tensor and linear momentum is realized. The properties of Bose-Einstein condensates for such SO-coupled molecules exhibiting dipolar interactions are further explored. In addition to the SO-coupling-induced stripe structures, the singly and doubly quantized vortex phases are found to appear, implicating exciting opportunities for exploring novel quantum physics using SO-coupled rotating polar molecules with dipolar interactions.
Three-level mixing model for nuclear chiral rotation: Role of the planar component
NASA Astrophysics Data System (ADS)
Chen, Q. B.; Starosta, K.; Koike, T.
2018-04-01
Three- and two-level mixing models are proposed to understand the doubling of states at the same spin and parity in triaxially deformed atomic nuclei with odd numbers of protons and neutrons. The particle-rotor model for such nuclei is solved using the newly proposed basis which couples angular momenta of two valence nucleons and the rotating triaxial mean field into left-handed |L > , right-handed |R > , and planar |P > configurations. The presence and impact of the planar component is investigated as a function of the total spin for mass A ≈130 nuclei with the valence h11 /2 proton particle, valence h11 /2 neutron hole, and the maximum difference between principal axes allowed by the quadrupole deformation of the mean field. It is concluded that at each spin value the higher energy member of a doublet of states is built on the antisymmetric combination of |L > and |R > and is free of the |P > component, indicating that it is of pure chiral geometry. For the lower energy member of the doublet, the contribution of the |P > component to the eigenfunction first decreases and then increases as a function of the total spin. This trend as well as the energy splitting between the doublet states are both determined by the Hamiltonian matrix elements between the planar (|P > ) and nonplanar (|L > and |R > ) subspaces of the full Hilbert space.
Rotational Mode Specificity in the F(-) + CH3Y [Y = F and Cl] SN2 Reactions.
Szabó, István; Czakó, Gábor
2015-12-17
More than 12 million quasiclassical trajectories are computed for the F(-) + CH3Y(v = 0, JK) [Y = F and Cl] SN2 reactions using full-dimensional ab initio analytical potential energy surfaces. The initial (J, K = 0) and (J, K = J) [J = 0, 2, 4, 6, 8] rotational state specific cross sections are obtained at different collision energies (Ecoll) in the 1-20 kcal mol(-1) range, and the scattering angle and initial attack angle distributions as well as the mechanism-specific opacity functions are reported at Ecoll = 10 kcal mol(-1). The tumbling rotation (K = 0) inhibits the F(-) + CH3F reaction by a factor of 3 for J = 8 at Ecoll = 10 kcal mol(-1). This tumbling rotational effect becomes smaller at low and high Ecoll, and the tumbling motion affects the cross sections of F(-) + CH3Cl by only a few percent. The spinning rotation (K = J) hinders both reactions by factors in the 1.3-1.7 range for J = 8 at low Ecoll, whereas slight promotion is found as the Ecoll increases. The tumbling rotation may counteract the attractive ion-dipole forces, and the spinning motion hinders the complex formation, thereby decreasing the reactivity.
NASA Astrophysics Data System (ADS)
Xu, Li-Hong; Reid, Elias M.; Guislain, Bradley; Hougen, Jon T.; Alekseev, E. A.; Krapivin, Igor
2017-06-01
Hyperfine splittings in methanol have been revisited in three recent publications. (i) Coudert et al. [JCP 143 (2015) 044304] published an analysis of splittings observed in the low-J range. They calculated 32 spin-rotation, 32 spin-spin, and 16 spin-torsion hyperfine constants using the ACES2 package. Three of these constants were adjusted to fit hyperfine patterns for 12 transitions. (ii) Three present authors and collaborators [JCP 145 (2016) 024307] analyzed medium to high-J experimental Lamb-dip measurements in methanol and presented a theoretical spin-rotation explanation that was based on torsionally mediated spin-rotation hyperfine operators. These contain, in addition to the usual nuclear spin and overall rotational operators, factors in the torsional angle α of the form {e^{plusmn;{inα}}}. Such operators have non-zero matrix elements between the two components of a torsion-rotation ^{tr}E state, but have zero matrix elements within a ^{tr}A state. More than 55 hyperfine splittings were successfully fitted using three parameters and the fitted values agree well with ab initio values obtained in (i). (iii) Lankhaar et al. [JCP 145 (2016) 244301] published a reanalysis of the data set from (i), using CFOUR recalculated hyperfine constants based on their rederivation of the relevant expressions. They explain why their choice of fixed and floated parameters leads to numerical values for all parameters that seem to be more physical than those in (i). The results in (ii) raise the question of whether large torsionally-mediated spin-rotation splittings will occur in other methyl-rotor-containing molecules. This abstract presents ab initio calculations of torsionally mediated hyperfine splittings in the E states of acetaldehyde using the same three operators as in (ii) and spin-rotation constants computed by Gaussian09. We explored the first 13 K states for J from 10 to 40 and ν_{t} = 0, 1, and 2. Our calculations indicate that hyperfine splittings in CH_{3}CHO are just below current measurement capability. This conclusion is confirmed by available experimental measurements.
NASA Astrophysics Data System (ADS)
He, Zhang-Ming; Zhang, Xiao-Fei; Kato, Masaya; Han, Wei; Saito, Hiroki
2018-06-01
We consider a pseudospin-1/2 Bose-Einstein condensate with Rashba spin-orbit coupling in a two-dimensional toroidal trap. By solving the damped Gross-Pitaevskii equations for this system, we show that the system exhibits a rich variety of stationary states, such as vehicle wheel and flower-petal stripe patterns. These stationary states are stable against perturbation with thermal energy and can survive for a long time. In the presence of rotation, our results show that the rotating systems have exotic vortex configurations. These phenomenon originates from the interplay among spin-orbit coupling, trap geometry, and rotation.
Bias Dependent Spin Relaxation in a [110]-InAs/AlSb Two Dimensional Electron System
NASA Astrophysics Data System (ADS)
Hicks, J.; Holabird, K.
2005-03-01
Manipulation of electron spin is a critical component of many proposed semiconductor spintronic devices. One promising approach utilizes the Rashba effect by which an applied electric field can be used to reduce the spin lifetime or rotate spin orientation through spin-orbit interaction. The large spin-orbit interaction needed for this technique to be effective typically leads to fast spin relaxation through precessional decay, which may severely limit device architectures and functionalities. An exception arises in [110]-oriented heterostructures where the crystal magnetic field associated with bulk inversion asymmetry lies along the growth direction and in which case spins oriented along the growth direction do not precess. These considerations have led to a recent proposal of a spin-FET that incorporates a [110]-oriented, gate-controlled InAs quantum well channel [1]. We report measurements of the electron spin lifetime as a function of applied electric field in a [110]-InAs 2DES. Measurements made using an ultrafast, mid-IR pump-probe technique indicate that the spin lifetime can be reduced from its maximum to minimum value over a range of less than 0.2V per quantum well at room temperature. This work is supported by DARPA, NSERC and the NSF grant ECS - 0322021. [1] K. C. Hall, W. H. Lau, K. Gundogdu, M. E. Flatte, and T. F. Boggess, Appl. Phys. Lett. 83, 2937 (2003).
NASA Astrophysics Data System (ADS)
Krivoruchenko, Mikhail I.
2009-08-01
Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect).
NASA Astrophysics Data System (ADS)
Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.
2015-12-01
Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.
Role of Entropy and Structural Parameters in the Spin State Transition of LaCoO3
NASA Astrophysics Data System (ADS)
Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan
The spin state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge consistent Density Functional Theory + Dynamical Mean Field Theory (DFT+DMFT). We show, from first principles, that LaCoO3 cannot be described by a single, pure spin state at any temperature, but instead shows a gradual change in the population of higher spin multiples as temperature is increased. We explicitly elucidate the critical role of the lattice expansion and oxygen octahedral rotations in the spin state transition. We also show that the spin state transition and the metal-insulator transition in the compound occur at different temperatures. In addition, our results shed light on the importance of electronic entropy, which has so far been ignored in all first principles studies of this material.
NASA Astrophysics Data System (ADS)
Iacob Tudose, E. T.; Zaharia, C.
2018-06-01
The spinning disc (SD) technology has received increased attention in the last years due to its enhanced fluid flow features resulting in improved property transfers. The actual study focuses on characterization of the flow within a spinning disc system based on experimental data used to establish the residence time distribution (RTD) and its dependence on the feeding liquid flowrate and the disc rotational speed. To obtain these data, an inert tracer (sodium chloride) was injected as a pulse input in the liquid stream entering the disc and the salt concentration of the liquid leaving the disc was continuously recorded. The obtained data indicate that an increase in the liquid flowrate from 10 L/h to 30 L/h determines a narrower RTD function. Also, at rotational speed of 200 rpm, the residence time distribution is broader than that for 500 rpm and 800 rpm. The RTD data suggest that depending on the needed flow characteristics, one can choose a certain flowrate and rotational speed domain for its application. Also, the SD technology was used to process textile wastewater treated with bentonite (as both coagulation and discoloration agent) in order to investigate whether the quality indicators such as the total suspended solid content, turbidity and discoloration, can be improved. The experimental results are promising since the discoloration and the removals of suspended solids attained values of over 40%, and respectively, 50 %, depending on the effluent flowrate (10 l/h and 30 L/h), and the disc rotational speed (200 rpm, 550 rpm and 850 rpm) without any other addition of chemicals, or initiation of other simultaneous treatment processes (e.g., advanced oxidative, or reductive, or biochemical processes). This recommends spinning disc technology as a suitable and promising tool to improve different wastewater characteristics.
A spin rotator model for Heisenberg helimagnet
NASA Astrophysics Data System (ADS)
Felcy, A. Ludvin; Latha, M. M.
2018-02-01
We study the dynamics of a helimagnetic spin system by proposing a spin rotator model taking into account bilinear, twist interplane and anisotropic interactions in the continuum limit. The dynamical equations of motion are obtained and studied numerically. The influence of different types of inhomogeneities is also analysed. Similar studies are carried out for the system including biquadratic type interactions.
A Compact Formula for Rotations as Spin Matrix Polynomials
Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.
2014-08-12
Group elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group. Here, the simple explicit result exhibits connections between group theory, combinatorics, and Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula are illustrated and discussed.
Electrohydrodynamic Quincke rotation of a prolate ellipsoid
NASA Astrophysics Data System (ADS)
Brosseau, Quentin; Hickey, Gregory; Vlahovska, Petia M.
2017-01-01
We study experimentally the occurrence of spontaneous spinning (Quincke rotation) of an ellipsoid in a uniform direct current (dc) electric field. For an ellipsoid suspended in an unbounded fluid, we find two stable states characterized by the orientation of the ellipsoid long axis relative to the applied electric field: spinless (parallel) and spinning (perpendicular). The phase diagram of ellipsoid behavior as a function of field strength and aspect ratio is in close agreement with the theory of Cēbers et al. [Phys. Rev. E 63, 016301 (2000)], 10.1103/PhysRevE.63.016301. We also investigate the dynamics of the ellipsoidal Quincke rotor resting on a planar surface with normal perpendicular to the field direction. We find behaviors, such as swinging (long axis oscillating around the applied field direction) and tumbling, due to the confinement.
David Jebaraj, D; Utsumi, Hideo; Milton Franklin Benial, A
2018-04-01
Low-frequency electron spin resonance studies were performed for 2 mM concentration of deuterated permeable and impermeable nitroxyl spin probes, 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl and 3-carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy in pure water and various concentrations of corn oil solution. The electron spin resonance parameters such as the line width, hyperfine coupling constant, g factor, rotational correlation time, permeability, and partition parameter were estimated. The broadening of line width was observed for nitroxyl radicals in corn oil mixture. The rotational correlation time increases with increasing concentration of corn oil, which indicates the less mobile nature of spin probe in corn oil mixture. The membrane permeability and partition parameter values were estimated as a function of corn oil concentration, which reveals that the nitroxyl radicals permeate equally into the aqueous phase and oil phase at the corn oil concentration of 50%. The electron spin resonance spectra demonstrate the permeable and impermeable nature of nitroxyl spin probes. From these results, the corn oil concentration was optimized as 50% for phantom studies. In this work, the corn oil and pure water mixture phantom models with various viscosities correspond to plasma membrane, and whole blood membrane with different hematocrit levels was studied for monitoring the biological characteristics and their interactions with permeable nitroxyl spin probe. These results will be useful for the development of electron spin resonance and Overhauser-enhanced magnetic resonance imaging modalities in biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.
Negative Compressibility and Inverse Problem for Spinning Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasily Geyko and Nathaniel J. Fisch
2013-01-11
A spinning ideal gas in a cylinder with a smooth surface is shown to have unusual properties. First, under compression parallel to the axis of rotation, the spinning gas exhibits negative compressibility because energy can be stored in the rotation. Second, the spinning breaks the symmetry under which partial pressures of a mixture of gases simply add proportional to the constituent number densities. Thus, remarkably, in a mixture of spinning gases, an inverse problem can be formulated such that the gas constituents can be determined through external measurements only.
Spin and Valley Noise in Two-Dimensional Dirac Materials
NASA Astrophysics Data System (ADS)
Tse, Wang-Kong; Saxena, A.; Smith, D. L.; Sinitsyn, N. A.
2014-07-01
We develop a theory for optical Faraday rotation noise in two-dimensional Dirac materials. In contrast to spin noise in conventional semiconductors, we find that the Faraday rotation fluctuations are influenced not only by spins but also the valley degrees of freedom attributed to intervalley scattering processes. We illustrate our theory with two-dimensional transition-metal dichalcogenides and discuss signatures of spin and valley noise in the Faraday noise power spectrum. We propose optical Faraday noise spectroscopy as a technique for probing both spin and valley relaxation dynamics in two-dimensional Dirac materials.
NASA Technical Reports Server (NTRS)
Stone, Ralph W., Jr.; Hultz, Burton E.
1949-01-01
The characteristics of a cargo-dropping device having extensible rotating blades as load-carrying surfaces have been studied in simulated vertical descent in the Langley 20-foot free-spinning tunnel. The investigation included tests to determine the variation in vertical sinking speed with load. A study of the blade characteristics and of the test results indicated a method of dynamically balancing the blades to permit proper functioning of the device.
Rotational Spin-up Caused CO2 Outgassing on Comet 103P/Hartley 2
NASA Astrophysics Data System (ADS)
Steckloff, Jordan; Graves, Kevin; Hirabayashi, Masatoshi; Richardson, James
2015-11-01
The Deep Impact spacecraft’s flyby of comet 103P/Hartley 2 on November 4, 2010 revealed its nucleus to be a small, bilobate, and highly active world [1] [2]. The bulk of this activity is driven by CO2 sublimation, which is enigmatically restricted to the tip of the small lobe [1]. Because Hartley 2's CO2 production responds to the diurnal cycle of the nucleus [1], CO2 ice must be no deeper than a few centimeters below the surface of the small lobe. However the high volatility of CO2 would suggest that its sublimation front should recede deep below the surface, such that diurnal volatile production is dominated by more refractory species such as water ice, as was observed at comet Tempel 1 [3].Here we show that both the near surface CO2 ice and its geographic restriction to the tip of the small lobe suggest that Hartley 2 recently experienced an episode of fast rotation. We use the GRAVMAP code to compute the stability of slopes on the surface of Hartley 2 as a function of spin period. We determine that the surface of the active region of Hartley 2’s small lobe becomes unstable at a rotation period of ~10-12 hours (as opposed to its current spin period of ~ 18 hours [1]), and will flow toward the tip of the lobe, excavating buried CO2 ice and activating CO2-driven activity. However, the rest of the surface of the nucleus is stable at these spin rates, and will therefore not exhibit CO2 activity. We additionally use Finite Element Model (FEM) analysis to demonstrate that the interior of Hartley 2’s nucleus is structurally stable (assuming a cohesive strength of at least 5 Pa) at these spin rates.The uncommonly high angular acceleration of Hartley 2, which has changed the nucleus spin period by two hours in three months [4], suggests that this episode of fast rotation may have existed only a few years or decades ago. Thus, Hartley 2 may provide an excellent case study into the reactivation of quiescent comet nuclei via rotational spin up, as would result from weak homogeneous gas emissions via the SYORP Effect.References: [1] A'Hearn et al. Science 332, 1396 (2011) [2] Thomas et al. Icarus 222, 550 (2013) [3] Feaga et al. Icarus 190, 345 (2007) [4] Samarasinha & Mueller. Ap. J. 775:L10 (2013)
Dynamical Evolution of Asteroids and Meteoroids Using the Yarkovsky Effect
NASA Technical Reports Server (NTRS)
Bottke, William F., Jr.; Vokrouhlicky, David; Rubincam, David P.; Broz, Miroslav; Smith, David E. (Technical Monitor)
2001-01-01
The Yarkovsky effect is a thermal radiation force which causes objects to undergo semimajor axis drift and spin up/down as a function of their spin, orbit, and material properties. This mechanism can be used to (i) deliver asteroids (and meteoroids) with diameter D < 20 km from their parent bodies in the main belt to chaotic resonance zones capable of transporting this material to Earth-crossing orbits, (ii) disperse asteroid families, with drifting bodies jumping or becoming trapped in mean-motion and secular resonances within the main belt, and (iii) modify the rotation rates of asteroids a few km in diameter or smaller enough to explain the excessive number of very fast and very slow rotators among the small asteroids. Accordingly, we suggest that nongravitational forces, which produce small but meaningful effects on asteroid orbits and rotation rates over long timescales, should now be considered as important as collisions and gravitational perturbations to our overall understanding of asteroid evolution.
Quantum rings in magnetic fields and spin current generation.
Cini, Michele; Bellucci, Stefano
2014-04-09
We propose three different mechanisms for pumping spin-polarized currents in a ballistic circuit using a time-dependent magnetic field acting on an asymmetrically connected quantum ring at half filling. The first mechanism works thanks to a rotating magnetic field and produces an alternating current with a partial spin polarization. The second mechanism works by rotating the ring in a constant field; like the former case, it produces an alternating charge current, but the spin current is dc. Both methods do not require a spin-orbit interaction to achieve the polarized current, but the rotating ring could be used to measure the spin-orbit interaction in the ring using characteristic oscillations. On the other hand, the last mechanism that we propose depends on the spin-orbit interaction in an essential way, and requires a time-dependent magnetic field in the plane of the ring. This arrangement can be designed to pump a purely spin current. The absence of a charge current is demonstrated analytically. Moreover, a simple formula for the current is derived and compared with the numerical results.
New rotation-balance apparatus for measuring airplane spin aerodynamics in the wind tunnel
NASA Technical Reports Server (NTRS)
Malcolm, G. N.
1978-01-01
An advanced rotation-balance apparatus has been developed for the Ames 12-ft pressure tunnel to study the effects of spin rate, angles of attack and sideslip, and, particularly, Reynolds number on the aerodynamics of fighter and general aviation aircraft in a steady spin. Angles of attack to 100 deg and angles of sideslip to 30 deg are possible with spin rates to 42 rad/sec (400 rpm) and Reynolds numbers to 30 million/m on fighter models with wing spans that are typically 0.7 m. A complete description of the new rotation-balance apparatus, the sting/balance/model assembly, and the operational capabilities is given.
DUO: Spectra of diatomic molecules
NASA Astrophysics Data System (ADS)
Yurchenko, Sergei N.; Lodi, Lorenzo; Tennyson, Jonathan; Stolyarov, Andrey V.
2016-05-01
Duo computes rotational, rovibrational and rovibronic spectra of diatomic molecules. The software, written in Fortran 2003, solves the Schrödinger equation for the motion of the nuclei for the simple case of uncoupled, isolated electronic states and also for the general case of an arbitrary number and type of couplings between electronic states. Possible couplings include spin-orbit, angular momenta, spin-rotational and spin-spin. Introducing the relevant couplings using so-called Born-Oppenheimer breakdown curves can correct non-adiabatic effects.
Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo
2013-06-14
The most general stationary black-hole solution of Einstein-Maxwell theory in vacuum is the Kerr-Newman metric, specified by three parameters: mass M, spin J, and charge Q. Within classical general relativity, one of the most important and challenging open problems in black-hole perturbation theory is the study of gravitational and electromagnetic fields in the Kerr-Newman geometry, because of the indissoluble coupling of the perturbation functions. Here we circumvent this long-standing problem by working in the slow-rotation limit. We compute the quasinormal modes up to linear order in J for any value of Q and provide the first, fully consistent stability analysis of the Kerr-Newman metric. For scalar perturbations the quasinormal modes can be computed exactly, and we demonstrate that the method is accurate within 3% for spins J/J(max) ≲ 0.5, where J(max) is the maximum allowed spin for any value of Q. Quite remarkably, we find numerical evidence that the axial and polar sectors of the gravitoelectromagnetic perturbations are isospectral to linear order in the spin. The extension of our results to nonasymptotically flat space-times could be useful in the context of gauge-gravity dualities and string theory.
Direction of spin axis and spin rate of the pitched baseball.
Jinji, Tsutomu; Sakurai, Shinji
2006-07-01
In this study, we aimed to determine the direction of the spin axis and the spin rate of pitched baseballs and to estimate the associated aerodynamic forces. In addition, the effects of the spin axis direction and spin rate on the trajectory of a pitched baseball were evaluated. The trajectories of baseballs pitched by both a pitcher and a pitching machine were recorded using four synchronized video cameras (60 Hz) and were analyzed using direct linear transform (DLT) procedures. A polynomial function using the least squares method was used to derive the time-displacement relationship of the ball coordinates during flight for each pitch. The baseball was filmed immediately after ball release using a high-speed video camera (250 Hz), and the direction of the spin axis and the spin rate (omega) were calculated based on the positional changes of the marks on the ball. The lift coefficient was correlated closely with omegasinalpha (r = 0.860), where alpha is the angle between the spin axis and the pitching direction. The term omegasinalpha represents the vertical component of the velocity vector. The lift force, which is a result of the Magnus effect occurring because of the rotation of the ball, acts perpendicularly to the axis of rotation. The Magnus effect was found to be greatest when the angular and translational velocity vectors were perpendicular to each other, and the break of the pitched baseball became smaller as the angle between these vectors approached 0 degrees. Balls delivered from a pitching machine broke more than actual pitcher's balls. It is necessary to consider the differences when we use pitching machines in batting practice.
Binary neutron stars with arbitrary spins in numerical relativity
NASA Astrophysics Data System (ADS)
Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D.; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla
2015-12-01
We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasilocal angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of ˜2 ×10-4 . Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin and orbit precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ˜0.1 % . The neutron stars show quasinormal mode oscillations at an amplitude which increases with the rotation rate of the stars.
Ab initio calculations of torsionally mediated hyperfine splittings in E states of acetaldehyde
NASA Astrophysics Data System (ADS)
Xu, Li-Hong; Reid, E. M.; Guislain, B.; Hougen, J. T.; Alekseev, E. A.; Krapivin, I.
2017-12-01
Quantum chemistry packages can be used to predict with reasonable accuracy spin-rotation hyperfine interaction constants for methanol, which contains one methyl-top internal rotor. In this work we use one of these packages to calculate components of the spin-rotation interaction tensor for acetaldehyde. We then use torsion-rotation wavefunctions obtained from a fit to the acetaldehyde torsion-rotation spectrum to calculate the expected magnitude of hyperfine splittings analogous to those observed at relatively high J values in the E symmetry states of methanol. We find that theory does indeed predict doublet splittings at moderate J values in the acetaldehyde torsion-rotation spectrum, which closely resemble those seen in methanol, but that the factor of three decrease in hyperfine spin-rotation constants compared to methanol puts the largest of the acetaldehyde splittings a factor of two below presently available Lamb-dip resolution.
Habitability of extrasolar planets and tidal spin evolution.
Heller, René; Barnes, Rory; Leconte, Jérémy
2011-12-01
Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.
Limits on entanglement from rotationally invariant scattering of spin systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harshman, N. L.
2006-06-15
This paper investigates the dynamical generation of entanglement in scattering systems, in particular two spin systems that interact via rotationally invariant scattering. The spin degrees of freedom of the in states are assumed to be in unentangled, pure states, as defined by the entropy of entanglement. Because of the restriction of rotationally symmetric interactions, perfectly entangling S matrices, i.e., those that lead to a maximally entangled out state, only exist for a certain class of separable in states. Using Clebsch-Gordan coefficients for the rotation group, the scattering phases that determine the S matrix are determined for the case of spinmore » systems with {sigma}=1/2, 1, and 3/2.« less
NASA Astrophysics Data System (ADS)
Thompsen, J. M.; Brewster, M. A.; Ziurys, L. M.
2002-06-01
The pure rotational spectrum of MnS (v=0) in its X 6Sigma+ ground state has been recorded using millimeter and submillimeter direct absorption techniques in the range 160-502 GHz. MnS was synthesized in the gas phase by the reaction of manganese vapor and CS2 in a high-temperature Broida-type oven. Fourteen rotational transitions for this radical were measured, each consisting of six fine-structure components. In the lower rotational lines, hyperfine structure, arising from the 55Mn nuclear spin of 5/2, was also resolved in each spin component. These data were analyzed using a case (b) Hamiltonian, and rotational, fine structure, and hyperfine parameters determined for MnS. In the analysis, the third-order correction to the spin-rotation interaction, gammaS, and the fourth-order spin-spin coupling term, theta, were found necessary for an acceptable fit. The hyperfine constants determined suggest that MnS is more covalent than MnO, but more ionic than MnH. There additionally appears to be considerable sdsigma hybridization in molecular orbital formation for this molecule. Bond lengths of the 3d transition-metal sulfides were compared as well, and those of MnS, CuS, and TiS do not follow the trend of their oxide analogs. This result indicates that there are significant bonding differences between transition-metal sulfides and transition-metal oxides.
Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worster, Susannah; Kattnig, Daniel R.; Hore, P. J., E-mail: peter.hore@chem.ox.ac.uk
2016-07-21
Long-lived spin coherence and rotationally ordered radical pairs have previously been identified as key requirements for the radical pair mechanism of the avian magnetic compass sense. Both criteria are hard to meet in a biological environment, where thermal motion of the radicals creates dynamic disorder and drives efficient spin relaxation. This has long been cited as a major stumbling block of the radical pair hypothesis. Here we combine Redfield relaxation theory with analytical solutions to a rotational diffusion equation to assess the impact of restricted rotational motion of the radicals on the operation of the compass. The effects of suchmore » motions are first investigated generally in small, model systems and are then critically examined in the magnetically sensitive flavin-tryptophan radical pair that is formed photochemically in the proposed magnetoreceptor protein, cryptochrome. We conclude that relaxation is slowest when rotational motion of the radicals within the protein is fast and highly constrained; that in a regime of slow relaxation, the motional averaging of hyperfine interactions has the potential to improve the sensitivity of the compass; and that consideration of motional effects can significantly alter the design criteria for an optimal compass. In addition, we demonstrate that motion of the flavin radical is likely to be compatible with its role as a component of a functioning radical-pair compass, whereas the motion of the tryptophan radical is less ideal, unless it is particularly fast.« less
Takami, Y; Makinouchi, K; Otsuka, G; Nosé, Y
1997-12-01
The Gyro C1E3 pump has been developed as a completely sealless centrifugal pump driven by a magnetic coupling system for long-term usage. The Gyro C1E3 pump is a pivot bearing-supported pump in which the impeller is supported with the top and bottom pivot bearings. In the Gyro C1E3 pump, the impeller spinning is affected by the force balance between the floating force (Ff[N]) of the hydrodynamic effect and the magnetic thrust force (Tf[N]). The authors quantitatively investigated the floating force of the impeller in vitro to determine the magnetic coupling distance (MCD[mm]) that would result in stable impeller spinning. In vitro tests were performed using a loop filled with 37% glycerin solution to obtain the relationship between the MCD and floating speed (Rf, rotational speed when the impeller starts floating [rpm]) and the relationship between the MCD and Tf. From the obtained relationships, we calculated Ff and determined the relationship between the Ff and the rotational speed (R). Furthermore, we determined the relationship between d (minimum required MCD [mm]) and R from the results of determining the relationship of the MCD and Tf and of the Ff and R. The following relationships were obtained: Rf = 6.24 x 10(4) x MCD-1.35; Tf = 5.27 x 10(3) x MCD-2.29; Ff = 4.71 x 10(-6) x RPM1.69; and d = 9.02 x RPM-0.85 where RPM is the rotational speed. It was demonstrated that the floating force of the impeller is a function only of the rotational speed in the pivot bearing-supported Gyro C1E3 pump. The floating force is estimated to be 10 N to 40 N at rotational speeds of 1,500 rpm to 3,000 rpm at which the Gyro pump may be used in most clinical situations. It would be possible to control the impeller position of the Gyro pump automatically at the stable spinning condition by controlling the adequate magnetic coupling distance based upon its relationship with the rotational speed which was obtained in this study.
The pure rotational spectrum of TiF (X 4Φr): 3d transition metal fluorides revisited
NASA Astrophysics Data System (ADS)
Sheridan, P. M.; McLamarrah, S. K.; Ziurys, L. M.
2003-11-01
The pure rotational spectrum of TiF in its X 4Φr (v=0) ground state has been measured using millimeter/sub-millimeter wave direct absorption techniques in the range 140-530 GHz. In ten out of the twelve rotational transitions recorded, all four spin-orbit components were observed, confirming the 4Φr ground state assignment. Additional small splittings were resolved in several of the spin components in lower J transitions, which appear to arise from magnetic hyperfine interactions of the 19F nucleus. In contrast, no evidence for Λ-doubling was seen in the data. The rotational transitions of TiF were analyzed using a case (a) Hamiltonian, resulting in the determination of rotational and fine structure constants, as well as hyperfine parameters for the fluorine nucleus. The data were readily fit in a case (a) basis, indicating strong first order spin-orbit coupling and minimal second-order effects, as also evidenced by the small value of λ, the spin-spin parameter. Moreover, only one higher order term, η, the spin-orbit/spin-spin interaction term, was needed in the analysis, again suggesting limited perturbations in the ground state. The relative values of the a, b, and c hyperfine constants indicate that the three unpaired electrons in this radical lie in orbitals primarily located on the titanium atom and support the molecular orbital picture of TiF with a σ1δ1π1 single electron configuration. The bond length of TiF (1.8342 Å) is significantly longer than that of TiO, suggesting that there are differences in the bonding between 3d transition metal fluorides and oxides.
Spin-transfer torque in spin filter tunnel junctions
NASA Astrophysics Data System (ADS)
Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek
2014-12-01
Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.
Third-order-harmonic generation in coherently spinning molecules
NASA Astrophysics Data System (ADS)
Prost, E.; Zhang, H.; Hertz, E.; Billard, F.; Lavorel, B.; Bejot, P.; Zyss, Joseph; Averbukh, Ilya Sh.; Faucher, O.
2017-10-01
The rotational Doppler effect occurs when circularly polarized light interacts with a rotating anisotropic material. It is manifested by the appearance of a spectral shift ensuing from the transfer of angular momentum and energy between radiation and matter. Recently, we reported terahertz-range rotational Doppler shifts produced in third-order nonlinear optical conversion [O. Faucher et al., Phys. Rev. A 94, 051402(R) (2016), 10.1103/PhysRevA.94.051402]. The experiment was performed in an ensemble of coherently spinning molecules prepared by a short laser pulse exhibiting a twisted linear polarization. The present work provides an extensive analysis of the rotational Doppler effect in third-order-harmonic generation from spinning linear molecules. The underlying physics is investigated both experimentally and theoretically. The implication of the rotational Doppler effect in higher-order processes like high-order-harmonic generation is discussed.
Rotational properties of planetary satellites
NASA Technical Reports Server (NTRS)
Peale, S. J.
1991-01-01
Properties of satellite rotation that are observable in principle, include the rotation period, the orientation of the spin axis relative to the orbit plane, precession of the spin axis due to gravitational torques, nonprincipal axis rotation or wobble, and deviations from uniform principle axis rotation or libration. Considerable order is observed in current satellite rotation states, and it is of interest to ascertain how this order came about and why some satellites do not conform to the dominant norm. There is a strong coupling between the spin and orbital motions that is primarily responsible for maintaining the ordered rotation states in most cases, but this coupling is equally responsible for destroying any chance of orderly rotation for Saturn's satellite Hyperion. Understanding the processes which constrain current rotation states as well as those of an evolutionary nature which could have brought the individual satellites to their observed rotation and orbit states allows us to sometimes infer interior properties of some satellite or even of its primary planet, although, attempts to deduce primordial rotation states are usually frustrated. The observed rotational properties of the planetary satellites are summarized, and the understanding of the processes maintaining and those leading to the observed states are outlined. Some of the inferences that can be drawn about intrinsic properties of the bodies themselves are indicated.
Nuclear scissors modes and hidden angular momenta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balbutsev, E. B., E-mail: balbuts@theor.jinr.ru; Molodtsova, I. V.; Schuck, P.
The coupled dynamics of low-lying modes and various giant resonances are studied with the help of the Wigner Function Moments method generalized to take into account spin degrees of freedom and pair correlations simultaneously. The method is based on Time-Dependent Hartree–Fock–Bogoliubov equations. The model of the harmonic oscillator including spin–orbit potential plus quadrupole–quadrupole and spin–spin interactions is considered. New low-lying spin-dependent modes are analyzed. Special attention is paid to the scissors modes. A new source of nuclear magnetism, connected with counter-rotation of spins up and down around the symmetry axis (hidden angular momenta), is discovered. Its inclusion into the theorymore » allows one to improve substantially the agreement with experimental data in the description of energies and transition probabilities of scissors modes.« less
Topological defect formation in rotating binary dipolar Bose–Einstein condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Department of Engineering Science, University of Electro-Communications, Tokyo 182-8585
We investigate the topological defects and spin structures of a rotating binary Bose–Einstein condensate, which consists of both dipolar and scalar bosonic atoms confined in spin-dependent optical lattices, for an arbitrary orientation of the dipoles with respect to their plane of motion. Our results show that the tunable dipolar interaction, especially the orientation of the dipoles, can be used to control the direction of stripe phase and its related half-vortex sheets. In addition, it can also be used to obtain a regular arrangement of various topological spin textures, such as meron, circular and cross disgyration spin structures. We point outmore » that such topological defects and regular arrangement of spin structures arise primarily from the long-range and anisotropic nature of dipolar interaction and its competition with the spin-dependent optical lattices and rotation. - Highlights: • Effects of both strength and orientation of the dipoles are discussed. • Various topological defects can be formed in different parameter regions. • Present one possible way to obtain regular arrangements of spin textures.« less
Magnetic modulation of inverse spin Hall effect in lateral spin-valves
NASA Astrophysics Data System (ADS)
Andrianov, T.; Vedyaev, A.; Dieny, B.
2018-05-01
We analytically investigated the spin-dependent transport properties in a lateral spin-valve device comprising pinned ferromagnetic electrodes allowing the injection of a spin current in a spin conducting channel where spin orbit scattering takes place. This produces an inverse spin Hall (ISHE) voltage across the thickness of the spin conducting channel. It is shown that by adding an extra soft ferromagnetic electrode with rotatable magnetization along the spin conducting channel, the ISHE generated voltage can be magnetically modulated by changing the magnetization orientation of this additional electrode. The dependence of the ISHE voltage on the direction of magnetization of the ferromagnetic electrode with rotatable magnetization was calculated in various configurations. Our results suggest that such structures could be considered as magnetic field sensors in situations where the total thickness of the sensor is constrained such as in hard disk drive readers.
Triaxial-band structures, chirality, and magnetic rotation in La 133
Petrache, C. M.; Chen, Q. B.; Guo, S.; ...
2016-12-05
The structure of 133La has been investigated using the 116Cd( 22Ne,4pn) reaction and the Gammasphere array. Three new bands of quadrupole transitions and one band of dipole transitions are identified and the previously reported level scheme is revised and extended to higher spins. The observed structures are discussed using the cranked Nilsson-Strutinsky formalism, covariant density functional theory, and the particle-rotor model. Triaxial configurations are assigned to all observed bands. For the high-spin bands it is found that rotations around different axes can occur, depending on the configuration. The orientation of the angular momenta of the core and of themore » active particles is investigated, suggesting chiral rotation for two nearly degenerate dipole bands and magnetic rotation for one dipole band. As a result, it is shown that the h 11/2 neutron holes present in the configuration of the nearly degenerate dipole bands have significant angular momentum components not only along the long axis but also along the short axis, contributing to the balance of the angular momentum components along the short and long axes and thus giving rise to a chiral geometry.« less
Measurements of pressures on the wing of an aircraft model during steady rotation
NASA Technical Reports Server (NTRS)
Martin, Colin A.; Gage, Peter J.; Hultberg, Randy S.; Bowman, James S., Jr.
1990-01-01
An investigation has been conducted in the Spin Tunnel Facility at the NASA Langley Research Center to measure the pressures on the wing surfaces of a model of a Basic Training Aircraft during steady rotation. The tests were made to determine the nature of the wing pressure distribution during rotations typical of spin entry and steady spin. Comparisons are made between the forces and moments obtained from integrating the pressure field with those measured directly during rotary balance force tests. The results are also compared with estimates determined from a simple numerical model of the wing aerodynamic forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puzzarini, Cristina, E-mail: cristina.puzzarini@unibo.it; Cazzoli, Gabriele; Harding, Michael E.
2015-03-28
Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O andmore » HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].« less
Recent advances at NASA in calculating the electronic spectra of diatomic molecules
NASA Technical Reports Server (NTRS)
Whiting, Ellis E.; Paterson, John A.
1988-01-01
Advanced entry vehicles, such as the proposed Aero-assisted Orbital Transfer Vehicle, provide new and challenging problems for spectroscopy. Large portions of the flow field about such vehicles will be characterized by chemical and thermal nonequilibrium. Only by considering the actual overlap of the atomic and rotational lines emitted by the species present can the impact of radiative transport within the flow field be assessed correctly. To help make such an assessment, a new computer program is described that can generate high-resolution, line-by-line spectra for any spin-allowed transitions in diatomic molecules. The program includes the matrix elements for the rotational energy and distortion to the fourth order; the spin-orbit, spin-spin, and spin-rotation interactions to first order; and the lambda splitting by a perturbation calculation. An overview of the Computational Chemistry Branch at Ames Research Center is also presented.
The dangerous flat spin and the factors affecting it
NASA Technical Reports Server (NTRS)
Fuchs, Richard; Schmidt, Wilhelm
1931-01-01
This report deals first with the fundamental data required for the investigation. These are chiefly the aerodynamic forces and moments acting on an airplane in a flat spin. It is shown that these forces and moments depend principally on the angle of attack and on the rotation about the path axis, and can therefore either be measured in a wind tunnel or calculated from wind-tunnel measurements of lift, drag and moment about the leading edge of the wing of an airplane model at rest. The lift, drag and moments about the span axis are so greatly altered by the rapid rotation in a flat spin, that they can no longer be regarded as independent of rotation. No substantial change in the angles of attack and glide occurring in a flat spin is involved. The cross-wind force, as compared with the lift and drag, can be disregarded in a flat spin.
Spin dynamics of close-in planets exhibiting large transit timing variations
NASA Astrophysics Data System (ADS)
Delisle, J.-B.; Correia, A. C. M.; Leleu, A.; Robutel, P.
2017-09-01
We study the spin evolution of close-in planets in compact multi-planetary systems. The rotation period of these planets is often assumed to be synchronous with the orbital period due to tidal dissipation. Here we show that planet-planet perturbations can drive the spin of these planets into non-synchronous or even chaotic states. In particular, we show that the transit timing variation (TTV) is a very good probe to study the spin dynamics, since both are dominated by the perturbations of the mean longitude of the planet. We apply our model to KOI-227 b and Kepler-88 b, which are both observed undergoing strong TTVs. We also perform numerical simulations of the spin evolution of these two planets. We show that for KOI-227 b non-synchronous rotation is possible, while for Kepler-88 b the rotation can be chaotic.
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.; Bowman, J. S., Jr.
1980-01-01
The NASA Langley Research Center has initiated a broad general aviation stall/spin research program. A rotary balance system was developed to support this effort. Located in the Langley spin tunnel, this system makes it possible to identify an airplane's aerodynamic characteristics in a rotational flow environment, and thereby permits prediction of spins. This paper presents a brief description of the experimental set-up, testing technique, five model programs conducted to date, and an overview of the rotary balance results and their correlation with spin tunnel free-spinning model results. It is shown, for example, that there is a large, nonlinear dependency of the aerodynamic moments on rotational rate and that these moments are pronouncedly configuration-dependent. Fuselage shape, horizontal tail and, in some instances, wing location are shown to appreciably influence the yawing moment characteristics above an angle of attack of 45 deg.
THE TWO-LEVEL MODEL AT FINITE-TEMPERATURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, A.L.
1980-07-01
The finite-temperature HFB cranking equations are solved for the two-level model. The pair gap, moment of inertia and internal energy are determined as functions of spin and temperature. Thermal excitations and rotations collaborate to destroy the pair correlations. Raising the temperature eliminates the backbending effect and improves the HFB approximation.
Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles
NASA Astrophysics Data System (ADS)
Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.
2015-11-01
Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruk, D., E-mail: danuta.kruk@matman.uwm.edu.pl; Hoffmann, S. K.; Goslar, J.
2013-12-28
Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d{sub 16} containing {sup 15}N and {sup 14}N isotopes. The NMRD experiments refer to {sup 1}H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recentlymore » presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the {sup 1}H relaxation of the solvent. The {sup 1}H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.« less
Kent, Stephen M.
2018-02-15
If the optical system of a telescope is perturbed from rotational symmetry, the Zernike wavefront aberration coefficients describing that system can be expressed as a function of position in the focal plane using spin-weighted Zernike polynomials. Methodologies are presented to derive these polynomials to arbitrary order. This methodology is applied to aberration patterns produced by a misaligned Ritchey Chretian telescope and to distortion patterns at the focal plane of the DESI optical corrector, where it is shown to provide a more efficient description of distortion than conventional expansions.
Asteroid spin-rate studies using large sky-field surveys
NASA Astrophysics Data System (ADS)
Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David; Laher, Russ; Surace, Jason
2017-12-01
Eight campaigns to survey asteroid rotation periods have been carried out using the intermediate Palomar Transient Factory in the past 3 years. 2780 reliable rotation periods were obtained, from which we identified two new super-fast rotators (SFRs), (335433) 2005 UW163 and (40511) 1999 RE88, and 23 candidate SFRs. Along with other three known super-fast rotators, there are five known SFRs so far. Contrary to the case of rubble-pile asteroids (i.e., bounded aggregations by gravity only), an internal cohesion, ranging from 100 to 1000 Pa, is required to prevent these five SFRs from flying apart because of their super-fast rotations. This cohesion range is comparable with that of lunar regolith. However, some candidates of several kilometers in size require unusually high cohesion (i.e., a few thousands of Pa). Therefore, the confirmation of these kilometer-sized candidates can provide important information about asteroid interior structure. From the rotation periods we collected, we also found that the spin-rate limit of C-type asteroids, which has a lower bulk density, is lower than for S-type asteroids. This result is in agreement with the general picture of rubble-pile asteroids (i.e., lower bulk density, lower spin-rate limit). Moreover, the spin-rate distributions of asteroids of 3< D < 15 km in size show a steady decrease along frequency for f > 5 rev/day, regardless of the location in the main belt. The YORP effect is indicated to be less efficient in altering asteroid spin rates from our results when compared with the flat distribution found by Pravec et al. (Icarus 197:497-504, 2008. doi: 10.1016/j.icarus.2008.05.012). We also found a significant number drop at f = 5 rev/day in the spin-rate distributions of asteroids of D < 3 km.
IMPLICATIONS OF RAPID CORE ROTATION IN RED GIANTS FOR INTERNAL ANGULAR MOMENTUM TRANSPORT IN STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tayar, Jamie; Pinsonneault, Marc H., E-mail: tayar.1@osu.edu
2013-09-20
Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ({sup O}tto{sup )} and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In themore » case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.« less
Spin-exchange effects in elastic electron-radical collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimoto, M. M.; Michelin, S. E.; Iga, I.
2006-01-15
This work presents a theoretical investigation on the spin-exchange effects in the low-energy elastic electron-C{sub 2}O radical collisions. Spin-polarization differential and integral cross sections calculated in the 1-10-eV energy range are reported. Our calculation has shown that the exchange between the scattering and unpaired target electron is strongly influenced by the occurrence of shape resonances. More specifically, our calculated rotationally summed spin-polarization fractions show significant deviation from unity in the resonance region. An analysis of the contributions from individual rotational transitions is also made.
The Pure Rotational Spectrum of KO
NASA Astrophysics Data System (ADS)
Burton, Mark; Russ, Benjamin; Sheridan, Phillip M.; Bucchino, Matthew; Ziurys, Lucy M.
2017-06-01
The pure rotational spectrum of potassium monoxide (KO) has been recorded using millimeter-wave direct absorption spectroscopy. KO was synthesized by the reaction of potassium vapor, produced in a Broida-type oven, with nitrous oxide. No DC discharge was necessary. Eleven rotational transitions belonging to the ^{2}Π_{3/2} spin-orbit component have been measured and have been fit successfully to a case (c) Hamiltonian. Rotational and lambda-doubling constants for this spin-orbit component have been determined. It has been suggested that the ground electronic state of KO is either ^{2}Π (as for LiO and NaO) or ^{2}Σ (as for RbO and CsO), both of which lie close in energy. Recent computational studies favor a ^{2}Σ ground state. Further measurements of the rotational transitions of the ^{2}Π_{1/2} spin-orbit component and the ^{2}Σ state are currently in progress, as well as the potassium hyperfine structure.
Gigahertz dynamics of a strongly driven single quantum spin.
Fuchs, G D; Dobrovitski, V V; Toyli, D M; Heremans, F J; Awschalom, D D
2009-12-11
Two-level systems are at the core of numerous real-world technologies such as magnetic resonance imaging and atomic clocks. Coherent control of the state is achieved with an oscillating field that drives dynamics at a rate determined by its amplitude. As the strength of the field is increased, a different regime emerges where linear scaling of the manipulation rate breaks down and complex dynamics are expected. By calibrating the spin rotation with an adiabatic passage, we have measured the room-temperature "strong-driving" dynamics of a single nitrogen vacancy center in diamond. With an adiabatic passage to calibrate the spin rotation, we observed dynamics on sub-nanosecond time scales. Contrary to conventional thinking, this breakdown of the rotating wave approximation provides opportunities for time-optimal quantum control of a single spin.
Rotational Dynamics of Proteins from Spin Relaxation Times and Molecular Dynamics Simulations.
Ollila, O H Samuli; Heikkinen, Harri A; Iwaï, Hideo
2018-06-14
Conformational fluctuations and rotational tumbling of proteins can be experimentally accessed with nuclear spin relaxation experiments. However, interpretation of molecular dynamics from the experimental data is often complicated, especially for molecules with anisotropic shape. Here, we apply classical molecular dynamics simulations to interpret the conformational fluctuations and rotational tumbling of proteins with arbitrarily anisotropic shape. The direct calculation of spin relaxation times from simulation data did not reproduce the experimental data. This was successfully corrected by scaling the overall rotational diffusion coefficients around the protein inertia axes with a constant factor. The achieved good agreement with experiments allowed the interpretation of the internal and overall dynamics of proteins with significantly anisotropic shape. The overall rotational diffusion was found to be Brownian, having only a short subdiffusive region below 0.12 ns. The presented methodology can be applied to interpret rotational dynamics and conformation fluctuations of proteins with arbitrary anisotropic shape. However, a water model with more realistic dynamical properties is probably required for intrinsically disordered proteins.
Binary Neutron Stars with Arbitrary Spins in Numerical Relativity
NASA Astrophysics Data System (ADS)
Pfeiffer, Harald; Tacik, Nick; Foucart, Francois; Haas, Roland; Kaplan, Jeffrey; Muhlberger, Curran; Duez, Matt; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela
2015-04-01
We present a code to construct initial data for binary neutron star where the stars are rotating. Our code, based on the formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ~ 0 . 1 % . Preliminary evolutions show that spin- and orbit-precession of Neutron stars is well described by post-Newtonian approximation. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.
Min, J; Ziurys, L M
2016-05-14
Pure rotational spectroscopy of the CrC (X(3)Σ(-)) and CrCCH (X̃ (6)Σ(+)) radicals has been conducted using millimeter/sub-millimeter direct absorption methods in the frequency range 225-585 GHz. These species were created in an AC discharge of Cr(CO)6 and either methane or acetylene, diluted in argon. Spectra of the CrCCD were also recorded for the first time using deuterated acetylene as the carbon precursor. Seven rotational transitions of CrC were measured, each consisting of three widely spaced, fine structure components, arising from spin-spin and spin-rotation interactions. Eleven rotational transitions were recorded for CrCCH and five for CrCCD; each transition in these cases was composed of a distinct fine structure sextet. These measurements confirm the respective (3)Σ(-) and (6)Σ(+) ground electronic states of these radicals, as indicated from optical studies. The data were analyzed using a Hund's case (b) Hamiltonian, and rotational, spin-spin, and spin-rotation constants have been accurately determined for all three species. The spectroscopic parameters for CrC were significantly revised from previous optical work, while those for CrCCH are in excellent agreement; completely new constants were established for CrCCD. The chromium-carbon bond length for CrC was calculated to be 1.631 Å, while that in CrCCH was found to be rCr-C = 1.993 Å - significantly longer. This result suggests that a single Cr-C bond is present in CrCCH, preserving the acetylenic structure of the ligand, while a triple bond exists in CrC. Analysis of the spin constants suggests that CrC has a nearby excited (1)Σ(+) state lying ∼16 900 cm(-1) higher in energy, and CrCCH has a (6)Π excited state with E ∼ 4800 cm(-1).
