NASA Astrophysics Data System (ADS)
Zivieri, R.; Giordano, A.; Verba, R.; Azzerboni, B.; Carpentieri, M.; Slavin, A. N.; Finocchio, G.
2018-04-01
A two-dimensional analytical model for the description of the excitation of nonreciprocal spin waves by spin current in spin Hall oscillators in the presence of the interfacial Dzyaloshinskii-Moriya interaction (i -DMI) is developed. The theory allows one to calculate the threshold current for the excitation of spin waves, as well as the frequencies and spatial profiles of the excited spin-wave modes. It is found that the frequency of the excited spin waves exhibits a quadratic redshift with the i -DMI strength. At the same time, in the range of small and moderate values of the i -DMI constant, the averaged wave number of the excited spin waves is almost independent of the i -DMI, which results in a rather weak dependence on the i -DMI of the threshold current of the spin-wave excitation. The obtained analytical results are confirmed by the results of micromagnetic simulations.
Spin-transfer torque induced spin waves in antiferromagnetic insulators
Daniels, Matthew W.; Guo, Wei; Stocks, George Malcolm; ...
2015-01-01
We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations.
Excitation of short-wavelength spin waves in magnonic waveguides
NASA Astrophysics Data System (ADS)
Demidov, V. E.; Kostylev, M. P.; Rott, K.; Münchenberger, J.; Reiss, G.; Demokritov, S. O.
2011-08-01
By using phase-resolved micro-focus Brillouin light scattering spectroscopy, we demonstrate experimentally a phenomenon of wavelength conversion of spin waves propagating in tapered Permalloy waveguides. We show that this phenomenon enables efficient excitation of spin waves with sub-micrometer wavelengths being much smaller than the width of the microstrip antenna used for the excitation. The proposed excitation mechanism removes restrictions on the spin-wave wavelength imposed by the size of the antenna and enables improvement of performances of integrated magnonic devices.
Spectrum Gaps of Spin Waves Generated by Interference in a Uniform Nanostripe Waveguide
Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Tang, Xiaoli; Zhong, Zhiyong
2014-01-01
We studied spin waves excited by two or more excitation sources in a uniform nanostripe waveguide without periodic structures. Several distinct spectrum gaps formed by spin waves interference rather than by Bragg reflection were observed. We found the center frequency and the number of spectrum gaps of spin waves can be controlled by modulating the distance, number and width of the excitation sources. The results obtained by micromagnetic simulations agree well with that of analytical calculations. Our work therefore paves a new way to control the spectrum gaps of spin waves, which is promising for future spin wave-based devices. PMID:25082001
Giordano, A.; Verba, R.; Zivieri, R.; Laudani, A.; Puliafito, V.; Gubbiotti, G.; Tomasello, R.; Siracusano, G.; Azzerboni, B.; Carpentieri, M.; Slavin, A.; Finocchio, G.
2016-01-01
Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as “free” layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications. PMID:27786261
Dynamic generation of spin-wave currents in hybrid structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyapilin, I. I.; Okorokov, M. S., E-mail: Okorokovmike@gmail.com
2016-11-15
Spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure is studied by the nonequilibrium statistical operator method under conditions of the spin Seebeck effect. The effective parameter approach in which each examined subsystem (conduction electrons, magnons, phonons) is characterized by its specific effective temperature is considered. The effect of the resonant (electric dipole) excitation of the spin electronic subsystem of conduction electrons on spin-wave current excitation in a ferromagnetic insulator is considered. The macroscopic equations describing the spin-wave current caused by both resonant excitation of the spin system of conduction electrons and the presence of a nonuniform temperaturemore » field in the ferromagnetic insulator are derived taking into account both the resonance-diffusion propagation of magnons and their relaxation processes. It is shown that spin-wave current excitation is also of resonant nature under the given conditions.« less
Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu
A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180° by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed formore » excitation fluences higher than 100 mJ/cm{sup 2}.« less
Theory of spin and lattice wave dynamics excited by focused laser pulses
NASA Astrophysics Data System (ADS)
Shen, Ka; Bauer, Gerrit E. W.
2018-06-01
We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.
Tunable short-wavelength spin wave excitation from pinned magnetic domain walls
Van de Wiele, Ben; Hämäläinen, Sampo J.; Baláž, Pavel; Montoncello, Federico; van Dijken, Sebastiaan
2016-01-01
Miniaturization of magnonic devices for wave-like computing requires emission of short-wavelength spin waves, a key feature that cannot be achieved with microwave antennas. In this paper, we propose a tunable source of short-wavelength spin waves based on highly localized and strongly pinned magnetic domain walls in ferroelectric-ferromagnetic bilayers. When driven into oscillation by a microwave spin-polarized current, the magnetic domain walls emit spin waves with the same frequency as the excitation current. The amplitude of the emitted spin waves and the range of attainable excitation frequencies depend on the availability of domain wall resonance modes. In this respect, pinned domain walls in magnetic nanowires are particularly attractive. In this geometry, spin wave confinement perpendicular to the nanowire axis produces a multitude of domain wall resonances enabling efficient spin wave emission at frequencies up to 100 GHz and wavelengths down to 20 nm. At high frequency, the emission of spin waves in magnetic nanowires becomes monochromatic. Moreover, pinning of magnetic domain wall oscillators onto the same ferroelectric domain boundary in parallel nanowires guarantees good coherency between spin wave sources, which opens perspectives towards the realization of Mach-Zehnder type logic devices and sensors. PMID:26883893
Spin-resolved inelastic electron scattering by spin waves in noncollinear magnets
NASA Astrophysics Data System (ADS)
dos Santos, Flaviano José; dos Santos Dias, Manuel; Guimarães, Filipe Souza Mendes; Bouaziz, Juba; Lounis, Samir
2018-01-01
Topological noncollinear magnetic phases of matter are at the heart of many proposals for future information nanotechnology, with novel device concepts based on ultrathin films and nanowires. Their operation requires understanding and control of the underlying dynamics, including excitations such as spin waves. So far, no experimental technique has attempted to probe large wave-vector spin waves in noncollinear low-dimensional systems. In this paper, we explain how inelastic electron scattering, being suitable for investigations of surfaces and thin films, can detect the collective spin-excitation spectra of noncollinear magnets. To reveal the particularities of spin waves in such noncollinear samples, we propose the usage of spin-polarized electron-energy-loss spectroscopy augmented with a spin analyzer. With the spin analyzer detecting the polarization of the scattered electrons, four spin-dependent scattering channels are defined, which allow us to filter and select specific spin-wave modes. We take as examples a topological nontrivial skyrmion lattice, a spin-spiral phase, and the conventional ferromagnet. Then we demonstrate that, counterintuitively and in contrast to the ferromagnetic case, even non-spin-flip processes can generate spin waves in noncollinear substrates. The measured dispersion and lifetime of the excitation modes permit us to fingerprint the magnetic nature of the substrate.
Homogeneous microwave field emitted propagating spin waves: Direct imaging and modeling
NASA Astrophysics Data System (ADS)
Lohman, Mathis; Mozooni, Babak; McCord, Jeffrey
2018-03-01
We explore the generation of propagating dipolar spin waves by homogeneous magnetic field excitation in the proximity of the boundaries of magnetic microstructures. Domain wall motion, precessional dynamics, and propagating spin waves are directly imaged by time-resolved wide-field magneto-optical Kerr effect microscopy. The aspects of spin wave generation are clarified by micromagnetic calculations matching the experimental results. The region of dipolar spin wave formation is confined to the local resonant excitation due to non-uniform internal demagnetization fields at the edges of the patterned sample. Magnetic domain walls act as a border for the propagation of plane and low damped spin waves, thus restraining the spin waves within the individual magnetic domains. The findings are of significance for the general understanding of structural and configurational magnetic boundaries for the creation, the propagation, and elimination of spin waves.
NASA Astrophysics Data System (ADS)
Tay, Z. J.; Soh, W. T.; Ong, C. K.
2018-02-01
This paper presents an experimental study of the inverse spin Hall effect (ISHE) in a bilayer consisting of a yttrium iron garnet (YIG) and platinum (Pt) loaded on a metamaterial split ring resonator (SRR). The system is excited by a microstrip feed line which generates both surface and bulk spin waves in the YIG. The spin waves subsequently undergo spin pumping from the YIG film to an adjacent Pt layer, and is converted into a charge current via the ISHE. It is found that the presence of the SRR causes a significant enhancement of the mangetic field near the resonance frequency of the SRR, resulting in a significant increase in the ISHE signal. Furthermore, the type of spin wave generated in the system can be controlled by changing the external applied magnetic field angle (θH ). When the external applied magnetic field is near parallel to the microstrip line (θH = 0 ), magnetostatic surface spin waves are predominantly excited. On the other hand, when the external applied magnetic field is perpendicular to the microstrip line (θH = π/2 ), backward volume magnetostatic spin waves are predominantly excited. Hence, it can be seen that the SRR structure is a promising method of achieving spin-charge conversion, which has many advantages over a coaxial probe.
All electrical propagating spin wave spectroscopy with broadband wavevector capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciubotaru, F., E-mail: Florin.Ciubotaru@imec.be; KU Leuven, Departement Electrotechniek; Devolder, T.
2016-07-04
We developed an all electrical experiment to perform the broadband phase-resolved spectroscopy of propagating spin waves in micrometer sized thin magnetic stripes. The magnetostatic surface spin waves are excited and detected by scaled down to 125 nm wide inductive antennas, which award ultra broadband wavevector capability. The wavevector selection can be done by applying an excitation frequency above the ferromagnetic resonance. Wavevector demultiplexing is done at the spin wave detector thanks to the rotation of the spin wave phase upon propagation. A simple model accounts for the main features of the apparatus transfer functions. Our approach opens an avenue for themore » all electrical study of wavevector-dependent spin wave properties including dispersion spectra or non-reciprocal propagation.« less
Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus
2016-01-01
The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials. PMID:26906113
Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide
NASA Astrophysics Data System (ADS)
Balinskiy, Michael; Kargar, Fariborz; Chiang, Howard; Balandin, Alexander A.; Khitun, Alexander G.
2018-05-01
This article reports results of experimental investigation of the spin wave interference over large distances in the Y3Fe2(FeO4)3 waveguide using Brillouin-Mandelstam spectroscopy. Two coherent spin waves are excited by the micro-antennas fabricated at the edges of the waveguide. The amplitudes of the input spin waves are adjusted to provide approximately the same intensity in the central region of the waveguide. The relative phase between the excited spin waves is controlled by the phase shifter. The change of the local intensity distribution in the standing spin wave is monitored using Brillouin-Mandelstam light scattering spectroscopy. Experimental data demonstrate the oscillation of the scattered light intensity depending on the relative phase of the interfering spin waves. The oscillations of the intensity, tunable via the relative phase shift, are observed as far as 7.5 mm away from the spin-wave generating antennas at room temperature. The obtained results are important for developing techniques for remote control of spin currents, with potential applications in spin-based memory and logic devices.
Parallel pumping of a ferromagnetic nanostripe: Confinement quantization and off-resonant driving
NASA Astrophysics Data System (ADS)
Yarbrough, P. M.; Livesey, K. L.
2018-01-01
The parametric excitation of spin waves in a rectangular, ferromagnetic nanowire in the parallel pump configuration and with an applied field along the long axis of the wire is studied theoretically, using a semi-classical and semi-analytic Hamiltonian approach. We find that as a function of static applied field strength, there are jumps in the pump power needed to excite thermal spin waves. At these jumps, there is the possibility to non-resonantly excite spin waves near kz = 0. Spin waves with negative or positive group velocity and with different standing wave structures across the wire width can be excited by tuning the applied field. By using a magnetostatic Green's function that depends on both the nanowire's width and thickness—rather than just its aspect ratio—we also find that the threshold field strength varies considerably for nanowires with the same aspect ratio but of different sizes. Comparisons between different methods of calculations are made and the advantages and disadvantages of each are discussed.
NASA Astrophysics Data System (ADS)
Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid
2018-03-01
Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.
Excitation of propagating spin waves by pure spin current
NASA Astrophysics Data System (ADS)
Demokritov, Sergej
Recently it was demonstrated that pure spin currents can be utilized to excite coherent magnetization dynamics, which enables development of novel magnetic nano-oscillators. Such oscillators do not require electric current flow through the active magnetic layer, which can help to reduce the Joule power dissipation and electromigration. In addition, this allows one to use insulating magnetic materials and provides an unprecedented geometric flexibility. The pure spin currents can be produced by using the spin-Hall effect (SHE). However, SHE devices have a number of shortcomings. In particular, efficient spin Hall materials exhibit a high resistivity, resulting in the shunting of the driving current through the active magnetic layer and a significant Joule heating. These shortcomings can be eliminated in devices that utilize spin current generated by the nonlocal spin-injection (NLSI) mechanism. Here we review our recent studies of excitation of magnetization dynamics and propagating spin waves by using NLSI. We show that NLSI devices exhibit highly-coherent dynamics resulting in the oscillation linewidth of a few MHz at room temperature. Thanks to the geometrical flexibility of the NLSI oscillators, one can utilize dipolar fields in magnetic nano-patterns to convert current-induced localized oscillations into propagating spin waves. The demonstrated systems exhibit efficient and controllable excitation and directional propagation of coherent spin waves characterized by a large decay length. The obtained results open new perspectives for the future-generation electronics using electron spin degree of freedom for transmission and processing of information on the nanoscale.
Excitations of breathers and rogue wave in the Heisenberg spin chain
NASA Astrophysics Data System (ADS)
Qi, Jian-Wen; Duan, Liang; Yang, Zhan-Ying; Yang, Wen-Li
2018-01-01
We study the excitations of breathers and rogue wave in a classical Heisenberg spin chain with twist interaction, which is governed by a fourth-order integrable nonlinear Schrödinger equation. The dynamics of these waves have been extracted from an exact solution. In particular, the corresponding existence conditions based on the parameters of perturbation wave number K, magnon number N, background wave vector ks and amplitude c are presented explicitly. Furthermore, the characteristics of magnetic moment distribution corresponding to these nonlinear waves are also investigated in detail. Finally, we discussed the state transition of three types nonlinear localized waves under the different excitation conditions.
Detecting the phonon spin in magnon-phonon conversion experiments
NASA Astrophysics Data System (ADS)
Holanda, J.; Maior, D. S.; Azevedo, A.; Rezende, S. M.
2018-05-01
Recent advances in the emerging field of magnon spintronics have stimulated renewed interest in phenomena involving the interaction between spin waves, the collective excitations of spins in magnetic materials that quantize as magnons, and the elastic waves that arise from excitations in the crystal lattice, which quantize as phonons. In magnetic insulators, owing to the magnetostrictive properties of materials, spin waves can become strongly coupled to elastic waves, forming magnetoelastic waves—a hybridized magnon-phonon excitation. While several aspects of this interaction have been subject to recent scrutiny, it remains unclear whether or not phonons can carry spin. Here we report experiments on a film of the ferrimagnetic insulator yttrium iron garnet under a non-uniform magnetic field demonstrating the conversion of coherent magnons generated by a microwave field into phonons that have spin. While it is well established that photons in circularly polarized light carry a spin, the spin of phonons has had little attention in the literature. By means of wavevector-resolved Brillouin light-scattering measurements, we show that the magnon-phonon conversion occurs with constant energy and varying linear momentum, and that the light scattered by the phonons is circularly polarized, thus demonstrating that the phonons have spin.
Very narrow excited Ωc baryons
NASA Astrophysics Data System (ADS)
Karliner, Marek; Rosner, Jonathan L.
2017-06-01
Recently, LHCb reported the discovery of five extremely narrow excited Ωc baryons decaying into Ξc+K-. We interpret these baryons as bound states of a c quark and a P -wave s s diquark. For such a system, there are exactly five possible combinations of spin and orbital angular momentum. The narrowness of the states could be a signal that it is hard to pull apart the two s quarks in a diquark. We predict two of spin 1 /2 , two of spin 3 /2 , and one of spin 5 /2 , all with negative parity. Of the five states, two can decay in S -wave, and three can decay in D -wave. Some of the D -wave states might be narrower than the S -wave states. We discuss the relations among the five masses expected in the quark model and the likely spin assignments, and we compare them with the data. A similar pattern is expected for negative-parity excited Ωb states. An alternative interpretation is noted in which the heaviest two states are 2 S excitations with JP=1 /2+ and 3 /2+, while the lightest three are those with JP=3 /2- , 3 /2- , 5 /2- , expected to decay via D -waves. In this case, we expect JP=1 /2- Ωc states around 2904 and 2978 MeV.
NASA Astrophysics Data System (ADS)
Maendl, Stefan; Grundler, Dirk
2018-05-01
We performed broadband spin-wave spectroscopy on 200 nm thick yttrium iron garnet containing arrays of partially embedded magnetic nanodisks. Using integrated coplanar waveguides (CPWs), we studied the excitation and transmission of spin waves depending on the presence of nanomagnet arrays of different lateral extensions. By means of the grating coupler effect, we excited spin waves propagating in multiple lateral directions with wavelengths down to 111 nm. They exhibited group velocities of up to 1 km/s. Detection of such short-wavelength spin waves was possible only in symmetrically designed emitter/detector configurations, not with a bare CPW. We report spin waves propagating between grating couplers under oblique angles exhibiting a wave vector component parallel to the CPW. The effective propagation distance amounted to about 80 μm. Such transmission signals were not addressed before and substantiate the versatility of the grating coupler effect for implementing nanomagnonic circuits.
NASA Astrophysics Data System (ADS)
Yu, Haiming; Xiao, Jiang; Pirro, Philipp
2018-03-01
We are proud to present a collection of 12 cutting-edge research articles on the emerging field "magnon spintronics" investigating the properties of spin waves or magnons towards their potential applications in low-power-consumption information technologies. Magnons (quasiparticles of spin waves) are collective excitations of magnetizations in a magnetic system. The concept for such excitations was first introduced 1930 by Felix Bloch [1] who described ferromagnetism in a lattice. The field of magnon spintronics [2] or magnonics [3] aims at utilizing magnons to realize information processing and storage. The propagation of spin waves is free of charge transport, hence a successful realization of magnonic devices can innately avoid Joule heating induced energy loss in nowadays micro- or nano-electronic devices. Magnonics has made many progresses in recent years, including the demonstration of magnonic logic devices [4]. Towards the aim to generate magnonic devices, it is an essential step to find materials suitable for conveying spin waves. One outstanding candidate is a ferromagnetic insulator yttrium iron garnet (YIG). It offers an out standing low damping which allows the propagation of spin waves over relatively long distances. Experiments on such a thin YIG film with an out-of-plane magnetization have been performed by Chen et al. [5]. They excited so called forward volume mode spin waves and determined the propagating spin wave properties, such as the group velocities. Lohman et al. [6] has successfully imaged the propagating spin waves using time-resolved MOKE microscopy and show agreement with micromagnetic modellings. For very long time, YIG is the most ideal material for spin waves thanks to its ultra-low damping. However, it remains a major challenge integrate YIG on to Silicon substrate. Magnetic Heusler alloys on the other hand, can be easily grown on Si substrate and also shows reasonably good damping properties, which allow spin waves to propagate over a distance as long as 100 μm demonstrated by Stueckler et al. [7]. This is so far a record of spin wave propagation distance in ferromagnetic Heusler alloy thin films. Jaroslaw et al. [8] studied spin waves in planar quasicrystal of Penrose tiling showing distinctive magnonic gaps. This proves the impact of quasiperiodic long-range order on the spectrum of spin waves.
Irreversible Markov chains in spin models: Topological excitations
NASA Astrophysics Data System (ADS)
Lei, Ze; Krauth, Werner
2018-01-01
We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.
Spin excitations in optimally P-doped BaFe 2 ( As 0.7 P 0.3 ) 2 superconductor
Hu, Ding; Yin, Zhiping; Zhang, Wenliang; ...
2016-09-02
We use inelastic neutron scattering to study temperature and energy dependence of spin excitations in optimally P-doped BaFe 2(As 0:7P 0:3) 2 superconductor (T c = 30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe 2As 2 stem from antiferromagnetic (AF) ordering wave vector QAF = ( 1; 0) and peaks near zone boundary at ( 1; 1) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low-energy spin excitations of BaFe 2(As 0:7P 0:3) 2 form a resonance in the superconducting state and high-energy spin excitations nowmore » peaks around 220 meV near ( 1; 1). These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe 2(As 0:7P 0:3) 2 reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations.« less
Confined states in photonic-magnonic crystals with complex unit cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dadoenkova, Yu. S.; Novgorod State University, 173003 Veliky Novgorod; Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk
2016-08-21
We have investigated multifunctional periodic structures in which electromagnetic waves and spin waves can be confined in the same areas. Such simultaneous localization of both sorts of excitations can potentially enhance the interaction between electromagnetic waves and spin waves. The system we considered has a form of one dimensional photonic-magnonic crystal with two types of magnetic layers (thicker and thinner ones) separated by sections of the dielectric photonic crystals. We focused on the electromagnetic defect modes localized in the magnetic layers (areas where spin waves can be excited) and decaying in the sections of conventional (nonmagnetic) photonic crystals. We showedmore » how the change of relative thickness of two types of the magnetic layers can influence on the spectrum of spin waves and electromagnetic defect modes, both localized in magnetic parts of the system.« less
Acoustic parametric pumping of spin waves
NASA Astrophysics Data System (ADS)
Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.
2014-11-01
Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V.; Sadovnikov, A. V.
We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development ofmore » magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.« less
Antiferromagnetic domain wall as spin wave polarizer
NASA Astrophysics Data System (ADS)
Lan, Jin; Yu, Weichao; Xiao, Jiang
Spin waves are collective excitations of local magnetizations that can effectively propagate information even in magnetic insulators. In antiferromagnet, spin waves are endowed with additional polarization freedom. Here we propose that the antiferromagnetic domain wall can act as a spin wave polarizer, which perfectly passes one linearly polarized spin wave while substantially reflects the perpendicular one. We show that the polarizing effect lies in the suppression of one linear polarization inside domain wall, in close analogy to the wire-grid optical polarizer. Our finding opens up new possibilities in magnonic processing by harnessing spin wave polarization in antiferromagnet.
Spin wave nonreciprocity for logic device applications
NASA Astrophysics Data System (ADS)
Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo
2013-11-01
The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications.
Spin wave nonreciprocity for logic device applications
Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo
2013-01-01
The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications. PMID:24196318
Direct observation and imaging of a spin-wave soliton with p-like symmetry
NASA Astrophysics Data System (ADS)
Bonetti, S.; Kukreja, R.; Chen, Z.; Macià, F.; Hernàndez, J. M.; Eklund, A.; Backes, D.; Frisch, J.; Katine, J.; Malm, G.; Urazhdin, S.; Kent, A. D.; Stöhr, J.; Ohldag, H.; Dürr, H. A.
2015-11-01
Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.
Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4
NASA Astrophysics Data System (ADS)
Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David
2017-03-01
We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.
Helical waves in easy-plane antiferromagnets
NASA Astrophysics Data System (ADS)
Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook
2017-12-01
Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.
Anisotropic itinerant magnetism and spin fluctuations in BaFe2As2 : A neutron scattering study
NASA Astrophysics Data System (ADS)
Matan, K.; Morinaga, R.; Iida, K.; Sato, T. J.
2009-02-01
Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2 , a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy Δ=9.8(4)meV . The in-plane spin-wave velocity vab and out-of-plane spin-wave velocity vc measured at 12 meV are 280(150) and 57(7)meVÅ , respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At TN=136(1)K , the gap closes and quasielastic scattering is observed above TN , indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes “rodlike,” characteristic of uncorrelated out-of-plane spins, attesting to the two-dimensionality of the system.
Chen, Zhifeng; Yan, Yong; Li, Shufa; Xu, Xiaoguang; Jiang, Yong; Lai, Tianshu
2017-01-01
Spin-wave dynamics in full-Heusler Co2FeAl0.5Si0.5 films are studied using all-optical pump-probe magneto-optical polar Kerr spectroscopy. Backward volume magnetostatic spin-wave (BVMSW) mode is observed in films with thickness ranging from 20 to 100 nm besides perpendicular standing spin-wave (PSSW) mode, and found to be excited more efficiently than the PSSW mode. The field dependence of the effective Gilbert damping parameter appears especial extrinsic origin. The relationship between the lifetime and the group velocity of BVMSW mode is revealed. The frequency of BVMSW mode does not obviously depend on the film thickness, but the lifetime and the effective damping appear to do so. The simultaneous excitation of BVMSW and PSSW in Heusler alloy films as well as the characterization of their dynamic behaviors may be of interest for magnonic and spintronic applications. PMID:28195160
Direct observation and imaging of a spin-wave soliton with p-like symmetry
Bonetti, S.; Kukreja, R.; Chen, Z.; ...
2015-11-16
Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Moreover, micromagnetic simulations explain the measurements and reveal that the symmetrymore » of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.« less
Nanopatterned reconfigurable spin-textures for magnonics
NASA Astrophysics Data System (ADS)
Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.
The control of spin-waves holds the promise to enable energy-efficient information transport and wave-based computing. Conventionally, the engineering of spin-waves is achieved via physically patterning magnetic structures such as magnonic crystals and micro-nanowires. We demonstrate a new concept for creating reconfigurable magnonic nanostructures, by crafting at the nanoscale the magnetic anisotropy landscape of a ferromagnet exchange-coupled to an antiferromagnet. By performing a highly localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are patterned without modifying the film chemistry and topography. We demonstrate that, in such structures, the spin-wave excitation and propagation can be spatially controlled at remanence, and can be tuned by external magnetic fields. This opens the way to the use of nanopatterned spin-textures, such as domains and domain walls, for exciting and manipulating magnons in reconfigurable nanocircuits. Partially funded by the EC through project SWING (no. 705326).
Magnetic vortex core reversal by excitation of spin waves.
Kammerer, Matthias; Weigand, Markus; Curcic, Michael; Noske, Matthias; Sproll, Markus; Vansteenkiste, Arne; Van Waeyenberge, Bartel; Stoll, Hermann; Woltersdorf, Georg; Back, Christian H; Schuetz, Gisela
2011-01-01
Micron-sized magnetic platelets in the flux-closed vortex state are characterized by an in-plane curling magnetization and a nanometer-sized perpendicularly magnetized vortex core. Having the simplest non-trivial configuration, these objects are of general interest to micromagnetics and may offer new routes for spintronics applications. Essential progress in the understanding of nonlinear vortex dynamics was achieved when low-field core toggling by excitation of the gyrotropic eigenmode at sub-GHz frequencies was established. At frequencies more than an order of magnitude higher vortex state structures possess spin wave eigenmodes arising from the magneto-static interaction. Here we demonstrate experimentally that the unidirectional vortex core reversal process also occurs when such azimuthal modes are excited. These results are confirmed by micromagnetic simulations, which clearly show the selection rules for this novel reversal mechanism. Our analysis reveals that for spin-wave excitation the concept of a critical velocity as the switching condition has to be modified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evelt, M.; Demidov, V. E., E-mail: demidov@uni-muenster.de; Bessonov, V.
2016-04-25
We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by themore » nonlinear scattering of the coherent spin waves from current-induced excitations.« less
Orbitally excited spectra and decay of cc¯ meson
NASA Astrophysics Data System (ADS)
Chaturvedi, Raghav; Rai, A. K.
2018-05-01
We use the hydrogen like trial wave function for computation of the mass spectra and decay properties of charmonia within the framework of phenomenological quark anti-quark Coulomb plus power potential with varying potential index from 0.5 to 2.0. The spin-spin hyperfine interaction is considered to incorporate splitting of the ground and radially excited states energy levels, further spin-orbit and tensor interactions are employed to calculate the masses of orbitally excited states. We construct the Regge trajectories from the mass spectra in (J, M2) and (nr, M2) planes. We also compute γγ decay width of P wave states of cc¯.
Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO 4
Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; ...
2017-03-09
Here, we report on the spin waves and crystal field excitations in single crystal LiFePO 4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below T N = 50 K that are nearly dispersionless and are most intense around magnetic zone centers. Furthermore, we show that these excitations correspond to transitions between thermally occupied excited states of Fe 2 + due to splitting of the S = 2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplifiedmore » by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above T N , magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. This theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and T N . By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO 4 ( M = Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.« less
Excitation and tailoring of diffractive spin-wave beams in NiFe using nonuniform microwave antennas
NASA Astrophysics Data System (ADS)
Körner, H. S.; Stigloher, J.; Back, C. H.
2017-09-01
We experimentally demonstrate by time-resolved scanning magneto-optical Kerr microscopy the possibility to locally excite multiple spin-wave beams in the dipolar-dominated regime in metallic NiFe films. For this purpose we employ differently shaped nonuniform microwave antennas consisting of several coplanar waveguide sections different in size, thereby adapting an approach for the generation of spin-wave beams in the exchange-dominated regime suggested by Gruszecki et al. [Sci. Rep. 6, 22367 (2016), 10.1038/srep22367]. The occurring spin-wave beams are diffractive and we show that the width of the beam and its widening as it propagates can be tailored by the shape and the length of the nonuniformity. Moreover, the propagation direction of the diffractive beams can be manipulated by changing the bias field direction.
Large Spin-Wave Bullet in a Ferrimagnetic Insulator Driven by the Spin Hall Effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungfleisch, M. B.; Zhang, W.; Sklenar, J.
2016-02-01
Due to its transverse nature, spin Hall effects (SHE) provide the possibility to excite and detect spin currents and magnetization dynamics even in magnetic insulators. Magnetic insulators are outstanding materials for the investigation of nonlinear phenomena and for novel low power spintronics applications because of their extremely low Gilbert damping. Here, we report on the direct imaging of electrically driven spin-torque ferromagnetic resonance (ST-FMR) in the ferrimagnetic insulator Y 3Fe 5O 12 based on the excitation and detection by SHEs. The driven spin dynamics in Y 3Fe 5O 12 is directly imaged by spatially-resolved microfocused Brillouin light scattering (BLS) spectroscopy.more » Previously, ST-FMR experiments assumed a uniform precession across the sample, which is not valid in our measurements. A strong spin-wave localization in the center of the sample is observed indicating the formation of a nonlinear, self-localized spin-wave `bullet'.« less
Observation of spin waves in Pd(1. 5% Fe). Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynn, J.W.; Rhyne, J.J.; Budnick, J.I.
1982-01-01
Inelastic neutron scattering measurements have been carried out on the giant-moment alloy system Pd(1.5% Fe), which is in the dilute ferromagnetic regime. Below the Curie temperature of 67K, relatively well-defined spin-wave excitations have been observed in the small wavevector region (Q < 0.14/A). The dispersion of these excitations is consistent with the quadratic relation E = D(Q/sup 2/) expected for an isotropic ferromagnet, with D = 40 meV-(A/sup 2/) at a temperature of the 40K. With increasing temperature, the spin waves are found to renormalize in energy, and broaden rapidly both with increasing Q and increasing temperature.
Magnetic domain walls as reconfigurable spin-wave nano-channels
NASA Astrophysics Data System (ADS)
Wagner, Kai
Research efforts to utilize spin waves as information carriers for wave based logic in micro- and nano-structured ferromagnetic materials have increased tremendously over the recent years. However, finding efficient means of tailoring and downscaling guided spin-wave propagation in two dimensions, while maintaining energy efficiency and reconfigurability, still remains a delicate challenge. Here we target these challenges by spin-wave transport inside nanometer-scaled potential wells formed along magnetic domain walls. For this, we investigate the magnetization dynamics of a rectangular-like element in a Landau state exhibiting a so called 180° Néel wall along its center. By microwave antennae the rf-excitation is constricted to one end of the domain wall and the spin-wave intensities are recorded by means of Brillouin-Light Scattering microscopy revealing channeled transport. Additional micromagnetic simulations with pulsed as well as cw-excitation are performed to yield further insight into this class of modes. We find several spin-wave modes quantized along the width of the domain wall yet with well defined wave vectors along the wall, exhibiting positive dispersion. In a final step, we demonstrate the flexibility of these spin-wave nano-channels based on domain walls. In contrast to wave guides realised by fixed geometries, domain walls can be easily manipulated. Here we utilize small external fields to control its position with nanometer precision over a micrometer range, while still enabling transport. Domain walls thus, open the perspective for reprogrammable and yet non-volatile spin-wave waveguides of nanometer width. Financial support by the Deutsche Forschungsgemeinschaft within project SCHU2922/1-1 is gratefully acknowledged.
Spin-isotropic continuum of spin excitations in antiferromagnetically ordered Fe1.07Te
NASA Astrophysics Data System (ADS)
Song, Yu; Lu, Xingye; Regnault, L.-P.; Su, Yixi; Lai, Hsin-Hua; Hu, Wen-Jun; Si, Qimiao; Dai, Pengcheng
2018-02-01
Unconventional superconductivity typically emerges in the presence of quasidegenerate ground states, and the associated intense fluctuations are likely responsible for generating the superconducting state. Here we use polarized neutron scattering to study the spin space anisotropy of spin excitations in Fe1.07Te exhibiting bicollinear antiferromagnetic (AF) order, the parent compound of FeTe1 -xSex superconductors. We confirm that the low-energy spin excitations are transverse spin waves, consistent with a local-moment origin of the bicollinear AF order. While the ordered moments lie in the a b plane in Fe1.07Te , it takes less energy for them to fluctuate out of plane, similar to BaFe2As2 and NaFeAs. At energies above E ≳20 meV, we find magnetic scattering to be dominated by an isotropic continuum that persists up to at least 50 meV. Although the isotropic spin excitations cannot be ascribed to spin waves from a long-range-ordered local-moment antiferromagnet, the continuum can result from the bicollinear magnetic order ground state of Fe1.07Te being quasidegenerate with plaquette magnetic order.
Nonlinear spin waves in magnetic thin films - foldover, dispersive shock waves, and spin pumping
NASA Astrophysics Data System (ADS)
Janantha, Pasdunkorale Arachchige Praveen
Three nonlinear phenomena of spin waves and the spin Seebeck effect in yttrium iron garnet (YIG)/Pt bi-layer structures are studied in this thesis and are reported in detail in Chapters 4-7. In the fourth chapter, the first observation of foldover effect of nonlinear eigenmodes in feedback ring systems is reported. The experiments made use of a system that consisted of a YIG thin film strip, which supported the propagation of forward volume spin waves, and a microwave amplifier, which amplified the signal from the output of the YIG strip and then fed it back to the input of the strip. The signal amplitude vs. frequency response in this ring system showed resonant peaks which resulted from ring eigenmodes. With an increase in the resonance amplitude, those resonant peaks evolved from symmetric peaks to asymmetric ones and then folded over to higher frequencies. The experimental observations were reproduced by theoretical calculations that took into account the nonlinearity-produced frequency shift of the traveling spin waves. The fifth chapter presents the first experimental observation of the formation of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear spin waves. The experiments used a microwave step pulse to excite a spin-wave step pulse in a YIG thin film strip, in which the spin-wave amplitude increases rapidly. Under certain conditions, the spin-wave pulse evolved into a DSW excitation that consisted of a train of dark soliton-like dips with both the dip width and depth increasing from the front to the back and was terminated by a black soliton that had an almost zero intensity and a nearly 180° phase jump at its center. The sixth chapter reports on the spin pumping due to traveling spin waves. The experiment used a micron-thick YIG strip capped by a nanometer-thick Pt layer. The YIG film was biased by an in-plane magnetic field. The spin waves pumped spin currents into the Pt layer, and the later produced electrical voltages across the length of the Pt strip through the inverse spin Hall effect (ISHE). Several distinct pumping regimes were observed and were interpreted in the frame work of the nonlinear three-wave splitting processes of the spin waves. The seventh chapter presents the first experimental work on the roles of damping in the spin Seebeck effect (SSE). The experiments used YIG/Pt bi-layered structures where the YIG films exhibited very similar structural and static magnetic properties but very different damping. The data indicate that a decrease in the damping of the YIG film gives rise to an increase in the SSE coefficient, and this response shows quasi-linear behavior. The data also indicate that the SSE coefficient shows no notable dependences on the enhanced damping due to spin pumping.
Magnetic Snell's law and spin-wave fiber with Dzyaloshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Yu, Weichao; Lan, Jin; Wu, Ruqian; Xiao, Jiang
2016-10-01
Spin waves are collective excitations propagating in the magnetic medium with ordered magnetizations. Magnonics, utilizing the spin wave (magnon) as an information carrier, is a promising candidate for low-dissipation computation and communication technologies. We discover that, due to the Dzyaloshinskii-Moriya interaction, the scattering behavior of the spin wave at a magnetic domain wall follows a generalized Snell's law, where two magnetic domains work as two different mediums. Similar to optical total reflection that occurs at water-air interfaces, spin waves may experience total reflection at the magnetic domain walls when their incident angle is larger than a critical value. We design a spin-wave fiber using a magnetic domain structure with two domain walls, and demonstrate that such a spin-wave fiber can transmit spin waves over long distances by total internal reflections, in analogy to an optical fiber.
Controlling soliton excitations in Heisenberg spin chains through the magic angle.
Lu, Jing; Zhou, Lan; Kuang, Le-Man; Sun, C P
2009-01-01
We study the nonlinear dynamics of collective excitation in an N -site XXZ quantum spin chain, which is manipulated by an oblique magnetic field. We show that, when the tilted field is applied along the magic angle, theta_{0}=+/-arccossqrt[13] , the anisotropic Heisenberg spin chain becomes isotropic and thus an freely propagating spin wave is stimulated. Also, in the regime of tilted angles larger and smaller than the magic angle, two types of nonlinear excitations appear: bright and dark solitons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Chuyuan; Li, Shufa; Lai, Tianshu, E-mail: stslts@mail.sysu.edu.cn, E-mail: jhzhao@red.semi.ac.cn
2013-12-02
Spin-wave dynamics in 30 nm thick Co{sub 2}Fe{sub 1−x}Mn{sub x}Al full-Heusler films is investigated using time-resolved magneto-optical polar Kerr spectroscopy under an external field perpendicular to films. Damon-Eshbach (DE) and the first-order perpendicular standing spin-wave (PSSW) modes are observed simultaneously in four samples with x = 0, 0.3, 0.7, and 1. The frequency of DE and PSSW modes does not apparently depend on composition x, but damping of DE mode significantly on x and reaches the minimum as x = 0.7. The efficient coherent excitation of DE spin wave exhibits the promising application of Co{sub 2}Fe{sub 0.3}Mn{sub 0.7}Al films in magnonic devices.
Ultrafast optical excitation of magnetic skyrmions
NASA Astrophysics Data System (ADS)
Ogawa, N.; Seki, S.; Tokura, Y.
2015-04-01
Magnetic skyrmions in an insulating chiral magnet Cu2OSeO3 were studied by all-optical spin wave spectroscopy. The spins in the conical and skyrmion phases were excited by the impulsive magnetic field from the inverse-Faraday effect, and resultant spin dynamics were detected by using time-resolved magneto-optics. Clear dispersions of the helimagnon were observed, which is accompanied by a distinct transition into the skyrmion phase, by sweeping temperature and magnetic field. In addition to the collective excitations of skyrmions, i.e., rotation and breathing modes, several spin precession modes were identified, which would be specific to optical excitation. The ultrafast, nonthermal, and local excitation of the spin systems by photons would lead to the efficient manipulation of nano-magnetic structures.
Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films
NASA Astrophysics Data System (ADS)
Janantha, P. A. Praveen; Sprenger, Patrick; Hoefer, Mark A.; Wu, Mingzhong
2017-07-01
The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic Y3Fe5O12 thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.
NASA Astrophysics Data System (ADS)
Hsu, Chen-Hsuan; Wang, Zhiqiang; Chakravarty, Sudip
2012-12-01
In a recent inelastic neutron scattering experiment in the pseudogap state of the high-temperature superconductor YBa2Cu3O6.6, an unusual “vertical” dispersion of the spin excitations with a large in-plane anisotropy was observed. In this paper, we discuss in detail the spin susceptibility of the singlet d-density wave, the triplet d-density wave as well as the more common spin density wave orders with hopping anisotropies. From numerical calculations within the framework of random phase approximation, we find nearly vertical dispersion relations for spin excitations with anisotropic incommensurability at low energy ω≤90meV, which are reminiscent of the experiments. At very high energy ω≥165meV, we also find energy-dependent incommensurability. Although there are some important differences between the three cases, unpolarized neutron measurements cannot discriminate between these alternate possibilities; the vertical dispersion, however, is a distinct feature of all three density wave states in contrast to the superconducting state, which shows an hour-glass shape dispersion.
Lee, Jong Min; Jang, Chaun; Min, Byoung-Chul; Lee, Seo-Won; Lee, Kyung-Jin; Chang, Joonyeon
2016-01-13
Dzyaloshinskii-Moriya interaction (DMI), which arises from the broken inversion symmetry and spin-orbit coupling, is of prime interest as it leads to a stabilization of chiral magnetic order and provides an efficient manipulation of magnetic nanostructures. Here, we report all-electrical measurement of DMI using propagating spin wave spectroscopy based on the collective spin wave with a well-defined wave vector. We observe a substantial frequency shift of spin waves depending on the spin chirality in Pt/Co/MgO structures. After subtracting the contribution from other sources to the frequency shift, it is possible to quantify the DMI energy in Pt/Co/MgO systems. The result reveals that the DMI in Pt/Co/MgO originates from the interfaces, and the sign of DMI corresponds to the inversion asymmetry of the film structures. The electrical excitation and detection of spin waves and the influence of interfacial DMI on the collective spin-wave dynamics will pave the way to the emerging field of spin-wave logic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braecher, T.; Sebastian, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern
2013-04-01
We present the generation of propagating backward volume (BV) spin waves in a T shaped Ni{sub 81}Fe{sub 19} microstructure. These waves are created from counterpropagating Damon Eshbach spin waves, which are excited using microstrip antennas. By employing Brillouin light scattering microscopy, we show how the phase relation between the counterpropagating waves determines the mode generated in the center of the structure, and prove its propagation inside the longitudinally magnetized part of the T shaped microstructure. This gives access to the effective generation of backward volume spin waves with full control over the generated transverse mode.
All-optical observation and reconstruction of spin wave dispersion
Hashimoto, Yusuke; Daimon, Shunsuke; Iguchi, Ryo; Oikawa, Yasuyuki; Shen, Ka; Sato, Koji; Bossini, Davide; Tabuchi, Yutaka; Satoh, Takuya; Hillebrands, Burkard; Bauer, Gerrit E. W.; Johansen, Tom H.; Kirilyuk, Andrei; Rasing, Theo; Saitoh, Eiji
2017-01-01
To know the properties of a particle or a wave, one should measure how its energy changes with its momentum. The relation between them is called the dispersion relation, which encodes essential information of the kinetics. In a magnet, the wave motion of atomic spins serves as an elementary excitation, called a spin wave, and behaves like a fictitious particle. Although the dispersion relation of spin waves governs many of the magnetic properties, observation of their entire dispersion is one of the challenges today. Spin waves whose dispersion is dominated by magnetostatic interaction are called pure-magnetostatic waves, which are still missing despite of their practical importance. Here, we report observation of the band dispersion relation of pure-magnetostatic waves by developing a table-top all-optical spectroscopy named spin-wave tomography. The result unmasks characteristics of pure-magnetostatic waves. We also demonstrate time-resolved measurements, which reveal coherent energy transfer between spin waves and lattice vibrations. PMID:28604690
Resonant spin wave excitations in a magnonic crystal cavity
NASA Astrophysics Data System (ADS)
Kumar, N.; Prabhakar, A.
2018-03-01
Spin polarized electric current, injected into permalloy (Py) through a nano contact, exerts a torque on the magnetization. The spin waves (SWs) thus excited propagate radially outward. We propose an antidot magnonic crystal (MC) with a three-hole defect (L3) around the nano contact, designed so that the frequency of the excited SWs, lies in the band gap of the MC. L3 thus acts as a resonant SW cavity. The energy in this magnonic crystal cavity can be tapped by an adjacent MC waveguide (MCW). An analysis of the simulated micromagnetic power spectrum, at the output port of the MCW reveals stable SW oscillations. The quality factor of the device, calculated using the decay method, was estimated as Q > 105 for an injected spin current density of 7 ×1012 A/m2.
Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polzikova, N. I., E-mail: polz@cplire.ru; Alekseev, S. G.; Pyataikin, I. I.
2016-05-15
We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW) resonator (HBAR) formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE) this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determinedmore » by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.« less
Majumdar, Kingshuk
2011-03-23
The effects of interlayer coupling and spatial anisotropy on the spin-wave excitation spectra of a three-dimensional spatially anisotropic, frustrated spin-½ Heisenberg antiferromagnet (HAFM) are investigated for the two ordered phases using second-order spin-wave expansion. We show that the second-order corrections to the spin-wave energies are significant and find that the energy spectra of the three-dimensional HAFM have similar qualitative features to the energy spectra of the two-dimensional HAFM on a square lattice. We also discuss the features that can provide experimental measures for the strength of the interlayer coupling, spatial anisotropy parameter, and magnetic frustration.
NASA Astrophysics Data System (ADS)
Shigematsu, Ei; Ando, Yuichiro; Dushenko, Sergey; Shinjo, Teruya; Shiraishi, Masashi
2018-05-01
The lateral thermal gradient of an yttrium iron garnet (YIG) film under microwave application in the cavity of the electron spin resonance system (ESR) was measured at room temperature by fabricating a Cu/Sb thermocouple onto it. To date, thermal transport in YIG films caused by the Damon-Eshbach mode (DEM)—the unidirectional spin-wave heat conveyer effect—was demonstrated only by the excitation using coplanar waveguides. Here, we show that the effect exists even under YIG excitation using the ESR cavity—a tool often employed to realize spin pumping. The temperature difference observed around the ferromagnetic resonance field under 4 mW microwave power peaked at 13 mK. The observed thermoelectric signal indicates the imbalance of the population between the DEMs that propagate near the top and bottom surfaces of the YIG film. We attribute the DEM population imbalance to different magnetic dampings near the top and bottom YIG surfaces. Additionally, the spin wave dynamics of the system were investigated using the micromagnetic simulations. The micromagnetic simulations confirmed the existence of the DEM imbalance in the system with increased Gilbert damping at one of the YIG interfaces. The reported results are indispensable to the quantitative estimation of the electromotive force in the spin-charge conversion experiments using ESR cavities.
Unidirectional spin-wave heat conveyer.