The origin and evolution of fast and slow rotators in the Illustris simulation
NASA Astrophysics Data System (ADS)
Penoyre, Zephyr; Moster, Benjamin P.; Sijacki, Debora; Genel, Shy
2017-07-01
Using the Illustris simulation, we follow thousands of elliptical galaxies back in time to identify how the dichotomy between fast- and slow-rotating ellipticals (FRs and SRs) develops. Comparing to the ATLAS3D survey, we show that Illustris reproduces similar elliptical galaxy rotation properties, quantified by the degree of ordered rotation, λR. There is a clear segregation between low-mass (M* < 1011 M⊙) ellipticals, which form a smooth distribution of FRs, and high-mass galaxies (M* > 1011.5 M⊙), which are mostly SRs, in agreement with observations. We find that SRs are very gas poor, metal rich and red in colour, while FRs are generally more gas rich and still star forming. We suggest that ellipticals begin naturally as FRs and, as they grow in mass, lose their spin and become SRs. While at z = 1, the progenitors of SRs and FRs are nearly indistinguishable, their merger and star formation histories differ thereafter. We find that major mergers tend to disrupt galaxy spin, though in rare cases can lead to a spin-up. No major difference is found between the effects of gas-rich and gas-poor mergers, and the number of minor mergers seems to have little correlation with galaxy spin. In between major mergers, lower mass ellipticals, which are mostly gas rich, tend to recover their spin by accreting gas and stars. For galaxies with M* above ˜1011 M⊙, this trend reverses; galaxies only retain or steadily lose their spin. More frequent mergers, accompanied by an inability to regain spin, lead massive ellipticals to lose most of ordered rotation and transition from FRs to SRs.
NASA Astrophysics Data System (ADS)
Kiely, Thomas G.; Freericks, J. K.
2018-02-01
In a large transverse field, there is an energy cost associated with flipping spins along the axis of the field. This penalty can be employed to relate the transverse-field Ising model in a large field to the X Y model in no field (when measurements are performed at the proper stroboscopic times). We describe the details for how this relationship works and, in particular, we also show under what circumstances it fails. We examine wave-function overlap between the two models and observables, such as spin-spin Green's functions. In general, the mapping is quite robust at short times, but will ultimately fail if the run time becomes too long. There is also a tradeoff between the length of time one can run a simulation out to and the time jitter of the stroboscopic measurements that must be balanced when planning to employ this mapping.
Role of entropy and structural parameters in the spin-state transition of LaCoO3
NASA Astrophysics Data System (ADS)
Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan
2017-11-01
The spin-state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge self-consistent density functional theory + embedded dynamical mean field theory (DFT+DMFT). We show from first principles that LaCoO3 cannot be described by a single, pure spin state at any temperature. Instead, we observe a gradual change in the population of higher-spin multiplets with increasing temperature, with the high-spin multiplets being excited at the onset of the spin-state transition followed by the intermediate-spin multiplets being excited at the metal-insulator-transition temperature. We explicitly elucidate the critical role of lattice expansion and oxygen octahedral rotations in the spin-state transition. We also reproduce, from first principles, that the spin-state transition and the metal-insulator transition in LaCoO3 occur at different temperature scales. In addition, our results shed light on the importance of electronic entropy in driving the spin-state transition, which has so far been ignored in all first-principles studies of this material.
Spin Transfer torques in Antiferromagnets
NASA Astrophysics Data System (ADS)
Saidaoui, Hamed; Waintal, Xavier; Manchon, Aurelien; Spsms, Cea, Grenoble France Collaboration
2013-03-01
Spin Transfer Torque (STT) has attracted tremendously growing interest in the past two decades. Consisting on the transfer of spin angular momentum of a spin polarized current to local magnetic moments, the STT gives rise to a complex dynamics of the magnetization. Depending on the the structure, the STT shows a dominated In plane component for spin valves, whereas both components coexist for magnetic tunneling junctions (MTJ). For latter case the symmetry of the structure is considered to be decisive in identifying the nature and behavior of the torque. In the present study we are interested in magnetic structures where we substitute either one or both of the magnetic layers by antiferromagnets (AF). We use Non-equilibrium Green's function formalism applied on a tight-binding model to investigate the nature of the spin torque. We notice the presence of two types of torque exerted on (AF), a torque which tends to rotate the order parameter and another one that competes with the exchange interaction. We conclude by comparison with previous works.
Rotational dynamics of spin-labeled F-actin during activation of myosin S1 ATPase using caged ATP.
Ostap, E. M.; Thomas, D. D.
1991-01-01
The most probable source of force generation in muscle fibers in the rotation of the myosin head when bound to actin. This laboratory has demonstrated that ATP induces microsecond rotational motions of spin-labeled myosin heads bound to actin (Berger, C. L. E. C. Svensson, and D. D. Thomas. 1989. Proc. Natl. Acad. Sci. USA. 86:8753-8757). Our goal is to determine whether the observed ATP-induced rotational motions of actin-bound heads are accompanied by changes in actin rotational motions. We have used saturation transfer electron paramagnetic resonance (ST-EPR) and laser-induced photolysis of caged ATP to monitor changes in the microsecond rotational dynamics of spin-labeled F-actin in the presence of myosin subfragment-1 (S1). A maleimide spin label was attached selectively to cys-374 on actin. In the absence of ATP (with or without caged ATP), the ST-EPR spectrum (corresponding to an effective rotational time of approximately 150 microseconds) was essentially the same as observed for the same spin label bound to cys-707 (SH1) on S1, indicating that S1 is rigidly bound to actin in rigor. At normal ionic strength (micro = 186 mM), a decrease in ST-EPR intensity (increase in microsecond F-actin mobility) was clearly indicated upon photolysis of 1 mM caged ATP with a 50-ms, 351-nm laser pulse. This increase in mobility is due to the complete dissociation of Si from the actin filament. At low ionic strength (micro, = 36 mM), when about half the Si heads remain bound during ATP hydrolysis, no change in the actin mobility was detected, despite much faster motions of labeled S1 bound to actin. Therefore, we conclude that the active interaction of Si, actin,and ATP induces rotation of myosin heads relative to actin, but does not affect the microsecond rotational motion of actin itself, as detected at cys-374 of actin. PMID:1651780
Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakalli, I.; Ovgun, A., E-mail: ali.ovgun@emu.edu.tr
We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hastings, Danielle M.; Margot, Jean-Luc; Ragozzine, Darin
Hi’iaka is the larger outer satellite of the dwarf planet Haumea. Using relative photometry from the Hubble Space Telescope and Magellan and a phase dispersion minimization analysis, we have identified the rotation period of Hi’iaka to be ∼9.8 hr (double peaked). This is ∼120 times faster than its orbital period, creating new questions about the formation of this system and possible tidal evolution. The rapid rotation suggests that Hi’iaka could have a significant obliquity and spin precession that could be visible in light curves within a few years. We then turn to an investigation of what we learn about themore » (currently unclear) formation of the Haumea system and family based on this unexpectedly rapid rotation rate. We explore the importance of the initial semimajor axis and rotation period in tidal evolution theory and find that they strongly influence the time required to despin to synchronous rotation, relevant to understanding a wide variety of satellite and binary systems. We find that despinning tides do not necessarily lead to synchronous spin periods for Hi’iaka, even if it formed near the Roche limit. Therefore, the short rotation period of Hi’iaka does not rule out significant tidal evolution. Hi’iaka’s spin period is also consistent with formation near its current location and spin-up due to Haumea-centric impactors.« less
Inertial oscillation of a vertical rotating draft with application to a supercell storm
NASA Technical Reports Server (NTRS)
Costen, Robert C.; Stock, Larry V.
1992-01-01
An analytic model (vertical rotating draft) which includes the gross features of a supercell storm on an f-plane, undergoes an inertial oscillation that appears to have been overlooked in previous analytic and numerical models. The oscillation is nonlinear and consists of a long quiescent phase and a short intense phase. During the intense phase, the rotating draft has the following features of a supercell: the diameter of the core contracts as it spins up and expands as it spins down; if vertical wind shear is included, the track of the rotating draft turns to the right (an anticyclonic rotating draft turns to the left); this turning point is followed by a predominantly upward flow; and the horizontal pressure gradient is very small (a property of most tornadoless supercells). The rapid spin-up during the intense phase and the high Rossby numbers obtainable establish the ability of the Coriolis force to spin up single cyclonic or anticyclonic supercells by means of this inertial oscillation. This surprising result has implications for numerical supercell simulations, which generally do not rely on the Coriolis force as a source of rotation. The physics and mathematics of the inertial oscillation are given, and the solution is applied to a documented supercell.
Are pulsars spun up or down by SASI spiral modes?
NASA Astrophysics Data System (ADS)
Kazeroni, Rémi; Guilet, Jérôme; Foglizzo, Thierry
2017-10-01
Pulsars may either be spun up or down by hydrodynamic instabilities during the supernova explosion of massive stars. Besides rapidly rotating cases related to bipolar explosions, stellar rotation may affect the explosion of massive stars in the more common situations where the centrifugal force is minor. Using 2D simulations of a simplified set-up in cylindrical geometry, we examine the impact of rotation on the standing accretion shock instability (SASI) and the corotation instability, also known as low-T/|W|. The influence of rotation on the saturation amplitude of these instabilities depends on the specific angular momentum in the accretion flow and the ratio of the shock to the neutron star radii. The spiral mode of SASI becomes more vigorous with faster rotation only if this ratio is large enough. A corotation instability develops at large rotation rates and impacts the dynamics more dramatically, leading to a strong one-armed spiral wave. Non-axisymmetric instabilities are able to redistribute angular momentum radially and affect the pulsar spin at birth. A systematic study of the relationship between the core rotation period of the progenitor and the initial pulsar spin is performed. Stellar rotation rates for which pulsars are spun up or down by SASI are estimated. Rapidly spinning progenitors are modestly spun down by spiral modes, less than ˜30 per cent, when a corotation instability develops. Given the observational constraints on pulsar spin periods at birth, this suggests that rapid rotation might not play a significant hydrodynamic role in most core-collapse supernovae.
Frame-dragging effect in the field of non rotating body due to unit gravimagnetic moment
NASA Astrophysics Data System (ADS)
Deriglazov, Alexei A.; Ramírez, Walberto Guzmán
2018-04-01
Nonminimal spin-gravity interaction through unit gravimagnetic moment leads to modified Mathisson-Papapetrou-Tulczyjew-Dixon equations with improved behavior in the ultrarelativistic limit. We present exact Hamiltonian of the resulting theory and compute an effective 1/c2-Hamiltonian and leading post-Newtonian corrections to the trajectory and spin. Gravimagnetic moment causes the same precession of spin S as a fictitious rotation of the central body with angular momentum J = M/m S. So the modified equations imply a number of qualitatively new effects, that could be used to test experimentally, whether a rotating body in general relativity has null or unit gravimagnetic moment.
Hanson, Thomas F.
1982-01-01
A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling combination apparatus of the invention. A reading of the complete specification is recommended for a full understanding of the principles and features of the disclosed system.
Spin-orbit coupling for tidally evolving super-Earths
NASA Astrophysics Data System (ADS)
Rodríguez, A.; Callegari, N.; Michtchenko, T. A.; Hussmann, H.
2012-12-01
We investigate the spin behaviour of close-in rocky planets and the implications for their orbital evolution. Considering that the planet rotation evolves under simultaneous actions of the torque due to the equatorial deformation and the tidal torque, both raised by the central star, we analyse the possibility of temporary captures in spin-orbit resonances. The results of the numerical simulations of the exact equations of motions indicate that, whenever the planet rotation is trapped in a resonant motion, the orbital decay and the eccentricity damping are faster than the ones in which the rotation follows the so-called pseudo-synchronization. Analytical results obtained through the averaged equations of the spin-orbit problem show a good agreement with the numerical simulations. We apply the analysis to the cases of the recently discovered hot super-Earths Kepler-10 b, GJ 3634 b and 55 Cnc e. The simulated dynamical history of these systems indicates the possibility of capture in several spin-orbit resonances; particularly, GJ 3634 b and 55 Cnc e can currently evolve under a non-synchronous resonant motion for suitable values of the parameters. Moreover, 55 Cnc e may avoid a chaotic rotation behaviour by evolving towards synchronization through successive temporary resonant trappings.
Quincke rotation of an ellipsoid
NASA Astrophysics Data System (ADS)
Vlahovska, Petia; Brosseau, Quentin
2016-11-01
The Quincke effect - spontaneous spinning of a sphere in a uniform DC electric field - has attracted considerable interest in recent year because of the intriguing dynamics exhibited by a Quincke-rotating drop and the emergent collective behavior of confined suspensions of Quincke-rotating spheres. Shape anisotropy, e.g., due to drop deformation or particle asphericity, is predicted to give rise to complex particle dynamics. Analysis of the dynamics of rigid prolate ellipsoid in a uniform DC electric field shows two possible stable states characterized by the orientation of the ellipsoid long axis relative to the applied electric field : spinless (parallel) and spinning (perpendicular). Here we report an experimental study testing the theoretical predictions. The phase diagram of ellipsoid behavior as a function of field strength and aspect ratio is in close agreement with theory. We also investigated the dynamics of the ellipsoidal Quincke "roller": an ellipsoid near a planar surface with normal perpendicular to the field direction. We find novel behaviors such as swinging (long axis oscillating around the applied field direction) and tumbling due to the confinement. Supported by NSF CBET awards 1437545 and 1544196.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrache, C. M.; Chen, Q. B.; Guo, S.
The structure of 133La has been investigated using the 116Cd( 22Ne,4pn) reaction and the Gammasphere array. Three new bands of quadrupole transitions and one band of dipole transitions are identified and the previously reported level scheme is revised and extended to higher spins. The observed structures are discussed using the cranked Nilsson-Strutinsky formalism, covariant density functional theory, and the particle-rotor model. Triaxial configurations are assigned to all observed bands. For the high-spin bands it is found that rotations around different axes can occur, depending on the configuration. The orientation of the angular momenta of the core and of themore » active particles is investigated, suggesting chiral rotation for two nearly degenerate dipole bands and magnetic rotation for one dipole band. As a result, it is shown that the h 11/2 neutron holes present in the configuration of the nearly degenerate dipole bands have significant angular momentum components not only along the long axis but also along the short axis, contributing to the balance of the angular momentum components along the short and long axes and thus giving rise to a chiral geometry.« less
SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.
2012-01-20
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less
Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds
NASA Astrophysics Data System (ADS)
Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.
2012-01-01
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.
Rotational spectroscopic study of carbonyl sulfide solvated with hydrogen molecules.
Michaud, Julie M; Jäger, Wolfgang
2008-10-14
Rotational spectra of small-sized (H(2))(N)-OCS clusters with N = 2-7 were measured using a pulsed-jet Fourier transform microwave spectrometer. These include spectra of pure (para-H(2))(N)-OCS clusters, pure (ortho-H(2))(N)-OCS clusters, and mixed ortho-H(2) and para-H(2) containing clusters. The rotational lines of ortho-H(2) molecules containing clusters show proton spin-proton spin hyperfine structure, and the pattern evolves as the number of ortho-H(2) molecules in the cluster increases. Various isotopologues of the clusters were investigated, including those with O(13)CS, OC(33)S, OC(34)S, and O(13)C(34)S. Nuclear quadrupole hyperfine structures of rotational transitions were observed for (33)S (nuclear spin quantum number I = 3/2) containing isotopologues. The (33)S nuclear quadrupole coupling constants are compared to the corresponding constant of the OCS monomer and those of the He(N)-OCS clusters. The assignment of the number of solvating hydrogen molecules N is supported by the analyses of the proton spin-proton spin hyperfine structures of the mixed clusters, the dependence of line intensities on sample conditions (pressure and concentrations), and the agreement of the (para-H(2))(N)-OCS and (ortho-H(2))(N)-OCS rotational constants with those from a previous infrared study [J. Tang and A. R. W. McKellar, J. Chem. Phys. 121, 3087 (2004)].
Is Asteroid 951 Gaspra in a Resonant State with Its Spin Increasing Due to YORP?
NASA Technical Reports Server (NTRS)
Rubincam, David Parry; Rowlands, David D.; Ray, Richard D.; Smith, David E. (Technical Monitor)
2002-01-01
Asteroid 951 Gaspra appears to be in an obliquity resonance with its spin increasing due to the YORP effect. Gaspra, an asteroid 5.8 km in radius, is a prograde rotator with a rotation period of 7.03 hours. A three million year integration indicates its orbit is stable over at least this time span. From its known shape and spin axis orientation and assuming a uniform density, Gaspra's axial precession period turns out to be nearly commensurate with its orbital precession period, which leads to a resonance condition with consequent huge variations in its obliquity. At the same time its shape is such that the Yarkovsky-O'Keefe-Radzievskii-Paddack effect (YORP effect for short) is increasing its spin rate. The YORP cycle normally leads from spin-up to spin-down and then repeating the cycle; however, it appears possible that resonance trapping can at least temporarily interrupt the YORP cycle, causing spin-up until the resonance is exited. This behavior may partially explain why there is an excess of fast rotators among small asteroids. YORP may also be a reason for small asteroids entering resonances in the first place.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waszczak, Adam; Chang, Chan-Kao; Cheng, Yu-Chi
We fit 54,296 sparsely sampled asteroid light curves in the Palomar Transient Factory survey to a combined rotation plus phase-function model. Each light curve consists of 20 or more observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find that the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude, and other light-curve attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining ∼53,000 fitted periods. By this method we findmore » that 9033 of our light curves (of ∼8300 unique asteroids) have “reliable” periods. Subsequent consideration of asteroids with multiple light-curve fits indicates a 4% contamination in these “reliable” periods. For 3902 light curves with sufficient phase-angle coverage and either a reliable fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than ∼2 g cm{sup −3}, while C types have a lower limit of between 1 and 2 g cm{sup −3}. These results are in agreement with previous density estimates. For 5–20 km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types’ differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes (and apparent-magnitude residuals) to those of the Minor Planet Center’s nominal (G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting reduces asteroid photometric rms scatter by a factor of ∼3.« less
Triaxiality and Exotic Rotations at High Spins in 134Ce
Petrache, C. M.; Guo, S.; Ayangeakaa, A. D.; ...
2016-06-06
High-spin states in Ce-134 have been investigated using the Cd-116(Ne-22,4n) reaction and the Gammasphere array. The level scheme has been extended to an excitation energy of similar to 30 MeV and spin similar to 54 (h) over bar. Two new dipole bands and four new sequences of quadrupole transitions were identified. Several new transitions have been added to a number of known bands. One of the strongly populated dipole bands was revised and placed differently in the level scheme, resolving a discrepancy between experiment and model calculations reported previously. Configurations are assigned to the observed bands based on cranked Nilsson-Strutinskymore » calculations. A coherent understanding of the various excitations, both at low and high spins, is thus obtained, supporting an interpretation in terms of coexistence of stable triaxial, highly deformed, and superdeformed shapes up to very high spins. Rotations around different axes of the triaxial nucleus, and sudden changes of the rotation axis in specific configurations, are identified, further elucidating the nature of high-spin collective excitations in the A = 130 mass region.« less
NASA Astrophysics Data System (ADS)
Silenko, Alexander J.
2017-12-01
We consider a proton electric-dipole-moment experiment in an all-electric storage ring when the spin is frozen and local longitudinal and vertical electric fields alternate. In this experiment, the geometric (Berry) phases are very important. Due to the these phases, the spin rotates about the radial axis. The corresponding systematic error is rather important while it can be canceled with clockwise and counterclockwise beams. The geometric phases also lead to the spin rotation about the radial axis. This effect can be canceled with clockwise and counterclockwise beams as well. The sign of the azimuthal component of the angular velocity of the spin precession depends on the starting point where the spin orientation is perfect. The radial component of this quantity keeps its value and sign for each starting point. When the longitudinal and vertical electric fields are joined in the same sections without any alternation, the systematic error due to the geometric phases does not appear but another systematic effect of the spin rotation about the azimuthal axis takes place. It has opposite signs for clockwise and counterclockwise beams.
EPR spin probe and spin label studies of some low molecular and polymer micelles
NASA Astrophysics Data System (ADS)
Wasserman, A. M.; Kasaikin, V. A.; Timofeev, V. P.
1998-12-01
The rotational mobility of spin probes of different shape and size in low molecular and polymer micelles has been studied. Several probes having nitroxide fragment localized either in the vicinity of micelle interface or in the hydrocarbon core have been used. Upon increasing the number of carbon atoms in hydrocarbon chain of detergent from 7 to 13 (sodium alkyl sulfate micelles) or from 12 to 16 (alkyltrimethylammonium bromide micelles) the rotational mobility of spin probes is decreased by the factor 1.5-2.0. The spin probe rotational mobility in polymer micelles (the complexes of alkyltrimethylammonium bromides and polymethacrylic or polyacrylic acids) is less than mobility in free micelles of the same surfactants. The study of EPR-spectra of spin labeled polymethacrylic acid (PMA) indicated that formation of water soluble complexes of polymer and alkyltrimethylammonium bromides in alkaline solutions (pH 9) does not affect the polymer segmental mobility. On the other hand, the polymer complexes formation in slightly acidic water solution (pH 6) breaks down the compact PMA conformation, thus increasing the polymer segmental mobility. Possible structures of polymer micelles are discussed.
Investigation of magnetic microdiscs for bacterial pathogen detection
NASA Astrophysics Data System (ADS)
Castillo-Torres, Keisha Y.; Garraud, Nicolas; Arnold, David P.; McLamore, Eric S.
2016-05-01
Despite strict regulations to control the presence of human pathogens in our food supply, recent foodborne outbreaks have heightened public concern about food safety and created urgency to improve methods for pathogen detection. Herein we explore a potentially portable, low-cost system that uses magnetic microdiscs for the detection of bacterial pathogens in liquid samples. The system operates by optically measuring the rotational dynamics of suspended magnetic microdiscs functionalized with pathogen-binding aptamers. The soft ferromagnetic (Ni80Fe20) microdiscs exhibit a closed magnetic spin arrangement (i.e. spin vortex) with zero magnetic stray field, leading to no disc agglomeration when in free suspension. With very high surface area for functionalization and volumes 10,000x larger than commonly used superparamagnetic nanoparticles, these 1.5-μm-diameter microdiscs are well suited for tagging, trapping, actuating, or interrogating bacterial targets. This work reports a wafer-level microfabrication process for fabrication of 600 million magnetic microdiscs per substrate and measurement of their rotational dynamics response. Additionally, the biofunctionalization of the microdiscs with DNA aptamers, subsequent binding to E. coli bacteria, and their magnetic manipulation is reported.
Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures
NASA Astrophysics Data System (ADS)
Avilés-Félix, L.; Butera, A.; González-Chávez, D. E.; Sommer, R. L.; Gómez, J. E.
2018-03-01
We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, Alexander B.; Popov, Vladimir A., E-mail: alexander.balakin@kpfu.ru, E-mail: vladipopov@mail.ru
In the framework of the Einstein-aether theory we consider a cosmological model, which describes the evolution of the unit dynamic vector field with activated rotational degree of freedom. We discuss exact solutions of the Einstein-aether theory, for which the space-time is of the Gödel-type, the velocity four-vector of the aether motion is characterized by a non-vanishing vorticity, thus the rotational vectorial modes can be associated with the source of the universe rotation. The main goal of our paper is to study the motion of test relativistic particles with a vectorial internal degree of freedom (spin or polarization), which is coupledmore » to the unit dynamic vector field. The particles are considered as the test ones in the given space-time background of the Gödel-type; the spin (polarization) coupling to the unit dynamic vector field is modeled using exact solutions of three types. The first exact solution describes the aether with arbitrary Jacobson's coupling constants; the second one relates to the case, when the Jacobson's constant responsible for the vorticity is vanishing; the third exact solution is obtained using three constraints for the coupling constants. The analysis of the exact expressions, which are obtained for the particle momentum and for the spin (polarization) four-vector components, shows that the interaction of the spin (polarization) with the unit vector field induces a rotation, which is additional to the geodesic precession of the spin (polarization) associated with the universe rotation as a whole.« less
Radial-rotation profile forming: A new processing technology of incremental sheet metal forming
NASA Astrophysics Data System (ADS)
Laue, Robert; Härtel, Sebastian; Awiszus, Birgit
2018-05-01
Incremental forming processes (i.e., spinning) of sheet metal blanks into cylindrical cups are suitable for lower lot sizes. The produced cups were frequently used as preforms to produce workpieces in further forming steps with additional functions like profiled hollow parts [1]. The incremental forming process radial-rotation profile forming has been developed to enable the production of profiled hollow parts with low sheet thinning and good geometrical accuracy. The two principal forming steps are the production of the preform by rotational swing-folding [2] and the subsequent radial profiling of the hollow part in one clamping position. The rotational swing-folding process is based on a combination of conventional spinning and swing-folding. Therefore, a round blank rotates on a profiled mandrel and due to the swinging of a cylindrical forming tool, the blank is formed to a cup with low sheet thinning. In addition, thickening results at the edge of the blank and wrinkling occurs. However, the wrinkles are formed into the indentation of the profiled mandrel and can be reshaped as an advantage in the second process step, the radial profiling. Due to the rotation and continuous radial feed of a profiled forming tool to the profiled mandrel, the axial profile is formed in the second process step. Because of the minor relative movement in axial direction between tool and blank, low sheet thinning occurs. This is an advantage of the principle of the process.
Episodic Spin-up and Spin-down Torque on Earth
NASA Astrophysics Data System (ADS)
Slabinski, Victor J.; Mendonca, Antonio A.
2018-04-01
Variations in Earth rotation angle are traditionally expressed by the time difference (ΔT=TT-UT1) between Terrestrial Time (TT) as told by atomic clocks and Universal Time UT1, the time variable used by the Earth-rotation formula. A plot of ΔT versus TT over the past 160 years shows a continuous curve with approximate straight-line segments with different spans of order ~20 years. Removing the tidal and seasonal variations from the data gives these line segments which represent the “decadal variations” in Earth rotation.The slope of a straight-line segment is proportional to the departure of Earth rotation rate from a reference value at the time. The change in slope over the relatively short time between segments indicates an episodic spin-up or spin-down in Earth rotation. The daily combination of VLBI, SLR, and other modern data available since 1973 gives us accurate, daily values of ΔT and the corresponding LOD (Length Of Day) values during these episodes. These allow us to determine the rotational acceleration occurring then.The three largest spin-speed changes found during the VLBI era have the following characteristics:Episode _____________ Duration__ ΔLOD__LOD Rate1983 Dec 30-1984 Jan 28 ... 29 d ...-0.65 ms ..-8.3 ms/y ..........spin-up1989 Mar 15-1989 May 23 ...69 d ....0.68 .......+3.6 ..............spin-down1994 Jan 21-2001 Apr 01 ... 6.5 y ...-2.2 .........-0.36 ..extended spin-upFor the first two episodes listed, we find the acceleration grows from zero (or at least a relatively small value) to its extreme value in ~1 day, stays approximately constant at this value for 29 or 69 days, and then decays back to zero over ~1 day. The acceleration, while it occurs, gives an LOD rate much greater than the 0.02 ms/y rate from tidal friction.The third episode shows that occasionally a several-year-long episode occurs. The acceleration magnitude is smaller but can make a larger total change in LOD (and spin rate). Tidal friction requires >100 y to equal the LOD magnitude change from this episode.We do not know the cause or trigger for the episodes.
ERIC Educational Resources Information Center
Fuson, Michael M.
2017-01-01
Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…
Laser-driven clockwise molecular rotation for a transient spinning waveplate.
York, Andrew G
2009-08-03
Our simulations show a copropagating pair of laser pulses polarized in two different directions can selectively excite clockwise or counterclockwise molecular rotation in a gas of linear molecules. The resulting birefringence of the gas rotates on a femtosecond timescale and shows a periodic revival structure. The total duration of the pulse pair can be subpicosecond, allowing molecular alignment at the high densities and temperatures necessary to create a transient spinning waveplate.
NASA Astrophysics Data System (ADS)
Zheng, Guo-Qing
Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been obtained so far in any candidate compounds. We report 77Se nuclear magnetic resonance measurements which showed that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc =3.4 K. Our results not only establish spin-triplet (odd parity) superconductivity in this compound, but also serve to lay a foundation for the research of topological superconductivity (Ref.). We will also report the doping mechanism and superconductivity in Sn1-xInxTe.
Spin rate distribution of small asteroids
NASA Astrophysics Data System (ADS)
Pravec, P.; Harris, A. W.; Vokrouhlický, D.; Warner, B. D.; Kušnirák, P.; Hornoch, K.; Pray, D. P.; Higgins, D.; Oey, J.; Galád, A.; Gajdoš, Š.; Kornoš, L.; Világi, J.; Husárik, M.; Krugly, Yu. N.; Shevchenko, V.; Chiorny, V.; Gaftonyuk, N.; Cooney, W. R.; Gross, J.; Terrell, D.; Stephens, R. D.; Dyvig, R.; Reddy, V.; Ries, J. G.; Colas, F.; Lecacheux, J.; Durkee, R.; Masi, G.; Koff, R. A.; Goncalves, R.
2008-10-01
The spin rate distribution of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km is uniform in the range from f=1 to 9.5 d -1, and there is an excess of slow rotators with f<1 d -1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of ≈0.022 d/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d -1 is ≈45 Myr), thus the residence time of slowed down asteroids in the excess is ≈110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km (˜5 times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f=9-10 d. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids.
Self-gravitating axially symmetric disks in general-relativistic rotation
NASA Astrophysics Data System (ADS)
Karkowski, Janusz; Kulczycki, Wojciech; Mach, Patryk; Malec, Edward; Odrzywołek, Andrzej; Piróg, Michał
2018-05-01
We integrate numerically axially symmetric stationary Einstein equations describing self-gravitating disks around spinless black holes. The numerical scheme is based on a method developed by Shibata, but contains important new ingredients. We derive a new general-relativistic Keplerian rotation law for self-gravitating disks around spinning black holes. Former results concerning rotation around spinless black holes emerge in the limit of a vanishing spin parameter. These rotation curves might be used for the description of rotating stars, after appropriate modification around the symmetry axis. They can be applied to the description of compact torus-black hole configurations, including active galactic nuclei or products of coalescences of two neutron stars.
Optical Signature Analysis of Tumbling Rocket Bodies via Laboratory Measurements
NASA Technical Reports Server (NTRS)
Cowardin, H.; Lederer, S.; Liou, J.-C.
2012-01-01
The NASA Orbital Debris Program Office has acquired telescopic lightcurve data on massive intact objects, specifically spent rocket bodies, in order to ascertain tumble rates in support of the Active Debris Removal (ADR) task to help remediate the LEO environment. Rotation rates are needed to plan and develop proximity operations for potential future ADR operations. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC emulates illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC employs a 75-watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The light source is mounted on a rotary arm, allowing access any phase angle between 0 -- 360 degrees. The OMC does not attempt to replicate the rotation rates, but focuses on how an object is rotating as seen from multiple phase angles. The two targets studied are scaled (1:48), SL-8 Cosmos 3M second stages. The first target is painted in the standard government "gray" scheme and the second target is primary white, as used for commercial missions. This paper summarizes results of the two scaled rocket bodies, each rotated about two primary axes: (a) a spin-stabilized rotation and (b) an end-over-end rotation. The two rotation states are being investigated as a basis for possible spin states of rocket bodies, beginning with simple spin states about the two primary axes. The data will be used to create a database of potential spin states for future works to convolve with more complex spin states. The optical signatures will be presented for specific phase angles for each rocket body and shown in conjunction with acquired optical data from multiple telescope sources.
A rapid decrease in the rotation rate of comet 41P/Tuttle–Giacobini–Kresák
NASA Astrophysics Data System (ADS)
Bodewits, Dennis; Farnham, Tony L.; Kelley, Michael S. P.; Knight, Matthew M.
2018-01-01
Cometary outgassing can produce torques that change the spin state of the cometary nucleus, which in turn influences the evolution and lifetime of the comet. If these torques increase the rate of rotation to the extent that centripetal forces exceed the material strength of the nucleus, the comet can fragment. Torques that slow down the rotation can cause the spin state to become unstable, but if the torques persist the nucleus can eventually reorient itself and the rotation rate can increase again. Simulations predict that most comets go through a short phase of rapid changes in spin state, after which changes occur gradually over longer times. Here we report observations of comet 41P/Tuttle–Giacobini–Kresák during its close approach to Earth (0.142 astronomical units, approximately 21 million kilometres, on 1 April 2017) that reveal a rapid decrease in rotation rate. Between March and May 2017, the apparent rotation period of the nucleus increased from 20 hours to more than 46 hours—a rate of change of more than an order of magnitude larger than has hitherto been measured. This phenomenon must have been caused by the gas emission from the comet aligning in such a way that it produced an anomalously strong torque that slowed the spin rate of the nucleus. The behaviour of comet 41P/Tuttle–Giacobini–Kresák suggests that it is in a distinct evolutionary state and that its rotation may be approaching the point of instability.
FAST ROTATION AND TRAILING FRAGMENTS OF THE ACTIVE ASTEROID P/2012 F5 (GIBBS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drahus, Michał; Waniak, Wacław; Tendulkar, Shriharsh
While having a comet-like appearance, P/2012 F5 (Gibbs) has an orbit native to the Main Asteroid Belt, and physically is a km-sized asteroid which recently (mid 2011) experienced an impulsive mass ejection event. Here we report new observations of this object obtained with the Keck II telescope on UT 2014 August 26. The data show previously undetected 200 m scale fragments of the main nucleus, and reveal a rapid nucleus spin with a rotation period of 3.24 ± 0.01 hr. The existence of large fragments and the fast nucleus spin are both consistent with rotational instability and partial disruption ofmore » the object. To date, many fast rotators have been identified among the minor bodies, which, however, do not eject detectable fragments at the present-day epoch, and also fragmentation events have been observed, but with no rotation period measured. P/2012 F5 is unique in that for the first time we detected fragments and quantified the rotation rate of one and the same object. The rapid spin rate of P/2012 F5 is very close to the spin rates of two other active asteroids in the Main Belt, 133P/Elst-Pizarro and (62412), confirming the existence of a population of fast rotators among these objects. But while P/2012 F5 shows impulsive ejection of dust and fragments, the mass loss from 133P is prolonged and recurrent. We believe that these two types of activity observed in the rapidly rotating active asteroids have a common origin in the rotational instability of the nucleus.« less
Evidence of nontermination of collective rotation near the maximum angular momentum in Rb75
NASA Astrophysics Data System (ADS)
Davies, P. J.; Afanasjev, A. V.; Wadsworth, R.; Andreoiu, C.; Austin, R. A. E.; Carpenter, M. P.; Dashdorj, D.; Finlay, P.; Freeman, S. J.; Garrett, P. E.; Görgen, A.; Greene, J.; Grinyer, G. F.; Hyland, B.; Jenkins, D. G.; Johnston-Theasby, F. L.; Joshi, P.; Macchiavelli, A. O.; Moore, F.; Mukherjee, G.; Phillips, A. A.; Reviol, W.; Sarantites, D.; Schumaker, M. A.; Seweryniak, D.; Smith, M. B.; Svensson, C. E.; Valiente-Dobon, J. J.; Ward, D.
2010-12-01
Two of the four known rotational bands in Rb75 were studied via the Ca40(Ca40,αp)Rb75 reaction at a beam energy of 165 MeV. Transitions were observed up to the maximum spin Imax of the assigned configuration in one case and one-transition short of Imax in the other. Lifetimes were determined using the residual Doppler shift attenuation method. The deduced transition quadrupole moments show a small decrease with increasing spin, but remain large at the highest spins. The results obtained are in good agreement with cranked Nilsson-Strutinsky calculations, which indicate that these rotational bands do not terminate, but remain collective at Imax.
Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases
Huang, Xu-Guang
2016-01-01
The chiral magnetic and chiral separation effects—quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma—have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084
Optimization of rotational speed for growing BaFe12O19 thin films using spin coating
NASA Astrophysics Data System (ADS)
Budiawanti, S.; Soegijono, B.; Mudzakir, I.; Suharno, Fadillah, L.
2017-07-01
Barium ferrite (BaFe12O19, BaM) thin films were fabricated by the spin coating of precursors obtained by using a sol-gel method. The effects of the rotational speed on the spin-coating process for growing a BaM thin film were investigated in this study. Coated films were heat-deposited at different rotational speeds ranging from 2000 to 4000 rpm, while the number of layers was set to nine. Further, the effect of the number of layers on the growth of BaM thin films was discussed. For this purpose, we take the layers number 1 to 12 and take the constant rotational speed of 3000 rpm. All the film were characterized using X-Ray diffraction, Scanning Electron microscope, and Energy-dispersive X-Ray spectroscopy and Vibrating Sample Magnetometer. It was found that by increasing the rotational speed the amount of material deposited on the Si substrate decreased. The measured grain size of the BaM thin film was nearly similar for three three different rotational speeds. However, the grain size was found to increase the number of layers.
Rotation histories of the natural satellites
NASA Technical Reports Server (NTRS)
Peale, S. J.
1977-01-01
Recent advances in the theory of rotation are combined with traditional approaches to study the rotational evolution of the 33 known natural satellites. A calculation similar to that reported by Burns and Safronov (1973) is applied to each satellite to obtain the characteristic time of decay of any wobble motion to smooth rotation about the principal axis of maximum moment of inertia. Stability criteria and capture probabilities are calculated for the 3/2 spin resonance. Results show that only the regular satellites and Iapetus, Hyperion, Triton, and the moon are tidally evolved. Of these, 13 have confirmed synchronous rotation periods; capture probabilities into the 3/2 resonance indicate that none of the remaining 10 should be captured in nonsynchronous, commensurate spin states. For the most part, the irregular satellites retain their original spins except for a relaxation to principal axis rotation. Tidal evolution of the obliquities of the satellites is evaluated in the framework of the generalization of Cassini's laws for the moon. Nearly resonant, forced librations in longitude of 4.8 and 0.5 deg are calculated on the basis of the observed shapes of Phobos and Deimos, respectively.
Symmetric rotating-wave approximation for the generalized single-mode spin-boson system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Victor V.; Scholes, Gregory D.; Brumer, Paul
2011-10-15
The single-mode spin-boson model exhibits behavior not included in the rotating-wave approximation (RWA) in the ultra and deep-strong coupling regimes, where counter-rotating contributions become important. We introduce a symmetric rotating-wave approximation that treats rotating and counter-rotating terms equally, preserves the invariances of the Hamiltonian with respect to its parameters, and reproduces several qualitative features of the spin-boson spectrum not present in the original rotating-wave approximation both off-resonance and at deep-strong coupling. The symmetric rotating-wave approximation allows for the treatment of certain ultra- and deep-strong coupling regimes with similar accuracy and mathematical simplicity as does the RWA in the weak-coupling regime.more » Additionally, we symmetrize the generalized form of the rotating-wave approximation to obtain the same qualitative correspondence with the addition of improved quantitative agreement with the exact numerical results. The method is readily extended to higher accuracy if needed. Finally, we introduce the two-photon parity operator for the two-photon Rabi Hamiltonian and obtain its generalized symmetric rotating-wave approximation. The existence of this operator reveals a parity symmetry similar to that in the Rabi Hamiltonian as well as another symmetry that is unique to the two-photon case, providing insight into the mathematical structure of the two-photon spectrum, significantly simplifying the numerics, and revealing some interesting dynamical properties.« less
NASA Astrophysics Data System (ADS)
Kent, Stephen M.
2018-04-01
If the optical system of a telescope is perturbed from rotational symmetry, the Zernike wavefront aberration coefficients describing that system can be expressed as a function of position in the focal plane using spin-weighted Zernike polynomials. Methodologies are presented to derive these polynomials to arbitrary order. This methodology is applied to aberration patterns produced by a misaligned Ritchey–Chrétien telescope and to distortion patterns at the focal plane of the DESI optical corrector, where it is shown to provide a more efficient description of distortion than conventional expansions.
Formation, spin-up, and stability of field-reversed configurations
Omelchenko, Yuri A.
2015-08-24
Formation, spontaneous spin-up and stability of theta-pinch formed field-reversed configurations are studied self-consistently in three dimensions with a multiscale hybrid model that treats all plasma ions as full-orbit collisional macro-particles and the electrons as a massless quasineutral fluid. The end-to-end hybrid simulations for the first time reveal poloidal profiles of implosion-driven fast toroidal plasma rotation and demonstrate three well-known discharge regimes as a function of experimental parameters: the decaying stable configuration, the tilt unstable configuration and the nonlinear evolution of a fast growing tearing mode.
Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled SrIrO3
NASA Astrophysics Data System (ADS)
Schütz, P.; Di Sante, D.; Dudy, L.; Gabel, J.; Stübinger, M.; Kamp, M.; Huang, Y.; Capone, M.; Husanu, M.-A.; Strocov, V. N.; Sangiovanni, G.; Sing, M.; Claessen, R.
2017-12-01
Upon reduction of the film thickness we observe a metal-insulator transition in epitaxially stabilized, spin-orbit-coupled SrIrO3 ultrathin films. By comparison of the experimental electronic dispersions with density functional theory at various levels of complexity we identify the leading microscopic mechanisms, i.e., a dimensionality-induced readjustment of octahedral rotations, magnetism, and electronic correlations. The astonishing resemblance of the band structure in the two-dimensional limit to that of bulk Sr2 IrO4 opens new avenues to unconventional superconductivity by "clean" electron doping through electric field gating.
NASA Astrophysics Data System (ADS)
Koohafkan, Michael
2006-05-01
The Moon's orbit and spin period are nearly synchronized, or tidally locked. Could the Moon's orbit and the Earth's spin eventually synchronize as well? The Moon's gravitational pull on the Earth produces tides in our oceans, and tidal friction gradually lengthens our days. Less obvious gravitational interactions between the Earth and Moon may also have effects on Earth's spin. The Earth is slightly distorted into an egg-like shape, and the torque exerted by the Moon on our equatorial bulge slowly changes the tilt of our spin axis. How do effects such as these change as the Moon drifts away from Earth? I will examine gravitational interactions between Earth and Moon to learn how they contribute to the deceleration of the Earth's rotation. My goal is to determine the amount of time it would take for the Earth's rotational speed to decelerate until the period of a single rotation matches the period of the Moon's orbit around Earth -- when the Earth is ``tidally locked'' with the Moon. I aim to derive a general mathematical expression for the rotational deceleration of the Earth due to Moon's gravitational influences.
Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae
NASA Astrophysics Data System (ADS)
Sharma, Honey; Mittal, H. M.
2018-03-01
The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.
New quantum number for the many-electron Dirac-Coulomb Hamiltonian
NASA Astrophysics Data System (ADS)
Komorovsky, Stanislav; Repisky, Michal; Bučinský, Lukáš
2016-11-01
By breaking the spin symmetry in the relativistic domain, a powerful tool in physical sciences was lost. In this work, we examine an alternative of spin symmetry for systems described by the many-electron Dirac-Coulomb Hamiltonian. We show that the square of many-electron operator K+, defined as a sum of individual single-electron time-reversal (TR) operators, is a linear Hermitian operator which commutes with the Dirac-Coulomb Hamiltonian in a finite Fock subspace. In contrast to the square of a standard unitary many-electron TR operator K , the K+2 has a rich eigenspectrum having potential to substitute spin symmetry in the relativistic domain. We demonstrate that K+ is connected to K through an exponential mapping, in the same way as spin operators are mapped to the spin rotational group. Consequently, we call K+ the generator of the many-electron TR symmetry. By diagonalizing the operator K+2 in the basis of Kramers-restricted Slater determinants, we introduce the relativistic variant of configuration state functions (CSF), denoted as Kramers CSF. A new quantum number associated with K+2 has potential to be used in many areas, for instance, (a) to design effective spin Hamiltonians for electron spin resonance spectroscopy of heavy-element containing systems; (b) to increase efficiency of methods for the solution of many-electron problems in relativistic computational chemistry and physics; (c) to define Kramers contamination in unrestricted density functional and Hartree-Fock theory as a relativistic analog of the spin contamination in the nonrelativistic domain.
Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.
Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A
2014-07-03
The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).
Mass-loss from advective accretion disc around rotating black holes
NASA Astrophysics Data System (ADS)
Aktar, Ramiz; Das, Santabrata; Nandi, Anuj
2015-11-01
We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure-supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (E) and specific angular momentum (λ) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole (ak) plays an important role in deciding the outflow rate R_{dot{m}} (ratio of mass flux of outflow to inflow); in particular, R_{dot{m}} is directly correlated with ak for the same set of inflow parameters. It is found that a large range of the inflow parameters allows global accretion-ejection solutions, and the effective area of the parameter space (E, λ) with and without outflow decreases with black hole spin (ak). We compute the maximum outflow rate (R^{max}_{dot{m}}) as a function of black hole spin (ak) and observe that R^{max}_{dot{m}} weakly depends on ak that lies in the range ˜10-18 per cent of the inflow rate for the adiabatic index (γ) with 1.5 ≥ γ ≥ 4/3. We present the observational implication of our approach while studying the steady/persistent jet activities based on the accretion states of black holes. We discuss that our formalism seems to have the potential to explain the observed jet kinetic power for several Galactic black hole sources and active galactic nuclei.
Physics of spinning gases and plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geyko, Vasily I.
Initially motivated by the problem of compression of spinning plasma in Z-pinch devices and related applications, the thesis explores a number of interesting smaller-scale problems related to physics of gas and plasma rotation. In particular, thermodynamics of ideal spinning gas is studied. It is found that rotation modifies the heat capacity of the gas and reduces the gas compressibility. It is also proposed that, by performing a series of measurement of external parameters of a spinning gas, one can infer the distribution of masses of gas constituents. It is also proposed how to use the rotation-dependent heat capacity for improvingmore » the thermodynamic efficiency of internal combustion engines. To that end, two possible engine embodiments are proposed and explored in detail. In addition, a transient piezothermal effect is discovered numerically and is given a theoretical explanation. The effect consists of the formation of a radial temperature gradient driven by gas heating or compression along the rotation axis. By elaborating on this idea, a theoretical explanation is proposed also for the operation of so-called vortex tubes, which so far have been lacking rigorous theory. Finally, adiabatic compression of spinning plasmas and ionized gases are considered, and the effect of the electrostatic interactions on the compressibility and heat capacity is predicted.« less
NASA Astrophysics Data System (ADS)
Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.
2018-03-01
We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.
Non-gravitational force modeling of Comet 81P/Wild 2. II. Rotational evolution
NASA Astrophysics Data System (ADS)
Gutiérrez, Pedro J.; Davidsson, Björn J. R.
2007-11-01
In this paper, we have studied both the dynamical and the rotational evolution of an 81P/Wild 2-like comet under the effects of the outgassing-induced force and torque. The main aim is to study if it is possible to reproduce the non-gravitational orbital changes observed in this comet, and to establish the likely evolution of both orbital and rotational parameters. To perform this study, a simple thermophysical model has been used to estimate the torque acting on the nucleus. Once the torque is calculated, Euler equations are solved numerically considering a nucleus mass directly estimated from the changes in the orbital elements (as determined from astrometry). According to these simulations, when the water production rate and changes in orbital parameters for 1997, as well as observational rotational parameters for 2004 are imposed as constraints, the change in the orbital period of 81P/Wild 2, ΔP=P˙, will decrease so that P¨=-5 to -1minorbit, which is similar to the actual tendency observed from 1988 up to 1997. This nearly constant decreasing can be explained as due to a slight drift of the spin axis orientation towards larger ecliptic longitudes. After studying the possible spin axis orientations proposed for 1997, simulations suggest that the spin obliquity and argument (I,Φ)=(56°,167°) is the most likely. As for rotational evolution, changes per orbit smaller than 10% of the actual spin velocity are probable, while the most likely value corresponds to a change between 2 and 7% of the spin velocity. Equally, net changes in the spin axis orientation of 4°-8° per orbit are highly expected.
Possible interpretation of the precession of comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Gutiérrez, P. J.; Jorda, L.; Gaskell, R. W.; Davidsson, B. J. R.; Capanna, C.; Hviid, S. F.; Keller, H. U.; Maquet, L.; Mottola, S.; Preusker, F.; Scholten, F.; Lara, L. M.; Moreno, F.; Rodrigo, R.; Sierks, H.; Barbieri, C.; Lamy, P.; Koschny, D.; Rickman, H.; Agarwal, J.; A'Hearn, M. F.; Auger, A. T.; Barucci, M. A.; Bertaux, J. L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez-Marques, P.; Güttler, C.; Ip, W. H.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lazzarin, M.; López-Moreno, J. J.; Magrin, S.; Marchi, S.; Marzari, F.; Naletto, G.; Oklay, N.; Pajola, M.; Pommerol, A.; Sabau, D.; Thomas, N.; Toth, I.; Tubiana, C.; Vincent, J. B.
2016-05-01
Context. Data derived from the reconstruction of the nucleus shape of comet 67P/Churyumov-Gerasimenko (67P) from images of the OSIRIS camera onboard ROSETTA show evidence that the nucleus rotates in complex mode. First, the orientation of the spin axis is not fixed in an inertial reference frame, which suggests a precessing motion around the angular momentum vector with a periodicity of approximately 257 h ± 12 h.Second, periodograms of the right ascension and declination (RA/Dec) coordinates of the body-frame Z axis show a very significant (higher than 99.99%) periodicity at 276 h ± 12 h, different from the rotational period of 12.40 h as previously determined from light-curve analysis. Aims: The main goal is to interpret the data and associated periodicities of the spin axis orientation in space. Methods: We analyzed the spin axis orientation in space and associated periodicities and compared them with solutions of Euler equations under the assumption that the body rotates in torque-free conditions. Statistical tests comparing the observationally derived spin axis orientation with the outcome from simulations were applied to determine the most likely inertia moments, excitation level, and periods. Results: Under the assumption that the body is solid-rigid and rotates in torque-free conditions, the most likely interpretation is that 67P is spinning around the principal axis with the highest inertia moment with a period of about 13 h. At the same time, the comet precesses around the angular momentum vector with a period of about 6.35 h. While the rotating period of such a body would be about 12.4 h, RA/Dec coordinates of the spin axis would have a periodicity of about 270 h as a result of the combination of the two aforementioned motions. Conclusions: The most direct and simple interpretation of the complex rotation of 67P requires a ratio of inertia moments significantly higher than that of a homogeneous body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKay,W.W.
For a ring like RHIC with two full Siberian snakes on opposite sides of the ring, the spin tune for a flat orbit will be 1/2 if the snake rotation axes are perpendicular, {Delta}{phi} = {phi}{sub 9}-{phi}{sub 3} = {pi}/2. Here {phi}{sup 9} and {phi}{sub 3} are respectively the direction of the rotation axes of the 9 o'clock and 3 o'clock snakes relative to the design trajectory as shown in Figure 1. If the two snakes are slightly detuned by the same amount such that the rotation axes are no longer perpendicular, then the deviation of the closed-orbit spin tunemore » {nu}{sub 0} from 1/2 is given by {Delta}{nu}{sub 0} {approx_equal} ({Delta}{mu}){sup 2}/4{pi} cosG{gamma}{pi} - 2{Delta}{phi}/{pi} {approx_equal} 2{Delta}{phi}/180{sup o} with G{gamma} at a half integer, and where {Delta}{mu} is the deviation of snake rotation angle from 180{sup o}. It should be noted that there is a sign ambiguity in {Delta}{mu}{sub 0} since a spin tune of 0.495 is also a spin tune of 0.505, depending on the direction taken along the stable spin axis. In order to understand the effect of energy scaling on the snake axis direction, I have integrated the trajectory and spin rotation through a model of a RHIC snake (bi9-snk7) and found the energy (U) dependence of the snake axis angle {phi}{sub 9} and rotation angle {mu} as shown. A {approx_equal} p{sup -2} scaling of errors is typical in helical snakes. To first order, the orbit excursion drops as p{sup -1} and the spin precessions about transverse fields increase as {gamma} giving an approximate cancellation with energy, so we do not expect much change during the field ramp. The next order term which comes in is primarily proportional to p{sup -2}; although naively one might expect a slight effect inversely proportional to the velocity since {gamma}/p {proportional_to} c/{nu} {approx_equal} 1 + 1/2{gamma}{sup 2}.« less
Homogenization of Doppler broadening in spin-noise spectroscopy
NASA Astrophysics Data System (ADS)
Petrov, M. Yu.; Ryzhov, I. I.; Smirnov, D. S.; Belyaev, L. Yu.; Potekhin, R. A.; Glazov, M. M.; Kulyasov, V. N.; Kozlov, G. G.; Aleksandrov, E. B.; Zapasskii, V. S.
2018-03-01
The spin-noise spectroscopy, being a nonperturbative linear optics tool, is still reputed to reveal a number of capabilities specific to nonlinear optics techniques. The effect of the Doppler broadening homogenization discovered in this work essentially widens these unique properties of spin-noise spectroscopy. We investigate spin noise of a classical system—cesium atoms vapor with admixture of buffer gas—by measuring the spin-induced Faraday rotation fluctuations in the region of D 2 line. The line, under our experimental conditions, is strongly inhomogeneously broadened due to the Doppler effect. Despite that, optical spectrum of the spin-noise power has the shape typical for the homogeneously broadened line with a dip at the line center. This fact is in stark contrast with the results of previous studies of inhomogeneous quantum dot ensembles and Doppler broadened atomic systems. In addition, the two-color spin-noise measurements have shown, in a highly spectacular way, that fluctuations of the Faraday rotation within the line are either correlated or anticorrelated depending on whether the two wavelengths lie on the same side or on different sides of the resonance. The experimental data are interpreted in the frame of the developed theoretical model which takes into account both kinetics and spin dynamics of Cs atoms. It is shown that the unexpected behavior of the Faraday rotation noise spectra and effective homogenization of the optical transition in the spin-noise measurements are related to smallness of the momentum relaxation time of the atoms as compared with their spin-relaxation time. Our findings demonstrate abilities of spin-noise spectroscopy for studying dynamic properties of inhomogeneously broadened ensembles of randomly moving spins.
Drew, A J; Pratt, F L; Lancaster, T; Blundell, S J; Baker, P J; Liu, R H; Wu, G; Chen, X H; Watanabe, I; Malik, V K; Dubroka, A; Kim, K W; Rössle, M; Bernhard, C
2008-08-29
Muon spin rotation experiments were performed on the pnictide high temperature superconductor SmFeAsO1-xFx with x=0.18 and 0.3. We observed an unusual enhancement of slow spin fluctuations in the vicinity of the superconducting transition which suggests that the spin fluctuations contribute to the formation of an unconventional superconducting state. An estimate of the in-plane penetration depth lambda ab(0)=190(5) nm was obtained, which confirms that the pnictide superconductors obey an Uemura-style relationship between Tc and lambda ab(0);(-2).
Zeeman Tuning Rate for Q Branch Transitions in the v3 Band of NO2
NASA Technical Reports Server (NTRS)
Mahon, C. R.; Chackerian, C., Jr.; Gore, Warren J. Y. (Technical Monitor)
1997-01-01
Zeeman tuning rates have bee a measured for Q branch transitions in the v3 band of NO2(approx.1610/cm) for magnetic fields of up to 564 Gauss. The average measured tuning rate is 0.1815(53) x 10(exp -3)/cm/Gauss with no dependence on Ka within the approx. equal to 3% standard deviation. Despite significant ,pin-rotation interaction between several of the observed levels the result agrees with the simple linear model for Honda case (be molecules (tuning rate = 2muogs = 0.18696 x 10(exp -3)/cm/Gauss) which neglects the spin-rotation interaction between different J states. The Zeeman effect is analyzed in a full treatment of the Hamiltonian, including spin-rotation interaction, in order to account for the agreement with 2muogs and to explore the onset of spin-rotation effects in the spectra as the magnetic field is increased.
313 new asteroid rotation periods from Palomar Transient Factory observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chan-Kao; Ip, Wing-Huen; Lin, Hsing-Wen
2014-06-10
A new asteroid rotation period survey has been carried out by using the Palomar Transient Factory (PTF). Twelve consecutive PTF fields, which covered an area of 87 deg{sup 2} in the ecliptic plane, were observed in the R band with a cadence of ∼20 minutes during 2013 February 15-18. We detected 2500 known asteroids with a diameter range of 0.5 km ≤D ≤ 200 km. Of these, 313 objects had highly reliable rotation periods and exhibited the 'spin barrier' at ∼2 hr. In contrast to the flat spin-rate distribution of the asteroids with 3 km ≤D ≤ 15 km shownmore » by Pravec et al., our results deviated somewhat from a Maxwellian distribution and showed a decrease at the spin rate greater than 5 rev day{sup –1}. One superfast rotator candidate and two possible binary asteroids were also found in this work.« less
Liu, Jinjun; Miller, Terry A
2014-12-26
The rotational structure of the previously observed B̃(2)A' ← X̃(2)A″ and B̃(2)A' ← Ã(2)A' laser-induced fluorescence spectra of jet-cooled cyclohexoxy radical (c-C6H11O) [ Zu, L.; Liu, J.; Tarczay, G.; Dupré, P; Miller, T. A. Jet-cooled laser spectroscopy of the cyclohexoxy radical. J. Chem. Phys. 2004 , 120 , 10579 ] has been analyzed and simulated using a spectroscopic model that includes the coupling between the nearly degenerate X̃ and à states separated by ΔE. The rotational and fine structure of these two states is reproduced by a 2-fold model using one set of molecular constants including rotational constants, spin-rotation constants (ε's), the Coriolis constant (Aζt), the quenched spin-orbit constant (aζed), and the vibronic energy separation between the two states (ΔE0). The energy level structure of both states can also be reproduced using an isolated-state asymmetric top model with rotational constants and effective spin-rotation constants (ε's) and without involving Coriolis and spin-orbit constants. However, the spin-orbit interaction introduces transitions that have no intensity using the isolated-state model but appear in the observed spectra. The line intensities are well simulated using the 2-fold model with an out-of-plane (b-) transition dipole moment for the B̃ ← X̃ transitions and in-plane (a and c) transition dipole moment for the B̃ ← à transitions, requiring the symmetry for the X̃ (Ã) state to be A″ (A'), which is consistent with a previous determination and opposite to that of isopropoxy, the smallest secondary alkoxy radical. The experimentally determined Ã-X̃ separation and the energy level ordering of these two states with different (A' and A″) symmetries are consistent with quantum chemical calculations. The 2-fold model also enables the independent determination of the two contributions to the Ã-X̃ separation: the relativistic spin-orbit interaction (magnetic effect) and the nonrelativistic vibronic separation between the lowest vibrational energy levels of these two states due to both electrostatic interaction (Coulombic effect) and difference in zero-point energies (kinetic effect).
NASA Astrophysics Data System (ADS)
Jaroniec, Christopher P.; Tounge, Brett A.; Rienstra, Chad M.; Herzfeld, Judith; Griffin, Robert G.
2000-09-01
Heteronuclear dipolar recoupling with rotational-echo double-resonance (REDOR) is investigated in the rapid magic-angle spinning regime, where radiofrequency irradiation occupies a significant fraction of the rotor period (10-60%). We demonstrate, in two model 13C-15N spin systems, [1-13C, 15N] and [2-13C, 15N]glycine, that REDOR ΔS/S0 curves acquired at high MAS rates and relatively low recoupling fields are nearly identical to the ΔS/S0 curve expected for REDOR with ideal δ-function pulses. The only noticeable effect of the finite π pulse length on the recoupling is a minor scaling of the dipolar oscillation frequency. Experimental results are explained using both numerical calculations and average Hamiltonian theory, which is used to derive analytical expressions for evolution under REDOR recoupling sequences with different π pulse phasing schemes. For xy-4 and extensions thereof, finite pulses scale only the dipolar oscillation frequency by a well-defined factor. For other phasing schemes (e.g., xx-4 and xx¯-4) both the frequency and amplitude of the oscillation are expected to change.
Pure gauge spin-orbit couplings
NASA Astrophysics Data System (ADS)
Shikakhwa, M. S.
2017-01-01
Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2×2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, both of which being characteristics of the SOI involved. The experimentally important case of equal-strength Rashba and Dresselhaus SOI (R+D SOI) is shown to fall within this special class of Abelian gauge fields, and the phenomenon of persistent spin helix (PSH) that emerges in the presence of this latter SOI in a plane is shown to fit naturally within the general formalism developed. The general formalism is also extended to the case of a particle confined to a ring. It is shown that the Hamiltonian on a ring in the presence of equal-strength R+D SOI is unitarily equivalent to that of a particle subject to only a spin-independent but θ-dependent potential with the unitary transformation relating the two being again the space-dependent rotation operator characteristic of R+D SOI.
NASA Astrophysics Data System (ADS)
Lee, Shang Fan; Chang, Liang Juan; Spintronics Laboratory Team
2014-03-01
We numerically investigate the spin waves (SW) induced domain wall (DW) oscillatory motion in a nanostrip with perpendicular magnetic anisotropy by means of micromagnetic simulation. SW carries spin angular momentum and can interact with DWs via Spin Transfer Torque (STT). Propagating SW can drive a DW motion depending on the in-plane tilt angle φ of the wall magnetization. We calculate the instantaneous velocity of DWs as a function of φwith different SW frequency f. We find that the DW motion under propagating SW depends not only on the frequencies f, but also on the in-plane tilt angle φ. The nanostrip considered is 50 nm wide and 4000 nm long. A DW at the center is subjected to a SW source 500 nm apart on the left with amplitude in the transverse direction and varying frequency f. The motions of the DW induced by the SW are accompanied by in-plane rotation of magnetization of DW. Once rotated by 90 degrees, the DW shows a backward motion towards the SW source. The oscillatory amplitude and frequency of the DW motion is analyzed. A phase diagram will be presented. This study provides new perspectives for the control and manipulation of DW in a nanostrip. Financial supports by Academia Sinica and National Science Council are acknowledged
Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting
2016-06-16
Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.
ERIC Educational Resources Information Center
Daniels, J. M.
1979-01-01
Explains why failure to distinguish clearly between three concepts: a vector, its components, and its representatives, renders understanding of how the representations of the rotation group are constructed from products of the spin-half representation, difficult to comprehend. (Author/GA)
NASA Astrophysics Data System (ADS)
Velazquez, Antonio; Swartz, R. Andrew
2015-02-01
Economical maintenance and operation are critical issues for rotating machinery and spinning structures containing blade elements, especially large slender dynamic beams (e.g., wind turbines). Structural health monitoring systems represent promising instruments to assure reliability and good performance from the dynamics of the mechanical systems. However, such devices have not been completely perfected for spinning structures. These sensing technologies are typically informed by both mechanistic models coupled with data-driven identification techniques in the time and/or frequency domain. Frequency response functions are popular but are difficult to realize autonomously for structures of higher order, especially when overlapping frequency content is present. Instead, time-domain techniques have shown to possess powerful advantages from a practical point of view (i.e. low-order computational effort suitable for real-time or embedded algorithms) and also are more suitable to differentiate closely-related modes. Customarily, time-varying effects are often neglected or dismissed to simplify this analysis, but such cannot be the case for sinusoidally loaded structures containing spinning multi-bodies. A more complex scenario is constituted when dealing with both periodic mechanisms responsible for the vibration shaft of the rotor-blade system and the interaction of the supporting substructure. Transformations of the cyclic effects on the vibrational data can be applied to isolate inertial quantities that are different from rotation-generated forces that are typically non-stationary in nature. After applying these transformations, structural identification can be carried out by stationary techniques via data-correlated eigensystem realizations. In this paper, an exploration of a periodic stationary or cyclo-stationary subspace identification technique is presented here for spinning multi-blade systems by means of a modified Eigensystem Realization Algorithm (ERA) via stochastic subspace identification (SSI) and linear parameter time-varying (LPTV) techniques. Structural response is assumed to be stationary ambient excitation produced by a Gaussian (white) noise within the operative range bandwidth of the machinery or structure in study. ERA-OKID analysis is driven by correlation-function matrices from the stationary ambient response aiming to reduce noise effects. Singular value decomposition (SVD) and eigenvalue analysis are computed in a last stage to identify frequencies and complex-valued mode shapes. Proposed assumptions are carefully weighted to account for the uncertainty of the environment. A numerical example is carried out based a spinning finite element (SFE) model, and verified using ANSYS® Ver. 12. Finally, comments and observations are provided on how this subspace realization technique can be extended to the problem of modal-parameter identification using only ambient vibration data.
NASA Technical Reports Server (NTRS)
1984-01-01
The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.
Lee, Yuan-Pern; Wu, Yu-Jong; Hougen, Jon T
2008-09-14
Observation of two weak absorption lines from the E (K = 1) level and one intense feature from A (K = 0) for degenerate modes nu(4) and nu(6) of CH(3)F provides direct spectral evidence that CH(3)F isolated in p-H(2) rotates about only its symmetry axis, and not about the other two axes. An interaction between A and E vibrational levels caused by the partially hindered spinning rotation is proposed. Conversion of nuclear spin between A and E components of CH(3)F is rapid when p-H(2) contains some o-H(2), but becomes slow when the proportion of o-H(2) is much decreased.
Quantum-rotor-induced polarization.
Meier, Benno
2018-07-01
Quantum-rotor-induced polarization is closely related to para-hydrogen-induced polarization. In both cases, the hyperpolarized spin order derives from rotational interaction and the Pauli principle by which the symmetry of the rotational ground state dictates the symmetry of the associated nuclear spin state. In quantum-rotor-induced polarization, there may be several spin states associated with the rotational ground state, and the hyperpolarization is typically generated by hetero-nuclear cross-relaxation. This review discusses preconditions for quantum-rotor-induced polarization for both the 1-dimensional methyl rotor and the asymmetric rotor H 2 17 O@C 60 , that is, a single water molecule encapsulated in fullerene C 60 . Experimental results are presented for both rotors. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kou, Liangzhi; Fu, Huixia; Ma, Yandong; Yan, Binghai; Liao, Ting; Du, Aijun; Chen, Changfeng
2018-02-01
We introduce a class of two-dimensional (2D) materials that possess coexisting ferroelectric and topologically insulating orders. Such ferroelectric topological insulators (FETIs) occur in noncentrosymmetric atomic layer structures with strong spin-orbit coupling (SOC). We showcase a prototype 2D FETI in an atomically thin bismuth layer functionalized by C H2OH , which exhibits a large ferroelectric polarization that is switchable by a ligand molecule rotation mechanism and a strong SOC that drives a band inversion leading to the topologically insulating state. An external electric field that switches the ferroelectric polarization also tunes the spin texture in the underlying atomic lattice. Moreover, the functionalized bismuth layer exhibits an additional quantum order driven by the valley splitting at the K and K' points in the Brillouin zone stemming from the symmetry breaking and strong SOC in the system, resulting in a remarkable state of matter with the simultaneous presence of the quantum spin Hall and quantum valley Hall effect. These phenomena are predicted to exist in other similarly constructed 2D FETIs, thereby offering a unique quantum material platform for discovering novel physics and exploring innovative applications.
NASA Astrophysics Data System (ADS)
Reimer, Oliver; Meier, Daniel; Bovender, Michel; Helmich, Lars; Dreessen, Jan-Oliver; Krieft, Jan; Shestakov, Anatoly S.; Back, Christian H.; Schmalhorst, Jan-Michael; Hütten, Andreas; Reiss, Günter; Kuschel, Timo
2017-01-01
A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect.
Inferring planetary obliquity using rotational and orbital photometry
NASA Astrophysics Data System (ADS)
Schwartz, J. C.; Sekowski, C.; Haggard, H. M.; Pallé, E.; Cowan, N. B.
2016-03-01
The obliquity of a terrestrial planet is an important clue about its formation and critical to its climate. Previous studies using simulated photometry of Earth show that continuous observations over most of a planet's orbit can be inverted to infer obliquity. However, few studies of more general planets with arbitrary albedo markings have been made and, in particular, a simple theoretical understanding of why it is possible to extract obliquity from light curves is missing. Reflected light seen by a distant observer is the product of a planet's albedo map, its host star's illumination, and the visibility of different regions. It is useful to treat the product of illumination and visibility as the kernel of a convolution. Time-resolved photometry constrains both the albedo map and the kernel, the latter of which sweeps over the planet due to rotational and orbital motion. The kernel's movement distinguishes prograde from retrograde rotation for planets with non-zero obliquity on inclined orbits. We demonstrate that the kernel's longitudinal width and mean latitude are distinct functions of obliquity and axial orientation. Notably, we find that a planet's spin axis affects the kernel - and hence time-resolved photometry - even if this planet is east-west uniform or spinning rapidly, or if it is north-south uniform. We find that perfect knowledge of the kernel at 2-4 orbital phases is usually sufficient to uniquely determine a planet's spin axis. Surprisingly, we predict that east-west albedo contrast is more useful for constraining obliquity than north-south contrast.
A brief review of intruder rotational bands and magnetic rotation in the A = 110 mass region
NASA Astrophysics Data System (ADS)
Banerjee, P.
2018-05-01
Nuclei in the A ∼ 110 mass region exhibit interesting structural features. One of these relates to the process by which specific configurations, built on the excitation of one or more protons across the Z = 50 shell-gap, manifest as collective rotational bands at intermediate spins and gradually lose their collectivity with increase in spin and terminate in a non-collective state at the maximum spin which the configuration can support. These bands are called terminating bands that co-exist with spherical states. Some of these bands are said to terminate smoothly underlining the continuous character of the process by which the band evolves from significant collectivity at low spin to a pure particle-hole non-collective state at the highest spin. The neutron-deficient A ∼ 110 mass region provides the best examples of smoothly terminating bands. The present experimental and theoretical status of such bands in several nuclei with 48 ≤ Z ≤ 52 spanning the 106 ≤ A ≤ 119 mass region have been reviewed in this article. The other noteworthy feature of nuclei in the A ∼ 110 mass region is the observation of regular rotation-like sequences of strongly enhanced magnetic dipole transitions in near-spherical nuclei. These bands, unlike the well-studied rotational sequences in deformed nuclei, arise from a spontaneous symmetry breaking by the anisotropic currents of a few high-j excited particles and holes. This mode of excitation is called magnetic rotation and was first reported in the Pb region. Evidence in favor of the existence of such structures, also called shears bands, are reported in the literature for a large number of Cd, In, Sn and Sb isotope with A ∼ 110. The present article provides a general overview of these reported structures across this mass region. The review also discusses antimagnetic rotation bands and a few cases of octupole correlations in the A = 110 mass region.
Spin Rate Distribution of Small Asteroids Shaped by YORP Effect
NASA Astrophysics Data System (ADS)
Pravec, Petr
2008-09-01
We studied a distribution of spin rates of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km using data obtained within the Photometric Survey of Asynchronous Binary Asteroids (Pravec et al. 2008). We found that the spin distribution of the small asteroids is uniform in the range from f = 1 to 9.5 d-1, and there is an excess of slow rotators with f < 1 d-1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of 0.022 d-1/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d-1 is 45 Myr), thus the residence time of slowed down asteroids in the excess is 110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km ( 5-times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f = 9-10 d-1. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids. Reference: Pravec, P., and 30 colleagues, 2008. Spin rate distribution of small asteroids. Icarus, in press. DOI: http://dx.doi.org/10.1016/j.icarus.2008.05.012
Faraday Rotation Studies of Indium Antimonide and CADMIUM(1-X) Manganese(x) Telluride
NASA Astrophysics Data System (ADS)
Jimenez Gonzalez, Hector J.
Faraday rotation has been studied in two material systems: narrow-gap InSb and wide-gap Cd_ {1-x}Mn_{x}Te. The measurements were done in the infrared region using high magnetic fields up to 150 kG. The Faraday rotation of n-type InSb has been measured for wavelengths between 8.0 and 13.0 μm at 9 K, using magnetic fields up to 150 kG. Measurements were made on samples with nominal carrier concentrations of 1 times 10^{14 }, 6 times 10 ^{14}, 1 times 10^{15}, and 5 times 10^{15} cm^{-3}. The experimental results have been successfully analyzed in terms of intraband and interband transitions at the Gamma point in the Brillouin zone, using a quantum-mechanical treatment. In this approach, there are three contributions to the Faraday rotation: (a) interband, (b) plasma, and (c) spin contributions. The interband contribution is dominant in the low concentration samples where the plasma and spin contributions, which are due to the free carriers, are small. At high carrier concentrations the spin and plasma contributions are dominant. In the low-magnetic -field regime the interband and plasma contributions are linearly proportional to the magnetic field and become small. This makes the spin contribution the leading contribution to the Faraday rotation at low magnetic fields. The 4 -band k cdot p Pidgeon and Brown model was used to calculate the energy levels and the matrix elements for these transitions. Quantum oscillatory effects were observed at low magnetic field. Cyclotron resonance absorption was observed in all samples for wavelengths _sp{~}{>}16.0 mum. The Faraday rotation of Cd_{1 -x}Mn_{x}Te has been measured for x = 0 to 0.27 at 300 and 77 K for photon energies between 0.1 and 1.5 eV, corresponding to wavelengths of 12.0 and 0.8 mum, respectively. We have developed a multioscillator model for the Faraday rotation using an analytical expression for the refractive index that includes contributions from interband transitions at the Gamma, L, and X points of the Brillouin zone as well as the lattice contribution from optical phonons. The multioscillator model explains the measured behavior of the Verdet constant as a function of photon energy for all the above values of x at both temperatures. This model has also been applied successfully to Faraday rotation data for Cd_ {1-x}Mn_{x}Te and Zn_{1-x}Mn _{x}Te from previous studies. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
NASA Astrophysics Data System (ADS)
Rozek, A.; Breiter, S.; Vokrouhlicky, D.
2011-10-01
A semi-analytical model of the Yarkovsky-O'Keefe- Radzievskii-Paddack (YORP) effect on an asteroid spin in non principal axis rotation state is presented. Assuming zero conductivity, the YORP torque is represented by spherical harmonics series with vector coefficients, allowing to use any degree and order of approximation. Within the quadrupole approximation of the illumination function we find the same first integrals involving rotational momentum, obliquity and dynamical inertia that were obtained by Cicaló and Scheeres [1]. The integrals do not exist when higher degree terms of illumination function are included and then the asymptotic states known from Vokrouhlický et al. [2] appear. This resolves an apparent contradiction between earlier results. Averaged equations of motion admit stable and unstable limit cycle solutions that were not detected previously.
Frkanec, Ruza; Noethig-Laslo, Vesna; Vranesić, Branka; Mirosavljević, Krunoslav; Tomasić, Jelka
2003-04-01
The interaction of immunostimulating compounds, the peptidoglycan monomer (PGM) and structurally related adamantyltripeptides (AdTP1 and AdTP2), respectively, with phospholipids in liposomal bilayers were investigated by electron paramagnetic resonance spectroscopy. (1). The fatty acids bearing the nitroxide spin label at different positions along the acyl chain were used to investigate the interaction of tested compounds with negatively charged multilamellar liposomes. Electron spin resonance (ESR) spectra were studied at 290 and 310 K. The entrapment of the adamantyltripeptides affected the motional properties of all spin labelled lipids, while the entrapment of PGM had no effect. (2). Spin labelled PGM was prepared and the novel compound bearing the spin label attached via the amino group of diaminopimelic acid was chromatographically purified and chemically characterized. The rotational correlation time of the spin labelled molecule dissolved in buffer at pH 7.4 was studied as a function of temperature. The conformational change was observed above 300 K. The same effect was observed with the spin labelled PGM incorporated into liposomes. Such effect was not observed when the spin labelled PGM was studied at alkaline pH, probably due to the hydrolysis of PGM molecule. The study of possible interaction with liposomal membrane is relevant to the use of tested compounds incorporated into liposomes, as adjuvants in vivo.
Rotational versus alternating hysteresis losses in nonoriented soft magnetic laminations
NASA Astrophysics Data System (ADS)
Fiorillo, F.; Rietto, A. M.
1993-05-01
Rotational and alternating hysteresis losses have been investigated in theory and experiment in nonoriented soft magnetic laminations. Attention has been focused on the dependence of energy loss on peak magnetization Ip. The experiments, performed in a wide induction range (˜2×10-4 T≤Ip≤˜1.6 T), show that the ratio between rotational and alternating energy losses Whr/Wha is a monotonically decreasing function of Ip. A quantitative theoretical investigation is carried out through modeling of the magnetization process under rotating field and its relation to processes under alternating field. Three basic mechanisms of magnetization rotation are considered: linear combination of unidirectional hysteresis loops at low inductions (Rayleigh region), cyclic rearrangement of magnetic domains between different easy directions at intermediate inductions, and coherent spin rotation toward the approach to magnetic saturation. The ensuing predicted behavior of Whr/Wha is found to be in good agreement with the experiments performed in nonoriented low carbon steel and 3% FeSi laminations.
Muon spin rotation study of spin dimers on a triangular lattice in Ba3 MRu2 O9
NASA Astrophysics Data System (ADS)
Ziat, Djamel; Verrier, Aimé; Quilliam, Jeffrey; Aczel, Adam; Sinclair, Ryan; Chen, Qiang; Zhou, Haidong
The family of hexagonal perovskites, Ba3 MA2 O9 has recently been proven to be fertile ground for the discovery of new, exotic magnetic phases, including several quantum spin liquid candidates. The 6H-perovskites can also accommodate spin dimers on a triangular lattice, as in the ruthenate materials Ba3MRu2O9. We will present measurements on materials containing M3 + (M = Y, La, Lu, In), which give rise to mixed valence Ru4.5 + ions wherein the orbital and charge degrees of freedom must also be considered. In particular, muon spin rotation (µSR) experiments, have allowed us to probe the nature of the magnetically ordered ground state of these materials at low temperatures.
Stability of a dual-spin satellite with two dampers
NASA Technical Reports Server (NTRS)
Alfriend, K. T.; Hubert, C. H.
1974-01-01
The rotational stability of a dual-spin satellite consisting of a main body and a symmetric rotor, both spinning about a common axis, is investigated. The main body is equipped with a spring-mass damper, while a partially filled viscous ring damper is mounted on the rapidly spinning rotor. The effect of fluid motion on the rotational stability of the satellite is calculated, considering the fluid as a single particle moving in a tube with viscous damping. Time constants are obtained by solving approximate equations of motion for the nutation-synchronous and the spin-synchronous modes, and the results are found to agree well with the numerical integrations of the exact equations. A limit cycle may exist for some configurations; the nutation angle tends to increase in such cases.
Study of Quantum Chaos in the Framework of Triaxial Rotator Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proskurins, J.; Bavrins, K.; Andrejevs, A.
2009-01-28
Dynamical quantum chaos criteria--a perturbed wave function entropy W({psi}{sub i}) and a fragmentation width {kappa}({phi}{sub k}) of basis states were studied in two cases of nuclear rigid triaxial rotator models. The first model is characterized by deformation angle {gamma} only, while the second model depends on both quadrupole deformation parameters ({beta},{gamma}). The degree of chaoticity has been determined in the studies of the dependence of criteria W({psi}{sub i}) and {kappa}({phi}{sub k}) from nuclear spin values up to I{<=}101 for model parameters {gamma} and ({beta},{gamma}) correspondingly. The transition from librational to rotational type energy spectra has been considered for both modelsmore » as well.« less
Boson-mediated quantum spin simulators in transverse fields: X Y model and spin-boson entanglement
NASA Astrophysics Data System (ADS)
Wall, Michael L.; Safavi-Naini, Arghavan; Rey, Ana Maria
2017-01-01
The coupling of spins to long-wavelength bosonic modes is a prominent means to engineer long-range spin-spin interactions, and has been realized in a variety of platforms, such as atoms in optical cavities and trapped ions. To date, much of the experimental focus has been on the realization of long-range Ising models, but generalizations to other spin models are highly desirable. In this work, we explore a previously unappreciated connection between the realization of an X Y model by off-resonant driving of a single sideband of boson excitation (i.e., a single-beam Mølmer-Sørensen scheme) and a boson-mediated Ising simulator in the presence of a transverse field. In particular, we show that these two schemes have the same effective Hamiltonian in suitably defined rotating frames, and analyze the emergent effective X Y spin model through a truncated Magnus series and numerical simulations. In addition to X Y spin-spin interactions that can be nonperturbatively renormalized from the naive Ising spin-spin coupling constants, we find an effective transverse field that is dependent on the thermal energy of the bosons, as well as other spin-boson couplings that cause spin-boson entanglement not to vanish at any time. In the case of a boson-mediated Ising simulator with transverse field, we discuss the crossover from transverse field Ising-like to X Y -like spin behavior as a function of field strength.
Theory of quasi-spherical accretion in X-ray pulsars
NASA Astrophysics Data System (ADS)
Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.
2012-02-01
A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.
Floquet spin states in graphene under ac-driven spin-orbit interaction
NASA Astrophysics Data System (ADS)
López, A.; Sun, Z. Z.; Schliemann, J.
2012-05-01
We study the role of periodically driven time-dependent Rashba spin-orbit coupling (RSOC) on a monolayer graphene sample. After recasting the originally 4×4 system of dynamical equations as two time-reversal related two-level problems, the quasienergy spectrum and the related dynamics are investigated via various techniques and approximations. In the static case, the system is gapped at the Dirac point. The rotating wave approximation (RWA) applied to the driven system unphysically preserves this feature, while the Magnus-Floquet approach as well as a numerically exact evaluation of the Floquet equation show that this gap is dynamically closed. In addition, a sizable oscillating pattern of the out-of-plane spin polarization is found in the driven case for states that are completely unpolarized in the static limit. Evaluation of the autocorrelation function shows that the original uniform interference pattern corresponding to time-independent RSOC gets distorted. The resulting structure can be qualitatively explained as a consequence of the transitions induced by the ac driving among the static eigenstates, i.e., these transitions modulate the relative phases that add up to give the quantum revivals of the autocorrelation function. Contrary to the static case, in the driven scenario, quantum revivals (suppressions) are correlated to spin-up (down) phases.
Method of manufacturing fibrous hemostatic bandages
Larsen, Gustavo; Spretz, Ruben; Velarde-Ortiz, Raffet
2012-09-04
A method of manufacturing a sturdy and pliable fibrous hemostatic dressing by making fibers that maximally expose surface area per unit weight of active ingredients as a means for aiding in the clot forming process and as a means of minimizing waste of active ingredients. The method uses a rotating object to spin off a liquid biocompatible fiber precursor, which is added at its center. Fibers formed then deposit on a collector located at a distance from the rotating object creating a fiber layer on the collector. An electrical potential difference is maintained between the rotating disk and the collector. Then, a liquid procoagulation species is introduced at the center of the rotating disk such that it spins off the rotating disk and coats the fibers.
Human-brain ferritin studied by muon spin rotation: a pilot study
NASA Astrophysics Data System (ADS)
Bossoni, Lucia; Grand Moursel, Laure; Bulk, Marjolein; Simon, Brecht G.; Webb, Andrew; van der Weerd, Louise; Huber, Martina; Carretta, Pietro; Lascialfari, Alessandro; Oosterkamp, Tjerk H.
2017-10-01
Muon spin rotation is employed to investigate the spin dynamics of ferritin proteins isolated from the brain of an Alzheimer’s disease (AD) patient and of a healthy control, using a sample of horse-spleen ferritin as a reference. A model based on the Néel theory of superparamagnetism is developed in order to interpret the spin relaxation rate of the muons stopped by the core of the protein. Using this model, our preliminary observations show that ferritins from the healthy control are filled with a mineral compatible with ferrihydrite, while ferritins from the AD patient contain a crystalline phase with a larger magnetocrystalline anisotropy, possibly compatible with magnetite or maghemite.
Flow past an axially aligned spinning cylinder: Experimental Study
NASA Astrophysics Data System (ADS)
Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva
2017-11-01
Experimental investigation of flow past a spinning cylinder is presented in the context of its application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on the flow past a spinning cylinder that is mounted on a forward sting and oriented such that its axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number of range of up to 45000 and rotation numbers of up to 2 (based on cylinder diameter). Time-averaged mean flow and turbulence profiles in the wake flow are presented with and without spin along with comparison to published experimental data. Funded in part by the U. S. Army ARDEC, Picatinny Arsenal, NJ.
Spin rotational symmetry breaking by orbital current patterns in two-leg Cu-O Hubbard ladders
NASA Astrophysics Data System (ADS)
Chudzinski, Piotr; Gabay, Marc; Giamarchi, Thierry
2010-03-01
In the weak-coupling limit, we study, as a function of doping, two-leg ladders with a unit cell containing both Cu and O atoms. For purely repulsive interactions, using bosonization and a novel RG scheme, we find that in a broad region of the phase diagram, the ground state consists of a pattern of orbital currents (OCP) defined on the top of an incommensurate density wave. The internal symmetry of the OCP is specific for the ladder structure, different than the ones suggested up to now for 2D cuprates. We focus on this OCP and look for measurable signals of its existence: we compute magnetic fields induced within the ladder and we check what kind of changes in the phase diagram one may expect due to SU(2) spin-rotational symmetry breaking. We also investigate a single impurity problem (incl. OCP): we discuss if Kondo physics is at play, and make qualitative predictions about the nature of impurity backscattering. This enables us to show the influence of SU(2) symmetry breaking on conductivity. We estimate the value of gap opened due to the OCP, give analytic expressions for correlation functions and discuss magnetic properties of a new phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Jason W., E-mail: jwbarnes@uidaho.ed
Main-sequence stars earlier than spectral-type approxF6 or so are expected to rotate rapidly due to their radiative exteriors. This rapid rotation leads to an oblate stellar figure. It also induces the photosphere to be hotter (by up to several thousand kelvin) at the pole than at the equator as a result of a process called gravity darkening that was first predicted by von Zeipel. Transits of extrasolar planets across such a non-uniform, oblate disk yield unusual and distinctive lightcurves that can be used to determine the relative alignment of the stellar rotation pole and the planet orbit normal. This spin-orbitmore » alignment can be used to constrain models of planet formation and evolution. Orderly planet formation and migration within a disk that is coplanar with the stellar equator will result in spin-orbit alignment. More violent planet-planet scattering events should yield spin-orbit misaligned planets. Rossiter-McLaughlin measurements of transits of lower-mass stars show that some planets are spin-orbit aligned, and some are not. Since Rossiter-McLaughlin measurements are difficult around rapid rotators, lightcurve photometry may be the best way to determine the spin-orbit alignment of planets around massive stars. The Kepler mission will monitor approx10{sup 4} of these stars within its sample. The lightcurves of any detected planets will allow us to probe the planet formation process around high-mass stars for the first time.« less
A new approach to correct yaw misalignment in the spinning ultrasonic anemometer
NASA Astrophysics Data System (ADS)
Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.
2018-01-01
Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.
Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect
NASA Astrophysics Data System (ADS)
Mochizuki, M.; Yu, X. Z.; Seki, S.; Kanazawa, N.; Koshibae, W.; Zang, J.; Mostovoy, M.; Tokura, Y.; Nagaosa, N.
2014-03-01
Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding that a topologically nontrivial spin texture known as a skyrmion—a particle-like object in which spins point in all directions to wrap a sphere—constitutes such a ratchet. By means of Lorentz transmission electron microscopy we show that micrometre-sized crystals of skyrmions in thin films of Cu2OSeO3 and MnSi exhibit a unidirectional rotation motion. Our numerical simulations based on a stochastic Landau-Lifshitz-Gilbert equation suggest that this rotation is driven solely by thermal fluctuations in the presence of a temperature gradient, whereas in thermal equilibrium it is forbidden by the Bohr-van Leeuwen theorem. We show that the rotational flow of magnons driven by the effective magnetic field of skyrmions gives rise to the skyrmion rotation, therefore suggesting that magnons can be used to control the motion of these spin textures.
Analytic treatment of nuclear spin-lattice relaxation for diffusion in a cone model
NASA Astrophysics Data System (ADS)
Sitnitsky, A. E.
2011-12-01
We consider nuclear spin-lattice relaxation rate resulted from a diffusion equation for rotational wobbling in a cone. We show that the widespread point of view that there are no analytical expressions for correlation functions for wobbling in a cone model is invalid and prove that nuclear spin-lattice relaxation in this model is exactly tractable and amenable to full analytical description. The mechanism of relaxation is assumed to be due to dipole-dipole interaction of nuclear spins and is treated within the framework of the standard Bloemberger, Purcell, Pound-Solomon scheme. We consider the general case of arbitrary orientation of the cone axis relative the magnetic field. The BPP-Solomon scheme is shown to remain valid for systems with the distribution of the cone axes depending only on the tilt relative the magnetic field but otherwise being isotropic. We consider the case of random isotropic orientation of cone axes relative the magnetic field taking place in powders. Also we consider the cases of their predominant orientation along or opposite the magnetic field and that of their predominant orientation transverse to the magnetic field which may be relevant for, e.g., liquid crystals. Besides we treat in details the model case of the cone axis directed along the magnetic field. The latter provides direct comparison of the limiting case of our formulas with the textbook formulas for free isotropic rotational diffusion. The dependence of the spin-lattice relaxation rate on the cone half-width yields results similar to those predicted by the model-free approach.
Rapid evolution of the spin state of comet 41P/Tuttle-Giacobini-Kresak
NASA Astrophysics Data System (ADS)
Bodewits, Dennis; Farnham, Tony; Kelley, Michael S. P.; Manning Knight, Matthew
2018-01-01
Cometary outgassing can produce torques that change the spin state of the nucleus, influencing the evolution and lifetimes of comets. If these torques spin up the rotation to the point that centripetal forces exceed the material strength of the nucleus, the comet may fragment. Comet 41P/Tuttle-Giacobini-Kresak passed Earth as close as 0.142 au in April 2017, allowing observations of the inner coma and an assessment of the rotational state of the nucleus. We acquired observations of comet 41P between March and May 2017 using the 4.3-m Discovery Channel Telescope and the UltraViolet-Optical Telescope (UVOT) on board the Earth-orbiting Swift Gamma Ray Burst Mission.We combined CN narrowband imaging and aperture photometry and found that the apparent rotation period of comet 41P more than doubled between March and May 2017, increasing from 20 hours to over 46 hours. Measurements of the periodicity in late-March by Knight et al. (CBET 4377, 2017) are consistent with this rate of increase. Comet 41P is the ninth comet for which a rotation period change has been observed (c.f. Samarasinha et al., in Comets II, 2004), but both the fractional change and the rate of change of the period far exceed those observed in the other comets. It is the combination of a slow rotation, high activity, and a small nucleus that contribute to the rapid changes of the rotation state of 41P. In addition, the active regions on the surface of 41P are likely oriented in a way such that its torques are highly optimized in comparison to many other comets.Extrapolating the comet’s rotation period using its current gas production rates and a simple activity model suggests that the nucleus will continue to spin down, possibly leading to an excited spin state in the next apparitions. Finally, 41P is known for its large outbursts, and our extrapolation suggest that the comet’s rotation period may have been close to the critical period for splitting in 2001, when it exhibited two significant outbursts.
NASA Astrophysics Data System (ADS)
Mambrini, Matthieu; Orús, Román; Poilblanc, Didier
2016-11-01
We elaborate a simple classification scheme of all rank-5 SU(2) spin rotational symmetric tensors according to (i) the onsite physical spin S , (ii) the local Hilbert space V⊗4 of the four virtual (composite) spins attached to each site, and (iii) the irreducible representations of the C4 v point group of the square lattice. We apply our scheme to draw a complete list of all SU(2)-symmetric translationally and rotationally invariant projected entangled pair states (PEPS) with bond dimension D ≤6 . All known SU(2)-symmetric PEPS on the square lattice are recovered and simple generalizations are provided in some cases. More generally, to each of our symmetry class can be associated a (D -1 )-dimensional manifold of spin liquids (potentially) preserving lattice symmetries and defined in terms of D -independent tensors of a given bond dimension D . In addition, generic (low-dimensional) families of PEPS explicitly breaking either (i) particular point-group lattice symmetries (lattice nematics) or (ii) time-reversal symmetry (chiral spin liquids) or (iii) SU(2) spin rotation symmetry down to U(1 ) (spin nematics or Néel antiferromagnets) can also be constructed. We apply this framework to search for new topological chiral spin liquids characterized by well-defined chiral edge modes, as revealed by their entanglement spectrum. In particular, we show how the symmetrization of a double-layer PEPS leads to a chiral topological state with a gapless edge described by a SU (2) 2 Wess-Zumino-Witten model.
Exploring the fission and reconfiguration cycle of comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Scheeres, Daniel J.; Hirabayashi, Masatoshi; Chesley, Steven R.; McMahon, Jay W.
2016-10-01
In Hirabayashi et al. (Nature, 2016) the nucleus of comet 67P/Churyumov-Gerasimenko (67P) is studied with a focus on the straight cracks observed on the Hapi region. These cracks were shown to have formed during a period of fast rotation and led to a proposed evolutionary scenario in which the nuclei may eventually split into two components and recombine to create a new bilobate configuration. Other bilobate nuclei should be subject to such a reconfiguration process, based on the relative sizes of the components, suggesting that this evolutionary scenario may be common for bilobate nuclei which comprise the majority of comet nuclei observed at high spatial resolution. Such reconfigurations could explain the observed occurrence of comet nucleus splitting and brightening events, which still lack a definitive geophysical understanding. Motivated by the proposed theory in Hirabayashi et al., the current work explores the dynamics of the 67P nucleus' rotation rate, fission limits, and subsequent dynamics. One aspect of the theory posits that the comet's distant Jupiter flybys will cause the latitude of the sub-solar point at perihelion to vary chaotically, leading to periods of net positive and negative torques and causing the nucleus to spin-up and spin-down in a random fashion. We analyze the current 67P nucleus shape and orbit to estimate the characteristic time-scale of this rotational evolution, providing an estimate of the current nucleus lifetime in its current configuration. Once the nucleus reaches a spin period shorter than ~7 hours the components will fission into a bound orbit, with the components subsequently reimpacting at speeds less than local escape speed (about 0.4 m/s). The current study extends Hirabayashi et al., explicitly modeling the mutual gravity and orbital dynamics of the head and body, assuming that the head and body rest on each other with the current shape of the 67P nucleus. The results show that when the components are released at a spin period between 6.5 hr and 7 hr, the components will separate and subsequently collide with a low impact speed. The orbital and rotational dynamics of the system components after fission are explored as a function of the initial spin rate at fission.
NASA Astrophysics Data System (ADS)
John, Sajeev; Golubentsev, Andrey
1995-01-01
It is suggested that an interacting many-electron system in a two-dimensional lattice may condense into a topological magnetic state distinct from any discussed previously. This condensate exhibits local spin-1/2 magnetic moments on the lattice sites but is composed of a Slater determinant of single-electron wave functions which exist in an orthogonal sector of the electronic Hilbert space from the sector describing traditional spin-density-wave or spiral magnetic states. These one-electron spinor wave functions have the distinguishing property that they are antiperiodic along a closed path encircling any elementary plaquette of the lattice. This corresponds to a 2π rotation of the internal coordinate frame of the electron as it encircles the plaquette. The possibility of spinor wave functions with spatial antiperiodicity is a direct consequence of the two-valuedness of the internal electronic wave function defined on the space of Euler angles describing its spin. This internal space is the topologically, doubly-connected, group manifold of SO(3). Formally, these antiperiodic wave functions may be described by passing a flux which couples to spin (rather than charge) through each of the elementary plaquettes of the lattice. When applied to the two-dimensional Hubbard model with one electron per site, this new topological magnetic state exhibits a relativistic spectrum for charged, quasiparticle excitations with a suppressed one-electron density of states at the Fermi level. For a topological antiferromagnet on a square lattice, with the standard Hartree-Fock, spin-density-wave decoupling of the on-site Hubbard interaction, there is an exact mapping of the low-energy one-electron excitation spectrum to a relativistic Dirac continuum field theory. In this field theory, the Dirac mass gap is precisely the Mott-Hubbard charge gap and the continuum field variable is an eight-component Dirac spinor describing the components of physical electron-spin amplitude on each of the four sites of the elementary plaquette in the original Hubbard model. Within this continuum model we derive explicitly the existence of hedgehog Skyrmion textures as local minima of the classical magnetic energy. These magnetic solitons carry a topological winding number μ associated with the vortex rotation of the background magnetic moment field by a phase angle 2πμ along a path encircling the soliton. Such solitons also carry a spin flux of μπ through the plaquette on which they are centered. The μ=1 hedgehog Skyrmion describes a local transition from the topological (antiperiodic) sector of the one-electron Hilbert space to the nontopological sector. We derive from first principles the existence of deep level localized electronic states within the Mott-Hubbard charge gap for the μ=1 and 2 solitons. The spectrum of localized states is symmetric about E=0 and each subgap electronic level can be occupied by a pair of electrons in which one electron resides primarily on one sublattice and the second electron on the other sublattice. It is suggested that flux-carrying solitons and the subgap electronic structure which they induce are important in understanding the physical behavior of doped Mott insulators.
Moving mode shape function approach for spinning disk and asymmetric disc brake squeal
NASA Astrophysics Data System (ADS)
Kang, Jaeyoung
2018-06-01
The solution approach of an asymmetric spinning disk under stationary friction loads requires the mode shape function fixed in the disk in the assumed mode method when the equations of motion is described in the space-fixed frame. This model description will be termed the 'moving mode shape function approach' and it allows us to formulate the stationary contact load problem in both the axisymmetric and asymmetric disk cases. Numerical results show that the eigenvalues of the time-periodic axisymmetric disk system are time-invariant. When the axisymmetry of the disk is broken, the positive real parts of the eigenvalues highly vary with the rotation of the disk in the slow speeds in such application as disc brake squeal. By using the Floquet stability analysis, it is also shown that breaking the axisymmetry of the disc alters the stability boundaries of the system.