An, T; Vasyuchka, V I; Uchida, K; Chumak, A V; Yamaguchi, K; Harii, K; Ohe, J; Jungfleisch, M B; Kajiwara, Y; Adachi, H; Hillebrands, B; Maekawa, S; Saitoh, E
2013-06-01
When energy is introduced into a region of matter, it heats up and the local temperature increases. This energy spontaneously diffuses away from the heated region. In general, heat should flow from warmer to cooler regions and it is not possible to externally change the direction of heat conduction. Here we show a magnetically controllable heat flow caused by a spin-wave current. The direction of the flow can be switched by applying a magnetic field. When microwave energy is applied to a region of ferrimagnetic Y3Fe5O12, an end of the magnet far from this region is found to be heated in a controlled manner and a negative temperature gradient towards it is formed. This is due to unidirectional energy transfer by the excitation of spin-wave modes without time-reversal symmetry and to the conversion of spin waves into heat. When a Y3Fe5O12 film with low damping coefficients is used, spin waves are observed to emit heat at the sample end up to 10 mm away from the excitation source. The magnetically controlled remote heating we observe is directly applicable to the fabrication of a heat-flow controller.
Antiferromagnetic Spin Wave Field-Effect Transistor
Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; ...
2016-04-06
In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibilitymore » of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.« less
Electron doping evolution of the magnetic excitations in NaFe 1-xCo xAs
Carr, Scott V.; Zhang, Chenglin; Song, Yu; ...
2016-06-13
We use time-of-flight (TOF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe 1-xCo xAs with x = 0, 0.0175, 0.0215, 0.05, and 0.11. The effect of electron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy (E 80 meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy (E > 80 meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility "(!) of NaFe 1-xCo xAs reveals a total fluctuating moment ofmore » 3.6 μ2 B/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Cooverdoped nonsuperconducting NaFe0.89Co0.11As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe 2-xNi xAs 2, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Jin; Yu, Weichao; Wu, Ruqian
A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound statesmore » in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. As a result, these findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.« less
Lan, Jin; Yu, Weichao; Wu, Ruqian; ...
2015-12-28
A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound statesmore » in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. As a result, these findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.« less
Antiferromagnetic domain wall as spin wave polarizer and retarder.
Lan, Jin; Yu, Weichao; Xiao, Jiang
2017-08-02
As a collective quasiparticle excitation of the magnetic order in magnetic materials, spin wave, or magnon when quantized, can propagate in both conducting and insulating materials. Like the manipulation of its optical counterpart, the ability to manipulate spin wave polarization is not only important but also fundamental for magnonics. With only one type of magnetic lattice, ferromagnets can only accommodate the right-handed circularly polarized spin wave modes, which leaves no freedom for polarization manipulation. In contrast, antiferromagnets, with two opposite magnetic sublattices, have both left and right-circular polarizations, and all linear and elliptical polarizations. Here we demonstrate theoretically and confirm by micromagnetic simulations that, in the presence of Dzyaloshinskii-Moriya interaction, an antiferromagnetic domain wall acts naturally as a spin wave polarizer or a spin wave retarder (waveplate). Our findings provide extremely simple yet flexible routes toward magnonic information processing by harnessing the polarization degree of freedom of spin wave.Spin waves are promising candidates as carriers for energy-efficient information processing, but they have not yet been fully explored application wise. Here the authors theoretically demonstrate that antiferromagnetic domain walls are naturally spin wave polarizers and retarders, two key components of magnonic devices.
SU (N ) spin-wave theory: Application to spin-orbital Mott insulators
NASA Astrophysics Data System (ADS)
Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin
2018-05-01
We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.
Excitations in the field-induced quantum spin liquid state of α-RuCl3
NASA Astrophysics Data System (ADS)
Banerjee, Arnab; Lampen-Kelley, Paula; Knolle, Johannes; Balz, Christian; Aczel, Adam Anthony; Winn, Barry; Liu, Yaohua; Pajerowski, Daniel; Yan, Jiaqiang; Bridges, Craig A.; Savici, Andrei T.; Chakoumakos, Bryan C.; Lumsden, Mark D.; Tennant, David Alan; Moessner, Roderich; Mandrus, David G.; Nagler, Stephen E.
2018-03-01
The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations. However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase.
Excitations in the field-induced quantum spin liquid state of α-RuCl 3
Banerjee, Arnab; Kelley, Paula J.; Knolle, Johannes; ...
2018-02-20
The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl 3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations.more » However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here in this paper, we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase.« less
Excitations in the field-induced quantum spin liquid state of α-RuCl 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Arnab; Kelley, Paula J.; Knolle, Johannes
The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl 3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations.more » However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here in this paper, we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase.« less
Mapping of spin wave propagation in a one-dimensional magnonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ordóñez-Romero, César L., E-mail: cloro@fisica.unam.mx; Lazcano-Ortiz, Zorayda; Aguilar-Huerta, Melisa
2016-07-28
The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show thatmore » the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch′s theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanoi, K.; Yokotani, Y.; Cui, X.
2015-12-21
We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of themore » standing spin wave is an important advantage for the high power operation of the spin-wave device.« less
NASA Astrophysics Data System (ADS)
Brächer, T.; Pirro, P.; Hillebrands, B.
2017-06-01
Magnonics and magnon spintronics aim at the utilization of spin waves and magnons, their quanta, for the construction of wave-based logic networks via the generation of pure all-magnon spin currents and their interfacing with electric charge transport. The promise of efficient parallel data processing and low power consumption renders this field one of the most promising research areas in spintronics. In this context, the process of parallel parametric amplification, i.e., the conversion of microwave photons into magnons at one half of the microwave frequency, has proven to be a versatile tool to excite and to manipulate spin waves. Its beneficial and unique properties such as frequency and mode-selectivity, the possibility to excite spin waves in a wide wavevector range and the creation of phase-correlated wave pairs, have enabled the achievement of important milestones like the magnon Bose-Einstein condensation and the cloning and trapping of spin-wave packets. Parallel parametric amplification, which allows for the selective amplification of magnons while conserving their phase is, thus, one of the key methods of spin-wave generation and amplification. The application of parallel parametric amplification to CMOS-compatible micro- and nano-structures is an important step towards the realization of magnonic networks. This is motivated not only by the fact that amplifiers are an important tool for the construction of any extended logic network but also by the unique properties of parallel parametric amplification. In particular, the creation of phase-correlated wave pairs allows for rewarding alternative logic operations such as a phase-dependent amplification of the incident waves. Recently, the successful application of parallel parametric amplification to metallic microstructures has been reported which constitutes an important milestone for the application of magnonics in practical devices. It has been demonstrated that parametric amplification provides an excellent tool to generate and to amplify spin waves in these systems in a wide wavevector range. In particular, the amplification greatly benefits from the discreteness of the spin-wave spectra since the size of the microstructures is comparable to the spin-wave wavelength. This opens up new, interesting routes of spin-wave amplification and manipulation. In this review, we will give an overview over the recent developments and achievements in this field.
Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe 1 - x Co x As
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yu; Yin, Zhiping; Wang, Xiancheng
We use neutron scattering to study spin excitations in single crystals of LiFe 0.88Co 0.12As, which is located near the boundary of the superconducting phase of LiFe 1-xCo xAs and exhibits non- Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe 0.88Co 0.12As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the dxy orbitals, while high-energy spin excitations arise from the dyz and dxz orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAsmore » family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe 1-xCo xAs are consistent with electron-hole Fermi surface nesting condition for the dxy orbital, the reduced superconductivity in LiFe 0.88Co 0.12As suggests that Fermi surface nesting conditions for the dyz and dxz orbitals are also important for superconductivity in iron pnictides.« less
Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe 1 - x Co x As
Li, Yu; Yin, Zhiping; Wang, Xiancheng; ...
2016-06-17
We use neutron scattering to study spin excitations in single crystals of LiFe 0.88Co 0.12As, which is located near the boundary of the superconducting phase of LiFe 1-xCo xAs and exhibits non- Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe 0.88Co 0.12As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the dxy orbitals, while high-energy spin excitations arise from the dyz and dxz orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAsmore » family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe 1-xCo xAs are consistent with electron-hole Fermi surface nesting condition for the dxy orbital, the reduced superconductivity in LiFe 0.88Co 0.12As suggests that Fermi surface nesting conditions for the dyz and dxz orbitals are also important for superconductivity in iron pnictides.« less
Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe_{1-x}Co_{x}As.
Li, Yu; Yin, Zhiping; Wang, Xiancheng; Tam, David W; Abernathy, D L; Podlesnyak, A; Zhang, Chenglin; Wang, Meng; Xing, Lingyi; Jin, Changqing; Haule, Kristjan; Kotliar, Gabriel; Maier, Thomas A; Dai, Pengcheng
2016-06-17
We use neutron scattering to study spin excitations in single crystals of LiFe_{0.88}Co_{0.12}As, which is located near the boundary of the superconducting phase of LiFe_{1-x}Co_{x}As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe_{0.88}Co_{0.12}As with a combined density functional theory and dynamical mean field theory calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the d_{xy} orbitals, while high-energy spin excitations arise from the d_{yz} and d_{xz} orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in the LiFeAs family cannot be described by an anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe_{1-x}Co_{x}As is consistent with the electron-hole Fermi surface nesting conditions for the d_{xy} orbital, the reduced superconductivity in LiFe_{0.88}Co_{0.12}As suggests that Fermi surface nesting conditions for the d_{yz} and d_{xz} orbitals are also important for superconductivity in iron pnictides.
NASA Astrophysics Data System (ADS)
Nomura, Takuji
2017-10-01
We study two-magnon excitations in resonant inelastic x-ray scattering (RIXS) at the transition-metal K edge. Instead of working with effective Heisenberg spin models, we work with a Hubbard-type model (d -p model) for a typical insulating cuprate La2CuO4 . For the antiferromagnetic ground state within the spin density wave (SDW) mean-field formalism, we calculate the dynamical correlation function within the random-phase approximation (RPA), and then obtain two-magnon excitation spectra by calculating the convolution of it. Coupling between the K -shell hole and the magnons in the intermediate state is calculated by means of diagrammatic perturbation expansion in the Coulomb interaction. The calculated momentum dependence of RIXS spectra agrees well with that of experiments. A notable difference from previous calculations based on the Heisenberg spin models is that RIXS spectra have a large two-magnon weight near the zone center, which may be confirmed by further careful high-resolution experiments.
Investigation of non-reciprocal magnon propagation using lock-in thermography
NASA Astrophysics Data System (ADS)
Wid, Olga; Bauer, Jan; Müller, Alexander; Breitenstein, Otwin; Parkin, Stuart S. P.; Schmidt, Georg
2017-04-01
We have investigated the unidirectional spin wave heat conveyer effect in a 200 nm thin yttrium iron garnet (YIG) film using lock-in thermography (LIT). This originates from the non-reciprocal propagation of magnons, which leads to an asymmetric heat transport. To excite the spin waves we use two different respective antenna geometries: a coplanar waveguide (CPW) or a ‘microstrip’-like antenna on top of the YIG. By using the CPW and comparing the results for the Damon-Eshbach and the backward volume modes we are able to show that the origin of the asymmetric heat profile are indeed the non-reciprocal spin waves. Using the ‘microstrip’-like geometry we can confirm these results and we can even observe a distinct excitation profile along the antenna due to small field inhomogeneities.
Microwave excitation of spin wave beams in thin ferromagnetic films
Gruszecki, P.; Kasprzak, M.; Serebryannikov, A. E.; Krawczyk, M.; Śmigaj, W.
2016-01-01
An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency. PMID:26971711
Manipulation of propagating spin waves in straight and curved magnetic microstrips
NASA Astrophysics Data System (ADS)
Haldar, Arabinda; Liu, Hau-Jian; Schultheiss, Helmut; Vogt, Katrin; Hoffmann, Axel; Buchanan, Kristen
2012-02-01
The main challenges in realizing magnonics devices are the generation, manipulation and detection of spin waves, especially in metallic magnetic materials where the length scales are of interest for applications. We have studied the propagation of spin waves in transversely magnetized Permalloy (Py) microstrips of different shapes using micro-Brillouin light scattering. The Py stripe was 30-nm thick, several micrometers wide and >50 μm long. Spin waves were excited in the Py strip using a 2-μm wide antenna. We compare the spin wave propagation along a straight wire to the propagation along a magnetic microstrip with a smooth bend. We will also discuss the use of a current through a gold wire under the Permalloy to provide a local magnetic field to maintain a transverse magnetization around the bend.
Breathers and rogue waves in a Heisenberg ferromagnetic spin chain or an alpha helical protein
NASA Astrophysics Data System (ADS)
Yang, Jin-Wei; Gao, Yi-Tian; Su, Chuan-Qi; Wang, Qi-Min; Lan, Zhong-Zhou
2017-07-01
In this paper, a fourth-order variable-coefficient nonlinear Schrödinger equation for a one-dimensional continuum anisotropic Heisenberg ferromagnetic spin chain or an alpha helical protein has been investigated. Breathers and rogue waves are constructed via the Darboux transformation and generalized Darboux transformation, respectively. Results of the breathers and rogue waves are presented: (1) The first- and second-order Akhmediev breathers and Kuznetsov-Ma solitons are presented with different values of variable coefficients which are related to the energy transfer or higher-order excitations and interactions in the helical protein, or related to the spin excitations resulting from the lowest order continuum approximation and octupole-dipole interaction in a Heisenberg ferromagnetic spin chain, and the nonlinear periodic breathers resulting from the Akhmediev breathers are studied as well; (2) For the first- and second-order rogue waves, we find that they can be split into many similar components when the variable coefficients are polynomial functions of time; (3) Rogue waves can also be split when the variable coefficients are hyperbolic secant functions of time, but the profile of each component in such a case is different.
Magnonic waveguide based on exchange-spring magnetic structure
NASA Astrophysics Data System (ADS)
Wang, Lixiang; Gao, Leisen; Jin, Lichuan; Liao, Yulong; Wen, Tianlong; Tang, Xiaoli; Zhang, Huaiwu; Zhong, Zhiyong
2018-05-01
A soft/hard exchange-spring coupled bilayer magnetic structure is proposed to obtain a narrow channel for spin-wave propagation. Micromagnetic simulations show that broad-band Damon-Eshbach geometry spin waves are strongly constrained within the channel and propagate effectively with a high group velocity. The beam width of the bound spin waves is almost independent from the frequency and is smaller than 24nm. Two side spin beams appearing at the low-frequency excitation are demonstrated to be coupled with the channel spins by dipole-dipole interaction. In contrast to a domain wall, the channel formed by exchange-spring coupling is easier to be realized in experimental scenarios and holds stronger immunity to surroundings. This work is expected to open new possibilities for energy-efficient spin-wave guiding as well as to help shape the field of beam magnonics.
Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs 2CuBr 4
Zvyagin, S. A.; Ozerov, M.; Kamenskyi, D.; ...
2015-11-27
We present on high- field electron spin resonance (ESR) studies of magnetic excitations in the spin- 1/2 triangular-lattice antiferromagnet Cs 2CuBr 4. Frequency- field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero- field energy gap, Δ ≈ 9.5 K, observed in the low-temperature excitation spectrum of Cs 2CuBr 4 [Zvyagin et al:, Phys. Rev. Lett. 112, 077206 (2014)], is present well above T N. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even belowmore » T N the high-energy spin dynamics in Cs 2CuBr 4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.« less
Quantum gap and spin-wave excitations in the Kitaev model on a triangular lattice
NASA Astrophysics Data System (ADS)
Avella, Adolfo; Di Ciolo, Andrea; Jackeli, George
2018-05-01
We study the effects of quantum fluctuations on the dynamical generation of a gap and on the evolution of the spin-wave spectra of a frustrated magnet on a triangular lattice with bond-dependent Ising couplings, analog of the Kitaev honeycomb model. The quantum fluctuations lift the subextensive degeneracy of the classical ground-state manifold by a quantum order-by-disorder mechanism. Nearest-neighbor chains remain decoupled and the surviving discrete degeneracy of the ground state is protected by a hidden model symmetry. We show how the four-spin interaction, emergent from the fluctuations, generates a spin gap shifting the nodal lines of the linear spin-wave spectrum to finite energies.
Topologically protected unidirectional edge spin waves
NASA Astrophysics Data System (ADS)
Wang, Xiang Rong; Wang, Xiansi; Su, Ying
Magnetic materials are highly correlated spin systems that do not respect the time-reversal symmetry. The low-energy excitations of magnetic materials are spin waves whose quanta are magnons. Like electronic materials that can be topologically nontrivial, a magnetic material can also be topologically nontrivial with topologically protected unidirectional edge states. These edge states should be superb channels of processing and manipulating spin waves because they are robust against perturbations and geometry changes, unlike the normal spin wave states that are very sensitive to the system changes and geometry. Therefore, the magnetic topological matter is of fundamental interest and technologically useful in magnonics. Here, we show that ferromagnetically interacting spins on a two-dimensional honeycomb lattice with nearest-neighbour interactions and governed by the Landau-Lifshitz-Gilbert equation, can be topologically nontrivial with gapped bulk spin waves and gapless edge spin waves. These edge spin waves are indeed very robust against defects under topological protection. Because of the unidirectional nature of these topologically protected edge spin waves, an interesting functional magnonic device called beam splitter can be made out of a domain wall in a strip. It is shown that an in-coming spin wave beam along one edge splits into two spin wave beams propagating along two opposite directions on the other edge after passing through a domain wall. This work was supported by Hong Kong GRF Grants (Nos. 163011151 and 16301816) and the Grant from NNSF of China (No. 11374249). X.S.W acknowledge support from UESTC.
Huang, Edwin W.; Scalapino, Douglas J.; Maier, Thomas A.; ...
2017-07-17
Evidence for the presence of high-energy magnetic excitations in overdoped La 2–xSr xCuO 4 (LSCO) has raised questions regarding the role of spin fluctuations in the pairing mechanism. If they remain present in overdoped LSCO, why does T c decrease in this doping regime? Here, using results for the dynamic spin susceptibility Imχ(q,ω) obtained from a determinantal quantum Monte Carlo calculation for the Hubbard model, we address this question. We find that while high-energy magnetic excitations persist in the overdoped regime, they lack the momentum to scatter pairs between the antinodal regions. Finally, it is the decrease in the spectralmore » weight at large momentum transfer, not observed by resonant inelastic x-ray scattering, which leads to a reduction in the d-wave spin-fluctuation pairing strength.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Edwin W.; Scalapino, Douglas J.; Maier, Thomas A.
Evidence for the presence of high-energy magnetic excitations in overdoped La 2–xSr xCuO 4 (LSCO) has raised questions regarding the role of spin fluctuations in the pairing mechanism. If they remain present in overdoped LSCO, why does T c decrease in this doping regime? Here, using results for the dynamic spin susceptibility Imχ(q,ω) obtained from a determinantal quantum Monte Carlo calculation for the Hubbard model, we address this question. We find that while high-energy magnetic excitations persist in the overdoped regime, they lack the momentum to scatter pairs between the antinodal regions. Finally, it is the decrease in the spectralmore » weight at large momentum transfer, not observed by resonant inelastic x-ray scattering, which leads to a reduction in the d-wave spin-fluctuation pairing strength.« less
Generalized spin-wave theory: Application to the bilinear-biquadratic model
NASA Astrophysics Data System (ADS)
Muniz, Rodrigo A.; Kato, Yasuyuki; Batista, Cristian D.
2014-08-01
We present a mathematical framework for the multi-boson approach that has been used several times for treating spin systems. We demonstrate that the multi-boson approach corresponds to a generalization of the traditional spin-wave theory from SU(2) to SU(N), where N is the number of states of the local degree of freedom. Low-energy excitations are waves of the local order parameter that fluctuates in the SU(N) space of unitary transformations of the local spin states, instead of the SU(2) space of local spin rotations. Since the generators of the SU(N) group can be represented as bilinear forms in N-flavored bosons, the low-energy modes of the generalized spin-wave theory (GSWT) are described with N-1 different bosons, which provide a more accurate description of low-energy excitations even for the usual ferromagnetic and antiferromagnetic phases. The generalization enables the treatment of quantum spin systems whose ground states exhibit multipolar ordering as well as the detection of instabilities of magnetically ordered states (dipolar ordering) towards higher multipolar orderings. We illustrate the advantages of the GSWT by applying it to a bilinear-biquadratic model of arbitrary spin S on hypercubic lattices, and then analyzing the spectrum of dipolar phases in order to find their instabilities. In contrast to the known results for S=1 when the biquadratic term in the Hamiltonian is negative, we find that there is no nematic phase between the ferromagnetic or antiferromagnetic orderings for S>1.
OPTICS. Quantum spin Hall effect of light.
Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco
2015-06-26
Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. Copyright © 2015, American Association for the Advancement of Science.
Using magnons to probe spintronic materials properties
NASA Astrophysics Data System (ADS)
McMichael, Robert
2012-02-01
For many spin-based electronic devices, from the read sensors in modern hard disk drives to future spintronic logic concepts, the device physics originates in spin polarized currents in ferromagnetic metals. In this talk, I will describe a novel ``Spin Wave Doppler'' method that uses the interaction of spin waves with spin-polarized currents to determine the spin drift velocity and the spin current polarization [1]. Owing to differences between the band structures of majority-spin and minority-spin electrons, the electrical current also carries an angular momentum current and magnetic moment current. Passing these coupled currents though a magnetic wire changes the linear excitations of the magnetization, i.e spin waves. Interestingly, the excitations can be described as drifting ``downstream'' with the electron flow. We measure this drift velocity by monitoring the spin-wave-mediated transmission between pairs of periodically patterned antennas on magnetic wires as a function of current density in the wire. The transmission frequency resonance shifts by 2πδf = vk where the drift velocity v is proportional to both the current density and the current polarization P. I will discuss measurements of the spin polarization of the current in Ni80Fe20 [2], and novel alloys (CoFe)1-xGax [3] and (Ni80Fe20)1-xGdx [4]. [4pt] [1] V. Vlaminck and M. Bailleul, Science, 322, 410 (2008) [0pt] [2] M. Zhu, C. L. Dennis, and R. D. McMichael, Phys. Rev. B, 81, 140407 (2010). [0pt] [3] M. Zhu, B. D. Soe, R. D. McMichael, M. J. Carey, S. Maat, and J. R. Childress, Appl. Phys. Lett., 98, 072510 (2011). [0pt] [4] R. L. Thomas, M. Zhu, C. L. Dennis, V. Misra and R. D. McMichael, J. Appl. Phys., 110, 033902 (2011).
Magnetic structure and spin excitations in BaMn 2Bi 2
Calder, Stuart A.; Saparov, Bayrammurad I; Cao, H. B.; ...
2014-02-19
We present a single crystal neutron scattering study of BaMn 2Bi 2, a recently synthesized material with the same ThCr 2Si 2type structure found in several Fe-based unconventional superconducting materials. We show long range magnetic order, in the form of a G-type antiferromagnetic structure, to exist up to 390 K with an indication of a structural transition at 100 K. Utilizing inelastic neutron scattering we observe a spin-gap of 16 meV, with spin-waves extending up to 55 meV. We find these magnetic excitations are well fit to a J 1-J 2-J c Heisenberg model and present values for the exchangemore » interactions. The spin wave spectrum appears to be unchanged by the 100 K structural phase transition.« less
Dynamics of a localized spin excitation close to the spin-helix regime
NASA Astrophysics Data System (ADS)
Salis, Gian; Walser, Matthias; Altmann, Patrick; Reichl, Christian; Wegscheider, Werner
2014-03-01
The time evolution of a local spin excitation in a (001)-confined two-dimensional electron gas subjected to Rashba and Dresselhaus spin-orbit interactions of similar strength is investigated theoretically and compared with experimental data. Specifically, the consequences of a finite spatial extension of the initial spin polarization are studied for non-balanced Rashba and Dresselhaus terms and for finite cubic Dresselhaus spin-orbit interaction. We show that the initial out-of-plane spin polarization evolves into a helical spin pattern with a wave number that gradually approaches the value q0 of the persistent spin helix mode. In addition to an exponential decay of the spin polarization that is proportional to both the spin-orbit imbalance and the cubic Dresselhaus term, the finite width w of the spin excitation reduces the spin polarization by a factor that approaches exp(-q02w2 / 2) at longer times. This result bridges the gap between the formation of a long-lived helical spin mode and a spatially homogeneous spin decay described by the Dyakonov-Perel mechanism. This work is financially supported by NCCR QSIT.
Magnetic excitations in the itinerant antifferromagnet Mn sub 90 Cu sub 10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Baca, J.A.; Nicklow, R.M.; Hagen, M.E.
1991-01-01
We have performed a neutron scattering experiment in order to study the spin dynamics of the itinerant-electron-antiferromagnet Mn{sub 90}Cu{sub 10} at room temperature. Strongly-damped spin waves of energies up to 68 MeV have been observed. These excitations have been found to be consistent with a linear dispersion relation with a stiffness constant of about 140 MeV -- {Angstrom} and an energy gap of 8.2 MeV. The spin-wave damping is consistent with theoretical calculations that predict a damping linear in the wavevector q. These results are qualitatively consistent with recent measurements by Nicklow and Tsunoda, and with earlier measurements by Wiltshiremore » and collaborators. 5 refs., 1 fig.« less
Out-of-equilibrium dynamics of photoexcited spin-state concentration waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marino, Andrea; Buron-Le Cointe, M.; Lorenc, M.
2015-01-28
The spin crossover compound [Fe IIH 2L 2-Me][PF 6]2 presents a two-step phase transition. In the intermediate phase, a spin state concentration wave (SSCW) appears resulting from a symmetry breaking (cell doubling) associated with a long-range order of alternating high and low spin molecular states. Lastly, by combining time-resolved optical and X-ray diffraction measurements on a single crystal, we study how such a system responds to femtosecond laser excitation and we follow in real time the erasing and rewriting of the SSCW
Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Gu, Chenjie; Zhou, Yan; Fangohr, Hans
2017-07-01
We theoretically investigate the spin-wave (magnon) excitations in a classical antiferromagnetic spin chain with easy-axis anisotropy. We obtain a Dirac-like equation by linearizing the Landau-Lifshitz-Gilbert equation in this antiferromagnetic system, in contrast to the ferromagnetic system in which a Schrödinger-type equation is derived. The Hamiltonian operator in the Dirac-like equation is a pseudo-Hermitian. We compute and demonstrate relativistic Zitterbewegung (trembling motion) in the antiferromagnetic spin chain by measuring the expectation values of the wave-packet position.
NASA Astrophysics Data System (ADS)
Yang, Li; Pu, Han
2016-09-01
We show that the wave function in one spatial sector x1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, B.; Urazuka, Y.; Chen, H.
2014-05-07
We report on numerical analysis on self-oscillation of standing spin wave excited in a nanostructured active ring resonator, consists of a ferromagnetic nanowire with perpendicular anisotropy. The confined resonant modes are along the nanowire length. A positive feedback with proportional-integral-derivative gain control was adopted in the active ring. Stable excitation of the 1st order standing spin wave has been demonstrated with micromagnetic simulations, taking into account the thermal effect with a random field model. The stationary standing spin wave with a pre-determined set variable of precession amplitude was attained within 20 ns by optimizing the proportional-integral-derivative gain control parameters. The resultmore » indicates that a monochromatic oscillation frequency f{sub osc} is extracted from the initial thermal fluctuation state and selectively amplified with the positive feedback loop. The obtained f{sub osc} value of 5.22 GHz practically agrees with the theoretical prediction from dispersion relation of the magneto static forward volume wave. It was also confirmed that the f{sub osc} change due to the temperature rise can be compensated with an external perpendicular bias field H{sub b}. The observed quick compensation time with an order of nano second suggests the fast operation speed in the practical device application.« less
Spin waves in rings of classical magnetic dipoles
NASA Astrophysics Data System (ADS)
Schmidt, Heinz-Jürgen; Schröder, Christian; Luban, Marshall
2017-03-01
We theoretically and numerically investigate spin waves that occur in systems of classical magnetic dipoles that are arranged at the vertices of a regular polygon and interact solely via their magnetic fields. There are certain limiting cases that can be analyzed in detail. One case is that of spin waves as infinitesimal excitations from the system’s ground state, where the dispersion relation can be determined analytically. The frequencies of these infinitesimal spin waves are compared with the peaks of the Fourier transform of the thermal expectation value of the autocorrelation function calculated by Monte Carlo simulations. In the special case of vanishing wave number an exact solution of the equations of motion is possible describing synchronized oscillations with finite amplitudes. Finally, the limiting case of a dipole chain with N\\longrightarrow ∞ is investigated and completely solved.
Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles
NASA Astrophysics Data System (ADS)
Rodriguez, Raul D.; Sheremet, Evgeniya; Deckert-Gaudig, Tanja; Chaneac, Corinne; Hietschold, Michael; Deckert, Volker; Zahn, Dietrich R. T.
2015-05-01
Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced.Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01277e
Isotropic transmission of magnon spin information without a magnetic field.
Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola
2017-07-01
Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.
Isotropic transmission of magnon spin information without a magnetic field
Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola
2017-01-01
Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni80Fe20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles. PMID:28776033
NASA Astrophysics Data System (ADS)
Wid, Olga; Bauer, Jan; Müller, Alexander; Breitenstein, Otwin; Parkin, Stuart S. P.; Schmidt, Georg
2016-06-01
We have investigated the unidirectional spin wave heat conveyer effect in sub-micron thick yttrium iron garnet (YIG) films using lock-in thermography (LIT). Although the effect is small in thin layers this technique allows us to observe asymmetric heat transport by magnons which leads to asymmetric temperature profiles differing by several mK on both sides of the exciting antenna, respectively. Comparison of Damon-Eshbach and backward volume modes shows that the unidirectional heat flow is indeed due to non-reciprocal spin-waves. Because of the finite linewidth, small asymmetries can still be observed when only the uniform mode of ferromagnetic resonance is excited. The latter is of extreme importance for example when measuring the inverse spin-Hall effect because the temperature differences can result in thermovoltages at the contacts. Because of the non-reciprocity these thermovoltages reverse their sign with a reversal of the magnetic field which is typically deemed the signature of the inverse spin-Hall voltage.
Polarizations of gravitational waves in Horndeski theory
NASA Astrophysics Data System (ADS)
Hou, Shaoqi; Gong, Yungui; Liu, Yunqi
2018-05-01
We analyze the polarization content of gravitational waves in Horndeski theory. Besides the familiar plus and cross polarizations in Einstein's General Relativity, there is one more polarization state which is the mixture of the transverse breathing and longitudinal polarizations. The additional mode is excited by the massive scalar field. In the massless limit, the longitudinal polarization disappears, while the breathing one persists. The upper bound on the graviton mass severely constrains the amplitude of the longitudinal polarization, which makes its detection highly unlikely by the ground-based or space-borne interferometers in the near future. However, pulsar timing arrays might be able to detect the polarization excited by the massive scalar field. Since additional polarization states appear in alternative theories of gravity, the measurement of the polarizations of gravitational waves can be used to probe the nature of gravity. In addition to the plus and cross states, the detection of the breathing polarization means that gravitation is mediated by massless spin 2 and spin 0 fields, and the detection of both the breathing and longitudinal states means that gravitation is propagated by the massless spin 2 and massive spin 0 fields.
NASA Astrophysics Data System (ADS)
Gao, S.; Guratinder, K.; Stuhr, U.; White, J. S.; Mansson, M.; Roessli, B.; Fennell, T.; Tsurkan, V.; Loidl, A.; Ciomaga Hatnean, M.; Balakrishnan, G.; Raymond, S.; Chapon, L.; Garlea, V. O.; Savici, A. T.; Cervellino, A.; Bombardi, A.; Chernyshov, D.; Rüegg, Ch.; Haraldsen, J. T.; Zaharko, O.
2018-04-01
In spinels A Cr2O4(A =Mg, Zn), realization of the classical pyrochlore Heisenberg antiferromagnet model is complicated by a strong spin-lattice coupling: the extensive degeneracy of the ground state is lifted by a magneto-structural transition at TN=12.5 K. We study the resulting low-temperature low-symmetry crystal structure by synchrotron x-ray diffraction. The consistent features of x-ray low-temperature patterns are explained by the tetragonal model of Ehrenberg et al. [Pow. Diff. 17, 230 (2002), 10.1154/1.1479738], while other features depend on sample or cooling protocol. A complex, partially ordered magnetic state is studied by neutron diffraction and spherical neutron polarimetry. Multiple magnetic domains of configuration arms of the propagation vectors k1=(1/2 1/2 0 ) ,k2=(1 0 1/2 ) appear. The ordered moment reaches 1.94(3) μB/Cr3 + for k1 and 2.08(3) μB/Cr3 + for k2, if equal amount of the k1 and k2 phases is assumed. The magnetic arrangements have the dominant components along the [110] and [1 -10 ] diagonals and a smaller c component. We use inelastic neutron scattering to investigate the spin excitations, which comprise a mixture of dispersive spin waves propagating from the magnetic Bragg peaks and resonance modes centered at equal energy steps of 4.5 meV. We interpret these as acoustic and optical spin wave branches, but show that the neutron scattering cross sections of transitions within a unit of two corner-sharing tetrahedra match the observed intensity distribution of the resonances. The distinctive fingerprint of clusterlike excitations in the optical spin wave branches suggests that propagating excitations are localized by the complex crystal structure and magnetic orders.
Orbital-exchange and fractional quantum number excitations in an f-electron metal Yb 2Pt 2Pb
L. S. Wu; Zaliznyak, I. A.; Gannon, W. J.; ...
2016-06-03
Exotic quantum states and fractionalized magnetic excitations, such as spinons in one-dimensional chains, are generally expected to occur in 3d transition metal systems with spin 1/2. Our neutron-scattering experiments on the 4f-electron metal Yb 2Pt 2Pb overturn this conventional wisdom. We observe broad magnetic continuum dispersing in only one direction, which indicates that the underlying elementary excitations are spinons carrying fractional spin-1/2. These spinons are the emergent quantum dynamics of the anisotropic, orbital-dominated Yb moments. Owing to their unusual origin, only longitudinal spin fluctuations are measurable, whereas the transverse excitations such as spin waves are virtually invisible to magnetic neutronmore » scattering. Furthermore, the proliferation of these orbital-spinons strips the electrons of their orbital identity, resulting in charge-orbital separation.« less
2010-06-01
Demonstration of an area-enclosing guided-atom interferometer for rotation sensing, Phys. Rev. Lett. 99, 173201 (2007). 4. Heralded Single- Magnon Quantum...excitations are quantized spin waves ( magnons ), such that transitions between its energy levels ( magnon number states) correspond to highly directional...polarization storage in the form of a single collective-spin excitation ( magnon ) that is shared between two spatially overlapped atomic ensembles
Spectroscopy of Magnetic Excitations in Magnetic Superconductors Using Vortex Motion
NASA Astrophysics Data System (ADS)
Bulaevskii, L. N.; Hruška, M.; Maley, M. P.
2005-11-01
In magnetic superconductors a moving vortex lattice is accompanied by an ac magnetic field which leads to the generation of spin waves. At resonance conditions the dynamics of vortices in magnetic superconductors changes drastically, resulting in strong peaks in the dc I-V characteristics at voltages at which the washboard frequency of the vortex lattice matches the spin wave frequency ωs(g), where g are the reciprocal vortex lattice vectors. We show that if the washboard frequency lies above the magnetic gap, measurement of the I-V characteristics provides a new method to obtain information on the spectrum of magnetic excitations in borocarbides and cuprate layered magnetic superconductors.
Magnani, N; Caciuffo, R; Lander, G H; Hiess, A; Regnault, L-P
2010-03-24
The anisotropy of magnetic fluctuations propagating along the [1 1 0] direction in the ordered phase of uranium antimonide has been studied using polarized inelastic neutron scattering. The observed polarization behavior of the spin waves is a natural consequence of the longitudinal 3-k magnetic structure; together with recent results on the 3-k-transverse uranium dioxide, these findings establish this technique as an important tool to study complex magnetic arrangements. Selected details of the magnon excitation spectra of USb have also been reinvestigated, indicating the need to revise the currently accepted theoretical picture for this material.
Nonreciprocal Transverse Photonic Spin and Magnetization-Induced Electromagnetic Spin-Orbit Coupling
Levy, Miguel; Karki, Dolendra
2017-01-01
We present a formulation of electromagnetic spin-orbit coupling in magneto-optic media, and propose an alternative source of spin-orbit coupling to non-paraxial optics vortices. Our treatment puts forth a formulation of nonreciprocal transverse-spin angular-momentum-density shifts for evanescent waves in magneto-optic waveguide media. It shows that magnetization-induced electromagnetic spin-orbit coupling is possible, and that it leads to unequal spin to orbital angular momentum conversion in magneto-optic media evanescent waves in opposite propagation-directions. Generation of free-space helicoidal beams based on this conversion is shown to be spin-helicity- and magnetization-dependent. We show that transverse-spin to orbital angular momentum coupling into magneto-optic waveguide media engenders spin-helicity-dependent unidirectional propagation. This unidirectional effect produces different orbital angular momenta in opposite directions upon excitation-spin-helicity reversals. PMID:28059120
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern; Pirro, P.
2014-03-03
We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. Thismore » provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.« less
Omnidirectional spin-wave nanograting coupler
Yu, Haiming; Duerr, G.; Huber, R.; Bahr, M.; Schwarze, T.; Brandl, F.; Grundler, D.
2013-01-01
Magnonics as an emerging nanotechnology offers functionalities beyond current semiconductor technology. Spin waves used in cellular nonlinear networks are expected to speed up technologically, demanding tasks such as image processing and speech recognition at low power consumption. However, efficient coupling to microelectronics poses a vital challenge. Previously developed techniques for spin-wave excitation (for example, by using parametric pumping in a cavity) may not allow for the relevant downscaling or provide only individual point-like sources. Here we demonstrate that a grating coupler of periodically nanostructured magnets provokes multidirectional emission of short-wavelength spin waves with giantly enhanced amplitude compared with a bare microwave antenna. Exploring the dependence on ferromagnetic materials, lattice constants and the applied magnetic field, we find the magnonic grating coupler to be more versatile compared with gratings in photonics and plasmonics. Our results allow one to convert, in particular, straight microwave antennas into omnidirectional emitters for short-wavelength spin waves, which are key to cellular nonlinear networks and integrated magnonics. PMID:24189978
Ware, M E; Stinaff, E A; Gammon, D; Doty, M F; Bracker, A S; Gershoni, D; Korenev, V L; Bădescu, S C; Lyanda-Geller, Y; Reinecke, T L
2005-10-21
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
Spin pumping and inverse spin Hall effects in heavy metal/antiferromagnet/Permalloy trilayers
NASA Astrophysics Data System (ADS)
Saglam, Hilal; Zhang, Wei; Jungfleisch, M. Benjamin; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel
Recent work shows efficient spin transfer via spin waves in insulating antiferromagnets (AFMs), suggesting that AFMs can play a more active role in the manipulation of ferromagnets. We use spin pumping and inverse spin Hall effect experiments on heavy metal (Pt and W)/AFMs/Py (Ni80Fe20) trilayer structures, to examine the possible spin transfer phenomenon in metallic AFMs, i . e . , FeMn and PdMn. Previous work has studied electronic effects of the spin transport in these materials, yielding short spin diffusion length on the order of 1 nm. However, the work did not examine whether besides diffusive spin transport by the conduction electrons, there are additional spin transport contributions from spin wave excitations. We clearly observe spin transport from the Py spin reservoir to the heavy metal layer through the sandwiched AFMs with thicknesses well above the previously measured spin diffusion lengths, indicating that spin transport by spin waves may lead to non-negligible contributions This work was supported by US DOE, OS, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the CNM, which is supported by DOE, OS under Contract No. DE-AC02-06CH11357.
Bhoi, Biswanath; Kim, Bosung; Kim, Junhoe; Cho, Young-Jun; Kim, Sang-Koog
2017-09-20
We experimentally demonstrate strongly enhanced coupling between excited magnons in an Yttrium Iron Garnet (YIG) film and microwave photons in an inverted pattern of split-ring resonator (noted as ISRR). The anti-crossing effects of the ISRR's photon mode and the YIG's magnon modes were found from |S 21 |-versus-frequency measurements for different strengths and directions of externally applied magnetic fields. The spin-number-normalized coupling strength (i.e. single spin-photon coupling) [Formula: see text] was determined to 0.194 Hz ([Formula: see text] = 90 MHz) at 3.7 GHz frequency. Furthermore, we found that additional fine features in the anti-crossing region originate from the excitation of different spin-wave modes (such as the magnetostatic surface and the backward-volume magnetostatic spin-waves) rather than the Kittel-type mode. These spin-wave modes, as coupled with the ISRR mode, modify the anti-crossing effect as well as their coupling strength. An equivalent circuit model very accurately reproduced the observed anti-crossing effect and its coupling strength variation with the magnetic field direction in the planar-geometry ISRR/YIG hybrid system. This work paves the way for the design of new types of high-gain magnon-photon coupling systems in planar geometry.
NASA Astrophysics Data System (ADS)
Kadowaki, Hiroaki; Wakita, Mika; Fåk, Björn; Ollivier, Jacques; Ohira-Kawamura, Seiko; Nakajima, Kenji; Takatsu, Hiroshi; Tamai, Mototake
2018-06-01
The ground states of the frustrated pyrochlore oxide Tb2+xTi2-xO7+y have been studied by inelastic neutron scattering experiments. Three single-crystal samples are investigated; one shows no phase transition (x = -0.007 < xc ˜ -0.0025), being a putative quantum spin-liquid (QSL), and the other two (x = 0.000,0.003) show electric quadrupole ordering (QO) below Tc ˜ 0.5 K. The QSL sample shows continuum excitation spectra with an energy scale 0.1 meV as well as energy-resolution-limited (nominally) elastic scattering. As x is increased, pseudospin wave of the QO state emerges from this continuum excitation, which agrees with that of powder samples and consequently verifies good x control for the present single crystal samples.
Excitations in a spin-polarized two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Kreil, Dominik; Hobbiger, Raphael; Drachta, Jürgen T.; Böhm, Helga M.
2015-11-01
A remarkably long-lived spin plasmon may exist in two-dimensional electron liquids with imbalanced spin-up and spin-down population. The predictions for this interesting mode by Agarwal et al. [Phys. Rev. B 90, 155409 (2014), 10.1103/PhysRevB.90.155409] are based on the random phase approximation. Here, we show how to account for spin-dependent correlations from known ground-state pair correlation functions and study the consequences on the various spin-dependent longitudinal response functions. The spin-plasmon dispersion relation and its critical wave vector for Landau damping by minority spins turn out to be significantly lower. We further demonstrate that spin-dependent effective interactions imply a rich structure in the excitation spectrum of the partially spin-polarized system. Most notably, we find a "magnetic antiresonance," where the imaginary part of both, the spin-spin as well as the density-spin response function vanish. The resulting minimum in the double-differential cross section is awaiting experimental confirmation.
Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.
Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali
2017-10-05
Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.
Controlled rephasing of single spin-waves in a quantum memory based on cold atoms
NASA Astrophysics Data System (ADS)
Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team
2015-05-01
Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.
NASA Astrophysics Data System (ADS)
Bang, Wonbae; Jungfleisch, Matthias B.; Lim, Jinho; Trossman, Jonathan; Tsai, C. C.; Hoffmann, Axel; Ketterson, John B.
2018-05-01
We report systematic measurements of the dispersion of long wavelength spin waves for the magnetic field along the three principal directions (supporting the forward volume, backward volume and Damon-Eshbach modes) of a 3.05 μm thick yttrium iron garnet film on a lattice-matched (111) gadolinium gallium garnet substrate obtained using a lithographically patterned, multi-element, 50 μm spatially-resonant, antenna.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, Wonbae; Jungfleisch, Matthias B.; Lim, Jinho
We report systematic measurements of the dispersion of long wavelength spin waves for the magnetic field along the three principal directions (supporting the forward volume, backward volume and Damon-Eshbach modes) of a 3.05 um thick yttrium iron garnet film on a lattice-matched (111) gadolinium gallium garnet substrate obtained using a lithographically patterned, multi-element, 50 um spatially-resonant, antenna.
Bang, Wonbae; Jungfleisch, Matthias B.; Lim, Jinho; ...
2017-12-22
We report systematic measurements of the dispersion of long wavelength spin waves for the magnetic field along the three principal directions (supporting the forward volume, backward volume and Damon-Eshbach modes) of a 3.05 um thick yttrium iron garnet film on a lattice-matched (111) gadolinium gallium garnet substrate obtained using a lithographically patterned, multi-element, 50 um spatially-resonant, antenna.
Photodrive of magnetic bubbles via magnetoelastic waves
Ogawa, Naoki; Koshibae, Wataru; Beekman, Aron Jonathan; Nagaosa, Naoto; Kubota, Masashi; Kawasaki, Masashi; Tokura, Yoshinori
2015-01-01
Precise control of magnetic domain walls continues to be a central topic in the field of spintronics to boost infotech, logic, and memory applications. One way is to drive the domain wall by current in metals. In insulators, the incoherent flow of phonons and magnons induced by the temperature gradient can carry the spins, i.e., spin Seebeck effect, but the spatial and time dependence is difficult to control. Here, we report that coherent phonons hybridized with spin waves, magnetoelastic waves, can drive magnetic bubble domains, or curved domain walls, in an iron garnet, which are excited by ultrafast laser pulses at a nonabsorbing photon energy. These magnetoelastic waves were imaged by time-resolved Faraday microscopy, and the resultant spin transfer force was evaluated to be larger for domain walls with steeper curvature. This will pave a path for the rapid spatiotemporal control of magnetic textures in insulating magnets. PMID:26150487
Photodrive of magnetic bubbles via magnetoelastic waves.
Ogawa, Naoki; Koshibae, Wataru; Beekman, Aron Jonathan; Nagaosa, Naoto; Kubota, Masashi; Kawasaki, Masashi; Tokura, Yoshinori
2015-07-21
Precise control of magnetic domain walls continues to be a central topic in the field of spintronics to boost infotech, logic, and memory applications. One way is to drive the domain wall by current in metals. In insulators, the incoherent flow of phonons and magnons induced by the temperature gradient can carry the spins, i.e., spin Seebeck effect, but the spatial and time dependence is difficult to control. Here, we report that coherent phonons hybridized with spin waves, magnetoelastic waves, can drive magnetic bubble domains, or curved domain walls, in an iron garnet, which are excited by ultrafast laser pulses at a nonabsorbing photon energy. These magnetoelastic waves were imaged by time-resolved Faraday microscopy, and the resultant spin transfer force was evaluated to be larger for domain walls with steeper curvature. This will pave a path for the rapid spatiotemporal control of magnetic textures in insulating magnets.
Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory
NASA Astrophysics Data System (ADS)
Gündoǧan, M.; Mazzera, M.; Ledingham, P. M.; Cristiani, M.; de Riedmatten, H.
2013-04-01
We report on the coherent and multi-temporal mode storage of light using the full atomic frequency comb memory scheme. The scheme involves the transfer of optical atomic excitations in Pr3+:Y2SiO5 to spin waves in hyperfine levels using strong single-frequency transfer pulses. Using this scheme, a total of five temporal modes are stored and recalled on-demand from the memory. The coherence of the storage and retrieval is characterized using a time-bin interference measurement resulting in visibilities higher than 80%, independent of the storage time. This coherent and multimode spin-wave memory is promising as a quantum memory for light.