Precession relaxation of viscoelastic oblate rotators
NASA Astrophysics Data System (ADS)
Frouard, Julien; Efroimsky, Michael
2018-01-01
Perturbations of all sorts destabilize the rotation of a small body and leave it in a non-principal spin state. In such a state, the body experiences alternating stresses generated by the inertial forces. This yields nutation relaxation, i.e. evolution of the spin towards the principal rotation about the maximal-inertia axis. Knowledge of the time-scales needed to damp the nutation is crucial in studies of small bodies' dynamics. In the literature hitherto, nutation relaxation has always been described with aid of an empirical quality factor Q introduced to parametrize the energy dissipation rate. Among the drawbacks of this approach was its inability to describe the dependence of the relaxation rate upon the current nutation angle. This inability stemmed from our lack of knowledge of the quality factor's dependence on the forcing frequency. In this article, we derive our description of nutation damping directly from the rheological law obeyed by the material. This renders us the nutation damping rate as a function of the current nutation angle, as well as of the shape and the rheological parameters of the body. In contradistinction from the approach based on an empirical Q factor, our development gives a zero damping rate in the spherical-shape limit. Our method is generic and applicable to any shape and to any linear rheological law. However, to simplify the developments, here we consider a dynamically oblate rotator with a Maxwell rheology.
NASA Astrophysics Data System (ADS)
Hansen, D. Flemming
2017-06-01
Many chemical and biological processes rely on the movement of monovalent cations and an understanding of such processes can therefore only be achieved by characterising the dynamics of the involved ions. It has recently been shown that 15N-ammonium can be used as a proxy for potassium to probe potassium binding in bio-molecules such as DNA quadruplexes and enzymes. Moreover, equations have been derived to describe the time-evolution of 15N-based spin density operator elements of 15NH4+ spin systems. Herein NMR pulse sequences are derived to select specific spin density matrix elements of the 15NH4+ spin system and to measure their longitudinal relaxation in order to characterise the rotational correlation time of the 15NH4+ ion as well as report on chemical exchange events of the 15NH4+ ion. Applications to 15NH4+ in acidic aqueous solutions are used to cross-validate the developed pulse sequence while measurements of spin-relaxation rates of 15NH4+ bound to a 41 kDa domain of the bacterial Hsp70 homologue DnaK are presented to show the general applicability of the derived pulse sequence. The rotational correlation time obtained for 15N-ammonium bound to DnaK is similar to the correlation time that describes the rotation about the threefold axis of a methyl group. The methodology presented here provides, together with the previous theoretical framework, an important step towards characterising the motional properties of cations in macromolecular systems.
Quasi-Sun-Pointing of Spacecraft Using Radiation Pressure
NASA Technical Reports Server (NTRS)
Spilker, Thomas
2003-01-01
A report proposes a method of utilizing solar-radiation pressure to keep the axis of rotation of a small spin-stabilized spacecraft pointed approximately (typically, within an angle of 10 deg to 20 deg) toward the Sun. Axisymmetry is not required. Simple tilted planar vanes would be attached to the outer surface of the body, so that the resulting spacecraft would vaguely resemble a rotary fan, windmill, or propeller. The vanes would be painted black for absorption of Solar radiation. A theoretical analysis based on principles of geometric optics and mechanics has shown that torques produced by Solar-radiation pressure would cause the axis of rotation to precess toward Sun-pointing. The required vane size would be a function of the angular momentum of the spacecraft and the maximum acceptable angular deviation from Sun-pointing. The analysis also shows that the torques produced by the vanes would slowly despin the spacecraft -- an effect that could be counteracted by adding specularly reflecting "spin-up" vanes.
Physical properties of Jupiter-family comets and KBOs from ground-based lightcurve observations
NASA Astrophysics Data System (ADS)
Kokotanekova, Rosita; Snodgrass, Colin; Lacerda, Pedro; Green, Simon F.
2017-10-01
Rotational lightcurves are among the most powerful tools to study the physical characteristics of small bodies in the Solar system. They can be used to constrain their spin rates, shapes, densities and compositions. We have developed a method to derive precise lightcurves and phase functions from sparsely sampled data, calibrated using Pan-STARRS stellar magnitudes. We employ this technique to characterize the physical properties of Jupiter Family Comets (JFCs) and Kuiper Belt Objects (KBOs).We provide an updated study of the collective properties of JFCs by increasing the sample of comets with well-studied rotational and surface characteristics. To collect the sample, we reviewed the properties of 35 previously-studied JFCs and added new lightcurves and phase functions for nine JFCs observed between 2004 and 2015.The new extended sample confirms the known cut-off in bulk density at ˜0.6 g cm-3 if JFCs are strengthless. For typical density and elongations, we determined that JFCs require tensile strength of 10-25 Pa to remain stable against rotational instabilities. To provide further constraints on the physical characteristics of JFCs we combine these findings with a study of the activity-induced spin changes of JFCs. Using the newly derived albedos and phase functions, we found that the median linear phase function coefficient for JFCs is 0.046 mag/deg and the median albedo is 4.2 per cent. We found evidence for an increasing linear phase function coefficient with increasing albedo.In an attempt to relate JFCs to their source populations, we compare them to KBOs. We performed a magnitude-limited survey of 40 KBOs, observed with the 3.6-m ESO New Technology Telescope between 2014 and 2017. This is the first survey with a 4m-class telescope conducted in an entirely homogeneous manner (using the same telescope, observing strategy, and data analysis). This program allows us to relate the rotation rates, physical properties and surface characteristics of JFCs and KBOs in order to test the different hypotheses for their formation and subsequent evolution.
NASA Astrophysics Data System (ADS)
Richardson, J.; Graves, K.; Bowling, T.
2014-07-01
Previous studies of the combined effects of asteroid shape, spin, and self-gravity have focused primarily upon the failure limits for bodies with a variety of standard shapes, friction, and cohesion values [1,2,3]. In this study, we look in the opposite direction and utilize 22 asteroid shape-models derived from radar inversion [4] and 7 small body shape-models derived from spacecraft observations [5] to investigate the region in shape/spin space [1,2] wherein self-gravity and rotation combine to produce a stable minimum state with respect to surface potential differences, dynamic topography, slope magnitudes, and erosion rates. This erosional minimum state is self-correcting, such that changes in the body's rotation rate, either up or down, will increase slope magnitudes across the body, thereby driving up erosion rates non-linearly until the body has once again reached a stable, minimized surface state [5]. We investigated this phenomenon in a systematic fashion using a series of synthesized, increasingly prolate spheroid shape models. Adjusting the rotation rate of each synthetic shape to minimize surface potential differences, dynamic topography, and slope magnitudes results in the magenta curve of the figure (right side), defining the zone of maximum surface stability (MSS). This MSS zone is invariant both with respect to body size (gravitational potential and rotational potential scale together with radius), and density when the scaled-spin of [2] is used. Within our sample of observationally derived small-body shape models, slow rotators (Group A: blue points), that are not in the maximum surface stability (MSS) zone and where gravity dominates the slopes, will generally experience moderate erosion rates (left plot) and will tend to move up and to the right in shape/spin space as the body evolves (right plot). Fast rotators (Group C: red points), that are not in the MSS zone and where spin dominates the slopes, will generally experience high erosion rates (left plot) and will tend to move down and to the left in shape/spin space as the body evolves (right plot), barring other influences such as YORP spin-up [6]. Moderate rotators (Group B: green points) have slopes that are influenced equally by gravity and spin, lie in or near the self-correcting MSS zone (right plot), and will generally experience the lowest erosion rates (left plot). These objects comprise 12 (43%) of the 28 bodies studied, perhaps indicating some prevalence for the MSS zone. On the other hand, a sample of 1300 asteroid shape and spin parameters (small grey points), derived from asteroid lightcurve data [7], do not show this same degree of correlation, perhaps indicating the relative weakness of erosion-driven shape modification as compared to other influences. We will continue to investigate this phenomenon as the number of detailed shape models from ground-based radar and other observations continues to increase.
2003-11-03
VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.
NASA Astrophysics Data System (ADS)
Ishikawa, Rui; Tsunakawa, Hitoshi; Oinuma, Kohsuke; Michimura, Shinji; Taniguchi, Hiromi; Satoh, Kazuhiko; Ishii, Yasuyuki; Okamoto, Hiroyuki
2018-06-01
Detailed magnetization measurements enabled us to claim that the layered organic insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl [BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene] with the Dzyaloshinskii-Moriya interaction has an antiferromagnetic spin structure with the easy axis being the crystallographic c-axis and the net canting moment parallel to the a-axis at zero magnetic field. This zero-field spin structure is significantly different from that proposed in the past studies. The assignment was achieved by arguments including a correction of the direction of the weak ferromagnetism, reinterpretations of magnetization behaviors, and reasoning based on known high-field spin structures. We suggest that only the contributions of the strong intralayer antiferromagnetic interaction, the moderately weak Dzyaloshinskii-Moriya interaction, and the very weak interlayer ferromagnetic interaction can realize this spin structure. On the basis of this model, characteristic magnetic-field dependences of the magnetization can be interpreted as consequences of intriguing spin reorientations. The first reorientation is an unusual spin-flop transition under a magnetic field parallel to the b-axis. Although the existence of this transition is already known, the interpretation of what happens at this transition has been significantly revised. We suggest that this transition can be regarded as a spin-flop phenomenon of the local canting moment. We also claim that half of the spins rotate by 180° at this transition, in contrast to the conventional spin flop transition. The second reorientation is the gradual rotation of the spins during the variation of the magnetic field parallel to the c-axis. In this process, all the spins rotate around the Dzyaloshinskii-Moriya vectors by 90°. The results of our simulation based on the classical spin model well reproduce these spin reorientation behaviors, which strongly support our claimed zero-field spin structure. The present study highlights the intriguing low-field magnetic properties of this material and may evoke further research on the low-field magnetism in this class of materials.
Polarisation in spin-echo experiments: Multi-point and lock-in measurements
NASA Astrophysics Data System (ADS)
Tamtögl, Anton; Davey, Benjamin; Ward, David J.; Jardine, Andrew P.; Ellis, John; Allison, William
2018-02-01
Spin-echo instruments are typically used to measure diffusive processes and the dynamics and motion in samples on ps and ns time scales. A key aspect of the spin-echo technique is to determine the polarisation of a particle beam. We present two methods for measuring the spin polarisation in spin-echo experiments. The current method in use is based on taking a number of discrete readings. The implementation of a new method involves continuously rotating the spin and measuring its polarisation after being scattered from the sample. A control system running on a microcontroller is used to perform the spin rotation and to calculate the polarisation of the scattered beam based on a lock-in amplifier. First experimental tests of the method on a helium spin-echo spectrometer show that it is clearly working and that it has advantages over the discrete approach, i.e., it can track changes of the beam properties throughout the experiment. Moreover, we show that real-time numerical simulations can perfectly describe a complex experiment and can be easily used to develop improved experimental methods prior to a first hardware implementation.
The Spin Vector of (832) Karin
NASA Astrophysics Data System (ADS)
Slivan, Stephen M.; Molnar, L. A.
2010-10-01
We observed rotation lightcurves of Koronis family and Karin cluster member (832) Karin during its four consecutive apparitions in 2006-2009, and combined the new observations with previously published lightcurves to determine its spin vector orientation and preliminary model shape. Karin is a prograde rotator with a period of 18.352 h, spin obliquity near 41°, and pole ecliptic longitude near either 51° or 228°. Although the two ambiguous pole solutions are near the clustered pole solutions of four Koronis family members whose spins are thought to be trapped in a spin-orbit resonance (Vokrouhlický et al., 2003), Karin does not seem to be trapped in the resonance; this is consistent with the expectation that the 6 My age of Karin (Nesvorný et al., 2002) is too young for YORP torques to have modified its spin since its formation. The spin vector and shape results for Karin will constrain family formation models that include spin properties, and we discuss the Karin results in the context of the other members of the Karin cluster, the Karin parent body, and the parent body's siblings in the Koronis family.
Quantum Rotational Effects in Nanomagnetic Systems
NASA Astrophysics Data System (ADS)
O'Keeffe, Michael F.
Quantum tunneling of the magnetic moment in a nanomagnet must conserve the total angular momentum. For a nanomagnet embedded in a rigid body, reversal of the magnetic moment will cause the body to rotate as a whole. When embedded in an elastic environment, tunneling of the magnetic moment will cause local elastic twists of the crystal structure. In this thesis, I will present a theoretical study of the interplay between magnetization and rotations in a variety of nanomagnetic systems which have some degree of rotational freedom. We investigate the effect of rotational freedom on the tunnel splitting of a nanomagnet which is free to rotate about its easy axis. Calculating the exact instanton of the coupled equations of motion shows that mechanical freedom of the particle renormalizes the easy axis anisotropy, increasing the tunnel splitting. To understand magnetization dynamics in free particles, we study a quantum mechanical model of a tunneling spin embedded in a rigid rotor. The exact energy levels for a symmetric rotor exhibit first and second order quantum phase transitions between states with different values the magnetic moment. A quantum phase diagram is obtained in which the magnetic moment depends strongly on the moments of inertia. An intrinsic contribution to decoherence of current oscillations of a flux qubit must come from the angular momentum it transfers to the surrounding body. Within exactly solvable models of a qubit embedded in a rigid body and an elastic medium, we show that slow decoherence is permitted if the solid is macroscopically large. The spin-boson model is one of the simplest representations of a two-level system interacting with a quantum harmonic oscillator, yet has eluded a closed-form solution. I investigate some possible approaches to understanding its spectrum. The Landau-Zener dynamics of a tunneling spin coupled to a torsional resonator show that for certain parameter ranges the system exhibits multiple Landau-Zener transitions. These transitions coincide in time with changes in the oscillator dynamics. A large number of spins on a single oscillator coupled only through the in-phase oscillations behaves as a single large spin, greatly enhancing the spin-phonon coupling.
Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting
2016-01-01
Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment. PMID:27322266
Long-lived nuclear spin states in rapidly rotating CH2D groups
NASA Astrophysics Data System (ADS)
Elliott, Stuart J.; Brown, Lynda J.; Dumez, Jean-Nicolas; Levitt, Malcolm H.
2016-11-01
Although monodeuterated methyl groups support proton long-lived states, hindering of the methyl rotation limits the singlet relaxation time. We demonstrate an experimental case in which the rapid rotation of the CH2D group extends the singlet lifetime but does not quench the chemical shift difference between the CH2D protons, induced by the chiral environment. Proton singlet order is accessed using Spin-Lock Induced Crossing (SLIC) experiments, showing that the singlet relaxation time TS is over 2 min, exceeding the longitudinal relaxation time T1 by a factor of more than 10. This result shows that proton singlet states may be accessible and long-lived in rapidly rotating CH2D groups.
The millimeter and submillimeter rotational spectrum of the MgCN radical (X (sup 2) Sigma(+))
NASA Technical Reports Server (NTRS)
Anderson, M. A.; Steimle, T. C.; Ziurys, L. M.
1994-01-01
The pure rotational spectrum of the MgCN radical has been recorded in the laboratory using millimeter/submillimeter direct absorption spectroscopy. Twenty-seven rotational transitions of the species were observed in the range 101-376 GHz and indicate that the molecule is linear with a (sup 2)Sigma(+) ground electronic state, as predicted by theory. Spin rotation interactions were resolved in the spectra, but no hyperfine splittings were observed, which would originate with the nitrogen nuclear spin. The rotational and fine-structure constants were determined for this radical from a nonlinear least-squares fit to the data using a (sup 2)Sigma Hamiltonian. MgCN is of astrophysical interest because it is the metastable isomer of MgNC, which recently has been detected toward IRC +10216
Simultaneous π / 2 rotation of two spin species of different gyromagnetic ratios
Chu, Ping -Han; Peng, Jen -Chieh
2015-06-05
Here, we examine the characteristics of the π/2 pulse for simultaneously rotating two spin species of different gyromagnetic ratios with the same sign. For a π/2 pulse using a rotating magnetic field, we derive an equation relating the frequency and strength of the pulse to the gyromagnetic ratios of the two particles and the strength of the constant holding field. For a π/2 pulse using a linear oscillatory magnetic field, we obtain the solutions numerically, and compare them with the solutions for the rotating π/2 pulse. Application of this analysis to the specific case of rotating neutrons and 3He atomsmore » simultaneously with a π/2 pulse, proposed for a neutron electric dipole moment experiment, is also presented.« less
Belinsky, Moisey I
2016-05-02
The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.
NASA Astrophysics Data System (ADS)
Halfen, D. T.; Ziurys, L. M.
2005-02-01
The pure rotational spectrum of the MnCl radical (X 7Σ+) has been recorded in the range 141-535 GHz using millimeter-submillimeter direct absorption spectroscopy. This work is the first time the molecule has been studied with rotational resolution in its ground electronic state. MnCl was synthesized by the reaction of manganese vapor, produced in a Broida-type oven, with Cl2. Transitions of both chlorine isotopomers were measured, as well as lines originating in several vibrationally excited states. The presence of several spin components and manganese hyperfine interactions resulted in quite complex spectra, consisting of multiple blended features. Because 42 rotational transitions were measured for Mn35Cl over a wide range of frequencies with high signal-to-noise, a very accurate set of rotational, fine structure, and hyperfine constants could be determined with the aid of spectral simulations. Spectroscopic constants were also determined for Mn37Cl and several vibrationally excited states. The values of the spin-rotation and spin-spin parameters were found to be relatively small (γ=11.2658 MHz and λ=1113.10 MHz for Mn35Cl); in the case of λ, excited electronic states contributing to the second-order spin-orbit interaction may be canceling each other. The Fermi contact hyperfine term was found to be large in manganese chloride with bF(Mn35Cl)=397.71 MHz, a result of the manganese 4s character mixing into the 12σ orbital. This orbital is spσ hybridized, and contains some Mn 4pσ character, as well. Hence, it also contributes to the dipolar constant c, which is small and positive for this radical (c=32.35 MHz for Mn35Cl). The hyperfine parameters in MnCl are similar to those of MnH and MnF, suggesting that the bonding in these three molecules is comparable.
Halfen, D T; Ziurys, L M
2005-02-01
The pure rotational spectrum of the MnCl radical (X (7)Sigma(+)) has been recorded in the range 141-535 GHz using millimeter-submillimeter direct absorption spectroscopy. This work is the first time the molecule has been studied with rotational resolution in its ground electronic state. MnCl was synthesized by the reaction of manganese vapor, produced in a Broida-type oven, with Cl(2). Transitions of both chlorine isotopomers were measured, as well as lines originating in several vibrationally excited states. The presence of several spin components and manganese hyperfine interactions resulted in quite complex spectra, consisting of multiple blended features. Because 42 rotational transitions were measured for Mn(35)Cl over a wide range of frequencies with high signal-to-noise, a very accurate set of rotational, fine structure, and hyperfine constants could be determined with the aid of spectral simulations. Spectroscopic constants were also determined for Mn(37)Cl and several vibrationally excited states. The values of the spin-rotation and spin-spin parameters were found to be relatively small (gamma=11.2658 MHz and lambda=1113.10 MHz for Mn(35)Cl); in the case of lambda, excited electronic states contributing to the second-order spin-orbit interaction may be canceling each other. The Fermi contact hyperfine term was found to be large in manganese chloride with b(F)(Mn(35)Cl)=397.71 MHz, a result of the manganese 4s character mixing into the 12sigma orbital. This orbital is spsigma hybridized, and contains some Mn 4psigma character, as well. Hence, it also contributes to the dipolar constant c, which is small and positive for this radical (c=32.35 MHz for Mn(35)Cl). The hyperfine parameters in MnCl are similar to those of MnH and MnF, suggesting that the bonding in these three molecules is comparable.
Conditions of Passage and Entrapment of Terrestrial Planets in Spin-Orbit Resonances
2012-06-10
A Third moment of inertia C Moment of inertia around spin axis n Mean motion, i.e., 2π/Porb G Gravitational constant, = 66468 m3 kg−1 yr−2 τM Maxwell...0.0000 0.0002 0.0004 rate of rotation n an gu la r ac ce le ra tio n .. yr 2 θ θ θ Figure 1. Rotation acceleration caused by the secular tidal torque...the vicinity of spin- orbit resonances θ̇ = (1 + q/2)n. Figure 1 shows in detail the dependence of the overall angular acceleration θ̈ of the planet
EVOLUTION OF SPINNING AND BRAIDING HELICITY FLUXES IN SOLAR ACTIVE REGION NOAA 10930
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio, E-mail: ravindra@iiap.res.in, E-mail: yosimura@solar.physics.montana.edu, E-mail: dasso@df.uba.ar
2011-12-10
The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity sunspot was the follower and the south (S) polarity sunspot was the leader. The N-polarity sunspot in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8 Degree-Sign hr{sup -1} on the third day of the observations. On themore » fourth and fifth days it remained at 4 Degree-Sign hr{sup -1} with small undulations in its magnitude. The sunspot rotated about 260 Degree-Sign in the last three days. The S-polarity sunspot did not complete more than 20 Degree-Sign in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative sunspot regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating sunspot has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 Multiplication-Sign 10{sup 43} Mx{sup 2} over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity sunspot. Before the flare, the total injected helicity was larger than -6 Multiplication-Sign 10{sup 43} Mx{sup 2}. The observed reversal in the sign of spinning and braiding helicity fluxes could be the signature of the emergence of a twisted flux tube, which acquires the writhe of an opposite sign. The magnetic cloud associated with the ejected mass has carried about -7 Multiplication-Sign 10{sup 41} Mx{sup 2} of helicity. A time integration of helicity flux of about 1.2 hr integrated backward in time of the observation of the coronal mass ejection is sufficient for this event.« less
Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge.
Milner, A A; Korobenko, A; Milner, V
2017-06-16
Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.
Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge
NASA Astrophysics Data System (ADS)
Milner, A. A.; Korobenko, A.; Milner, V.
2017-06-01
Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.
μ SR study of NaCaNi2F7 in zero field and applied longitudinal magnetic field
NASA Astrophysics Data System (ADS)
Cai, Yipeng; Wilson, Murray; Hallas, Alannah; Liu, Lian; Frandsen, Benjamin; Dunsiger, Sarah; Krizan, Jason; Cava, Robert; Uemura, Yasutomo; Luke, Graeme
Rich physics of abundant magnetic ground states has been realized in the A2B2X7 geometrically frustrated magnetic pyrochlores. Recently, a new spin-1 Ni2+ pyrochlore, NaCaNi2F7, was synthesized and shown to have spin freezing at 3.6 K with a frustration index of f 36 and antiferromagnetic exchange interactions [1] . This structure has chemical disorder on the A site caused by randomly distributed Ca and Na ions, which causes bond disorder around the magnetic Ni sites. We present Zero Field (ZF) and Longitudinal Field (LF) muon spin rotation (μSR) measurements on this single crystal pyrochlore. Our data shows that the Ni2+ spins start freezing around 4 K giving a static local field of 140 G. The data show no oscillations down to 75 mK which indicates no long range magnetic order. They are well described by the dynamic Gaussian Kubo-Toyabe function with a non-zero hopping rate that is not easily decoupled with an applied longitudinal field, which implies persistent spin dynamics down to 75 mK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meenakumari, V.; Premkumar, S.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com
The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of {sup 14}N- labeled nitroxyl radicals in 1 mM concentration ofmore » ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.« less
NASA Astrophysics Data System (ADS)
Meenakumari, V.; Jawahar, A.; Premkumar, S.; Benial, A. Milton Franklin
2016-05-01
The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of 14N- labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.
The microwave spectrum of a triplet carbene: HCCN in the X 3Sigma - state
NASA Astrophysics Data System (ADS)
Saito, Shuji; Endo, Yasuki; Hirota, Eizi
1984-02-01
A simple carbene, the HCCN radical, has been identified in the gas phase using a microwave spectroscopic method. The HCCN molecule was generated in a free space absorption cell by the reaction of CH3CN with the microwave discharge products of CF4. Five rotational transitions, each split into three fine structure components, were observed in the region of 110 to 198 GHz. No hyperfine structure was resolved, although some of the observed lines showed broadening. The rotational constant, the centrifugal distortion constant, the spin-spin coupling constant, and the spin-rotation coupling constant were determined with good precision. The observed spectrum is completely consistent with that expected for a linear molecule in a 3Σ state, in agreement with an earlier matrix EPR study of Bernheim et al. [J. Chem. Phys. 43, 196 (1965)].
A key factor to the spin parameter of uniformly rotating compact stars: crust structure
NASA Astrophysics Data System (ADS)
Qi, Bin; Zhang, Nai-Bo; Sun, Bao-Yuan; Wang, Shou-Yu; Gao, Jian-Hua
2016-04-01
We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that jmax ˜ 0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M > 0.5 M⊙. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f/fK) - 0.42(f/fK)2 + 0.48(f/fK)3 is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency fK.
Proposed Space Test of the New Equivalence Principle with Rotating Extended Bodies
NASA Astrophysics Data System (ADS)
Han, Feng-Tian; Wu, Qiu-Ping; Zhou, Ze-Bing; Zhang, Yuan-Zhong
2014-11-01
We propose a novel scheme for a space free-fall based test of the new equivalence principle (NEP) with two rotating extended bodies made of the same material. The measurement will be carried out by placing the two concentric spinning masses of very different momenta inside a differential electrostatic accelerometer in a drag-free compensated orbit. A difference in the forces necessary to maintain the common trajectory will be an indication of a violation of equivalence or the existence of spin-spin force between the rotating mass and the Earth. The conceptual design of the inertial sensor and its operation mode is presented. Details specific to the model and performance requirements are discussed by using up-to-date space technologies to test the NEP with an accuracy of better than 10-15.
NASA Technical Reports Server (NTRS)
Nelis, Thomas; Brown, John M.; Evenson, Kenneth M.
1990-01-01
The CH radical has been detected in its a 4Sigma(-) state by the technique of laser magnetic resonance at far-infrared wavelengths. Spectra relating to different spin components of the first three rotational transitions have been recorded. The molecule was generated either by the reaction of F atoms with CH4, with a trace of added oxygen or by the reaction of O atoms with C2H2. The observed resonances have been analyzed and fitted to determine the parameters of an effective Hamiltonian for a molecule in a 4Sigma state. The principal quantities determined are the rotational constant B0 = 451 138.434(94) MHz and the spin-spin parameter lambda(0) = 2785.83(18) MHz. Proton hyperfine parameters have also been determined.
Pulsar spin-down: the glitch-dominated rotation of PSR J0537-6910
NASA Astrophysics Data System (ADS)
Antonopoulou, D.; Espinoza, C. M.; Kuiper, L.; Andersson, N.
2018-01-01
The young, fast-spinning X-ray pulsar J0537-6910 displays an extreme glitch activity, with large spin-ups interrupting its decelerating rotation every ∼100 d. We present nearly 13 yr of timing data from this pulsar, obtained with the Rossi X-ray Timing Explorer. We discovered 22 new glitches and performed a consistent analysis of all 45 glitches detected in the complete data span. Our results corroborate the previously reported strong correlation between glitch spin-up size and the time to the next glitch, a relation that has not been observed so far in any other pulsar. The spin evolution is dominated by the glitches, which occur at a rate of ∼3.5 per year, and the post-glitch recoveries, which prevail the entire interglitch intervals. This distinctive behaviour provides invaluable insights into the physics of glitches. The observations can be explained with a multicomponent model that accounts for the dynamics of the neutron superfluid present in the crust and core of neutron stars. We place limits on the moment of inertia of the component responsible for the spin-up and, ignoring differential rotation, the velocity difference it can sustain with the crust. Contrary to its rapid decrease between glitches, the spin-down rate increased over the 13 yr, and we find the long-term braking index nl = -1.22(4), the only negative braking index seen in a young pulsar. We briefly discuss the plausible interpretations of this result, which is in stark contrast to the predictions of standard models of pulsar spin-down.
NASA Astrophysics Data System (ADS)
Vivek, T.; Bhoomeeswaran, H.; Sabareesan, P.
2018-05-01
Spin waves in ID periodic triangular array of antidots are encarved in a permalloy magnonic waveguide is investigated through micromagnetic simulation. The effect of the rotating array of antidots and in-plane rotation of the scattering centers on the band structure are investigated, to indicate new possibilities of fine tuning of spin-wave filter pass and stop bands. The results show that, the opening and closing of band gaps paves a way for band pass and stop filters on waveguide. From the results, the scattering center and strong spatial distribution field plays crucible role for controlling opening and closing bandgap width of ˜12 GHz for 0° rotation. We have obtained a single narrow bandgap of width 1GHz is obtained for 90° rotation of the antidot. Similarly, the tunability is achieved for desired microwave applications done by rotating triangular antidots with different orientation.
Inner main belt asteroids in Slivan states?
NASA Astrophysics Data System (ADS)
Vraštil, J.; Vokrouhlický, D.
2015-07-01
Context. The spin state of ten asteroids in the Koronis family has previously been determined. Surprisingly, all four asteroids with prograde rotation were shown to have spin axes nearly parallel in the inertial space. All asteroids with retrograde rotation had large obliquities and rotation periods that were either short or long. The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect has been demonstrated to be able to explain all these peculiar facts. In particular, the effect causes the spin axes of the prograde rotators to be captured in a secular spin-orbit resonance known as Cassini state 2, a configuration dubbed "Slivan state". Aims: It has been proposed based on an analysis of a sample of asteroids in the Flora family that Slivan states might also exist in this region of the main belt. This is surprising because convergence of the proper frequency s and the planetary frequency s6 was assumed to prevent Slivan states in this zone. We therefore investigated the possibility of a long-term stable capture in the Slivan state in the inner part of the main belt and among the asteroids previously observed. Methods: We used the swift integrator to determine the orbital evolution of selected asteroids in the inner part of the main belt. We also implemented our own secular spin propagator into the swift code to efficiently analyze their spin evolution. Results: Our experiments show that the previously suggested Slivan states of the Flora-region asteroids are marginally stable for only a small range of the flattening parameter Δ. Either the observed spins are close to the Slivan state by chance, or additional dynamical effects that were so far not taken into account change their evolution. We find that only the asteroids with very low-inclination orbits (lower than ≃4°, for instance) could follow a similar evolution path as the Koronis members and be captured in their spin state into the Slivan state. A greater number of asteroids in the inner main-belt Massalia family, which are at a slightly larger heliocentric distance and at lower inclination orbits than in the Flora region, may have their spin in the Slivan state.
Determination of Phobos' rotational parameters by an inertial frame bundle block adjustment
NASA Astrophysics Data System (ADS)
Burmeister, Steffi; Willner, Konrad; Schmidt, Valentina; Oberst, Jürgen
2018-01-01
A functional model for a bundle block adjustment in the inertial reference frame was developed, implemented and tested. This approach enables the determination of rotation parameters of planetary bodies on the basis of photogrammetric observations. Tests with a self-consistent synthetic data set showed that the implementation converges reliably toward the expected values of the introduced unknown parameters of the adjustment, e.g., spin pole orientation, and that it can cope with typical observational errors in the data. We applied the model to a data set of Phobos using images from the Mars Express and the Viking mission. With Phobos being in a locked rotation, we computed a forced libration amplitude of 1.14^circ ± 0.03^circ together with a control point network of 685 points.
SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt, Sean P.; Greene, Thomas P.; Pinzon, Giovanni
2010-05-10
We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, wemore » neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than {approx}3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.« less
NASA Astrophysics Data System (ADS)
Newton, Hayley; Walkup, Laura L.; Whiting, Nicholas; West, Linda; Carriere, James; Havermeyer, Frank; Ho, Lawrence; Morris, Peter; Goodson, Boyd M.; Barlow, Michael J.
2014-05-01
Spin-exchange optical pumping (SEOP) has been widely used to produce enhancements in nuclear spin polarisation for hyperpolarised noble gases. However, some key fundamental physical processes underlying SEOP remain poorly understood, particularly in regards to how pump laser energy absorbed during SEOP is thermalised, distributed and dissipated. This study uses in situ ultra-low frequency Raman spectroscopy to probe rotational temperatures of nitrogen buffer gas during optical pumping under conditions of high resonant laser flux and binary Xe/N2 gas mixtures. We compare two methods of collecting the Raman scattering signal from the SEOP cell: a conventional orthogonal arrangement combining intrinsic spatial filtering with the utilisation of the internal baffles of the Raman spectrometer, eliminating probe laser light and Rayleigh scattering, versus a new in-line modular design that uses ultra-narrowband notch filters to remove such unwanted contributions. We report a ~23-fold improvement in detection sensitivity using the in-line module, which leads to faster data acquisition and more accurate real-time monitoring of energy transport processes during optical pumping. The utility of this approach is demonstrated via measurements of the local internal gas temperature (which can greatly exceed the externally measured temperature) as a function of incident laser power and position within the cell.
Buitink, Julia; Hemminga, Marcus A.; Hoekstra, Folkert A.
2000-01-01
We examined whether oligosaccharides extend seed longevity by increasing the intracellular glass stability. For that purpose, we used a spin probe technique to measure the molecular mobility and glass transition temperature of the cytoplasm of impatiens (Impatiens walleriana) and bell pepper (Capsicum annuum) seeds that were osmo-primed to change oligosaccharide content and longevity. Using saturation transfer electron paramagnetic resonance spectroscopy, we found that the rotational correlation time of the polar spin probe 3-carboxy-proxyl in the cytoplasm decreased, together with longevity, as a function of increasing seed water content, suggesting that longevity may indeed be regulated by cytoplasmic mobility. Osmo-priming of the seeds resulted in considerable decreases in longevity and oligosaccharide content, while the sucrose content increased. No difference in the glass transition temperature was found between control and primed impatiens seeds at the same temperature and water content. Similarly, there was no difference in the rotational motion of the spin probe in the cytoplasm between control and primed impatiens and bell pepper seeds. We therefore conclude that oligosaccharides in seeds do not affect the stability of the intracellular glassy state, and that the reduced longevity after priming is not the result of increased molecular mobility in the cytoplasm. PMID:10759518
Experimental Spin Testing of Integrally Damped Composite Plates
NASA Technical Reports Server (NTRS)
Kosmatka, John
1998-01-01
The experimental behavior of spinning laminated composite pretwisted plates (turbo-fan blade-like) with small (less than 10% by volume) integral viscoelastic damping patches was investigated at NASA-Lewis Research Center. Ten different plate sets were experimentally spin tested and the resulting data was analyzed. The first-four plate sets investigated tailoring patch locations and definitions to damp specific modes on spinning flat graphite/epoxy plates as a function of rotational speed. The remaining six plate sets investigated damping patch size and location on specific modes of pretwisted (30 degrees) graphite/epoxy plates. The results reveal that: (1) significant amount of damping can be added using a small amount of damping material, (2) the damped plates experienced no failures up to the tested 28,000 g's and 750,000 cycles, (3) centrifugal loads caused an increase in bending frequencies and corresponding reductions in bending damping levels that are proportional to the bending stiffness increase, and (4) the centrifugal loads caused a decrease in torsion natural frequency and increase in damping levels of pretwisted composite plates.
Attenuation of the NMR signal in a field gradient due to stochastic dynamics with memory
NASA Astrophysics Data System (ADS)
Lisý, Vladimír; Tóthová, Jana
2017-03-01
The attenuation function S(t) for an ensemble of spins in a magnetic-field gradient is calculated by accumulation of the phase shifts in the rotating frame resulting from the displacements of spin-bearing particles. The found S(t), expressed through the particle mean square displacement, is applicable for any kind of stationary stochastic motion of spins, including their non-markovian dynamics with memory. The known expressions valid for normal and anomalous diffusion are obtained as special cases in the long time approximation. The method is also applicable to the NMR pulse sequences based on the refocusing principle. This is demonstrated by describing the Hahn spin echo experiment. The attenuation of the NMR signal is also evaluated providing that the random motion of particle is modeled by the generalized Langevin equation with the memory kernel exponentially decaying in time. The models considered in our paper assume massive particles driven by much smaller particles.
NASA Astrophysics Data System (ADS)
Vinson, Alec M.; Hansen, Brad M. S.
2017-12-01
One long-standing problem for the potential habitability of planets within M dwarf systems is their likelihood to be tidally locked in a synchronously rotating spin state. This problem thus far has largely been addressed only by considering two objects: the star and the planet itself. However, many systems have been found to harbour multiple planets, with some in or very near to mean motion resonances. The presence of a planetary companion near a mean motion resonance can induce oscillatory variations in the mean motion of the planet, which we demonstrate can have significant effects on the spin state of an otherwise synchronously rotating planet. In particular, we find that a planetary companion near a mean motion resonance can excite the spin states of planets in the habitable zone of small, cool stars, pushing otherwise synchronously rotating planets into higher amplitude librations of the spin state, or even complete circulation resulting in effective stellar days with full surface coverage on the order of years or decades. This increase in illuminated area can have potentially dramatic influences on climate, and thus on habitability. We also find that the resultant spin state can be very sensitive to initial conditions due to the chaotic nature of the spin state at early times within certain regimes. We apply our model to two hypothetical planetary systems inspired by the K00255 and TRAPPIST-1 systems, both of which have Earth-sized planets in mean motion resonances orbiting cool stars.
NASA Astrophysics Data System (ADS)
Knolle, Johannes; Bhattacharjee, Subhro; Moessner, Roderich
2018-04-01
We present an augmented parton mean-field theory which (i) reproduces the exact ground state, spectrum, and dynamics of the quantum spin-liquid phase of Kitaev's honeycomb model, and (ii) is amenable to the inclusion of integrability breaking terms, allowing a perturbation theory from a controlled starting point. Thus, we exemplarily study dynamical spin correlations of the honeycomb Kitaev quantum spin liquid within the K -J -Γ model, which includes Heisenberg and symmetric-anisotropic (pseudodipolar) interactions. This allows us to trace changes of the correlations in the regime of slowly moving fluxes, where the theory captures the dominant deviations when integrability is lost. These include an asymmetric shift together with a broadening of the dominant peak in the response as a function of frequency, the generation of further-neighbor correlations and their structure in real and spin space, and a resulting loss of an approximate rotational symmetry of the structure factor in reciprocal space. We discuss the limitations of this approach and also view the neutron-scattering experiments on the putative proximate quantum spin-liquid material α -RuCl3 in the light of the results from this extended parton theory.
Sublimation rates of carbon monoxide and carbon dioxide from comets at large heliocentric distances
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek
1992-01-01
Using a simple model for outgassing from a small flat surface area, the sublimation rates of carbon monoxide and carbon dioxide, two species more volatile than water ice that are known to be present in comets, are calculated for a suddenly activated discrete source on the rotating nucleus. The instantaneous sublimation rate depends upon the comet's heliocentric distance and the Sun's zenith angle at the location of the source. The values are derived for the constants of CO and CO2 in an expression that yields the local rotation-averaged sublimation rate as a function of the comet's spin parameters and the source's cometocentric latitude.
A Universal Spin–Mass Relation for Brown Dwarfs and Planets
NASA Astrophysics Data System (ADS)
Scholz, Aleks; Moore, Keavin; Jayawardhana, Ray; Aigrain, Suzanne; Peterson, Dawn; Stelzer, Beate
2018-06-01
While brown dwarfs show similarities to stars early in their lives, their spin evolutions are much more akin to those of planets. We have used light curves from the K2 mission to measure new rotation periods for 18 young brown dwarfs in the Taurus star-forming region. Our sample spans masses from 0.02 to 0.08 M ⊙ and has been characterized extensively in the past. To search for periods, we utilize three different methods (autocorrelation, periodogram, Gaussian processes). The median period for brown dwarfs with disks is twice as long as for those without (3.1 versus 1.6 days), a signature of rotational braking by the disk, albeit with small numbers. With an overall median period of 1.9 days, brown dwarfs in Taurus rotate slower than their counterparts in somewhat older (3–10 Myr) star-forming regions, consistent with spin-up of the latter due to contraction and angular momentum conservation, a clear sign that disk braking overall is inefficient and/or temporary in this mass domain. We confirm the presence of a linear increase of the typical rotation period as a function of mass in the substellar regime. The rotational velocities, when calculated forward to the age of the solar system, assuming angular momentum conservation, fit the known spin–mass relation for solar system planets and extra-solar planetary-mass objects. This spin–mass trend holds over six orders of magnitude in mass, including objects from several different formation paths. Our result implies that brown dwarfs by and large retain their primordial angular momentum through the first few Myr of their evolution.
General-relativistic rotation: Self-gravitating fluid tori in motion around black holes
NASA Astrophysics Data System (ADS)
Karkowski, Janusz; Kulczycki, Wojciech; Mach, Patryk; Malec, Edward; Odrzywołek, Andrzej; Piróg, Michał
2018-05-01
We obtain from the first principles a general-relativistic Keplerian rotation law for self-gravitating disks around spinning black holes. This is an extension of a former rotation law that was designed mainly for toroids around spinless black holes. We integrate numerically axial stationary Einstein equations with self-gravitating disks around spinless or spinning black holes; that includes the first ever integration of the Keplerian selfgravitating tori. This construction can be used for the description of tight black hole-torus systems produced during coalescences of two neutron stars or modelling of compact active galactic nuclei.
Spatially periodic patterns in rotating fluids: a new spin on the old "soup-can race"
NASA Astrophysics Data System (ADS)
Carnevali, Antonino; Carnevali, Dora; Christ, Jessica
2000-11-01
A student's investigation of the old "soup-can race" experiment revealed spatially periodic structures at the surface of the rotating fluid. To better observe this effect, the experiment was transferred to a test bench, where an electric motor was used to spin a cylindrical bottle, partially filled with fluids of varied densities, about its longitudinal axis. A photogate and event-counter software provided real-time measurements of the rotational frequency. Various cell-formation patterns were observed. Experimental results will be presented, and connections with the theory will be explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.
The rotational motion of inertia-free spheroids has been studied in a numerically simulated turbulent channel flow. Although inertia-free spheroids were translated as tracers with the flow, neither the disk-like nor the rod-like particles adapted to the fluid rotation. The flattest disks preferentially aligned their symmetry axes normal to the wall, whereas the longest rods were parallel with the wall. The shape-dependence of the particle orientations carried over to the particle rotation such that the mean spin was reduced with increasing departure from sphericity. The streamwise spin fluctuations were enhanced due to asphericity, but substantially more for prolate than for oblatemore » spheroids.« less
Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO 4
Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; ...
2015-07-06
We report significant details of the magnetic structure and spin dynamics of LiFePO 4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, wemore » show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.« less
VizieR Online Data Catalog: Rotational frequencies of TiO isotopologues (Lincowski+, 2016)
NASA Astrophysics Data System (ADS)
Lincowski, A. P.; Halfen, D. T.; Ziurys, L. M.
2017-03-01
Pure rotational spectra of the rare isotopologues of titanium oxide, 46TiO, 47TiO, 49TiO, and 50TiO, have been recorded using a combination of Fourier transform millimeter-wave (FTmmW) and millimeter/submillimeter direct absorption techniques in the frequency range 62-538GHz. This study is the first complete spectroscopic characterization of these species in their X3Δr ground electronic states. The isotopologues were created by the reaction of N2O or O2 and titanium vapor, produced either by laser ablation or in a Broida-type oven, and observed in the natural Ti isotopic abundances. Between 10 and 11 rotational transitions J+1<->J were measured for each species, typically in all 3 spin-orbit ladders Ω=1, 2, and 3. For 47TiO and 49TiO, hyperfine structure was resolved, originating from the titanium-47 and titanium-49 nuclear spins of I=5/2 and 7/2, respectively. For the Ω=1 and 3 components, the hyperfine structure was found to follow a classic Lande pattern, while that for Ω=2 appeared to be perturbed, likely a result of mixing with the nearby isoconfigurational a1Δ state. The spectra were analyzed with a case (a) Hamiltonian, and rotational, spin-orbit, and spin-spin parameters were determined for each species, as well as magnetic hyperfine and electric quadrupole constants for the two molecules with nuclear spins. The most abundant species, 48TiO, has been detected in circumstellar envelopes. These measurements will enable other titanium isotopologues to be studied at millimeter wavelengths, providing Ti isotope ratios that can test models of nucleosynthesis. (1 data file).
Gangopadhyay, Shruba; Pickett, Warren E.
2015-01-15
The double perovskite Ba 2NaOsO 6 (BNOO), an exotic example of a very high oxidation state (heptavalent) osmium d1 compound and also uncommon by being a ferromagnetic open d-shell (Mott) insulator without Jahn-Teller (JT) distortion, is modeled using a density functional theory based hybrid functional incorporating exact exchange for correlated electronic orbitals and including the large spin-orbit coupling (SOC). The experimentally observed narrow-gap ferromagnetic insulating ground state is obtained, but only when including spin-orbit coupling, making this a Dirac-Mott insulator. The calculated easy axis along [110] is in accord with experiment, providing additional support that this approach provides a realisticmore » method for studying this system. The predicted spin density for [110] spin orientation is nearly cubic (unlike for other directions), providing an explanation for the absence of JT distortion. An orbital moment of –0.4μ B strongly compensates the +0.5μ B spin moment on Os, leaving a strongly compensated moment more in line with experiment. Remarkably, the net moment lies primarily on the oxygen ions. An insulator-metal transition, by rotating the magnetization direction with an external field under moderate pressure, is predicted as one consequence of strong SOC, and metallization under moderate pressure is predicted. In conclusion, a comparison is made with the isostructural, isovalent insulator Ba 2LiOsO 6, which, however, orders antiferromagnetically.« less
Classification of trivial spin-1 tensor network states on a square lattice
NASA Astrophysics Data System (ADS)
Lee, Hyunyong; Han, Jung Hoon
2016-09-01
Classification of possible quantum spin liquid (QSL) states of interacting spin-1/2's in two dimensions has been a fascinating topic of condensed matter for decades, resulting in enormous progress in our understanding of low-dimensional quantum matter. By contrast, relatively little work exists on the identification, let alone classification, of QSL phases for spin-1 systems in dimensions higher than one. Employing the powerful ideas of tensor network theory and its classification, we develop general methods for writing QSL wave functions of spin-1 respecting all the lattice symmetries, spin rotation, and time reversal with trivial gauge structure on the square lattice. We find 25 distinct classes characterized by five binary quantum numbers. Several explicit constructions of such wave functions are given for bond dimensions D ranging from two to four, along with thorough numerical analyses to identify their physical characters. Both gapless and gapped states are found. The topological entanglement entropy of the gapped states is close to zero, indicative of topologically trivial states. In D =4 , several different tensors can be linearly combined to produce a family of states within the same symmetry class. A rich "phase diagram" can be worked out among the phases of these tensors, as well as the phase transitions among them. Among the states we identified in this putative phase diagram is the plaquette-ordered phase, gapped resonating valence bond phase, and a critical phase. A continuous transition separates the plaquette-ordered phase from the resonating valence bond phase.
Fission Limit And Surface Disruption Criteria For Asteroids: The Case Of Kleopatra
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi; Scheeres, D. J.
2012-05-01
Asteroid structural failure due to a rapid rotation may occur by two fundamentally different ways: by spinning so fast that surface particles are lofted off due to centripetal accelerations overcoming gravitational attractions or through fission of the body. We generalize these failure modes for real asteroid shapes. How a rubble pile asteroid will fail depends on which of these failure criterion occur first if its spin rate is increased due to the YORP effect, impacts, or planetary flybys. The spin rate at which the interior of an arbitrary uniformly rotating body will undergo tension (and conservatively be susceptible to fission) is computed by taking planar cuts through the shape model, computing the mutual gravitational attraction between the two segments, and determining the spin rate at which the centrifugal force between the two components equals the mutual gravitational attraction. The gravitational attraction computation uses an improved version of the algorithm presented in Werner et al. (2005). To determine the interior point that first undergoes tension, we consider this planar cut perpendicular to the axis of minimum moment of inertia at different cross-sections. On the other hand, we define the surface disruption as follows. For an arbitrary body uniformly rotating at a constant spin rate there are at least four synchronous orbits, which represent circular orbits with the same period as the asteroid spin rate. Surface disruption occurs when the body spins fast enough so that at least one of these synchronous orbits touches the asteroid surface. Kleopatra currently spins with a period of 5.38 hours. The spin period for surface disruption is computed to be 3.02 hours, while the spin period for the interior of the asteroid to go into tension is about 4.8 hours. Thus Kleopatra’s internal fission could occur at spin periods longer than when surface disruption occurs.
NASA Technical Reports Server (NTRS)
Bowman, James S., Jr.