NASA Astrophysics Data System (ADS)
Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Bădescu, Ş. C.; Lyanda-Geller, Y.; Reinecke, T. L.
2005-10-01
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furuta, Masaki, E-mail: furutam@mail.tagen.tohoku.ac.jp; Okamoto, Satoshi; Kikuchi, Nobuaki
2014-04-07
We have studied the dot size dependence of microwave assisted magnetization switching (MAS) on perpendicular magnetic Co/Pt multilayer dot array. The significant microwave assistance effect has been observed over the entire dot size D ranging from 50 nm to 330 nm examined in the present study. The MAS behavior, however, critically depends on D. The excitation frequency dependence of the switching field is well consistent with the spin wave theory, indicating that the magnetization precession in MAS is in accordance with the well defined eigenmodes depending on the dot diameter. The lowest order spin wave is only excited for D ≤ 100 nm, and thenmore » the MAS effect is well consistent with that of the single macrospin prediction. On the other hand, higher order spin waves are excited for D > 100 nm, giving rise to the significant enhancement of the MAS effect. The dispersion of MAS effect also depends on D and is significantly reduced for the region of D > 100 nm. This significant reduction of the dispersion is attributed to the essential feature of the MAS effect which is insensitive to the local fluctuation of anisotropy field, such as defect, damaged layer, and so on.« less
Enhanced Spin Conductance of a Thin-Film Insulating Antiferromagnet
NASA Astrophysics Data System (ADS)
Bender, Scott A.; Skarsvâg, Hans; Brataas, Arne; Duine, Rembert A.
2017-08-01
We investigate spin transport by thermally excited spin waves in an antiferromagnetic insulator. Starting from a stochastic Landau-Lifshitz-Gilbert phenomenology, we obtain the out-of-equilibrium spin-wave properties. In linear response to spin biasing and a temperature gradient, we compute the spin transport through a normal-metal-antiferromagnet-normal-metal heterostructure. We show that the spin conductance diverges as one approaches the spin-flop transition; this enhancement of the conductance should be readily observable by sweeping the magnetic field across the spin-flop transition. The results from such experiments may, on the one hand, enhance our understanding of spin transport near a phase transition, and on the other be useful for applications that require a large degree of tunability of spin currents. In contrast, the spin Seebeck coefficient does not diverge at the spin-flop transition. Furthermore, the spin Seebeck coefficient is finite even at zero magnetic field, provided that the normal metal contacts break the symmetry between the antiferromagnetic sublattices.
Spin correlations and spin-wave excitations in Dirac-Weyl semimetals
NASA Astrophysics Data System (ADS)
Araki, Yasufumi; Nomura, Kentaro
We study correlations among magnetic dopants in three-dimensional Dirac and Weyl semimetals. Effective field theory for localized magnetic moments is derived by integrating out the itinerant electron degrees of freedom. We find that spin correlation in the spatial direction parallel to local magnetization is more rigid than that in the perpendicular direction, reflecting spin-momentum locking nature of the Dirac Hamiltonian. Such an anisotropy becomes stronger for Fermi level close to the Dirac points, due to Van Vleck paramagnetism triggered by spin-orbit coupling. One can expect topologically nontrivial spin textures under this anisotropy, such as a hedgehog around a single point, or a radial vortex around an axis, as well as a uniform ferromagnetic order. We further investigate the characteristics of spin waves in the ferromagnetic state. Spin-wave dispersion also shows a spatial anisotropy, which is less dispersed in the direction transverse to the magnetization than that in the longitudinal direction. The spin-wave dispersion anisotropy can be traced back to the rigidity and flexibility of spin correlations discussed above. This work was supported by Grant-in-Aid for Scientific Research (Grants No.15H05854, No.26107505, and No.26400308) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.
Wakimoto, S.; Ishii, K.; Kimura, H.; ...
2015-05-21
We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L 3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La 2₋xSr xCuO 4 with x=0.25 (T c=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La 2CuOmore » 4 (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L 3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.« less
1D spin chain of Cu2+ in Sr3CuPtO6 with possible Haldane physics
NASA Astrophysics Data System (ADS)
Leiner, Jonathan; Oh, Joosung; Kolesnikov, Alexander; Stone, Matthew; Le, Manh Duc; Cheong, Sang-Wook; Park, Je-Geun
Antiferromagnetic spin chain systems have attracted considerable attention since the discovery of fractional spinon excitations in spin-half chain systems and Haldane gap phases in spin-one chain systems. It has been reported from bulk susceptibility and heat capacity measurements that the magnetic Cu2+ ions in Sr3CuPtO6 exhibit S=1/2 Heisenberg spin chain behavior with a substantial amount of AFM interchain coupling. Using the modern time-of-flight inelastic neutron scattering spectrometer SEQUOIA at the SNS, we have probed the magnetic excitation spectrum for a polycrystalline sample of Sr3CuPtO6. Modeling with linear spin wave theory accounts for the major features of the spinwave spectra, including a nondispersive intense magnon band at 8meV. The magnetic excitations broaden considerably as temperature is increased, persisting up to above 100K and displaying a broad transition as previously seen in the susceptibility data. No spin gap is observed in the dispersive spin excitations at low momentum transfer, which we argue is consistent with Haldane physics in an ideal uniform S=1/2 spin-chain system. The work at the IBS CCES (South Korea) was supported by the research program of the Institute for Basic Science (IBS-R009-G1). Research at the Spallation Neutron Source was sponsored by the Scientific User Facilities Division, US Department of Energy.
Spontaneous decays of magneto-elastic excitations in non-collinear antiferromagnet (Y,Lu)MnO3
Oh, Joosung; Le, Manh Duc; Nahm, Ho-Hyun; Sim, Hasung; Jeong, Jaehong; Perring, T. G.; Woo, Hyungje; Nakajima, Kenji; Ohira-Kawamura, Seiko; Yamani, Zahra; Yoshida, Y.; Eisaki, H.; Cheong, S. -W.; Chernyshev, A. L.; Park, Je-Geun
2016-01-01
Magnons and phonons are fundamental quasiparticles in a solid and can be coupled together to form a hybrid quasi-particle. However, detailed experimental studies on the underlying Hamiltonian of this particle are rare for actual materials. Moreover, the anharmonicity of such magnetoelastic excitations remains largely unexplored, although it is essential for a proper understanding of their diverse thermodynamic behaviour and intrinsic zero-temperature decay. Here we show that in non-collinear antiferromagnets, a strong magnon–phonon coupling can significantly enhance the anharmonicity, resulting in the creation of magnetoelastic excitations and their spontaneous decay. By measuring the spin waves over the full Brillouin zone and carrying out anharmonic spin wave calculations using a Hamiltonian with an explicit magnon–phonon coupling, we have identified a hybrid magnetoelastic mode in (Y,Lu)MnO3 and quantified its decay rate and the exchange-striction coupling term required to produce it. PMID:27759004
S=2 quasi-one-dimensional spin waves in CrCl2
NASA Astrophysics Data System (ADS)
Stone, M. B.; Ehlers, G.; Granroth, G. E.
2013-09-01
We examine the magnetic excitation spectrum in the S=2 Heisenberg antiferromagnet CrCl2. Inelastic neutron scattering measurements on powder samples are able to determine the significant exchange interactions in this system. A large anisotropy gap is observed in the spectrum below the Néel temperature and the ratio of the two largest exchange constants is Jc/Jb=9.1±2.2. However, no sign of a gapped quantum spin liquid excitation was found in the paramagnetic phase.
Stone, Philip M; Kim, Yong-Ki; Desclaux, J P
2002-01-01
Electron-impact excitation cross sections are presented for the dipole- and spin allowed transitions from the ground states to the np (2)P states for hydrogen and lithium, and to the 1snp (1)P states for helium, n = 2 through 10. Two scaling formulas developed earlier by Kim [Phys. Rev. A 64, 032713 (2001)] for plane-wave Born cross sections are used. The scaled Born cross sections are in excellent agreement with available theoretical and experimental data.
Mass-number and excitation-energy dependence of the spin cutoff parameter
Grimes, S. M.; Voinov, A. V.; Massey, T. N.
2016-07-12
Here, the spin cutoff parameter determining the nuclear level density spin distribution ρ(J) is defined through the spin projection as < J 2 z > 1/2 or equivalently for spherical nuclei, (< J(J+1) >/3) 1/2. It is needed to divide the total level density into levels as a function of J. To obtain the total level density at the neutron binding energy from the s-wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonlymore » used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.« less
The switching of strong spin wave beams in patterned garnet films.
Gieniusz, R; Gruszecki, P; Krawczyk, M; Guzowska, U; Stognij, A; Maziewski, A
2017-08-18
The application of spin waves in communication with information encoded in amplitude and phase could replace or enhance existing microelectronic and microwave devices with significantly decreased energy consumption. Spin waves (SW) are usually transported in a magnetic material shaped to act as a waveguide. However, the implementation of SW transport and switching in plane homogeneous magnetic films and running as a narrow beam with a small divergence angle still present a challenge. We propose a realization of a strong SW switchers based on a patterned yttrium iron garnet (YIG) film that could serve as a magnonic fundamental building block. Our concept relies on the creation of a narrow beam of relatively short-wavelength SW by effect of a total non-reflection, found to be tied to refraction on the decreasing internal magnetic field, near a line of antidots at YIG. Nonreciprocal SW excitation by a microstrip antenna is used for controlling the direction of the signal flow. We demonstrate unique features of the propagation of microwave-excited SW beams, provide insight into their physics and discuss their potential applications in high-frequency devices.
Combined Molecular and Spin Dynamics Simulation of Lattice Vacancies in BCC Iron
NASA Astrophysics Data System (ADS)
Mudrick, Mark; Perera, Dilina; Eisenbach, Markus; Landau, David P.
Using an atomistic model that treats translational and spin degrees of freedom equally, combined molecular and spin dynamics simulations have been performed to study dynamic properties of BCC iron at varying levels of defect impurity. Atomic interactions are described by an empirical many-body potential, and spin interactions with a Heisenberg-like Hamiltonian with a coordinate dependent exchange interaction. Equations of motion are solved numerically using the second-order Suzuki-Trotter decomposition for the time evolution operator. We analyze the spatial and temporal correlation functions for atomic displacements and magnetic order to obtain the effect of vacancy defects on the phonon and magnon excitations. We show that vacancy clusters in the material cause splitting of the characteristic transverse spin-wave excitations, indicating the production of additional excitation modes. Additionally, we investigate the coupling of the atomic and magnetic modes. These modes become more distinct with increasing vacancy cluster size. This material is based upon work supported by the U.S. Department of Energy Office of Science Graduate Student Research (SCGSR) program.
Spin-wave resonances and surface spin pinning in Ga1-xMnxAs thin films
NASA Astrophysics Data System (ADS)
Bihler, C.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.
2009-01-01
We investigate the dependence of the spin-wave resonance (SWR) spectra of Ga0.95Mn0.05As thin films on the sample treatment. We find that for the external magnetic field perpendicular to the film plane, the SWR spectrum of the as-grown thin films and the changes upon etching and short-term hydrogenation can be quantitatively explained via a linear gradient in the uniaxial magnetic anisotropy field in growth direction. The model also qualitatively explains the SWR spectra observed for the in-plane easy-axis orientation of the external magnetic field. Furthermore, we observe a change in the effective surface spin pinning of the partially hydrogenated sample, which results from the tail in the hydrogen-diffusion profile. The latter leads to a rapidly changing hole concentration/magnetic anisotropy profile acting as a barrier for the spin-wave excitations. Therefore, short-term hydrogenation constitutes a simple method to efficiently manipulate the surface spin pinning.
Unidirectional Spin-Wave-Propagation-Induced Seebeck Voltage in a PEDOT:PSS/YIG Bilayer
NASA Astrophysics Data System (ADS)
Wang, P.; Zhou, L. F.; Jiang, S. W.; Luan, Z. Z.; Shu, D. J.; Ding, H. F.; Wu, D.
2018-01-01
We clarify the physical origin of the dc voltage generation in a bilayer of a conducting polymer film and a micrometer-thick magnetic insulator Y3Fe5O12 (YIG) film under ferromagnetic resonance and/or spin wave excitation conditions. The previous attributed mechanism, the inverse spin Hall effect in the polymer [Nat. Mater. 12, 622 (2013), 10.1038/nmat3634], is excluded by two control experiments. We find an in-plane temperature gradient in YIG which has the same angular dependence with the generated voltage. Both vanish when the YIG thickness is reduced to a few nanometers. Thus, we argue that the dc voltage is governed by the Seebeck effect in the polymer, where the temperature gradient is created by the nonreciprocal magnetostatic surface spin wave propagation in YIG.
New technique for excitation of bulk and surface spin waves in ferromagnets
NASA Astrophysics Data System (ADS)
Bogacz, S. A.; Ketterson, J. B.
1985-09-01
A meander-line magnetic transducer is discussed in the context of bulk and surface spin-wave generation in ferromagnets. The magnetic field created by the transducer was calculated in closed analytic form for this model. The linear response of the ferromagnet to the inhomogenous surface disturbance of arbitrary ω and k was obtained as a self-consistent solution to the Bloch equation of motion and the Maxwell equations, subject to appropriate boundary condition. In particular, the energy flux through the boundary displays a sharp resonantlike absorption maximum concentrated at the frequency of the magnetostatic Damon-Eshbach (DE) surface mode; furthermore, the energy transfer spectrum is cut off abruptly below the threshold frequency of the bulk spin waves. The application of the meander line to the spin diffusion problem in NMR is also discussed.
Ultra-fast magnetic vortex core reversal by a local field pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rückriem, R.; Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de; Schrefl, T.
2014-02-03
Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100 nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps weremore » achieved, which are ten times faster compared to a global pulse.« less
Nocera, Alberto; Patel, Niravkumar D.; Dagotto, Elbio R.; ...
2017-11-13
Magnetic interactions are widely believed to play a crucial role in the microscopic mechanism leading to high critical temperature superconductivity. It is therefore important to study the signatures of pairing in the magnetic excitation spectrum of simple models known to show unconventional superconducting tendencies. Using the density matrix renormalization group technique, we calculate the dynamical spin structure factor S(k,ω) of a generalized t–U–J Hubbard model away from half filling in a two-leg ladder geometry. The addition of J enhances pairing tendencies. We analyze quantitatively the signatures of pairing in the magnetic excitation spectra. We found that the superconducting pair-correlation strength,more » that can be estimated independently from ground state properties, is closely correlated with the integrated low-energy magnetic spectral weight in the vicinity of (π,π). In this wave-vector region, robust spin incommensurate features develop with increasing doping. The branch of the spectrum with rung direction wave vector k rung=0 does not change substantially with doping where pairing dominates and thus plays a minor role. As a result, we discuss the implications of our results for neutron scattering experiments, where the spin excitation dynamics of hole-doped quasi-one-dimensional magnetic materials can be measured and also address implications for recent resonant inelastic x-ray scattering experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nocera, Alberto; Patel, Niravkumar D.; Dagotto, Elbio R.
Magnetic interactions are widely believed to play a crucial role in the microscopic mechanism leading to high critical temperature superconductivity. It is therefore important to study the signatures of pairing in the magnetic excitation spectrum of simple models known to show unconventional superconducting tendencies. Using the density matrix renormalization group technique, we calculate the dynamical spin structure factor S(k,ω) of a generalized t–U–J Hubbard model away from half filling in a two-leg ladder geometry. The addition of J enhances pairing tendencies. We analyze quantitatively the signatures of pairing in the magnetic excitation spectra. We found that the superconducting pair-correlation strength,more » that can be estimated independently from ground state properties, is closely correlated with the integrated low-energy magnetic spectral weight in the vicinity of (π,π). In this wave-vector region, robust spin incommensurate features develop with increasing doping. The branch of the spectrum with rung direction wave vector k rung=0 does not change substantially with doping where pairing dominates and thus plays a minor role. As a result, we discuss the implications of our results for neutron scattering experiments, where the spin excitation dynamics of hole-doped quasi-one-dimensional magnetic materials can be measured and also address implications for recent resonant inelastic x-ray scattering experiments.« less
Field-induced exciton condensation in LaCoO3
Sotnikov, A.; Kuneš, J.
2016-01-01
Motivated by recent observation of magnetic field induced transition in LaCoO3 we study the effect of external field in systems close to instabilities towards spin-state ordering and exciton condensation. We show that, while in both cases the transition can be induced by an external field, temperature dependencies of the critical field have opposite slopes. Based on this result we argue that the experimental observations select the exciton condensation scenario. We show that such condensation is possible due to high mobility of the intermediate spin excitations. The estimated width of the corresponding dispersion is large enough to overrule the order of atomic multiplets and to make the intermediate spin excitation propagating with a specific wave vector the lowest excitation of the system. PMID:27461512
Thermal Hall conductivity in the spin-triplet superconductor with broken time-reversal symmetry
NASA Astrophysics Data System (ADS)
Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred
2017-01-01
Motivated by the spin-triplet superconductor Sr2RuO4 , the thermal Hall conductivity is investigated for several pairing symmetries with broken time-reversal symmetry. In the chiral p -wave phase with a fully opened quasiparticle excitation gap, the temperature dependence of the thermal Hall conductivity has a temperature linear term associated with the topological property directly and an exponential term, which shows a drastic change around the Lifshitz transition. Examining f -wave states as alternative candidates with d =Δ0z ̂(kx2-ky2) (kx±i ky) and Δ0z ̂kxky(kx±i ky) with gapless quasiparticle excitations, we study the temperature dependence of the thermal Hall conductivity, where for the former state the thermal Hall conductivity has a quadratic dependence on temperature, originating from the linear dispersions, in addition to linear and exponential behavior. The obtained result may enable us to distinguish between the chiral p -wave and f -wave states in Sr2RuO4 .
Excitation of propagating magnetization waves by microstrip antennas
NASA Astrophysics Data System (ADS)
Dmitriev, V. F.; Kalinikos, B. A.
1988-11-01
We discuss the self-consistent theory of excitation of dipole-exchange magnetization waves by microstrip antennas in a metal-dielectric-ferrite-dielectric-metal stratified structure, magnetized under an arbitrary angle to the surface. Spin-wave Green's functions are derived, describing the response of the spin-system to a spatially inhomogeneous varying magnetic field. The radiative resistance of microstrip antenna is calculated. In this case the distribution of surface current density in the antenna is found on the basis of the analytic solution of a singular integral equation. The nature of the effect of metallic screens and redistributed surface current densities in the antenna on the frequency dependence of the resistive radiation is investigated. Approximate relations are obtained, convenient for practical calculations of radiative resistance of microstrip antennas both in a free and in a screened ferromagnetic film. The theoretical calculations are verified by data of experiments carried out on monocrystalline films of iron-yttrium garnet.
Magnetic vortex excitation as spin torque oscillator and its unusual trajectories
NASA Astrophysics Data System (ADS)
Natarajan, Kanimozhi; Muthuraj, Ponsudana; Rajamani, Amuda; Arumugam, Brinda
2018-05-01
We report an interesting observation of unusual trajectories of vortex core oscillations in a spin valve pillar. Micromagnetic simulation in the composite free layer spin valve nano-pillar shows magnetic vortex excitation under critical current density. When current density is slightly increased and wave vector is properly tuned, for the first time we observe a star like and square gyration. Surprisingly this star like and square gyration also leads to steady, coherent and sustained oscillations. Moreover, the frequency of gyration is also very high for this unusual trajectories. The power spectral analysis reveals that there is a marked increase in output power and frequency with less distortions. Our investigation explores the possibility of these unusual trajectories to exhibit spin torque oscillations.
Magnetic Interaction in the Geometrically Frustrated Triangular LatticeAntiferromagnet CuFeO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Feng; Fernandez-Baca, Jaime A; Fishman, Randy Scott
2007-01-01
The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) CuFeO2 have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J1, J2, J3, with J2=J1 0:44 and J3=J1 0:57), as well as out-of-plane coupling (Jz, with Jz=J1 0:29) are required to describe the spin wave dispersion relations, indicating a three dimensional character of the magnetic interactions. Two energy deeps in the spin wave dispersion occur at the incommensurate wavevectors associated with multiferroic phase, and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.
Extraordinary Spin-Wave Thermal Conductivity in Low-Dimensional Copper Oxides
2015-01-23
excitations of spin degrees of freedom. We measmed for the first time the magnon -phonon coupling parameter of a spin-ladder compound over a wide temperatme...the first time the magnon -phonon coupling parameter of a spin-ladder compound over a wide temperature range. We developed advances in the analysis of...Scientific Instruments, (10 2014): 104903. doi: 10.1063/1.4897622 Gregory T. Hohensee, R. B. Wilson, Joseph P. Feser, David G. Cahill. Magnon -phonon
Quasi-two-dimensional spin and phonon excitations in La 1.965Ba 0.035CuO 4
Wagman, J. J.; Parshall, D.; Stone, Matthew B.; ...
2015-06-03
Here, we present time-of-fight inelastic neutron scattering measurements of La 1.965Ba 0.035CuO 4 (LBCO), a lightly doped member of the high temperature superconducting La-based cuprate family. By using time-of-flight neutron instrumentation coupled with single crystal sample rotation we obtain a four-dimensional data set (three Q and one energy) that is both comprehensive and spans a large region of reciprocal space. Our measurements identify rich structure in the energy dependence of the highly dispersive spin excitations, which are centered at equivalent (1/2, 1/2, L) wave-vectors. These structures correlate strongly with several crossings of the spin excitations with the lightly dispersive phononsmore » found in this system. These eects are signicant and account for on the order of 25% of the total inelastic scattering for energies between ≈5 and 40meV at low |Q|. Interestingly, this scattering also presents little or no L-dependence. As the phonons and dispersive spin excitations centred at equivalent (1/2, 1/2, L) wave-vectors are common to all members of La-based 214 copper oxides, we conclude such strong quasi-two dimensional scattering enhancements are likely to occur in all such 214 families of materials, including those concentrations corresponding to superconducting ground states. Such a phenomenon appears to be a fundamental characteristic of these materials and is potentially related to superconducting pairing.« less
Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet
NASA Astrophysics Data System (ADS)
Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu
1989-12-01
A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.
2012-03-12
index effect at ~ 27.8 µm. This effect was theoretically predicted earlier, and it is based on coexistence of the spin wave ( magnon ) mode with the...refractive index at ~ 150 GHz, based on analogous plasmon- magnon excitation mechanism. 2.1 Fabrication of Cr doped IO material system...film, that the non-magnetic film possesses no maximum in region 27-28 µm. Such behavior is expected, since the spin waves ( magnons ) which are
Spin excitations in hole-overdoped iron-based superconductors.
Horigane, K; Kihou, K; Fujita, K; Kajimoto, R; Ikeuchi, K; Ji, S; Akimitsu, J; Lee, C H
2016-09-12
Understanding the overall features of magnetic excitation is essential for clarifying the mechanism of Cooper pair formation in iron-based superconductors. In particular, clarifying the relationship between magnetism and superconductivity is a central challenge because magnetism may play a key role in their exotic superconductivity. BaFe2As2 is one of ideal systems for such investigation because its superconductivity can be induced in several ways, allowing a comparative examination. Here we report a study on the spin fluctuations of the hole-overdoped iron-based superconductors Ba1-xKxFe2As2 (x = 0.5 and 1.0; Tc = 36 K and 3.4 K, respectively) over the entire Brillouin zone using inelastic neutron scattering. We find that their spin spectra consist of spin wave and chimney-like dispersions. The chimney-like dispersion can be attributed to the itinerant character of magnetism. The band width of the spin wave-like dispersion is almost constant from the non-doped to optimum-doped region, which is followed by a large reduction in the overdoped region. This suggests that the superconductivity is suppressed by the reduction of magnetic exchange couplings, indicating a strong relationship between magnetism and superconductivity in iron-based superconductors.
Song, Yu; Van Dyke, John; Lum, I. K.; White, B. D.; Jang, Sooyoung; Yazici, Duygu; Shu, L.; Schneidewind, A.; Čermák, Petr; Qiu, Y.; Maple, M. B.; Morr, Dirk K.; Dai, Pengcheng
2016-01-01
The neutron spin resonance is a collective magnetic excitation that appears in the unconventional copper oxide, iron pnictide and heavy fermion superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1−xYbxCoIn5 with x=0, 0.05 and 0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with a random phase approximation calculation using the electronic structure and the momentum dependence of the -wave superconducting gap determined from scanning tunnelling microscopy (STM) for CeCoIn5, we conclude that the robust upward-dispersing resonance mode in Ce1−xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario. PMID:27677397
Sun, Dali; van Schooten, Kipp J; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z
2016-08-01
Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.
Field dependence of magnetic order and excitations in the Kitaev candidate alpha-RuCl3
NASA Astrophysics Data System (ADS)
Banerjee, Arnab; Kelley, Paula; Winn, Barry; Aczel, Adam; Lumsden, Mark; Mandrus, David; Nagler, Stephen
The search for new quantum states of matter has been one of the forefront endeavors of condensed matter physics. The two-dimensional Kitaev quantum spin liquid (QSL) is of special interest as an exactly solvable spin-liquid model exhibiting exotic fractionalized excitations. Recently, alpha-RuCl3 has been identified as a candidate system for exhibiting some aspects of Kitaev QSL physics. The spins in this material exhibit zig-zag order at low temperatures, and show both low energy spin wave excitation arising from the ordered state as well as a continuum excitation extending to higher energies that has been taken as evidence for QSL relate Majorana fermions. In this talk, we show that the application of an in-plane magnetic field suppresses the zig-zag order possibly resulting in a state devoid of long-range order. Field-dependent inelastic neutron scattering on single-crystal shows a remarkable effect on the excitation spectrum above the critical field. The work is supported by US-DOE, Office of Science, Basic Energy Sciences and User Facilities Divisions, and also the Gordon and Betty Moore Foundation EPiQS Grant GBFM4416.
Anisotropic exchange and spin-wave damping in pure and electron-doped Sr2IrO4
NASA Astrophysics Data System (ADS)
Pincini, D.; Vale, J. G.; Donnerer, C.; de la Torre, A.; Hunter, E. C.; Perry, R.; Moretti Sala, M.; Baumberger, F.; McMorrow, D. F.
2017-08-01
The collective magnetic excitations in the spin-orbit Mott insulator (Sr1-xLax) 2IrO4 (x =0 ,0.01 ,0.04 ,0.1 ) were investigated by means of resonant inelastic x-ray scattering. We report significant magnon energy gaps at both the crystallographic and antiferromagnetic zone centers at all doping levels, along with a remarkably pronounced momentum-dependent lifetime broadening. The spin-wave gap is accounted for by a significant anisotropy in the interactions between Jeff=1 /2 isospins, thus marking the departure of Sr2IrO4 from the essentially isotropic Heisenberg model appropriate for the superconducting cuprates.
Entanglement entropy of critical spin liquids.
Zhang, Yi; Grover, Tarun; Vishwanath, Ashvin
2011-08-05
Quantum spin liquids are phases of matter whose internal structure is not captured by a local order parameter. Particularly intriguing are critical spin liquids, where strongly interacting excitations control low energy properties. Here we calculate their bipartite entanglement entropy that characterizes their quantum structure. In particular we calculate the Renyi entropy S(2) on model wave functions obtained by Gutzwiller projection of a Fermi sea. Although the wave functions are not sign positive, S(2) can be calculated on relatively large systems (>324 spins) using the variational Monte Carlo technique. On the triangular lattice we find that entanglement entropy of the projected Fermi sea state violates the boundary law, with S(2) enhanced by a logarithmic factor. This is an unusual result for a bosonic wave function reflecting the presence of emergent fermions. These techniques can be extended to study a wide class of other phases.
Exotic superconductivity with enhanced energy scales in materials with three band crossings
NASA Astrophysics Data System (ADS)
Lin, Yu-Ping; Nandkishore, Rahul M.
2018-04-01
Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.
Magnetic excitations in iron chalcogenide superconductors.
Kotegawa, Hisashi; Fujita, Masaki
2012-10-01
Nuclear magnetic resonance and neutron scattering experiments in iron chalcogenide superconductors are reviewed to make a survey of the magnetic excitations in FeSe, FeSe 1- x Te x and alkali-metal-doped A x Fe 2- y Se 2 ( A = K, Rb, Cs, etc). In FeSe, the intimate relationship between the spin fluctuations and superconductivity can be seen universally for the variations in the off-stoichiometry, the Co-substitution and applied pressure. The isovalent compound FeTe has a magnetic ordering with different wave vector from that of other Fe-based magnetic materials. The transition temperature T c of FeSe increases with Te substitution in FeSe 1- x Te x with small x , and decreases in the vicinity of the end member FeTe. The spin fluctuations are drastically modified by the Te substitution. In the vicinity of the end member FeTe, the low-energy part of the spin fluctuation is dominated by the wave vector of the ordered phase of FeTe; however, the reduction of T c shows that it does not support superconductivity. The presence of same wave vector as that of other Fe-based superconductors in FeSe 1- x Te x and the observation of the resonance mode demonstrate that FeSe 1- x Te x belongs to the same group as most of other Fe-based superconductors in the entire range of x , where superconductivity is mediated by the spin fluctuations whose wave vector is the same as the nesting vector between the hole pockets and the electron pockets. On the other hand, the spin fluctuations differ for alkali-metal-doped A x Fe 2- y Se 2 and FeSe or other Fe-based superconductors in their wave vector and strength in the low-energy part, most likely because of the different Fermi surfaces. The resonance mode with different wave vector suggests that A x Fe 2- y Se 2 has an exceptional superconducting symmetry among Fe-based superconductors.
NASA Astrophysics Data System (ADS)
Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi
2018-04-01
The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.
Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals
Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.; ...
2017-11-15
Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less
Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.
Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less
Spontaneous decays of magneto-elastic excitations in non-collinear antiferromagnet (Y,Lu)MnO 3
Oh, Joosung; Le, Manh Duc; Nahm, Ho -Hyun; ...
2016-10-19
Here, magnons and phonons are fundamental quasiparticles in a solid and can be coupled together to form a hybrid quasi-particle. However, detailed experimental studies on the underlying Hamiltonian of this particle are rare for actual materials. Moreover, the anharmonicity of such magnetoelastic excitations remains largely unexplored, although it is essential for a proper understanding of their diverse thermodynamic behaviour and intrinsic zero-temperature decay. Here we show that in non-collinear antiferromagnets, a strong magnon–phonon coupling can significantly enhance the anharmonicity, resulting in the creation of magnetoelastic excitations and their spontaneous decay. By measuring the spin waves over the full Brillouin zonemore » and carrying out anharmonic spin wave calculations using a Hamiltonian with an explicit magnon–phonon coupling, we have identified a hybrid magnetoelastic mode in (Y,Lu)MnO 3 and quantified its decay rate and the exchange-striction coupling term required to produce it.« less
Dynamical current-induced ferromagnetic and antiferromagnetic resonances
NASA Astrophysics Data System (ADS)
Guimarães, F. S. M.; Lounis, S.; Costa, A. T.; Muniz, R. B.
2015-12-01
We demonstrate that ferromagnetic and antiferromagnetic excitations can be triggered by the dynamical spin accumulations induced by the bulk and surface contributions of the spin Hall effect. Due to the spin-orbit interaction, a time-dependent spin density is generated by an oscillatory electric field applied parallel to the atomic planes of Fe/W(110) multilayers. For symmetric trilayers of Fe/W/Fe in which the Fe layers are ferromagnetically coupled, we demonstrate that only the collective out-of-phase precession mode is excited, while the uniform (in-phase) mode remains silent. When they are antiferromagnetically coupled, the oscillatory electric field sets the Fe magnetizations into elliptical precession motions with opposite angular velocities. The manipulation of different collective spin-wave dynamical modes through the engineering of the multilayers and their thicknesses may be used to develop ultrafast spintronics devices. Our work provides a general framework that probes the realistic responses of materials in the time or frequency domain.
Antiferromagnetic spin current rectifier
NASA Astrophysics Data System (ADS)
Khymyn, Roman; Tiberkevich, Vasil; Slavin, Andrei
2017-05-01
It is shown theoretically, that an antiferromagnetic dielectric with bi-axial anisotropy, such as NiO, can be used for the rectification of linearly-polarized AC spin current. The AC spin current excites two evanescent modes in the antiferromagnet, which, in turn, create DC spin current flowing back through the antiferromagnetic surface. Spin diode based on this effect can be used in future spintronic devices as direct detector of spin current in the millimeter- and submillimeter-wave bands. The sensitivity of such a spin diode is comparable to the sensitivity of modern electric Schottky diodes and lies in the range 102-103 V/W for 30 ×30 nm2 structure.
NASA Astrophysics Data System (ADS)
Wu, Tailung; Wan, Zhong; Kazakov, Aleksandr; Wang, Ying; Simion, George; Liang, Jingcheng; West, Kenneth W.; Baldwin, Kirk; Pfeiffer, Loren N.; Lyanda-Geller, Yuli; Rokhinson, Leonid P.
2018-06-01
We propose an experimentally feasible platform to realize parafermions (high-order non-Abelian excitations) based on spin transitions in the fractional quantum Hall effect regime. As a proof of concept we demonstrate a local control of the spin transition at a filling factor 2/3 and formation of a conducting fractional helical domain wall (fhDW) along a gate boundary. Coupled to an s -wave superconductor these fhDWs are expected to support parafermionic excitations. We present exact diagonalization numerical studies of fhDWs and show that they indeed possess electronic and magnetic structures needed for the formation of parafermions. A reconfigurable network of fhDWs will allow manipulation and braiding of parafermionic excitations in multigate devices.
FMR-driven spin pumping in Y3Fe5O12-based structures
NASA Astrophysics Data System (ADS)
Yang, Fengyuan; Hammel, P. Chris
2018-06-01
Ferromagnetic resonance driven spin pumping, a topic of steadily increasing interest since its emergence over two decades ago, remains one of the most exciting research fields in condensed matter physics. Among the many materials that have been explored for spin pumping, yttrium iron garnet (YIG) is one of the most extensively studied because of its exceptionally low magnetic damping and insulating nature. There is a great amount of literature in the spin pumping and related research fields, too broad for this review to cover. In this Topical Review, we focus on the YIG-based spin pumping results carried out by our groups, including: the mechanism and technical details of our off-axis sputtering technique for the growth of single-crystalline YIG epitaxial films with a high degree ordering, experimental evidence for the high quality of the YIG films, spin pumping results from YIG into various transition metals and their heterostructures, dynamic spin transport in YIG/antiferromagnet hybrid structures, intralayer spin pumping by localized spin wave modes confined by a micromagnetic probe, dynamic spin coupling between YIG and nitrogen-vacancy centers in diamond, parametric spin pumping from high-wavevector spin waves in YIG, and localized spin wave mode behavior in broadly tunable spatially complex magnetic configurations. These results build on the power and versatility of YIG spin pumping to improve our understanding of spin dynamics, spin currents, spin Hall physics, spin–orbit coupling, dynamic magnetic coupling, and the relationship between these phenomena in a broad range of materials, geometries, and settings.
Spin wave propagation in perpendicularly magnetized nm-thick yttrium iron garnet films
NASA Astrophysics Data System (ADS)
Chen, Jilei; Heimbach, Florian; Liu, Tao; Yu, Haiming; Liu, Chuanpu; Chang, Houchen; Stückler, Tobias; Hu, Junfeng; Zeng, Lang; Zhang, Youguang; Liao, Zhimin; Yu, Dapeng; Zhao, Weisheng; Wu, Mingzhong
2018-03-01
Magnonics offers a new way for information transport that uses spin waves (SWs) and is free of charge currents. Unlike Damon-Eshbach SWs, the magneto-static forward volume SWs offer the reciprocity configuration suitable for SW logic devices with low power consumption. Here, we study forward volume SW propagation in yttrium iron garnet (YIG) thin films with an ultra-low damping constant α = 8 ×10-5 . We design different integrated microwave antenna with different k-vector excitation distributions on YIG thin films. Using a vector network analyzer, we measured SW transmission with the films magnetized in perpendicular orientation. Based on the experimental results, we extract the group velocity as well as the dispersion relation of SWs and directly compare the power efficiency of SW propagation in YIG using coplanar waveguide and micro stripline for SW excitation and detection.
Two-magnon scattering in the 5d all-in-all-out pyrochlore magnet Cd2Os2O7.
Nguyen, Thi Minh Hien; Sandilands, Luke J; Sohn, C H; Kim, C H; Wysocki, Aleksander L; Yang, In-Sang; Moon, S J; Ko, Jae-Hyeon; Yamaura, J; Hiroi, Z; Noh, Tae Won
2017-08-15
5d pyrochlore oxides with all-in-all-out magnetic order are prime candidates for realizing strongly correlated, topological phases of matter. Despite significant effort, a full understanding of all-in-all-out magnetism remains elusive as the associated magnetic excitations have proven difficult to access with conventional techniques. Here we report a Raman spectroscopy study of spin dynamics in the all-in-all-out magnetic state of the 5d pyrochlore Cd 2 Os 2 O 7 . Through a comparison between the two-magnon scattering and spin-wave theory, we confirm the large single ion anisotropy in this material and show that the Dzyaloshinskii-Moriya and exchange interactions play a significant role in the spin-wave dispersions. The Raman data also reveal complex spin-charge-lattice coupling and indicate that the metal-insulator transition in Cd 2 Os 2 O 7 is Lifshitz-type. Our work establishes Raman scattering as a simple and powerful method for exploring the spin dynamics in 5d pyrochlore magnets.Pyrochlore 5d transition metal oxides are expected to have interesting forms of magnetic order but are hard to study with conventional probes. Here the authors show that Raman scattering can be used to measure magnetic excitations in Cd 2 Os 2 O 7 and that it exhibits complex spin-charge-lattice coupling.
Single to Multiquasiparticle Excitations in the Itinerant Helical Magnet CeRhIn 5
Stock, C.; Rodriguez-Rivera, J. A.; Schmalzl, K.; ...
2015-06-19
Neutron scattering is used to measure the quantum spin fluctuations in CeRhIn 5 - the parent material of the eXIn 5 superconducting series. Out-of-plane spin fluctuations are gapped and localized in momentum, similar to the spin excitons in CeCoIn5. The in-plane fluctuations consist of sharp spin-wave excitations parameterized by a nearest neighbor exchange J RKKY =0.88 ± 0.05 meV that crossover to a temporally and spatially broad multiparticle spectrum with energies of ~ 2 × J RKKY . This continuum represents composite fluctuations that illustrate the breakdown of single magnons originating from the delicate energy balance between localized 4f andmore » itinerant behavior in a heavy metal. The experiment therefore shows how quasiparticle behavior is changed by the close proximity of quantum criticality.« less
Coherent perfect absorption mediated enhancement of transverse spin in a gap plasmon guide
NASA Astrophysics Data System (ADS)
Mukherjee, Samyobrata; Dutta Gupta, Subhasish
2017-01-01
We consider a symmetric gap plasmon guide (a folded Kretschmann configuration) supporting both symmetric and antisymmetric coupled surface plasmons. We calculate the transverse spin under illumination from both the sides like in coherent perfect absorption (CPA), whereby all the incident light can be absorbed to excite one of the modes of the structure. Significant enhancement in the transverse spin is shown to be possible when the CPA dip and the mode excitation are at the same frequency. The enhancement results from CPA-mediated total transfer of the incident light to either of the coupled modes and the associated large local fields. The effect is shown to be robust against small deviations from the symmetric structure. The transverse spin is localized in the structure since in the ambient dielectric there are only incident plane waves lacking any structure.
Ground state of a Heisenberg chain with next-nearest-neighbor bond alternation
NASA Astrophysics Data System (ADS)
Capriotti, Luca; Becca, Federico; Sorella, Sandro; Parola, Alberto
2003-05-01
We investigate the ground-state properties of the spin-half J1-J2 Heisenberg chain with a next-nearest-neighbor spin-Peierls dimerization using conformal field theory and Lanczos exact diagonalizations. In agreement with the results of a recent bosonization analysis by Sarkar and Sen [Phys. Rev. B 65, 172408 (2002)], we find that for small frustration (J2/J1) the system is in a Luttinger spin-fluid phase, with gapless excitations, and a finite spin-wave velocity. In the regime of strong frustration the ground state is spontaneously dimerized and the bond alternation reduces the triplet gap, leading to a slight enhancement of the critical point separating the Luttinger phase from the gapped one. An accurate determination of the phase boundary is obtained numerically from the study of the excitation spectrum.
NASA Astrophysics Data System (ADS)
Eichhorn, T. R.; van den Brandt, B.; Hautle, P.; Henstra, A.; Wenckebach, W. Th.
2014-07-01
In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used. To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.
A corpuscular picture of electrons in chemical bond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ando, Koji
We introduce a theory of chemical bond with a corpuscular picture of electrons. It employs a minimal set of localized electron wave packets with “floating and breathing” degrees of freedom and the spin-coupling of non-orthogonal valence-bond theory. Its accuracy for describing potential energy curves of chemical bonds in ground and excited states of spin singlet and triplet is examined.
Effects of the magnetic field variation on the spin wave interference in a magnetic cross junction
NASA Astrophysics Data System (ADS)
Balynskiy, M.; Chiang, H.; Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Balandin, A. A.; Khitun, A.
2018-05-01
This article reports results of the investigation of the effect of the external magnetic field variation on the spin wave interference in a magnetic cross junction. The experiments were performed using a micrometer scale Y3Fe5O12 cross structure with a set of micro-antennas fabricated on the edges of the cross arms. Two of the antennas were used for the spin wave excitation while a third antenna was used for detecting the inductive voltage produced by the interfering spin waves. It was found that a small variation of the bias magnetic field may result in a significant change of the output inductive voltage. The effect is most prominent under the destructive interference condition. The maximum response exceeds 30 dB per 0.1 Oe at room temperature. It takes a relatively small bias magnetic field variation of about 1 Oe to drive the system from the destructive to the constructive interference conditions. The switching is accompanied by a significant, up to 50 dB, change in the output voltage. The obtained results demonstrate a feasibility of the efficient spin wave interference control by an external magnetic field, which may be utilized for engineering novel type of magnetometers and magnonic logic devices.
Song, Yu; Van Dyke, John; Lum, I. K.; ...
2016-09-28
Here, the neutron spin resonance is a collective magnetic excitation that appears in copper oxide, iron pnictide, and heavy fermion unconventional superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s ±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce 1–xYb xCoIn 5 with x=0,0.05,0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with random phase approximation calculation usingmore » the electronic structure and the momentum dependence of the d x2 –y2-wave superconducting gap determined from scanning tunneling microscopy for CeCoIn 5, we conclude the robust upward dispersing resonance mode in Ce 1–xYb xCoIn 5 is inconsistent with the downward dispersion predicted within the spin-exciton scenari« less
Magnetic nano-oscillator driven by pure spin current.
Demidov, Vladislav E; Urazhdin, Sergei; Ulrichs, Henning; Tiberkevich, Vasyl; Slavin, Andrei; Baither, Dietmar; Schmitz, Guido; Demokritov, Sergej O
2012-12-01
With the advent of pure-spin-current sources, spin-based electronic (spintronic) devices no longer require electrical charge transfer, opening new possibilities for both conducting and insulating spintronic systems. Pure spin currents have been used to suppress noise caused by thermal fluctuations in magnetic nanodevices, amplify propagating magnetization waves, and to reduce the dynamic damping in magnetic films. However, generation of coherent auto-oscillations by pure spin currents has not been achieved so far. Here we demonstrate the generation of single-mode coherent auto-oscillations in a device that combines local injection of a pure spin current with enhanced spin-wave radiation losses. Counterintuitively, radiation losses enable excitation of auto-oscillation, suppressing the nonlinear processes that prevent auto-oscillation by redistributing the energy between different modes. Our devices exhibit auto-oscillations at moderate current densities, at a microwave frequency tunable over a wide range. These findings suggest a new route for the implementation of nanoscale microwave sources for next-generation integrated electronics.
Spin-isospin excitation of 3He with three-proton final state
NASA Astrophysics Data System (ADS)
Ishikawa, Souichi
2018-01-01
Spin-isospin excitation of the {}^3He nucleus by a proton-induced charge exchange reaction, {}^3He(p,n)ppp, at forward neutron scattering angle is studied in a plane wave impulse approximation (PWIA). In PWIA, cross sections of the reaction are written in terms of proton-neutron scattering amplitudes and response functions of the transition from {}3He to the three-proton state by spin-isospin transition operators. The response functions are calculated with realistic nucleon-nucleon potential models using a Faddeev three-body method. Calculated cross sections agree with available experimental data in substance. Possible effects arising from the uncertainty of proton-neutron amplitudes and three-nucleon interactions in the three-proton system are examined.
Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α -RuCl3
NASA Astrophysics Data System (ADS)
Ran, Kejing; Wang, Jinghui; Wang, Wei; Dong, Zhao-Yang; Ren, Xiao; Bao, Song; Li, Shichao; Ma, Zhen; Gan, Yuan; Zhang, Youtian; Park, J. T.; Deng, Guochu; Danilkin, S.; Yu, Shun-Li; Li, Jian-Xin; Wen, Jinsheng
2017-03-01
Kitaev interactions underlying a quantum spin liquid have long been sought, but experimental data from which their strengths can be determined directly, are still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality single crystals of α -RuCl3 , we observe spin-wave spectra with a gap of ˜2 meV around the M point of the two-dimensional Brillouin zone. We derive an effective-spin model in the strong-coupling limit based on energy bands obtained from first-principles calculations, and find that the anisotropic Kitaev interaction K term and the isotropic antiferromagnetic off-diagonal exchange interaction Γ term are significantly larger than the Heisenberg exchange coupling J term. Our experimental data can be well fit using an effective-spin model with K =-6.8 meV and Γ =9.5 meV . These results demonstrate explicitly that Kitaev physics is realized in real materials.
^17O NMR Study of Sr_2CuO_2Cl_2, a Single-Layer Parent Compound of a High Tc Superconductor
NASA Astrophysics Data System (ADS)
Thurber, Kent; Hunt, Allen; Imai, Takashi; Chou, Fang-Cheng; Lee, Young
1997-03-01
We report NMR measurements of the ^17O nuclear spin-lattice relaxation rate 1/T_1, and the ^17O Knight shift of Sr_2CuO_2Cl2 (TN = 257 K) in the paramagnetic state from the Néel temperature up to 700 K. This establishes, for the first time, the temperature and frequency dependence of ^17O NMR in the paramagnetic state of a clean, single-layer, undoped parent compound of a high Tc superconductor. The ^17O NMR results test the nature of elementary spin excitations around q = 0 and give insight into the spin wave damping, Γ. The observation, ^17 1/T1 ~ a T^3 [ 1 + O(T/J) ], agrees semi-quantitatively with theoretical predictions based on spin waves in the spin S=1/2 2D Heisenberg model. electronically.
2D Heisenberg Triangular Antiferromagnet in Ba3CoSb2O9
NASA Astrophysics Data System (ADS)
Biffin, Alun; Demmel, Franz; Walker, Helen; Hayward, Michael; Coldea, Radu
We present inelastic neutron scattering (INS) experiments on the triangular antiferromagnet (TAF) Ba3CoSb2O9. High energy INS measurements allowed the crystal field levels of Co2+ ions to be resolved, and subsequently the terms relevant to its single ion Hamiltonian to be derived with the conclusion that the ions have a Jeff = 1 / 2 doublet as their groundstate with relatively weak local trigonal distortion of CoO6 octahedra. The result is a system which is a rare realisation of the canonical spin 1/2 Heisenberg TAF. Following this, low energy, high-resolution INS experiments have been performed which reveal the spin wave excitations emanating from the 120° ordered phase below TN = 3 . 8 K. However, as will be seen, linear spin wave calculations are not sufficient to describe all the features of the data, and these anomalies hint at quantum dynamics beyond linear spin wave theory within this realisation of the canonical S=1/2 TAF system.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Arnold, James O. (Technical Monitor)
1994-01-01
A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.
Study of P -wave excitations of observed charmed strange baryons
NASA Astrophysics Data System (ADS)
Ye, Dan-Dan; Zhao, Ze; Zhang, Ailin
2017-12-01
Many excited charmed strange baryons such as Ξc(2790 ), Ξc(2815 ), Ξc(2930 ), Ξc(2980 ), Ξc(3055 ), Ξc(3080 ), and Ξc(3123 ) have been observed. In order to understand their internal structure and to determine their spin parities, the strong decay properties of these baryons as possible P -wave excited Ξc candidates have been systematically studied in a 3P0 model. The configurations and JP assignments of Ξc(2790 ), Ξc(2815 ), Ξc(2930 ), Ξc(2980 ), Ξc(3055 ), Ξc(3080 ), and Ξc(3123 ) have been explored based on recent experimental data. In our analyses, Ξc(3055 ), Ξc(3080 ), and Ξc(3123 ) seem impossible to be the P -wave excited Ξc. Ξc(2790 ), Ξc(2815 ), Ξc(2930 ), and Ξc(2980 ) may be the P -wave excited Ξc. In particular, Ξc(2790 ) and Ξc(2815 ) are very possibly the P -wave excited Ξc 1(1 /2-) and Ξc 1(3 /2-), respectively. Ξc(2980 ) may be the P -wave excited Ξc1 '(1/2-). Ξc(2930 ) may be the P -wave Ξc0 '(1/2-) , Ξ˜c 0(1/2-), Ξc2 '(3/2-), Ξc2 '(5/2-), Ξ˜c 2(3/2-), or Ξ˜c 2(5/2-). Furthermore, some branching fraction ratios related to the internal structure and quark configuration of P -wave Ξc have also been computed. Measurements of these ratios in the future will be helpful to understand these excited Ξc.
Fractional and hidden magnetic excitations in f-electron metal Yb2Pt2Pb
NASA Astrophysics Data System (ADS)
Zaliznyak, Igor
Quantum states with fractionalized excitations such as spinons in one-dimensional chains are commonly viewed as belonging to the domain of S=1/2 spin systems. However, recent experiments on the quantum antiferromagnet Yb2Pt2Pb, part of a large family of R2T2X (R=rare earth, T=transition metal, X=main group) materials spectacularly disqualify this opinion. The results show that spinons can also emerge in an f-electron system with strong spin-orbit coupling, where magnetism is mainly associated with large and anisotropic orbital moment. Here, the competition of several high-energy interactions Coulomb repulsion, spin-orbit coupling, crystal field, and the peculiar crystal structure, which combines low dimensionality and geometrical frustration, lead to the emergence, at low energy, of an effective spin-1/2, purely quantum Hamiltonian. Consequently, it produces unusual spin-liquid states and fractional excitations enabled by the inherently quantum mechanical nature of the moments. The emergent quantum spins bear the unique birthmark of their unusual origin in that they only lead to measurable longitudinal magnetic fluctuations, while the transverse excitations such as spin waves remain invisible to scattering experiments. Similarlyhidden would be transverse magnetic ordering, although it would have visible excitations. The rich magnetic phase diagram of Yb2Pt2Pb is suggestive of the existence of hidden-order phases, while the recent experiments indeed reveal the dark magnon, a hidden excitation in the saturated ferromagnetic (FM) phase of Yb2Pt2Pb. Unlike copper-based spin-1/2 chains, where the magnon in the FM state accounts for the full spectral weight of the zero-field spinon continuum, in the spin-orbital chains in Yb2Pt2Pb it is 100 times, or more weaker. It thus presents an example of dark magnon matter\\x9D, whose Hamiltonian is that of the effective spin-1/2 chain, but whose coupling to magnetic field, the physical probe at our disposal, is vanishingly small. The work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-SC00112704, and by by NSF-DMR-1310008.
NASA Astrophysics Data System (ADS)
Liu, H. J. Jason; Yoon, Seungha; McMichael, Robert
The magnetic properties of nitrogen-vacancy (NV) centers in diamond have enabled emerging applications in fields ranging from cell biology to quantum computing. An NV center is a lattice defect, which behaves like a spin-1 system. NV centers can be prepared in the mz = 0 state by excitation with green light, and the spin state can be detected by the center's fluorescence of red light. The Zeeman splitting of the mz = +/-1 state, combined with a spin coherence time that can approach 1 ms, makes the NV center a sensitive, atom-sized magnetometer. Recently, NV centers have been used to measure spin wave excitations and vortex core dynamics in a Permalloy microdisk. In this talk, we present current NV center measurements on Permalloy micro and nanostructures that build on previous work. Permalloy structures were fabricated on top of a microstrip antenna and the measurements were conducted on a home-built confocal microscope. Preliminary measurements show photoluminescence contrast of ~12% and field detectivity on the order of µT/Hz1/2. This allows for fine field mapping of stray magnetic fields produced by micro and nanostructures, which are typically a few milliteslas in magnitude. Maryland Nanocenter, University of Maryland.
Quantum spin chains with multiple dynamics
NASA Astrophysics Data System (ADS)
Chen, Xiao; Fradkin, Eduardo; Witczak-Krempa, William
2017-11-01
Many-body systems with multiple emergent time scales arise in various contexts, including classical critical systems, correlated quantum materials, and ultracold atoms. We investigate such nontrivial quantum dynamics in a different setting: a spin-1 bilinear-biquadratic chain. It has a solvable entangled ground state, but a gapless excitation spectrum that is poorly understood. By using large-scale density matrix renormalization group simulations, we find that the lowest excitations have a dynamical exponent z that varies from 2 to 3.2 as we vary a coupling in the Hamiltonian. We find an additional gapless mode with a continuously varying exponent 2 ≤z <2.7 , which establishes the presence of multiple dynamics. In order to explain these striking properties, we construct a continuum wave function for the ground state, which correctly describes the correlations and entanglement properties. We also give a continuum parent Hamiltonian, but show that additional ingredients are needed to capture the excitations of the chain. By using an exact mapping to the nonequilibrium dynamics of a classical spin chain, we find that the large dynamical exponent is due to subdiffusive spin motion. Finally, we discuss the connections to other spin chains and to a family of quantum critical models in two dimensions.
Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements
NASA Astrophysics Data System (ADS)
Kim, Sang-Koog
2010-07-01
Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.
Uji, S; Kimata, M; Moriyama, S; Yamada, J; Graf, D; Brooks, J S
2010-12-31
Systematic measurements of the magnetocaloric effect, heat capacity, and magnetic torque under a high magnetic field up to 35 T are performed in the spin density wave (SDW) phase of a quasi-one-dimensional organic conductor (TMTSF)2ClO4. In the SDW phase above 26 T, where the quantum Hall effect is broken, rapid oscillations (ROs) in these thermodynamic quantities are observed, which provides clear evidence of the density-of-state (DOS) oscillation near the Fermi level. The resistance is semiconducting and the heat capacity divided by temperature is extrapolated to zero at 0 K in the SDW phase, showing that all the energy bands are gapped, and there is no DOS at the Fermi level. The results show that the ROs are ascribed to the DOS oscillation of the quasiparticle excitation.
Strength and scales of itinerant spin fluctuations in 3 d paramagnetic metals
Wysocki, Aleksander L.; Kutepov, Andrey; Antropov, Vladimir P.
2016-10-10
The full spin density fluctuations (SDF) spectra in 3d paramagnetic metals are analyzed from first principles using the linear response technique. Using the calculated complete wave vector and energy dependence of the dynamic spin susceptibility, we obtain the most important, but elusive, characteristic of SDF in solids: on-site spin correlator (SC). We demonstrate that the SDF have a mixed character consisting of interacting collective and single-particle excitations of similar strength spreading continuously over the entire Brillouin zone and a wide energy range up to femtosecond time scales. These excitations cannot be adiabatically separated and their intrinsically multiscale nature should alwaysmore » be taken into account for a proper description of metallic systems. Altogether, in all studied systems, despite the lack of local moment, we found a very large SC resulting in an effective fluctuating moment of the order of several Bohr magnetons.« less
Strength and scales of itinerant spin fluctuations in 3 d paramagnetic metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysocki, Aleksander L.; Kutepov, Andrey; Antropov, Vladimir P.
The full spin density fluctuations (SDF) spectra in 3d paramagnetic metals are analyzed from first principles using the linear response technique. Using the calculated complete wave vector and energy dependence of the dynamic spin susceptibility, we obtain the most important, but elusive, characteristic of SDF in solids: on-site spin correlator (SC). We demonstrate that the SDF have a mixed character consisting of interacting collective and single-particle excitations of similar strength spreading continuously over the entire Brillouin zone and a wide energy range up to femtosecond time scales. These excitations cannot be adiabatically separated and their intrinsically multiscale nature should alwaysmore » be taken into account for a proper description of metallic systems. Altogether, in all studied systems, despite the lack of local moment, we found a very large SC resulting in an effective fluctuating moment of the order of several Bohr magnetons.« less
NASA Astrophysics Data System (ADS)
Golosovsky, I. V.; Ovsyanikov, A. K.; Aristov, D. N.; Matveeva, P. G.; Mukhin, A. A.; Boehm, M.; Regnault, L.-P.; Bezmaternykh, L. N.
2018-04-01
Magnetic excitations and exchange interactions in multiferroic NdFe3(BO3)4 were studied by inelastic neutron scattering in the phase with commensurate antiferromagnetic structure. The observed spectra were analyzed in the frame of the linear spin-wave theory. It was shown that only the model, which includes the exchange interactions within eight coordination spheres, describes satisfactorily all observed dispersion curves. The calculation showed that the spin-wave dynamics is governed by the strongest antiferromagnetic intra-chain interaction and three almost the same inter-chain interactions. Other interactions, including ferromagnetic exchange, appeared to be insignificant. The overall energy balance of the antiferromagnetic inter-chain exchange interactions, which couple the moments from the adjacent ferromagnetic layers as well as within a layer, stabilizes ferromagnetic arrangement in the latter. It demonstrates that the pathway geometry plays a crucial role in forming of the magnetic structure.
NASA Astrophysics Data System (ADS)
Hoefer, Mark A.
This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued that the experimentally observed blast waves may be viewed as dispersive shock waves. A nonlinear mathematical model of spin-wave excitation using a point contact in a thin ferromagnetic film is introduced. This work incorporates a recently proposed spin-torque contribution to classical magnetodynamic theory with a variable coefficient terra in the magnetic torque equation. Large-amplitude magnetic solitary waves are computed, which help explain recent spin-torque experiments. Numerical simulations of the full nonlinear model predict excitation frequencies in excess of 0.2 THz for contact diameters smaller than 6 nm. Simulations also predict a saturation and red shift of the frequency at currents large enough to invert the magnetization tinder the point contact. In the weak nonlinear limit, the theory is approximated by a cubic complex Ginzburg-Landau type equation. The mode's nonlinear frequency shift is found by use of perturbation techniques, whose results agree with those of direct numerical simulations.
Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges
Damour, Thibault
2018-05-22
A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).
CaMn 2Sb 2: Spin waves on a frustrated antiferromagnetic honeycomb lattice
McNally, D. E.; Simonson, J. W.; Kistner-Morris, J. J.; ...
2015-05-22
Here we presenmore » t inelastic neutron scattering measurements of the antiferromagnetic insulator CaMn 2 Sb 2 , which consists of corrugated honeycomb layers of Mn. The dispersion of magnetic excitations has been measured along the H and L directions in reciprocal space, with a maximum excitation energy of ≈ 24 meV. These excitations are well described by spin waves in a Heisenberg model, including first-and second-neighbor exchange interactions J 1 and J 2 in the Mn plane and also an exchange interaction between planes. The determined ratio J 2/J 1 ≈ 1/6 suggests that CaMn 2 Sb 2 is an example of a compound that lies very close to the mean field tricritical point, known for the classical Heisenberg model on the honeycomb lattice, where the Néel phase and two different spiral phases coexist. Lastly, the magnitude of the determined exchange interactions reveals a mean field ordering temperature ≈ 4 times larger than the reported Néel temperature T N = 85 K, suggesting significant frustration arising from proximity to the tricritical point.« less
Orphan Spins in the S=5/2 Antiferromagnet CaFe_{2}O_{4}.
Stock, C; Rodriguez, E E; Lee, N; Demmel, F; Fouquet, P; Laver, M; Niedermayer, Ch; Su, Y; Nemkovski, K; Green, M A; Rodriguez-Rivera, J A; Kim, J W; Zhang, L; Cheong, S-W
2017-12-22
CaFe_{2}O_{4} is an anisotropic S=5/2 antiferromagnet with two competing A (↑↑↓↓) and B (↑↓↑↓) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin waves and resemble the spectra from isolated spin clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe_{2}O_{4}.
Orphan Spins in the S =5/2 Antiferromagnet CaFe2O4
NASA Astrophysics Data System (ADS)
Stock, C.; Rodriguez, E. E.; Lee, N.; Demmel, F.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Green, M. A.; Rodriguez-Rivera, J. A.; Kim, J. W.; Zhang, L.; Cheong, S.-W.
2017-12-01
CaFe2O4 is an anisotropic S =5/2 antiferromagnet with two competing A (↑↑↓↓) and B (↑↓↑↓) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin waves and resemble the spectra from isolated spin clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe2 O4 .
Ewings, R. A.; Perring, T. G.; Sikora, O.; ...
2016-07-06
We have used time-of-flight inelastic neutron scattering to measure the spin wave spectrum of the canonical half-doped manganite Pr 0.5Ca 0.5MnO 3 in its magnetic and orbitally ordered phase. Comparison of the data, which cover multiple Brillouin zones and the entire energy range of the excitations, with several different models shows that only the CE-type ordered state provides an adequate description of the magnetic ground state, provided interactions beyond nearest neighbor are included. We are able to rule out a ground state in which there exist pairs of dimerized spins which interact only with their nearest neighbors. The Zener polaronmore » ground state, which comprises strongly bound magnetic dimers, can be ruled out on the basis of gross features of the observed spin wave spectrum. A model with weaker dimerization reproduces the observed dispersion but can be ruled out on the basis of subtle discrepancies between the calculated and observed structure factors at certain positions in reciprocal space. Adding further neighbor interactions results in almost no dimerization, i.e. interpolating back to the CE model. These results are consistent with theoretical analysis of the degenerate double exchange model for half-doping.« less
Reduction of phase noise in nanowire spin orbit torque oscillators
Yang, Liu; Verba, Roman; Tiberkevich, Vasil; Schneider, Tobias; Smith, Andrew; Duan, Zheng; Youngblood, Brian; Lenz, Kilian; Lindner, Jürgen; Slavin, Andrei N.; Krivorotov, Ilya N.
2015-01-01
Spin torque oscillators (STOs) are compact, tunable sources of microwave radiation that serve as a test bed for studies of nonlinear magnetization dynamics at the nanometer length scale. The spin torque in an STO can be created by spin-orbit interaction, but low spectral purity of the microwave signals generated by spin orbit torque oscillators hinders practical applications of these magnetic nanodevices. Here we demonstrate a method for decreasing the phase noise of spin orbit torque oscillators based on Pt/Ni80Fe20 nanowires. We experimentally demonstrate that tapering of the nanowire, which serves as the STO active region, significantly decreases the spectral linewidth of the generated signal. We explain the observed linewidth narrowing in the framework of the Ginzburg-Landau auto-oscillator model. The model reveals that spatial non-uniformity of the spin current density in the tapered nanowire geometry hinders the excitation of higher order spin-wave modes, thus stabilizing the single-mode generation regime. This non-uniformity also generates a restoring force acting on the excited self-oscillatory mode, which reduces thermal fluctuations of the mode spatial position along the wire. Both these effects improve the STO spectral purity. PMID:26592432
Entanglement between a Photonic Time-Bin Qubit and a Collective Atomic Spin Excitation.
Farrera, Pau; Heinze, Georg; de Riedmatten, Hugues
2018-03-09
Entanglement between light and matter combines the advantage of long distance transmission of photonic qubits with the storage and processing capabilities of atomic qubits. To distribute photonic states efficiently over long distances several schemes to encode qubits have been investigated-time-bin encoding being particularly promising due to its robustness against decoherence in optical fibers. Here, we demonstrate the generation of entanglement between a photonic time-bin qubit and a single collective atomic spin excitation (spin wave) in a cold atomic ensemble, followed by the mapping of the atomic qubit onto another photonic qubit. A magnetic field that induces a periodic dephasing and rephasing of the atomic excitation ensures the temporal distinguishability of the two time bins and plays a central role in the entanglement generation. To analyze the generated quantum state, we use largely imbalanced Mach-Zehnder interferometers to perform projective measurements in different qubit bases and verify the entanglement by violating a Clauser-Horne-Shimony-Holt Bell inequality.
Entanglement between a Photonic Time-Bin Qubit and a Collective Atomic Spin Excitation
NASA Astrophysics Data System (ADS)
Farrera, Pau; Heinze, Georg; de Riedmatten, Hugues
2018-03-01
Entanglement between light and matter combines the advantage of long distance transmission of photonic qubits with the storage and processing capabilities of atomic qubits. To distribute photonic states efficiently over long distances several schemes to encode qubits have been investigated—time-bin encoding being particularly promising due to its robustness against decoherence in optical fibers. Here, we demonstrate the generation of entanglement between a photonic time-bin qubit and a single collective atomic spin excitation (spin wave) in a cold atomic ensemble, followed by the mapping of the atomic qubit onto another photonic qubit. A magnetic field that induces a periodic dephasing and rephasing of the atomic excitation ensures the temporal distinguishability of the two time bins and plays a central role in the entanglement generation. To analyze the generated quantum state, we use largely imbalanced Mach-Zehnder interferometers to perform projective measurements in different qubit bases and verify the entanglement by violating a Clauser-Horne-Shimony-Holt Bell inequality.
Magnon condensation and spin superfluidity
NASA Astrophysics Data System (ADS)
Bunkov, Yury M.; Safonov, Vladimir L.
2018-04-01
We consider the Bose-Einstein condensation (BEC) of quasi-equilibrium magnons which leads to spin superfluidity, the coherent quantum transfer of magnetization in magnetic material. The critical conditions for excited magnon density in ferro- and antiferromagnets, bulk and thin films, are estimated and discussed. It was demonstrated that only the highly populated region of the spectrum is responsible for the emergence of any BEC. This finding substantially simplifies the BEC theoretical analysis and is surely to be used for simulations. It is shown that the conditions of magnon BEC in the perpendicular magnetized YIG thin film is fulfillied at small angle, when signals are treated as excited spin waves. We also predict that the magnon BEC should occur in the antiferromagnetic hematite at room temperature at much lower excited magnon density compared to that of ferromagnetic YIG. Bogoliubov's theory of Bose-Einstein condensate is generalized to the case of multi-particle interactions. The six-magnon repulsive interaction may be responsible for the BEC stability in ferro- and antiferromagnets where the four-magnon interaction is attractive.
Microscopic observation of magnon bound states and their dynamics.
Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian
2013-10-03
The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.
Symmetry-enriched Bose-Einstein condensates in a spin-orbit-coupled bilayer system
NASA Astrophysics Data System (ADS)
Cheng, Jia-Ming; Zhou, Xiang-Fa; Zhou, Zheng-Wei; Guo, Guang-Can; Gong, Ming
2018-01-01
We consider the fate of Bose-Einstein condensation with time-reversal symmetry and inversion symmetry in a spin-orbit-coupled bilayer system. When these two symmetry operators commute, all the single-particle bands are exactly twofold degenerate in the momentum space. The scattering in the twofold-degenerate rings can relax the spin-momentum locking effect from spin-orbit-coupling interaction and thus can realize the spin-polarized plane-wave phase even when the interparticle interaction dominates. When these two operators anticommute, the lowest two bands may have the same minimal energy, but with totally different spin structures. As a result, the competition between different condensates in these two energetically degenerate rings can give rise to different stripe phases with atoms condensed at two or four collinear momenta. We find that the crossover between these two cases is accompanied by the excited band condensation when the interference energy can overcome the increased single-particle energy in the excited band. This effect is not based on strong interaction and thus can be realized even with moderate interaction strength.
Charge and spin in low-dimensional cuprates
NASA Astrophysics Data System (ADS)
Maekawa, Sadamichi; Tohyama, Takami
2001-03-01
One of the central issues in the study of high-temperature superconducting cuprates which are composed of two-dimensional (2D) CuO2 planes is whether the 2D systems with strong electron correlation behave as a Fermi liquid or a non-Fermi-liquid-like one-dimensional (1D) system with electron correlation. In this article, we start with the detailed examination of the electronic structure in cuprates and study theoretically the spin and charge dynamics in 1D and 2D cuprates. The theoretical background of spin-charge separation in the 1D model systems including the Hubbard and t-J models is presented. The first direct observation of collective modes of spin and charge excitations in a 1D cuprate, which are called spinons and holons respectively, in angle-resolved photoemission spectroscopy (ARPES) experiments is reviewed in the light of the theoretical results based on the numerically exact-diagonalization method. The charge and spin dynamics in 1D insulating cuprates is also discussed in connection with the spin-charge separation. The arguments are extended to the 2D cuprates, and the unique aspects of the electronic properties of high-temperature superconductors are discussed. Special emphasis is placed on the d-wave-like excitations in insulating 2D cuprates observed in ARPES experiments. We explain how the excitations are caused by the spin-charge separation. The charge stripes observed in the underdoped cuprates are examined in connection with spin-charge separation in real space.
Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics
NASA Astrophysics Data System (ADS)
Yu, Haiming; Kelly, O. D'allivy; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Huber, R.; Stasinopoulos, I.; Grundler, D.
2014-10-01
Wave control in the solid state has opened new avenues in modern information technology. Surface-acoustic-wave-based devices are found as mass market products in 100 millions of cellular phones. Spin waves (magnons) would offer a boost in today's data handling and security implementations, i.e., image processing and speech recognition. However, nanomagnonic devices realized so far suffer from the relatively short damping length in the metallic ferromagnets amounting to a few 10 micrometers typically. Here we demonstrate that nm-thick YIG films overcome the damping chasm. Using a conventional coplanar waveguide we excite a large series of short-wavelength spin waves (SWs). From the data we estimate a macroscopic of damping length of about 600 micrometers. The intrinsic damping parameter suggests even a record value about 1 mm allowing for magnonics-based nanotechnology with ultra-low damping. In addition, SWs at large wave vector are found to exhibit the non-reciprocal properties relevant for new concepts in nanoscale SW-based logics. We expect our results to provide the basis for coherent data processing with SWs at GHz rates and in large arrays of cellular magnetic arrays, thereby boosting the envisioned image processing and speech recognition.
Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics
Yu, Haiming; Kelly, O. d'Allivy; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Huber, R.; Stasinopoulos, I.; Grundler, D.
2014-01-01
Wave control in the solid state has opened new avenues in modern information technology. Surface-acoustic-wave-based devices are found as mass market products in 100 millions of cellular phones. Spin waves (magnons) would offer a boost in today's data handling and security implementations, i.e., image processing and speech recognition. However, nanomagnonic devices realized so far suffer from the relatively short damping length in the metallic ferromagnets amounting to a few 10 micrometers typically. Here we demonstrate that nm-thick YIG films overcome the damping chasm. Using a conventional coplanar waveguide we excite a large series of short-wavelength spin waves (SWs). From the data we estimate a macroscopic of damping length of about 600 micrometers. The intrinsic damping parameter suggests even a record value about 1 mm allowing for magnonics-based nanotechnology with ultra-low damping. In addition, SWs at large wave vector are found to exhibit the non-reciprocal properties relevant for new concepts in nanoscale SW-based logics. We expect our results to provide the basis for coherent data processing with SWs at GHz rates and in large arrays of cellular magnetic arrays, thereby boosting the envisioned image processing and speech recognition. PMID:25355200
NASA Astrophysics Data System (ADS)
Shen, Ka
2018-04-01
We study magnon spectra at finite temperature in yttrium iron garnet using a tight-binding model with nearest-neighbor exchange interaction. The spin reduction due to thermal magnon excitation is taken into account via the mean field approximation to the local spin and is found to be different at two sets of iron atoms. The resulting temperature dependence of the spin wave gap shows good agreement with experiment. We find that only two magnon modes are relevant to the ferromagnetic resonance.
Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Whittaker, C. E.; Cancellieri, E.; Walker, P. M.; Gulevich, D. R.; Schomerus, H.; Vaitiekus, D.; Royall, B.; Whittaker, D. M.; Clarke, E.; Iorsh, I. V.; Shelykh, I. A.; Skolnick, M. S.; Krizhanovskii, D. N.
2018-03-01
We study exciton polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from S and Px ,y photonic orbitals, into which we trigger bosonic condensation under high power excitation. The symmetry of the orbital wave functions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band condensates. Our Letter shows the potential of polariton lattices for emulating flat band Hamiltonians with spin-orbit coupling, orbital degrees of freedom, and interactions.
Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling.
Whittaker, C E; Cancellieri, E; Walker, P M; Gulevich, D R; Schomerus, H; Vaitiekus, D; Royall, B; Whittaker, D M; Clarke, E; Iorsh, I V; Shelykh, I A; Skolnick, M S; Krizhanovskii, D N
2018-03-02
We study exciton polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from S and P_{x,y} photonic orbitals, into which we trigger bosonic condensation under high power excitation. The symmetry of the orbital wave functions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band condensates. Our Letter shows the potential of polariton lattices for emulating flat band Hamiltonians with spin-orbit coupling, orbital degrees of freedom, and interactions.
NASA Astrophysics Data System (ADS)
Chen, Huajin; Ye, Qian; Zhang, Yiwen; Shi, Lei; Liu, Shiyang; Jian, Zi; Lin, Zhifang
2017-08-01
We demonstrate a reconfigurable lateral optical force (OF) on a plasmonic nanoparticle immersed in a simple optical field invariant along the lateral direction and formed by two interfering plane waves. This lateral OF is shown, from the multipolar expansion technique, attributed to several coupling channels established between multiple multipoles excited on a plasmonic nanoparticle, in particular, the adjacent electric multipole modes that bring about the Fano interferences, which can substantially enhance the lateral scattering asymmetry, leading to an augmented lateral OF comparable to the longitudinal OF. More importantly, by engineering Fano interference either intrinsically through particle size or extrinsically through selectively exciting narrow plasmonic dark modes the direction of the lateral OF is reversibly switchable. The lateral OF can even be modulated continuously from positive to negative by controlling the incident angle of the interfering plane waves due to the variation of relative phase of the excited plasmonic dark modes near Fano resonance, facilitating the plasmonic nanoparticle as a controllable conveyor as well as the optical selection and separation. Besides, a fundamental and counterintuitive physical consequence emerges in that the simple proportional relation between the lateral OF and the Belinfante spin momentum derived in the small particle limit breaks down when the Fano interference comes into play, in particular, a negative lateral OF opposite the Belinfante spin momentum can be induced by properly controlling the selective excitation.
Spin wave spectra in perpendicularly magnetized permalloy rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X.; Ding, J.; Adeyeye, A. O., E-mail: eleaao@nus.edu.sg
2015-03-16
The dynamic behavior of perpendicularly magnetized permalloy circular rings is systematically investigated as a function of film thickness using broadband field modulated ferromagnetic resonance spectroscopy. We observed the splitting of one spin wave mode into a family of dense resonance peaks for the rings, which is markedly different from the single mode observed for continuous films of the same thickness. As the excitation frequency is increased, the mode family observed for the rings gradually converges into one mode. With the increase in the film thickness, a sparser spectrum of modes is observed. Our experimental results are in qualitative agreement withmore » the dynamic micromagnetic simulations.« less
Communication at the quantum speed limit along a spin chain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Michael; Montangero, Simone; Giovannetti, Vittorio
2010-08-15
Spin chains have long been considered as candidates for quantum channels to facilitate quantum communication. We consider the transfer of a single excitation along a spin-1/2 chain governed by Heisenberg-type interactions. We build on the work of Balachandran and Gong [V. Balachandran and J. Gong, Phys. Rev. A 77, 012303 (2008)] and show that by applying optimal control to an external parabolic magnetic field, one can drastically increase the propagation rate by two orders of magnitude. In particular, we show that the theoretical maximum propagation rate can be reached, where the propagation of the excitation takes the form of amore » dispersed wave. We conclude that optimal control is not only a useful tool for experimental application, but also for theoretical inquiry into the physical limits and dynamics of many-body quantum systems.« less
NASA Astrophysics Data System (ADS)
Gessner, Manuel; Bastidas, Victor Manuel; Brandes, Tobias; Buchleitner, Andreas
2016-04-01
We study the excitation spectrum of a family of transverse-field spin chain models with variable interaction range and arbitrary spin S , which in the case of S =1 /2 interpolates between the Lipkin-Meshkov-Glick and the Ising model. For any finite number N of spins, a semiclassical energy manifold is derived in the large-S limit employing bosonization methods, and its geometry is shown to determine not only the leading-order term but also the higher-order quantum fluctuations. Based on a multiconfigurational mean-field ansatz, we obtain the semiclassical backbone of the quantum spectrum through the extremal points of a series of one-dimensional energy landscapes—each one exhibiting a bifurcation when the external magnetic field drops below a threshold value. The obtained spectra become exact in the limit of vanishing or very strong external, transverse magnetic fields. Further analysis of the higher-order corrections in 1 /√{2 S } enables us to analytically study the dispersion relations of spin-wave excitations around the semiclassical energy levels. Within the same model, we are able to investigate quantum bifurcations, which occur in the semiclassical (S ≫1 ) limit, and quantum phase transitions, which are observed in the thermodynamic (N →∞ ) limit.
NASA Astrophysics Data System (ADS)
Melnikov, Alexey; Razdolski, Ilya; Alekhin, Alexandr; Ilin, Nikita; Meyburg, Jan; Diesing, Detlef; Roddatis, Vladimir; Rungger, Ivan; Stamenova, Maria; Sanvito, Stefano; Bovensiepen, Uwe
2016-10-01
Further development of spintronics requires miniaturization and reduction of characteristic timescales of spin dynamics combining the nanometer spatial and femtosecond temporal ranges. These demands shift the focus of interest towards the fundamental open question of the interaction of femtosecond spin current (SC) pulses with a ferromagnet (FM). The spatio-temporal properties of the spin transfer torque (STT) exerted by ultrashort SC pulses on the FM open the time domain for studying STT fingerprint on spatially non-uniform magnetization dynamics. Using the sensitivity of magneto-induced second harmonic generation to SC, we develop technique for SC monitoring. With 20 fs resolution, we demonstrate the generation of 250 fs-long SC pulses in Fe/Au/Fe/MgO(001) structures. Their temporal profile indicates (i) nearly-ballistic hot electron transport in Au and (ii) that the pulse duration is primarily determined by the thermalization time of laser-excited hot carriers in Fe. Together with strongly spin-dependent Fe/Au interface transmission calculated for these carriers, this suggests the non-thermal spin-dependent Seebeck effect dominating the generation of ultrashort SC pulses. The analysis of SC transmission/reflection at the Au/Fe interface shows that hot electron spins orthogonal to the Fe magnetization rotate gaining huge parallel (anti-parallel) projection in transmitted (reflected) SC. This is accompanied by a STT-induced perturbation of the magnetization localized at the interface, which excites the inhomogeneous high-frequency spin dynamics in the FM. Time-resolved magneto-optical studies reveal the excitation of several standing spin wave modes in the Fe film with their spectrum extending up to 0.6 THz and indicating the STT spatial confinement to 2 nm.
Nonlinear spin conductance of yttrium iron garnet thin films driven by large spin-orbit torque
NASA Astrophysics Data System (ADS)
Thiery, N.; Draveny, A.; Naletov, V. V.; Vila, L.; Attané, J. P.; Beigné, C.; de Loubens, G.; Viret, M.; Beaulieu, N.; Ben Youssef, J.; Demidov, V. E.; Demokritov, S. O.; Slavin, A. N.; Tiberkevich, V. S.; Anane, A.; Bortolotti, P.; Cros, V.; Klein, O.
2018-02-01
We report high power spin transfer studies in open magnetic geometries by measuring the spin conductance between two nearby Pt wires deposited on top of an epitaxial yttrium iron garnet thin film. Spin transport is provided by propagating spin waves that are generated and detected by direct and inverse spin Hall effects. We observe a crossover in spin conductance from a linear transport dominated by exchange magnons (low current regime) to a nonlinear transport dominated by magnetostatic magnons (high current regime). The latter are low-damping magnetic excitations, located near the spectral bottom of the magnon manifold, with a sensitivity to the applied magnetic field. This picture is supported by microfocus Brillouin light-scattering spectroscopy. Our findings could be used for the development of controllable spin conductors by variation of relatively weak magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafuente-Sampietro, A.; CNRS, Institut Néel, F-38000 Grenoble; Institute of Materials Science, University of Tsukuba, 305-8573 Tsukuba
We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Crmore » interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebert, B. W.; Dean, M.; Nicolaou, A.
By means of resonant inelastic x-ray scattering at the Cu L 3 edge, we measured the spin wave dispersion along <100> and <110> in the undoped cuprate Ca 2CuO 2Cl 2. The data yields a reliable estimate of the superexchange parameter J = 135 ± 4 meV using a classical spin-1/2 2D Heisenberg model with nearest-neighbor interactions and including quantum fluctuations. Including further exchange interactions increases the estimate to J = 141 meV. The 40 meV dispersion between the magnetic Brillouin zone boundary points (1/2, 0) and (1/4, 1/4) indicates that next-nearest neighbor interactions in this compound are intermediate betweenmore » the values found in La 2CuO 4 and Sr 2CuO 2Cl 2. Here by owing to the low- Z elements composing Ca 2CuOCl 2, the present results may enable a reliable comparison with the predictions of quantum many-body calculations, which would improve our understanding of the role of magnetic excitations and of electronic correlations in cuprates.« less
Lebert, B. W.; Dean, M.; Nicolaou, A.; ...
2017-04-07
By means of resonant inelastic x-ray scattering at the Cu L 3 edge, we measured the spin wave dispersion along <100> and <110> in the undoped cuprate Ca 2CuO 2Cl 2. The data yields a reliable estimate of the superexchange parameter J = 135 ± 4 meV using a classical spin-1/2 2D Heisenberg model with nearest-neighbor interactions and including quantum fluctuations. Including further exchange interactions increases the estimate to J = 141 meV. The 40 meV dispersion between the magnetic Brillouin zone boundary points (1/2, 0) and (1/4, 1/4) indicates that next-nearest neighbor interactions in this compound are intermediate betweenmore » the values found in La 2CuO 4 and Sr 2CuO 2Cl 2. Here by owing to the low- Z elements composing Ca 2CuOCl 2, the present results may enable a reliable comparison with the predictions of quantum many-body calculations, which would improve our understanding of the role of magnetic excitations and of electronic correlations in cuprates.« less
S=2 quasi-one-dimensional spin waves in CrCl2
NASA Astrophysics Data System (ADS)
Stone, Matthew; Ehlers, Georg; Granroth, Garrett
2014-03-01
We examine the magnetic excitation spectrum in the S = 2 Heisenberg antiferromagnet CrCl2. Inelastic neutron scattering measurements on powder samples are able to determine the significant exchange interactions in this system. A large anisotropy gap is observed in the spectrum below the Néel temperature and the ratio of the two largest exchange constants is Jc /Jb = 9 . 1 +/- 2 . 2 . However, no sign of a gapped quantum spin liquid excitation was found in the paramagnetic phase. The research was performed at Oak Ridge National Laboratory's Spallation Neutron Source and was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.
Nearly Deconfined Spinon Excitations in the Square-Lattice Spin-1 /2 Heisenberg Antiferromagnet
NASA Astrophysics Data System (ADS)
Shao, Hui; Qin, Yan Qi; Capponi, Sylvain; Chesi, Stefano; Meng, Zi Yang; Sandvik, Anders W.
2017-10-01
We study the spin-excitation spectrum (dynamic structure factor) of the spin-1 /2 square-lattice Heisenberg antiferromagnet and an extended model (the J -Q model) including four-spin interactions Q in addition to the Heisenberg exchange J . Using an improved method for stochastic analytic continuation of imaginary-time correlation functions computed with quantum Monte Carlo simulations, we can treat the sharp (δ -function) contribution to the structure factor expected from spin-wave (magnon) excitations, in addition to resolving a continuum above the magnon energy. Spectra for the Heisenberg model are in excellent agreement with recent neutron-scattering experiments on Cu (DCOO )2.4 D2O , where a broad spectral-weight continuum at wave vector q =(π ,0 ) was interpreted as deconfined spinons, i.e., fractional excitations carrying half of the spin of a magnon. Our results at (π ,0 ) show a similar reduction of the magnon weight and a large continuum, while the continuum is much smaller at q =(π /2 ,π /2 ) (as also seen experimentally). We further investigate the reasons for the small magnon weight at (π ,0 ) and the nature of the corresponding excitation by studying the evolution of the spectral functions in the J -Q model. Upon turning on the Q interaction, we observe a rapid reduction of the magnon weight to zero, well before the system undergoes a deconfined quantum phase transition into a nonmagnetic spontaneously dimerized state. Based on these results, we reinterpret the picture of deconfined spinons at (π ,0 ) in the experiments as nearly deconfined spinons—a precursor to deconfined quantum criticality. To further elucidate the picture of a fragile (π ,0 )-magnon pole in the Heisenberg model and its depletion in the J -Q model, we introduce an effective model of the excitations in which a magnon can split into two spinons that do not separate but fluctuate in and out of the magnon space (in analogy to the resonance between a photon and a particle-hole pair in the exciton-polariton problem). The model can reproduce the reduction of magnon weight and lowered excitation energy at (π ,0 ) in the Heisenberg model, as well as the energy maximum and smaller continuum at (π /2 ,π /2 ). It can also account for the rapid loss of the (π ,0 ) magnon with increasing Q and the remarkable persistence of a large magnon pole at q =(π /2 ,π /2 ) even at the deconfined critical point. The fragility of the magnons close to (π ,0 ) in the Heisenberg model suggests that various interactions that likely are important in many materials—e.g., longer-range pair exchange, ring exchange, and spin-phonon interactions—may also destroy these magnons and lead to even stronger spinon signatures than in Cu (DCOO )2.4 D2O .
Time-resolved nonlinear optics in strongly correlated insulators
NASA Astrophysics Data System (ADS)
Dodge, J. Steven
2000-03-01
Transition metal oxides form the basis for much of our understanding of Mott insulators, and have enjoyed a renaissance of interest since the discovery of high temperature superconductivity in the cuprates. They are characterized by complex interactions among spin, lattice, orbital and charge degrees of freedom, which lead to dynamical behavior on time scales ranging from femtoseconds to microseconds. We have applied time resolved nonlinear optical spectroscopy to probe these dynamics. In one well-studied antiferromagnetic insulator, Cr_2O_3, we observed spin-wave dynamics on a picosecond time scale by performing pump-probe spectroscopy of the exciton-magnon transition(J. S. Dodge, et al.), Phys. Rev. Lett. 83, 4650 (1999).. At excitation densities ~ 10-3/Cr, a lineshape associated with the exciton-magnon absorption appears in the pump-probe spectrum. We assign this nonlinearity to a time-dependent renormalization of the magnon band structure, which in turn modifies the lineshape of the exciton-magnon transition. At long time delays, this assignment agrees semiquantitatively with calculations based on spin-wave theory. However, the initial population at the zone-boundary induces surprisingly little renormalization effect, indicating that spin-wave theory is insufficient to describe our observations in this regime. The renormalization lineshape grows on a time scale of ~ 50 ps, which we associate with the decay of the photoexcited, nonequilibrium population of zone-boundary spin-waves into a thermalized population of zone-center spin-waves. We have also performed a study of the linear and nonlinear optical properties of Sr_2CuO_2Cl_2, an insulating, two-dimensional cuprate. In the nonlinear optical experiments, we have performed pump-probe spectroscopy over a 1 eV spectral range, varying both the pump and the probe energy. We observe a pump-probe lineshape which varies considerably as a function of pump energy and temperature, and which differs sharply from those typically observed in band insulators. At low-temperatures, in particular, we observe an overall increase of spectral weight in our probe range, indicating that states are shifting over an energy scale larger than 1 eV. We attribute this behavior to the strongly correlated nature of the electronic structure in this material. Studies of the elementary excitations in other magnetic oxides, currently in progress, will be discussed.
Spin dynamics of antiferromagnets in the presence of a homogeneous magnetization
NASA Astrophysics Data System (ADS)
Kirkpatrick, T. R.; Belitz, D.
2017-06-01
We use general hydrodynamic equations to determine the long-wavelength spin excitations in isotropic antiferromagnets in the presence of a homogeneous magnetization. The latter may be induced, such as in antiferromagnets in an external magnetic field, or spontaneous, such as in ferrimagnetic or canted phases that are characterized by the coexistence of antiferromagnetic and ferromagnetic order. Depending on the physical situation, we find propagating spin waves that are gapped in some cases and gapless in others, diffusive modes, or relaxational modes. The excitation spectra turn out to be qualitatively different depending on whether or not the homogeneous magnetization is a conserved quantity. The results lay the foundation for a description of a variety of quantum phase transitions, including the transition from a ferromagnetic metal to an antiferromagnetic one, and the spin-flop transitions that are observed in some antiferromagnets. They also are crucial for incorporating weak localization and Altshuler-Aronov effects into the descriptions of quantum phases in both clean and disordered magnetic metals.
NASA Astrophysics Data System (ADS)
Da Pieve, F.
2016-01-01
A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.
Bose-Einstein condensation of spin wave quanta at room temperature.
Dzyapko, O; Demidov, V E; Melkov, G A; Demokritov, S O
2011-09-28
Spin waves are delocalized excitations of magnetic media that mainly determine their magnetic dynamics and thermodynamics at temperatures far below the critical one. The quantum-mechanical counterparts of spin waves are magnons, which can be considered as a gas of weakly interacting bosonic quasi-particles. Here, we discuss the room-temperature kinetics and thermodynamics of the magnon gas in yttrium iron garnet films driven by parametric microwave pumping. We show that for high enough pumping powers, the thermalization of the driven gas results in a quasi-equilibrium state described by Bose-Einstein statistics with a non-zero chemical potential. Further increases of the pumping power cause a Bose-Einstein condensation documented by an observation of the magnon accumulation at the lowest energy level. Using the sensitivity of the Brillouin light scattering spectroscopy to the degree of coherence of the scattering magnons, we confirm the spontaneous emergence of coherence of the magnons accumulated at the bottom of the spectrum, occurring if their density exceeds a critical value.
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; ...
2017-05-24
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
NASA Astrophysics Data System (ADS)
Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco
2017-05-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.
Spin wave modes in out-of-plane magnetized nanorings
NASA Astrophysics Data System (ADS)
Zhou, X.; Tartakovskaya, E. V.; Kakazei, G. N.; Adeyeye, A. O.
2017-07-01
We investigated the spin wave modes in flat circular permalloy rings with a canted external bias field using ferromagnetic resonance spectroscopy. The external magnetic field H was large enough to saturate the samples. For θ =0∘ (perpendicular geometry), three distinct resonance peaks were observed experimentally. In the case of the cylindrical symmetry violation due to H inclination from normal to the ring plane (the angle θ of H inclination was varied in the 0∘-6∘ range), the splitting of all initial peaks appeared. The distance between neighbor split peaks increased with the θ increment. Unexpectedly, the biggest splitting was observed for the mode with the smallest radial wave vector. This special feature of splitting behavior is determined by the topology of the ring shape. Developed analytical theory revealed that in perpendicular geometry, each observed peak is a combination of signals from the set of radially quantized spin wave excitation with almost the same radial wave vectors, radial profiles, and frequencies, but with different azimuthal dependencies. This degeneracy is a consequence of circular symmetry of the system and can be removed by H inclination from the normal. Our findings were further supported by micromagnetic simulations.
Sergeicheva, E. G.; Sosin, S. S.; Prozorova, L. A.; ...
2017-01-18
We report on an electron spin resonance (ESR) study of a nearly one-dimensional (1D) spin-1/2 chain antiferromagnet, Sr 2CuO 3, with extremely weak magnetic ordering. The ESR spectra at T > T N, in the disordered Luttinger-spin-liquid phase, reveal nearly ideal Heisenberg-chain behavior with only a very small, field-independent linewidth, ~1/T. In the ordered state, below T N, we identify field-dependent antiferromagnetic resonance modes, which are well described by pseudo-Goldstone magnons in the model of a collinear biaxial antiferromagnet. Additionally, we observe a major resonant mode with unusual and strongly anisotropic properties, which is not anticipated by the conventional theorymore » of Goldstone spin waves. Lastly, we propose that this unexpected magnetic excitation can be attributed to a field-independent magnon mode renormalized due to its interaction with the high-energy amplitude (Higgs) mode in the regime of weak spontaneous symmetry breaking.« less
Magnetic Excitations of Stripes
NASA Astrophysics Data System (ADS)
Yao, Daoxin; Carlson, Erica; Campbell, David
2005-03-01
Competing tendencies in electronic systems with strong correlations can lead to spontaneous nanoscale structure, pattern formation, and even long-range spatial order. There has been continued interest in various ``stripe'' phases of electrons, as well as more recent interest in possible ``checkerboard'' patterns. New experimental techniques allow for the extraction of detailed and reproducible neutron scattering spectra in copper oxide superconductors and related nickelate compounds. We discuss the magnetic excitations of well-ordered stripe phases, including the high energy magnetic excitations of recent interest and possible connections to the ``resonance peak'' in cuprate superconductors. Using a suitably parametrized Heisenberg model and spin wave theory, we study a variety of possible stripe configurations, including vertical, diagonal, staircase, and zigzag stripes. We calculate the expected neutron scattering intensities as a function of energy and momentum. Constant energy cuts at high energy often reveal a square-like scattering pattern, and occasionally a circular pattern. Bond-centered stripes have weight gathered near (pi,pi) at low energy, indicating that only part of the spin wave cone is expected to be resolvable experimentally. In addition, we present a litmus test for experimentally distinguishing bond-centered stripes from site-centered stripes using low energy data.