1956-01-01
An investigation has been completed in the Langley 20-foot free-spinning tunnel on a l/24-scale model of the Grumman F11F-1 airplane to determine its spin and recovery characteristics. An interim report, Research Memorandum SL55G20, was published earlier and the present report concludes the presentation of results of the investigation. Primarily, the present report presents results obtained with engine gyroscopic moments simulated on the model. Also, the current results were obtained with a revised larger vertical tail recently incorporated on the airplane. It was difficult to obtain developed spins on the model when the spin direction was in the same sense as that of the engine rotation (right spin on the airplane). The developed spins obtained were very oscillatory and the recoveries were unsatisfactory. These results were similar to those previously reported for which engine rotation was not simulated. When the spin direction was in the opposite sense (left spin on the airplane), however, developed spins were readily obtainable. Recoveries from these spins also were unsatisfactory. Satisfactory recoveries were obtained on the model, however, when rudder reversal was accompanied by extension of small canards near the nose of the airplane or by deflection of the horizontal tail differentially with the spin.
Reynolds-Stress and Triple-Product Models Applied to Flows with Rotation and Curvature
NASA Technical Reports Server (NTRS)
Olsen, Michael E.
2016-01-01
Predictions for Reynolds-stress and triple product turbulence models are compared for flows with significant rotational effects. Driver spinning cylinder flowfield and Zaets rotating pipe case are to be investigated at a minimum.
SDSS-IV MaNGA: a distinct mass distribution explored in slow-rotating early-type galaxies
NASA Astrophysics Data System (ADS)
Rong, Yu; Li, Hongyu; Wang, Jie; Gao, Liang; Li, Ran; Ge, Junqiang; Jing, Yingjie; Pan, Jun; Fernández-Trincado, J. G.; Valenzuela, Octavio; Ortíz, Erik Aquino
2018-06-01
We study the radial acceleration relation (RAR) for early-type galaxies (ETGs) in the SDSS MaNGA MPL5 data set. The complete ETG sample show a slightly offset RAR from the relation reported by McGaugh et al. (2016) at the low-acceleration end; we find that the deviation is due to the fact that the slow rotators show a systematically higher acceleration relation than the McGaugh's RAR, while the fast rotators show a consistent acceleration relation to McGaugh's RAR. There is a 1σ significant difference between the acceleration relations of the fast and slow rotators, suggesting that the acceleration relation correlates with the galactic spins, and that the slow rotators may have a different mass distribution compared with fast rotators and late-type galaxies. We suspect that the acceleration relation deviation of slow rotators may be attributed to more galaxy merger events, which would disrupt the original spins and correlated distributions of baryons and dark matter orbits in galaxies.
NASA Astrophysics Data System (ADS)
Ghosh, Abhijit; Garello, Kevin; Avci, Can Onur; Gabureac, Mihai; Gambardella, Pietro
2017-01-01
Magnetic heterostructures that combine large spin-orbit torque efficiency, perpendicular magnetic anisotropy, and low resistivity are key to developing electrically controlled memory and logic devices. Here, we report on vector measurements of the current-induced spin-orbit torques and magnetization switching in perpendicularly magnetized Pd /Co /AlOx layers as a function of Pd thickness. We find sizable dampinglike (DL) and fieldlike (FL) torques, on the order of 1 mT per 107 A /cm2 , which have different thicknesses and magnetization angle dependencies. The analysis of the DL torque efficiency per unit current density and the electric field using drift-diffusion theory leads to an effective spin Hall angle and spin-diffusion length of Pd larger than 0.03 and 7 nm, respectively. The FL spin-orbit torque includes a significant interface contribution, is larger than estimated using drift-diffusion parameters, and, furthermore, is strongly enhanced upon rotation of the magnetization from the out-of-plane to the in-plane direction. Finally, taking advantage of the large spin-orbit torques in this system, we demonstrate bipolar magnetization switching of Pd /Co /AlOx layers with a similar current density to that used for Pt /Co layers with a comparable perpendicular magnetic anisotropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Yunlong; Zhang, Yong; Liu, Wenjian, E-mail: liuwjbdf@gmail.com
2014-10-28
Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same “direct relativistic mapping” between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, andmore » W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...
Code of Federal Regulations, 2010 CFR
2010-01-01
... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...
Code of Federal Regulations, 2012 CFR
2012-01-01
... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...
Code of Federal Regulations, 2013 CFR
2013-01-01
... limit maneuvering load factor must not be exceeded; (ii) No control forces or characteristic encountered... reversal of control effect and without exceeding the temporary control forces specified by § 23.143(c); and... spin. (4) There must be no characteristics during the spin (such as excessive rates of rotation or...
Colloquium: Measuring the neutron star equation of state using x-ray timing
Watts, Anna L.; Andersson, Nils; Chakrabarty, Deepto; ...
2016-04-13
One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star s rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photonsmore » propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermo- nuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of state, and large-area x-ray timing instruments would provide much improved detection capability. In addition, an illustration is given of how these complementary x-ray timing techniques can be used to constrain the dense matter equation of state and the results that might be expected from a 10 m 2 instrument are discussed. Also discussed are how the results from such a facility would compare to other astronomical investigations of neutron star properties.« less
Colloquium: Measuring the neutron star equation of state using x-ray timing
NASA Astrophysics Data System (ADS)
Watts, Anna L.; Andersson, Nils; Chakrabarty, Deepto; Feroci, Marco; Hebeler, Kai; Israel, Gianluca; Lamb, Frederick K.; Miller, M. Coleman; Morsink, Sharon; Özel, Feryal; Patruno, Alessandro; Poutanen, Juri; Psaltis, Dimitrios; Schwenk, Achim; Steiner, Andrew W.; Stella, Luigi; Tolos, Laura; van der Klis, Michiel
2016-04-01
One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star's rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photons propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermonuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of state, and large-area x-ray timing instruments would provide much improved detection capability. An illustration is given of how these complementary x-ray timing techniques can be used to constrain the dense matter equation of state and the results that might be expected from a 10 m2 instrument are discussed. Also discussed are how the results from such a facility would compare to other astronomical investigations of neutron star properties.
Modulated magnetic structure of F e3P O7 as seen by 57Fe Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Sobolev, A. V.; Akulenko, A. A.; Glazkova, I. S.; Pankratov, D. A.; Presniakov, I. A.
2018-03-01
The paper reports results of the 57Fe Mössbauer measurements on an F e3P O4O3 powder sample recorded at various temperatures, including the point of magnetic phase transition TN≈163 K . The spectra measured above TN consist of a quadrupole doublet with high quadrupole splitting of Δ300 K≈1.10 mm /s , emphasizing that F e3 + ions are located in crystal positions with a strong electric-field gradient (EFG). To predict the sign and orientation of the main components of the EFG tensor, we calculated the EFG using the density-functional-theory approach. In the temperature range T
Tunable bistable devices for harvesting energy from spinning wheels
NASA Astrophysics Data System (ADS)
Elhadidi, Mohamed; Helal, Mohammed; Nassar, Omar; Arafa, Mustafa; Zeyada, Yasser
2015-04-01
Bistable systems have recently been employed for vibration energy harvesting owing to their favorable dynamic characteristics and desirable response for wideband excitation. In this paper, we investigate the use of bistable harvesters to extract energy from spinning wheels. The proposed harvester consists of a piezoelectric cantilever beam that is mounted on a rigid spinning hub and carries a tip mass in the form of a permanent magnet. Magnetic repulsion forces from an opposite magnet cause the beam to possess two stable equilibrium positions. Inter-well lead-lag oscillations caused by rotation in a vertical plane provide a good source for energy extraction. The design offers frequency tuning, as the centrifugal forces strain the harvester, thereby increasing its natural frequency to cope with a variable rotational speed. This has applications in self-powered sensors mounted on spinning wheels, such as tire pressure monitoring sensors. An effort is made to select the design parameters to enable the harvester to exhibit favorable inter-well oscillations across a range of rotational speeds for enhanced energy harvesting. Findings of the present work are verified both numerically and experimentally.
Independent polarisation control of multiple optical traps
Preece, Daryl; Keen, Stephen; Botvinick, Elliot; Bowman, Richard; Padgett, Miles; Leach, Jonathan
2009-01-01
We present a system which uses a single spatial light modulator to control the spin angular momentum of multiple optical traps. These traps may be independently controlled both in terms of spatial location and in terms of their spin angular momentum content. The system relies on a spatial light modulator used in a “split-screen” configuration to generate beams of orthogonal polarisation states which are subsequently combined at a polarising beam splitter. Defining the phase difference between the beams with the spatial light modulator enables control of the polarisation state of the light. We demonstrate the functionality of the system by controlling the rotation and orientation of birefringent vaterite crystals within holographic optical tweezers. PMID:18825226
H and H2 NMR properties in amorphous hydrogenated silicon (a-Si:H)
NASA Astrophysics Data System (ADS)
Lee, Sook
1986-07-01
It is shown that the basic NMR properties of ortho-H2 molecules with a rotational angular momentum J and a spin angular momentum I under the influence of a completely asymmetric crystalline field in an amorphous matrix can be described by an effective nuclear spin Hamiltonian which contains only the nuclear spin angular momentum operators (Ii), but is independent of the molecular rotational angular momentum operators (Ji). By directly applying the existing magnetic-resonance theories to this effective nuclear spin Hamiltonian, a simple description is presented for various static and dynamic NMR properties of the ortho-H2 NMR centers in amorphous hydrogenated silicon (a-Si:H), thereby resolving many difficulties and uncertainties encountered in understanding and explaining the H and H2 NMR observations in a-Si:H.
Relativistic Definition of Spin Operators
NASA Astrophysics Data System (ADS)
Ryder, Lewis H.
2002-12-01
Some years ago Mashhoon [1] made the highly interesting suggestion that there existed a coupling of spin with rotations, just as there exists such a coupling with orbital angular momentum, as seen in the Sagnac effect, for example. Spin being essentially a quantum phenomenon, the obvious place to look for this was by studying the Dirac equation, and Hehl and Ni, in such an investigation [2], indeed found a coupling term of just the type Mashhoon had envisaged. Part of their procedure, however, was to take the nonrelativistic limit, and this was done by performing appropriate Foldy-Wouthuysen (FW) transformations. In the nonrelativistic limit, it is well-known that the spin operators for Dirac particles are in essence the Pauli matrices; but it is also well-known, and indeed was part of the motivation for Foldy and Wouthuysen's paper, that for fully-fledged Dirac particles the (4×4 generalisation of the) Pauli matrices do not yield satisfactory spin operators, since spin defined in this way would not be conserved. The question therefore presented itself: is there a relativistic spin operator for Dirac particles, such that in the relativistic, as well as the nonrelativistic, régime a Mashhoon spin-rotation coupling exists?...
NASA Technical Reports Server (NTRS)
Fontenot, L. L.
1981-01-01
The fundamental nonlinear equations of motion were derived and the specialized to a steady-state rotation of the vehicle about a given axis of rotation. A thrust about the spin axis was introduced. A perturbation solution was derived which linearizes the problem. The effect of the centrifugal and coriolis accelerations together with vorticity are implicitly taken into consideration in the formulation. A variational formulation of the associated boundary conditions is presented. For practical cases it is shown that the simple classical pendulum representation for slosh is not very appealing for a spinning spacecraft unless severe restrictions are allowed.
Archer, R J; Campbell, A I; Ebbens, S J
2015-09-14
The ability to control the degree of spin, or rotational velocity, for catalytic swimming devices opens up the potential to access well defined spiralling trajectories, enhance cargo binding rate, and realise theoretically proposed behaviour such as chiral diffusion. Here we assess the potential to impart a well-defined spin to individual catalytic Janus swimmers by using glancing angle metal evaporation onto a colloidal crystal to break the symmetry of the catalytic patch due to shadowing by neighbouring colloids. Using this approach we demonstrate a well-defined relationship between the glancing angle and the ratio of rotational to translational velocity. This allows batches of colloids with well-defined spin rates in the range 0.25 to 2.5 Hz to be produced. With reference to the shape and thickness variations across the catalytically active shapes, and their propulsion mechanism we discuss the factors that can lead to the observed variations in rotational propulsion.
The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.
Sorce, Dennis J; Michaeli, Shalom; Garwood, Michael
2006-03-01
The problem of the relaxation of identical spins 1/2 induced by chemical exchange between spins with different chemical shifts in the presence of time-dependent RF irradiation (in the first rotating frame) is considered for the fast exchange regime. The solution for the time evolution under the chemical exchange Hamiltonian in the tilted doubly rotating frame (TDRF) is presented. Detailed derivation is specified to the case of a two-site chemical exchange system with complete randomization between jumps of the exchanging spins. The derived theory can be applied to describe the modulation of the chemical exchange relaxation rate constants when using a train of adiabatic pulses, such as the hyperbolic secant pulse. Theory presented is valid for quantification of the exchange-induced time-dependent rotating frame longitudinal T1rho,ex and transverse T2rho,ex relaxations in the fast chemical exchange regime.
Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system
NASA Astrophysics Data System (ADS)
Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.
Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Sine-squared shifted pulses for recoupling interactions in solid-state NMR
NASA Astrophysics Data System (ADS)
Jain, Mukul G.; Rajalakshmi, G.; Equbal, Asif; Mote, Kaustubh R.; Agarwal, Vipin; Madhu, P. K.
2017-06-01
Rotational-Echo DOuble-Resonance (REDOR) is a versatile experiment for measuring internuclear distance between two heteronuclear spins in solid-state NMR. At slow to intermediate magic-angle spinning (MAS) frequencies, the measurement of distances between strongly coupled spins is challenging due to rapid dephasing of magnetisation. This problem can be remedied by employing the pulse-shifted version of REDOR known as Shifted-REDOR (S-REDOR) that scales down the recoupled dipolar coupling. In this study, we propose a new variant of the REDOR sequence where the positions of the π pulses are determined by a sine-squared function. This new variant has scaling properties similar to S-REDOR. We use theory, numerical simulations, and experiments to compare the dipolar recoupling efficiencies and the experimental robustness of the three REDOR schemes. The proposed variant has advantages in terms of radiofrequency field requirements at fast MAS frequencies.
Response to defects in multipartite and bipartite entanglement of isotropic quantum spin networks
NASA Astrophysics Data System (ADS)
Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2018-05-01
Quantum networks are an integral component in performing efficient computation and communication tasks that are not accessible using classical systems. A key aspect in designing an effective and scalable quantum network is generating entanglement between its nodes, which is robust against defects in the network. We consider an isotropic quantum network of spin-1/2 particles with a finite fraction of defects, where the corresponding wave function of the network is rotationally invariant under the action of local unitaries. By using quantum information-theoretic concepts like strong subadditivity of von Neumann entropy and approximate quantum telecloning, we prove analytically that in the presence of defects, caused by loss of a finite fraction of spins, the network, composed of a fixed numbers of lattice sites, sustains genuine multisite entanglement and at the same time may exhibit finite moderate-range bipartite entanglement, in contrast to the network with no defects.
Influence of toroidal magnetic field in multiaccreting tori
NASA Astrophysics Data System (ADS)
Pugliese, D.; Montani, G.
2018-06-01
We analysed the effects of a toroidal magnetic field in the formation of several magnetized accretion tori, dubbed as ringed accretion discs (RADs), orbiting around one central Kerr supermassive black hole (SMBH) in active galactic nuclei (AGNs), where both corotating and counterotating discs are considered. Constraints on tori formation and emergence of RADs instabilities, accretion on to the central attractor and tori collision emergence, are investigated. The results of this analysis show that the role of the central BH spin-mass ratio, the magnetic field and the relative fluid rotation and tori rotation with respect the central BH, are crucial elements in determining the accretion tori features, providing ultimately evidence of a strict correlation between SMBH spin, fluid rotation, and magnetic fields in RADs formation and evolution. More specifically, we proved that magnetic field and discs rotation are in fact strongly constrained, as tori formation and evolution in RADs depend on the toroidal magnetic fields parameters. Eventually, this analysis identifies specific classes of tori, for restrict ranges of magnetic field parameter, that can be observed around some specific SMBHs identified by their dimensionless spin.
Developing an Asteroid Rotational Theory
NASA Astrophysics Data System (ADS)
Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald
2018-01-01
The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.
The covalent interaction between dihydrogen and gold: A rotational spectroscopic study of H2-AuCl
NASA Astrophysics Data System (ADS)
Obenchain, Daniel A.; Frank, Derek S.; Grubbs, G. S.; Pickett, Herbert M.; Novick, Stewart E.
2017-05-01
The pure rotational transitions of H2-AuCl have been measured using a pulsed-jet cavity Fourier transform microwave spectrometer equipped with a laser ablation source. The structure was found to be T-shaped, with the H-H bond interacting with the gold atom. Both 35Cl and 37Cl isotopologues have been measured for both ortho and para states of H2. Rotational constants, quartic centrifugal distortion constants, and nuclear quadrupole coupling constants for gold and chlorine have been determined. The use of the nuclear spin-nuclear spin interaction terms Daa, Dbb, and Dcc for H2 were required to fit the ortho state of hydrogen, as well as a nuclear-spin rotation constant Caa. The values of the nuclear quadrupole coupling constant of gold are χa a=-817.9929 (35 ) MHz, χb b=504.0 (27 ) MHz, and χc c=314.0 (27 ) . This is large compared to the eQq of AuCl, 9.63 312(13) MHz, which indicates a strong, covalent interaction between gold and dihydrogen.
The experimental behavior of spinning pretwisted laminated composite plates
NASA Technical Reports Server (NTRS)
Kosmatka, John B.; Lapid, Alex J.
1993-01-01
The purpose of the research is to gain an understanding of the material and geometric couplings present in advanced composite turbo-propellers. Twelve pre-twisted laminated composite plates are tested. Three different ply lay-ups (2 symmetric and 1 asymmetric) and four different geometries (flat and 30x pre-twist about the mid-chord, quarter-chord, and leading edge) distinguish each plate from one another. Four rotating and non-rotating tests are employed to isolate the material and geometric couplings of an advanced turbo propeller. The first series of tests consist of non-rotating static displacement, strain, and vibrations. These tests examine the effects of ply lay-up and geometry. The second series of tests consist of rotating displacement, strain, and vibrations with various pitch and sweep settings. These tests utilize the Dynamic Spin Rig Facility at the NASA Lewis Research Center. The rig allows the spin testing of the plates in a near vacuum environment. The tests examine how the material and plate geometry interact with the pitch and sweep geometry of an advanced turbo-propeller.
Determination of Membrane Protein Structure by Rotational Resonance NMR: Bacteriorhodopsin
NASA Astrophysics Data System (ADS)
Creuzet, F.; McDermott, A.; Gebhard, R.; van der Hoef, K.; Spijker-Assink, M. B.; Herzfeld, J.; Lugtenburg, J.; Levitt, M. H.; Griffin, R. G.
1991-02-01
Rotationally resonant magnetization exchange, a new nuclear magnetic resonance (NMR) technique for measuring internuclear distances between like spins in solids, was used to determine the distance between the C-8 and C-18 carbons of retinal in two model compounds and in the membrane protein bacteriorhodopsin. Magnetization transfer between inequivalent spins with an isotropic shift separation, δ, is driven by magic angle spinning at a speed ω_r that matches the rotational resonance condition δ = nω_r, where n is a small integer. The distances measured in this way for both the 6-s-cis- and 6-s-trans-retinoic acid model compounds agreed well with crystallographically known distances. In bacteriorhodopsin the exchange trajectory between C-8 and C-18 was in good agreement with the internuclear distance for a 6-s-trans configuration [4.2 angstroms (overset{circ}{mathrm A})] and inconsistent with that for a 6-s-cis configuration (3.1 overset{circ}{mathrm A}). The results illustrate that rotational resonance can be used for structural studies in membrane proteins and in other situations where diffraction and solution NMR techniques yield limited information.
NASA Astrophysics Data System (ADS)
Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi
2017-01-01
We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.
Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor
Yuan, Junhua; Fahrner, Karen A.; Turner, Linda; Berg, Howard C.
2010-01-01
Cells of Escherichia coli are able to swim up gradients of chemical attractants by modulating the direction of rotation of their flagellar motors, which spin alternately clockwise (CW) and counterclockwise (CCW). Rotation in either direction has been thought to be symmetric and exhibit the same torques and speeds. The relationship between torque and speed is one of the most important measurable characteristics of the motor, used to distinguish specific mechanisms of motor rotation. Previous measurements of the torque–speed relationship have been made with cells lacking the response regulator CheY that spin their motors exclusively CCW. In this case, the torque declines slightly up to an intermediate speed called the “knee speed” after which it falls rapidly to zero. This result is consistent with a “power-stroke” mechanism for torque generation. Here, we measure the torque–speed relationship for cells that express large amounts of CheY and only spin their motors CW. We find that the torque decreases linearly with speed, a result remarkably different from that for CCW rotation. We obtain similar results for wild-type cells by reexamining data collected in previous work. We speculate that CCW rotation might be optimized for runs, with higher speeds increasing the ability of cells to sense spatial gradients, whereas CW rotation might be optimized for tumbles, where the object is to change cell trajectories. But why a linear torque–speed relationship might be optimum for the latter purpose we do not know. PMID:20615986
Spin State Equilibria of Asteroids due to YORP Effects
NASA Astrophysics Data System (ADS)
Golubov, Oleksiy; Scheeres, Daniel J.; Lipatova, Veronika
2016-05-01
Spins of small asteroids are controlled by the Yarkovsky--O'Keefe--Radzievskii--Paddack (YORP) effect. The normal version of this effect has two components: the axial component alters the rotation rate, while the obliquity component alters the obliquity. Under this model the rotation state of an asteroid can be described in a phase plane with the rotation rate along the polar radius and the obliquity as the polar angle. The YORP effect induces a phase flow in this plane, which determines the distribution of asteroid rotation rates and obliquities.We study the properties of this phase flow for several typical cases. Some phase flows have stable attractors, while in others all trajectories go to very small or large rotation rates. In the simplest case of zero thermal inertia approximate analytical solutions to dynamics equations are possible. Including thermal inertia and the Tangential YORP effect makes the possible evolutionary scenarios much more diverse. We study possible evolution paths and classify the most general trends. Also we discuss possible implications for the distribution of asteroid rotation rates and obliquities.A special emphasis is put on asteroid (25143) Itokawa, whose shape model is well determined, but who's measured YORP acceleration does not agree with the predictions of normal YORP. We show that Itokawa's rotational state can be explained by the presence of tangential YORP and that it may be in or close to a stable spin state equilibrium. The implications of such states will be discussed.
Spin vectors in the Koronis family: III. (832) Karin
NASA Astrophysics Data System (ADS)
Slivan, Stephen M.; Molnar, Lawrence A.
2012-08-01
Studies of asteroid families constrain models of asteroid collisions and evolution processes, and the Karin cluster within the Koronis family is among the youngest families known (Nesvorný, D., Bottke, Jr., W.F., Dones, L., Levison, H.F. [2002]. Nature 417, 720-722). (832) Karin itself is by far the largest member of the Karin cluster, thus knowledge of Karin's spin vector is important to constrain family formation and evolution models that include spin, and to test whether its spin properties are consistent with the Karin cluster being a very young family. We observed rotation lightcurves of Karin during its four consecutive apparitions in 2006-2009, and combined the new observations with previously published lightcurves to determine its spin vector orientation and preliminary model shape. Karin is a prograde rotator with a period of (18.352 ± 0.003) h, spin obliquity near (42 ± 5)°, and pole ecliptic longitude near either (52 ± 5)° or (230 ± 5)°. The spin vector and shape results for Karin will constrain models of family formation that include spin properties; in the meantime we briefly discuss Karin's own spin in the context of those of other members of the Karin cluster and the parent body's siblings in the Koronis family.
Spin-orbit qubit in a semiconductor nanowire.
Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P
2010-12-23
Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.
Slow Rotating Asteroids: A Long Day's Journey into Night
NASA Astrophysics Data System (ADS)
Warner, Brian D.
2009-05-01
While there is no formal definition of a "slow rotator" among asteroids, anything with a period of at least 24 hours can be considered to be at least at the fast end of the group. These objects are of particular interest to those studying the evolution and dynamics of the asteroids within the solar system for several reasons. Most important among them is to generalize theories regarding the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, which is the thermal re-radiation of sunlight that can not only affect the orientation of an asteroid's spin axis but its rate of rotation as well. In those cases where the spin rate is decreased, an asteroid can eventually be sent into a state of "tumbling" (NPAR - non-principal axis rotation) that can last for millions of years. However, not all slow rotating asteroids appear to be tumbling. This is not expected and so careful studies of these objects are needed to determine if this is really the case or if the tumbling has reached a condition where the secondary frequency - the precession of the spin axis - has been reduced to near zero. Furthermore, there appears to be an excess of slow rotators among the NEA and inner main-belt populations. Determining whether or not this is true among the broader population of asteroids is also vital to understanding the forces at work among the asteroids.
Cavity enhanced atomic magnetometry
Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer
2015-01-01
Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853
LARGE SUPER-FAST ROTATOR HUNTING USING THE INTERMEDIATE PALOMAR TRANSIENT FACTORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen
In order to look for large super-fast rotators, in late 2014 and early 2015, five dedicated surveys covering ∼188 deg{sup 2} in the ecliptic plane have been carried out in the R -band, with ∼10 minute cadence using the intermediate Palomar Transient Factory. Among 1029 reliable rotation periods obtained from the surveys, we discovered 1 new large super-fast rotator, (40511) 1999 RE88, and 18 other candidates. (40511) 1999 RE88 is an S-type inner main-belt asteroid with a diameter of D = 1.9 ± 0.3 km, a rotation period of P = 1.96 ± 0.01 hr, and a light curve amplitude of Δ m ∼ 1.0 mag. To maintainmore » such fast rotation, an internal cohesive strength of ∼780 Pa is required. Combining all known large super-fast rotators, their cohesive strengths all fall in the range of 100–1000 Pa of lunar regolith. However, the number of large super-fast rotators seems to be far less than the whole asteroid population. This might indicate a peculiar asteroid group for them. Although the detection efficiency for a long rotation period is greatly reduced due to our two-day observation time span, the spin-rate distributions of this work show consistent results with Chang et al. (2015), after considering the possible observational bias in our surveys. It shows a number decrease with an increase of spin rate for asteroids with a diameter of 3 ⩽ D ⩽ 15 km, and a number drop at a spin rate of f = 5 rev day{sup −1} for asteroids with D ⩽ 3 km.« less
Tumbling in Turbulence: How much does particle shape effect particle motion?
NASA Astrophysics Data System (ADS)
Variano, E. A.; Andersson, H. I.; Zhao, L.; Byron, M.
2014-12-01
Natural particles suspended in surface water are often non-spherical. We explore the ways in which particle shape effects particle motion, focusing specifically on how particle rotation is divided into spinning and tumbling components. This, in turn, will effect particle collision, clustering, and settling rates. We focus on idealized axisymmetric particles shaped as rods, discs, and spheroids. They are chosen so as to explain the physics of aspherical-particle motion that will be relevant for natural particles such as plankton, sediment, or aggregates (e.g. oil-mineral aggregates, clay flocs, or bio-sediment aggregates held together by TEP). Our work begins with laboratory measurements of particle motion in a turbulence tank built to mimic the flow found in rivers, estuaries, and the ocean surface mixed layer. We then proceed to direct numerical simulation of particle-flow interactions in sheared turbulence similar to that which is found in the surface water of creeks and rivers. We find that shape has only a very weak effect on particle angular velocity, which is a quantity calculated with respect the global reference frame (i.e. east/north/up). If we analyze rotation in a particle's local frame (i.e. the particle's principle axes of rotation), then particle shape has a strong effect on rotation. In the local frame, rotation is described by two components: tumbling and spinning. We find that rod-shaped particles spin more than they tumble, and we find that disc-shaped particles tumble more than they spin. Such behavior is indicative of how particles respond the the directional influence of vortex tubes in turbulence, and such response has implications for particle motion other than rotation. Understanding particle alignment is relevant for predicting particle-particle collision rates, particle-wall collision rates, and the shear-driven breakup of aggregates. We discuss these briefly in the context of what can be concluded from the rotation data discussed above.
9-D polarized proton transport in the MEIC figure 8 collider ring - first steps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meot, F.; Morozov, V. S.
2015-05-03
Spin tracking studies in the MEIC figure-8 collider ion ring are presented, based on a very preliminary design of the lattice. They provide numerical illustrations of some of the aspects of the figure-8 concept, including spin-rotator based spin control, and lay out the path towards a complete spin tracking simulation of a figure-8 ring.
9-D polarized proton transport in the MEIC figure-8 collider ring: first steps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meot, F.; Thomas Jefferson National Accelerator Facility; Morozov, V. S.
2014-10-24
Spin tracking studies in the MEIC figure-8 collider ion ring are presented, based on a very preliminary design of the lattice. They provide numerical illustrations of some of the aspects of the figure-8 concept, including spin-rotator based spin control, and lay out the path towards a complete spin tracking simulation of a figure-8 ring.
Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman
2015-02-06
Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal tides cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric tide model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal tide exceeds a threshold that is met for habitable Earth-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Wuyts, Floris; Clement, Gilles; Naumov, Ivan; Kornilova, Ludmila; Glukhikh, Dmitriy; Hallgren, Emma; MacDougall, Hamish; Migeotte, Pierre-Francois; Delière, Quentin; Weerts, Aurelie; Moore, Steven; Diedrich, Andre
In 13 cosmonauts, the vestibulo-autonomic reflex was investigated before and after 6 months duration spaceflight. Cosmonauts were rotated on the mini-centrifuge VVIS, which is installed in Star City. Initially, this mini-centrifuge flew on board of the Neurolab mission (STS-90), and served to generate intermittent artificial gravity during that mission, with apparent very positive effects on the preservation of the orthostatic tolerance upon return to earth in the 4 crew members that were subjected to the rotations in space. The current experiments SPIN and GAZE-SPIN are control experiments to test the hypothesis that intermittent artificial gravity in space can serve as a counter measure against several deleterious effects of microgravity. Additionally, the effect of microgravity on the gaze holding system is studied as well. Cosmonauts from a long duration stay in the International Space Station were tested on the VVIS (1 g centripetal interaural acceleration; consecutive right-ear-out anti-clockwise and left-ear-out clockwise measurement) on 5 different days. Two measurements were scheduled about one month and a half prior to launch and the remaining three immediately after their return from space (typically on R+2, R+4, R+9; R = return day from space). The ocular counter roll (OCR) as a measure of otolith function was measured on before, during and after the rotation in the mini centrifuge, using infrared video goggles. The perception of verticality was monitored using an ultrasound system. Gaze holding was tested before, during and after rotation. After the centrifugation part, the crew was installed on a tilt table, and instrumented with several cardiovascular recording equipment (ECG, continuous blood pressure monitoring, respiratory monitoring), as well as with impedance measurement devices to investigate fluid redistribution throughout the operational tilt test. To measure heart rate variability parameters, imposed breathing periods were included in the test protocol. The subjects were subjected to a passive tilt test of 60 degrees, during 15 minutes. The results show that cosmonauts clearly have a statistically significantly reduced ocular counter rolling during rotation upon return from space, when compared to the pre-flight condition, indicating a reduced sensitivity of the otolith system to gravito intertial acceleration. None of the subjects fainted or even approached presyncope. However, the resistance in the calf, measured with the impedance method, showed a significant increased pooling in the lower limbs. Additionally, this was statistically significantly correlated (p=0.024) with a reduced otolith response, when comparing for each subject the vestibular and autonomic data. This result shows that the vestibulo-autonomic reflex is reduced after 6 months of spaceflight. When compared with Neurolab, the otolith response in the current group of crew members that were not subjected to in-flight centrifugation is significantly reduced, corroborating the hypothesis that in-flight artificial gravity may be of great importance to mitigate the deleterious effects of microgravity. Projects are funded by PRODEX-BELSPO, ESA, IBMP
Maximally Entangled States of a Two-Qubit System
NASA Astrophysics Data System (ADS)
Singh, Manu P.; Rajput, B. S.
2013-12-01
Entanglement has been explored as one of the key resources required for quantum computation, the functional dependence of the entanglement measures on spin correlation functions has been established, correspondence between evolution of maximally entangled states (MES) of two-qubit system and representation of SU(2) group has been worked out and the evolution of MES under a rotating magnetic field has been investigated. Necessary and sufficient conditions for the general two-qubit state to be maximally entangled state (MES) have been obtained and a new set of MES constituting a very powerful and reliable eigen basis (different from magic bases) of two-qubit systems has been constructed. In terms of the MES constituting this basis, Bell’s States have been generated and all the qubits of two-qubit system have been obtained. It has shown that a MES corresponds to a point in the SO(3) sphere and an evolution of MES corresponds to a trajectory connecting two points on this sphere. Analysing the evolution of MES under a rotating magnetic field, it has been demonstrated that a rotating magnetic field is equivalent to a three dimensional rotation in real space leading to the evolution of a MES.
Activities of the Solid State Physics Research Institute
NASA Technical Reports Server (NTRS)
1984-01-01
Three research programs are reviewed. These programs are muon spin rotation, studies of annealing in gallium arsenide and Hall effect studies in semiconductors. The muon spin rotation work centers around the development of a facility at the Alternating Gradient Synchrotron of BNL. Studies of annealing in GaAs concerns itself with the measurement of depolarization in GaAs. The Hall effect studies of proton damaged semiconductors provide new information on the nature of defects and dislocations in GaAs.
An Argument for Weakly Magnetized, Slowly Rotating Progenitors of Long Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Moreno Méndez, Enrique
2014-01-01
Using binary evolution with Case-C mass transfer, the spins of several black holes (BHs) in X-ray binaries (XBs) have been predicted and confirmed (three cases) by observations. The rotational energy of these BHs is sufficient to power up long gamma-ray bursts (GRBs) and hypernovae (HNe) and still leave a Kerr BH behind. However, strong magnetic fields and/or dynamo effects in the interior of such stars deplete their cores from angular momentum preventing the formation of collapsars. Thus, even though binaries can produce Kerr BHs, most of their rotation is acquired from the stellar mantle, with a long delay between BH formation and spin up. Such binaries would not form GRBs. We study whether the conditions required to produce GRBs can be met by the progenitors of such BHs. Tidal-synchronization and Alfvén timescales are compared for magnetic fields of different intensities threading He stars. A search is made for a magnetic field range that allows tidal spin up all the way in to the stellar core but prevents its slow down during differential rotation phases. The energetics for producing a strong magnetic field during core collapse, which may allow for a GRB central engine, are also estimated. An observationally reasonable choice of parameters is found (B <~ 102 G threading a slowly rotating He star) that allows Fe cores to retain substantial angular momentum. Thus, the Case-C mass-transfer binary channel is capable of explaining long GRBs. However, the progenitors must have low initial spin and low internal magnetic field throughout their H-burning and He-burning phases.
Non-linear tides in a homogeneous rotating planet or star: global modes and elliptical instability
NASA Astrophysics Data System (ADS)
Barker, Adrian J.; Braviner, Harry J.; Ogilvie, Gordon I.
2016-06-01
We revisit the global modes and instabilities of homogeneous rotating ellipsoidal fluid masses, which are the simplest global models of rotationally and tidally deformed gaseous planets or stars. The tidal flow in a short-period planet may be unstable to the elliptical instability, a hydrodynamic instability that can drive tidal evolution. We perform a global (and local WKB) analysis to study this instability using the elegant formalism of Lebovitz & Lifschitz. We survey the parameter space of global instabilities with harmonic orders ℓ ≤ 5, for planets with spins that are purely aligned (prograde) or anti-aligned (retrograde) with their orbits. In general, the instability has a much larger growth rate if the planetary spin and orbit are anti-aligned rather than aligned. We have identified a violent instability for anti-aligned spins outside of the usual frequency range for the elliptical instability (when n/Ω ≲ -1, where n and Ω are the orbital and spin angular frequencies, respectively) if the tidal amplitude is sufficiently large. We also explore the instability in a rigid ellipsoidal container, which is found to be quantitatively similar to that with a realistic free surface. Finally, we study the effect of rotation and tidal deformation on mode frequencies. We find that larger rotation rates and larger tidal deformations both decrease the frequencies of the prograde sectoral surface gravity modes. This increases the prospect of their tidal excitation, potentially enhancing the tidal response over expectations from linear theory. In a companion paper, we use our results to interpret global simulations of the elliptical instability.
Collisional evolution of rotating, non-identical particles. [in Saturn rings
NASA Technical Reports Server (NTRS)
Salo, H.
1987-01-01
Hameen-Anttila's (1984) theory of self-gravitating collisional particle disks is extended to include the effects of particle spin. Equations are derived for the coupled evolution of random velocities and spins, showing that friction and surface irregularity both reduce the local velocity dispersion and transfer significant amounts of random kinetic energy to rotational energy. Results for the equilibrium ratio of rotational energy to random kinetic energy are exact not only for identical nongravitating mass points, but also if finite size, self-gravitating forces, or size distribution are included. The model is applied to the dynamics of Saturn's rings, showing that the inclusion of rotation reduces the geometrical thickness of the layer of cm-sized particles to, at most, about one-half, with large particles being less affected.
Rotation of an optically trapped vaterite microsphere measured using rotational Doppler effect
NASA Astrophysics Data System (ADS)
Chen, Xinlin; Xiao, Guangzong; Xiong, Wei; Yang, Kaiyong; Luo, Hui; Yao, Baoli
2018-03-01
The angular velocity of a vaterite microsphere spinning in the optical trap is measured using rotational Doppler effect. The perfectly spherical vaterite microspheres are synthesized via coprecipitation in the presence of silk fibroin nanospheres. When trapped by a circularly polarized beam, the vaterite microsphere is uniformly rotated in the trap center. The probe beams containing two Laguerre-Gaussian beams of opposite topological charge l = ± 7, l = ± 8, and l = ± 9 are illuminated on the spinning vaterite. By analyzing the backscattered light, a frequency shift is observed scaling with the rotation rate of the vaterite microsphere. The multiplicative enhancement of the frequency shift proportion to the topological charge has greatly improved the measurement precision. The reliability and practicability of this approach are verified through varying the topological charge of the probe beam and the trapping laser power. In consideration of the excellent measurement precision of the rotation frequency, this technique might be generally applicable in studying the torsional properties of micro-objects.
Low-Spin States From Decay Studies in the Mass 80 Region
Döring, J.; Aprahamian, A.; Wiescher, M.
2000-01-01
Neutron-deficient nuclei in the mass 80 region are known to exhibit strongly deformed ground states deduced mainly from yrast-state properties measured in-beam via heavy-ion fusion-evaporation reactions. Vibrational excitations and non-yrast states as well as their interplay with the observed rotational collectivity have been less studied to date within this mass region. Thus, several β-decay experiments have been performed to populate low-spin states in the neutron-deficient 80,84Y and 80,84Sr nuclei. An overview of excited 0+ states in Sr and Kr nuclei is given and conclusions about shape evolution at low-spins are presented. In general, the non-yrast states in even-even Sr nuclei show mainly vibration-like collectivity which evolves to rotational behavior with increasing spin and decreasing neutron number. PMID:27551586
Nuclear spin relaxation of methane in solid xenon
NASA Astrophysics Data System (ADS)
Sugimoto, Takeru; Arakawa, Ichiro; Yamakawa, Koichiro
2018-03-01
Nuclear spin relaxation of methane in solid xenon has been studied by infrared spectroscopy. From the analysis of the temporal changes of the rovibrational peaks, the rates of the nuclear spin relaxation of I = 2 ← 1 correlated to the rotational relaxation of J = 0 ← 1 were obtained at temperatures of 5.1-11.5 K. On the basis of the temperature dependence of the relaxation rate, the activation energy of the indirect two-phonon process was determined to be 50 ± 6 K, which is in good agreement with the rotational transition energies of J = 2 ← 1 and J = 3 ← 1. Taking into account this result and the spin degeneracy, we argue that the lowest J = 3 level in which the I = 1 and I = 2 states are degenerate acts as the intermediate point of the indirect process.
Spin-symmetry conversion and internal rotation in high J molecular systems
NASA Astrophysics Data System (ADS)
Mitchell, Justin; Harter, William
2006-05-01
Dynamics and spectra of molecules with internal rotation or rovibrational coupling is approximately modeled by rigid or semi-rigid rotors with attached gyroscopes. Using Rotational Energy (RE)^1 surfaces, high resolution molecular spectra for high angular momentum show two distinct but related phenomena; spin-symmetry conversion and internal rotation. For both cases the high total angular momentum allows for transitions that would otherwise be forbidden. Molecular body-frame J-localization effects associated with tight energy level-clusters dominate the rovibronic spectra of high symmetry molecules, particularly spherical tops at J>10. ^2 The effects include large and widespread spin-symmetry mixing contrary to conventional wisdom^3 about weak nuclear moments. Such effects are discussed showing how RE surface plots may predict them even at low J. Classical dynamics of axially constrained rotors are approximated by intersecting rotational-energy-surfaces (RES) that have (J-S).B.(J-S) forms in the limit of constraints that do no work. Semi-classical eigensolutions are compared to those found by direct diagonalization. ^1 W.G Hater, in Handbook of Atomic, Molecular and Optical Physics, edited by G.W.F Drake (Springer, Germany 2006) ^2 W. G. Harter, Phys. Rev. A24,192-262(1981). ^3 G. Herzberg, Infrared and Raman Spectra (VanNostrand 1945) pp. 458,463.
Deriving stellar inclination of slow rotators using stellar activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumusque, X., E-mail: xdumusque@cfa.harvard.edu
2014-12-01
Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle.more » For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.« less
A NEW LARGE SUPER-FAST ROTATOR: (335433) 2005 UW163
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen
2014-08-20
Asteroids of size larger than 150 m generally do not have rotation periods smaller than 2.2 hr. This spin cutoff is believed to be due to the gravitationally bound rubble-pile structures of the asteroids. Rotation with periods exceeding this critical value will cause asteroid breakup. Up until now, only one object, 2001 OE84, has been found to be an exception to this spin cutoff. We report the discovery of a new super-fast rotator, (335433) 2005 UW163, spinning with a period of 1.290 hr and a light curve variation of r' ∼ 0.8 mag from the observations made at the P48 telescope andmore » the P200 telescope of the Palomar Observatory. Its H{sub r{sup ′}}=17.69±0.27 mag and multi-band colors (i.e., g' – r' = 0.68 ± 0.03 mag, r' – i' = 0.19 ± 0.02 mag and SDSS i – z = –0.45 mag) show it is a V-type asteroid with a diameter of 0.6 + 0.3/ – 0.2 km. This indicates (335433) 2005 UW163 is a super-fast rotator beyond the regime of the small monolithic asteroid.« less
Gim, Y.; Sethi, A.; Zhao, Q.; ...
2016-01-11
A major focus of experimental interest in Sr 2IrO 4 has been to clarify how the magnetic excitations of this strongly spin-orbit coupled system differ from the predictions of an isotropic 2D spin-1/2 Heisenberg model and to explore the extent to which strong spin-orbit coupling affects the magnetic properties of iridates. Here, we present a high-resolution inelastic light (Raman) scattering study of the low energy magnetic excitation spectrum of Sr 2IrO 4 and doped Eu-doped Sr 2IrO 4 as functions of both temperature and applied magnetic field. We show that the high-field (H > 1.5 T) in-plane spin dynamics ofmore » Sr 2IrO 4 are isotropic and governed by the interplay between the applied field and the small in-plane ferromagnetic spin components induced by the Dzyaloshinskii-Moriya interaction. However, the spin dynamics of Sr 2IrO 4 at lower fields (H < 1.5 T) exhibit important effects associated with interlayer coupling and in-plane anisotropy, including a spin-flop transition at Hc in Sr 2IrO 4 that occurs either discontinuously or via a continuous rotation of the spins, depending upon the in-plane orientation of the applied field. Furthermore, these results show that in-plane anisotropy and interlayer coupling effects play important roles in the low-field magnetic and dynamical properties of Sr 2IrO 4.« less
Phonon mediated quantum spin simulator made from a two-dimensional Wigner crystal in Penning traps
NASA Astrophysics Data System (ADS)
Wang, Joseph; Keith, Adam; Freericks, J. K.
2013-03-01
Motivated by recent advances in quantum simulations in a Penning trap, we give a theoretical description for the use of two-dimensional cold ions in a rotating trap as a quantum emulator. The collective axial phonon modes and planar modes are studied in detail, including all effects of the rotating frame. We show the character of the phonon modes and spectrum, which is crucial for engineering exotic spin interactions. In the presence of laser-ion coupling with these coherent phonon excitations, we show theoretically how the spin-spin Hamiltonian can be generated. Specifically, we notice certain parameter regimes in which the level of frustration between spins can be engineered by the coupling to the planar modes. This may be relevant to the quantum simulation of spin-glass physics or other disordered problems. This work was supported under ARO grant number W911NF0710576 with funds from the DARPA OLE Program. J. K. F. also acknowledges the McDevitt bequest at Georgetown University. A. C. K. also acknowledges support of the National Science Foundation under grant
Optical and magneto-optical properties of AuMnSn
NASA Astrophysics Data System (ADS)
Lee, S. J.; Janssen, Y.; Park, J. M.; Cho, B. K.
2006-03-01
We have measured room-temperature magneto-optical properties of AuMnSn on a single-crystalline sample. The maximum polar Kerr rotation was predicted to be very large, about -0.7° at 1.2eV [L. Offernes, P. Ravindran, and A. Kjekshus, Appl. Phys. Lett. 82, 2862 (2003)]. We found the experimental maximum Kerr rotation and ellipticity were about three times smaller than predicted and appeared at energies about 0.6eV higher than predicted, which is possibly due to inaccurate handling of the theory based on the local spin-density approximation to density-function theory for the localized 4d and 5d orbitals in AuMnSn.
Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces
NASA Astrophysics Data System (ADS)
Zutz, Amelia Marie
Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.
Rotational Dynamics of Inactive Satellites as a Result of the YORP Effect
NASA Astrophysics Data System (ADS)
Albuja, Antonella A.
Observations of inactive satellites in Earth orbit show that these objects are generally rotating, some with very fast rotation rates. In addition, observations indicate that the rotation rate at which defunct satellites spin tends to evolve over time. However, the cause for this behavior is unknown. The observed secular change in the spin rate and spin axis orientation of asteroids is known to be caused by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, which results in a torque that is created from reflected thermal energy and sunlight from the surface of an asteroid. This thesis explores the effect of YORP on defunct satellites in Earth orbit and offers this as a potential cause for the observed rotation states of inactive satellites. In this work, several different satellite models are developed to represent inactive satellites in Geostationary Earth Orbit (GEO). The evolution of the spin rate and obliquity for each satellite is then explored using Euler's equations of motion as well as spin and year averaged dynamics. This results in the dynamics being analyzed to understand the secular changes that occur, as well as the variations that result from short period terms over the course of a year. Some of the model satellites have asymmetric geometries, leading to the classical YORP effect as originally formulated for asteroids. One model satellite is geometrically symmetric, but relies on mass distribution asymmetry to generate the YORP effect. Because the YORP effect is directly dependent on geometric, optical and thermal properties of the satellite, varying these parameters can lead to different long-term rotational behavior. A sensitivity study is done by varying these parameters and analyzing its effect on the long-term dynamics of a satellite. Additionally, available observation data of inactive GEO satellites are used to estimate the YORP torque acting on those bodies. A comparison between this torque and the expected torque on a defunct satellite shows that the two are of the same order of magnitude, demonstrating that YORP could be a cause for the observed behavior.
SELF-TRAPPING OF DISKOSEISMIC CORRUGATION MODES IN NEUTRON STAR SPACETIMES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, David; Pappas, George
2016-02-10
We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense–Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin j and quadrupole rotational deformability α. If such self-trapping c-modes can be detected, e.g., through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.
Self-Trapping of Diskoseismic Corrugation Modes in Neutron Star Spacetimes
NASA Astrophysics Data System (ADS)
Tsang, David; Pappas, George
2016-02-01
We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense-Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin j and quadrupole rotational deformability α. If such self-trapping c-modes can be detected, e.g., through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.
The SAMI Galaxy Survey: the intrinsic shape of kinematically selected galaxies
NASA Astrophysics Data System (ADS)
Foster, C.; van de Sande, J.; D'Eugenio, F.; Cortese, L.; McDermid, R. M.; Bland-Hawthorn, J.; Brough, S.; Bryant, J.; Croom, S. M.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Medling, A. M.; Owers, M. S.; Richards, S. N.; Scott, N.; Taranu, D. S.; Tonini, C.; Zafar, T.
2017-11-01
Using the stellar kinematic maps and ancillary imaging data from the Sydney AAO Multi Integral field (SAMI) Galaxy Survey, the intrinsic shape of kinematically selected samples of galaxies is inferred. We implement an efficient and optimized algorithm to fit the intrinsic shape of galaxies using an established method to simultaneously invert the distributions of apparent ellipticities and kinematic misalignments. The algorithm output compares favourably with previous studies of the intrinsic shape of galaxies based on imaging alone and our re-analysis of the ATLAS3D data. Our results indicate that most galaxies are oblate axisymmetric. We show empirically that the intrinsic shape of galaxies varies as a function of their rotational support as measured by the 'spin' parameter proxy λ _{R_e}. In particular, low-spin systems have a higher occurrence of triaxiality, while high-spin systems are more intrinsically flattened and axisymmetric. The intrinsic shape of galaxies is linked to their formation and merger histories. Galaxies with high-spin values have intrinsic shapes consistent with dissipational minor mergers, while the intrinsic shape of low-spin systems is consistent with dissipationless multimerger assembly histories. This range in assembly histories inferred from intrinsic shapes is broadly consistent with expectations from cosmological simulations.