Temperature-dependent relaxation of dipole-exchange magnons in yttrium iron garnet films
NASA Astrophysics Data System (ADS)
Mihalceanu, Laura; Vasyuchka, Vitaliy I.; Bozhko, Dmytro A.; Langner, Thomas; Nechiporuk, Alexey Yu.; Romanyuk, Vladyslav F.; Hillebrands, Burkard; Serga, Alexander A.
2018-06-01
Low-energy consumption enabled by charge-free information transport, which is free from Joule heating, and the ability to process phase-encoded data through the use of nanometer-sized interference devices operating at GHz and THz frequencies are just a few benefits of spin-wave-based technologies. Moreover, when approaching cryogenic temperatures, quantum phenomena in spin-wave systems pave the path towards quantum information processing. In view of these applications, the lifetime of magnons—spin-wave quanta—is of high relevance for the fields of magnonics, magnon spintronics, and quantum computing. Here, the relaxation behavior of parametrically excited magnons having wave numbers from zero up to 6 ×105rad cm-1 was experimentally investigated in the temperature range from 20 to 340 K in single-crystal yttrium iron garnet (YIG) films of different thickness epitaxially grown on gallium gadolinium garnet (GGG) substrates as well as in a bulk YIG crystal—the magnonic materials featuring the lowest magnetic damping thus far known. Due to magnon-magnon interactions, the relaxation rate of the parametric magnons increases with an increase of their wave numbers. In the thinner samples, this increase is less pronounced, which can be associated with a stronger quantization of their magnon spectra. For the YIG films, we have found a significant increase in the magnon relaxation rate below 150 K—up to eight times the reference value at 340 K—in the entire range of probed wave numbers, which is in direct opposition to that in ultrapure YIG crystals. This increase is related to rare-earth impurities contaminating the YIG samples with a slight contribution caused by the coupling of spin waves to the spin system of the paramagnetic GGG substrate at the lowest temperatures.
Brunstein, Maia; Hérault, Karine; Oheim, Martin
2014-01-01
Azimuthal beam scanning makes evanescent-wave (EW) excitation isotropic, thereby producing total internal reflection fluorescence (TIRF) images that are evenly lit. However, beam spinning does not fundamentally address the problem of propagating excitation light that is contaminating objective-type TIRF. Far-field excitation depends more on the specific objective than on cell scattering. As a consequence, the excitation impurities in objective-type TIRF are only weakly affected by changes of azimuthal or polar beam angle. These are the main results of the first part of this study (Eliminating unwanted far-field excitation in objective-type TIRF. Pt.1. Identifying sources of nonevanescent excitation light). This second part focuses on exactly where up beam in the illumination system stray light is generated that gives rise to nonevanescent components in TIRF. Using dark-field imaging of scattered excitation light we pinpoint the objective, intermediate lenses and, particularly, the beam scanner as the major sources of stray excitation. We study how adhesion-molecule coating and astrocytes or BON cells grown on the coverslip surface modify the dark-field signal. On flat and weakly scattering cells, most background comes from stray reflections produced far from the sample plane, in the beam scanner and the objective lens. On thick, optically dense cells roughly half of the scatter is generated by the sample itself. We finally show that combining objective-type EW excitation with supercritical-angle fluorescence (SAF) detection efficiently rejects the fluorescence originating from deeper sample regions. We demonstrate that SAF improves the surface selectivity of TIRF, even at shallow penetration depths. The coplanar microscopy scheme presented here merges the benefits of beam spinning EW excitation and SAF detection and provides the conditions for quantitative wide-field imaging of fluorophore dynamics at or near the plasma membrane. PMID:24606929
Spectroscopic study of excitations in pi-conjugated polymers
NASA Astrophysics Data System (ADS)
Yang, Cungeng
This dissertation deals with spin-physics of photo excitations in pi-conjugated polymers. Optical and magneto-optical spectroscopies, including continuous wave and time-resolved photo-induced absorption, photoluminescence, electroluminescence, and their optically detected magnetic resonance, were used to study steady state and transient photogeneration, energy transfer, spin relaxation, and spin dependent recombination process in the time domain from tens of nanoseconds to tens of milliseconds in polymer materials including regio-random poly (3-hexyl-thiophene-2,5-diyl), regio-regular poly (3-hexyl-thiophene-2,5-diyl), poly (9,9-dioctyl-fluorenyl-2,7-diyl), poly (poly (2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) of various morphologies, and transition metal complex poly (Pt-quinoxene). Our studies provided the tools to clarify the physical pictures regarding two types of long-lived photoexcitations, namely polarons (both germinate polaron-pairs, and unpaired polarons) and triplet excitons, which are the major excitations in these exotic semiconductors in electrical and optical related applications. From measurements of transient fluorescence and transient fluorescence detected magnetic resonance we show that photogenerated geminate polaron pairs live up to hundreds of microseconds following laser pulsed excitation. This conclusion is in agreement with the delayed formation of triplet excitons that we measured by transient photoinduced absorption. It also agrees with the weak spin-lattice relaxation rate in polymers that we measured using the optically detected magnetic resonance dynamic in thin films and organic light emitting devices. Randomly captured nongeminate polaron pairs were shown to be the major source of optically detected magnetic resonance signal at steady, state. We found that the dynamics and magnitude of the signal depend on the spin-relaxation rate, generation rate and decay rate of the geminate pairs and nongeminate pairs. Importantly we found that the spin-relaxation rate depends weakly on temperature and strongly on coupled heavy atom orbital and magnetic momentum dipole induced by dopants or high intensity excitation. Also the polaron generation rate is excitation energy and nano-morphology dependent; whereas the polaron decay rate is morphology and spin dependent.
Chan, M. K.; Tang, Y.; Dorow, C. J.; ...
2016-12-29
Here, we use neutron scattering to study magnetic excitations near the antiferromagnetic wave vector in the underdoped single-layer cuprate HgBa 2 CuO 4 + δ (superconducting transition temperature T c ≈ 88 K , pseudogap temperature T* ≈ 220 K ). The response is distinctly enhanced below T* and exhibits a Y -shaped dispersion in the pseudogap state, whereas the superconducting state features an X -shaped (hourglass) dispersion and a further resonancelike enhancement. We also observe a large spin gap of about 40 meV in both states. This phenomenology is reminiscent of that exhibited by bilayer cuprates. The resonance spectralmore » weight, irrespective of doping and compound, scales linearly with the putative binding energy of a spin exciton described by an itinerant-spin formalism.« less
Searching for Supersolidity in Ultracold Atomic Bose Condensates with Rashba Spin-Orbit Coupling
NASA Astrophysics Data System (ADS)
Liao, Renyuan
2018-04-01
We developed a functional integral formulation for the stripe phase of spinor Bose-Einstein condensates with Rashba spin-orbit coupling. The excitation spectrum is found to exhibit double gapless band structures, identified to be two Goldstone modes resulting from spontaneously broken internal gauge symmetry and translational invariance symmetry. The sound velocities display anisotropic behavior with the lower branch vanishing in the direction perpendicular to the stripe in the x -y plane. At the transition point between the plane-wave phase and the stripe phase, physical quantities such as fluctuation correction to the ground-state energy and quantum depletion of the condensates exhibit discontinuity, characteristic of the first-order phase transition. Despite strong quantum fluctuations induced by Rashba spin-orbit coupling, we show that the supersolid phase is stable against quantum depletion. Finally, we extend our formulation to finite temperatures to account for interactions between excitations.
NASA Astrophysics Data System (ADS)
Lebyodkin, M. A.; Lebedkina, T. A.; Shashkov, I. V.; Gornakov, V. S.
2017-07-01
Magnetization reversal of polycrystalline NiFe/NiO bilayers was investigated using magneto-optical indicator film imaging and acoustic emission techniques. Sporadic acoustic signals were detected in a constant magnetic field after the magnetization reversal. It is suggested that they are related to elastic waves excited by sharp shocks in the NiO layer with strong magnetostriction. Their probability depends on the history and number of repetitions of the field cycling, thus testifying the thermal-activation nature of the long-time relaxation of an antiferromagnetic order. These results provide evidence of spontaneous thermally activated switching of the antiferromagnetic order in NiO grains during magnetization reversal in ferromagnet/antiferromagnet (FM/AFM) heterostructures. The respective deformation modes are discussed in terms of the thermal fluctuation aftereffect in the Fulcomer and Charap model which predicts that irreversible breakdown of the original spin orientation can take place in some antiferromagnetic grains with disordered anisotropy axes during magnetization reversal of exchange-coupled FM/AFM structures. The spin reorientation in the saturated state may induce abrupt distortion of isolated metastable grains because of the NiO magnetostriction, leading to excitation of shock waves and formation of plate (or Lamb) waves.
NASA Astrophysics Data System (ADS)
John, Sajeev; Golubentsev, Andrey
1995-01-01
It is suggested that an interacting many-electron system in a two-dimensional lattice may condense into a topological magnetic state distinct from any discussed previously. This condensate exhibits local spin-1/2 magnetic moments on the lattice sites but is composed of a Slater determinant of single-electron wave functions which exist in an orthogonal sector of the electronic Hilbert space from the sector describing traditional spin-density-wave or spiral magnetic states. These one-electron spinor wave functions have the distinguishing property that they are antiperiodic along a closed path encircling any elementary plaquette of the lattice. This corresponds to a 2π rotation of the internal coordinate frame of the electron as it encircles the plaquette. The possibility of spinor wave functions with spatial antiperiodicity is a direct consequence of the two-valuedness of the internal electronic wave function defined on the space of Euler angles describing its spin. This internal space is the topologically, doubly-connected, group manifold of SO(3). Formally, these antiperiodic wave functions may be described by passing a flux which couples to spin (rather than charge) through each of the elementary plaquettes of the lattice. When applied to the two-dimensional Hubbard model with one electron per site, this new topological magnetic state exhibits a relativistic spectrum for charged, quasiparticle excitations with a suppressed one-electron density of states at the Fermi level. For a topological antiferromagnet on a square lattice, with the standard Hartree-Fock, spin-density-wave decoupling of the on-site Hubbard interaction, there is an exact mapping of the low-energy one-electron excitation spectrum to a relativistic Dirac continuum field theory. In this field theory, the Dirac mass gap is precisely the Mott-Hubbard charge gap and the continuum field variable is an eight-component Dirac spinor describing the components of physical electron-spin amplitude on each of the four sites of the elementary plaquette in the original Hubbard model. Within this continuum model we derive explicitly the existence of hedgehog Skyrmion textures as local minima of the classical magnetic energy. These magnetic solitons carry a topological winding number μ associated with the vortex rotation of the background magnetic moment field by a phase angle 2πμ along a path encircling the soliton. Such solitons also carry a spin flux of μπ through the plaquette on which they are centered. The μ=1 hedgehog Skyrmion describes a local transition from the topological (antiperiodic) sector of the one-electron Hilbert space to the nontopological sector. We derive from first principles the existence of deep level localized electronic states within the Mott-Hubbard charge gap for the μ=1 and 2 solitons. The spectrum of localized states is symmetric about E=0 and each subgap electronic level can be occupied by a pair of electrons in which one electron resides primarily on one sublattice and the second electron on the other sublattice. It is suggested that flux-carrying solitons and the subgap electronic structure which they induce are important in understanding the physical behavior of doped Mott insulators.
Current-induced spin wave Doppler shift
NASA Astrophysics Data System (ADS)
Bailleul, Matthieu
2010-03-01
In metal ferromagnets -namely Fe, Co and Ni and their alloys- magnetism and electrical transport are strongly entangled (itinerant magnetism). This results in a number of properties such as the tunnel and giant magnetoresistance (i.e. the dependence of the electrical resistance on the magnetic state) and the more recently addressed spin transfer (i.e. the ability to manipulate the magnetic state with the help of an electrical current). The spin waves, being the low-energy elementary excitations of any ferromagnet, also exist in itinerant magnets, but they are expected to exhibit some peculiar properties due the itinerant character of the carriers. Accessing these specific properties experimentally could shed a new light on the microscopic mechanism governing itinerant magnetism, which -in turn- could help in optimizing material properties for spintronics applications. As a simple example of these specific properties, it was predicted theoretically that forcing a DC current through a ferromagnetic metal should induce a shift of the frequency of the spin waves [1,2]. This shift can be identified to a Doppler shift undergone by the electron system when it is put in motion by the electrical current. We will show how detailed spin wave measurements allow one to access this current-induced Doppler shift [3]. From an experimental point of view, we will discuss the peculiarities of propagating spin wave spectroscopy experiments carried out at a sub-micrometer length-scale and with MHz frequency resolution. Then, we will discuss the measured value of the Doppler shift in the context of both the old two-current model of spin-polarized transport and the more recent model of adiabatic spin transfer torque. [4pt] [1] P.Lederer and D.L. Mills, Phys.Rev. 148, 542 (1966).[0pt] [2] J. Fernandez-Rossier et al., Phys. Rev. B 69, 174412 (2004)[0pt] [3] V. Vlaminck and M. Bailleul, Science 322, 410 (2008).
Improved Apparatus to Study Matter-Wave Quantum Optics in a Sodium Spinor Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Zhong, Shan; Bhagat, Anita; Zhang, Qimin; Schwettmann, Arne
2017-04-01
We present and characterize our recently improved experimental apparatus for studying matter-wave quantum optics in spin space in ultracold sodium gases. Improvements include our recent addition of a 3D-printed Helmholtz coil frame for field stabilization and a crossed optical dipole trap. Spin-exchange collisions in the F = 1 spinor Bose-Einstein condensate can be precisely controlled by microwave dressing, and generate pairs of entangled atoms with magnetic quantum numbers mF = + 1 and mF = - 1 from pairs of mF = 0 atoms. Spin squeezing generated by the collisions can reduce the noise of population measurements below the shot noise limit. Versatile microwave pulse sequences will be used to implement an interferometer, a phase-sensitive amplifier and other devices with sub-shot noise performance. With an added ion detector to detect Rydberg atoms via pulse-field ionization, we later plan to study the effect of Rydberg excitations on the spin evolution of the ultracold gas.
Observation of spinon spin currents in one-dimensional spin liquid
NASA Astrophysics Data System (ADS)
Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji
To date, two types of spin current have been explored experimentally: conduction-electron spin current and spin-wave spin current. Here, we newly present spinon spin current in quantum spin liquid. An archetype of quantum spin liquid is realized in one-dimensional spin-1/2 chains with the spins coupled via antiferromagnetic interaction. Elementary excitation in such a system is known as a spinon. Theories have predicted that the correlation of spinons reaches over a long distance. This suggests that spin current may propagate via one-dimensional spinons even in spin liquid states. In this talk, we report the experimental observation that a spin liquid in a spin-1/2 quantum chain generates and conveys spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow via quantum fluctuation in spite of the absence of magnetic order, suggesting that a variety of quantum spin systems can be applied to spintronics. Spin Quantum Rectification Project, ERATO, JST, Japan; PRESTO, JST, Japan.
Identification of the low-energy excitations in a quantum critical system
NASA Astrophysics Data System (ADS)
Heitmann, Tom; Lamsal, Jagat; Watson, Shannon; Erwin, Ross; Chen, Wangchun; Zhao, Yang; Montfrooij, Wouter
2017-05-01
We have identified low-energy magnetic excitations in a doped quantum critical system by means of polarized neutron scattering experiments. The presence of these excitations could explain why Ce(Fe0.76Ru0.24)2Ge2 displays dynamical scaling in the absence of local critical behavior or long-range spin-density wave criticality. The low-energy excitations are associated with the reorientations of the superspins of fully ordered, isolated magnetic clusters that form spontaneously upon lowering the temperature. The system houses both frozen clusters and dynamic clusters, as predicted by Hoyos and Vojta [Phys. Rev. B 74, 140401(R) (2006)].
Giga-Hertz Electromagnetic Wave Science and Devices for Advanced Battlefield Communications
2010-12-15
Yeal Song, Lei Lu , Zihui Wang, Yiyan Sun, and Joshua Bevivino, Seminar in the Department of Electrical and Computer Engineering, the University of...Celinski, “Spin wave resonance excitation in ferromagnetic films using planar waveguide structures”, J. Appl. Phys. 108, 023907 (2010) 6. Zihui ...Young-Yeal Song, Yiyan Sun, Lei Lu , Joshua Bevivino, and Mingzhong Wu, Appl. Phys. Lett. 97, 173502 (2010). 12. “Electric-field control of ferromagnetic
Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.
Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less
Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4
Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.; ...
2017-09-13
Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less
NASA Astrophysics Data System (ADS)
da Silva, W. M.; Montenegro-Filho, R. R.
2017-12-01
Quantum critical (QC) phenomena can be accessed by studying quantum magnets under an applied magnetic field (B ). The QC points are located at the end points of magnetization plateaus and separate gapped and gapless phases. In one dimension, the low-energy excitations of the gapless phase form a Luttinger liquid (LL), and crossover lines bound insulating (plateau) and LL regimes, as well as the QC regime. Alternating ferrimagnetic chains have a spontaneous magnetization at T =0 and gapped excitations at zero field. Besides the plateau at the fully polarized (FP) magnetization, due to the gap there is another magnetization plateau at the ferrimagnetic (FRI) magnetization. We develop spin-wave theories to study the thermal properties of these chains under an applied magnetic field: one from the FRI classical state and another from the FP state, comparing their results with quantum Monte Carlo data. We deepen the theory from the FP state, obtaining the crossover lines in the T vs B low-T phase diagram. In particular, from local extreme points in the susceptibility and magnetization curves, we identify the crossover between an LL regime formed by excitations from the FRI state to another built from excitations of the FP state. These two LL regimes are bounded by an asymmetric domelike crossover line, as observed in the phase diagram of other quantum magnets under an applied magnetic field.
Brillouin light scattering on Fe/Cr/Fe thin-film sandwiches
NASA Astrophysics Data System (ADS)
Kabos, P.; Patton, C. E.; Dima, M. O.; Church, D. B.; Stamps, R. L.; Camley, R. E.
1994-04-01
The aim of this work is to perform Brillouin light scattering measurements of the field and wave-vector dependencies of the frequencies of the fundamental magnetic excitations in Fe/Cr/Fe thin film sandwiches with antiferromagnetically coupled magnetic layers, correlate these results with magnetization versus field data on such films, and compare the observed dependencies with theory for low-wave number spin-wave modes in sandwich films. The measurements were made for the in-plane static magnetic field H along the crystallographic and directions, with the in-plane wave vector k always perpendicular to H.
NASA Astrophysics Data System (ADS)
Khater, A.; Saim, L.; Tigrine, R.; Ghader, D.
2018-06-01
We propose thermodynamically stable systems of ultrathin lamellar bcc Ni nanostructures between bcc Fe leads, sbnd Fe[Ni(n)]Fesbnd , based on the available literature for bcc Ni overlayers on Fe(001) surfaces, and establish the necessary criteria for their structural and ferromagnetic order, for thicknesses n ≤ 6 bcc Ni monatomic layers. The system is globally ferromagnetic. A theoretical model is presented to investigate and understand the ballistic coherent scattering of Fe spin-waves, incident from the leads, at the ferromagnetic bcc Ni nanostructure. The Nisbnd Ni and Nisbnd Fe exchange are computed using the Ising effective field theory (EFT), and the magnetic ground state of the system is constructed in the Heisenberg representation. We compute the spin-wave eigenmodes localized on the bcc Ni nanostructure, using the phase field matching theory (PFMT), illustrating the effects of symmetry breaking on the confinement of localized spin excitations. The reflection and transmission scattering properties of spin-waves incident from the Fe leads, across the embedded Ni nanostructures are investigated within the framework of the same PFMT methodology. A highly refined Fabry-Perot magnonic ballistic coherent transmission spectra is observed for these sbnd Fe[Ni(n)]Fesbnd systems.
NASA Astrophysics Data System (ADS)
Lehtola, Susi; Tubman, Norm M.; Whaley, K. Birgitta; Head-Gordon, Martin
2017-10-01
Approximate full configuration interaction (FCI) calculations have recently become tractable for systems of unforeseen size, thanks to stochastic and adaptive approximations to the exponentially scaling FCI problem. The result of an FCI calculation is a weighted set of electronic configurations, which can also be expressed in terms of excitations from a reference configuration. The excitation amplitudes contain information on the complexity of the electronic wave function, but this information is contaminated by contributions from disconnected excitations, i.e., those excitations that are just products of independent lower-level excitations. The unwanted contributions can be removed via a cluster decomposition procedure, making it possible to examine the importance of connected excitations in complicated multireference molecules which are outside the reach of conventional algorithms. We present an implementation of the cluster decomposition analysis and apply it to both true FCI wave functions, as well as wave functions generated from the adaptive sampling CI algorithm. The cluster decomposition is useful for interpreting calculations in chemical studies, as a diagnostic for the convergence of various excitation manifolds, as well as as a guidepost for polynomially scaling electronic structure models. Applications are presented for (i) the double dissociation of water, (ii) the carbon dimer, (iii) the π space of polyacenes, and (iv) the chromium dimer. While the cluster amplitudes exhibit rapid decay with an increasing rank for the first three systems, even connected octuple excitations still appear important in Cr2, suggesting that spin-restricted single-reference coupled-cluster approaches may not be tractable for some problems in transition metal chemistry.
NASA Astrophysics Data System (ADS)
Fukui, Tokuro; Minato, Futoshi
2017-11-01
Background: Coherent one-particle one-hole (1p1h) excitations have given us effective insights into general nuclear excitations. However, the two-particle two-hole (2p2h) excitation beyond 1p1h is now recognized as critical for the proper description of experimental data of various nuclear responses. Purpose: The spin-flip charge-exchange reactions 48Ca(p ,n )48Sc are investigated to clarify the role of the 2p2h effect on their cross sections. The Fermi transition of 48Ca via the (p ,n ) reaction is also investigated in order to demonstrate our framework. Methods: The transition density is calculated microscopically with the second Tamm-Dancoff approximation, and the distorted-wave Born approximation is employed to describe the reaction process. A phenomenological one-range Gaussian interaction is used to prepare the form factor. Results: For the Fermi transition, our approach describes the experimental behavior of the cross section better than the Lane model, which is the conventional method. For spin-flip excitations including the GT transition, the 2p2h effect decreases the magnitude of the cross section and does not change the shape of the angular distribution. The Δ l =2 transition of the present reaction is found to play a negligible role. Conclusions: The 2p2h effect will not change the angular-distributed cross section of spin-flip responses. This is because the transition density of the Gamow-Teller response, the leading contribution to the cross section, is not significantly varied by the 2p2h effect.
Dynamic pathway of the photoinduced phase transition of TbMnO3
NASA Astrophysics Data System (ADS)
Bothschafter, Elisabeth M.; Abreu, Elsa; Rettig, Laurenz; Kubacka, Teresa; Parchenko, Sergii; Porer, Michael; Dornes, Christian; Windsor, Yoav William; Ramakrishnan, Mahesh; Alberca, Aurora; Manz, Sebastian; Saari, Jonathan; Koohpayeh, Seyed M.; Fiebig, Manfred; Forrest, Thomas; Werner, Philipp; Dhesi, Sarnjeet S.; Johnson, Steven L.; Staub, Urs
2017-11-01
We investigate the demagnetization dynamics of the cycloidal and sinusoidal phases of multiferroic TbMnO3 by means of time-resolved resonant soft x-ray diffraction following excitation by an optical pump. The use of orthogonal linear x-ray polarizations provides information on the contribution from the different magnetic moment directions, which can be interpreted as signatures from multiferroic cycloidal spin order and sinusoidal spin order. Tracking these signatures in the time domain enables us to identify the transient magnetic phase created by intense photoexcitation of the electrons and subsequent heating of the spin system on a picosecond time scale. The transient phase is shown to exhibit mostly spin density wave character, as in the adiabatic case, while nevertheless retaining the wave vector of the cycloidal long-range order. Two different pump photon energies, 1.55 and 3.1 eV, lead to population of the conduction band predominantly via intersite d -d or intrasite p -d transitions, respectively. We find that the nature of the optical excitation does not play an important role in determining the dynamics of magnetic order melting. Further, we observe that the orbital reconstruction, which is induced by the spin ordering, disappears on a time scale comparable to that of the cycloidal order, attesting to a direct coupling between magnetic order and orbital reconstruction. Our observations are discussed in the context of recent theoretical models of demagnetization dynamics in strongly correlated systems, revealing the potential of this type of measurement as a benchmark for such theoretical studies.
Plasmonic rack-and-pinion gear with chiral metasurface
NASA Astrophysics Data System (ADS)
Gorodetski, Yuri; Karabchevsky, Alina
2016-04-01
The effect of circularly polarized beaming excited by traveling surface plasmons, via chiral metasurface is experimentally studied. Here we show that the propagation direction of the plasmonic wave, evanescently excited on the thin gold film affects the handedness of the scattered beam polarization. Nanostructured metasurface leads to excitation of localized plasmonic modes whose relative spatial orientation induces overall spin-orbit interaction. This effect is analogical to the rack-and-pinion gear: the rotational motion into the linear motion converter. From the practical point of view, the observed effect can be utilized in integrated optical circuits for communication systems, cyber security and sensing.
Ultrafast Microscopy of Spin-Momentum-Locked Surface Plasmon Polaritons.
Dai, Yanan; Dąbrowski, Maciej; Apkarian, Vartkess A; Petek, Hrvoje
2018-06-26
Using two-photon photoemission electron microscopy (2P-PEEM) we image the polarization dependence of coupling and propagation of surface plasmon polaritons (SPPs) launched from edges of a triangular, micrometer size, single-crystalline Ag crystal by linearly or circularly polarized light. 2P-PEEM records interferences between the optical excitation field and SPPs it creates with nanofemto space-time resolution. Both the linearly and circularly polarized femtosecond light pulses excite spatially asymmetric 2PP yield distributions, which are imaged. We attribute the asymmetry for linearly polarized light to the relative alignments of the laser polarization and triangle edges, which affect the efficiency of excitation of the longitudinal component of the SPP field. For circular polarization, the asymmetry is caused by matching of the spin angular momenta (SAM) of light and the transverse SAM of SPPs. Moreover, we show that the interference patterns recorded in the 2P-PEEM images are cast by phase shifts and amplitudes for coupling of light into the longitudinal and transverse components of SPP fields. While the interference patterns depend on the excitation polarization, nanofemto movies show that the phase and group velocities of SPPs are independent of SAM of light in time-reversal invariant media. Simulations of the wave interference reproduce the polarization and spin-dependent coupling of optical pulses into SPPs.
Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of ½
Maryasov, Alexander G.
2012-01-01
The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or ‘powder’ sample when g tensor anisotropy is significant. PMID:22743542
Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of 1/2
NASA Astrophysics Data System (ADS)
Maryasov, Alexander G.; Bowman, Michael K.
2012-08-01
The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or 'powder' sample when g tensor anisotropy is significant.
Chattopadhyaya, Surya; Nath, Abhijit; Das, Kalyan Kumar
2014-04-24
Ab initio based relativistic configuration interaction calculations have been performed to study the electronic states and spectroscopic properties of tellurium selenide (TeSe) - the heaviest heteronuclear diatomic group 16-16 molecule. Potential energy curves of several spin-excluded (Λ-S) electronic states of TeSe have been constructed and spectroscopic constants of low-lying bound Λ-S states within 3.85 eV are reported in the first stage of calculations. The X(3)Σ(-), a(1)Δ and b(1)Σ(+) are found as the ground, first excited and second excited state, respectively, at the Λ-S level and all these three states are mainly dominated by …π(4)π(*2) configuration. The computed ground state dissociation energy is in very good agreement with the experimental results. In the next stage of calculations, effects of spin-orbit coupling on the potential energy curves and spectroscopic properties of the species are investigated in details and compared with the existing experimental results. After inclusion of spin-orbit coupling the X(3)(1)Σ(-)(0(+)) is found as the ground-state spin component of TeSe. The computed spin-orbit splitting between two components of X(3)Σ(-) state is 1285 cm(-1). Also, significant amount of spin-orbit splitting are found between spin-orbit components (Ω-components) of several other excited states. Transition moments of some important spin-allowed and spin-forbidden transitions are calculated from configuration interaction wave functions. The spin-allowed transition B(3)Σ(-)-X(3)Σ(-) and spin-forbidden transition b(1)Σ(+)(0(+))-X(3)(1)Σ(-)(0(+)) are found to be the strongest in their respective categories. Electric dipole moments of all the bound Λ-S states along with those of the two Ω-components of X(3)Σ(-) are also calculated in the present study. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shihab, S.; Thevenard, L.; Bardeleben, H. J. von
2015-04-06
We study the dependence of the spin stiffness constant on the phosphorus concentration in the ferromagnetic semiconductor (Ga,Mn)(As,P) with the aim of determining whether alloying with phosphorus is detrimental, neutral, or advantageous to the spin stiffness. Time-resolved magneto-optical experiments are carried out in thin epilayers. Laser pulses excite two perpendicular standing spin wave modes, which are exchange related. We show that the first mode is spatially uniform across the layer corresponding to a k≈0 wavevector. From the two frequencies and k-vector spacings we obtain the spin stiffness constant for different phosphorus concentrations using weak surface pinning conditions. The mode assessmentmore » is checked by comparison to the spin stiffness obtained from domain pattern analysis for samples with out-of-plane magnetization. The spin stiffness is found to exhibit little variation with phosphorus concentration in contradiction with ab-initio predictions.« less
SU(2) slave-boson formulation of spin nematic states in S=(1)/(2) frustrated ferromagnets
NASA Astrophysics Data System (ADS)
Shindou, Ryuichi; Momoi, Tsutomu
2009-08-01
An SU(2) slave-boson formulation of bond-type spin nematic orders is developed in frustrated ferromagnets, where the spin nematic states are described as the resonating spin-triplet valence bond (RVB) states. The d vectors of spin-triplet pairing ansatzes play the role of the directors in the bond-type spin-quadrupolar states. The low-energy excitations around such spin-triplet RVB ansatzes generally comprise the (potentially massless) gauge bosons, massless Goldstone bosons, and spinon individual excitations. Extending the projective symmetry-group argument to the spin-triplet ansatzes, we show how to identify the number of massless gauge bosons efficiently. Applying this formulation, we next (i) enumerate possible mean-field solutions for the S=(1)/(2) ferromagnetic J1-J2 Heisenberg model on the square lattice, with ferromagnetic nearest neighbor J1 and competing antiferromagnetic next-nearest neighbor J2 and (ii) argue their stability against small gauge fluctuations. As a result, two stable spin-triplet RVB ansatzes are found in the intermediate coupling regime around J1:J2≃1:0.4 . One is the Z2 Balian-Werthamer (BW) state stabilized by the Higgs mechanism and the other is the SU(2) chiral p -wave (Anderson-Brinkman-Morel) state stabilized by the Chern-Simon mechanism. The former Z2 BW state in fact shows the same bond-type spin-quadrupolar order as found in the previous exact diagonalization study [Shannon , Phys. Rev. Lett. 96, 027213 (2006)].
Enhanced spin wave propagation in magnonic rings by bias field modulation
NASA Astrophysics Data System (ADS)
Venkat, G.; Venkateswarlu, D.; Joshi, R. S.; Franchin, M.; Fangohr, H.; Anil Kumar, P. S.; Prabhakar, A.
2018-05-01
We simulate the spin wave (SW) dynamics in ring structures and obtain the ω - k dispersion relations corresponding to the output waveguide. Different bias field configurations affect the transfer of SW power from one arm of the structure to the other arm. To this end, we show that circular or radial bias fields are more suitable for energy transfer across the ring than the conventional horizontal bias field Hx. The SW dispersion shows that modes excited, when the bias field is along the ring radius, are almost 10 dB higher in power when compared to the modal power in the case of Hx. This is also corroborated by the SW energy density in the receiving stub.
Superconductivity and spin excitations in orbitally ordered FeSe
NASA Astrophysics Data System (ADS)
Kreisel, Andreas; Mukherjee, Shantanu; Hirschfeld, P. J.; Andersen, B. M.
We provide a band-structure with low-energy properties consistent with recent photoemission and quantum oscillations measurements on the Fe-based superconductor FeSe, including a mean-field like orbital ordering in the dxz /dyz channel, and show that this model also accounts for the temperature dependence of the measured Knight shift and the spin-relaxation rate. An RPA calculation of the dynamical spin susceptibility yields spin excitations which are peaked at wave vector (π , 0) in the 1-Fe Brillouin zone, with a broad maximum at energies of order a few meV. Furthermore, the superconducting gap structure obtained from spin fluctuation theory exhibits nodes on the electron pockets, consistent with the 'V'-shaped density of states measured by tunneling spectroscopy on this material. The redistribution of spectral weight in the superconducting state creates a (π , 0) ''neutron resonance'' as seen in recent experiments. Comparing to various experimental results, we give predictions for further studies A.K. and B.M.A. acknowledge financial support from a Lundbeckfond fellowship (Grant No. A9318). P.J.H. was partially supported by the Department of Energy under Grant No. DE-FG02-05ER46236.
Gaudet, J.; Ross, K. A.; Kermarrec, E.; ...
2016-02-03
We know the ground state of the quantum spin ice candidate magnet Yb 2Ti 2O 7 to be sensitive to weak disorder at the similar to 1% level which occurs in single crystals grown from the melt. Powders produced by solid state synthesis tend to be stoichiometric and display large and sharp heat capacity anomalies at relatively high temperatures, T-C similar to 0.26 K. We have carried out neutron elastic and inelastic measurements on well characterized and equilibrated stoichiometric powder samples of Yb 2Ti 2O 7 which show resolution-limited Bragg peaks to appear at low temperatures, but whose onset correlatesmore » with temperatures much higher than T-C. The corresponding magnetic structure is best described as an icelike splayed ferromagnet. In the spin dynamics of Yb 2Ti 2O 7 we see the gapless on an energy scale <0.09 meV at all temperatures and organized into a continuum of scattering with vestiges of highly overdamped ferromagnetic spin waves present. These excitations differ greatly from conventional spin waves predicted for Yb 2Ti 2O 7's mean field ordered state, but appear robust to weak disorder as they are largely consistent with those displayed by nonstoichiometric crushed single crystals and single crystals, as well as by powder samples of Yb 2Ti 2O 7's sister quantum magnet Yb 2Ti 2O 7.« less
Spin-polarized density-matrix functional theory of the single-impurity Anderson model
NASA Astrophysics Data System (ADS)
Töws, W.; Pastor, G. M.
2012-12-01
Lattice density functional theory (LDFT) is used to investigate spin excitations in the single-impurity Anderson model. In this method, the single-particle density matrix γijσ with respect to the lattice sites replaces the wave function as the basic variable of the many-body problem. A recently developed two-level approximation (TLA) to the interaction-energy functional W[γ] is extended to systems having spin-polarized density distributions and bond orders. This allows us to investigate the effect of external magnetic fields and, in particular, the important singlet-triplet gap ΔE, which determines the Kondo temperature. Applications to finite Anderson rings and square lattices show that the gap ΔE as well as other ground-state and excited-state properties are very accurately reproduced. One concludes that the spin-polarized TLA is reliable in all interaction regimes, from weak to strong correlations, for different hybridization strengths and for all considered impurity valence states. In this way the efficiency of LDFT to account for challenging electron-correlation effects is demonstrated.
Nuclear magnetic resonance in high magnetic field: Application to condensed matter physics
NASA Astrophysics Data System (ADS)
Berthier, Claude; Horvatić, Mladen; Julien, Marc-Henri; Mayaffre, Hadrien; Krämer, Steffen
2017-05-01
In this review, we describe the potentialities offered by the nuclear magnetic resonance (NMR) technique to explore at a microscopic level new quantum states of condensed matter induced by high magnetic fields. We focus on experiments realised in resistive (up to 34 T) or hybrid (up to 45 T) magnets, which open a large access to these quantum phase transitions. After an introduction on NMR observables, we consider several topics: quantum spin systems (spin-Peierls transition, spin ladders, spin nematic phases, magnetisation plateaus, and Bose-Einstein condensation of triplet excitations), the field-induced charge density wave (CDW) in high-Tc superconductors, and exotic superconductivity including the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state and the field-induced superconductivity due to the Jaccarino-Peter mechanism.
Reconfigurable wave band structure of an artificial square ice
lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.; ...
2016-04-18
Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors.more » Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.« less
Reconfigurable wave band structure of an artificial square ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
lacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.
Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a twodimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors.more » Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.« less
Spin-1 Kitaev model in one dimension
NASA Astrophysics Data System (ADS)
Sen, Diptiman; Shankar, R.; Dhar, Deepak; Ramola, Kabir
2010-11-01
We study a one-dimensional version of the Kitaev model on a ring of size N , in which there is a spin S>1/2 on each site and the Hamiltonian is J∑nSnxSn+1y . The cases where S is integer and half-odd integer are qualitatively different. We show that there is a Z2 -valued conserved quantity Wn for each bond (n,n+1) of the system. For integer S , the Hilbert space can be decomposed into 2N sectors, of unequal sizes. The number of states in most of the sectors grows as dN , where d depends on the sector. The largest sector contains the ground state, and for this sector, for S=1 , d=(5+1)/2 . We carry out exact diagonalization for small systems. The extrapolation of our results to large N indicates that the energy gap remains finite in this limit. In the ground-state sector, the system can be mapped to a spin-1/2 model. We develop variational wave functions to study the lowest energy states in the ground state and other sectors. The first excited state of the system is the lowest energy state of a different sector and we estimate its excitation energy. We consider a more general Hamiltonian, adding a term λ∑nWn , and show that this has gapless excitations in the range λ1c≤λ≤λ2c . We use the variational wave functions to study how the ground-state energy and the defect density vary near the two critical points λ1c and λ2c .
Theory of superconductivity in a three-orbital model of Sr2RuO4
NASA Astrophysics Data System (ADS)
Wang, Q. H.; Platt, C.; Yang, Y.; Honerkamp, C.; Zhang, F. C.; Hanke, W.; Rice, T. M.; Thomale, R.
2013-10-01
In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr2RuO4 is the first prime candidate for topological chiral p-wave superconductivity, which has time-reversal breaking odd-parity Cooper pairs known to exist before only in the neutral superfluid 3He. However, there are several key unresolved issues hampering the microscopic description of the unconventional superconductivity. Spin fluctuations at both large and small wave vectors are present in experiments, but how they arise and drive superconductivity is not yet clear. Spontaneous edge current is expected but not observed conclusively. Specific experiments point to highly band- and/or momentum-dependent energy gaps for quasiparticle excitations in the superconducting state. Here, by comprehensive functional renormalization group calculations with all relevant bands, we disentangle the various competing possibilities. In particular, we show the small wave vector spin fluctuations, driven by a single two-dimensional band, trigger p-wave superconductivity with quasi-nodal energy gaps.
Spin-flip isovector giant resonances from the 90Zr(n,p)90Y reaction at 198 MeV
NASA Astrophysics Data System (ADS)
Raywood, K. J.; Spicer, B. M.; Yen, S.; Long, S. A.; Moinester, M. A.; Abegg, R.; Alford, W. P.; Celler, A.; Drake, T. E.; Frekers, D.; Green, P. E.; Häusser, O.; Helmer, R. L.; Henderson, R. S.; Hicks, K. H.; Jackson, K. P.; Jeppesen, R. G.; King, J. D.; King, N. S.; Miller, C. A.; Officer, V. C.; Schubank, R.; Shute, G. G.; Vetterli, M.; Watson, J.; Yavin, A. I.
1990-06-01
Doubly differential cross sections of the reaction 90Zr(n,p)90Y have been measured at 198 MeV for excitations up to 38 MeV in the residual nucleus. An overall resolution of 1.3 MeV was achieved. The spectra show qualitative agreement in shape and magnitude with recent random phase approximation calculations; however, all of the calculations underestimate the high excitation region of the spectra. A multipole decomposition of the data has been performed using differential cross sections calculated in the distorted-wave impulse approximation. An estimate of the Gamow-Teller strength in the reaction is given. The isovector spin-flip dipole giant resonance has been identified and there is also an indication of isovector monopole strength.
Recent searches for continuous gravitational waves
NASA Astrophysics Data System (ADS)
Riles, Keith
2017-12-01
Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst (GRB) and a kilonova, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein “clouds” surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches are discussed.
Dynamic localization in optical and Zeeman lattices in the presence of spin-orbit coupling
NASA Astrophysics Data System (ADS)
Kartashov, Yaroslav V.; Konotop, Vladimir V.; Zezyulin, Dmitry A.; Torner, Lluis
2016-12-01
The dynamic localization of a two-level atom in a periodic potential under the action of spin-orbit coupling and a weak harmonically varying linear force is studied. We consider optical and Zeeman potentials that are either in phase or out of phase in two spinor components, respectively. The expectation value for the position of the atom after one oscillation period of the linear force is recovered in authentic resonances or in pseudoresonances. The frequencies of the linear force corresponding to authentic resonances are determined by the band structure of the periodic potential and are affected by the spin-orbit coupling. The width or dispersion of the wave packet in authentic resonances is usually minimal. The frequencies corresponding to pseudoresonances do not depend on the type of potential and on the strength of the spin-orbit coupling, while the evolution of excitations at the corresponding frequencies is usually accompanied by significant dispersion. Pseudoresonances are determined by the initial phase of the linear force and by the quasimomentum of the wave packet. Due to the spinor nature of the system, the motion of the atom is accompanied by periodic, but not harmonic, spin oscillations. Under the action of spin-orbit coupling the oscillations of the wave packet can be nearly completely suppressed in optical lattices. Dynamic localization in Zeeman lattices is characterized by doubling of the resonant oscillation periods due to band crossing at the boundary of the Brillouin zone. We also show that higher harmonics in the Fourier expansion of the energy band lead to effective dispersion, which can be strong enough to prevent dynamic localization of the Bloch wave packet.
Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons.
Bossini, D; Dal Conte, S; Hashimoto, Y; Secchi, A; Pisarev, R V; Rasing, Th; Cerullo, G; Kimel, A V
2016-02-05
The understanding of how the sub-nanoscale exchange interaction evolves in macroscale correlations and ordered phases of matter, such as magnetism and superconductivity, requires to bridging the quantum and classical worlds. This monumental challenge has so far only been achieved for systems close to their thermodynamical equilibrium. Here we follow in real time the ultrafast dynamics of the macroscale magnetic order parameter in the Heisenberg antiferromagnet KNiF3 triggered by the impulsive optical generation of spin excitations with the shortest possible nanometre wavelength and femtosecond period. Our magneto-optical pump-probe experiments also demonstrate the coherent manipulation of the phase and amplitude of these femtosecond nanomagnons, whose frequencies are defined by the exchange energy. These findings open up opportunities for fundamental research on the role of short-wavelength spin excitations in magnetism and strongly correlated materials; they also suggest that nanospintronics and nanomagnonics can employ coherently controllable spin waves with frequencies in the 20 THz domain.
Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons
NASA Astrophysics Data System (ADS)
Bossini, D.; Dal Conte, S.; Hashimoto, Y.; Secchi, A.; Pisarev, R. V.; Rasing, Th.; Cerullo, G.; Kimel, A. V.
2016-02-01
The understanding of how the sub-nanoscale exchange interaction evolves in macroscale correlations and ordered phases of matter, such as magnetism and superconductivity, requires to bridging the quantum and classical worlds. This monumental challenge has so far only been achieved for systems close to their thermodynamical equilibrium. Here we follow in real time the ultrafast dynamics of the macroscale magnetic order parameter in the Heisenberg antiferromagnet KNiF3 triggered by the impulsive optical generation of spin excitations with the shortest possible nanometre wavelength and femtosecond period. Our magneto-optical pump-probe experiments also demonstrate the coherent manipulation of the phase and amplitude of these femtosecond nanomagnons, whose frequencies are defined by the exchange energy. These findings open up opportunities for fundamental research on the role of short-wavelength spin excitations in magnetism and strongly correlated materials; they also suggest that nanospintronics and nanomagnonics can employ coherently controllable spin waves with frequencies in the 20 THz domain.
Is black-hole ringdown a memory of its progenitor?
Kamaretsos, Ioannis; Hannam, Mark; Sathyaprakash, B S
2012-10-05
We perform an extensive numerical study of coalescing black-hole binaries to understand the gravitational-wave spectrum of quasinormal modes excited in the merged black hole. Remarkably, we find that the masses and spins of the progenitor are clearly encoded in the mode spectrum of the ringdown signal. Some of the mode amplitudes carry the signature of the binary's mass ratio, while others depend critically on the spins. Simulations of precessing binaries suggest that our results carry over to generic systems. Using Bayesian inference, we demonstrate that it is possible to accurately measure the mass ratio and a proper combination of spins even when the binary is itself invisible to a detector. Using a mapping of the binary masses and spins to the final black-hole spin allows us to further extract the spin components of the progenitor. Our results could have tremendous implications for gravitational astronomy by facilitating novel tests of general relativity using merging black holes.
Nonequilibrium Dynamics of Arbitrary-Range Ising Models with Decoherence: An Exact Analytic Solution
2013-04-03
spontaneous deexcitation, spontaneous excitation, and elastic dephasing, respectively (see Fig. 1). We refer to the spin-changing processes (σ̂±) as Raman ...Series of Raman flips of the spin on site j can be formally accounted for as a magnetic field of strength 2Jjk/N acting for a time τ upj − τ downj . In...2σ̂±j , all Rayleigh jumps can be evaluated at t = 0 (their commutation with Raman jumps only affects the overall sign of the wave function). To the
General theory of feedback control of a nuclear spin ensemble in quantum dots
NASA Astrophysics Data System (ADS)
Yang, Wen; Sham, L. J.
2013-12-01
We present a microscopic theory of the nonequilibrium nuclear spin dynamics driven by the electron and/or hole under continuous-wave pumping in a quantum dot. We show the correlated dynamics of the nuclear spin ensemble and the electron and/or hole under optical excitation as a quantum feedback loop and investigate the dynamics of the many nuclear spins as a nonlinear collective motion. This gives rise to three observable effects: (i) hysteresis, (ii) locking (avoidance) of the pump absorption strength to (from) the natural resonance, and (iii) suppression (amplification) of the fluctuation of weakly polarized nuclear spins, leading to prolonged (shortened) electron-spin coherence time. A single nonlinear feedback function is constructed which determines the different outcomes of the three effects listed above depending on the feedback being negative or positive. The general theory also helps to put in perspective the wide range of existing theories on the problem of a single electron spin in a nuclear spin bath.
Semiclassical dynamics of spin density waves
NASA Astrophysics Data System (ADS)
Chern, Gia-Wei; Barros, Kipton; Wang, Zhentao; Suwa, Hidemaro; Batista, Cristian D.
2018-01-01
We present a theoretical framework for equilibrium and nonequilibrium dynamical simulation of quantum states with spin-density-wave (SDW) order. Within a semiclassical adiabatic approximation that retains electron degrees of freedom, we demonstrate that the SDW order parameter obeys a generalized Landau-Lifshitz equation. With the aid of an enhanced kernel polynomial method, our linear-scaling quantum Landau-Lifshitz dynamics (QLLD) method enables dynamical SDW simulations with N ≃105 lattice sites. Our real-space formulation can be used to compute dynamical responses, such as the dynamical structure factor, of complex and even inhomogeneous SDW configurations at zero or finite temperatures. Applying the QLLD to study the relaxation of a noncoplanar topological SDW under the excitation of a short pulse, we further demonstrate the crucial role of spatial correlations and fluctuations in the SDW dynamics.
Fractional excitations in the square-lattice quantum antiferromagnet
Dalla Piazza, Bastien; Mourigal, M.; Christensen, N. B.; ...
2014-12-15
Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spins-1/2 is far from complete. The quantum square-lattice Heisenberg antiferromagnet (QSLHAF), for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wave vector (π, 0). Here, we use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound CFTD, a known realization of the QSLHAF model. Our experimentsmore » reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially-extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wave vector, these fractional excitations are bound and form conventional magnons. Lastly, our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration.« less
Excitation of Nuclei and Atoms Trapping in Optical Fields of High Intensity
2006-11-01
the new relativistic wave equation for half- spin particle interacting with the electromagnetic field. The proposed equation is Lorentz and gauge ...CONTENTS Task 1. Gamma-ray laser with hidden inversion of nuclear state populations 3 Introduction 3 Recoil-accompanied nuclear...31 Task 2. Extended ensemble of monoenergetic atoms 33 Introduction 33 Results 37 Conclusion 66
Decoherence and Determinism in a One-Dimensional Cloud-Chamber Model
NASA Astrophysics Data System (ADS)
Sparenberg, Jean-Marc; Gaspard, David
2018-03-01
The hypothesis (Sparenberg et al. in EPJ Web Conf 58:01016, [1]. https://doi.org/10.1051/epjconf/20135801016) that the particular linear tracks appearing in the measurement of a spherically-emitting radioactive source in a cloud chamber are determined by the (random) positions of atoms or molecules inside the chamber is further explored in the framework of a recently established one-dimensional model (Carlone et al. Comm Comput Phys 18:247, [2]. https://doi.org/10.4208/cicp.270814.311214a). In this model, meshes of localized spins 1/2 play the role of the cloud-chamber atoms and the spherical wave is replaced by a linear superposition of two wave packets moving from the origin to the left and to the right, evolving deterministically according to the Schrödinger equation. We first revisit these results using a time-dependent approach, where the wave packets impinge on a symmetric two-sided detector. We discuss the evolution of the wave function in the configuration space and stress the interest of a non-symmetric detector in a quantum-measurement perspective. Next we use a time-independent approach to study the scattering of a plane wave on a single-sided detector. Preliminary results are obtained, analytically for the single-spin case and numerically for up to 8 spins. They show that the spin-excitation probabilities are sometimes very sensitive to the parameters of the model, which corroborates the idea that the measurement result could be determined by the atom positions. The possible origin of decoherence and entropy increase in future models is finally discussed.
Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te
Stock, C.; Rodriguez, E. E.; Bourges, P.; ...
2017-04-07
The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less
Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, C.; Rodriguez, E. E.; Bourges, P.
The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less
Competing spin density wave, collinear, and helical magnetism in Fe1 +xTe
NASA Astrophysics Data System (ADS)
Stock, C.; Rodriguez, E. E.; Bourges, P.; Ewings, R. A.; Cao, H.; Chi, S.; Rodriguez-Rivera, J. A.; Green, M. A.
2017-04-01
The Fe1 +xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. We use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe1 +xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture. We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe1 +xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (˜0.45 , 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H ,K ) plane. The excitations preserve the C4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. While the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.
Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas
2017-01-17
The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than being a function of the spin-up and spin-down densities. In work carried out so far, the multiconfigurational wave function is a multiconfiguration self-consistent-field wave function. The new formulation has the advantage that the reference wave function has the correct spatial and spin symmetry and can describe bond dissociation (of both single and multiple bonds) and electronic excitations in a formally and physically correct way. We then review the formulation of density functionals in terms of the on-top pair density. Finally we review successful applications of the theory to bond energies and bond dissociation potential energy curves of main-group and transition metal bonds, to barrier heights (including pericyclic reactions), to proton affinities, to the hydrogen bond energy of water dimer, to ground- and excited-state charge transfer, to valence and Rydberg excitations of molecules, and to singlet-triplet splittings of radicals. We find that that MC-PDFT can give accurate results not only with complete-active-space multiconfiguration wave functions but also with generalized-active-space multiconfiguration wave functions, which are practical for larger numbers of active electrons and active orbitals than are complete-active-space wave functions. The separated-pair approximation, which is a special case of generalized active space self-consistent-field theory, is especially promising. MC-PDFT, because it requires much less computer time and storage than pure WFT methods, has the potential to open larger and more complex strongly correlated systems to accurate simulation.
Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers.
Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing
2016-03-02
Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin-orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law T(n) with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Daniel K.; Lynn, Jeffrey W.; Mais, James
2014-10-01
The magnetic order, spin dynamics, and crystal structure of the multiferroic Sr0.56Ba0.44MnO3 have been investigated using neutron and x-ray scattering. Ferroelectricity develops at T-C = 305 K with a polarization of 4.2 mu C/cm(2) associated with the displacements of the Mn ions, while the Mn4+ spins order below T-N approximate to 200 K into a simple G-type commensurate magnetic structure. Below TN the ferroelectric order decreases dramatically, demonstrating that the two order parameters are strongly coupled. The ground state spin dynamics is characterized by a spin gap of 4.6(5) meV and the magnon density of states peaking at 43 meV.more » Detailed spin wave simulations with a gap and isotropic exchange of J = 4.8(2) meV describe the excitation spectrum well. Above TN strong spin correlations coexist with robust ferroelectric order.« less
NASA Astrophysics Data System (ADS)
Rezende, Sergio M.; Azevedo, Antonio; Rodríguez-Suárez, Roberto L.
2018-05-01
In magnetic insulators, spin currents are carried by the elementary excitations of the magnetization: spin waves or magnons. In simple ferromagnetic insulators there is only one magnon mode, while in two-sublattice antiferromagnetic insulators (AFIs) there are two modes, which carry spin currents in opposite directions. Here we present a theory for the diffusive magnonic spin current generated in a magnetic insulator layer by a thermal gradient in the spin Seebeck effect. We show that the formulations describing magnonic perturbation using a position-dependent chemical potential and those using a magnon accumulation are completely equivalent. Then we develop a drift–diffusion formulation for magnonic spin transport treating the magnon accumulation governed by the Boltzmann transport and diffusion equations and considering the full boundary conditions at the surfaces and interfaces of an AFI/normal metal bilayer. The theory is applied to the ferrimagnetic yttrium iron garnet and to the AFIs MnF2 and NiO, providing good quantitative agreement with experimental data.
Dynamics of magnetization in ferromagnet with spin-transfer torque
NASA Astrophysics Data System (ADS)
Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming
2014-11-01
We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. The precession frequency can be expressed as a function of the current and external magnetic field.
Engineering frequency-dependent superfluidity in Bose-Fermi mixtures
NASA Astrophysics Data System (ADS)
Arzamasovs, Maksims; Liu, Bo
2018-04-01
Unconventional superconductivity and superfluidity are among the most exciting and fascinating quantum phenomena in condensed-matter physics. Usually such states are characterized by nontrivial spin or spatial symmetry of the pairing order parameter, such as "spin triplet" or "p wave." However, besides spin and spatial dependence the order parameter may have unconventional frequency dependence which is also permitted by Fermi-Dirac statistics. Odd-frequency fermionic pairing is an exciting paradigm when discussing exotic superfluidity or superconductivity and is yet to be realized in experiments. In this paper we propose a symmetry-based method of controlling frequency dependence of the pairing order parameter via manipulating the inversion symmetry of the system. First, a toy model is introduced to illustrate that frequency dependence of the order parameter can be achieved through our proposed approach. Second, by taking advantage of recent rapid developments in producing spin-orbit-coupled dispersions in ultracold gases, we propose a Bose-Fermi mixture to realize such frequency-dependent superfluid. The key idea is introducing the frequency-dependent attraction between fermions mediated by Bogoliubov phonons with asymmetric dispersion. Our proposal should pave an alternative way for exploring frequency-dependent superfluids with cold atoms.
All-optical spin switching: A new frontier in femtomagnetism — A short review and a simple theory
NASA Astrophysics Data System (ADS)
Zhang, G. P.; Latta, T.; Babyak, Z.; Bai, Y. H.; George, Thomas F.
2016-08-01
Using an ultrafast laser pulse to manipulate the spin degree of freedom has broad technological appeal. It allows one to control the spin dynamics on a femtosecond time scale. The discipline, commonly called femtomagnetism, started with the pioneering experiment by Beaurepaire and coworkers in 1996, who showed subpicosecond demagnetization occurs in magnetic Ni thin films. This finding has motivated extensive research worldwide. All-optical helicity-dependent spin switching (AO-HDS) represents a new frontier in femtomagnetism, where a single ultrafast laser pulse can permanently switch spin without any assistance from a magnetic field. This review summarizes some of the crucial aspects of this new discipline: key experimental findings, leading mechanisms, controversial issues, and possible future directions. The emphasis is on our latest investigation. We first develop the all-optical spin switching (AOS) rule that determines how the switchability depends on the light helicity. This rule allows one to understand microscopically how the spin is reversed and why the circularly polarized light appears more powerful than the linearly polarized light. Then we invoke our latest spin-orbit coupled harmonic oscillator model to simulate single spin reversal. We consider both continuous wave (cw) excitation and pulsed laser excitation. The results are in a good agreement with the experimental result (a MatLab code is available upon request from the author). We then extend the code to include the exchange interaction among different spin sites. We show where the “inverse-Faraday field” comes from and how the laser affects the spin reversal nonlinearly. Our hope is that this review will motivate new experimental and theoretical investigations and discussions.
Electrically driven spin qubit based on valley mixing
NASA Astrophysics Data System (ADS)
Huang, Wister; Veldhorst, Menno; Zimmerman, Neil M.; Dzurak, Andrew S.; Culcer, Dimitrie
2017-02-01
The electrical control of single spin qubits based on semiconductor quantum dots is of great interest for scalable quantum computing since electric fields provide an alternative mechanism for qubit control compared with magnetic fields and can also be easier to produce. Here we outline the mechanism for a drastic enhancement in the electrically-driven spin rotation frequency for silicon quantum dot qubits in the presence of a step at a heterointerface. The enhancement is due to the strong coupling between the ground and excited states which occurs when the electron wave function overcomes the potential barrier induced by the interface step. We theoretically calculate single qubit gate times tπ of 170 ns for a quantum dot confined at a silicon/silicon-dioxide interface. The engineering of such steps could be used to achieve fast electrical rotation and entanglement of spin qubits despite the weak spin-orbit coupling in silicon.
NASA Astrophysics Data System (ADS)
Han, Yulun; Vogel, Dayton J.; Inerbaev, Talgat M.; May, P. Stanley; Berry, Mary T.; Kilin, Dmitri S.
2018-03-01
In this work, non-collinear spin DFT + U approaches with spin-orbit coupling (SOC) are applied to Ln3+ doped β-NaYF4 (Ln = Ce, Pr) nanocrystals in Vienna ab initio Simulation Package taking into account unpaired spin configurations using the Perdew-Burke-Ernzerhof functional in a plane wave basis set. The calculated absorption spectra from non-collinear spin DFT + U approaches are compared with that from spin-polarised DFT + U approaches. The spectral difference indicates the importance of spin-flip transitions of Ln3+ ions. Suite of codes for nonadiabatic dynamics has been developed for 2-component spinor orbitals. On-the-fly nonadiabatic coupling calculations provide transition probabilities facilitated by nuclear motion. Relaxation rates of electrons and holes are calculated using Redfield theory in the reduced density matrix formalism cast in the basis of non-collinear spin DFT + U with SOC. The emission spectra are calculated using the time-integrated method along the excited state trajectories based on nonadiabatic couplings.
Tidal waves in 102Pd: a rotating condensate of multiple d bosons.
Ayangeakaa, A D; Garg, U; Caprio, M A; Carpenter, M P; Ghugre, S S; Janssens, R V F; Kondev, F G; Matta, J T; Mukhopadhyay, S; Patel, D; Seweryniak, D; Sun, J; Zhu, S; Frauendorf, S
2013-03-08
Low-lying collective excitations in even-even vibrational and transitional nuclei may be described semiclassically as quadrupole running waves on the surface of the nucleus ("tidal waves"), and the observed vibrational-rotational behavior can be thought of as resulting from a rotating condensate of interacting d bosons. These concepts have been investigated by measuring lifetimes of the levels in the yrast band of the (102)Pd nucleus with the Doppler shift attenuation method. The extracted B(E2) reduced transition probabilities for the yrast band display a monotonic increase with spin, in agreement with the interpretation based on rotation-induced condensation of aligned d bosons.
NASA Astrophysics Data System (ADS)
Bang, Wonbae; Lim, Jinho; Trossman, Jonathan; Tsai, C. C.; Ketterson, John B.
2018-06-01
We have observed the propagation of spin waves across a thin yttrium iron garnet film on (1 1 1) gadolinium gallium garnet for magnetic fields inclined with respect to the film plane. Two principle planes were studied: that for H in the plane defined by the wave vector k and the plane normal, n, with limiting forms corresponding to the Backward Volume and Forward Volume modes, and that for H in the plane perpendicular to k, with limiting forms corresponding to the Damon-Eshbach and Forward Volume modes. By exciting the wave at one edge of the film and observing the field dependence of the phase of the received signal at the opposing edge we determined the frequency vs. wavevector relation, ω = ω (k), of various propagating modes in the film. Avoided crossings are observed in the Damon-Eshbach and Forward Volume regimes when the propagating mode intersects the higher, exchange split, volume modes, leading to an extinction of the propagating mode; analysis of the resulting behavior allows a determination of the exchange parameter. The experimental results are compared with theoretical simulations.
NASA Astrophysics Data System (ADS)
Brückner, Charlotte; Engels, Bernd
2017-01-01
Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.
Superconductivity from fractionalized excitations in URu2Si2
NASA Astrophysics Data System (ADS)
Hsu, Chen-Hsuan; Chakravarty, Sudip
2014-10-01
An unconventional pairing mechanism in the heavy-fermion material URu2Si2 is studied. We propose a mixed singlet-triplet d-density wave to be the hidden-order state in URu2Si2. The exotic order is topologically nontrivial and supports a charge 2e skyrmionic spin texture, which is assumed to fractionalize into merons and antimerons at the deconfined quantum critical point. The interaction between these fractional particles results in a (pseudo)spin-singlet chiral d-wave superconducting state, which breaks time-reversal symmetry. Therefore, it is highly likely to produce a nonzero signal of the polar Kerr effect at the onset of the superconductivity, consistent with recent experiments. In addition, the nodal structures of the possible pairing functions in our model are consistent with the thermodynamic experiments in URu2Si2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Navinder; Sharma, Raman
In the underdoped regime of the cuprate phase diagram, the modified version of the Resonance Valence Bond (RVB) model by Yang, Rice and Zhang (YRZ) captures the strong electronic correlation effects very well as corroborated by the ARPES and many other experiments. However, under a non-equilibrium transport setting, YRZ says nothing about the scattering mechanisms of the charge carriers. In the present investigation we include, in a very simplified way, the scattering of charge carriers due to antiferromagnetic type spin waves (ASW). The effect of ASW excitations on conductivity has been studied by changing combined life times of the includedmore » process. It has been found that there is a qualitative change in the conductivity in the right direction. The theoretical conductivity reproduces qualitatively the experimental one.« less
Breakdown of the Wigner-Mattis theorem in semiconductor carbon-nanotube quantum dots
NASA Astrophysics Data System (ADS)
Rontani, Massimo; Secchi, Andrea; Manghi, Franca
2009-03-01
The Wigner-Mattis theorem states the ground state of two bound electrons, in the absence of the magnetic field, is always a spin-singlet. We predict the opposite result --a triplet- for two electrons in a quantum dot defined in a semiconductor carbon nanotube. The claim is supported by extensive many-body calculations based on the accurate configuration interaction code DONRODRIGO (www.s3.infm.t/donrodrigo). The crux of the matter is the peculiar two-valley structure of low-energy states, which encodes a pseudo-spin degree of freedom. The spin polarization of the ground state corresponds to a pseudo-spin singlet, which is selected by the inter-valley short-range Coulomb interaction. Single-electron excitation spectra and STM wave function images may validate this scenario, as shown by our numerical simulations.
NMR studies of spin excitations in superconducting Bi2Sr2CaCu2O8+δ single crystals
NASA Astrophysics Data System (ADS)
Takigawa, M.; Mitzi, D. B.
1994-08-01
The oxygen NMR shift and the Cu nuclear spin-lattice relaxation rate (1/T1) were measured in Bi2.1Sr1.9Ca0.9Cu2.1O8+δ single crystals. While both the shift and 1/(T1T) decrease sharply near Tc, 1/(T1T) becomes nearly constant at low temperatures, indicating a gapless superconducting state with finite density of states at the Fermi level. From the oxygen shift data, the residual spin susceptibility at T=0 is estimated to be 10% of the value at room temperature. Our results are most consistent with a d-wave pairing model with strong (resonant) impurity scattering.
NASA Astrophysics Data System (ADS)
Goudarzi, H.; Khezerlou, M.; Ebadzadeh, S. F.
2018-03-01
We study the influence of magnetic exchange field (MEF) on the chirality of Andreev resonant state (ARS) appearing at the relating monolayer MoS2 ferromagnet/superconductor interface, in which the induced pairing order parameter is chiral p-wave symmetry. Transmission of low-energy Dirac-like electron (hole) quasiparticles through a ferromagnet/superconductor (F/S) interface is considered based on Dirac-Bogoliubov-de Gennes Hamiltonian and, of course, Andreev reflection process. The magnetic exchange field of a ferromagnetic section on top of ML-MDS may affect the electron (hole) excitations for spin-up and spin-down electrons, differently. We find the chirality symmetry of ARS to be conserved in the absence of MEF, whereas it is broken in the presence of MEF. Tuning the MEF enables one to control either electrical properties (such as band gap, SOC and etc.) or spin-polarized transport. The resulting normal conductance is found to be more sensitive to the magnitude of MEF and doping regime of F region. Unconventional spin-triplet p-wave symmetry features the zero-bias conductance, which strongly depends on p-doping level of F region in the relating NFS junction. A sharp conductance switching in zero is achieved in the absence of SOC.
Quantum spin dynamics at terahertz frequencies in 2D hole gases and improper ferroelectrics
NASA Astrophysics Data System (ADS)
Lloyd-Hughes, J.
2015-08-01
Terahertz time-domain spectroscopy permits the excitations of novel materials to be examined with exquisite precision. Improper ferroelectric materials such as cupric oxide (CuO) exhibit complex magnetic ground states. CuO is antiferromagnetic below 213K, but has an incommensurate cycloidal magnetic phase between 213K and 230K. Remarkably, the cycloidal magnetic phase drives ferroelectricity, where the material becomes polar. Such improper multiferroics are of great contemporary interest, as a better understanding of the science of magnetoelectric materials may lead to their application in actuators, sensors and solid state memories. Improper multiferroics also have novel quasiparticle excitations: electromagnons form when spin-waves become electric-dipole active. By examining the dynamic response of spins as they interact with THz radiation we gain insights into the underlying physics of multi-ferroics. In contrast to improper ferroelectrics, where magnetism drives structural inversion asymmetry (SIA), two-dimensional electronic systems can exhibit non-degenerate spin states as a consequence of SIA created by strain and/or electric fields. We identify and explore the influence of the Rashba spin-orbit interaction upon cyclotron resonance at terahertz frequencies in high-mobility 2D hole gases in germanium quantum wells. An enhanced Rashba spin-orbit interaction can be linked to the strain of the quantum well, while a time-frequency decomposition method permitted the dynamical formation and decay of spin-split cyclotron resonances to be tracked on picosecond timescales. Long spin-decoherence times concurrent with high hole mobilities highlight the potential of Ge quantum wells in spintronics.
Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.
Li, Zhendong; Chan, Garnet Kin-Lic
2017-06-13
We present a new wave function ansatz that combines the strengths of spin projection with the language of matrix product states (MPS) and matrix product operators (MPO) as used in the density matrix renormalization group (DMRG). Specifically, spin-projected matrix product states (SP-MPS) are constructed as [Formula: see text], where [Formula: see text] is the spin projector for total spin S and |Ψ MPS (N,M) ⟩ is an MPS wave function with a given particle number N and spin projection M. This new ansatz possesses several attractive features: (1) It provides a much simpler route to achieve spin adaptation (i.e., to create eigenfunctions of Ŝ 2 ) compared to explicitly incorporating the non-Abelian SU(2) symmetry into the MPS. In particular, since the underlying state |Ψ MPS (N,M) ⟩ in the SP-MPS uses only Abelian symmetries, one does not need the singlet embedding scheme for nonsinglet states, as normally employed in spin-adapted DMRG, to achieve a single consistent variationally optimized state. (2) Due to the use of |Ψ MPS (N,M) ⟩ as its underlying state, the SP-MPS can be closely connected to broken-symmetry mean-field states. This allows one to straightforwardly generate the large number of broken-symmetry guesses needed to explore complex electronic landscapes in magnetic systems. Further, this connection can be exploited in the future development of quantum embedding theories for open-shell systems. (3) The sum of MPOs representation for the Hamiltonian and spin projector [Formula: see text] naturally leads to an embarrassingly parallel algorithm for computing expectation values and optimizing SP-MPS. (4) Optimizing SP-MPS belongs to the variation-after-projection (VAP) class of spin-projected theories. Unlike usual spin-projected theories based on determinants, the SP-MPS ansatz can be made essentially exact simply by increasing the bond dimensions in |Ψ MPS (N,M) ⟩. Computing excited states is also simple by imposing orthogonality constraints, which are simple to implement with MPS. To illustrate the versatility of SP-MPS, we formulate algorithms for the optimization of ground and excited states, develop perturbation theory based on SP-MPS, and describe how to evaluate spin-independent and spin-dependent properties such as the reduced density matrices. We demonstrate the numerical performance of SP-MPS with applications to several models typical of strong correlation, including the Hubbard model, and [2Fe-2S] and [4Fe-4S] model complexes.
NASA Astrophysics Data System (ADS)
Akaki, Mitsuru; Yoshizawa, Daichi; Okutani, Akira; Kida, Takanori; Romhányi, Judit; Penc, Karlo; Hagiwara, Masayuki
2017-12-01
Exotic spin-multipolar ordering in spin transition metal insulators has so far eluded unambiguous experimental observation. A less studied, but perhaps more feasible fingerprint of multipole character emerges in the excitation spectrum in the form of quadrupolar transitions. Such multipolar excitations are desirable as they can be manipulated with the use of light or electric field and can be captured by means of conventional experimental techniques. Here we study single crystals of multiferroic Sr2CoGe2O7 and observe a two-magnon spin excitation appearing above the saturation magnetic field in electron spin resonance (ESR) spectra. Our analysis of the selection rules reveals that this spin excitation mode does not couple to the magnetic component of the light, but it is excited by the electric field only, in full agreement with the theoretical calculations. Due to the nearly isotropic nature of Sr2CoGe2O7 , we identify this excitation as a purely spin-quadrupolar two-magnon mode.
Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers
Li, Junxue; Xu, Yadong; Aldosary, Mohammed; Tang, Chi; Lin, Zhisheng; Zhang, Shufeng; Lake, Roger; Shi, Jing
2016-01-01
Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics. PMID:26932316
Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers
Li, Junxue; Xu, Yadong; Aldosary, Mohammed; ...
2016-03-02
Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon.more » The transmitted signal scales linearly with the driving current without a threshold and follows the power-law T n with n ranging from 1.5 to 2.5. Lastly, our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.« less
Kapitanova, Polina V; Ginzburg, Pavel; Rodríguez-Fortuño, Francisco J; Filonov, Dmitry S; Voroshilov, Pavel M; Belov, Pavel A; Poddubny, Alexander N; Kivshar, Yuri S; Wurtz, Gregory A; Zayats, Anatoly V
2014-01-01
The routing of light in a deep subwavelength regime enables a variety of important applications in photonics, quantum information technologies, imaging and biosensing. Here we describe and experimentally demonstrate the selective excitation of spatially confined, subwavelength electromagnetic modes in anisotropic metamaterials with hyperbolic dispersion. A localized, circularly polarized emitter placed at the boundary of a hyperbolic metamaterial is shown to excite extraordinary waves propagating in a prescribed direction controlled by the polarization handedness. Thus, a metamaterial slab acts as an extremely broadband, nearly ideal polarization beam splitter for circularly polarized light. We perform a proof of concept experiment with a uniaxial hyperbolic metamaterial at radio-frequencies revealing the directional routing effect and strong subwavelength λ/300 confinement. The proposed concept of metamaterial-based subwavelength interconnection and polarization-controlled signal routing is based on the photonic spin Hall effect and may serve as an ultimate platform for either conventional or quantum electromagnetic signal processing.
Solitary Magnons in the S=5/2 Antiferromagnet CaFe_{2}O_{4}.
Stock, C; Rodriguez, E E; Lee, N; Green, M A; Demmel, F; Ewings, R A; Fouquet, P; Laver, M; Niedermayer, Ch; Su, Y; Nemkovski, K; Rodriguez-Rivera, J A; Cheong, S-W
2016-07-01
CaFe_{2}O_{4} is a S=5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c-axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ∼1 ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ∼1-2 c-axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A+B orders as well as localization of spin excitations in a classical magnet.
Solitary Magnons in the S =5/2 Antiferromagnet CaFe2O4
NASA Astrophysics Data System (ADS)
Stock, C.; Rodriguez, E. E.; Lee, N.; Green, M. A.; Demmel, F.; Ewings, R. A.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Rodriguez-Rivera, J. A.; Cheong, S.-W.
2016-07-01
CaFe2O4 is a S =5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c -axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ˜1 ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ˜1 - 2 c -axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A +B orders as well as localization of spin excitations in a classical magnet.
Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei
Bottoni, S.; Leoni, S.; Fornal, B.; ...
2015-08-27
An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions 7Li( 98Rb,αxn) and 7Li( 98Rb,txn) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions canmore » be described well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins.« less
Fractionally charged skyrmions in fractional quantum Hall effect
Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.
2015-01-01
The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906
Datta, Dipayan; Mukherjee, Debashis
2009-07-28
In this paper, we present a comprehensive account of an explicitly spin-free compact state-universal multireference coupled cluster (CC) formalism for computing the state energies of simple open-shell systems, e.g., doublets and biradicals, where the target open-shell states can be described by a few configuration state functions spanning a model space. The cluster operators in this formalism are defined in terms of the spin-free unitary generators with respect to the common closed-shell component of all model functions (core) as vacuum. The spin-free cluster operators are either closed-shell-like n hole-n particle excitations (denoted by T(mu)) or involve excitations from the doubly occupied (nonvalence) orbitals to the singly occupied (valence) orbitals (denoted by S(e)(mu)). In addition, there are cluster operators with exchange spectator scatterings involving the valence orbitals (denoted by S(re)(mu)). We propose a new multireference cluster expansion ansatz for the wave operator with the above generally noncommuting cluster operators which essentially has the same physical content as the Jeziorski-Monkhorst ansatz with the commuting cluster operators defined in the spin-orbital basis. The T(mu) operators in our ansatz are taken to commute with all other operators, while the S(e)(mu) and S(re)(mu) operators are allowed to contract among themselves through the spectator valence orbitals. An important innovation of this ansatz is the choice of an appropriate automorphic factor accompanying each contracted composite of cluster operators in order to ensure that each distinct excitation generated by this composite appears only once in the wave operator. The resulting CC equations consist of two types of terms: a "direct" term and a "normalization" term containing the effective Hamiltonian operator. It is emphasized that the direct term is almost quartic in the cluster amplitudes, barring only a handful of terms and termination of the normalization term depends on the valence rank of the effective Hamiltonian operator and the excitation rank of the cluster operators at which the theory is truncated. Illustrative applications are presented by computing the state energies of neutral doublet radicals and doublet molecular cations and ionization energies of neutral molecules and comparing our results with the other open-shell CC theories, benchmark full CI results (when available) in the same basis, and the experimental results. Highly encouraging results show the efficacy of the method.
Inelastic Neutron Scattering Studies of the Spin and Lattice Dynamics inIron Arsenide Compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christianson, Andrew D; Osborn, R.; Rosenkranz, Stephen
2009-01-01
Although neutrons do not couple directly to the superconducting order parameter, they have nevertheless played an important role in advancing our understanding of the pairing mechanism and the symmetry of the superconducting energy gap in the iron arsenide compounds. Measurements of the spin and lattice dynamics have been performed on non-superconducting 'parent' compounds based on the LaFeAsO ('1111') and BaFe{sub 2}As{sub 2} ('122') crystal structures, and on electron and hole-doped superconducting compounds, using both polycrystalline and single crystal samples. Neutron measurements of the phonon density-of-state, subsequently supported by single crystal inelastic X-ray scattering, are in good agreement with ab initiomore » calculations, provided the magnetism of the iron atoms is taken into account. However, when combined with estimates of the electron-phonon coupling, the predicted superconducting transition temperatures are less than 1 K, making a conventional phononic mechanism for superconductivity highly unlikely. Measurements of the spin dynamics within the spin density wave phase of the parent compounds show evidence of strongly dispersive spin waves with exchange interactions consistent with the observed magnetic order and a large anisotropy gap. Antiferromagnetic fluctuations persist in the normal phase of the superconducting compounds, but they are more diffuse. Below T{sub c}, there is evidence in three '122' compounds that these fluctuations condense into a resonant spin excitation at the antiferromagnetic wavevector with an energy that scales with T{sub c}. Such resonances have been observed in the high-T{sub c} copper oxides and a number of heavy fermion superconductors, where they are considered to be evidence of d-wave symmetry. In the iron arsenides, they also provide evidence of unconventional superconductivity, but a comparison with ARPES and other measurements, which indicate that the gaps are isotropic, suggests that the symmetry is more likely to be extended-s{sub {+-}} wave in character.« less
Inelastic neutron scattering studies of the spin and lattice dynamics in iron arsenide compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, R.; Rosenkranz, S.; Goremychkin, E. A.
2009-03-20
Although neutrons do not couple directly to the superconducting order parameter, they have nevertheless played an important role in advancing our understanding of the pairing mechanism and the symmetry of the superconducting energy gap in the iron arsenide compounds. Measurements of the spin and lattice dynamics have been performed on non-superconducting 'parent' compounds based on the LaFeAsO ('1111') and BaFe{sub 2}As{sub 2} ('122') crystal structures, and on electron and hole-doped superconducting compounds, using both polycrystalline and single crystal samples. Neutron measurements of the phonon density-of-state, subsequently supported by single crystal inelastic X-ray scattering, are in good agreement with ab initiomore » calculations, provided the magnetism of the iron atoms is taken into account. However, when combined with estimates of the electron-phonon coupling, the predicted superconducting transition temperatures are less than 1 K, making a conventional phononic mechanism for superconductivity highly unlikely. Measurements of the spin dynamics within the spin density wave phase of the parent compounds show evidence of strongly dispersive spin waves with exchange interactions consistent with the observed magnetic order and a large anisotropy gap. Antiferromagnetic fluctuations persist in the normal phase of the superconducting compounds, but they are more diffuse. Below T{sub c}, there is evidence in three '122' compounds that these fluctuations condense into a resonant spin excitation at the antiferromagnetic wavevector with an energy that scales with T{sub c}. Such resonances have been observed in the high-T{sub c} copper oxides and a number of heavy fermion superconductors, where they are considered to be evidence of d-wave symmetry. In the iron arsenides, they also provide evidence of unconventional superconductivity, but a comparison with ARPES and other measurements, which indicate that the gaps are isotropic, suggests that the symmetry is more likely to be extended-s{sub {+-}} wave in character.« less
Lakshmanan, Muthusamy; Saxena, Avadh
2018-04-27
Inmore » this work, we obtain the exact one-spin intrinsic localized excitation in an anisotropic Heisenberg ferromagnetic spin chain in a constant/variable external magnetic field with Gilbert damping included. We also point out how an appropriate magnitude spin current term in a spin transfer nano-oscillator (STNO) can stabilize the tendency towards damping. Further, we show how this excitation can be sustained in a recently suggested PT -symmetric magnetic nanostructure. We also briefly consider more general spin excitations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakshmanan, Muthusamy; Saxena, Avadh
Inmore » this work, we obtain the exact one-spin intrinsic localized excitation in an anisotropic Heisenberg ferromagnetic spin chain in a constant/variable external magnetic field with Gilbert damping included. We also point out how an appropriate magnitude spin current term in a spin transfer nano-oscillator (STNO) can stabilize the tendency towards damping. Further, we show how this excitation can be sustained in a recently suggested PT -symmetric magnetic nanostructure. We also briefly consider more general spin excitations.« less
Low-energy excitations of a Bose-Einstein condensate of rigid rotor molecules
NASA Astrophysics Data System (ADS)
Smith, Joseph; Jones, Evan; Rittenhouse, Seth; Wilson, Ryan; Peden, Brandon
2017-04-01
We investigate the properties of the ground state and low-lying excitations of an oblate Bose-Einstein condensate composed of rigid rotor molecules in the presence of an external polarizing electric field. We build in a quantum model of molecular polarizability by including the full manifold of rotational states. The interplay between spatial and microscopic degrees of freedom via feedback between the molecular polarizability and inter-molecular dipole-dipole interactions leads to a rich quasi-particle spectrum. Under large applied fields, we reproduce the well-understood density-wave rotonization that appears in a fully polarized dipolar BEC, but under smaller applied fields, we predict the emergence of a spin wave instability and possible new stable ground state phases. We gratefully acknowledge support from the National Science Foundation under Grant No. PHYS-1516421.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galeta, Leonardo; Pirjol, Dan; Schat, Carlos
2009-12-01
We show how to match the Isgur-Karl model to the spin-flavor quark operator expansion used in the 1/N{sub c} studies of the nonstrange negative parity L=1 excited baryons. Using the transformation properties of states and interactions under the permutation group S{sub 3} we are able to express the operator coefficients as overlap integrals, without making any assumption on the spatial dependence of the quark wave functions. The general mass operator leads to parameter free mass relations and constraints on the mixing angles that are valid beyond the usual harmonic oscillator approximation. The Isgur-Karl model with harmonic oscillator wave functions providesmore » a simple counterexample that demonstrates explicitly that the alternative operator basis for the 1/N{sub c} expansion for excited baryons recently proposed by Matagne and Stancu is incomplete.« less
Ultrafast Imaging of Chiral Surface Plasmon by Photoemission Electron Microscopy
NASA Astrophysics Data System (ADS)
Dai, Yanan; Dabrowski, Maciej; Petek, Hrvoje
We employ Time-Resolved Photoemission Electron Microscopy (TR-PEEM) to study surface plasmon polariton (SPP) wave packet dynamics launched by tunable (VIS-UV) femtosecond pulses of various linear and circular polarizations. The plasmonic structures are micron size single-crystalline Ag islands grown in situ on Si surfaces and characterized by Low Energy Electron Microscopy (LEEM). The local fields of plasmonic modes enhance two and three photon photoemission (2PP and 3PP) at the regions of strong field enhancement. Imaging of the photoemission signal with PEEM electron optics thus images the plasmonic fields excited in the samples. The observed PEEM images with left and right circularly polarized light show chiral images, which is a consequence of the transverse spin momentum of surface plasmon. By changing incident light polarization, the plasmon interference pattern shifts with light ellipticity indicating a polarization dependent excitation phase of SPP. In addition, interferometric-time resolved measurements record the asymmetric SPP wave packet motion in order to characterize the dynamical properties of chiral SPP wave packets.
NASA Astrophysics Data System (ADS)
Goings, Joshua James
Time-dependent electronic structure theory has the power to predict and probe the ways electron dynamics leads to useful phenomena and spectroscopic data. Here we report several advances and extensions of broken-symmetry time-dependent electronic structure theory in order to capture the flexibility required to describe non-equilibrium spin dynamics, as well as electron dynamics for chiroptical properties and vibrational effects. In the first half, we begin by discussing the generalization of self-consistent field methods to the so-called two-component structure in order to capture non-collinear spin states. This means that individual electrons are allowed to take a superposition of spin-1/2 projection states, instead of being constrained to either spin-up or spin-down. The system is no longer a spin eigenfunction, and is known a a spin-symmetry broken wave function. This flexibility to break spin symmetry may lead to variational instabilities in the approximate wave function, and we discuss how these may be overcome. With a stable non-collinear wave function in hand, we then discuss how to obtain electronic excited states from the non-collinear reference, along with associated challenges in their physical interpretation. Finally, we extend the two-component methods to relativistic Hamiltonians, which is the proper setting for describing spin-orbit driven phenomena. We describe the first implementation of the explicit time propagation of relativistic two-component methods and how this may be used to capture spin-forbidden states in electronic absorption spectra. In the second half, we describe the extension of explicitly time-propagated wave functions to the simulation of chiroptical properties, namely circular dichroism (CD) spectra of chiral molecules. Natural circular dichroism, that is, CD in the absence of magnetic fields, originates in the broken parity symmetry of chiral molecules. This proves to be an efficient method for computing circular dichroism spectra for high density-of-states chiral molecules. Next, we explore the impact of allowing nuclear motion on electronic absorption spectra within the context of mixed quantum-classical dynamics. We show that nuclear motion modulates the electronic response, and this gives rise to infrared absorption as well as Raman scattering phenomena in the computed dynamic polarizability. Finally, we explore the accuracy of several perturbative approximations to the equation-of-motion coupled-cluster methods for the efficient and accurate prediction of electronic absorption spectra.
The spin-partitioned total position-spread tensor: An application to Heisenberg spin chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertitta, Edoardo; Paulus, Beate; El Khatib, Muammar
2015-12-28
The spin partition of the Total Position-Spread (TPS) tensor has been performed for one-dimensional Heisenberg chains with open boundary conditions. Both the cases of a ferromagnetic (high-spin) and an anti-ferromagnetic (low-spin) ground-state have been considered. In the case of a low-spin ground-state, the use of alternating magnetic couplings allowed to investigate the effect of spin-pairing. The behavior of the spin-partitioned TPS (SP-TPS) tensor as a function of the number of sites turned to be closely related to the presence of an energy gap between the ground-state and the first excited-state at the thermodynamic limit. Indeed, a gapped energy spectrum ismore » associated to a linear growth of the SP-TPS tensor with the number of sites. On the other hand, in gapless situations, the spread presents a faster-than-linear growth, resulting in the divergence of its per-site value. Finally, for the case of a high-spin wave function, an analytical expression of the dependence of the SP-TPS on the number of sites n and the total spin-projection S{sub z} has been derived.« less
A Resonantly Excited Disk-Oscillation Model of High-Frequency QPOs of Microquasars
NASA Astrophysics Data System (ADS)
Kato, Shoji
2012-12-01
A possible model of twin high-frequency QPOs (HF QPOs) of microquasars is examined. The disk is assumed to have global magnetic fields and to be deformed with a two-armed pattern. In this deformed disk, a set of a two-armed (m = 2) vertical p-mode oscillation and an axisymmetric (m = 0) g-mode oscillation is considered. They resonantly interact through the disk deformation when their frequencies are the same. This resonant interaction amplifies the set of the above oscillations in the case where these two oscillations have wave energies of opposite signs. These oscillations are assumed to be excited most efficiently in the case where the radial group velocities of these two waves vanish at the same place. The above set of oscillations is not unique, depending on the node number n, of oscillations in the vertical direction. We consider that the basic two sets of oscillations correspond to the twin QPOs. The frequencies of these oscillations depend on the disk parameters, such as the strength of the magnetic fields. For observational mass ranges of GRS 1915+ 105, GRO J1655-40, XTE J1550-564, and HEAO H1743-322, the spins of these sources are estimated. High spins of these sources can be described if the disks have weak poloidal magnetic fields as well as toroidal magnetic fields of moderate strength. In this model the 3:2 frequency ratio of high-frequency QPOs is not related to their excitation, but occurs by chance.
Di Bernardo, A; Millo, O; Barbone, M; Alpern, H; Kalcheim, Y; Sassi, U; Ott, A K; De Fazio, D; Yoon, D; Amado, M; Ferrari, A C; Linder, J; Robinson, J W A
2017-01-19
Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.
Di Bernardo, A.; Millo, O.; Barbone, M.; Alpern, H.; Kalcheim, Y.; Sassi, U.; Ott, A. K.; De Fazio, D.; Yoon, D.; Amado, M.; Ferrari, A. C.; Linder, J.; Robinson, J. W. A.
2017-01-01
Electron pairing in the vast majority of superconductors follows the Bardeen–Cooper–Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K. PMID:28102222
Robust and Efficient Spin Purification for Determinantal Configuration Interaction.
Fales, B Scott; Hohenstein, Edward G; Levine, Benjamin G
2017-09-12
The limited precision of floating point arithmetic can lead to the qualitative and even catastrophic failure of quantum chemical algorithms, especially when high accuracy solutions are sought. For example, numerical errors accumulated while solving for determinantal configuration interaction wave functions via Davidson diagonalization may lead to spin contamination in the trial subspace. This spin contamination may cause the procedure to converge to roots with undesired ⟨Ŝ 2 ⟩, wasting computer time in the best case and leading to incorrect conclusions in the worst. In hopes of finding a suitable remedy, we investigate five purification schemes for ensuring that the eigenvectors have the desired ⟨Ŝ 2 ⟩. These schemes are based on projection, penalty, and iterative approaches. All of these schemes rely on a direct, graphics processing unit-accelerated algorithm for calculating the S 2 c matrix-vector product. We assess the computational cost and convergence behavior of these methods by application to several benchmark systems and find that the first-order spin penalty method is the optimal choice, though first-order and Löwdin projection approaches also provide fast convergence to the desired spin state. Finally, to demonstrate the utility of these approaches, we computed the lowest several excited states of an open-shell silver cluster (Ag 19 ) using the state-averaged complete active space self-consistent field method, where spin purification was required to ensure spin stability of the CI vector coefficients. Several low-lying states with significant multiply excited character are predicted, suggesting the value of a multireference approach for modeling plasmonic nanomaterials.
Ma, Jie; Kamiya, Yoshitomo; Hong, Tao; ...
2016-02-24
We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba 3CoSb 2O 9. Besides confirming that the Co 2+ magnetic moments lie in the ab plane for zero magnetic field and then determining all the exchange parameters of the minimal quasi-2D spin Hamiltonian, we provide conclusive experimental evidence of magnon decay through observation of intrinsic line broadening. Through detailed comparisons with the linear and nonlinear spin-wave theories, we also point out that the large-S approximation, which is conventionally employed to predict magnon decay in noncollinear magnets, is inadequate to explain our experimental observation. Hence, our results callmore » for a new theoretical framework for describing excitation spectra in low-dimensional frustrated magnets under strong quantum effects.« less
NASA Technical Reports Server (NTRS)
Zmuidzinas, J. S. (Inventor)
1978-01-01
A technique is disclosed for achieving large populations of metastable spin-aligned He2(a 3 Sigma u +) molecules in superfluid helium to obtain lasing in the vacuum ultraviolet wavelength regime around 0.0800 micron m by electronically exciting liquid (superfluid) helium with a comparatively low-current electron beam and spin aligning the metastable molecules by means of optical pumping with a modestly-powered (100mW) circularly-polarized continuous wave laser operating at, for example, 0.9096 or 0.4650 micron m. Once a high concentration of spin-aligned He2 (a 3 Sigma u +) is achieved with lifetimes of a few milliseconds, a strong microwave signal destroys the spin alignment and induces a quick collisional transition of He2 (a 3 Sigma u +) molecules to the a 1 Sigma u + state and thereby a lasing transition to the X 1 Sigma g + state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustikova, J., E-mail: lustikova@imr.tohoku.ac.jp; Shiomi, Y.; Handa, Y.
2015-02-21
We report on the deformation of microwave absorption spectra and of the inverse spin Hall voltage signals in thin film bilayers of yttrium iron garnet (YIG) and platinum at high microwave power levels in a 9.45-GHz TE{sub 011} cavity. As the microwave power increases from 0.15 to 200 mW, the resonance field shifts to higher values, and the initially Lorentzian spectra of the microwave absorption intensity as well as the inverse spin Hall voltage signals become asymmetric. The contributions from opening of the magnetization precession cone and heating of YIG cannot well reproduce the data. Control measurements of inverse spinmore » Hall voltages on thin-film YIG|Pt systems with a range of line widths underscore the role of spin-wave excitations in spectral deformation.« less
NASA Astrophysics Data System (ADS)
Stebliy, Maxim; Ognev, Alexey; Samardak, Alexander; Chebotkevich, Ludmila; Verba, Roman; Melkov, Gennadiy; Tiberkevich, Vasil; Slavin, Andrei
2015-06-01
Magnetization reversal in finite chains and square arrays of closely packed cylindrical magnetic dots, having vortex ground state in the absence of the external bias field, has been studied experimentally by measuring static hysteresis loops, and also analyzed theoretically. It has been shown that the field Bn of a vortex nucleation in a dot as a function of the finite number N of dots in the array's side may exhibit a monotonic or an oscillatory behavior depending on the array geometry and the direction of the external bias magnetic field. The oscillations in the dependence Bn(N) are shown to be caused by the quantization of the collective soft spin wave mode, which corresponds to the vortex nucleation in a finite array of dots. These oscillations are directly related to the form and symmetry of the dispersion law of the soft SW mode: the oscillation could appear only if the minimum of the soft mode spectrum is not located at any of the symmetric points inside the first Brillouin zone of the array's lattice. Thus, the purely static measurements of the hysteresis loops in finite arrays of coupled magnetic dots can yield important information about the properties of the collective spin wave excitations in these arrays.
Li, Zhendong; Liu, Wenjian
2010-08-14
The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin-flip configuration interaction approaches can easily be spin-adapted via the tensor-coupling scheme.