Spin-resolved band structure of a densely packed Pb monolayer on Si(111)
NASA Astrophysics Data System (ADS)
Brand, C.; Muff, S.; Fanciulli, M.; Pfnür, H.; Tringides, M. C.; Dil, J. H.; Tegenkamp, C.
2017-07-01
Monolayer structures of Pb on Si(111) attracted recently considerable interest as superconductivity was found in these truly two-dimensional (2D) structures. In this study, we analyzed the electronic surface band structure of the so-called striped incommensurate Pb phase with 4/3 ML coverage by means of spin-resolved photoemission spectroscopy. Our results fully agree with density functional theory calculations done by Ren et al. [Phys. Rev. B 94, 075436 (2016), 10.1103/PhysRevB.94.075436]. We observe a local Zeeman-type splitting of a fully occupied and spin-polarized surface band at the K¯√{3} points. The growth of this densely packed Pb structure results in the formation of imbalanced rotational domains, which triggered the detection of C3 v symmetry forbidden spin components for surface states around the Fermi energy. Moreover, the Fermi surface of the metallic surface state of this phase is Rashba spin split and revealed a pronounced warping. However, the 2D nesting vectors are incommensurate with the atomic structure, thus keeping this system rather immune against charge density wave formation and possibly enabling a superconducting behavior.
Magnetic moments and g-factors in odd-A Ho isotopes
NASA Astrophysics Data System (ADS)
Tabar, E.; Yakut, H.; Kuliev, A. A.; Quliyev, H.; Hocşgör, G.
2017-07-01
The ground-state magnetic moment, g K factor and quenching spin gyromagnetic ratio have been calculated using the microscopic method based on the Quasiparticle Phonon Nuclear Model (QPNM) for 155-169Ho nuclei for the first time. It is shown that the residual spin-spin interactions are responsible for the core polarization, and because of the core polarization the spin gyromagnetic factors are quenched. By considering the core polarization effects, a satisfactory agreement is obtained for the computed ground state g K factor, which gives an intrinsic contribution to the magnetic moments. In order to assess the collective contribution to the magnetic moments, the rotational gyromagnetic factors g R have been also calculated within the cranking approximation using the single particle wave function of the axially symmetric Woods-Saxon potential. For the ground-state magnetic moments of odd-proton 155-165Ho nuclei, a good description of the experimental data is obtained with an accuracy of 0.01-0.1 μ N. From systematic trends, the quenching spin gyromagnetic factor, g K factor and magnetic moment have also been theoretically predicted for 167,169Ho where there is no existing experimental data. Supported by Scientific and Technological Research Council of Turkey (TUBITAK) (115F564)
Gravitational Waves from Rotating Neutron Stars and Evaluation of fast Chirp Transform Techniques
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)
2000-01-01
X-ray observations suggest that neutron stars in low mass X-ray binaries (LMXB) are rotating with frequencies from 300 - 600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince in the context of searching for the chirping signals observed during X-ray bursts.
Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible.
Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L
2014-12-07
A new technique is proposed to carry out Signal Amplification By Reversible Exchange (SABRE) experiments at high magnetic fields. SABRE is a method, which utilizes spin order transfer from para-hydrogen to the spins of a substrate in transient complexes using suitable catalysts. Such a transfer of spin order is efficient at low magnetic fields, notably, in the Level Anti-Crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields in the rotating reference frame under the action of an RF-field. Spin mixing at LACs allows one to polarize substrates at high fields as well; the achievable NMR enhancements are around 360 for the ortho-protons of partially deuterated pyridine used as a substrate and around 700 for H2 and substrate in the active complex with the catalyst. High-field SABRE effects have also been found for several other molecules containing a nitrogen atom in the aromatic ring.
Factors determining the spin axis of a pitched fastball in baseball.
Jinji, Tsutomu; Sakurai, Shinji; Hirano, Yuichi
2011-04-01
In this study, we wished to investigate the factors that determine the direction of the spin axis of a pitched baseball. Nineteen male baseball pitchers were recruited to pitch fastballs. The pitching motion was recorded with a three-dimensional motion analysis system (1000 Hz), and the orientations of the hand segment in a global coordinate system were calculated using Euler rotation angles. Reflective markers were attached to the ball, and the direction of the spin axis was calculated on the basis of their positional changes. The spin axis directions were significantly correlated with the orientations of the hand just before ball release. The ball is released from the fingertip and rotates on a plane that is formed by the palm and fingers; the spin axis of the ball is parallel to this plane. The lift force of the pitched baseball is largest when the angular and translational velocity vectors are mutually perpendicular. Furthermore, to increase the lift forces for the fastballs, the palm must face home plate.
Electrical detection of ortho–para conversion in fullerene-encapsulated water
Meier, Benno; Mamone, Salvatore; Concistrè, Maria; Alonso-Valdesueiro, Javier; Krachmalnicoff, Andrea; Whitby, Richard J.; Levitt, Malcolm H.
2015-01-01
Water exists in two spin isomers, ortho and para, that have different nuclear spin states. In bulk water, rapid proton exchange and hindered molecular rotation obscure the direct observation of two spin isomers. The supramolecular endofullerene H2O@C60 provides freely rotating, isolated water molecules even at cryogenic temperatures. Here we show that the bulk dielectric constant of this substance depends on the ortho/para ratio, and changes slowly in time after a sudden temperature jump, due to nuclear spin conversion. The attribution of the effect to ortho–para conversion is validated by comparison with nuclear magnetic resonance and quantum theory. The change in dielectric constant is consistent with an electric dipole moment of 0.51±0.05 Debye for an encapsulated water molecule, indicating the partial shielding of the water dipole by the encapsulating cage. The dependence of bulk dielectric constant on nuclear spin isomer composition appears to be a previously unreported physical phenomenon. PMID:26299447
Seismic constraints on rotation of Sun-like star and mass of exoplanet.
Gizon, Laurent; Ballot, Jérome; Michel, Eric; Stahn, Thorsten; Vauclair, Gérard; Bruntt, Hans; Quirion, Pierre-Olivier; Benomar, Othman; Vauclair, Sylvie; Appourchaux, Thierry; Auvergne, Michel; Baglin, Annie; Barban, Caroline; Baudin, Fréderic; Bazot, Michaël; Campante, Tiago; Catala, Claude; Chaplin, William; Creevey, Orlagh; Deheuvels, Sébastien; Dolez, Noël; Elsworth, Yvonne; García, Rafael; Gaulme, Patrick; Mathis, Stéphane; Mathur, Savita; Mosser, Benoît; Régulo, Clara; Roxburgh, Ian; Salabert, David; Samadi, Réza; Sato, Kumiko; Verner, Graham; Hanasoge, Shravan; Sreenivasan, Katepalli R
2013-08-13
Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of 1.85(-0.42)(+0.52)M(Jupiter), which implies that it is a planet, not a brown dwarf.
Seismic constraints on rotation of Sun-like star and mass of exoplanet
Gizon, Laurent; Ballot, Jérome; Michel, Eric; Stahn, Thorsten; Vauclair, Gérard; Bruntt, Hans; Quirion, Pierre-Olivier; Benomar, Othman; Vauclair, Sylvie; Appourchaux, Thierry; Auvergne, Michel; Baglin, Annie; Barban, Caroline; Baudin, Fréderic; Bazot, Michaël; Campante, Tiago; Catala, Claude; Chaplin, William; Creevey, Orlagh; Deheuvels, Sébastien; Dolez, Noël; Elsworth, Yvonne; García, Rafael; Gaulme, Patrick; Mathis, Stéphane; Mathur, Savita; Mosser, Benoît; Régulo, Clara; Roxburgh, Ian; Salabert, David; Samadi, Réza; Sato, Kumiko; Verner, Graham; Hanasoge, Shravan; Sreenivasan, Katepalli R.
2013-01-01
Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of , which implies that it is a planet, not a brown dwarf. PMID:23898183
Understanding the spin-driven polarizations in Bi MO3 (M = 3 d transition metals) multiferroics
NASA Astrophysics Data System (ADS)
Kc, Santosh; Lee, Jun Hee; Cooper, Valentino R.
Bismuth ferrite (BiFeO3) , a promising multiferroic, stabilizes in a perovskite type rhombohedral crystal structure (space group R3c) at room temperature. Recently, it has been reported that in its ground state it possess a huge spin-driven polarization. To probe the underlying mechanism of this large spin-phonon response, we examine these couplings within other Bi based 3 d transition metal oxides Bi MO3 (M = Ti, V, Cr, Mn, Fe, Co, Ni) using density functional theory. Our results demonstrate that this large spin-driven polarization is a consequence of symmetry breaking due to competition between ferroelectric distortions and anti-ferrodistortive octahedral rotations. Furthermore, we find a strong dependence of these enhanced spin-driven polarizations on the crystal structure; with the rhombohedral phase having the largest spin-induced atomic distortions along [111]. These results give us significant insights into the magneto-electric coupling in these materials which is essential to the magnetic and electric field control of electric polarization and magnetization in multiferroic based devices. Research is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and the Office of Science Early Career Research Program (V.R.C) and used computational resources at NERSC.
Optical Signature Analysis of Tumbling Rocket Bodies via Laboratory Measurements
NASA Astrophysics Data System (ADS)
Cowardin, H.; Lederer, S.; Liou, J.-C.; Ojakangas, G.; Mulrooney, M.
2012-09-01
The NASA Orbital Debris Program Office has acquired telescopic lightcurve data on massive intact objects, specifically spent rocket bodies (R/Bs), to ascertain tumble rates in support of the Active Debris Removal (ADR) studies to help remediate the LEO environment. Tumble rates are needed to plan and develop proximity and docking operations for potential future ADR operations. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC emulates illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC employs a 75-W Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The OMC does not attempt to replicate the rotation rates, but focuses on ascertaining how an object is rotating as seen from multiple phase angles. The two targets studied are scaled (1:48) SL-8 Cosmos 3M second stages. The first target is painted in the standard Russian government "gray" scheme and the second target is white/orange as used for commercial missions. This paper summarizes results of the two scaled rocket bodies, each observed in three independent rotation states: (a) spin-stabilized rotation (about the long axis), (b) end-over-end rotation, and (c) a 10 degree wobble about the center of mass. The first two cases represent simple spin about either primary axis. The third - what we call "wobble" - represents maximum principal axis rotation, with an inertia tensor that is offset from the symmetry axes. By comparing the resultant phase and orientation-dependent laboratory signatures with actual lightcurves derived from telescopic observations of orbiting R/Bs, we intend to assess the intrinsic R/B rotation states. In the simplest case, simulated R/B behavior coincides with principal axis spin states, while more complex R/B motions can be constructed by combinations of OMC-derived optical signature that together form a rudimentary basis set. The signatures will be presented for specific phase angles for each rocket body and shown in conjunction with acquired optical data from multiple telescope sources. The results of the data show possible correlations between the laboratory data and telescopic data for the rotations states mentioned above (b) and (c), but with limited data the results were not definitive to differentiate between color schemes and rotations. The only rotation that did not correlate with the observed telescopic data was the spin-stabilized rotation.
NASA Astrophysics Data System (ADS)
Dattani, Nikesh S.; Li, Xuan
2013-06-01
Recent high-resolution (± 0.00002 cm^{-1}) photo-association spectroscopy (PAS) data of seven previously unexplored vibrational levels of the 1^3Σ_g^+ state of Li_2 have allowed for the first ever experimental determination of the spin-spin (λ_v) and spin-rotation (γ_v) coupling constants in a diatomic lithium system. For triplet states of diatomic molecules such as the 1^3Σ_g^+ state of Li_2, the three spin-spin/spin-rotation resolved energies associated with a ro-vibrational state |v,N> were expressed explicity in terms of B_v, λ_v, and γ_v in 1929 by Kramer's first-order formulas and then in 1937 by Schlapp's more refined formulas. Given spectroscopic data, while it has never been difficult to extract λ_v and γ_v from Schlapp's formulas, it has been a challenge to reliably predict how accurate these extracted values are. This is for two reasons: (1) the lack of a rigorous method to estimate the uncertainty in B_v, (2) the non-linearity of Schlapp's coupled equations has meant that traditionally they have had to be solved numerically by Newton iterations which makes error propagation difficult. The former challenge has been this year solved by Le Roy with a modification of Hutson's perturbation theory of, and the latter problem has now been solved by symbolic computing software that solves Schlapp's coupled non-linear equations analytically for the first time since their introduction in 1937. M. Semczuk, X. Li, W. Gunton, M. Haw, N. Dattani, J. Witz, A. Mills, D. Jones, K. Madison, Physical Review A {87}, XX (2013) H. Kramers, Zeitschrift fur Physik {53}, 422 (1929) R. Schlapp, Physical Review {51}, 342 (1937) J. Hutson, J. Phys. B, {14}, 851 (1981)
Domino model for geomagnetic field reversals.
Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M
2013-01-01
We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field.
One-electron densities of freely rotating Wigner molecules
NASA Astrophysics Data System (ADS)
Cioslowski, Jerzy
2017-12-01
A formalism enabling computation of the one-particle density of a freely rotating assembly of identical particles that vibrate about their equilibrium positions with amplitudes much smaller than their average distances is presented. It produces densities as finite sums of products of angular and radial functions, the length of the expansion being determined by the interplay between the point-group and permutational symmetries of the system in question. Obtaining from a convolution of the rotational and bosonic components of the parent wavefunction, the angular functions are state-dependent. On the other hand, the radial functions are Gaussians with maxima located at the equilibrium lengths of the position vectors of individual particles and exponents depending on the scalar products of these vectors and the eigenvectors of the corresponding Hessian as well as the respective eigenvalues. Although the new formalism is particularly useful for studies of the Wigner molecules formed by electrons subject to weak confining potentials, it is readily adaptable to species (such as ´balliums’ and Coulomb crystals) composed of identical particles with arbitrary spin statistics and permutational symmetry. Several examples of applications of the present approach to the harmonium atoms within the strong-correlation regime are given.
Inferences from the dynamical history of Mercury's rotation
NASA Technical Reports Server (NTRS)
Peale, S. J.
1976-01-01
The history of Mercury's spin angular momentum is reviewed. It is shown that the current nonsynchronous but resonant spin and the nearly zero obliquity place almost no restrictions on the primordial spin state. The only exception comes about from a liquid core-solid mantle interaction which excludes a slow primordial spin concurrent with a large obliquity. The current occupancy of a final evolutionary spin state leads to the description of a scheme by which we can determine the extent of a currently liquid Mercurian core.
Constraining spacetime nonmetricity with neutron spin rotation in liquid 4 He
Lehnert, Ralf; Snow, W. M.; Xiao, Zhi; ...
2017-09-10
General spacetime nonmetricity coupled to neutrons is studied. In this context, it is shown that certain nonmetricity components can generate a rotation of the neutron's spin. Available data on this effect obtained from slow-neutron propagation in liquid helium are then used to constrain isotropic nonmetricity components at the level of 10 -22GeV. These results represent the first limit on the nonmetricity ζ( 6) 2S 000 parameter as well as the first measurement of nonmetricity inside matter.
NASA Astrophysics Data System (ADS)
Salman, Z.; Prokscha, T.; Keller, P.; Morenzoni, E.; Saadaoui, H.; Sedlak, K.; Shiroka, T.; Sidorov, S.; Suter, A.; Vrankovic, V.; Weber, H.-P.
We usedGeant4 to accurately model the low energy muons (LEM) beam line, including scattering due to the 10-nm thin carbon foil in the trigger detector. Simulations of the beam line transmission give excellent agreement with experimental results for beam energies higher than ∼ 12keV.We use these simulations to design and model the operation of a spin rotator for the LEM spectrometer, which will enable longitudinal field measurements in the near future.
Impact of the Tilted Detector Solenoid on the Ion Polarization at JLEIC
Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; ...
2017-12-01
Jefferson Lab Electron Ion Collider (JLEIC) is a figure-8 collider "transparent" to the spin. This allows one to control the ion polarization using a universal 3D spin rotator based on weak solenoids. Besides the 3D spin rotator, a coherent effect on the spin is produced by a detector solenoid together with the dipole correctors and anti-solenoids compensating betatron oscillation coupling. The 4 m long detector solenoid is positioned along a straight section of the electron ring and makes a 50 mrad horizontal angle with a straight section of the ion ring. Such a large crossing angle is needed for amore » quick separation of the two colliding beams near the interaction point to make sufficient space for placement of interaction region magnets and to avoid parasitic collisions of shortly-spaced 476 MHz electron and ion bunches. We present a numerical analysis of the detector solenoid effect on the proton and deuteron polarizations. We demonstrate that the effect of the detector solenoid on the proton and deuteron polarizations can be compensated globally using an additional 3D rotator located anywhere in the ring.« less
NASA Astrophysics Data System (ADS)
Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; iPTF Team
2016-10-01
In order to look for kilometer-sized super-fast rotators (large SFRs) and understand the spin-rate distributions of small (i.e. D of several kilometers) asteroids, we have been conducting asteroid rotation period surveys of large sky area using intermediate Palomar Transient Factory (iPTF) since 2014. So far, we have observed 261 deg2 with 20 min cadence, 188 deg2 with 10 min cadence, and 65 deg2 with 5 min cadence. From these surveys, we found that the spin-rate distributions of small asteroids at different locations in the main-belt are very similar. Moreover, the distributions of asteroids with 3 < D < 15 km show number decrease along with increase of spin rate for frequency > 5 rev/day, and that of asteroids with D < 3 km have a significant number drop at frequency = 5 rev/day. However, we only discover two new large SFRs and 24 candidates. Comparing with the ordinary asteroids, the population of large SFR seems to be far less than the whole asteroid population. This might indicate a peculiar group of asteroid for large SFRs.
Impact of the Tilted Detector Solenoid on the Ion Polarization at JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.
Jefferson Lab Electron Ion Collider (JLEIC) is a figure-8 collider "transparent" to the spin. This allows one to control the ion polarization using a universal 3D spin rotator based on weak solenoids. Besides the 3D spin rotator, a coherent effect on the spin is produced by a detector solenoid together with the dipole correctors and anti-solenoids compensating betatron oscillation coupling. The 4 m long detector solenoid is positioned along a straight section of the electron ring and makes a 50 mrad horizontal angle with a straight section of the ion ring. Such a large crossing angle is needed for amore » quick separation of the two colliding beams near the interaction point to make sufficient space for placement of interaction region magnets and to avoid parasitic collisions of shortly-spaced 476 MHz electron and ion bunches. We present a numerical analysis of the detector solenoid effect on the proton and deuteron polarizations. We demonstrate that the effect of the detector solenoid on the proton and deuteron polarizations can be compensated globally using an additional 3D rotator located anywhere in the ring.« less
The Spin-Orbit Resonant Rotation of Mercury: A Two Degree of Freedom Hamiltonian Model
NASA Astrophysics Data System (ADS)
D'Hoedt, Sandrine; Lemaitre, Anne
2004-04-01
The paper develops a hamiltonian formulation describing the coupled orbital and spin motions of a rigid Mercury rotation about its axis of maximum moment of inertia in the frame of a 3:2 spin orbit resonance; the (ecliptic) obliquity is not constant, the gravitational potential of mercury is developed up to the second degree terms (the only ones for which an approximate numerical value can be given) and is reduced to a two degree of freedom model in the absence of planetary perturbations. Four equilibria can be calculated, corresponding to four different values of the (ecliptic) obliquity. The present situation of Mercury corresponds to one of them, which is proved to be stable. We introduce action-angle variables in the neighborhood of this stable equilibrium, by several successive canonical transformations, so to get two constant frequencies, the first one for the free spin-orbit libration, the other one for the 1:1 resonant precession of both nodes (orbital and rotational) on the ecliptic plane. The numerical values obtained by this simplified model are in perfect agreement with those obtained by Rambaux and Bois [Astron. Astrophys. 413, 381 393].
μ SR study of the noncentrosymmetric superconductor PbTaSe2
NASA Astrophysics Data System (ADS)
Wilson, M. N.; Hallas, A. M.; Cai, Y.; Guo, S.; Gong, Z.; Sankar, R.; Chou, F. C.; Uemura, Y. J.; Luke, G. M.
2017-06-01
We present muon spin rotation and relaxation (μ SR ) measurements on the noncentrosymmetric superconductor PbTaSe2. From measurements in an applied transverse field between Hc 1 and Hc 2, we extract the superfluid density as a function of temperature in the vortex state. These data can be fit with a fully gapped two-band model, consistent with previous evidence from ARPES, thermal conductivity, and resistivity. Furthermore, zero-field measurements show no evidence for a time-reversal symmetry-breaking field greater than 0.05 G in the superconducting state. This makes exotic fully gapped spin-triplet states unlikely, and hence we contend that PbTaSe2 is characterized by conventional BCS s -wave superconductivity in multiple bands.
NASA Astrophysics Data System (ADS)
Kruk, Danuta; Kowalewski, Jozef
2002-07-01
This article describes paramagnetic relaxation enhancement (PRE) in systems with high electron spin, S, where there is molecular interaction between a paramagnetic ion and a ligand outside of the first coordination sphere. The new feature of our treatment is an improved handling of the electron-spin relaxation, making use of the Redfield theory. Following a common approach, a well-defined second coordination sphere is assumed, and the PRE contribution from these more distant and shorter-lived ligands is treated in a way similar to that used for the first coordination sphere. This model is called "ordered second sphere," OSS. In addition, we develop here a formalism similar to that of Hwang and Freed [J. Chem. Phys. 63, 4017 (1975)], but accounting for the electron-spin relaxation effects. We denote this formalism "diffuse second sphere," DSS. The description of the dynamics of the intermolecular dipole-dipole interaction is based on the Smoluchowski equation, with a potential of mean force related to the radial distribution function. We have used a finite-difference method to calculate numerically a correlation function for translational motion, taking into account the intermolecular forces leading to an arbitrary radial distribution of the ligand protons. The OSS and DSS models, including the Redfield description of the electron-spin relaxation, were used to interpret the PRE in an aqueous solution of a slowly rotating gadolinium (III) complex (S=7/2) bound to a protein.
Photometric Studies of Rapidly Spinning Decommissioned GEO Satellites
NASA Astrophysics Data System (ADS)
Ryan, W.; Ryan, E.
A satellites general characteristics can be substantially influenced by changes in the space environment. Rapidly spinning decommissioned satellites provide an excellent opportunity to study the rotation-dependent physical processes that affect a resident space objects (RSO) spin kinematics over time. Specifically, inactive satellites at or near geosynchronous Earth-orbit (GEO) provide easy targets for which high quality data can be collected and analyzed such that small differences can be detected under single-year or less time frames. Previous workers have shown that the rotational periods of defunct GEOs have been changing over time [1]. Further, the Yarkovsky-OKeefe-Radzievskii-Paddak (YORP) effect, a phenomenon which has been well-studied in the context of the changing the spin states of asteroids, has recently been suggested to be the cause of secular alterations in the rotational period of inactive satellites [2]. Researchers at the Magdalena Ridge Observatory 2.4-meter telescope (operated by the New Mexico Institute of Mining and Technology) have been investigating the spins states of retired GEOs and other high altitude space debris since 2007 [3]. In this current work, the 2.4-meter telescope was used to track and observe the objects typically over a one- to two-hour period, repeated several times over the course of weeks. When feasible, this is then repeated on a yearly basis. Data is taken with a 1 second cadence, nominally in groups of three 600 second image sets. With the current equipment, the cadence of the image sequences is very precise while the start time is accurate only to the nearest second. Therefore, periods are determined individually using each image sequence. Repeatability of the period determination for each of these sequences is typically on the order of 0.01 second or better for objects where a single period is identified. Spin rate periods determined from the GEO light curves collected thus far have been found to range from ~3 sec to many tens of seconds. Based on these observed rotational characteristics, results will be presented on both the long- and short-term spin-rate variations of selected targets. The objective was to study a variety of satellites for rotational stability over time, and to discern how physical effects (such as YORP) might be dependent on the optical, thermal and geometrical parameters of the object. References: [1] Papushev, P., Karavaev, Y., and Mishina, M., Investigations of the evolution of optical characteristics and dynamics of proper rotation of uncontrolled geostationary artificial satellites, Advances in Space Research, 416-1422, 2009. [2] Albuja, A.A. and Scheeres, D.J., Defunct Satellites, Rotation Rates and the YORP Effect, Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, Hawaii, 156-163, 2013. [3] Romero, V., W.H. Ryan, and E.V. Ryan, Monitoring Variations to the Near-Earth Space Environment during High Solar Activity using Orbiting Rocket Bodies, Proceedings of the 2007 AMOS Technical Conference, Hawaii, 389-393, 2007.
Propulsion Health Monitoring of a Turbine Engine Disk Using Spin Test Data
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj; Matthews, Bryan; Baaklini, George Y.
2010-01-01
This paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating turbine engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center s Rotordynamics Laboratory are evaluated using multiple data-driven anomaly detection techniques to identify abnormalities in the disk. Further, this study presents a select evaluation of an online health monitoring scheme of a rotating disk using high caliber sensors and test the capability of the in-house spin system.
Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meot, F.; Huang, H.
2015-06-15
A possible origin of a 14 deg y-normal spin n → 0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.
A No-Go Theorem for the Continuum Limit of a Periodic Quantum Spin Chain
NASA Astrophysics Data System (ADS)
Jones, Vaughan F. R.
2018-01-01
We show that the Hilbert space formed from a block spin renormalization construction of a cyclic quantum spin chain (based on the Temperley-Lieb algebra) does not support a chiral conformal field theory whose Hamiltonian generates translation on the circle as a continuous limit of the rotations on the lattice.
Equilibrium configurations of a charged fluid around a Kerr black hole
NASA Astrophysics Data System (ADS)
Trova, Audrey; Schroven, Kris; Hackmann, Eva; Karas, Vladimír; Kovář, Jiří; Slaný, Petr
2018-05-01
Equilibrium configurations of electrically charged perfect fluid surrounding a central rotating black hole endowed with a test electric charge and embedded in a large-scale asymptotically uniform magnetic field are presented. Following our previous studies considering the central black hole to be nonrotating, we show that in the rotating case conditions for the configurations existence change according to the spin of the black hole. We focus our attention on the charged fluid in rigid rotation, which can form toroidal configurations centered in the equatorial plane or the ones hovering above the black hole, along the symmetry axis. We conclude that a nonzero value of spin changes the existence conditions and the morphology of the solutions significantly. In the case of fast rotation, the morphology of the structures is close to an oblate shape.
Experimenting with a Spinning Disk
ERIC Educational Resources Information Center
Cross, Rod
2015-01-01
Almost everyone will have observed a spinning coin fall to a shuddering stop. How and why does it do that? Several experiments are described, suitable for a student project, to help motivate an understanding of the rotational dynamics involved.
Helical modes generate antimagnetic rotational spectra in nuclei
NASA Astrophysics Data System (ADS)
Malik, Sham S.
2018-03-01
A systematic analysis of the antimagnetic rotation band using r -helicity formalism is carried out for the first time. The observed octupole correlation in a nucleus is likely to play a role in establishing the antimagnetic spectrum. Such octupole correlations are explained within the helical orbits. In a rotating field, two identical fermions (generally protons) with paired spins generate these helical orbits in such a way that its positive (i.e., up) spin along the axis of quantization refers to one helicity (right-handedness) while negative (down) spin along the same quantization-axis decides another helicity (left-handedness). Since the helicity remains invariant under rotation, therefore, the quantum state of a fermion is represented by definite angular momentum and helicity. These helicity represented states support a pear-shaped structure of a rotating system having z axis as the symmetry axis. A combined operation of parity, time-reversal, and signature symmetries ensures an absence of one of the signature partner band from the observed antimagnetic spectrum. This formalism has also been tested for the recently observed negative parity Δ I =2 antimagnetic spectrum in odd-A 101Pd nucleus and explains nicely its energy spectrum as well as the B (E 2 ) values. Further, this formalism is found to be fully consistent with twin-shears mechanism popularly known for such type of rotational bands. It also provides significant clue for extending these experiments in various mass regions spread over the nuclear chart.
Multinuclear Detection of Nuclear Spin Optical Rotation at Low Field.
Zhu, Yue; Gao, Yuheng; Rodocker, Shane; Savukov, Igor; Hilty, Christian
2018-06-06
We describe the multinuclear detection of nuclear spin optical rotation (NSOR), an effect dependent on the hyperfine interaction between nuclear spins and electrons. Signals of 1 H and 19 F are discriminated by frequency in a single spectrum acquired at sub-millitesla field. The simultaneously acquired optical signal along with the nuclear magnetic resonance signal allows the calculation of the relative magnitude of the NSOR constants corresponding to different nuclei within the sample molecules. This is illustrated by a larger NSOR signal measured at the 19 F frequency despite a smaller corresponding spin concentration. Second, it is shown that heteronuclear J-coupling is observable in the NSOR signal, which can be used to retrieve chemical information. Multinuclear frequency and J resolution can localize optical signals in the molecule. Properties of electronic states at multiple sites in a molecule may therefore ultimately be determined by frequency-resolved NSOR spectroscopy at low field.
Resonantly driven CNOT gate for electron spins.
Zajac, D M; Sigillito, A J; Russ, M; Borjans, F; Taylor, J M; Burkard, G; Petta, J R
2018-01-26
Single-qubit rotations and two-qubit CNOT operations are crucial ingredients for universal quantum computing. Although high-fidelity single-qubit operations have been achieved using the electron spin degree of freedom, realizing a robust CNOT gate has been challenging because of rapid nuclear spin dephasing and charge noise. We demonstrate an efficient resonantly driven CNOT gate for electron spins in silicon. Our platform achieves single-qubit rotations with fidelities greater than 99%, as verified by randomized benchmarking. Gate control of the exchange coupling allows a quantum CNOT gate to be implemented with resonant driving in ~200 nanoseconds. We used the CNOT gate to generate a Bell state with 78% fidelity (corrected for errors in state preparation and measurement). Our quantum dot device architecture enables multi-qubit algorithms in silicon. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Peculiar glitch of PSR J1119-6127 and extension of the vortex creep model
NASA Astrophysics Data System (ADS)
Akbal, O.; Gügercinoğlu, E.; Şaşmaz Muş, S.; Alpar, M. A.
2015-05-01
Glitches are sudden changes in rotation frequency and spin-down rate, observed from pulsars of all ages. Standard glitches are characterized by a positive step in angular velocity (ΔΩ > 0) and a negative step in the spin-down rate (Δ dot{Ω } < 0) of the pulsar. There are no glitch-associated changes in the electromagnetic signature of rotation-powered pulsars in all cases so far. For the first time, in the last glitch of PSR J1119-6127, there is clear evidence for changing emission properties coincident with the glitch. This glitch is also unusual in its signature. Further, the absolute value of the spin-down rate actually decreases in the long term. This is in contrast to usual glitch behaviour. In this paper we extend the vortex creep model in order to take into account these peculiarities. We propose that a starquake with crustal plate movement towards the rotational poles of the star induces inward vortex motion which causes the unusual glitch signature. The component of the magnetic field perpendicular to the rotation axis will decrease, giving rise to a permanent change in the pulsar external torque.
First observation of rotational structures in Re 168
Hartley, D. J.; Janssens, R. V. F.; Riedinger, L. L.; ...
2016-11-30
We assigned first rotational sequences to the odd-odd nucleus 168Re. Coincidence relationships of these structures with rhenium x rays confirm the isotopic assignment, while arguments based on the γ-ray multiplicity (K-fold) distributions observed with the new bands lead to the mass assignment. Configurations for the two bands were determined through analysis of the rotational alignments of the structures and a comparison of the experimental B(M1)/B(E2) ratios with theory. Tentative spin assignments are proposed for the πh 11/2νi 13/2 band, based on energy level systematics for other known sequences in neighboring odd-odd rhenium nuclei, as well as on systematics seen formore » the signature inversion feature that is well known in this region. Furthermore, the spin assignment for the πh 11/2ν(h 9/2/f 7/2) structure provides additional validation of the proposed spins and configurations for isomers in the 176Au → 172Ir → 168Re α-decay chain.« less
Spin lattices of walking droplets
NASA Astrophysics Data System (ADS)
Saenz, Pedro; Pucci, Giuseppe; Goujon, Alexis; Dunkel, Jorn; Bush, John
2017-11-01
We present the results of an experimental investigation of the spontaneous emergence of collective behavior in spin lattice of droplets walking on a vibrating fluid bath. The bottom topography consists of relatively deep circular wells that encourage the walking droplets to follow circular trajectories centered at the lattice sites, in one direction or the other. Wave-mediated interactions between neighboring drops are enabled through a thin fluid layer between the wells. The sense of rotation of the walking droplets may thus become globally coupled. When the coupling is sufficiently strong, interactions with neighboring droplets may result in switches in spin that lead to preferred global arrangements, including correlated (all drops rotating in the same direction) or anti-correlated (neighboring drops rotating in opposite directions) states. Analogies with ferromagnetism and anti-ferromagnetism are drawn. Different spatial arrangements are presented in 1D and 2D lattices to illustrate the effects of topological frustration. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.
Pressure effect on ferroelectricity of multiferroic Ho0.5Nd0.5Fe3(BO3)4
NASA Astrophysics Data System (ADS)
Poudel, Narayan; Gooch, Melissa; Lorenz, Bernd; Bezmaternykh, L. N.; Temerov, V. L.; Chu, C. W.
Ho0.5Nd0.5Fe3(BO3)4 becomes multiferroic below 33 K where it enters into the AFM1 phase and gives rise to a ferroelectric polarization along the a-axis. At 9.5 K, the polarization drops sharply and remains finite value of 40 μC/m2. This is due to the spin rotation from the a-b plane into the c-axis and gives rise to the AFM2 phase. The application of pressure suppresses the AFM2 phase and moves the spin rotation transition from 9.5 K to 4.8 K up to pressure of 18.8 kbar which is observed in both dielectric and pyroelectric measurements. The change in magnetic anisotropy of rare-earth moments and Fe ions under pressure drives the spin rotation transition of rare-earth at lower temperature. DOE, the AFOSR, the T.L.L Temple Foundation, the J.J. and R. Moores Endowment, and the State of Texas (TCSUH).
NASA Astrophysics Data System (ADS)
Pickett, Herbert M.; Obenchain, Daniel A.; Grubbs, G. S. Grubbs, Ii; Novick, Stewart E.
2013-06-01
Rotational transitions of the p-H_2-CuCl and o-H_2-CuCl have been observed on a laser ablation equipped FTMW cavity instrument. Computational studies preformed using the APFD density functional and MP2 level of theory were used to predict the structure of the p-H_2-CuCl. Measurements from the J=1-0 to the J=3-2 transitions were used to determine the rotational constants, centrifugal distortion constants, and quadrupole coupling constants for multiple isotopologues of the p-H_2-CuCl species. Similar constants, including spin-spin coupling constants, have also been determined for the o-H_2-CuCl species for the J=2-1 and the J=3-2 transitions. The eQq of the copper in p-H_2-^{63}Cu^{35}Cl was found to be 52.058(2) MHz, a change from the monomer ^{63}Cu^{35}Cl value of 16.1712(24) MHz. A. Austin, G. A. Petersson, M. J. Frisch, F. J. Dobek, G. Scalmani, and K. J. Throssell. Chem. Theor. Comp. 8 (2012) 4989. K. D. Hensel, C. Styger, W. Jager, A. J. Merer, and M. C. L. Gerry, J. Chem. Phys. 99(1993) 3320.
The Origin of Powerful Radio Sources
NASA Astrophysics Data System (ADS)
Wilson, A. S.; Colbert, E. J. M.
1995-05-01
Radio-loud active galaxies are associated with elliptical or elliptical-like galaxies, many of which appear to be the result of a recent merger. In contrast, radio-quiet active galaxies prefer spiral hosts. Despite the very large difference in radio luminosities between the two classes, their continua and line spectra from infrared through X-ray frequencies are very similar. In this paper, we describe recent developments of our model (Ap. J. 438, 62 1995) in which the radio-loud phenomenon is the result of a merger of two galaxies, with each galaxy nucleus containing a slowly (or non-) rotating supermassive black hole. It is envisaged that the two black holes eventually coalesce. For the small fraction of mergers in which the two holes are both massive and of comparable mass, a rapidly-spinning, high-mass hole results. The spin energy of a rapidly rotating 10(8-9) solar mass hole suffices to provide the ~ 10(60) ergs in relativistic particles and magnetic fields in the most energetic radio sources. Luminous radio-quiet active galaxies contain high-mass, slowly-rotating holes, with the infrared through X-ray emission of both classes being fuelled by accretion as commonly assumed. We discuss constraints on the model from the luminosity functions of radio-loud and radio-quiet galaxies and from the known cosmological evolution of the radio source population; this evolution is assumed to reflect higher galaxy merger rates in the past.
A Generic Theory of the Integer Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Shen, Yu
The integer quantum Hall effect (IQHE) is usually modeled by a Galilean or rotationally invariant Hamiltonian. These are not generic symmetries for electrons moving in a crystal background and can potentially confuse non-topological quantities with topological ones and identify otherwise distinct geometrical properties. In this thesis we present a generic theory for the IQHE. First we show that a generic guiding-center coherent state, defined by a natural metric in each Landau level, has the form of an antiholomorphic function times a Gaussian factor. Then by numerically solving the eigenproblem for a quartic Hamiltonian and finding the roots of the antiholomorphic part we are able to define a topological spin sn = n + 1/2 where n is the number of central roots that are enclosed by the semiclassical orbit. We derive a generic formula for the Hall viscosity in the absence of rotational symmetry and show that the previous interpretation of the scalar Hall viscosity as the "intrinsic orbital angular momentum" breaks down since the concept of angular momentum requires the presence of rotational symmetry. We also calculate generic electromagnetic responses and differentiate between universal terms that are diagonal with respect to Landau level index and non-universal terms that depend on inter-Landau-level mixing. We conclude that the generic theory offers a fundamental definition for the topological spin and reveals finer structure in the geometrical properties of the IQHE.
An argument for weakly magnetized, slowly rotating progenitors of long gamma-ray bursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno Méndez, Enrique, E-mail: enriquemm@astro.unam.mx
2014-01-20
Using binary evolution with Case-C mass transfer, the spins of several black holes (BHs) in X-ray binaries (XBs) have been predicted and confirmed (three cases) by observations. The rotational energy of these BHs is sufficient to power up long gamma-ray bursts (GRBs) and hypernovae (HNe) and still leave a Kerr BH behind. However, strong magnetic fields and/or dynamo effects in the interior of such stars deplete their cores from angular momentum preventing the formation of collapsars. Thus, even though binaries can produce Kerr BHs, most of their rotation is acquired from the stellar mantle, with a long delay between BHmore » formation and spin up. Such binaries would not form GRBs. We study whether the conditions required to produce GRBs can be met by the progenitors of such BHs. Tidal-synchronization and Alfvén timescales are compared for magnetic fields of different intensities threading He stars. A search is made for a magnetic field range that allows tidal spin up all the way in to the stellar core but prevents its slow down during differential rotation phases. The energetics for producing a strong magnetic field during core collapse, which may allow for a GRB central engine, are also estimated. An observationally reasonable choice of parameters is found (B ≲ 10{sup 2} G threading a slowly rotating He star) that allows Fe cores to retain substantial angular momentum. Thus, the Case-C mass-transfer binary channel is capable of explaining long GRBs. However, the progenitors must have low initial spin and low internal magnetic field throughout their H-burning and He-burning phases.« less
Gemini and Keck Observations of Slowly Rotating, Bilobate Active Asteroid (300163)
NASA Astrophysics Data System (ADS)
Waniak, Waclaw; Drahus, Michal
2016-10-01
One of the most puzzling questions regarding Active Asteroids is the mechanism of their activation. While some Active Asteroids show protracted and often recurrent mass loss, consistent with seasonal ice sublimation, some other eject dust impulsively as a result of a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It has been suggested that ice can be excavated from the cold near-surface interior by an impact (Hsieh & Jewitt 2006, Science 312, 561) or, for small objects susceptible to YORP torques, by near-critical spin rate (Sheppard & Trujillo 2014, AJ 149, 44). But impact and rapid spin can also cause a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It therefore becomes apparent that the different types of mass loss observed in Active Asteroids can be best classified and understood based on the nucleus spin rates (Drahus et al. 2015, ApJL 802, L8), but unfortunately the rotation periods have been measured for a very limited number of these objects. With this in mind we have initiated a survey of light curves of small Active Asteroids on the largest ground-based optical telescopes. Here we present the results for (300163), also known as 288P and 2006 VW139, which is a small 2.6-km sized asteroid that exhibited a comet-like activity over 100 days in the second half of 2011 (Hsieh et al. 2012, ApJL 748, L15; Licandro et al. 2013, A&A 550, A17; Agarwal et al. 2016, AJ 151, 12). Using Keck/DEIMOS and Gemini/GMOS-S working in tandem on UT 2015 May 21-22 we have detected an inactive nucleus and measured a complete, dense, high-S/N rotational light curve. The light curve has a double-peaked period of 16 hours, an amplitude of 0.4 mag, and moderately narrow minima suggesting a bilobate or contact-binary shape. The long rotation period clearly demonstrates a non-rotational origin of activity of this object, consistent with an impact. Furthermore, among the five small Active Asteroids with known rotation periods (300163) is only the second object with a confirmed slow spin rate, the other three rotating rapidly, near the limit of rotational stability. This suggests that rotation- and impact-driven origin of activity can be comparably common among small asteroids.
Apparatus for depositing a low work function material
Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.
2006-10-10
Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.
Low work function surface layers produced by laser ablation using short-wavelength photons
Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.
2000-01-01
Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.
Macrorealism from entropic Leggett-Garg inequalities
NASA Astrophysics Data System (ADS)
Devi, A. R. Usha; Karthik, H. S.; Sudha; Rajagopal, A. K.
2013-05-01
We formulate entropic Leggett-Garg inequalities, which place constraints on the statistical outcomes of temporal correlations of observables. The information theoretic inequalities are satisfied if macrorealism holds. We show that the quantum statistics underlying correlations between time-separated spin component of a quantum rotor mimics that of spin correlations in two spatially separated spin-s particles sharing a state of zero total spin. This brings forth the violation of the entropic Leggett-Garg inequality by a rotating quantum spin-s system in a similar manner as does the entropic Bell inequality [S. L. Braunstein and C. M. Caves, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.61.662 61, 662 (1988)] by a pair of spin-s particles forming a composite spin singlet state.
Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot
NASA Astrophysics Data System (ADS)
Kawakami, Erika
2015-03-01
Electron spins in Si/SiGe quantum dots are one of the most promising candidates for a quantum bit for their potential to scale up and their long dephasing time. We realized coherent control of single electron spin in a single quantum dot (QD) defined in a Si/SiGe 2D electron gas. Spin rotations are achieved by applying microwave excitation to one of the gates, which oscillates the electron wave function back and forth in the gradient field produced by cobalt micromagnets fabricated near the dot. The electron spin is read out in single-shot mode via spin-to-charge conversion and a QD charge sensor. In earlier work, both the fidelity of single-spin rotations and the spin echo decay time were limited by a small splitting of the lowest two valleys. By changing the direction and magnitude of the external magnetic field as well as the gate voltages that define the dot potential, we were able to increase the valley splitting and also the difference in Zeeman splittings associated with these two valleys. This has resulted in considerable improvements in the gate fidelity and spin echo decay times. Thanks to the long intrinsic dephasing time T2* = 900 ns and Rabi frequency of 1.4 MHz, we now obtain an average single qubit gate fidelity of an electron spin in a Si/SiGe quantum dot of 99 percent, measured via randomized benchmarking. The dephasing time is extended to 70 us for the Hahn echo and up to 400 us with CPMG80. From the dynamical decoupling data, we extract the noise spectral density in the range of 30 kHz-3 MHz. We will discuss the mechanism that induces this noise and is responsible for decoherence. In parallel, we also realized electron spin resonance and coherent single-spin control by second harmonic generation, which means we can drive an electron spin at half the Larmor frequency. Finally, we observe not only single-spin transitions but also transitions whereby both the spin and the valley state are flipped. Altogether, these measurements have significantly increased our understanding and raised the prospects of spin qubits in Si/SiGe quantum dots. This work has been done in collaboration with T.M. J. Jullien, P. Scarlino, V.V. Dobrovitski, D.R. Ward, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen. This work was supported in part by the Army Research Office (ARO) (W911NF-12-0607), the Foundation for Fundamental Research on Matter (FOM) and the European Research Council (ERC). Development and maintenance of the growth facilities used for fabricating samples was supported by the Department of Energy (DOE) (DE-FG02-03ER46028). E.K. was supported by a fellowship from the Nakajima Foundation. This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison.
Zerbetto, Mirco; Polimeno, Antonino; Cimino, Paola; Barone, Vincenzo
2008-01-14
Electron spin resonance (ESR) measurements are highly informative on the dynamic behavior of molecules, which is of fundamental importance to understand their stability, biological functions and activities, and catalytic action. The wealth of dynamic information which can be extracted from a continuous wave electron spin resonance (cw-ESR) spectrum can be inferred by a basic theoretical approach defined within the stochastic Liouville equation formalism, i.e., the direct inclusion of motional dynamics in the form of stochastic (Fokker-Planck/diffusive) operators in the super Hamiltonian H governing the time evolution of the system. Modeling requires the characterization of magnetic parameters (e.g., hyperfine and Zeeman tensors) and the calculation of ESR observables in terms of spectral densities. The magnetic observables can be pursued by the employment of density functional theory which is apt, provided that hybrid functionals are employed, for the accurate computation of structural properties of molecular systems. Recently, an ab initio integrated computational approach to the in silico interpretation of cw-ESR spectra of multilabeled systems in isotropic fluids has been discussed. In this work we present the extension to the case of nematic liquid crystalline environments by performing simulations of the ESR spectra of the prototypical nitroxide probe 4-(hexadecanoyloxy)-2,2,6,6-tetramethylpiperidine-1-oxy in isotropic and nematic phases of 5-cyanobiphenyl. We first discuss the basic ingredients of the integrated approach, i.e., (1) determination of geometric and local magnetic parameters by quantum-mechanical calculations, taking into account the solvent and, when needed, the vibrational averaging contributions; (2) numerical solution of a stochastic Liouville equation in the presence of diffusive rotational dynamics, based on (3) parameterization of diffusion rotational tensor provided by a hydrodynamic model. Next we present simulated spectra with minimal resorting to fitting procedures, proving that the combination of sensitive ESR spectroscopy and sophisticated modeling can be highly helpful in providing three-dimensional structural and dynamic information on molecular systems in anisotropic environments.
Mathematical model for gyroscope effects
NASA Astrophysics Data System (ADS)
Usubamatov, Ryspek
2015-05-01
Gyroscope effects are used in many engineering calculations of rotating parts, and a gyroscope is the basic unit of numerous devices and instruments used in aviation, space, marine and other industries. The primary attribute of a gyroscope is a spinning rotor that persists in maintaining its plane of rotation, creating gyroscope effects. Numerous publications represent the gyroscope theory using mathematical models based on the law of kinetic energy conservation and the rate of change in angular momentum of a spinning rotor. Gyroscope theory still attracts many researchers who continue to discover new properties of gyroscopic devices. In reality, gyroscope effects are more complex and known mathematical models do not accurately reflect the actual motions. Analysis of forces acting on a gyroscope shows that four dynamic components act simultaneously: the centrifugal, inertial and Coriolis forces and the rate of change in angular momentum of the spinning rotor. The spinning rotor generates a rotating plane of centrifugal and Coriols forces that resist the twisting of the spinning rotor with external torque applied. The forced inclination of the spinning rotor generates inertial forces, resulting in precession torque of a gyroscope. The rate of change of the angular momentum creates resisting and precession torques which are not primary one in gyroscope effects. The new mathematical model for the gyroscope motions under the action of the external torque applied can be as base for new gyroscope theory. At the request of the author of the paper, this corrigendum was issued on 24 May 2016 to correct an incomplete Table 1 and errors in Eq. (47) and Eq. (48).
Spin-down of radio millisecond pulsars at genesis.
Tauris, Thomas M
2012-02-03
Millisecond pulsars are old neutron stars that have been spun up to high rotational frequencies via accretion of mass from a binary companion star. An important issue for understanding the physics of the early spin evolution of millisecond pulsars is the impact of the expanding magnetosphere during the terminal stages of the mass-transfer process. Here, I report binary stellar evolution calculations that show that the braking torque acting on a neutron star, when the companion star decouples from its Roche lobe, is able to dissipate >50% of the rotational energy of the pulsar. This effect may explain the apparent difference in observed spin distributions between x-ray and radio millisecond pulsars and help account for the noticeable age discrepancy with their young white dwarf companions.
Characterization of topological phases of dimerized Kitaev chain via edge correlation functions
NASA Astrophysics Data System (ADS)
Wang, Yucheng; Miao, Jian-Jian; Jin, Hui-Ke; Chen, Shu
2017-11-01
We study analytically topological properties of a noninteracting modified dimerized Kitaev chain and an exactly solvable interacting dimerized Kitaev chain under open boundary conditions by analyzing two introduced edge correlation functions. The interacting dimerized Kitaev chain at the symmetry point Δ =t and the chemical potential μ =0 can be exactly solved by applying two Jordan-Wigner transformations and a spin rotation, which permits us to calculate the edge correlation functions analytically. We demonstrate that the two edge correlation functions can be used to characterize the trivial, Su-Schrieffer-Heeger-like topological and topological superconductor phases of both the noninteracting and interacting systems and give their phase diagrams.
A new spin on primordial hydrogen recombination and a refined model for spinning dust radiation
NASA Astrophysics Data System (ADS)
Ali-Haimoud, Yacine
2011-08-01
This thesis describes theoretical calculations in two subjects: the primordial recombination of the electron-proton plasma about 400,000 years after the Big Bang and electric dipole radiation from spinning dust grains in the present-day interstellar medium. Primordial hydrogen recombination has recently been the subject of a renewed attention because of the impact of its theoretical uncertainties on predicted cosmic microwave background (CMB) anisotropy power spectra. The physics of the primordial recombination problem can be divided into two qualitatively different aspects. On the one hand, a detailed treatment of the non-thermal radiation field in the optically thick Lyman lines is required for an accurate recombination history near the peak of the visibility function. On the other hand, stimulated recombinations and out-of equilibrium effects are important at late times and a multilevel calculation is required to correctly compute the low-redshift end of the ionization history. Another facet of the problem is the requirement of computational efficiency, as a large number of recombination histories must be evaluated in Markov chains when analyzing CMB data. In this thesis, an effective multilevel atom method is presented, that speeds up multilevel atom computations by more than 5 orders of magnitude. The impact of previously ignored radiative transfer effects is quantified, and explicitly shown to be negligible. Finally, the numerical implementation of a fast and highly accurate primordial recombination code partly written by the author is described. The second part of this thesis is devoted to one of the potential galactic foregrounds for CMB experiments: the rotational emission from small dust grains. The rotational state of dust grains is described, first classically, and assuming that grains are rotating about their axis of greatest inertia. This assumption is then lifted, and a quantum-mechanical calculation is presented for disk-like grains with a randomized nutation state. In both cases, the probability distribution for the total grain angular momentum is computed with a Fokker-Planck equation, and the resulting emissivity is evaluated, as a function of environmental parameters. These computations are implemented in a public code written by the author.
Dynamic Stabilization of a Quantum Many-Body Spin System
NASA Astrophysics Data System (ADS)
Hoang, T. M.; Gerving, C. S.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.
2013-08-01
We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendrick, Brian Kent; Hazra, Jisha; Balakrishnan, Naduvaluth
The results of accurate quantum reactive scattering calculations for the D + HD(v = 4, j = 0)more » $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$), D + HD(v = 4, j = 0) $$\\to $$ H + D2($$v^{\\prime} $$, $$j^{\\prime} $$) and H + D2(v = 4, j = 0) $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$) reactions are presented for collision energies between $$1\\,\\mu {\\rm{K}}$$ and $$100\\,{\\rm{K}}$$. The ab initio BKMP2 PES for the ground electronic state of H3 is used and all values of total angular momentum between $J=0-4$ are included. The general vector potential approach is used to include the geometric phase. The rotationally resolved, vibrationally resolved, and total reaction rate coefficients are reported as a function of collision energy. Rotationally resolved differential cross sections are also reported as a function of collision energy and scattering angle. Large geometric phase effects appear in the ultracold reaction rate coefficients which result in a significant enhancement or suppression of the rate coefficient (up to 3 orders of magnitude) relative to calculations which ignore the geometric phase. The results are interpreted using a new quantum interference mechanism which is unique to ultracold collisions. Significant effects of the geometric phase also appear in the rotationally resolved differential cross sections which lead to a very different oscillatory structure in both energy and scattering angle. Several shape resonances occur in the 1–$$10\\,{\\rm{K}}$$ energy range and the geometric phase is shown to significantly alter the predicted resonance spectrum. The geometric phase effects and ultracold rate coefficients depend sensitively on the nuclear spin. Furthermore, experimentalists may be able to control the reaction by the selection of a particular nuclear spin state.« less
Kendrick, Brian Kent; Hazra, Jisha; Balakrishnan, Naduvaluth
2016-12-15
The results of accurate quantum reactive scattering calculations for the D + HD(v = 4, j = 0)more » $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$), D + HD(v = 4, j = 0) $$\\to $$ H + D2($$v^{\\prime} $$, $$j^{\\prime} $$) and H + D2(v = 4, j = 0) $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$) reactions are presented for collision energies between $$1\\,\\mu {\\rm{K}}$$ and $$100\\,{\\rm{K}}$$. The ab initio BKMP2 PES for the ground electronic state of H3 is used and all values of total angular momentum between $J=0-4$ are included. The general vector potential approach is used to include the geometric phase. The rotationally resolved, vibrationally resolved, and total reaction rate coefficients are reported as a function of collision energy. Rotationally resolved differential cross sections are also reported as a function of collision energy and scattering angle. Large geometric phase effects appear in the ultracold reaction rate coefficients which result in a significant enhancement or suppression of the rate coefficient (up to 3 orders of magnitude) relative to calculations which ignore the geometric phase. The results are interpreted using a new quantum interference mechanism which is unique to ultracold collisions. Significant effects of the geometric phase also appear in the rotationally resolved differential cross sections which lead to a very different oscillatory structure in both energy and scattering angle. Several shape resonances occur in the 1–$$10\\,{\\rm{K}}$$ energy range and the geometric phase is shown to significantly alter the predicted resonance spectrum. The geometric phase effects and ultracold rate coefficients depend sensitively on the nuclear spin. Furthermore, experimentalists may be able to control the reaction by the selection of a particular nuclear spin state.« less
A grid of MHD models for stellar mass loss and spin-down rates of solar analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, O.; Drake, J. J.
2014-03-01
Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the successmore » of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.« less
Laboratory detection of the C3N an C4H free radicals
NASA Technical Reports Server (NTRS)
Gottlieb, C. A.; Gottlieb, E. W.; Thaddeus, P.; Kawamura, H.
1983-01-01
The millimeter-wave spectra of the linear carbon chain free radicals C3N and C4H, first identified in IRC + 10216 and hitherto observed only in a few astronomical sources, have been detected with a Zeeman-modulated spectrometer in laboratory glow discharges through low pressure flowing mixtures of N2 + HC3N and He + HCCH, respectively. Four successive rotational transitions between 168 and 198 GHz have been measured for C3N, and five rotational transitions between 143 and 200 GHz for C4H; each is a well-resolved spin doublet owing to the unpaired electron present in both species. Precise values for the rotational, centrifugal distortion, and spin doubling constants have been obtained, which, with hyperfine constants derived from observations of the lower rotational transitions in the astronomical source TMC 1, allow all the rotational transitions of C3N and C4H at frequencies less than 300 GHz to be calculated to an absolute accuracy exceeding 1 ppm.
Control of Fan Blade Vibrations Using Piezoelectrics and Bi-Directional Telemetry
NASA Technical Reports Server (NTRS)
Provenza, Andrew J.; Morrison, Carlos R.
2011-01-01
A novel wireless device which transfers supply power through induction to rotating operational amplifiers and transmits low voltage AC signals to and from a rotating body by way of radio telemetry has been successfully demonstrated in the NASA Glenn Research Center (GRC) Dynamic Spin Test Facility. In the demonstration described herein, a rotating operational amplifier provides controllable AC power to a piezoelectric patch epoxied to the surface of a rotating Ti plate. The amplitude and phase of the sinusoidal voltage command signal, transmitted wirelessly to the amplifier, was tuned to completely suppress the 3rd bending resonant vibration of the plate. The plate's 3rd bending resonance was excited using rotating magnetic bearing excitation while it spun at slow speed in a vacuum chamber. A second patch on the opposite side of the plate was used as a sensor. This paper discusses the characteristics of this novel device, the details of a spin test, results from a preliminary demonstration, and future plans.
Effects of Spin on High-energy Radiation from Accreting Black Holes
NASA Astrophysics Data System (ADS)
O' Riordan, Michael; Pe'er, Asaf; McKinney, Jonathan C.
2016-11-01
Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford-Znajek (BZ) mechanism. We find that the X-ray and γ-ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power, but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.
The effect of engine spin direction on the dynamics of powered two wheelers
NASA Astrophysics Data System (ADS)
Massaro, Matteo; Marconi, Edoardo
2018-04-01
The effect of engine spin direction on the dynamics of powered two wheelers is investigated in terms of steady-state points (equilibria), vibration modes (stability), manoeuvre time (performance/manoeuvrability) and handling. The goal is to assess and quantify the advantage sometimes claimed for the 'counter-rotating' engine configuration, where the engine spins in the opposite direction with respect to wheels, against the 'conventional' configuration, where the engine spins in the same direction of wheels.
NASA Astrophysics Data System (ADS)
Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.
1991-08-01
We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.
Discovery of a New Super-Fast Rotator
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-07-01
Recent observations of asteroid (335433) 2005 UW163 have added a new member to the mysterious category of "super-fast rotators" — asteroids that rotate faster than should be possible, given current theories of asteroid composition. Asteroids come in sizes of a few meters to a few hundred kilometers, and can spin at rates from 0.1 to nearly 1000 revolutions per day. Current theories suggest that asteroids smaller than 150m are mostly monolithic (made up of a single rock), whereas asteroids larger than 150m are usually what's known as a "rubble pile" — a collection of rock fragments from past collisions, bound together into a clump by gravity. "Rubble pile" asteroids have an important structural limitation: they can't spin faster than once every 2.2 hours without flying apart as the centripetal force overcomes the force of gravity. Asteroid 2005 UW163 violates this rule: its diameter is 690m, but it rotates once every 1.29 hours. This discovery was made by a team of scientists using telescopes at the Palomar Observatory in California to conduct a large survey of the rotation rates of nearby asteroids. The group, led by Chan-Kao Chang of Taiwan's National Central University, discovered 11 super-fast rotator candidates — of which asteroid 2005 UW163 is the first to have its rotation rate confirmed by additional observations. The category of super-fast rotators poses an interesting problem: how are they able to spin so quickly without flying apart? Either the density of these asteroids is unexpectedly high (roughly four times the density of typical "rubble pile" asteroids), or else there must be additional forces besides gravity at work to help hold the asteroid together, such as bonds between the rocks. Future observations of super-fast rotators will help us better understand the peculiar structure of these rocky neighbors. Citation: Chan-Kao Chang et al. 2014 ApJ 791 L35 doi:10.1088/2041-8205/791/2/L35
The distribution of rotational velocities for low-mass stars in the Pleiades
NASA Technical Reports Server (NTRS)
Stauffer, John R.; Hartmann, Lee W.
1987-01-01
The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula.
Retrograde spins of near-Earth asteroids from the Yarkovsky effect.
La Spina, A; Paolicchi, P; Kryszczyńska, A; Pravec, P
2004-03-25
Dynamical resonances in the asteroid belt are the gateway for the production of near-Earth asteroids (NEAs). To generate the observed number of NEAs, however, requires the injection of many asteroids into those resonant regions. Collisional processes have long been claimed as a possible source, but difficulties with that idea have led to the suggestion that orbital drift arising from the Yarkovsky effect dominates the injection process. (The Yarkovsky effect is a force arising from differential heating-the 'afternoon' side of an asteroid is warmer than the 'morning' side.) The two models predict different rotational properties of NEAs: the usual collisional theories are consistent with a nearly isotropic distribution of rotation vectors, whereas the 'Yarkovsky model' predicts an excess of retrograde rotations. Here we report that the spin vectors of NEAs show a strong and statistically significant excess of retrograde rotations, quantitatively consistent with the theoretical expectations of the Yarkovsky model.
Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui
2017-01-01
Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649
Formation of nanodiamond films from aqueous suspensions during spin coating
NASA Astrophysics Data System (ADS)
Lebedev-Stepanov, P. V.; Molchanov, S. P.; Vasil'ev, A. L.; Mitrokhin, V. P.; Yurasik, G. A.; Aleksenskii, A. E.; Dideikin, A. T.
2016-03-01
The formation of multifunctional ordered arrays of detonation diamond particles is studied during self-assembling in spin coating of films of evaporating microdroplets. It is shown that the most homogeneous layer of diamond particles on a crystalline silicon substrate forms at a rate of substrate rotation of 8000 min-1, whereas a relation between the distribution of particles and the radius is clearly detected at rates of about 2000 min-1. As the rate of substrate rotation increases from 2500 to 8000 min-1, the density of the coating of a silicon substrate with diamond nanoparticles decreases approximately threefold. A model is proposed to estimate the increase in the number of individual diamond "points" with the substrate rotation frequency.
Complete analytical solution of electromagnetic field problem of high-speed spinning ball
NASA Astrophysics Data System (ADS)
Reichert, T.; Nussbaumer, T.; Kolar, J. W.
2012-11-01
In this article, a small sphere spinning in a rotating magnetic field is analyzed in terms of the resulting magnetic flux density distribution and the current density distribution inside the ball. From these densities, the motor torque and the eddy current losses can be calculated. An analytical model is derived, and its results are compared to a 3D finite element analysis. The model gives insight into the torque and loss characteristics of a solid rotor induction machine setup, which aims at rotating the sphere beyond 25 Mrpm.
Quantum Control of a Spin Qubit Coupled to a Photonic Crystal Cavity
2013-01-01
response for V polarization is 70 times greater than for H. The DR for X0 shows anisotropic exchange splitting23, but the polarization anisotropy in the...rotation pulse power and is indicative of damped Rabi oscillations of the electron spin. The peaks at 3 mW and 11 mW correspond to rotation pulses with...system in a p-i-n junction. Opt. Express 17, 18651–18658 (2009). 9. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic
Fast spin of the young extrasolar planet β Pictoris b.
Snellen, Ignas A G; Brandl, Bernhard R; de Kok, Remco J; Brogi, Matteo; Birkby, Jayne; Schwarz, Henriette
2014-05-01
The spin of a planet arises from the accretion of angular momentum during its formation, but the details of this process are still unclear. In the Solar System, the equatorial rotation velocities and, consequently, spin angular momenta of most of the planets increase with planetary mass; the exceptions to this trend are Mercury and Venus, which, since formation, have significantly spun down because of tidal interactions. Here we report near-infrared spectroscopic observations, at a resolving power of 100,000, of the young extrasolar gas giant planet β Pictoris b (refs 7, 8). The absorption signal from carbon monoxide in the planet's thermal spectrum is found to be blueshifted with respect to that from the parent star by approximately 15 kilometres per second, consistent with a circular orbit. The combined line profile exhibits a rotational broadening of about 25 kilometres per second, meaning that β Pictoris b spins significantly faster than any planet in the Solar System, in line with the extrapolation of the known trend in spin velocity with planet mass.
Design and Analysis of A Spin-Stabilized Projectile Experimental Apparatus
NASA Astrophysics Data System (ADS)
Siegel, Noah; Rodebaugh, Gregory; Elkins, Christopher; van Poppel, Bret; Benson, Michael; Cremins, Michael; Lachance, Austin; Ortega, Raymond; Vanderyacht, Douglas
2017-11-01
Spinning objects experience an effect termed `The Magnus Moment' due to an uneven pressure distribution based on rotation within a crossflow. Unlike the Magnus force, which is often small for spin-stabilized projectiles, the Magnus moment can have a strong detrimental effect on aerodynamic flight stability. Simulations often fail to accurately predict the Magnus moment in the subsonic flight regime. In an effort to characterize the conditions that cause the Magnus moment, researchers in this work employed Magnetic Resonance Velocimetry (MRV) techniques to measure three dimensional, three component, sub-millimeter resolution fluid velocity fields around a scaled model of a spinning projectile in flight. The team designed, built, and tested using a novel water channel apparatus that was fully MRI-compliant - water-tight and non-ferrous - and capable of spinning a projectile at a constant rotational speed. A supporting numerical simulation effort informed the design process of the scaled projectile to thicken the hydrodynamic boundary layer near the outer surface of the projectile. Preliminary testing produced two-dimensional and three-dimensional velocity data and revealed an asymmetric boundary layer around the projectile, which is indicative of the Magnus effect.
NASA Astrophysics Data System (ADS)
Limes, M. E.; Sheng, D.; Romalis, M. V.
2018-01-01
We describe a
Meakin, James A; Jezzard, Peter
2013-03-01
Velocity-selective (VS) arterial spin labeling is a promising method for measuring perfusion in areas of slow or collateral flow by eliminating the bolus arrival delay associated with other spin labeling techniques. However, B(0) and B(1) inhomogeneities and eddy currents during the VS preparation hinder accurate quantification of perfusion with VS arterial spin labeling. In this study, it is demonstrated through simulations and experiments in healthy volunteers that eddy currents cause erroneous tagging of static tissue. Consequently, mean gray matter perfusion is overestimated by up to a factor of 2, depending on the VS preparation used. A novel eight-segment B(1) insensitive rotation VS preparation is proposed to reduce eddy current effects while maintaining the B(0) and B(1) insensitivity of previous preparations. Compared to two previous VS preparations, the eight-segment B(1) insensitive rotation is the most robust to eddy currents and should improve the quality and reliability of VS arterial spin labeling measurements in future studies. Copyright © 2012 Wiley Periodicals, Inc.
Gel spinning of silk tubes for tissue engineering
Lovett, Michael; Cannizzaro, Christopher; Vunjak-Novakovic, Gordana; Kaplan, David L.
2011-01-01
Tubular vessels for tissue engineering are typically fabricated using a molding, dipping, or electrospinning technique. While these techniques provide some control over inner and outer diameters of the tube, they lack the ability to align the polymers or fibers of interest throughout the tube. This is an important aspect of biomaterial composite structure and function for mechanical and biological impact of tissue outcomes. We present a novel aqueous process system to spin tubes from biopolymers and proteins such as silk fibroin. Using silk as an example, this method of winding an aqueous solution around a reciprocating rotating mandrel offers substantial improvement in the control of the tube properties, specifically with regard to winding pattern, tube porosity, and composite features. Silk tube properties are further controlled via different post-spinning processing mechanisms such as methanol-treatment, air-drying, and lyophilization. This approach to tubular scaffold manufacture offers numerous tissue engineering applications such as complex composite biomaterial matrices, blood vessel grafts and nerve guides, among others. PMID:18801570
Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions.
Xue, Fei; MacDonald, A H
2018-05-04
We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.
Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions
NASA Astrophysics Data System (ADS)
Xue, Fei; MacDonald, A. H.
2018-05-01
We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.
Nematicity and magnetism in LaFeAsO single crystals probed by 75As nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Ok, J. M.; Baek, S.-H.; Efremov, D. V.; Kappenberger, R.; Aswartham, S.; Kim, J. S.; van den Brink, Jeroen; Büchner, B.
2018-05-01
We report a 75As nuclear magnetic resonance study in LaFeAsO single crystals, which undergoes nematic and antiferromagnetic transitions at Tnem˜156 K and TN˜138 K, respectively. Below Tnem, the 75As spectrum splits sharply into two for an external magnetic field parallel to the orthorhombic a or b axis in the FeAs planes. Our analysis of the data demonstrates that the NMR line splitting arises from an electronically driven rotational symmetry breaking. The 75As spin-lattice relaxation rate as a function of temperature shows that spin fluctuations are strongly enhanced just below Tnem. These NMR findings indicate that nematic order promotes spin fluctuations in magnetically ordered LaFeAsO, as observed in nonmagnetic and superconducting FeSe. We conclude that the origin of nematicity is identical in both FeSe and LaFeAsO regardless of whether or not a long-range magnetic order develops in the nematic state.
Constraints on the near-Earth asteroid obliquity distribution from the Yarkovsky effect
NASA Astrophysics Data System (ADS)
Tardioli, C.; Farnocchia, D.; Rozitis, B.; Cotto-Figueroa, D.; Chesley, S. R.; Statler, T. S.; Vasile, M.
2017-12-01
Aims: From light curve and radar data we know the spin axis of only 43 near-Earth asteroids. In this paper we attempt to constrain the spin axis obliquity distribution of near-Earth asteroids by leveraging the Yarkovsky effect and its dependence on an asteroid's obliquity. Methods: By modeling the physical parameters driving the Yarkovsky effect, we solve an inverse problem where we test different simple parametric obliquity distributions. Each distribution results in a predicted Yarkovsky effect distribution that we compare with a χ2 test to a dataset of 125 Yarkovsky estimates. Results: We find different obliquity distributions that are statistically satisfactory. In particular, among the considered models, the best-fit solution is a quadratic function, which only depends on two parameters, favors extreme obliquities consistent with the expected outcomes from the YORP effect, has a 2:1 ratio between retrograde and direct rotators, which is in agreement with theoretical predictions, and is statistically consistent with the distribution of known spin axes of near-Earth asteroids.
Sub-Doppler infrared spectroscopy of propargyl radical (H{sub 2}CCCH) in a slit supersonic expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chih-Hsuan; Nesbitt, David J.
The acetylenic CH stretch mode (ν{sub 1}) of propargyl (H{sub 2}CCCH) radical has been studied at sub-Doppler resolution (∼60 MHz) via infrared laser absorption spectroscopy in a supersonic slit-jet discharge expansion, where low rotational temperatures (T{sub rot} = 13.5(4) K) and lack of spectral congestion permit improved determination of band origin and rotational constants for the excited state. For the lowest J states primarily populated in the slit jet cooled expansion, fine structure due to the unpaired electron spin is resolved completely, which permits accurate analysis of electron spin-rotation interactions in the vibrationally excited states (ε{sub aa} = − 518.1(1.8),more » ε{sub bb} = − 13.0(3), ε{sub cc} = − 1.8(3) MHz). In addition, hyperfine broadening in substantial excess of the sub-Doppler experimental linewidths is observed due to nuclear spin–electron spin contributions at the methylenic (—CH{sub 2}) and acetylenic (—CH) positions, which permits detailed modeling of the fine/hyperfine structure line contours. The results are consistent with a delocalized radical spin density extending over both methylenic and acetylenic C atoms, in excellent agreement with simple resonance structures as well as ab initio theoretical calculations.« less
NASA Astrophysics Data System (ADS)
Vogelsberg, Cortnie Sue
Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently strong to direct an assembly of molecular machines, 3) the relative flexibility of the crystal environment proximate to a dynamic component may have a significant effect on its function, and, 4) molecular machines, which possess both solid-state photochemical reactivity and dynamics may show complex reaction kinetics if the correlation time of the dynamic process and the lifetime of the excited state occur on the same time scale and the dynamic moiety inherently participates as a reaction intermediate. The study of periodic mesoporous organosilica with hierarchical order probed molecular dynamics within 2D layers of molecular rotors, organized in only one dimension and with ca. 50% exposed to the mesopore free volume. From their study, it was discovered that: 1) molecular rotors, which comprise the layers of the mesopore walls, form a 2D rotational glass, 2) rotator dynamics within the 2D rotational glass undergo a transition to a 2D rotational fluid, and, 3) a 2D rotational glass transition may be exploited to develop hyper-sensitive thermally activated molecular machines. The study of a metal-organic framework assembled from molecular rotors probed dynamics in a periodic three-dimensional free-volume environment, without the presence of close contacts. From the study of this solid-state material, it was determined that: 1) the intrinsic electronic barrier is one of the few factors, which may affect functional dynamics in a true free-volume environment, and, 2) molecular machines with dynamic barriers <
A New MEMS Gyroscope Used for Single-Channel Damping
Zhang, Zengping; Zhang, Wei; Zhang, Fuxue; Wang, Biao
2015-01-01
The silicon micromechanical gyroscope, which will be introduced in this paper, represents a novel MEMS gyroscope concept. It is used for the damping of a single-channel control system of rotating aircraft. It differs from common MEMS gyroscopes in that does not have a drive structure, itself, and only has a sense structure. It is installed on a rotating aircraft, and utilizes the aircraft spin to make its sensing element obtain angular momentum. When the aircraft is subjected to an angular rotation, a periodic Coriolis force is induced in the direction orthogonal to both the angular momentum and the angular velocity input axis. This novel MEMS gyroscope can thus sense angular velocity inputs. The output sensing signal is exactly an amplitude-modulation signal. Its envelope is proportional to the input angular velocity, and the carrier frequency corresponds to the spin frequency of the rotating aircraft, so the MEMS gyroscope can not only sense the transverse angular rotation of an aircraft, but also automatically change the carrier frequency over the change of spin frequency, making it very suitable for the damping of a single-channel control system of a rotating aircraft. In this paper, the motion equation of the MEMS gyroscope has been derived. Then, an analysis has been carried to solve the motion equation and dynamic parameters. Finally, an experimental validation has been done based on a precision three axis rate table. The correlation coefficients between the tested data and the theoretical values are 0.9969, 0.9872 and 0.9842, respectively. These results demonstrate that both the design and sensing mechanism are correct. PMID:25942638
Magnetic stripes and skyrmions with helicity reversals.
Yu, Xiuzhen; Mostovoy, Maxim; Tokunaga, Yusuke; Zhang, Weizhu; Kimoto, Koji; Matsui, Yoshio; Kaneko, Yoshio; Nagaosa, Naoto; Tokura, Yoshinori
2012-06-05
It was recently realized that topological spin textures do not merely have mathematical beauty but can also give rise to unique functionalities of magnetic materials. An example is the skyrmion--a nano-sized bundle of noncoplanar spins--that by virtue of its nontrivial topology acts as a flux of magnetic field on spin-polarized electrons. Lorentz transmission electron microscopy recently emerged as a powerful tool for direct visualization of skyrmions in noncentrosymmetric helimagnets. Topologically, skyrmions are equivalent to magnetic bubbles (cylindrical domains) in ferromagnetic thin films, which were extensively explored in the 1970s for data storage applications. In this study we use Lorentz microscopy to image magnetic domain patterns in the prototypical magnetic oxide-M-type hexaferrite with a hint of scandium. Surprisingly, we find that the magnetic bubbles and stripes in the hexaferrite have a much more complex structure than the skyrmions and spirals in helimagnets, which we associate with the new degree of freedom--helicity (or vector spin chirality) describing the direction of spin rotation across the domain walls. We observe numerous random reversals of helicity in the stripe domain state. Random helicity of cylindrical domain walls coexists with the positional order of magnetic bubbles in a triangular lattice. Most unexpectedly, we observe regular helicity reversals inside skyrmions with an unusual multiple-ring structure.
Friction spinning - Twist phenomena and the capability of influencing them
NASA Astrophysics Data System (ADS)
Lossen, Benjamin; Homberg, Werner
2016-10-01
The friction spinning process can be allocated to the incremental forming techniques. The process consists of process elements from both metal spinning and friction welding. The selective combination of process elements from these two processes results in the integration of friction sub-processes in a spinning process. This implies self-induced heat generation with the possibility of manufacturing functionally graded parts from tube and sheets. Compared with conventional spinning processes, this in-process heat treatment permits the extension of existing forming limits and also the production of more complex geometries. Furthermore, the defined adjustment of part properties like strength, grain size/orientation and surface conditions can be achieved through the appropriate process parameter settings and consequently by setting a specific temperature profile in combination with the degree of deformation. The results presented from tube forming start with an investigation into the resulting twist phenomena in flange processing. In this way, the influence of the main parameters, such as rotation speed, feed rate, forming paths and tool friction surface, and their effects on temperature, forces and finally the twist behavior are analyzed. Following this, the significant correlations with the parameters and a new process strategy are set out in order to visualize the possibility of achieving a defined grain texture orientation.
Slow Manifold and Hannay Angle in the Spinning Top
ERIC Educational Resources Information Center
Berry, M. V.; Shukla, P.
2011-01-01
The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…
Free-Spinning-Tunnel Investigation of a 1/17 Scale Model of the Cessna T-37A Airplane
NASA Technical Reports Server (NTRS)
Bowman, James S., Jr.; Healy, Frederick M.
1958-01-01
Results of an investigation of a dynamic model in the Langley 20-foot free-spinning tunnel are presented. Erect spin and recovery characteristics were determined for a range of mass distributions and center-of-gravity positions. The effects of lateral displacement of the center of gravity, engine rotation, nose strakes, and increased rudder area were investigated.
NASA Astrophysics Data System (ADS)
Pandey, Manoj Kumar; Ramachandran, Ramesh
2010-03-01
The application of solid-state NMR methodology for bio-molecular structure determination requires the measurement of constraints in the form of 13C-13C and 13C-15N distances, torsion angles and, in some cases, correlation of the anisotropic interactions. Since the availability of structurally important constraints in the solid state is limited due to lack of sufficient spectral resolution, the accuracy of the measured constraints become vital in studies relating the three-dimensional structure of proteins to its biological functions. Consequently, the theoretical methods employed to quantify the experimental data become important. To accentuate this aspect, we re-examine analytical two-spin models currently employed in the estimation of 13C-13C distances based on the rotational resonance (R 2) phenomenon. Although the error bars for the estimated distances tend to be in the range 0.5-1.0 Å, R 2 experiments are routinely employed in a variety of systems ranging from simple peptides to more complex amyloidogenic proteins. In this article we address this aspect by highlighting the systematic errors introduced by analytical models employing phenomenological damping terms to describe multi-spin effects. Specifically, the spin dynamics in R 2 experiments is described using Floquet theory employing two different operator formalisms. The systematic errors introduced by the phenomenological damping terms and their limitations are elucidated in two analytical models and analysed by comparing the results with rigorous numerical simulations.
Emsley, J W; Longeri, M; Merlet, D; Pileio, G; Suryaprakash, N
2006-06-01
NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, J(ij), and total anisotropic couplings, T(ij), between all the (1)H, (19)F, and (13)C nuclei, except for those between two (13)C nuclei. The values obtained for T(ij) in principle contain a contribution from J(ij)(aniso), the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, D(ij), to be extracted from the T(ij), and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from J(CF)(aniso) or J(FF)(aniso) in the two compounds studied.
NASA Astrophysics Data System (ADS)
Emsley, J. W.; Longeri, M.; Merlet, D.; Pileio, G.; Suryaprakash, N.
2006-06-01
NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, Jij, and total anisotropic couplings, Tij, between all the 1H, 19F, and 13C nuclei, except for those between two 13C nuclei. The values obtained for Tij in principle contain a contribution from Jijaniso, the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, Dij, to be extracted from the Tij, and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from JCFaniso or JFFaniso in the two compounds studied.
Time-dependent Gutzwiller theory of magnetic excitations in the Hubbard model
NASA Astrophysics Data System (ADS)
Seibold, G.; Becca, F.; Rubin, P.; Lorenzana, J.
2004-04-01
We use a spin-rotational invariant Gutzwiller energy functional to compute random-phase-approximation-like (RPA) fluctuations on top of the Gutzwiller approximation (GA). The method can be viewed as an extension of the previously developed GA+RPA approach for the charge sector [G. Seibold and J. Lorenzana, Phys. Rev. Lett. 86, 2605 (2001)] with respect to the inclusion of the magnetic excitations. Unlike the charge case, no assumptions about the time evolution of the double occupancy are needed in this case. Interestingly, in a spin-rotational invariant system, we find the correct degeneracy between triplet excitations, showing the consistency of both computations. Since no restrictions are imposed on the symmetry of the underlying saddle-point solution, our approach is suitable for the evaluation of the magnetic susceptibility and dynamical structure factor in strongly correlated inhomogeneous systems. We present a detailed study of the quality of our approach by comparing with exact diagonalization results and show its much higher accuracy compared to the conventional Hartree-Fock+RPA theory. In infinite dimensions, where the GA becomes exact for the Gutzwiller variational energy, we evaluate ferromagnetic and antiferromagnetic instabilities from the transverse magnetic susceptibility. The resulting phase diagram is in complete agreement with previous variational computations.
NASA Astrophysics Data System (ADS)
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
The role of spin–rotation coupling in the non-exponential decay of hydrogen-like heavy ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambiase, Gaetano, E-mail: lambiase@sa.infn.it; INFN, Sezione di Napoli; International Institute for Advanced Scientific Studies, 89019 Vietri sul Mare
2013-05-15
Recent experiments carried out at the storage ring of GSI in Darmstadt reveal an unexpected oscillation in the orbital electron capture and subsequent decay of hydrogen-like {sup 140}Pr{sup 58+}, {sup 142}Pm{sup 60+} and {sup 122}I{sup 52+}. The modulations have periods of 7.069(8) s, 7.10(22) s and 6.1 s respectively in the laboratory frame and are superimposed on the expected exponential decays. In this paper we propose a semiclassical model in which the observed modulations arise from the coupling of rotation to the spins of electron and nucleus. We show that the modulations are connected to quantum beats and to themore » effect of the Thomas precession on the spins of bound electron and nucleus, the magnetic moment precessions of electron and nucleus and their cyclotron frequencies. We also show that the spin–spin coupling of electron and nucleus, though dominant relative to the magnetic moment coupling of electron and nucleus with the storage ring magnetic field, does not contribute to the modulation because these terms average out during the time of flight of the ions, or cancel out. The model also predicts that the anomaly cannot be observed if the motion of the ions is rectilinear, or if the ions are stopped in a target (decay of neutral atoms in solid environments). It also supports the notion that no modulation occurs for the β{sup +}-decay branch. -- Highlights: ► Spin precession of the spin of nucleus and electron in storage ring. ► Coupling of rotation to the spin of electron and nucleus. ► Modulation in the decay probability of the heavy ions induced by quantum beats. ► Comparison with experimental data.« less
Millimeter/Submillimeter Spectroscopy of TiO (X3Δr): The Rare Titanium Isotopologues
NASA Astrophysics Data System (ADS)
Lincowski, A. P.; Halfen, D. T.; Ziurys, L. M.
2016-12-01
Pure rotational spectra of the rare isotopologues of titanium oxide, 46TiO, 47TiO, 49TiO, and 50TiO, have been recorded using a combination of Fourier transform millimeter-wave (FTmmW) and millimeter/submillimeter direct absorption techniques in the frequency range 62-538 GHz. This study is the first complete spectroscopic characterization of these species in their X 3Δ r ground electronic states. The isotopologues were created by the reaction of N2O or O2 and titanium vapor, produced either by laser ablation or in a Broida-type oven, and observed in the natural Ti isotopic abundances. Between 10 and 11 rotational transitions J + 1 ≤ftrightarrow J were measured for each species, typically in all 3 spin-orbit ladders Ω = 1, 2, and 3. For 47TiO and 49TiO, hyperfine structure was resolved, originating from the titanium-47 and titanium-49 nuclear spins of I = 5/2 and 7/2, respectively. For the Ω = 1 and 3 components, the hyperfine structure was found to follow a classic Landé pattern, while that for Ω = 2 appeared to be perturbed, likely a result of mixing with the nearby isoconfigurational a 1Δ state. The spectra were analyzed with a case (a) Hamiltonian, and rotational, spin-orbit, and spin-spin parameters were determined for each species, as well as magnetic hyperfine and electric quadrupole constants for the two molecules with nuclear spins. The most abundant species, 48TiO, has been detected in circumstellar envelopes. These measurements will enable other titanium isotopologues to be studied at millimeter wavelengths, providing Ti isotope ratios that can test models of nucleosynthesis.
Time-resolved lateral spin-caloric transport of optically generated spin packets in n-GaAs
NASA Astrophysics Data System (ADS)
Göbbels, Stefan; Güntherodt, Gernot; Beschoten, Bernd
2018-05-01
We report on lateral spin-caloric transport (LSCT) of electron spin packets which are optically generated by ps laser pulses in the non-magnetic semiconductor n-GaAs at K. LSCT is driven by a local temperature gradient induced by an additional cw heating laser. The spatio-temporal evolution of the spin packets is probed using time-resolved Faraday rotation. We demonstrate that the local temperature-gradient induced spin diffusion is solely driven by a non-equilibrium hot spin distribution, i.e. without involvement of phonon drag effects. Additional electric field-driven spin drift experiments are used to verify directly the validity of the non-classical Einstein relation for moderately doped semiconductors at low temperatures for near band-gap excitation.
Theory of Direct Optical Measurement of Pure Spin Currents in Direct-gap Semiconductors
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Ren-Bao; Zhu, Bang-Fen
2010-01-01
We predict that a pure spin current in a semiconductor may lead to the optical circular birefingence effect without invoking magnetization. This effect may be exploited for a direct, non-destructive measurement of the pure spin current. We derive the effective coupling between a pure spin current and a polarized light beam, and point out that it originates from the inherent spin-orbit coupling in the valence bands, rather than the Rashba or Dresselhaus effects due to inversion asymmetries. The Faraday rotation angle in GaAs is estimated, which indicates that this spin current optical birefringence is experimentally observable.
Instrumentation for measuring the dynamic pressure on rotating compressor blades
NASA Technical Reports Server (NTRS)
Grant, H. P.; Lanati, G. A.
1978-01-01
To establish the capability for measurement of oscillatory pressure on rotating blades, miniature fast response semiconductor strain gage pressure transducers (2mm x 0.33mm) were mounted in several configurations on thin titanium and steel compressor blades and subjected to pressure cycles from 1 to 310 kPa during static tests and spin tests. Static test conditions included 20 C to 150 C, 0 to 3000 tensile microstrain, -1000 to +1000 bending microstrain and + or - 650G vibration. The spin test conditions included 20 C to 82 C at 0 to 90,000G. Durability was excellent. Pressure transducer sensitivity changed by only a few percent over this range of environmental conditions. Noise signal due to oscillatory acceleration normal to the diaphragm was acceptable (0.33Pa/G). Noise signal due to oscillatory strain was acceptable (0.5 Pa/microstrain) when the transducer was mounted on a 0.05mm rubber pad, with a total buildup of 0.38mm on the measure surface. Back mounting or partial recessing to eliminate buildup, increased the strain effect to 1.2 Pa/microstrain. Flush mounting within the blade to eliminate buildup reduced the strain effect, but required development of a special transducer shape. This transducer was not available in time for spin tests. Unpredictable zero drift + or - 14 kPa ruled out the use of these mounting arrangements for accurate steady-state (D.C.) measurements on rotating blades. The two best configurations fully developed and spin tested were then successfully applied in the NAS3-20606 rotating fan flutter program for quantitative measurement of oscillatory pressure amplitudes.
Yasumatsu, Naoya; Watanabe, Shinichi
2012-02-01
We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.
SPIN–SPIN COUPLING IN THE SOLAR SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batygin, Konstantin; Morbidelli, Alessandro, E-mail: kbatygin@gps.caltech.edu
The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In thismore » work, we explore the rotational evolution of such systems with specific emphasis on quadrupole–quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin–spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin–spin coupling may be consequential for highly elongated, tightly orbiting binary objects.« less
Lightcurves of the Karin family asteroids
NASA Astrophysics Data System (ADS)
Yoshida, Fumi; Ito, Takashi; Dermawan, Budi; Nakamura, Tsuko; Takahashi, Shigeru; Ibrahimov, Mansur A.; Malhotra, Renu; Ip, Wing-Huen; Chen, Wen-Ping; Sawabe, Yu; Haji, Masashige; Saito, Ryoko; Hirai, Masanori
2016-05-01
The Karin family is a young asteroid family formed by an asteroid breakup 5.8 Myr ago. Since the members of this family probably have not experienced significant orbital or collisional evolution yet, it is possible that they still preserve properties of the original family-forming event in terms of their spin state. We carried out a series of photometric observations of the Karin family asteroids, and here we report on the analysis of the lightcurves including the rotation period of eleven members. The mean rotation rate of the Karin family members turned out to be much lower than those of near-Earth asteroids or small main belt asteroids (diameter D < 12 km), and even lower than that of large main belt asteroids (D > 130 km). We investigated a correlation between the peak-to-trough variation and the rotation period of the eleven Karin family asteroids, and found a possible trend that elongated members have lower spin rates, and less elongated members have higher spin rates. However, this trend has to be confirmed by another series of future observations.
Microwave imaging of spinning object using orbital angular momentum
NASA Astrophysics Data System (ADS)
Liu, Kang; Li, Xiang; Gao, Yue; Wang, Hongqiang; Cheng, Yongqiang
2017-09-01
The linear Doppler shift used for the detection of a spinning object becomes significantly weakened when the line of sight (LOS) is perpendicular to the object, which will result in the failure of detection. In this paper, a new detection and imaging technique for spinning objects is developed. The rotational Doppler phenomenon is observed by using the microwave carrying orbital angular momentum (OAM). To converge the radiation energy on the area where objects might exist, the generation method of OAM beams is proposed based on the frequency diversity principle, and the imaging model is derived accordingly. The detection method of the rotational Doppler shift and the imaging approach of the azimuthal profiles are proposed, which are verified by proof-of-concept experiments. Simulation and experimental results demonstrate that OAM beams can still be used to obtain the azimuthal profiles of spinning objects even when the LOS is perpendicular to the object. This work remedies the insufficiency in existing microwave sensing technology and offers a new solution to the object identification problem.
Modeling the Anomalous Microwave Emission with Spinning Nanoparticles: No PAHs Required
NASA Astrophysics Data System (ADS)
Hensley, Brandon S.; Draine, B. T.
2017-02-01
In light of recent observational results indicating an apparent lack of correlation between the anomalous microwave emission (AME) and mid-infrared emission from polycyclic aromatic hydrocarbons, we assess whether rotational emission from spinning silicate and/or iron nanoparticles could account for the observed AME without violating observational constraints on interstellar abundances, ultraviolet extinction, and infrared emission. By modifying the SpDust code to compute the rotational emission from these grains, we find that nanosilicate grains could account for the entirety of the observed AME, whereas iron grains could be responsible for only a fraction, even for extreme assumptions on the amount of interstellar iron concentrated in ultrasmall iron nanoparticles. Given the added complexity of contributions from multiple grain populations to the total spinning dust emission, as well as existing uncertainties due to the poorly constrained grain size, charge, and dipole moment distributions, we discuss generic, carrier-independent predictions of spinning dust theory and observational tests that could help identify the AME carrier(s).
Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation.
Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T; Roy, Soumya Singha; Brown, Richard C D; Pileio, Giuseppe; Levitt, Malcolm H
2015-01-28
Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T1. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in (13)CH3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.
Anomalous current from the covariant Wigner function
NASA Astrophysics Data System (ADS)
Prokhorov, George; Teryaev, Oleg
2018-04-01
We consider accelerated and rotating media of weakly interacting fermions in local thermodynamic equilibrium on the basis of kinetic approach. Kinetic properties of such media can be described by covariant Wigner function incorporating the relativistic distribution functions of particles with spin. We obtain the formulae for axial current by summation of the terms of all orders of thermal vorticity tensor, chemical potential, both for massive and massless particles. In the massless limit all the terms of fourth and higher orders of vorticity and third order of chemical potential and temperature equal zero. It is shown, that axial current gets a topological component along the 4-acceleration vector. The similarity between different approaches to baryon polarization is established.
Quantum Information Processing with Large Nuclear Spins in GaAs Semiconductors
NASA Astrophysics Data System (ADS)
Leuenberger, Michael N.; Loss, Daniel; Poggio, M.; Awschalom, D. D.
2002-10-01
We propose an implementation for quantum information processing based on coherent manipulations of nuclear spins I=3/2 in GaAs semiconductors. We describe theoretically an NMR method which involves multiphoton transitions and which exploits the nonequidistance of nuclear spin levels due to quadrupolar splittings. Starting from known spin anisotropies we derive effective Hamiltonians in a generalized rotating frame, valid for arbitrary I, which allow us to describe the nonperturbative time evolution of spin states generated by magnetic rf fields. We identify an experimentally observable regime for multiphoton Rabi oscillations. In the nonlinear regime, we find Berry phase interference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tada, Kohei; Kashihara, Wataru; Baba, Masaaki
2014-11-14
Rotationally resolved high-resolution fluorescence excitation spectra of {sup 14}NO{sub 3} radical have been observed for the 662 nm band, which is assigned as the 0–0 band of the B{sup ~2}E′ ←X{sup ~2}A{sub 2}′ transition, by crossing a single-mode laser beam perpendicularly to a collimated molecular beam. More than 3000 rotational lines were detected in 15 070–15 145 cm{sup −1} region, but it is difficult to find the rotational line series. Remarkable rotational line pairs, whose interval is about 0.0246 cm{sup −1}, were found in the observed spectrum. This interval is the same amount with the spin-rotation splitting of the X{sup ~2}A{sub 2}′more » (υ = 0, k = 0, N = 1) level. From this interval and the observed Zeeman splitting up to 360 G, seven line pairs were assigned as the transitions to the {sup 2}E′{sub 3/2} (J′ = 1.5) levels and 15 line pairs were assigned as the transitions to the {sup 2}E′{sub 1/2} (J′ = 0.5) levels. From the rotational analysis, we recognized that the {sup 2}E′ state splits into {sup 2}E′{sub 3/2} and {sup 2}E′{sub 1/2} by the spin-orbit interaction and the effective spin-orbit interaction constant was roughly estimated as –21 cm{sup −1}. From the number of the rotational line pairs, we concluded that the complicated rotational structure of this 662 nm band of {sup 14}NO{sub 3} mainly owes to the vibronic interaction between the B{sup ~2}E′ state and the dark A{sup ~2}E″ state through the a{sub 2}″ symmetry vibrational mode.« less
Rotational band structure in Mg 32
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, H. L.; Fallon, P.; Macchiavelli, A. O.
2016-03-01
There is significant evidence supporting the existence of deformed ground states within the neutron-rich N ≈ 20 neon, sodium, and magnesium isotopes that make up what is commonly called the “island of inversion.” However, the rotational band structures, which are a characteristic fingerprint of a rigid nonspherical shape, have yet to be observed. In this work, we report on a measurement and analysis of the yrast (lowest lying) rotational band in 32 Mg up to spin I = 6 + produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ -ray tracking detector array, GRETINA ( γmore » -ray energy tracking in-beam nuclear array). Large-scale shell-model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked-shell-model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results.« less
Spin Rate Diversity Amongst Ten-meter Class Near Earth Asteroids
NASA Astrophysics Data System (ADS)
Ryan, William; Ryan, Eileen V.
2016-10-01
The spin rates of small asteroids can provide insight into their mechanical structure, origin, and subsequent evolution. This is of more than just scientific interest since these are also the objects that will hit the Earth most frequently. Early statistics [Pravec and Harris, 2000] for Near Earth Asteroids (NEAs) with diameters of ~100 meters or less had resulted in the conclusion that many are rotating more rapidly than feasible for a gravitationally bound system of constituent components (i.e, 'rubble piles'). However, more recent studies [Holsapple, 2007; Scheeres et al. 2010] have focused on how non-gravitational cohesion mechanisms do not necessarily rule out a rubble pile structure for fast spin rate bodies. To further study this issue, we will report on the recent spin rate results for the smallest asteroids observed as part of our ongoing NEA target-of-opportunity characterization research [Ryan and Ryan, 2016] conducted using the Magdalena Ridge Observatory's 2.4-meter telescope.Spin rates determined by this program plus results from the current lightcurve database [Warner et al. 2016] indicate that the very smallest NEAs with H>29 rotate with periods of minutes or less. This implies that these objects possess significant strength, hinting that they are likely examples of truly monolithic fragments. However, our observations also show a great diversity in rotation periods for asteroids that are only slightly larger. In particular, the H~28.6 asteroids 2016 CC136 and 2016 CG18 were observed to rotate with periods approaching or exceeding ~2 hours, with the latter showing a tumbling behavior. In a subset of our database that includes 22 asteroids with H~27.5 (~10 meters) or greater, a full range of periods from less than a minute to greater than 2 hours (close to the minimal period of a self-gravitating system), have been identified. Moreover, at least three of these are in a tumbling state with multiple periods clearly identified, implying constraints on their ages. The overall diversity in the observed spins in our database will be discussed in the context of better understanding internal body strengths required for the smallest asteroids.
Epp, V; Gün, O; Deiseroth, H-J; Wilkening, M
2013-05-21
Lithium-rich argyrodites belong to a relatively new group of fast ion conducting solids. They might serve as powerful electrolytes in all-solid-state lithium-ion batteries being, from a medium-term point of view, the key technology when safe energy storage systems have to be developed. Spin-lattice relaxation (SLR) nuclear magnetic resonance (NMR) measurements carried out in the rotating frame of reference turned out to be the method of choice to study Li dynamics in argyrodites. When plotted as a function of the inverse temperature, the SLR rates log10(R1ρ) reveal an asymmetric diffusion-induced rate peak. The rate peak contains information on the Li jump rate, the activation energy of the hopping process as well as correlation effects. In particular, considering the high-temperature flank of the SLR NMR rate peak recorded in the rotating frame of reference, an activation energy of approximately 0.49 eV is found. This value represents long-range lithium jump diffusion in crystalline Li7PSe6. As an example, at 325 K the Li jump rate determined from SLR NMR is in the order of 1.4 × 10(5) s(-1). The pronounced asymmetry of the rate peak R1ρ(1/T) points to correlated Li motion. It is comparable to that which is typically found for structurally disordered materials showing a broad range of correlation times.