NASA Astrophysics Data System (ADS)
Ferrari, Francesco; Parola, Alberto; Sorella, Sandro; Becca, Federico
2018-06-01
The dynamical spin structure factor is computed within a variational framework to study the one-dimensional J1-J2 Heisenberg model. Starting from Gutzwiller-projected fermionic wave functions, the low-energy spectrum is constructed from two-spinon excitations. The direct comparison with Lanczos calculations on small clusters demonstrates the excellent description of both gapless and gapped (dimerized) phases, including incommensurate structures for J2/J1>0.5 . Calculations on large clusters show how the intensity evolves when increasing the frustrating ratio and give an unprecedented accurate characterization of the dynamical properties of (nonintegrable) frustrated spin models.
Magneto- to electroactive transmutation of spin waves in ErMnO3.
Chaix, L; de Brion, S; Petit, S; Ballou, R; Regnault, L-P; Ollivier, J; Brubach, J-B; Roy, P; Debray, J; Lejay, P; Cano, A; Ressouche, E; Simonet, V
2014-04-04
The low-energy dynamical properties of the multiferroic hexagonal perovskite ErMnO3 have been studied by inelastic neutron scattering as well as terahertz and far infrared spectroscopies on a synchrotron source. From these complementary techniques, we have determined the magnon and crystal field spectra and identified a zone center magnon excitable only by the electric field of an electromagnetic wave. Using a comparison with the isostructural YMnO3 compound and crystal field calculations, we propose that this dynamical magnetoelectric process is due to the hybridization of a magnon with an electroactive crystal field transition.
Torsional Alfvén Waves in a Dipolar Magnetic Field
NASA Astrophysics Data System (ADS)
Nataf, H. C.; Tigrine, Z.; Cardin, P.; Schaeffer, N.
2017-12-01
The discovery of torsional Alfvén waves in the Earth's core (Gillet et al, 2010) is a strong motivation for investigating the properties of these waves. Here, we report on the first experimental study of such waves. Alfvén waves are difficult to excite and observe in liquid metals because of their high magnetic diffusivity. Nevertheless, we obtained clear signatures of such diffusive waves in our DTS experiment. In this setup, some 40 liters of liquid sodium are contained between a ro = 210 mm-radius stainless steel outer shell, and a ri = 74 mm-radius copper inner sphere. Both spherical boundaries can rotate independently around a common vertical axis. The inner sphere shells a strong permanent magnet, which produces a nearly dipolar magnetic field whose intensity falls from 175 mT at ri to 8 mT at ro in the equatorial plane. We excite Alfvén waves in the liquid sodium by applying a sudden jerk of the inner sphere. To study the effect of global rotation, which leads to the formation of geostrophic torsional Alfvén waves, we spin the experiment at rotation rates fo = fi up to 15 Hz. The Alfvén wave produces a clear azimuthal magnetic signal on magnetometers installed in a sleeve inside the fluid. We also probe the associated azimuthal velocity field using ultrasound Doppler velocimetry. Electric potentials at the surface of the outer sphere turn out to be very revealing as well. In parallel, we use the XSHELLS magnetohydrodynamics spherical code to model torsional Alfvén waves in the experimental conditions, and beyond. We explore both linear and non-linear regimes. We observe a strong excitation of inertial waves in the equatorial plane, where the wave transits from a region of strong magnetic field to a region dominated by rotation (see figure of meridian map of azimuthal velocity). These novel observations should help deciphering the dynamics of Alfvén waves in planetary cores.
Pogrebna, A; Mertelj, T; Vujičić, N; Cao, G; Xu, Z A; Mihailovic, D
2015-01-13
Ferromagnetism and superconductivity are antagonistic phenomena. Their coexistence implies either a modulated ferromagnetic order parameter on a lengthscale shorter than the superconducting coherence length or a weak exchange coupling between the itinerant superconducting electrons and the localized ordered spins. In some iron based pnictide superconductors the coexistence of ferromagnetism and superconductivity has been clearly demonstrated. The nature of the coexistence, however, remains elusive since no clear understanding of the spin structure in the superconducting state has been reached and the reports on the coupling strength are controversial. We show, by a direct optical pump-probe experiment, that the coupling is weak, since the transfer of the excess energy from the itinerant electrons to ordered localized spins is much slower than the electron-phonon relaxation, implying the coexistence without the short-lengthscale ferromagnetic order parameter modulation. Remarkably, the polarization analysis of the coherently excited spin wave response points towards a simple ferromagnetic ordering of spins with two distinct types of ferromagnetic domains.
Low energy spin dynamics of rare-earth orthoferrites YFeO3 and LaFeO3
NASA Astrophysics Data System (ADS)
Park, Kisoo; Sim, Hasung; Leiner, Jonathan; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Yano, Shinichiro; Gardner, Jason; Park, Je-Geun
YFeO3 and LaFeO3\\ are members of the rare-earth orthoferrites (RFeO3) family with Pbnm space group. With the strong superexchange interaction between Fe3 + ions, both compounds exhibit the room temperature antiferromagnetic order (TN >600 K) with a slight spin canting. Here we report low-energy magnetic excitation of YFeO3 and LaFeO3 using inelastic neutron scattering measurements, showing evidence of magnon mode splitting and a spin anisotropy gap at the zone center. Spin wave calculations with the spin Hamiltonian including both Dzyaloshinsky-Moriya interaction and single-ion anisotropy accounts for the observed features well. Our results offer insight into the underlying physics of other RFeO3\\ with magnetic rare-earth ions or related Fe3+-based multiferroic perovskites such as BiFeO3. The work at the IBS CCES (South Korea) was supported by the research program of the Institute for Basic Science (IBS-R009-G1).
Whistler mode waves in the Jovian magnetosheath
NASA Technical Reports Server (NTRS)
Lin, Naiguo; Kellogg, P. J.; Thiessen, J. P.; Lengyel-Frey, D.; Tsurutani, B. T.; Phillips, J. L.
1994-01-01
During the Ulysses flyby of Jupiter in February 1992, the spacecraft traversed the Jovian magnetosheath for a few hours during the inbound pass and for aa few days during the outbound pass. Burstlike electomagnetic waves at frequencies of approximately 0.1-0.4 of the local electron cyclotron frequency have been observed by the Unified Radio and Plasma Wave (URAP) experiement. The waves were more often observed in the regions which were probably the outer or the middle magnetosheath, especially near the bow shock, and rarely seen in the magnetosphere/magnetosheath boundary layer. The propagation angles of the waves are estimated by comparing the measurements of the wave electric and magnetic fields in the spacecraft spin plane with the corresponding values calculated using the cold plasma dispersion relation under local field and plasma conditions. It is found that the waves propagate obliquely with wave angles between approximately 30 deg and 50 deg. These waves are likely to be the whistler mode waves which are excited by suprathermal electrons with a few hundred eV and a slight anisotropy (T(sub perp)/T(sub parallel) approximately 1.1-1.5). They are probably similar in nature to the lion roars observed in the Earth's magnetosheath. Signature of coupling between the mirror and the whistler mode have also been observed. The plasma conditions which favor the excitation of the whistler mode instability during the wave events exists as observed by the plasma experiement of Ulysses.
NASA Astrophysics Data System (ADS)
Haines, Donald Noble
1987-09-01
This study is an experimental investigation of the differential magnetic susceptibility of the spin one -half, one-dimensional, Ising-Heisenberg ferromagnet (S = 1over 2,1d,HIF). Recent theoretical work predicts the existence of magnon bound states in this model system, and that these bound spin wave states dominate its thermodynamic properties. Further, the theories indicate that classical linearized spin wave theory fails completely in such systems, and may also be intrinsically incorrect in certain higher dimensional systems. The purpose of this research is to confirm the existence of bound magnons in the S = 1over 2,1d,HIF for the nearly Heisenberg case, and demonstrate the dominance of the bound states over the spin wave states in determining thermodynamic behavior. A preliminary numerical study was performed to determine the ranges of magnetic field and temperature at which bound magnons might be expected to make a significant contribution to the magnetic susceptibility and specific heat of the S = 1over 2,1d,HIF. It was found that bound magnons dominate at low and high fields, and spin waves dominate at intermediate fields. For anisotropies less than 2% bound magnons dominate the low temperature regime for all fields. To test the theoretical predictions cyclohexylammonium trichlorocuprate(II) (CHAC) was chosen as a model S = 1over 2,1d,HIF compound for experimental study. The differential susceptibility of a powder sample of CHAC was measured as a function of temperature in fields of 0, 1, 2, and 3T. The temperature range for these studies was 4.2K to 40K. Susceptibility measurements were performed using an ac mutual inductance bridge which employs a SQUID (Superconducting Quantum Interference Device) as a null detector. The design, calibration, and operation of this instrument are described. Data from the experiments compare favorably with the theoretical predictions, confirming the existence of bound magnons in the nearly Heisenberg S = 1over 2,1d,HIF. Further, the experimental results clearly show that bound magnons are the dominant excitation determining the susceptibility for all fields and temperatures studied. Spin wave theory cannot describe the data for any values of the adjustable parameters.
NASA Astrophysics Data System (ADS)
Sakai, Osamu; Suzuki, Taku T.
2018-05-01
The scattering of an electron-spin-polarized 4He+ beam on paramagnetic materials has an anomalously large asymmetric scattering component (ASC) around 10%, which is 104 times that expected from the spin-orbit coupling for the potential of the target nucleus. The scattering angle (θ) dependence of the ASC has been measured. It changes sign near 90° for some materials (for example, Au and Pt), while it does not change sign for other materials (for example, Pb and Bi). It has been noted that the spin-orbit interaction of electrons on the target in the electron-transfer intermediate state causes the ASC of He nucleus motion, and it has also been predicted that the sign change in the θ dependence occurs when the d electron transfer is dominant. This seems to correspond to the cases of Au and Pt, but not to the cases of Pb and Bi. The previous approach is refined on the basis of the partial wave representation, which can give a more correct estimation of the ASC. It is shown that the sign change appears in the weak-resonance domain in the case of d electron excitation, whereas the sign change disappears in the strong-resonance domain. Our calculated results qualitatively agree with the material dependence of the ASC observed experimentally.
A Brillouin Light Scattering Study of Magnetic Excitations.
1986-01-30
collaborative project with CNR-Rome, with materials emphasis on substi- tuted LPE garnet thin films . "Localized Canting Models for Substituted Magnetic Oxides...thermal magnons in FeBO 3, exchange in substituted ferrites, parametric spin-waves in epitaxial yttrium iron garnet (YIG. films , surface magnon angle...and surface magnons in thin films . Central to the research was the develooment of a hiqh contrast, high resolu- tion multipassltandem Fabry; Perot
Anisovich, Alexei; Burkert, Volker; Compton, Nicholas; ...
2017-11-03
Here we determine the helicity amplitudes for the photoproduction of nucleon resonances excited from neutrons in the Bonn-Gatchina coupled-channel partial wave analysis. The upper limits for the decay fraction of the pentaquark candidate N(1685) → K 0Λ are given. The electric and magnetic couplings at the pole positions are also tabulated, and these are used to suggest candidates for possible multiplets with quark-spin-1/2 and -3/2 content.
NASA Astrophysics Data System (ADS)
Halfen, D. T.; Ziurys, L. M.
2005-02-01
The pure rotational spectrum of the MnCl radical (X 7Σ+) has been recorded in the range 141-535 GHz using millimeter-submillimeter direct absorption spectroscopy. This work is the first time the molecule has been studied with rotational resolution in its ground electronic state. MnCl was synthesized by the reaction of manganese vapor, produced in a Broida-type oven, with Cl2. Transitions of both chlorine isotopomers were measured, as well as lines originating in several vibrationally excited states. The presence of several spin components and manganese hyperfine interactions resulted in quite complex spectra, consisting of multiple blended features. Because 42 rotational transitions were measured for Mn35Cl over a wide range of frequencies with high signal-to-noise, a very accurate set of rotational, fine structure, and hyperfine constants could be determined with the aid of spectral simulations. Spectroscopic constants were also determined for Mn37Cl and several vibrationally excited states. The values of the spin-rotation and spin-spin parameters were found to be relatively small (γ=11.2658 MHz and λ=1113.10 MHz for Mn35Cl); in the case of λ, excited electronic states contributing to the second-order spin-orbit interaction may be canceling each other. The Fermi contact hyperfine term was found to be large in manganese chloride with bF(Mn35Cl)=397.71 MHz, a result of the manganese 4s character mixing into the 12σ orbital. This orbital is spσ hybridized, and contains some Mn 4pσ character, as well. Hence, it also contributes to the dipolar constant c, which is small and positive for this radical (c=32.35 MHz for Mn35Cl). The hyperfine parameters in MnCl are similar to those of MnH and MnF, suggesting that the bonding in these three molecules is comparable.
Halfen, D T; Ziurys, L M
2005-02-01
The pure rotational spectrum of the MnCl radical (X (7)Sigma(+)) has been recorded in the range 141-535 GHz using millimeter-submillimeter direct absorption spectroscopy. This work is the first time the molecule has been studied with rotational resolution in its ground electronic state. MnCl was synthesized by the reaction of manganese vapor, produced in a Broida-type oven, with Cl(2). Transitions of both chlorine isotopomers were measured, as well as lines originating in several vibrationally excited states. The presence of several spin components and manganese hyperfine interactions resulted in quite complex spectra, consisting of multiple blended features. Because 42 rotational transitions were measured for Mn(35)Cl over a wide range of frequencies with high signal-to-noise, a very accurate set of rotational, fine structure, and hyperfine constants could be determined with the aid of spectral simulations. Spectroscopic constants were also determined for Mn(37)Cl and several vibrationally excited states. The values of the spin-rotation and spin-spin parameters were found to be relatively small (gamma=11.2658 MHz and lambda=1113.10 MHz for Mn(35)Cl); in the case of lambda, excited electronic states contributing to the second-order spin-orbit interaction may be canceling each other. The Fermi contact hyperfine term was found to be large in manganese chloride with b(F)(Mn(35)Cl)=397.71 MHz, a result of the manganese 4s character mixing into the 12sigma orbital. This orbital is spsigma hybridized, and contains some Mn 4psigma character, as well. Hence, it also contributes to the dipolar constant c, which is small and positive for this radical (c=32.35 MHz for Mn(35)Cl). The hyperfine parameters in MnCl are similar to those of MnH and MnF, suggesting that the bonding in these three molecules is comparable.
Detection of acoustic waves by NMR using a radiofrequency field gradient
NASA Astrophysics Data System (ADS)
Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J.; Franconi, Jean-Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D.
2003-03-01
A B1 field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 1 3¯3 1¯ RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.
Detection of acoustic waves by NMR using a radiofrequency field gradient.
Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J; Franconi, Jean Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D
2003-03-01
A B(1) field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 13;31; RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.
Brächer, T; Fabre, M; Meyer, T; Fischer, T; Auffret, S; Boulle, O; Ebels, U; Pirro, P; Gaudin, G
2017-12-13
The miniaturization of complementary metal-oxide-semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consumption than conventional semiconductor approaches. Spin waves have been identified as a potential technology that can complement and outperform CMOS in complex logic applications, profiting from the fact that these waves enable wave computing on the nanoscale. The practical application of spin waves, however, requires the demonstration of scalable, CMOS compatible spin-wave detection schemes in material systems compatible with standard spintronics as well as semiconductor circuitry. Here, we report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm by the inverse spin Hall effect in spin-wave waveguides made from ultrathin Ta/Co 8 Fe 72 B 20 /MgO. These findings open up the path for miniaturized scalable interconnects between spin waves and CMOS and the use of ultrathin films made from standard spintronic materials in magnonics.
Temporal evolution of the spin-wave intensity and phase in a local parametric amplifier
NASA Astrophysics Data System (ADS)
Brächer, T.; Heussner, F.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Hillebrands, B.; Pirro, P.
2018-03-01
We present a time-resolved study of the evolution of the spin-wave intensity and phase in a local parametric spin-wave amplifier at pumping powers close to the threshold of parametric generation. We show that the phase of the amplified spin waves is determined by the phase of the incoming signal-carrying spin waves and that it can be preserved on long time scales as long as the energy input by the input spin waves is provided. In contrast, the phase-information is lost in such a local spin-wave amplifier as soon as the input spin-wave is switched off. These findings are an important benchmark for the use of parametric amplifiers in logic circuits relying on the spin-wave phase as information carrier.
Superconductivity from a non-Fermi-liquid metal: Kondo fluctuation mechanism in slave-fermion theory
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok
2010-03-01
We propose Kondo fluctuation mechanism of superconductivity, differentiated from the spin-fluctuation theory as the standard model for unconventional superconductivity in the weak-coupling approach. Based on the U(1) slave-fermion representation of an effective Anderson lattice model, where localized spins are described by the Schwinger boson theory and hybridization or Kondo fluctuations weaken antiferromagnetic correlations of localized spins, we found an antiferromagnetic quantum critical point from an antiferromagnetic metal to a heavy-fermion metal in our recent study. The Kondo-induced antiferromagnetic quantum critical point was shown to be described by both conduction electrons and fermionic holons interacting with critical spin fluctuations given by deconfined bosonic spinons with a spin quantum number 1/2. Surprisingly, such critical modes turned out to be described by the dynamical exponent z=3 , giving rise to the well-known non-Fermi-liquid physics such as the divergent Grüneisen ratio with an exponent 2/3 and temperature-linear resistivity in three dimensions. We find that the z=3 antiferromagnetic quantum critical point becomes unstable against superconductivity, where critical spinon excitations give rise to pairing correlations between conduction electrons and between fermionic holons, respectively, via hybridization fluctuations. Such two kinds of pairing correlations result in multigap unconventional superconductivity around the antiferromagnetic quantum critical point of the slave-fermion theory, where s -wave pairing is not favored generically due to strong correlations. We show that the ratio between each superconducting gap for conduction electrons Δc and holons Δf and the transition temperature Tc is 2Δc/Tc˜9 and 2Δf/Tc˜O(10-1) , remarkably consistent with CeCoIn5 . A fingerprint of the Kondo mechanism is emergence of two kinds of resonance modes in not only spin but also charge fluctuations, where the charge resonance mode at an antiferromagnetic wave vector originates from d -wave pairing of spinless holons. We discuss how the Kondo fluctuation theory differs from the spin-fluctuation approach.
Demonstration of a robust magnonic spin wave interferometer.
Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru
2016-07-22
Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.
Demonstration of a robust magnonic spin wave interferometer
Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Ross, Caroline A.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru
2016-01-01
Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe. PMID:27443989
Phase Competition in the Palmer-Chalker X Y Pyrochlore Er2Pt2O7
NASA Astrophysics Data System (ADS)
Hallas, A. M.; Gaudet, J.; Butch, N. P.; Xu, Guangyong; Tachibana, M.; Wiebe, C. R.; Luke, G. M.; Gaulin, B. D.
2017-11-01
We report neutron scattering measurements on Er2Pt2O7 , a new addition to the X Y family of frustrated pyrochlore magnets. Symmetry analysis of our elastic scattering data shows that Er2Pt2O7 orders into the k =0 , Γ7 magnetic structure (the Palmer-Chalker state), at TN=0.38 K . This contrasts with its sister X Y pyrochlore antiferromagnets Er2Ti2O7 and Er2Ge2O7 , both of which order into Γ5 magnetic structures at much higher temperatures, TN=1.2 and 1.4 K, respectively. In this temperature range, the magnetic heat capacity of Er2Pt2O7 contains a broad anomaly centered at T*=1.5 K . Our inelastic neutron scattering measurements reveal that this broad heat capacity anomaly sets the temperature scale for strong short-range spin fluctuations. Below TN=0.38 K , Er2Pt2O7 displays a gapped spin-wave spectrum with an intense, flat band of excitations at lower energy and a weak, diffusive band of excitations at higher energy. The flat band is well described by classical spin-wave calculations, but these calculations also predict sharp dispersive branches at higher energy, a striking discrepancy with the experimental data. This, in concert with the strong suppression of TN, is attributable to enhanced quantum fluctuations due to phase competition between the Γ7 and Γ5 states that border each other within a classically predicted phase diagram.
Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate
Shen, Yao; Li, Yao-Dong; Wo, Hongliang; ...
2016-12-05
A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). In this paper, we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO 4 that reveal broad spin excitations coveringmore » a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle–hole excitation of a spinon Fermi surface. Finally, our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO 4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.« less
Non-volatile Clocked Spin Wave Interconnect for Beyond-CMOS Nanomagnet Pipelines
Dutta, Sourav; Chang, Sou-Chi; Kani, Nickvash; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Naeemi, Azad
2015-01-01
The possibility of using spin waves for information transmission and processing has been an area of active research due to the unique ability to manipulate the amplitude and phase of the spin waves for building complex logic circuits with less physical resources and low power consumption. Previous proposals on spin wave logic circuits have suggested the idea of utilizing the magneto-electric effect for spin wave amplification and amplitude- or phase-dependent switching of magneto-electric cells. Here, we propose a comprehensive scheme for building a clocked non-volatile spin wave device by introducing a charge-to-spin converter that translates information from electrical domain to spin domain, magneto-electric spin wave repeaters that operate in three different regimes - spin wave transmitter, non-volatile memory and spin wave detector, and a novel clocking scheme that ensures sequential transmission of information and non-reciprocity. The proposed device satisfies the five essential requirements for logic application: nonlinearity, amplification, concatenability, feedback prevention, and complete set of Boolean operations. PMID:25955353
Acoustic excitations in nanosponges, low-k dielectric thin films and oxide glasses
NASA Astrophysics Data System (ADS)
Zhou, Wei
The invention of the laser has made optical spectroscopy techniques especially valuable research tools. Brillouin light scattering (BLS) is one such powerful technique to measure low energy excitations as acoustic phonons and magnons (spin waves) in materials. In this thesis, the BLS technique is utilized to investigate acoustic excitations and the underlying physics in different media: carbon nanosponges, ultra thin low-k dielectric films and soda germanate glasses. The highlights include: (1) acoustic response of carbon nanosponges solvated in the organic solvent dimethylformamide (DMF) and the discovery of nanosponge formation by exposure to laser radiation. The observed acoustic mode is confirmed as the slow longitudinal wave within the nanosponge suspension. The counter intuitive result of the sound speed decreasing with increasing weight fraction of carbon nano tubes is found and modeled by an effective medium approximation theory; (2) in ultra thin low-k dielectric films, longitudinal standing waves, transverse standing waves and surface waves are observed and recorded. Using a Green's function method, the elastic constants are calculated by fitting the dispersion of these waves. The displacements of standing waves are also simulated and found to behave like the modes in an organ pipe; (3) the long wavelength bulk longitudinal and transverse modes in soda germanate glasses (Na2O)x(GeO2) 1-x glasses are found to be anomalous with increasing soda concentration. The elastic constants C11 and C44 are determined and related quantities such as the elastic energy are also found to have maxima around a soda concentration of x=17%. The elastic properties are compared with those of (Na2O)x(SiO2)1-x glasses, and structural differences are discussed to account for the origin of their different behaviors.
The State of the Art in (Cd,Mn)Te Heterostructures: Fundamentals and Applications
NASA Astrophysics Data System (ADS)
Wojtowicz, Tomasz
In my talk I will review recent progress in the MBE technology of (Cd,Mn)Te nanostructures containing two dimensional electron gas (2DEG) that led to the first ever observation of fractional quantum Hall effect in magnetic system. This opens new directions in spintronics. I will first discuss already demonstrated applications of such high mobility magnetic-2DEG system for: a) THz and microwave radiation induced zero-bias generation of pure spin currents and very efficient magnetic field induced conversion of them into spin polarized electric current; b) clear demonstration of THz radiation from spin-waves excited via efficient Raman generation process; c) experimental demonstration of working principles of a new type of spin transistor based on controlling the spin transmission via tunable Landau-Zener transitions in spatially modulated spin-split bands. I will also explain the possibility to use magnetic-2DEG for developing of a new system where non-Abelian excitations can not only be created, but also manipulated in a two-dimensional plane. The system is based on high mobility CdTe quantum wells with engineered placement of Mn atoms, where sign of the Lande g-factor can be locally controlled by electrostatic gates at high magnetic fields. Such a system may allow for building a new platform for topologically protected quantum information processing. I will also present results demonstrating electrostatic control of 2D gas polarization in a quantum Hall regime. The research was partially supported by National Science Centre (Poland) Grant DEC-2012/06/A/ST3/00247 and by ONR Grant N000141410339.
Ohno, Kaoru; Ono, Shota; Isobe, Tomoharu
2017-02-28
The quasiparticle (QP) energies, which are minus of the energies required by removing or produced by adding one electron from/to the system, corresponding to the photoemission or inverse photoemission (PE/IPE) spectra, are determined together with the QP wave functions, which are not orthonormal and even not linearly independent but somewhat similar to the normal spin orbitals in the theory of the configuration interaction, by self-consistently solving the QP equation coupled with the equation for the self-energy. The electron density, kinetic, and all interaction energies can be calculated using the QP wave functions. We prove in a simple way that the PE/IPE spectroscopy and therefore this QP theory can be applied to an arbitrary initial excited eigenstate. In this proof, we show that the energy-dependence of the self-energy is not an essential difficulty, and the QP picture holds exactly if there is no relaxation mechanism in the system. The validity of the present theory for some initial excited eigenstates is tested using the one-shot GW approximation for several atoms and molecules.
Spin Dynamics in the electron-doped high-Tc superconductors Pr0.88LaCe0.12CuO4-δ
NASA Astrophysics Data System (ADS)
Dai, Pengcheng
2007-03-01
We briefly review results of recent neutron scattering experiments designed to probe the evolution of antiferromagnetic (AF) order and spin dynamics in the electron- doped Pr0.88LaCe0.12CuO4-δ (PLCCO) as the system is tuned from its as-grown non-superconducting AF state into an optimally doped superconductor (Tc = 27.5 K) without static AF order [1-3]. For under doped materials, a quasi-two- dimensional spin-density wave was found to coexist with three- dimensional AF order and superconductivity. In addition, the low-energy spin excitations follow Bose statistics. In the case of optimally doped material, we have discovered a magnetic resonance intimately related to superconductivity analogous to the resonance in hole-doped materials. On the other hand, the low energy spin excitations have very weak temperature dependence and do not follow Bose statistics, in sharp contrast to the as-grown nonsuperconducting materials. 1 Stephen D. Wilson, Pengcheng Dai, Shiliang Li, Songxue Chi, H. J. Kang, and J. W. Lynn, Nature (London) 442, 59 (2006). 2 Stephen D. Wilson, Shiliang Li, Hyungje Woo, Pengcheng Dai, H. A. Mook, C. D. Frost, S. Komiya, and Y. Ando, Phys. Rev. Lett. 96, 157001 (2006). 3. Stephen D. Wilson, Shiliang Li, Pengcheng Dai, Wei Bao, J. H. Chung, H. J. Kang, S.-H. Lee, S. Komiya, and Y. Ando, Phys. Rev. B 74, 144514 (2006).
Spin wave scattering and interference in ferromagnetic cross
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanayakkara, Kasuni; Kozhanov, Alexander; Center for Nano Optics, Georgia State University, Atlanta, Georgia 30303
2015-10-28
Magnetostatic spin wave scattering and interference across a CoTaZr ferromagnetic spin wave waveguide cross junction were investigated experimentally and by micromagnetic simulations. It is observed that the phase of the scattered waves is dependent on the wavelength, geometry of the junction, and scattering direction. It is found that destructive and constructive interference of the spin waves generates switching characteristics modulated by the input phase of the spin waves. Micromagnetic simulations are used to analyze experimental data and simulate the spin wave scattering and interference.
sp-d Exchange Interactions in Wave Function Engineered Colloidal CdSe/Mn:CdS Hetero-Nanoplatelets.
Muckel, Franziska; Delikanli, Savas; Hernández-Martínez, Pedro Ludwig; Priesner, Tamara; Lorenz, Severin; Ackermann, Julia; Sharma, Manoj; Demir, Hilmi Volkan; Bacher, Gerd
2018-03-14
In two-dimensional (2D) colloidal semiconductor nanoplatelets, which are atomically flat nanocrystals, the precise control of thickness and composition on the atomic scale allows for the synthesis of heterostructures with well-defined electron and hole wave function distributions. Introducing transition metal dopants with a monolayer precision enables tailored magnetic exchange interactions between dopants and band states. Here, we use the absorption based technique of magnetic circular dichroism (MCD) to directly prove the exchange coupling of magnetic dopants with the band charge carriers in hetero-nanoplatelets with CdSe core and manganese-doped CdS shell (CdSe/Mn:CdS). We show that the strength of both the electron as well as the hole exchange interactions with the dopants can be tuned by varying the nanoplatelets architecture with monolayer accuracy. As MCD is highly sensitive for excitonic resonances, excited level spectroscopy allows us to resolve and identify, in combination with wave function calculations, several excited state transitions including spin-orbit split-off excitonic contributions. Thus, our study not only demonstrates the possibility to expand the extraordinary physical properties of colloidal nanoplatelets toward magneto-optical functionality by transition metal doping but also provides an insight into the excited state electronic structure in this novel two-dimensional material.
Spin dynamics in the stripe-ordered buckled honeycomb lattice antiferromagnet Ba 2 NiTeO 6
Asai, Shinichiro; Soda, Minoru; Kasatani, Kazuhiro; ...
2017-09-01
We carried out inelastic neutron scattering experiments on a buckled honeycomb lattice antiferromagnet Ba 2NiTeO 6 exhibiting a stripe structure at a low temperature. Magnetic excitations are observed in the energy range of ℏω≲10 meV having an anisotropy gap of 2 meV at 2 K. We perform spin-wave calculations to identify the spin model. The obtained microscopic parameters are consistent with the location of the stripe structure in the classical phase diagram. Furthermore, the Weiss temperature independently estimated from a bulk magnetic susceptibility is consistent with the microscopic parameters. The results reveal that a competition between the nearest-neighbor and next-nearest-neighbormore » interactions that together with a relatively large single-ion magnetic anisotropy stabilize the stripe magnetic structure.« less
Spin dynamics and magnetoelectric coupling mechanism of C o4N b2O9
NASA Astrophysics Data System (ADS)
Deng, Guochu; Cao, Yiming; Ren, Wei; Cao, Shixun; Studer, Andrew J.; Gauthier, Nicolas; Kenzelmann, Michel; Davidson, Gene; Rule, Kirrily C.; Gardner, Jason S.; Imperia, Paolo; Ulrich, Clemens; McIntyre, Garry J.
2018-02-01
Neutron powder diffraction experiments reveal that C o4N b2O9 forms a noncollinear in-plane magnetic structure with C o2 + moments lying in the a b plane. The spin-wave excitations of this magnet were measured by using inelastic neutron scattering and soundly simulated by a dynamic model involving nearest- and next-nearest-neighbor exchange interactions, in-plane anisotropy, and the Dzyaloshinskii-Moriya interaction. The in-plane magnetic structure of C o4N b2O9 is attributed to the large in-plane anisotropy, while the noncollinearity of the spin configuration is attributed to the Dzyaloshinskii-Moriya interaction. The high magnetoelectric coupling effect of C o4N b2O9 in fields can be explained by its special in-plane magnetic structure.
Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice
NASA Astrophysics Data System (ADS)
Owerre, S. A.; Nsofini, J.
2017-11-01
Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-1/2 XYZ Heisenberg model on the honeycomb lattice with discrete Z2 symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z2 anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.
Squeezed Dirac and Topological Magnons in a Bosonic Honeycomb Optical Lattice.
Owerre, Solomon; Nsofini, Joachim
2017-09-20
Quantum information storage using charge-neutral quasiparticles are expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-$1/2$ XYZ Heisenberg model on the honeycomb lattice with discrete Z$_2$ symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z$_2$ anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators. . © 2017 IOP Publishing Ltd.
Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice.
Owerre, S A; Nsofini, J
2017-10-19
Quantum information storage using charge-neutral quasiparticles is expected to play a crucial role in the future of quantum computers. In this regard, magnons or collective spin-wave excitations in solid-state materials are promising candidates in the future of quantum computing. Here, we study the quantum squeezing of Dirac and topological magnons in a bosonic honeycomb optical lattice with spin-orbit interaction by utilizing the mapping to quantum spin-[Formula: see text] XYZ Heisenberg model on the honeycomb lattice with discrete Z 2 symmetry and a Dzyaloshinskii-Moriya interaction. We show that the squeezed magnons can be controlled by the Z 2 anisotropy and demonstrate how the noise in the system is periodically modified in the ferromagnetic and antiferromagnetic phases of the model. Our results also apply to solid-state honeycomb (anti)ferromagnetic insulators.
Spin dynamics in the stripe-ordered buckled honeycomb lattice antiferromagnet Ba 2 NiTeO 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asai, Shinichiro; Soda, Minoru; Kasatani, Kazuhiro
We carried out inelastic neutron scattering experiments on a buckled honeycomb lattice antiferromagnet Ba 2NiTeO 6 exhibiting a stripe structure at a low temperature. Magnetic excitations are observed in the energy range of ℏω≲10 meV having an anisotropy gap of 2 meV at 2 K. We perform spin-wave calculations to identify the spin model. The obtained microscopic parameters are consistent with the location of the stripe structure in the classical phase diagram. Furthermore, the Weiss temperature independently estimated from a bulk magnetic susceptibility is consistent with the microscopic parameters. The results reveal that a competition between the nearest-neighbor and next-nearest-neighbormore » interactions that together with a relatively large single-ion magnetic anisotropy stabilize the stripe magnetic structure.« less
Fractionally charged skyrmions in fractional quantum Hall effect
Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; ...
2015-11-26
The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less
NASA Astrophysics Data System (ADS)
Hong, Tao; Qiu, Y.; Matsumoto, M.; Tennant, D. A.; Coester, K.; Schmidt, K. P.; Awwadi, F. F.; Turnbull, M. M.; Agrawal, H.; Chernyshev, A. L.
2017-05-01
The notion of a quasiparticle, such as a phonon, a roton or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C9H18N2CuBr4. Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.
Emergent ultrafast phenomena in correlated oxides and heterostructures
NASA Astrophysics Data System (ADS)
Gandolfi, M.; Celardo, G. L.; Borgonovi, F.; Ferrini, G.; Avella, A.; Banfi, F.; Giannetti, C.
2017-03-01
The possibility of investigating the dynamics of solids on timescales faster than the thermalization of the internal degrees of freedom has disclosed novel non-equilibrium phenomena that have no counterpart at equilibrium. Transition metal oxides (TMOs) provide an interesting playground in which the correlations among the charges in the metal d-orbitals give rise to a wealth of intriguing electronic and thermodynamic properties involving the spin, charge, lattice and orbital orders. Furthermore, the physical properties of TMOs can be engineered at the atomic level, thus providing the platform to investigate the transport phenomena on timescales of the order of the intrinsic decoherence time of the charge excitations. Here, we review and discuss three paradigmatic examples of transient emerging properties that are expected to open new fields of research: (i) the creation of non-thermal magnetic states in spin-orbit Mott insulators; (ii) the possible exploitation of quantum paths for the transport and collection of charge excitations in heterostructures; (iii) the transient wave-like behavior of the temperature field in strongly anisotropic TMOs.
Magnons and continua in a magnetized and dimerized spin - 1 2 chain
Stone, M. B.; Chen, Y.; Reich, D. H.; ...
2014-09-29
We examine the magnetic field dependent excitations of the dimerized spin -1/2 chain, copper nitrate, with antiferromagnetic intra-dimer exchangemore » $$J_1=0.44$$ (1) meV and exchange alternation $$\\alpha=J_2/J_1=0.26$$ (2). Magnetic excitations in three distinct regimes of magnetization are probed through inelastic neutron scattering at low temperatures. At low and high fields there are three and two long-lived magnon-like modes, respectively. The number of modes and the anti-phase relationship between the wave-vector dependent energy and intensity of magnon scattering reflect the distinct ground states: A singlet ground state at low fields $$\\mu_0H < \\mu_0H_{c1} = 2.8$$ T and an $$S_z=1/2$$ product state at high fields $$\\mu_0H > \\mu_0H_{c2} = 4.2$$ T. Lastly, in the intermediate field regime, a continuum of scattering for $$\\hbar\\omega\\approx J_1$$ is indicative of a strongly correlated gapless quantum state without coherent magnons.« less
Nature of a single doped hole in two-leg Hubbard and t - J ladders
Liu, Shenxiu; Jiang, Hong -Chen; Devereaux, Thomas P.
2016-10-15
In this study, we have systematically studied the single-hole problem in two-leg Hubbard and t–J ladders by large-scale density-matrix renormalization-group calculations. We found that the doped holes in both models behave similarly, while the three-site correlated hopping term is not important in determining the ground-state properties. For more insights, we have also calculated the elementary excitations, i.e., the energy gaps to the excited states of the system. In the strong-rung limit, we found that the doped hole behaves as a Bloch quasiparticle in both systems where the spin and charge of the doped hole are tightly bound together. In themore » isotropic limit, while the hole still behaves like a quasiparticle in the long-wavelength limit, our results show that its spin and charge components are only loosely bound together inside the quasiparticle, whose internal structure can lead to a visible residual effect which dramatically changes the local structure of the ground-state wave function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shenxiu; Jiang, Hong -Chen; Devereaux, Thomas P.
In this study, we have systematically studied the single-hole problem in two-leg Hubbard and t–J ladders by large-scale density-matrix renormalization-group calculations. We found that the doped holes in both models behave similarly, while the three-site correlated hopping term is not important in determining the ground-state properties. For more insights, we have also calculated the elementary excitations, i.e., the energy gaps to the excited states of the system. In the strong-rung limit, we found that the doped hole behaves as a Bloch quasiparticle in both systems where the spin and charge of the doped hole are tightly bound together. In themore » isotropic limit, while the hole still behaves like a quasiparticle in the long-wavelength limit, our results show that its spin and charge components are only loosely bound together inside the quasiparticle, whose internal structure can lead to a visible residual effect which dramatically changes the local structure of the ground-state wave function.« less
Hong, Tao; Qiu, Y; Matsumoto, M; Tennant, D A; Coester, K; Schmidt, K P; Awwadi, F F; Turnbull, M M; Agrawal, H; Chernyshev, A L
2017-05-05
The notion of a quasiparticle, such as a phonon, a roton or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C 9 H 18 N 2 CuBr 4 . Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.
Angular-momentum-dependent splitting of light through metal nanohole
NASA Astrophysics Data System (ADS)
Hu, Dejiao; Liu, Yu; Zhang, ZhiYou; Xiao, Xiao; Du, JingLei
2014-11-01
We numerically study the splitting of light beam which carries orbital angular momentum (OAM) through single metal nano-scale hole. A light beam carrying with OAM has a helical phase distribution in the transverse plane, where the electric field has the form: E(r,θ)=E0exp(lθ), and l is the topological charge which denotes the value of OAM. The circular polarization state is corresponding to the spin angular momentum (SAM), where s=+1 represents the left-handed polarization and s=-1 the right-handed polarization. Simulation results show l dependent splitting of beam through nano metal hole. When l is odd, the transmitted far field splits while no splitting happens when l is even. This phenomenon is attributed to the interaction between OAM beam and plasmonic mode of metal nano-hole. It is revealed that different OAM beam can excite different transverse mode in the metal cavity, which means the interaction should obey an OAM section rule. We show that even l can excite transverse mode with zero total AM and odd l can excite transverse mode with non-zero total AM within the hole. Orbital-spin conversion is also revealed in the free wave/plasmon interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zúñiga, Juan Pablo Álvarez; Lemarié, Gabriel; Laflorencie, Nicolas
A spin-wave (SW) approach for hard-core bosons is presented to treat the problem of two dimensional boson localization in a random potential. After a short review of the method to compute 1/S-corrected observables, the case of random on-site energy is discussed. Whereas the mean-field solution does not display a Bose glass (BG) phase, 1/S corrections do capture BG physics. In particular, the localization of SW excitations is discussed through the inverse participation ratio.
Metastable Bound States of Two-Dimensional Magnetoexcitons in the Lowest Landau Levels Approximation
NASA Astrophysics Data System (ADS)
Moskalenko, S. A.; Khadzhi, P. I.; Podlesny, I. V.; Dumanov, E. V.; Liberman, M. A.; Zubac, I. A.
2017-12-01
The possible existence of the two-dimensional bimagnetoexcitons and metastable bound states formed by two magnetoexcitons with opposite in-plane wave vectors k and -k has been studied. Magnetoexcitons taking part in the formation of molecules look as two electric dipoles with the arms oriented in-plane perpendicular to the respective wave vectors and with the length of the arms d=k(l_0)^2, where l_0 is the magnetic length. Two antiparallel dipoles moving with equal, yet antiparallel, wave vectors have the possibility of moving with equal probability in any direction of the plane, which is determined by the trial wave function of relative motion φ_n(|k|), depending on modulus k. The magnetoexcitons are composed of electrons and holes situated on the lowest Landau levels with the cyclotron energies greater than the binding energy of the 2D Wannier-Mott exciton. The description has been made in Landau gauge. The spin states of two electrons have been chosen in the form of antisymmetric or symmetric combinations with parameter η=+/-1. The effective spins of two heavy holes have been combined in the same resultant spinor states as the spin of the electrons. Because the projections of the both spinor states with η=+/-1 are equal to zero, the influence of the Zeeman splitting effect vanishes. In the case of trial wave function, the maximal density of the magnetoexcitons in the momentum space is concentrated on the in-plane ring. In the approximation of the lowest Landau levels, when the influence of the excited Landau levels is neglected, stable bound states of bimagnetoexcitons do not exist for both spin orientations. Instead, in the case of α=0.5 and η=1, a deep metastable bound state with the activation barrier comparable with two magnetoexciton ionization potentials 2I_l has been revealed. In the case of η=-1 and α=3.4, only a shallow metastable bound state can appear.
Scattering of charge and spin excitations and equilibration of a one-dimensional Wigner crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveev, K. A.; Andreev, A. V.; Klironomos, A. D.
2014-07-01
We study scattering of charge and spin excitations in a system of interacting electrons in one dimension. At low densities, electrons form a one-dimensional Wigner crystal. To a first approximation, the charge excitations are the phonons in the Wigner crystal, and the spin excitations are described by the Heisenberg model with nearest-neighbor exchange coupling. This model is integrable and thus incapable of describing some important phenomena, such as scattering of excitations off each other and the resulting equilibration of the system. We obtain the leading corrections to this model, including charge-spin coupling and the next-nearest-neighbor exchange in the spin subsystem.more » We apply the results to the problem of equilibration of the one-dimensional Wigner crystal and find that the leading contribution to the equilibration rate arises from scattering of spin excitations off each other. We discuss the implications of our results for the conductance of quantum wires at low electron densities« less
Realization of spin wave switch for data processing
NASA Astrophysics Data System (ADS)
Balinskiy, M.; Chiang, H.; Khitun, A.
2018-05-01
In this work, experimental data on a spin wave switch based on spin wave interference is reported. The switch is a three terminal device where spin wave propagation between the source and the drain is modulated by the control spin wave signal. The prototype is a micrometer scale device based on Y3Fe2(FeO4)3 film. The output characteristics show the oscillation of the output spin wave signal as a function of the phase difference between the source and the drain spin wave signals. The On/Off ratio of the prototype exceeds 20 dB at room temperature. The utilization of phase in addition to amplitude for information encoding offers an innovative route towards multi-state logic circuits. The advantages and shortcomings of spin wave switches are also discussed.
Discovery of Emergent Photon and Monopoles in a Quantum Spin Liquid
NASA Astrophysics Data System (ADS)
Tokiwa, Yoshifumi; Yamashita, Takuya; Terazawa, Daiki; Kimura, Kenta; Kasahara, Yuichi; Onishi, Takafumi; Kato, Yasuyuki; Halim, Mario; Gegenwart, Philipp; Shibauchi, Takasada; Nakatsuji, Satoru; Moon, Eun-Gook; Matsuda, Yuji
2018-06-01
Quantum spin liquid (QSL) is an exotic quantum phase of matter whose ground state is quantum-mechanically entangled without any magnetic ordering. A central issue concerns emergent excitations that characterize QSLs, which are hypothetically associated with quasiparticle fractionalization and topological order. Here we report highly unusual heat conduction generated by the spin degrees of freedom in a QSL state of the pyrochlore magnet Pr2Zr2O7, which hosts spin-ice correlations with strong quantum fluctuations. The thermal conductivity in high temperature regime exhibits a two-gap behavior, which is consistent with the gapped excitations of magnetic (M-) and electric monopoles (E-particles). At very low temperatures below 200 mK, the thermal conductivity unexpectedly shows a dramatic enhancement, which well exceeds purely phononic conductivity, demonstrating the presence of highly mobile spin excitations. This new type of excitations can be attributed to emergent photons (ν-particle), coherent gapless spin excitations in a spin-ice manifold.
Unidirectional THz radiation propagation in BiFeO3
NASA Astrophysics Data System (ADS)
Room, Toomas
The mutual coupling between magnetism and electricity present in many multiferroic materials permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to write a magnetic state current-free by an electric voltage would provide a huge technological advantage. However, ME coupling changes the low energy electrodynamics of these materials in unprecedented way - optical ME effects give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. The transparent direction can be switched with dc magnetic or electric field, thus opening up new possibilities to manipulate the propagation of electromagnetic waves in multiferroic materials. We studied the unidirectional transmission of THz radiation in BiFeO3 crystals, the unique multiferroic compound offering a real potential for room temperature applications. The electrodynamics of BiFeO3 at 1THz and below is dominated by the spin wave modes of cycloidal spin order. We found that the optical magnetoelectric effect generated by spin waves in BiFeO3 is robust enough to cause considerable nonreciprocal directional dichroism in the GHz-THz range even at room temperature. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Our work demonstrates that the nonreciprocal directional dichroism spectra of low energy excitations and their theoretical analysis provide microscopic model of ME couplings in multiferroic materials. Recent THz spectroscopy studies of multiferroic materials are an important step toward the realization of optical diodes, devices which transmit light in one but not in the opposite direction.
Ising tricriticality in the extended Hubbard model with bond dimerization
NASA Astrophysics Data System (ADS)
Fehske, Holger; Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.
We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c=7/10. Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results. This work was supported by Deutsche Forschungsgemeinschaft (Germany), SFB 652, project B5, and by the EPSRC under Grant No. EP/N01930X/1 (FHLE).
NASA Astrophysics Data System (ADS)
Petersen, J.; Bechstedt, F.; Furthmüller, J.; Scolfaro, L. M.