Identical spin rotation effect and electron spin waves in quantum gas of atomic hydrogen
NASA Astrophysics Data System (ADS)
Lehtonen, L.; Vainio, O.; Ahokas, J.; Järvinen, J.; Novotny, S.; Sheludyakov, S.; Suominen, K.-A.; Vasiliev, S.; Khmelenko, V. V.; Lee, D. M.
2018-05-01
We present an experimental study of electron spin waves in atomic hydrogen gas compressed to high densities of ∼5 × 1018 cm‑3 at temperatures ranging from 0.26 to 0.6 K in the strong magnetic field of 4.6 T. Hydrogen gas is in a quantum regime when the thermal de-Broglie wavelength is much larger than the s-wave scattering length. In this regime the identical particle effects play a major role in atomic collisions and lead to the identical spin rotation effect (ISR). We observed a variety of spin wave modes caused by this effect with strong dependence on the magnetic potential caused by variations of the polarizing magnetic field. We demonstrate confinement of the ISR modes in the magnetic potential and manipulate their properties by changing the spatial profile of the magnetic field. We have found that at a high enough density of H gas the magnons accumulate in their ground state in the magnetic trap and exhibit long coherence, which has a profound effect on the electron spin resonance spectra. Such macroscopic accumulation of the ground state occurs at a certain critical density of hydrogen gas, where the chemical potential of the magnons becomes equal to the energy of their ground state in the trapping potential.
NASA Astrophysics Data System (ADS)
Yamauchi, Ichihiro; Hiraishi, Masatoshi; Okabe, Hirotaka; Takeshita, Soshi; Koda, Akihiro; Kojima, Kenji M.; Kadono, Ryosuke; Tanaka, Hidekazu
2018-04-01
We report a muon spin rotation/relaxation (μ SR ) study of single-crystalline samples of the α -RuCl3 honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibility and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures TN with decreasing temperature, eventually falling into the TN=7 K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via μ SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different TN's. We also perform μ SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zigzag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.
H{sub 2}—AgCl: A spectroscopic study of a dihydrogen complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubbs, G. S.; Obenchain, Daniel A.; Pickett, Herbert M.
2014-09-21
H{sub 2}—AgCl has been observed on a Fourier transform microwave spectrometer equipped with laser ablation source and determined to be a dihydrogen complex. Transitions up to J = 3–2 have been measured and analyzed for four isotopologues of the complex containing ortho and para H{sub 2}. The ortho and para spin states have been included in one fit, a deviation from the typical H{sub 2} complex. Rotational constants B and C, centrifugal distortion constants Δ{sub J} and Δ{sub JK}, nuclear electric quadrupole coupling constants χ{sub aa}, χ{sub bb}, and χ{sub cc} for {sup 35}Cl and {sup 37}Cl have been fitmore » for both spin states while nuclear spin-nuclear spin constants D{sub aa}, D{sub bb}, and D{sub cc}, and nuclear spin-rotation constant C{sub aa} have been reported for the ortho spin state. Quantum chemical calculations predict a strong bonding interaction and the strength of the complex has been related to reported χ{sub aa} and Δ{sub J} values amongst a host of comparable species, including the AgCl monomer itself. Bond lengths have been determined for Ag—Cl, Ag—H{sub 2} center-of-mass, and H—H and are reported.« less
EFFECTS OF SPIN ON HIGH-ENERGY RADIATION FROM ACCRETING BLACK HOLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’ Riordan, Michael; Pe’er, Asaf; McKinney, Jonathan C., E-mail: michael_oriordan@umail.ucc.ie
Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford–Znajek (BZ) mechanism. We find that the X-ray and γ -ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power,more » but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.« less
Rotational and fine structure of open-shell molecules in nearly degenerate electronic states
NASA Astrophysics Data System (ADS)
Liu, Jinjun
2018-03-01
An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.
NASA Astrophysics Data System (ADS)
Takiwaki, Tomoya; Kotake, Kei
2018-03-01
We present analysis on neutrino and GW signals based on three-dimensional (3D) core-collapse supernova simulations of a rapidly rotating 27 M⊙ star. We find a new neutrino signature that is produced by a lighthouse effect where the spinning of strong neutrino emission regions around the rotational axis leads to quasi-periodic modulation in the neutrino signal. Depending on the observer's viewing angle, the time modulation will be clearly detectable in IceCube and the future Hyper-Kamiokande. The GW emission is also anisotropic where the GW signal is emitted, as previously identified, most strongly towards the equator at rotating core-collapse and bounce, and the non-axisymmetric instabilities in the postbounce phase lead to stronger GW emission towards the spin axis. We show that these GW signals can be a target of LIGO-class detectors for a Galactic event. The origin of the postbounce GW emission naturally explains why the peak GW frequency is about twice of the neutrino modulation frequency. We point out that the simultaneous detection of the rotation-induced neutrino and GW signatures could provide a smoking-gun signature of a rapidly rotating proto-neutron star at the birth.
Dynamics and Statistical Mechanics of Rotating and non-Rotating Vortical Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Chjan
Three projects were analyzed with the overall aim of developing a computational/analytical model for estimating values of the energy, angular momentum, enstrophy and total variation of fluid height at phase transitions between disordered and self-organized flow states in planetary atmospheres. It is believed that these transitions in equilibrium statistical mechanics models play a role in the construction of large-scale, stable structures including super-rotation in the Venusian atmosphere and the formation of the Great Red Spot on Jupiter. Exact solutions of the spherical energy-enstrophy models for rotating planetary atmospheres by Kac's method of steepest descent predicted phase transitions to super-rotating solid-bodymore » flows at high energy to enstrophy ratio for all planetary spins and to sub-rotating modes if the planetary spin is large enough. These canonical statistical ensembles are well-defined for the long-range energy interactions that arise from 2D fluid flows on compact oriented manifolds such as the surface of the sphere and torus. This is because in Fourier space available through Hodge theory, the energy terms are exactly diagonalizable and hence has zero range, leading to well-defined heat baths.« less
NASA Astrophysics Data System (ADS)
Schiller, S.; Kortunov, I.; Hernández Vera, M.; Gianturco, F.; da Silva, H.
2017-04-01
Precision vibrational spectroscopy of the molecular hydrogen ions is of significant interest for determining fundamental constants, for searching for new forces, and for testing quantum electrodynamics calculations. Future experiments can profit from the ability of preparing molecular hydrogen ions at ultralow kinetic energy and in preselected internal states, with respect to vibration, rotation, and spin degrees of freedom. For the homonuclear ions (H2+ , D2+ ), direct laser cooling of the rotational degree of freedom is not feasible. We show by quantum calculations that rotational cooling by cold He buffer gas is an effective approach. For this purpose we have computed the energy-dependent cross sections for rotationally elastic and inelastic collisions, h2+ (v =0 ,N ) +He → h2+ (v =0 ,N') +He (where h =H ,D ) , using ab initio coupled-channel calculations. We find that rotational cooling to the lowest rotational state is possible within tens of seconds under experimentally realistic conditions. We furthermore describe possible protocols for the preparation of a single quantum state, where also the spin state is well defined.
NASA Technical Reports Server (NTRS)
Pantason, P.; Dickens, W.
1979-01-01
Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/6 scale, single engine trainer airplane model. The configurations tested included the basic airplane, various wing leading edge devices, elevator, aileron and rudder control settings as well as airplane components. Data are presented without analysis for an angle of attack range of 8 to 90 degrees and clockwise and counter-clockwise rotations.
NASA Astrophysics Data System (ADS)
Junginger, Tobias; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.
2017-12-01
Point contact tunneling and low energy muon spin rotation are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q-slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.
Observation of the X-Ray Magneto-Optical Voigt Effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertins, H.-Ch.; Oppeneer, P. M.; Kunes, J.
2001-07-23
The existence of the x-ray magneto-optical Voigt effect is demonstrated. By means of polarization analysis the Voigt rotation and ellipticity of linearly polarized synchrotron radiation are measured at the Co L{sub 3} edge upon transmission through an amorphous Co film. The observed x-ray Voigt rotation is about 7.5{sup o}/{mu}m . On the basis of ab initio calculations it is shown that the x-ray Voigt effect follows sensitively the amount of spin polarization of the 2p core states. Therefore it provides a unique measure of the spin splitting of the core states.
Flywheel Charge/Discharge Control Developed
NASA Technical Reports Server (NTRS)
Beach, Raymond.F.; Kenny, Barbara H.
2001-01-01
A control algorithm developed at the NASA Glenn Research Center will allow a flywheel energy storage system to interface with the electrical bus of a space power system. The controller allows the flywheel to operate in both charge and discharge modes. Charge mode is used to store additional energy generated by the solar arrays on the spacecraft during insolation. During charge mode, the flywheel spins up to store the additional electrical energy as rotational mechanical energy. Discharge mode is used during eclipse when the flywheel provides the power to the spacecraft. During discharge mode, the flywheel spins down to release the stored rotational energy.
Nonlinear resonance of the rotating circular plate under static loads in magnetic field
NASA Astrophysics Data System (ADS)
Hu, Yuda; Wang, Tong
2015-11-01
The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Teruyuki; Sanchis-Ojeda, Roberto; Winn, Joshua N.
We present a test for spin-orbit alignment for the host stars of 25 candidate planetary systems detected by the Kepler spacecraft. The inclination angle of each star's rotation axis was estimated from its rotation period, rotational line broadening, and radius. The rotation periods were determined using the Kepler photometric time series. The rotational line broadening was determined from high-resolution optical spectra with the Subaru High Dispersion Spectrograph. Those same spectra were used to determine the star's photospheric parameters (effective temperature, surface gravity, metallicity), which were then interpreted with stellar-evolutionary models to determine stellar radii. We combine the new sample withmore » the seven stars from our previous work on this subject, finding that the stars show a statistical tendency to have inclinations near 90°, in alignment with the planetary orbits. Possible spin-orbit misalignments are seen in several systems, including three multiple-planet systems (KOI-304, 988, 2261). Ideally, these systems should be scrutinized with complementary techniques, such as the Rossiter-McLaughlin effect, starspot-crossing anomalies, or asteroseismology, but the measurements will be difficult owing to the relatively faint apparent magnitudes and small transit signals in these systems.« less
Pipe, J G
1999-11-01
Magnetic resonance imaging is fundamentally a measurement of the magnetism inherent in some nuclear isotopes; of these the proton, or hydrogen atom, is of particular interest for clinical applications. The magnetism in each nucleus is often referred to as spin. A strong, static magnetic field B0 is used to align spins, forming a magnetic density within the patient. A second, rotating magnetic field B1 (RF pulse) is applied for a short duration, which rotates the spins away from B0 in a process called excitation. After the spins are rotated away from B0, the RF pulse is turned off, and the spins precess about B0. As long as the spins are all pointing in the same direction at any one time (have phase coherence), they act in concert to create rapidly oscillating magnetic fields. These fields in turn create a current in an appropriately placed receiver coil, in a manner similar to that of an electrical generator. The precessing magnetization decays rapidly in a duration roughly given by the T2 time constant. At the same time, but at a slower rate, magnetization forms again along the direction of B0; the duration of this process is roughly expressed by the T1 time constant. The precessional frequency of each spin is proportional to the magnetic field experienced at the nucleus. Small variations in this magnetic field can have dramatic effects on the MR image, caused in part by loss of phase coherence. These magnetic field variations can arise because of magnet design, the magnetic properties (susceptibility) of tissues and other materials, and the nuclear environment unique to various sites within any given molecule. The loss of phase coherence can be effectively eliminated by the use of RF refocusing pulses. Conventional MR imaging experiments can be characterized as either gradient echo or spin echo, the latter indicating the use of a RF refocusing pulse, and by the parameters TR, TE, and flip angle alpha. Tissues, in turn, are characterized by their individual spin density, M0, and by the T1, T2, and T2* time constants. Knowledge of these parameters allows one to calculate the resulting signal from a given tissue for a given MR imaging experiment.
Measurement of phase difference for micromachined gyros driven by rotating aircraft.
Zhang, Zengping; Zhang, Fuxue; Zhang, Wei
2013-08-21
This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%.
NASA Astrophysics Data System (ADS)
Fawzy, Wafaa M.
2010-10-01
A FORTRAN code is developed for simulation and fitting the fine structure of a planar weakly-bonded open-shell complex that consists of a diatomic radical in a Σ3 electronic state and a diatomic or a polyatomic closed-shell molecule. The program sets up the proper total Hamiltonian matrix for a given J value and takes account of electron-spin-electron-spin, electron-spin rotation interactions, and the quartic and sextic centrifugal distortion terms within the complex. Also, R-dependence of electron-spin-electron-spin and electron-spin rotation couplings are considered. The code does not take account of effects of large-amplitude internal rotation of the diatomic radical within the complex. It is assumed that the complex has a well defined equilibrium geometry so that effects of large amplitude motion are negligible. Therefore, the computer code is suitable for a near-rigid rotor. Numerical diagonalization of the matrix provides the eigenvalues and the eigenfunctions that are necessary for calculating energy levels, frequencies, relative intensities of infrared or microwave transitions, and expectation values of the quantum numbers within the complex. Goodness of all the quantum numbers, with exception of J and parity, depends on relative sizes of the product of the rotational constants and quantum numbers (i.e. BJ, CJ, and AK), electron-spin-electron-spin, and electron-spin rotation couplings, as well as the geometry of the complex. Therefore, expectation values of the quantum numbers are calculated in the eigenfunctions basis of the complex. The computational time for the least squares fits has been significantly reduced by using the Hellman-Feynman theory for calculating the derivatives. The computer code is useful for analysis of high resolution infrared and microwave spectra of a planar near-rigid weakly-bonded open-shell complex that contains a diatomic fragment in a Σ3 electronic state and a closed-shell molecule. The computer program was successfully applied to analysis and fitting the observed high resolution infrared spectra of the O 2sbnd HF/O 2sbnd DF and O 2sbnd N 2O complexes. Test input file for simulation and fitting the high resolution infrared spectrum of the O 2sbnd DF complex is provided. Program summaryProgram title: TSIG_COMP Catalogue identifier: AEGM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 030 No. of bytes in distributed program, including test data, etc.: 51 663 Distribution format: tar.gz Programming language: Fortran 90, free format Computer: SGI Origin 3400, workstations and PCs Operating system: Linux, UNIX and Windows (see Restrictions below) RAM: Case dependent Classification: 16.2 Nature of problem: TSIG_COMP calculates frequencies, relative intensities, and expectation values of the various quantum numbers and parities of bound states involved in allowed ro-vibrational transitions in semi-rigid planar weakly-bonded open-shell complexes. The complexes of interest contain a free radical in a Σ3 state and a closed-shell partner, where the electron-spin-electron-spin interaction, electron-spin rotation interaction, and centrifugal forces significantly modify the spectral patterns. To date, ab initio methods are incapable of taking these effects into account to provide accurate predictions for the ro-vibrational energy levels of the complexes of interest. In the TSIG_COMP program, the problem is solved by using the proper effective Hamiltonian and molecular basis set. Solution method: The program uses a Hamiltonian operator that takes into account vibration, end-over-end rotation, electron-spin-electron-spin and electron-spin rotation interactions as well as the various centrifugal distortion terms. The Hamiltonian operator and the molecular basis set are used to set up the Hamiltonian matrix in the inertial axis system of the complex of interest. Diagonalization of the Hamiltonian matrix provides the eigenvalues and the eigenfunctions for the bound ro-vibrational states. These eigenvalues and eigenfunctions are used to calculate frequencies and relative intensities of the allowed infrared or microwave transitions as well as expectation values of all the quantum numbers and parities of states involved in the transitions. The program employs the method of least squares fits to fit the observed frequencies to the calculated frequencies to provide the molecular parameters that determine the geometry of the complex of interest. Restrictions: The number of transitions and parameters included in the fits is limited to 80 parameters and 200 transitions. However, these numbers can be increased by adjusting dimensions of the arrays (not recommended). Running the program under MS windows is recommended for simulations of any number of transitions and for fitting a relatively small number of parameters and transitions (maximum 15 parameters and 82 transitions), for fitting larger number of parameters run time error may occur. Because spectra of weakly bonded complexes are recorded at low temperatures, in most of cases fittings can be performed under MS windows. Running time: Problem-dependent. The provided test input for Linux fits 82 transitions and 21 parameters, the actual run time is 62 minutes. The provided test input file for MS windows fits 82 transitions and 15 parameters; the actual runtime is 5 minutes.
An investigation of water production rates by irregularly shaped cometary nuclei.
NASA Astrophysics Data System (ADS)
Gutierrez, P. J.; Ortiz, J. L.; Rodrigo, R.; Lopez-Moreno, J. J.
1999-09-01
A computer code has been developed to derive water production rates for rotating irregularly shaped nuclei with topography (both craters and mountains) as a function of heliocentric distance. The code solves the surface energy balance equation including heat diffusion in the normal direction and taking into account shadowing effects, for any combination of orbital parameters, spin axis orientation, rotation period, and physical properties of the nucleus (geometric albedo, emissivity, thermodynamical properties). Preliminary results are presented for several representative objects. The research described in this abstract is being carried out at the Instituto de Astrofísica de Andalucía and is supported by the Comision Interministerial de Ciencia y Tecnología under contracts ESP96-0623 and ESP97-1773-CO3-01.
Nonlinear piezoelectric devices for broadband air-flow energy harvesting
NASA Astrophysics Data System (ADS)
Bai, Y.; Havránek, Z.; Tofel, P.; Meggs, C.; Hughes, H.; Button, T. W.
2015-11-01
This paper presents preliminary work on an investigation of a nonlinear air-flow energy harvester integrating magnets and a piezoelectric cantilever array. Two individual piezoelectric cantilevers with the structure of free-standing multi-layer thick-films have been fabricated and assembled with a free-spinning fan. The cantilevers were attached with different tip masses thereby achieving separated resonant frequencies. Also, permanent magnets were fixed onto the blades of the fan as well as the tips of the cantilevers, in order to create nonlinear coupling and transfer fluidic movement into mechanical oscillation. The device has been tested in a wind tunnel. Bifurcations in the spectra of the blade rotation speed of the fan as a function of output voltage have been observed, and a bandwidth (blade rotation speed range) widening effect has been achieved.
Numerical simulation of the helium gas spin-up channel performance of the relativity gyroscope
NASA Technical Reports Server (NTRS)
Karr, Gerald R.; Edgell, Josephine; Zhang, Burt X.
1991-01-01
The dependence of the spin-up system efficiency on each geometrical parameter of the spin-up channel and the exhaust passage of the Gravity Probe-B (GPB) is individually investigated. The spin-up model is coded into a computer program which simulates the spin-up process. Numerical results reveal optimal combinations of the geometrical parameters for the ultimate spin-up performance. Comparisons are also made between the numerical results and experimental data. The experimental leakage rate can only be reached when the gap between the channel lip and the rotor surface increases beyond physical limit. The computed rotating frequency is roughly twice as high as the measured ones although the spin-up torques fairly match.
Observation of γ-vibrations and alignments built on non-ground-state configurations in ¹⁵⁶Dy
Zhu, C. -H.; Hartley, D. J.; Riedinger, L. L.; ...
2015-03-26
The exact nature of the lowest K π=2⁺ rotational bands in all deformed nuclei remains obscure. Traditionally they are assumed to be collective vibrations of the nuclear shape in the γ degree of freedom perpendicular to the nuclear symmetry axis. Very few such γ-bands have been traced past the usual back-bending rotational alignments of high-j nucleons. We have investigated the structure of positive-parity bands in the N=90 nucleus ¹⁵⁶Dy, using the ¹⁴⁸Nd(¹²C,4n)¹⁵⁶Dy reaction at 65 MeV, observing the resulting γ-ray transitions with the Gammasphere array. The even- and odd-spin members of the π=2⁺ γ-band are observed to 32⁺ and 31⁺more » respectively. This rotational band faithfully tracks the ground-state configuration to the highest spins. The members of a possible γ-vibration built on the aligned yrast S-band are observed to spins 28⁺ and 27⁺. An even-spin positive-parity band, observed to spin 24⁺, is a candidate for an aligned S-band built on the seniority-zero configuration of the 0₂⁺ state at 676 keV. As a result, the crossing of this band with the 0₂⁺ band is at hw c = 0.28(1) MeV and is consistent with the configuration of the 0₂⁺ band not producing any blocking of the monopole pairing.« less
Stratified spin-up in a sliced, square cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munro, R. J.; Foster, M. R.
We previously reported experimental and theoretical results on the linear spin-up of a linearly stratified, rotating fluid in a uniform-depth square cylinder [M. R. Foster and R. J. Munro, “The linear spin-up of a stratified, rotating fluid in a square cylinder,” J. Fluid Mech. 712, 7–40 (2012)]. Here we extend that analysis to a “sliced” square cylinder, which has a base-plane inclined at a shallow angle α. Asymptotic results are derived that show the spin-up phase is achieved by a combination of the Ekman-layer eruptions (from the perimeter region of the cylinder's lid and base) and cross-slope-propagating stratified Rossby waves.more » The final, steady state limit for this spin-up phase is identical to that found previously for the uniform depth cylinder, but is reached somewhat more rapidly on a time scale of order E{sup −1/2}Ω{sup −1}/log (α/E{sup 1/2}) (compared to E{sup −1/2}Ω{sup −1} for the uniform-depth cylinder), where Ω is the rotation rate and E the Ekman number. Experiments were performed for Burger numbers, S, between 0.4 and 16, and showed that for S≳O(1), the Rossby modes are severely damped, and it is only at small S, and during the early stages, that the presence of these wave modes was evident. These observations are supported by the theory, which shows the damping factors increase with S and are numerically large for S≳O(1)« less
Turbine rotor disk health monitoring assessment based on sensor technology and spin tests data.
Abdul-Aziz, Ali; Woike, Mark
2013-01-01
The paper focuses on presenting data obtained from spin test experiments of a turbine engine like rotor disk and assessing their correlation to the development of a structural health monitoring and fault detection system. The data were obtained under various operating conditions such as the rotor disk being artificially induced with and without a notch and rotated at a rotational speed of up to 10,000 rpm under balanced and imbalanced state. The data collected included blade tip clearance, blade tip timing measurements, and shaft displacements. Two different sensor technologies were employed in the testing: microwave and capacitive sensors, respectively. The experimental tests were conducted at the NASA Glenn Research Center's Rotordynamics Laboratory using a high precision spin system. Disk flaw observations and related assessments from the collected data for both sensors are reported and discussed.
Electric-field assisted spin torque nano-oscillator and binary frequency shift keying modulation
NASA Astrophysics Data System (ADS)
Zhang, Xiangli; Chen, Hao-Hsuan; Zhang, Zongzhi; Liu, Yaowen
2018-04-01
Electric-controlled magnetization precession introduces technologically relevant possibility for developing spin torque nano-oscillators (STNO) with potential applications in microwave emission. Using the perpendicularly magnetized magnetic tunnel junction (MTJ), we show that the magnetization oscillation frequency can be tuned by the co-action of electric field and spin polarized current. The dynamical phase diagram of MTJ-based STNO is analytically predicted through coordinate transformation from the laboratory frame to the rotation frame, by which the nonstationary out-of-plane magnetization precession process is therefore transformed into the stationary process in the rotation frame. Furthermore, using this STNO as a microwave source, we numerically demonstrate that the bit signal can be transmitted by a binary frequency shift keying (BFSK) modulation technique. The BFSK scheme shows good modulation features with no transient state.
NASA Astrophysics Data System (ADS)
Goltz, T.; Kamusella, S.; Jeevan, H. S.; Gegenwart, P.; Luetkens, H.; Materne, P.; Spehling, J.; Sarkar, R.; Klauss, H.-H.
2014-12-01
We present our results of a local probe study on EuFe2(As1-xPx)2 single crystals with x=0.13, 0.19 and 0.28 by means of muon spin rotation and 57Fe Mössbauer spectroscopy. We focus our discussion on the sample with x=0.19 viz. at the optimal substitution level, where bulk superconductivity (TSC = 28 K) sets in above static europium order (TEu = 20 K) but well below the onset of the iron antiferromagnetic (AFM) transition (~100 K). We find enhanced spin dynamics in the Fe sublattice closely above TSC and propose that these are related to enhanced Eu fluctuations due to the evident coupling of both sublattices observed in our experiments.
Extracting full-field dynamic strain response of a rotating wind turbine using photogrammetry
NASA Astrophysics Data System (ADS)
Baqersad, Javad; Poozesh, Peyman; Niezrecki, Christopher; Avitabile, Peter
2015-04-01
Health monitoring of wind turbines is typically performed using conventional sensors (e.g. strain-gages and accelerometers) that are usually mounted to the nacelle or gearbox. Although many wind turbines stop operating due to blade failures, there are typically few to no sensor mounted on the blades. Placing sensors on the rotating parts of the structure is a challenge due to the wiring and data transmission constraints. Within the current work, an approach to monitor full-field dynamic response of rotating structures (e.g. wind turbine blades or helicopter rotors) is developed and experimentally verified. A wind turbine rotor was used as the test structure and was mounted to a block and horizontally placed on the ground. A pair of bearings connected to the rotor shaft allowed the turbine to freely spin along the shaft. Several optical targets were mounted to the blades and a pair of high-speed cameras was used to monitor the dynamics of the spinning turbine. Displacements of the targets during rotation were measured using three-dimensional point tracking. The point tracking technique measured both rigid body displacement and flexible deformation of the blades at target locations. While the structure is rotating, only flap displacements of optical targets (displacements out of the rotation plane) were used in strain prediction process. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. The proposed approach enabled the prediction of dynamic response on the outer surface as well as within the inner points of the structure where no other sensor could be easily mounted. In order to validate the proposed approach, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system.
Anisotropic in-plane spin splitting in an asymmetric (001) GaAs/AlGaAs quantum well
2011-01-01
The in-plane spin splitting of conduction-band electron has been investigated in an asymmetric (001) GaAs/AlxGa1-xAs quantum well by time-resolved Kerr rotation technique under a transverse magnetic field. The distinctive anisotropy of the spin splitting was observed while the temperature is below approximately 200 K. This anisotropy emerges from the combined effect of Dresselhaus spin-orbit coupling plus asymmetric potential gradients. We also exploit the temperature dependence of spin-splitting energy. Both the anisotropy of spin splitting and the in-plane effective g-factor decrease with increasing temperature. PACS: 78.47.jm, 71.70.Ej, 75.75.+a, 72.25.Fe, PMID:21888636
NASA Astrophysics Data System (ADS)
Sheheitli, H.; Touma, J. R.
2018-06-01
We investigate the dynamics of a spinning top driven by a turntable that rotates with a given angular speed Ω. The pivot point of the top is at a fixed distance from the center of the turntable. We show that such a setup leads to resonance where the spinning top is locked in a state of relative equilibrium: precessing with an angular speed equal to that of the turntable while maintaining a constant nutation angle. Bifurcation diagrams are presented to depict how the stability of these relative equilibria, along with the corresponding value of the nutation angle, depends on the two parameters: the initial spin angular momentum and Ω. We discuss the classical spinning top, that is, the Ω = 0 case, and address the relation of the "sleeping top" state to the aforementioned relative equilibria. We also relate the dynamics to that of a spherical pendulum on a rotary arm and show that the latter can be viewed as a special case of the system at hand. Finally, we illustrate how the relative equilibria can be exploited for the attitude control of the top through resonance capture while slowly varying the turnable angular speed, Ω.
Spin Axis Distribution of the Hungaria Asteroids via Lightcurve Inversion
NASA Astrophysics Data System (ADS)
Warner, Brian D.
2015-05-01
In the past decade or so, the influence on small asteroids of the YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect, which is the asymmetric thermal emission of received sunlight, has been firmly established. The two strongest pieces of evidence are the nearly flat distribution of rotation rates of small asteroids and the distribution of spin axes (poles). YORP theory says that the spin axes, barring outside influences, are eventually forced to low obliquities, i.e., the poles are located near the north or south ecliptic poles. This would seem natural for objects with low orbital inclinations. However, for objects with high orbital inclinations, such as the Hungarias, there are some questions if this would still be the case. The authors and other observers have accumulated dense lightcurves of the Hungaria asteroids for more than a decade. The combination of these dense lightcurves and sparse data from asteroid search surveys has allowed using lightcurve inversion techniques to determine the spin axes for almost 75 Hungaria asteroids. The results confirm earlier works that show an anisotropic distribution of spin axes that favors the ecliptic poles and, as predicted for the Hungarias, a preponderance of retrograde rotators.
NASA Technical Reports Server (NTRS)
Pamadi, Bandu N.; Taylor, Lawrence W., Jr.
1987-01-01
A semi-empirical method is presented for the estimation of aerodynamic forces and moments acting on a steadily spinning (rotating) light airplane. The airplane is divided into wing, body, and tail surfaces. The effect of power is ignored. The strip theory is employed for each component of the spinning airplane to determine its contribution to the total aerodynamic coefficients. Then, increments to some of the coefficients which account for centrifugal effect are estimated. The results are compared to spin tunnel rotary balance test data.
Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa
2007-07-27
We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.
Stability of the Euler resting N-body relative equilibria
NASA Astrophysics Data System (ADS)
Scheeres, D. J.
2018-03-01
The stability of a system of N equal-sized mutually gravitating spheres resting on each other in a straight line and rotating in inertial space is considered. This is a generalization of the "Euler Resting" configurations previously analyzed in the finite density 3 and 4 body problems. Specific questions for the general case are how rapidly the system must spin for the configuration to stabilize, how rapidly it can spin before the components separate from each other, and how these results change as a function of N. This paper shows that the Euler Resting configuration can only be stable for up to 5 bodies and that for 6 or more bodies the configuration can never be stable. This places an ideal limit of 5:1 on the aspect ratio of a rubble pile body's shape.
Studies of positive-parity low-spin states in the A = 150 region
NASA Astrophysics Data System (ADS)
Bark, Robert; Li, Zhipan; Majola, Siyabonga; Sharpey-Schafer, John; Shi, Zhi; Zhang, Shuangquan
2018-05-01
A systematic investigation of low-lying levels of nuclides in the mass 150 region has been undertaken at iThemba LABS. An extensive set of data on the low-lying, positive-parity bands in the nuclides between N = 88 and 92 and Sm to Yb has been obtained from γ-γ coincidence measurements following fusion-evaporation reactions optimized of the population of low-spin states. The energies and electromagnetic properties of the so-called β- and γ-bands of nuclei in this region have been compared with the solutions of a five dimensional collective Hamiltonian for quadrupole vibrational and rotational degrees of freedom, with moments-of-inertia and mass parameters determined by constrained self-consistent relativistic mean-field calculations using the PC-F1 relativistic functional. Some of the results of this comparison are presented here.
Magnetic stripe domains of [Pt/Co/Cu]{sub 10} multilayer near spin reorientation transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, L.; Liang, J. H.; Xiao, X.
The dependence of magnetic anisotropy, magnetic domain patterns and magnetization reversal processes in [Pt/Co(t{sub Co})/Cu]{sub 10} film stack epitaxied on Cu (111) substrate have been studied as a function of the Co layer thickness t{sub Co}, by magneto-optic polar Kerr magnetometry and microscopy. We find the film undergoes spin reorientation transition from out-of-plane to in-plane as t{sub Co} increases. The SRT thickness is verified by Rotating-field Magneto-Optic Kerr effect method. The film exhibits the stripe domain structures at remanence with the width decreasing while t{sub Co} approaches SRT. As demonstrated by the first order reversal curve measurement, the magnetization reversalmore » process encompasses irreversible domain nucleation, domain annihilation at large field and reversible domain switching near remanence.« less
Rotating rake design for unique measurement of fan-generated spinning acoustic modes
NASA Technical Reports Server (NTRS)
Konno, Kevin E.; Hausmann, Clifford R.
1993-01-01
In light of the current emphasis on noise reduction in subsonic aircraft design, NASA has been actively studying the source of and propagation of noise generated by subsonic fan engines. NASA/LeRC has developed and tested a unique method of accurately measuring these spinning acoustic modes generated by an experimental fan. This mode measuring method is based on the use of a rotating microphone rake. Testing was conducted in the 9 x 15 Low-speed Wind Tunnel. The rotating rake was tested with the Advanced Ducted Propeller (ADP) model. This memorandum discusses the design and performance of the motor/drive system for the fan-synchronized rotating acoustic rake. This novel motor/drive design approach is now being adapted for additional acoustic mode studies in new test rigs as baseline data for the future design of active noise control for subsonic fan engines. Included in this memorandum are the research requirements, motor/drive specifications, test performance results, and a description of the controls and software involved.
On the dust zoning of rapidly rotating cometary nuclei
NASA Astrophysics Data System (ADS)
Houpis, H. L. F.; Mendis, D. A.
1981-12-01
The effects of nuclear rotation on the surface of a cometary nucleus (a comet at 1 AU that is H2O dominated and has a radius of 1 km) are considered. It is shown that this dust does not accumulate uniformly on the surface, which here is considered spherical. While dust particles in the two polar cap regions and an equatorial belt remain at rest on the surface, those in two midlatitude bands migrate toward the equator, stopping at the two low latitudes to form dust ridges. As the nucleus spins up, both the polar caps and the equatorial belt shrink in size, and the dust ridges move toward the equator, eventually spinning off the dust from the nucleus when the nuclear rotation period is less than about 3.3 hr. For larger particles for which the gas buoyancy is negligible, migration takes place only if the rotation period is not significantly larger than the critical value of 3.3 hr or if the surface friction is abnormally small.
Einstein X-ray survey of the Pleiades - The dependence of X-ray emission on stellar age
NASA Technical Reports Server (NTRS)
Micela, G.; Sciortino, S.; Serio, S.; Vaiana, G. S.; Bookbinder, J.; Golub, L.; Harnden, F. R., Jr.; Rosner, R.
1985-01-01
The data obtained with two pointed observations of 1 deg by 1 deg fields of the Pleiades region have been analyzed, and the results are presented. The maximum-likelihood X-ray luminosity functions for the Pleiades G and K stars in the cluster are derived, and it is shown that, for the G stars, the Pleiades X-ray luminosity function is significantly brighter than the corresponding function for Hyades G dwarf stars. This finding indicates a dependence of X-ray luminosity on stellar age, which is confirmed by comparison of the same data with median X-ray luminosities of pre-main sequence and local disk population dwarf G stars. It is suggested that the significantly larger number of bright X-ray sources associated with G stars than with K stars, the lack of detection of M stars, and the relatively rapid rotation of the Pleiades K stars can be explained in terms of the onset of internal differential rotation near the convective envelope-radidative core interface after the spin-up phase during evolution to the main sequence.
Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noiri, A.; Yoneda, J.; Nakajima, T.
2016-04-11
Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantummore » dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.« less
Effect of the rotation and tidal dissipation history of stars on the evolution of close-in planets
NASA Astrophysics Data System (ADS)
Bolmont, Emeline; Mathis, Stéphane
2016-11-01
Since 20 years, a large population of close-in planets orbiting various classes of low-mass stars (from M-type to A-type stars) has been discovered. In such systems, the dissipation of the kinetic energy of tidal flows in the host star may modify its rotational evolution and shape the orbital architecture of the surrounding planetary system. In this context, recent observational and theoretical works demonstrated that the amplitude of this dissipation can vary over several orders of magnitude as a function of stellar mass, age and rotation. In addition, stellar spin-up occurring during the Pre-Main-Sequence (PMS) phase because of the contraction of stars and their spin-down because of the torque applied by magnetized stellar winds strongly impact angular momentum exchanges within star-planet systems. Therefore, it is now necessary to take into account the structural and rotational evolution of stars when studying the orbital evolution of close-in planets. At the same time, the presence of planets may modify the rotational dynamics of the host stars and as a consequence their evolution, magnetic activity and mixing. In this work, we present the first study of the dynamics of close-in planets of various masses orbiting low-mass stars (from 0.6~M_⊙ to 1.2~M_⊙) where we compute the simultaneous evolution of the star's structure, rotation and tidal dissipation in its external convective envelope. We demonstrate that tidal friction due to the stellar dynamical tide, i.e. tidal inertial waves excited in the convection zone, can be larger by several orders of magnitude than the one of the equilibrium tide currently used in Celestial Mechanics, especially during the PMS phase. Moreover, because of this stronger tidal friction in the star, the orbital migration of the planet is now more pronounced and depends more on the stellar mass, rotation and age. This would very weakly affect the planets in the habitable zone because they are located at orbital distances such that stellar tide-induced migration happens on very long timescales. We also demonstrate that the rotational evolution of host stars is only weakly affected by the presence of planets except for massive companions.
Monitoring a simple hydrolysis process in an organic solid by observing methyl group rotation.
Beckmann, Peter A; Bohen, Joseph M; Ford, Jamie; Malachowski, William P; Mallory, Clelia W; Mallory, Frank B; McGhie, Andrew R; Rheingold, Arnold L; Sloan, Gilbert J; Szewczyk, Steven T; Wang, Xianlong; Wheeler, Kraig A
2017-09-01
We report a variety of experiments and calculations and their interpretations regarding methyl group (CH 3 ) rotation in samples of pure 3-methylglutaric anhydride (1), pure 3-methylglutaric acid (2), and samples where the anhydride is slowly absorbing water from the air and converting to the acid [C 6 H 8 O 3 (1) + H 2 O → C 6 H 10 O 4 (2)]. The techniques are solid state 1 H nuclear magnetic resonance (NMR) spin-lattice relaxation, single-crystal X-ray diffraction, electronic structure calculations in both isolated molecules and in clusters of molecules that mimic the crystal structure, field emission scanning electron microscopy, differential scanning calorimetry, and high resolution 1 H NMR spectroscopy. The solid state 1 H spin-lattice relaxation experiments allow us to observe the temperature dependence of the parameters that characterize methyl group rotation in both compounds and in mixtures of the two compounds. In the mixtures, both types of methyl groups (that is, molecules of 1 and 2) can be observed independently and simultaneously at low temperatures because the solid state 1 H spin-lattice relaxation is appropriately described by a double exponential. We have followed the conversion 1 → 2 over periods of two years. The solid state 1 H spin-lattice relaxation experiments in pure samples of 1 and 2 indicate that there is a distribution of NMR activation energies for methyl group rotation in 1 but not in 2 and we are able to explain this in terms of the particle sizes seen in the field emission scanning electron microscopy images. Copyright © 2017 Elsevier Inc. All rights reserved.
Optical Control of One and Two Hole Spins in Interacting Quantum Dots
2011-11-01
highly anisotropic , with an approximately Ising-like (ASzIz) form 15. This is predicted to greatly reduce dephasing in a transverse magnetic field16, even...spin Rabi oscillations) confirm that this pulse sequence can optically rotate the hole spin to any point on the Bloch sphere and thus satisfy the... anisotropic contribution of 10% to the isotropic Heisenberg exchange. This anisotropic exchange is another manifestation of the stronger spin–orbit char
High-Spin Structures as the Probes of Proton-Neutron Pairing
NASA Astrophysics Data System (ADS)
Afanasjev, A. V.
Rotating N = Z nuclei in the mass A = 58-80 region have been studied within the framework of isovector mean field theory. Available data is well and systematically described in the calculations. The present study supports the presence of strong isovector np pair field at low spin, which is, however, destroyed at high spin. No clear evidence for the existence of the isoscalar t = 0 np pairing has been found.
Magnus Effect: An Overview of Its Past and Future Practical Applications. Volumes 1 and 2
1986-01-01
bearings to which he could impart a high speed of rotation by means of a string, in the fashion of a boy spinning a top Lo _ (Figure 1). He mounted the...34. the fluid flow. As the shafts pass this transverse porn . 290/55 tion, a torque is developed by the rotating cylinder that (56] eeea ie rotates the
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.
1991-01-01
Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.
Rapid evolution of the spin state of comet 41P/Tuttle-Giacobini-Kresak
NASA Astrophysics Data System (ADS)
Bodewits, Dennis; Farnham, Tony; Knight, Matthew M.; Kelley, Michael S.
2017-10-01
Comet nuclei are small, dynamic objects influenced strongly by their individual history, orbit, rotation and inhomogeneity. Mass loss due to sublimation can exert a profound influence on the physical nature of the cometary nucleus, changing the shape, size, and rotation (Jewitt, in Comets II, 2004). The Rosetta mission to comet 67P showed that these effects are all interrelated (Sierks et al., Science 347, 2015).Comet 41P/Tuttle-Giacobini-Kresak passed Earth as close as 0.142 au in April 2017, allowing observations of the inner coma and an assessment of the rotational state of the nucleus. We acquired observations of comet 41P between March and May 2017 using the 4.3-m Discovery Channel Telescope and the UltraViolet-Optical Telescope (UVOT) on board the Earth-orbiting Swift Gamma Ray Burst Mission.Using CN narrowband imaging and aperture photometry we found that the apparent rotation period of comet 41P more than doubled between March and May 2017, increasing from 20 hours to 50 hours. Measurements of the periodicity in late-March by Knight et al. (CBET 4377, 2017) are consistent with this rate of increase. Comet 41P is the ninth comet for which a rotation period change has been observed (c.f. Samarasinha et al., in Comets II, 2004), but both the fractional change and the rate of change of the period far exceed those observed in the other comets. It is presumably the combination of a long rotation period, high surface activity, and a small nucleus that makes 41P highly susceptible to changes in its rotational state.Extrapolating the comet’s rotation period using its current gas production rates and a simple activity model suggests that the nucleus will continue to spin down, possibly leading to an excited spin state in the next few apparitions. Finally, 41P is known for its large outbursts, and our extrapolation suggest that the comet’s rotation period may have been close to the critical period for splitting in 2001, when it exhibited two significant outbursts.
Thermodynamics of higher spin black holes in AdS3
NASA Astrophysics Data System (ADS)
de Boer, Jan; Jottar, Juan I.
2014-01-01
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, ) × SL( N, ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.
NASA Astrophysics Data System (ADS)
Zhang, Huiming; Xie, Yang
2007-02-01
The simple method for measuring the rotational correlation time of paramagnetic ion chelates via off-resonance rotating frame technique is challenged in vivo by the magnetization transfer effect. A theoretical model for the spin relaxation of water protons in the presence of paramagnetic ion chelates and magnetization transfer effect is described. This model considers the competitive relaxations of water protons by the paramagnetic relaxation pathway and the magnetization transfer pathway. The influence of magnetization transfer on the total residual z-magnetization has been quantitatively evaluated in the context of the magnetization map and various difference magnetization profiles for the macromolecule conjugated Gd-DTPA in cross-linked protein gels. The numerical simulations and experimental validations confirm that the rotational correlation time for the paramagnetic ion chelates can be measured even in the presence of strong magnetization transfer. This spin relaxation model also provides novel approaches to enhance the detection sensitivity for paramagnetic labeling by suppressing the spin relaxations caused by the magnetization transfer. The inclusion of the magnetization transfer effect allows us to use the magnetization map as a simulation tool to design efficient paramagnetic labeling targeting at specific tissues, to design experiments running at low RF power depositions, and to optimize the sensitivity for detecting paramagnetic labeling. Thus, the presented method will be a very useful tool for the in vivo applications such as molecular imaging via paramagnetic labeling.
Quantum Information Processing with Large Nuclear Spins in GaAs Semiconductors
NASA Astrophysics Data System (ADS)
Leuenberger, Michael N.; Loss, Daniel; Poggio, M.; Awschalom, D. D.
2003-03-01
We propose an implementation for quantum information processing based on coherent manipulations of nuclear spins I=3/2 in GaAs semiconductors. We describe theoretically an NMR method which involves multiphoton transitions and which exploits the nonequidistance of nuclear spin levels due to quadrupolar splittings. Starting from known spin anisotropies we derive effective Hamiltonians in a generalized rotating frame, valid for arbitrary I, which allow us to describe the nonperturbative time evolution of spin states generated by magnetic rf fields. We identify an experimentally observable regime for multiphoton Rabi oscillations. In the nonlinear regime, we find Berry phase interference. Ref: PRL 89, 207601 (2002).
Broadband 19F TOCSY using BURBOP-based spin lock
NASA Astrophysics Data System (ADS)
Marchione, Alexander A.; Diaz, Elizabeth L.
2018-01-01
A train of BURBOP universal rotation pulses has been used to generate a spin lock sufficient to observe TOCSY correlations over a 46 kHz 19F spectral window (i.e. 122 ppm on a 9.4 T spectrometer). This spin lock requires lower RF field (γB1 = 15 kHz), and was employed over a wider spectral window, than previously reported DIPSI-2 spin locks. The BURBOP-based spin lock was effected for 80-160 ms periods with a 2% duty cycle without evidence of harm to the RF coil of the probehead. Spectral separation and full set of correlations were obtained for a mixture of perfluorocarbons.
Investigation of the fluidity of biological fluids with a PDDTBN spin probe
NASA Astrophysics Data System (ADS)
Severcan, Feride; Acar, Berrin; Gökalp, Saadet
1997-06-01
The aim of this study is to ascertain whether the electron spin resonance technique using perdeutero-di- t-butyl nitroxide (PDDTBN) as a spin probe is able to monitor relative fluidity changes occurring in body fluids, such as blood and parotid saliva, according to different physiological conditions. The present study reveals that the spin probe PDDTBN is able to monitor the fluidity changes in parotid saliva related to habitual smoking, and in whole blood related to the estradiol level. The rotational correlation time of the spin probe and the local viscosity values of the parotid saliva and blood have been reported.
Angular Momentum of a Bose-Einstein Condensate in a Synthetic Rotational Field
NASA Astrophysics Data System (ADS)
Qu, Chunlei; Stringari, Sandro
2018-05-01
By applying a position-dependent detuning to a spin-orbit-coupled Hamiltonian with equal Rashba and Dresselhaus coupling, we exploit the behavior of the angular momentum of a harmonically trapped Bose-Einstein condensed atomic gas and discuss the distinctive role of its canonical and spin components. By developing the formalism of spinor hydrodynamics, we predict the precession of the dipole oscillation caused by the synthetic rotational field, in analogy with the precession of the Foucault pendulum, the excitation of the scissors mode, following the sudden switching off of the detuning, and the occurrence of Hall-like effects. When the detuning exceeds a critical value, we observe a transition from a vortex free, rigidly rotating quantum gas to a gas containing vortices with negative circulation which results in a significant reduction of the total angular momentum.
Apparatus and method for producing an artificial gravitational field
NASA Technical Reports Server (NTRS)
Mccanna, Jason (Inventor)
1993-01-01
An apparatus and method is disclosed for producing an artificial gravitational field in a spacecraft by rotating the same around a spin axis. The centrifugal force thereby created acts as an artificial gravitational force. The apparatus includes an engine which produces a drive force offset from the spin axis to drive the spacecraft towards a destination. The engine is also used as a counterbalance for a crew cabin for rotation of the spacecraft. Mass of the spacecraft, which may include either the engine or crew cabin, is shifted such that the centrifugal force acting on that mass is no longer directed through the center of mass of the craft. This off-center centrifugal force creates a moment that counterbalances the moment produced by the off-center drive force to eliminate unwanted rotation which would otherwise be precipitated by the offset drive force.
Constraints on Titan's rotation from Cassini mission radar data
NASA Astrophysics Data System (ADS)
Bills, Bruce; Stiles, Bryan W.; Hayes, Alexander
2015-05-01
We present results of a new analysis of the rotational kinematics of Titan, as constrained by Cassini radar data, extending over the entire currently available set of flyby encounters. Our analysis provides a good constraint on the current orientation of the spin pole, but does not have sufficient accuracy and duration to clearly see the expected spin pole precession. In contrast, we do clearly see temporal variations in the spin rate, which are driven by gravitational torques which attempt to keep the prime meridian oriented toward Saturn.Titan is a synchronous rotator. At lowest order, that means that the rotational and orbital motions are synchronized. At the level of accuracy required to fit the Cassini radar data, we can see that synchronous rotation and uniform rotation are not quite the same thing. Our best fitting model has a fixed pole, and a rotation rate which varies with time, so as to keep Titan's prime meridian oriented towards Saturn, as the orbit varies.A gravitational torque on the tri-axial figure of Titan attempts to keep the axis of least inertia oriented toward Saturn. The main effect is to synchronize the orbit and rotation periods, as seen in inertial space. The response of the rotation angle, to periodic changes in orbital mean longitude, is modeled as a damped, forced harmonic oscillator. This acts as a low-pass filter. The rotation angle accurately tracks orbital variations at periods longer than the free libration period, but is unable to follow higher frequency variations.The mean longitude of Titan's orbit varies on a wide range of time scales. The largest variations are at Saturn's orbital period (29.46 years), and are due to solar torques. There are also variations at periods of 640 and 5800 days, due to resonant interaction with Hyperion.For a rigid body, with moments of inertia estimated from observed gravity, the free libration period for Titan would be 850 days. The best fit to the radar data is obtained with a libration period of 645 days, and a damping time of 1000 years.The principal deviation of Titan's rotation from uniform angular rate, as seen in the Cassini radar data, is a periodic signal resonantly forced by Hyperion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer
Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfvén wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates andmore » that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.« less