2018-05-01
Complex ordered phases involving spin and charge degrees of freedom in condensed matter, such as layered cuprates and nickelates, are exciting but not well understood solid-state phenomena. The rich underlying physics of the overdoped high-temperature superconductor L a7 /4S r1 /4Cu O4 and colossal dielectric constant insulator L a5 /3S r1 /3Ni O4 is studied from first principles within density functional (perturbation) theory, including an effective Hubbard potential U for the exchange and correlation of d orbitals. Charge density wave (CDW) and spin density wave (SDW) orders are found in both materials, where the stripes are commensurate with the lattice. The SDWs are accompanied by complex antiferromagnetic spin arrangements along the stripes. The first series of conduction bands related to the pseudogap observed in the cuprate are found to be directly related to CDW order, while the colossal dielectric constant in the nickelate is demonstrated to be a result of vibronic coupling with CDW order. Differences between the two oxides are related to how the stripes fill with carriers.
Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5–10 GHz frequency range
Bonetti, Stefano; Kukreja, Roopali; Chen, Zhao; ...
2015-09-10
In this study, we present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme in order to study high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes of the magnetization on short time scales and nanometer spatial dimensions is achieved by combination of the developed excitation mechanism with a single photon counting electronics that is locked to the synchrotron operation frequency. The required mechanical stability is achieved by a compact design of the microscope. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range,more » with 35 nm resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a –6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ~0.1° amplitude at –9 GHz in a micrometer-sized cobalt strip.« less
Long-range spin wave mediated control of defect qubits in nanodiamonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrich, Paolo; de las Casas, Charles F.; Liu, Xiaoying
2017-07-17
Hybrid architectures that combine nitrogen-vacancy (NV) centers in diamond with other materials and physical systems have been proposed to enhance the NV center’s capabilities in many quantum sensing and information applications. In particular, spin waves (SWs) in ferromagnetic materials are a promising candidate to implement these platforms due to their strong magnetic fields, which could be used to efficiently interact with the NV centers. Here we develop an yttrium iron garnet-nanodiamond hybrid architecture constructed with the help of directed assembly and transfer printing techniques. Operating at ambient conditions, we demonstrate that surface confined SWs excited in the ferromagnet (FM) canmore » strongly amplify the interactions between a microwave source and the NV centers by enhancing the local microwave magnetic field by several orders of magnitude. Crucially, we show the existence of a regime in which coherent interactions between SWs and NV centers dominate over incoherent mechanisms associated with the broadband magnetic field noise generated by the FM. These accomplishments enable the SW mediated coherent control of spin qubits over distances larger than 200 um, and allow low power operations for future spintronic technologies.« less
TiO2 as diffusion barrier at Co/Alq3 interface studied by x-ray standing wave technique
NASA Astrophysics Data System (ADS)
Phatak Londhe, Vaishali; Gupta, A.; Ponpandian, N.; Kumar, D.; Reddy, V. R.
2018-06-01
Nano-scale diffusion at the interfaces in organic spin valve thin films plays a vital role in controlling the performance of magneto-electronic devices. In the present work, it is shown that a thin layer of titanium dioxide at the interface of Co/Alq3 can act as a good diffusion barrier. The buried interfaces of Co/Alq3/Co organic spin valve thin film has been studied using x-ray standing waves technique. A planar waveguide is formed with Alq3 layer forming the cavity and Co layers as the walls of the waveguide. Precise information about diffusion of Co into Alq3 is obtained through excitation of the waveguide modes. It is found that the top Co layer diffuses deep into the Alq3 resulting in incorporation of 3.1% Co in the Alq3 layer. Insertion of a 1.7 nm thick barrier layer of TiO2 at Co/Alq3 interface results in a drastic reduction in the diffusion of Co into Alq3 to a value of only 0.4%. This suggests a better performance of organic spin valve with diffusion barrier of TiO2.
NASA Astrophysics Data System (ADS)
Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.
2017-10-01
We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.
Parametric excitation and squeezing in a many-body spinor condensate
Hoang, T. M.; Anquez, M.; Robbins, B. A.; Yang, X. Y.; Land, B. J.; Hamley, C. D.; Chapman, M. S.
2016-01-01
Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states. PMID:27044675
Parametric excitation and squeezing in a many-body spinor condensate
NASA Astrophysics Data System (ADS)
Hoang, T. M.; Anquez, M.; Robbins, B. A.; Yang, X. Y.; Land, B. J.; Hamley, C. D.; Chapman, M. S.
2016-04-01
Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states.
Huang, H. Y.; Jia, C. J.; Chen, Z. Y.; ...
2016-01-22
Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O8+δ. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast,more » the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors.« less
The impacts of the quantum-dot confining potential on the spin-orbit effect.
Li, Rui; Liu, Zhi-Hai; Wu, Yidong; Liu, C S
2018-05-09
For a nanowire quantum dot with the confining potential modeled by both the infinite and the finite square wells, we obtain exactly the energy spectrum and the wave functions in the strong spin-orbit coupling regime. We find that regardless of how small the well height is, there are at least two bound states in the finite square well: one has the σ x [Formula: see text] = -1 symmetry and the other has the σ x [Formula: see text] = 1 symmetry. When the well height is slowly tuned from large to small, the position of the maximal probability density of the first excited state moves from the center to x ≠ 0, while the position of the maximal probability density of the ground state is always at the center. A strong enhancement of the spin-orbit effect is demonstrated by tuning the well height. In particular, there exists a critical height [Formula: see text], at which the spin-orbit effect is enhanced to maximal.
Low Energy Spectrum of Proximate Kitaev Spin Liquid α -RuCl3 by Terahertz Spectroscopy
NASA Astrophysics Data System (ADS)
Little, Arielle; Wu, Liang; Kelley, Paige; Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Orenstein, Joseph
A Quantum Spin Liquid (QSL) is an ultra-quantum state of matter with no ordered ground state. Recently, a route to a QSL identified by Kitaev has received a great deal of attention. The compound α -RuCl3, in which Ru atoms form a honeycomb lattice, has been shown to possess Kitaev exchange interactions, although a smaller Heisenberg interaction exists and leads to a zig-zag antiferromagnetic state below 7 K. Because of proximity to the exactly-solvable Kitaev spin-liquid model, this material is considered a potential host for Majorana-like modes. In this work, we use time-domain terahertz (THz) Spectroscopy to probe the low-energy excitations of α -RuCl3. We observe the emergence of a sharp magnetic spin-wave absorption peak below the AFM ordering temperature at 7 K on top of a broad continuum that persists up to room temperature. Additionally we report the polarization dependence of the THz absorption, which reveals optical birefringence, indicating the presence of large monoclinic domains.
Controlling Gilbert damping in a YIG film using nonlocal spin currents
NASA Astrophysics Data System (ADS)
Haidar, M.; Dürrenfeld, P.; Ranjbar, M.; Balinsky, M.; Fazlali, M.; Dvornik, M.; Dumas, R. K.; Khartsev, S.; Åkerman, J.
2016-11-01
We demonstrate the control of Gilbert damping in 65-nm-thick yttrium iron garnet (YIG) films using a spin-polarized current generated by a direct current through a nanocontact, spin filtered by a thin Co layer. The magnetodynamics of both the YIG and the Co layers can be excited by a pulse-modulated microwave current injected through the nanocontact and the response detected as a lock-in amplified voltage over the device. The spectra show three clear peaks, two associated with the ferromagnetic resonance (FMR) in each layer, and an additional Co mode with a higher wave vector proportional to the inverse of the nanocontact diameter. By varying the sign and magnitude of the direct nanocontact current, we can either increase or decrease the linewidth of the YIG FMR peak consistent with additional positive or negative damping being exerted by the nonlocal spin current injected into the YIG film. Our nanocontact approach thus offers an alternative route in the search for auto-oscillations in YIG films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Thi Minh Hien; Sandilands, Luke J.; Sohn, C. H.
5d pyrochlore oxides with all-in-all-out magnetic order are prime candidates for realizing strongly correlated, topological phases of matter. Despite significant effort, a full understanding of all-in-all-out magnetism remains elusive as the associated magnetic excitations have proven difficult to access with conventional techniques. Here we report a Raman spectroscopy study of spin dynamics in the all-in-all-out magnetic state of the 5d pyrochlore Cd 2Os 2O 7. Through a comparison between the two-magnon scattering and spin-wave theory, we confirm the large single ion anisotropy in this material and show that the Dzyaloshinskii–Moriya and exchange interactions play a significant role in the spin-wavemore » dispersions. The Raman data also reveal complex spin–charge–lattice coupling and indicate that the metal–insulator transition in Cd 2Os 2O 7 is Lifshitz-type. In conclusion, our work establishes Raman scattering as a simple and powerful method for exploring the spin dynamics in 5d pyrochlore magnets.« less
Spin Josephson effect in topological superconductor-ferromagnet junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, C. D.; Wang, J., E-mail: jwang@seu.edu.cn
2014-03-21
The composite topological superconductor (TS), made of one-dimensional spin-orbit coupled nanowire with proximity-induced s-wave superconductivity, is not a pure p-wave superconductor but still has a suppressed s-wave pairing. We propose to probe the spin texture of the p-wave pairing in this composite TS by examining possible spin supercurrents in an unbiased TS/ferromagnet junction. It is found that both the exchange-coupling induced and spin-flip reflection induced spin currents exist in the setup and survive even in the topological phase. We showed that besides the nontrivial p-wave pairing state accounting for Majorana Fermions, there shall be a trivial p-wave pairing state thatmore » contributes to spin supercurrent. The trivial p-wave pairing state is diagnosed from the mixing effect between the suppressed s-wave pairing and the topologically nontrivial p-wave pairing. The d vector of the TS is proved not to be rigorously perpendicular to the spin projection of p-wave pairings. Our findings are also confirmed by the Kitaev's p-wave model with a nonzero s-wave pairing.« less
Quantum Phase Transitions and Collective Modes in d-Wave Superconductors
NASA Astrophysics Data System (ADS)
Vojta, Matthias; Sachdev, Subir
Fluctuations near second-order quantum phase transitions in d-wave superconductors can cause strong damping of fermionic excitations, as observed in photoemission experiments. The damping of the gapless nodal quasiparticles can arise naturally in the quantum-critical region of a transition with an additional spin-singlet, zero momentum order parameter; we argue that the transition to a dx^2-y^2+ i dxy pairing state is the most likely possibility in this category. On the other hand, the gapped antinodal quasiparticles can be strongly damped by the coupling to antiferromagnetic spin fluctuations arising from the proximity to a Neel-ordered state. We review some aspects of the low-energy field theories for both transitions and the corresponding quantum-critical behavior.In addition, we discuss the spectral properties of the collective modes associated with the proximity to a superconductor with dx^2-y^2+ i dxy symmetry, and implications for experiments.
Approaching soft X-ray wavelengths in nanomagnet-based microwave technology
Yu, Haiming; d' Allivy Kelly, O.; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Heimbach, F.; Grundler, D.
2016-01-01
Seven decades after the discovery of collective spin excitations in microwave-irradiated ferromagnets, there has been a rebirth of magnonics. However, magnetic nanodevices will enable smart GHz-to-THz devices at low power consumption only, if such spin waves (magnons) are generated and manipulated on the sub-100 nm scale. Here we show how magnons with a wavelength of a few 10 nm are exploited by combining the functionality of insulating yttrium iron garnet and nanodisks from different ferromagnets. We demonstrate magnonic devices at wavelengths of 88 nm written/read by conventional coplanar waveguides. Our microwave-to-magnon transducers are reconfigurable and thereby provide additional functionalities. The results pave the way for a multi-functional GHz technology with unprecedented miniaturization exploiting nanoscale wavelengths that are otherwise relevant for soft X-rays. Nanomagnonics integrated with broadband microwave circuitry offer applications that are wide ranging, from nanoscale microwave components to nonlinear data processing, image reconstruction and wave-based logic. PMID:27063401
Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen
2016-01-01
We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing. PMID:27151253
Spin-orbital fluctuations in the paramagnetic Mott insulator (V1-xCrx)2O3
NASA Astrophysics Data System (ADS)
Leiner, Jonathan; Stone, Matthew; Lumsden, Mark; Bao, Wei; Broholm, Collin
2015-03-01
The phase diagram of rhombohedral V2O3 features several distinct strongly correlated phases as a function of doping, pressure and temperature. When doped with chromium for 180 K
Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design
NASA Astrophysics Data System (ADS)
Wang, X. S.; Zhang, H. W.; Wang, X. R.
2018-02-01
Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device geometry and the details of magnetization structure, so the design and the scalability of the device or circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are used as information carriers, that do not suffer from conventional problems of magnonic devices with additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya interaction) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam splitters, and spin-wave interferometers are designed by using sample edges and domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust, reconfigurable and scalable spin-wave circuitry.
Spin-Orbital Excitations in Ca2 RuO4 Revealed by Resonant Inelastic X-Ray Scattering
NASA Astrophysics Data System (ADS)
Das, L.; Forte, F.; Fittipaldi, R.; Fatuzzo, C. G.; Granata, V.; Ivashko, O.; Horio, M.; Schindler, F.; Dantz, M.; Tseng, Yi; McNally, D. E.; Rønnow, H. M.; Wan, W.; Christensen, N. B.; Pelliciari, J.; Olalde-Velasco, P.; Kikugawa, N.; Neupert, T.; Vecchione, A.; Schmitt, T.; Cuoco, M.; Chang, J.
2018-01-01
The strongly correlated insulator Ca2 RuO4 is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K -edge resonant inelastic x-ray scattering study of the antiferromagnetic Mott insulating state of Ca2 RuO4 . A set of low-energy (about 80 and 400 meV) and high-energy (about 1.3 and 2.2 eV) excitations are reported, which show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band-Mott scenario and explore in detail the nature of its exotic excitations. Guided by theoretical modeling, we interpret the low-energy excitations as a result of composite spin-orbital excitations. Their nature unveils the intricate interplay of crystal-field splitting and spin-orbit coupling in the band-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by Hund's coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca2 RuO4 .
Reconfigurable nanoscale spin-wave directional coupler
Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V.
2018-01-01
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices. PMID:29376117
NASA Astrophysics Data System (ADS)
Chen, Jilei; Stueckler, Tobias; Zhang, Youguang; Zhao, Weisheng; Yu, Haiming; Chang, Houchen; Liu, Tao; Wu, Mingzhong; Liu, Chuanpu; Liao, Zhimin; Yu, Dapeng; Fert Beijing research institute Team; Colorado State University Team; Peking University Collaboration
Magnonics offers a new way to transport information using spin waves free of charge current and could lead to a new paradigm in the area of computing. Forward volume (FV) mode spin wave with perpendicular magnetized configuration is suitable for spin wave logic device because it is free of non-reciprocity effect. Here, we study FV mode spin wave propagation in YIG thin film with an ultra-low damping. We integrated differently designed antenna i.e., coplanar waveguide and micro stripline with different dimensions. The k vectors of the spin waves defined by the design of the antenna are calculated using Fourier transform. We show FV mode spin wave propagation results by measuring S12 parameter from vector network analyzer and we extract the group velocity of the FV mode spin wave as well as its dispersion relations.
Reconfigurable nanoscale spin-wave directional coupler.
Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V
2018-01-01
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices.
Growth and spin-wave properties of thin Y{sub 3}Fe{sub 5}O{sub 12} films on Si substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stognij, A. I.; Novitskii, N. N.; Lutsev, L. V., E-mail: l-lutsev@mail.ru
2015-07-14
We describe synthesis of submicron Y{sub 3}Fe{sub 5}O{sub 12} (YIG) films sputtered on Si substrates and present results of the investigation of ferromagnetic resonance (FMR) and spin waves in YIG/SiO{sub 2}/Si structures. It is found that decrease of the annealing time leads to essential reduction of the FMR linewidth ΔH and, consequently, to reduction of relaxation losses of spin waves. Spin-wave propagation in in-plane magnetized YIG/SiO{sub 2}/Si structures is studied. We observe the asymmetry of amplitude-frequency characteristics of the Damon-Eshbach spin waves caused by different localizations of spin waves at the free YIG surface and at the YIG/SiO{sub 2} interface.more » Growth of the generating microwave power leads to spin-wave instability and changes amplitude-frequency characteristics of spin waves.« less
Photodissociation of N2O: triplet states and triplet channel.
Schinke, R; Schmidt, J A; Johnson, M S
2011-11-21
The role of triplet states in the UV photodissociation of N(2)O is investigated by means of quantum mechanical wave packet calculations. Global potential energy surfaces are calculated for the lowest two (3)A' and the lowest two (3)A'' states at the multi-reference configuration interaction level of electronic structure theory using the augmented valence quadruple zeta atomic basis set. Because of extremely small transition dipole moments with the ground electronic state, excitation of the triplet states has only a marginal effect on the far red tail of the absorption cross section. The calculations do not show any hint of an increased absorption around 280 nm as claimed by early experimental studies. The peak observed in several electron energy loss spectra at 5.4 eV is unambiguously attributed to the lowest triplet state 1(3)A'. Excitation of the 2(1)A' state and subsequent transition to the repulsive branch of the 2(3)A'' state at intermediate NN-O separations, promoted by spin-orbit coupling, is identified as the main pathway to the N(2)((1)Σ(g)(+))+O((3)P) triplet channel. The yield, determined in two-state wave packet calculations employing calculated spin-orbit matrix elements, is 0.002 as compared to 0.005 ± 0.002 measured by Nishida et al. [J. Phys. Chem. A 108, 2451 (2004)].
Spin-dependent excitation of plasma modes in non-neutral ion plasmas
NASA Astrophysics Data System (ADS)
Sawyer, Brian C.; Britton, Joe W.; Bollinger, John J.
2011-10-01
We report on a new technique for exciting and sensitively detecting plasma modes in small, cold non-neutral ion plasmas. The technique uses an optical dipole force generated from laser beams to excite plasma modes. By making the force spin- dependent (i.e. depend on the internal state of the atomic ion) very small mode excitations (<100 nm) can be detected through spin-motion entanglement. Even when the optical dipole force is homogeneous throughout the plasma, short wavelength modes on the order of the interparticle spacing can in principle be excited and detected through the spin dependence of the force. We use this technique to study the drumhead modes of single plane triangular arrays of a few hundred Be+ ions. Spin-dependent mode excitation is interesting in this system because it provides a means of engineering an Ising interaction on a 2-D triangular lattice. For the case of an anti-ferromagnetic interaction, this system exhibits spin frustration on a scale that is at present computationally intractable. Work supported by the DARPA OLE program and NIST.
NASA Astrophysics Data System (ADS)
Kruglyak, V. V.; Demokritov, S. O.; Grundler, D.
2010-07-01
The study of collective spin excitations in magnetically ordered materials (so-called spin waves and the associated quasi-particles—magnons) has a successful history of more than 60 years. Recently, it has re-emerged in a new aspect under the name of magnonics, although the exact definition of its scope is still a subject for debate. However, it is widely accepted that the recent renaissance of interest in spin waves has been driven by three major factors: the rapid advance of nanotechnology, the development of new experimental techniques for studying high-frequency magnetization dynamics and the promise of a new generation of functional magnetic field controlled devices in which spin waves (magnons) would be employed, in particular to carry and process information. Furthermore, the growing interest in man-made 'crystals', such as those already realized in photonics, electronics and plasmonics, has served as a further strong catalyst for the development of so-called magnonic crystals. Magnonics as a research field is currently gaining momentum, attracting more and more researchers from various sub-fields of magnetism, materials science, microwave engineering, and beyond. Hence, it is timely to define the state of the art of this exciting research field emerging at the interface between magnetism and nanoscience. The first magnonics conference, entitled 'Magnonics: From Fundamentals to Applications' was held in Dresden in August 2009, sponsored by the visitor programme of the Max Planck Institute for the Physics of Complex Systems (MPIPKS). The event was a great success, having achieved its main aim of forming a community of magnonics researchers. It brought together both experts who held worldwide leading positions in nanomagnetism and spin wave research, and younger researchers just entering the field. The research results presented ranged from fundamental magnonic properties to their application in information technologies. The main scientific result of the conference in the broader sense was the emergence of magnonics as a sister field in the family of functional nanomaterials that also includes electronics, photonics, phononics, plasmonics etc. The presentations helped to define the state of the art and to highlight perspectives of the field. The conference led to the idea of publishing this cluster of papers aimed at reviewing the history of and the recent progress in magnonics. The cluster begins with a contribution from Kruglyak et al who aim to define the general scope and concepts of magnonics as a research field [1]. Serga et al review the state of the art in studies of spin waves in yttrium iron garnet (YIG) samples, which—due to the exceptionally low magnetic losses—have been the most popular and extensively investigated so far [2]. Gubbiotti et al review their recent experiments in which the magnonic band gap spectrum was observed in planar metallic magnonic crystals with submicrometre periods [3]. Kim demonstrates how numerical simulations can be used to investigate a wide range of magnonic phenomena in truly magnetic nanostructures, which still remains a challenge for modern experiments [4]. Finally, Khitun et al discuss the prospects and challenges for the creation of magnonic logic devices [5]. As with any dynamic research field, the reviews are inevitably incomplete. Nonetheless, we hope that the cluster of papers will stimulate further progress in magnonics and will provide a useful starting point for researchers newly entering this challenging and exciting research field. References [1] Kruglyak V V, Demokritov S O and Grundler J 2010 J. Phys. D: Appl. Phys.43 264001 [2] Serga A A, Chumak A V and Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 264002 [3] Gubbiotti G, Tacchi S, Madami M, Carlotti G, Adeyeye A O and Kostylev M 2010 J. Phys. D: Appl. Phys. 43 264003 [4] Kim S-K 2010 J. Phys. D: Appl. Phys. 43 264004 [5] Khitun A, Bao M and Wang K L 2010 J. Phys. D: Appl. Phys. 43 264005
Spin wave amplification using the spin Hall effect in permalloy/platinum bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladii, O.; Henry, Y.; Bailleul, M.
2016-05-16
We investigate the effect of an electrical current on the attenuation length of a 900 nm wavelength spin-wave in a permalloy/Pt bilayer using propagating spin-wave spectroscopy. The modification of the spin-wave relaxation rate is linear in current density, reaching up to 14% for a current density of 2.3 × 10{sup 11} A/m{sup 2} in Pt. This change is attributed to the spin transfer torque induced by the spin Hall effect and corresponds to an effective spin Hall angle of 0.13, which is among the highest values reported so far. The spin Hall effect thus appears as an efficient way of amplifying/attenuating propagating spin waves.
Interlaced spin grating for optical wave filtering
NASA Astrophysics Data System (ADS)
Linget, H.; Chanelière, T.; Le Gouët, J.-L.; Berger, P.; Morvan, L.; Louchet-Chauvet, A.
2015-02-01
Interlaced spin grating is a scheme for the preparation of spectrospatial periodic absorption gratings in an inhomogeneously broadened absorption profile. It relies on the optical pumping of atoms in a nearby long-lived ground state sublevel. The scheme takes advantage of the sublevel proximity to build large contrast gratings with unlimited bandwidth and preserved average optical depth. It is particularly suited to Tm-doped crystals in the context of classical and quantum signal processing. In this paper, we study the optical pumping dynamics at play in an interlaced spin grating and describe the corresponding absorption profile shape in an optically thick atomic ensemble. We show that, in Tm:YAG, the diffraction efficiency of such a grating can reach 18.3 % in the small-angle and 11.6 % in the large-angle configuration when the excitation is made of simple pulse pairs, considerably outperforming conventional gratings.
Field-induced States and Excitations in the Quasicritical Spin-1 /2 Chain Linarite
NASA Astrophysics Data System (ADS)
Cemal, Eron; Enderle, Mechthild; Kremer, Reinhard K.; Fâk, Björn; Ressouche, Eric; Goff, Jon P.; Gvozdikova, Mariya V.; Zhitomirsky, Mike E.; Ziman, Tim
2018-02-01
The mineral linarite, PbCuSO4(OH )2 , is a spin-1 /2 chain with frustrating nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic exchange interactions. Our inelastic neutron scattering experiments performed above the saturation field establish that the ratio between these exchanges is such that linarite is extremely close to the quantum critical point between spin-multipolar phases and the ferromagnetic state. We show that the predicted quantum multipolar phases are fragile and actually suppressed by a tiny orthorhombic exchange anisotropy and weak interchain interactions in favor of a dipolar fan phase. Including this anisotropy in classical simulations of a nearly critical model explains the field-dependent phase sequence of the phase diagram of linarite, its strong dependence of the magnetic field direction, and the measured variations of the wave vector as well as the staggered and the uniform magnetizations in an applied field.
NASA Astrophysics Data System (ADS)
Chiu, Ying-Nan; Chiu, Lue-Yung Chow
1990-02-01
The spin-forbidden photo-ionization of diatomic molecules is proposed. Spin orbit interaction is invoked, resulting in the correction and mixing of the wave functions of different multiplicities. The rotation-electronic selection rules given by Dixit and McKoy (1986) for Hund's case a based on the conventional mechanism of electric dipole transition are rederived and expressed in a different format. This new format permits the generalization of the selection rules to other photoionization transitions caused by the magnetic dipole, the electric quadrupole, and the two- and three-photon operators. These selection rules, which are for transitions from one specific rotational level of a given Kronig reflection symmetry to another, will help understand rotational branching and the dynamics of interaction in the excited state. They will also help in the selective preparation of well-defined rovibronic states in resonant-enhanced multi-photon ionization processes.
Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M
2017-07-18
Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soh, Wee Tee, E-mail: a0046479@u.nus.edu; Ong, C. K.; Peng, Bin
2015-08-15
The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-localmore » SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO{sub 2} spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.« less
Resonant tunneling of spin-wave packets via quantized states in potential wells.
Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O
2007-09-21
We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.
Current-induced modulation of backward spin-waves in metallic microstructures
NASA Astrophysics Data System (ADS)
Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji
2017-03-01
We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m-2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m-2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.
Acharyya, Muktish
2017-07-01
The spin wave interference is studied in two dimensional Ising ferromagnet driven by two coherent spherical magnetic field waves by Monte Carlo simulation. The spin waves are found to propagate and interfere according to the classic rule of interference pattern generated by two point sources. The interference pattern of spin wave is observed in one boundary of the lattice. The interference pattern is detected and studied by spin flip statistics at high and low temperatures. The destructive interference is manifested as the large number of spin flips and vice versa.
NASA Astrophysics Data System (ADS)
Li, Chuan-Hsun; Blasing, David; Chen, Yong
2017-04-01
In cold atom systems, spin excitations have been shown to be a sensitive probe of interactions and quantum statistical effects, and can be used to study spin transport in both Fermi and Bose gases. In particular, spin-dipole mode (SDM) is a type of excitation that can generate a spin current without a net mass current. We present recent measurements and analysis of SDM in a disorder-free, interacting three-dimensional (3D) 87Rb Bose-Einstein condensate (BEC) by applying spin-dependent synthetic electric fields to actuate head-on collisions between two BECs of different spin states. We experimentally study and compare the behaviors of the system following SDM excitations in the presence as well as absence of synthetic 1D spin-orbit coupling (SOC). We find that in the absence of SOC, SDM is relatively weakly damped, accompanied with collision-induced thermalization which heats up the atomic cloud. However, in the presence of SOC, we find that SDM is more strongly damped with reduced thermalization, and observe excitation of a quadrupole mode that exhibits BEC shape oscillation even after SDM is damped out. Such a mode conversion bears analogies with the Beliaev coupling process or the parametric frequency down conversion of light in nonlinear optics.
RARE/Turbo Spin Echo Imaging with Simultaneous MultiSlice Wave-CAIPI
Eichner, Cornelius; Bhat, Himanshu; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin
2014-01-01
Purpose To enable highly accelerated RARE/Turbo Spin Echo (TSE) imaging using Simultaneous MultiSlice (SMS) Wave-CAIPI acquisition with reduced g-factor penalty. Methods SMS Wave-CAIPI incurs slice shifts across simultaneously excited slices while playing sinusoidal gradient waveforms during the readout of each encoding line. This results in an efficient k-space coverage that spreads aliasing in all three dimensions to fully harness the encoding power of coil sensitivities. The novel MultiPINS radiofrequency (RF) pulses dramatically reduce the power deposition of multiband (MB) refocusing pulse, thus allowing high MB factors within the Specific Absorption Rate (SAR) limit. Results Wave-CAIPI acquisition with MultiPINS permits whole brain coverage with 1 mm isotropic resolution in 70 seconds at effective MB factor 13, with maximum and average g-factor penalties of gmax=1.34 and gavg=1.12, and without √R penalty. With blipped-CAIPI, the g-factor performance was degraded to gmax=3.24 and gavg=1.42; a 2.4-fold increase in gmax relative to Wave-CAIPI. At this MB factor, the SAR of the MultiBand and PINS pulses are 4.2 and 1.9 times that of the MultiPINS pulse, while the peak RF power are 19.4 and 3.9 times higher. Conclusion Combination of the two technologies, Wave-CAIPI and MultiPINS pulse, enables highly accelerated RARE/TSE imaging with low SNR penalty at reduced SAR. PMID:25640187
Electron spin resonance for the detection of long-range spin nematic order
NASA Astrophysics Data System (ADS)
Furuya, Shunsuke C.; Momoi, Tsutomu
2018-03-01
Spin nematic phase is a quantum magnetic phase characterized by a quadrupolar order parameter. Since the quadrupole operators are directly coupled to neither the magnetic field nor the neutron, currently, it is an important issue to develop a method for detecting the long-range spin nematic order. In this paper, we propose that electron spin resonance (ESR) measurements enable us to detect the long-range spin nematic order. We show that the frequency of the paramagnetic resonance peak in the ESR spectrum is shifted by the ferroquadrupolar order parameter together with other quantities. The ferroquadrupolar order parameter is extractable from the angular dependence of the frequency shift. In contrast, the antiferroquadrupolar order parameter is usually invisible in the frequency shift. Instead, the long-range antiferroquadrupolar order yields a characteristic resonance peak in the ESR spectrum, which we call a magnon-pair resonance peak. This resonance corresponds to the excitation of the bound magnon pair at the wave vector k =0 . Reflecting the condensation of bound magnon pairs, the field dependence of the magnon-pair resonance frequency shows a singular upturn at the saturation field. Moreover, the intensity of the magnon-pair resonance peak shows a characteristic angular dependence and it vanishes when the magnetic field is parallel to one of the axes that diagonalize the weak anisotropic interactions. We confirm these general properties of the magnon-pair resonance peak in the spin nematic phase by studying an S =1 bilinear-biquadratic model on the square lattice in the linear flavor-wave approximation. In addition, we argue applications to the S =1/2 frustrated ferromagnets and also the S =1/2 orthogonal dimer spin system SrCu2(BO3)2, both of which are candidate materials of spin nematics. Our theory for the antiferroquadrupolar ordered phase is consistent with many features of the magnon-pair resonance peak experimentally observed in the low-magnetization regime of SrCu2(BO3)2.
Probing the excited subband dispersion of holes confined to GaAs wide quantum wells
NASA Astrophysics Data System (ADS)
Jo, Insun; Liu, Yang; Deng, H.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Winkler, R.
Owing to the strong spin-orbit coupling and their large effective mass, the two-dimensional (2D) holes in modulation-doped GaAs quantum wells provide a fertile test bed to study the rich physics of low-dimensional systems. In a wide quantum well, even at moderate 2D densities, the holes start to occupy the excited subband, a subband whose dispersion is very unusual and has a non-monotonic dependence on the wave vector. Here, we study a 2D hole system confined to a 40-nm-thick (001) GaAs quantum well and demonstrate that, via the application of both front and back gates, the density can be tuned in a wide range, between ~1 and 2 ×1011 cm-2. Using Fourier analysis of the low-field Shubnikov-de Haas oscillations, we investigate the population of holes and the spin-orbit interaction induced spin-splitting in different subbands. We discuss the results in light of self-consistent quantum calculations of magneto-oscillations. Work support by the DOE BES (DE-FG02-00-ER45841), the NSF (Grants DMR-1305691 and MRSEC DMR-1420541), the Gordon and Betty Moore Foundation (Grant GBMF4420), and Keck Foundation for experiments, and the NSF Grant DMR-1310199 for calculations.
Brächer, T.; Heussner, F.; Pirro, P.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Serga, A. A.; Hillebrands, B.
2016-01-01
Magnonic spin currents in the form of spin waves and their quanta, magnons, are a promising candidate for a new generation of wave-based logic devices beyond CMOS, where information is encoded in the phase of travelling spin-wave packets. The direct readout of this phase on a chip is of vital importance to couple magnonic circuits to conventional CMOS electronics. Here, we present the conversion of the spin-wave phase into a spin-wave intensity by local non-adiabatic parallel pumping in a microstructure. This conversion takes place within the spin-wave system itself and the resulting spin-wave intensity can be conveniently transformed into a DC voltage. We also demonstrate how the phase-to-intensity conversion can be used to extract the majority information from an all-magnonic majority gate. This conversion method promises a convenient readout of the magnon phase in future magnon-based devices. PMID:27905539
Effects of cluster-shell competition and BCS-like pairing in 12C
NASA Astrophysics Data System (ADS)
Matsuno, H.; Itagaki, N.
2017-12-01
The antisymmetrized quasi-cluster model (AQCM) was proposed to describe α-cluster and jj-coupling shell models on the same footing. In this model, the cluster-shell transition is characterized by two parameters, R representing the distance between α clusters and Λ describing the breaking of α clusters, and the contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α-cluster model wave function. Not only the closure configurations of the major shells but also the subclosure configurations of the jj-coupling shell model can be described starting with the α-cluster model wave functions; however, the particle-hole excitations of single particles have not been fully established yet. In this study we show that the framework of AQCM can be extended even to the states with the character of single-particle excitations. For ^{12}C, two-particle-two-hole (2p2h) excitations from the subclosure configuration of 0p_{3/2} corresponding to a BCS-like pairing are described, and these shell model states are coupled with the three α-cluster model wave functions. The correlation energy from the optimal configuration can be estimated not only in the cluster part but also in the shell model part. We try to pave the way to establish a generalized description of the nuclear structure.
Orientation observed by Zeeman spectra of dissociated atoms and the interference in photoexcitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Yasuyuki; Kasahara, Shunji; Kato, Hajime
2003-06-01
In a magnetic field, the wave number of a pump laser light polarized along the field was fixed to the isolated Cs{sub 2}D {sup 1}{sigma}{sub u}{sup +}(v=46, J=54)(leftarrow)X {sup 1}{sigma}{sub g}{sup +}(v=0, J=55) line, and the excitation spectrum of the dissociated Cs(6p {sup 2}P{sub 3/2}) atoms was measured by scanning the wave number of a probe laser light polarized perpendicular to the field. The population of each sublevel 6p {sup 2}P{sub 3/2,m{sub j}} of the dissociated atoms was determined from the line intensities in the m{sub j}-resolved excitation spectrum. The unequal population between the 6p {sup 2}P{sub 3/2,+verticalbarm{sub j}}{sub verticalbar}more » and 6p {sup 2}P{sub 3/2,-verticalbarm{sub j}}{sub verticalbar} levels (atomic orientation) was observed and it was enhanced as the magnetic-field strength was increased. The atomic orientation is shown to be induced by the interference between the indirect predissociation, which occurs by a combination of the spin-orbit coupling of the D {sup 1}{sigma}{sub u}{sup +} state with the (2){sup 3}{pi}{sub 0u} state and the L-uncoupling and Zeeman interactions between the (2){sup 3}{pi}{sub 0u} and dissociative (2){sup 3}{sigma}{sub u}{sup +} states, and the dissociation following a direct excitation to the (2){sup 3}{sigma}{sub u}{sup +} state, which is allowed by spin-orbit coupling of the (2){sup 3}{sigma}{sub u}{sup +} state with the B {sup 1}{pi}{sub u} state. It is demonstrated that the atomic orientation is produced by the photodissociation in the presence of an external magnetic field even when all degenerated molecular M=J,...,0,...,-J sublevels are excited by a light polarized linearly along the field.« less
Spin-wave-driven high-speed domain-wall motions in soft magnetic nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jaehak; Yoo, Myoung-Woo; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr
We report on a micromagnetic simulation study of interactions between propagating spin waves and a head-to-head domain wall in geometrically confined magnetic nanotubes. We found that incident spin waves of specific frequencies can lead to sufficiently high-speed (on the order of a few hundreds of m/s or higher) domain-wall motions in the same direction as that of the incident spin-waves. The domain-wall motions and their speed vary remarkably with the frequency and the amplitude of the incident spin-waves. High-speed domain-wall motions originate from the transfer torque of spin waves' linear momentum to the domain wall, through the partial or completemore » reflection of the incident spin waves from the domain wall. This work provides a fundamental understanding of the interaction of the spin waves with a domain wall in the magnetic nanotubes as well as a route to all-magnetic control of domain-wall motions in the magnetic nanoelements.« less
Rotational Spectroscopy of the NH3-H2 Molecular Complex
NASA Astrophysics Data System (ADS)
Surin, L. A.; Tarabukin, I. V.; Schlemmer, S.; Breier, A. A.; Giesen, T. F.; McCarthy, M. C.; van der Avoird, A.
2017-03-01
We report the first high resolution spectroscopic study of the NH3-H2 van der Waals molecular complex. Three different experimental techniques, a molecular beam Fourier transform microwave spectrometer, a millimeter-wave intracavity jet OROTRON spectrometer, and a submillimeter-wave jet spectrometer with multipass cell, were used to detect pure rotational transitions of NH3-H2 in the wide frequency range from 39 to 230 GHz. Two nuclear spin species, (o)-NH3-(o)-H2 and (p)-NH3-(o)-H2, have been assigned as carriers of the observed lines on the basis of accompanying rovibrational calculations performed using the ab initio intermolecular potential energy surface (PES) of Maret et al. The experimental spectra were compared with the theoretical bound state results, thus providing a critical test of the quality of the NH3-H2 PES, which is a key issue for reliable computations of the collisional excitation and de-excitation of ammonia in the dense interstellar medium.
Non-integral-spin bosonic excitations in untextured magnets
NASA Astrophysics Data System (ADS)
Kamra, Akashdeep; Agrawal, Utkarsh; Belzig, Wolfgang
Interactions are responsible for intriguing physics, e.g. emergence of exotic ground states and excitations, in a wide range of systems. Here we theoretically demonstrate that dipole-dipole interactions lead to bosonic eigen-excitations with spin ranging from zero to above ℏ in magnets with uniformly magnetized ground states. These exotic excitations can be interpreted as quantum coherent conglomerates of magnons, the eigen-excitations when the dipolar interactions are disregarded. We further find that the eigenmodes in an easy-axis antiferromagnet are spin-zero quasiparticles instead of the widely believed spin +/- ℏ magnons. The latter re-emerge when the symmetry is broken by a sufficiently large applied magnetic field. The spin greater than ℏ is accompanied by vacuum fluctuations and may be considered a weak form of frustration. We acknowledge financial support from the Alexander von Humboldt Foundation and the DFG through SFB 767.
Novel phase transitions in coupled dipolar chains.
NASA Astrophysics Data System (ADS)
Mellado, Paula
We study the properties of a classical magnetic system realized by two chains of U(1) rotors coupled via Coulomb interactions in the dumbbell approach. Magnets in chain I and chain II rotate in the x-z and y-z planes respectively. Ground state correlations and the system wave excitation spectrum are found using spin wave theory. The displacement ''d'' of chain II from chain I induces dynamics in the system and yields two first order magnetic phase transitions. The transitions happen at critical displacements, which notably, are independent of the magnetic charge at the tips of the magnets, suggesting a geometrical origin. This work was supported by Fondecyt under Grant No. 1160239.
Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; ...
2016-08-25
Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN –) ligands and one 2,2'-bipyridine (bpy) ligand. This enablesmore » MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN) 4(bpy)] 2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN) 4(bpy)] 2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine) 3] 2+ by more than two orders of magnitude.« less
NASA Astrophysics Data System (ADS)
Lopez, Martin; Batta, Aldo; Ramírez-Ruiz, Enrico
2018-01-01
Globular clusters have about a thousand times denser stellar environments than our Milky Way. This crowded setting leads to many interactions between inhabitants of the cluster and the formation of a whole myriad of exotic objects. One such object is a binary system that forms which is composed of two stellar mass black holes (BHs). Due to the recent detection of gravitational waves (GWs), we know that some of these BH binaries (BHBs) are able to merge. Upon coalescence, BHBs produce GW signals that can be measured by the Laser Interferometer Gravitational-Wave Observatory (LIGO) group on Earth. Spin is one such parameter that LIGO can estimate from the type of signals they observe and as such can be used to constrain their production site. After these BHBs are assembled in dense stellar systems they can continue to interact with other members, either through tidal interactions or physical collisions. When a BHB tidally disrupts a star, a significant fraction of the debris can be accreted by the binary, effectively altering the spin of the BH members. Therefore, although a dynamically formed BHB will initially have low randomly aligned spins, through these types of interactions their birth spins can be significantly altered both in direction and magnitude. We have used a Lagrangian 3D Smoothed Particle Hydrodynamics (SPH) code GADGET-3 to simulate these interactions. Our results allow us to understand whether accretion from a tidal disruption event can significantly alter the birth properties of dynamically assembled BHBs such as spin, mass, and orbital attributes. The implications of these results will help us constrain the properties of BHBs in dense stellar systems in anticipation of an exciting decade ahead of us.
Ghandi, Khashayar; Clark, Ian P; Lord, James S; Cottrell, Stephen P
2007-01-21
This study introduces laser-muon spin spectroscopy in the liquid phase, which extends muonium chemistry in liquids to the realm of excited states and enables the detection of muoniated molecules by their spin evolution after laser excitation. This leads to new opportunities to study the Kinetic Isotope Effects (KIEs) of muonium/atomic hydrogen reactions and to probe transient chemistry in radiolysis processes involved in muonium formation, as well as muoniated intermediates in excited states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verba, Roman, E-mail: verrv@ukr.net; Tiberkevich, Vasil; Slavin, Andrei
2015-09-14
The influence of the interfacial Dzyaloshinskii-Moriya interaction (IDMI) on the parametric amplification of spin waves propagating in ultrathin ferromagnetic film is considered theoretically. It is shown that the IDMI changes the relation between the group velocities of the signal and idler spin waves in a parametric amplifier, which may result in the complete vanishing of the reversed idler wave. In the optimized case, the idler spin wave does not propagate from the pumping region at all, which increases the efficiency of the amplification of the signal wave and suppresses the spurious impact of the idler waves on neighboring spin-wave processingmore » devices.« less
Magnetic Field Dependence of Excitations Near Spin-Orbital Quantum Criticality
NASA Astrophysics Data System (ADS)
Biffin, A.; Rüegg, Ch.; Embs, J.; Guidi, T.; Cheptiakov, D.; Loidl, A.; Tsurkan, V.; Coldea, R.
2017-02-01
The spinel FeSc2 S4 has been proposed to realize a near-critical spin-orbital singlet (SOS) state, where entangled spin and orbital moments fluctuate in a global singlet state on the verge of spin and orbital order. Here we report powder inelastic neutron scattering measurements that observe the full bandwidth of magnetic excitations and we find that spin-orbital triplon excitations of an SOS state can capture well key aspects of the spectrum in both zero and applied magnetic fields up to 8.5 T. The observed shift of low-energy spectral weight to higher energies upon increasing applied field is naturally explained by the entangled spin-orbital character of the magnetic states, a behavior that is in strong contrast to spin-only singlet ground state systems, where the spin gap decreases upon increasing applied field.
Influence of the Verwey Transition on the Spin-Wave Dispersion of Magnetite
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQueeny, R. J.; Yethiraj, Mohana; Montfrooij, W.
Inelastic neutron-scattering measurements of the spin-wave spectrum of magnetite (Fe{sub 3}O{sub 4}) that shed new light on the Verwey transition problem are presented. Above the Verwey transition, the spin waves can fit a simple Heisenberg model. Below TV, a large gap (8?meV) forms in the acoustic spin-wave branch at q = (0,0,1/2) and E = 43?meV. Heisenberg models with large unit cells were used to examine the spin waves when the superexchange is modified to reflect the crystallographic symmetry lowering due to either atomic distortions or charge ordering and find that neither of these models predicts the spin-wave gap.
Full control of the spin-wave damping in a magnetic insulator using spin orbit torque
NASA Astrophysics Data System (ADS)
Klein, Olivier
2015-03-01
The spin-orbit interaction (SOI) has been an interesting and useful addition in the field of spintronics by opening it to non-metallic magnet. It capitalizes on adjoining a strong SOI normal metal next to a thin magnetic layer. The SOI converts a charge current, Jc, into a spin current, Js, with an efficiency parametrized by ΘSH, the spin Hall angle. An important benefit of the SOI is that Jc and Js are linked through a cross-product, allowing a charge current flowing in-plane to produce a spin current flowing out-of-plane. Hence it enables the transfer of spin angular momentum to non-metallic materials and in particular to insulating oxides, which offer improved performance compared to their metallic counterparts. Among all oxides, Yttrium Iron Garnet (YIG) holds a special place for having the lowest known spin-wave (SW) damping factor. Until recently the transmission of spin current through the YIG|Pt interface has been subject to debate. While numerous experiments have reported that Js produced by the excitation of ferromagnetic resonance (FMR) in YIG can cross efficiently the YIG|Pt interface and be converted into Jc in Pt through the inverse spin Hall effect (ISHE), most attempts to observe the reciprocal effect, where Js produced in Pt by the direct spin Hall effect (SHE) is transferred to YIG, resulting in damping compensation, have failed. This has been raising fundamental questions about the reciprocity of the spin transparency of the interface between a metal and a magnetic insulator. In this talk it will be demonstrated that the threshold current for damping compensation can be reached in a 5 μm diameter YIG(20nm)|Pt(7nm) disk. Reduction of both the thickness and lateral size of a YIG-structure were key to reach the microwave generation threshold current, Jc*. The experimental evidence rests upon the measurement of the ferromagnetic resonance linewidth as a function of Idc using a magnetic resonance force microscope (MRFM). It is shwon that the magnetic losses of spin-wave modes existing in the magnetic insulator can be reduced or enhanced by at least a factor of five depending on the polarity and intensity of the in-plane dc current, Idc. Complete compensation of the damping of the fundamental mode by spin-orbit torque is reached for a current density of ~ 3 .1011 A.m-2, in agreement with theoretical predictions. At this critical threshold the MRFM detects a small change of static magnetization, a behavior consistent with the onset of an auto-oscillation regime. This result opens up a new area of research on the electronic control of the damping of YIG-nanostructures.
Electrodynamics in cylindrical symmetry in the magnetic plasma state
NASA Astrophysics Data System (ADS)
López-Bara, F. I.; López-Aguilar, F.
2018-05-01
Excited states in magnetic structures of the so-called spin-ices and in some artificial magnetic materials present a behaviour as being a magnetic neutral plasma. In this state the electromagnetic waves in confined systems (waveguides) filled with materials with magnetic charges are able to transmit information and energy. In the natural spin-ices, the difficulty is the very low temperature for which these magnetic entities appear, whose phenomenology under the electromagnetic interaction is that of solids containing magnetic charges. However, similar behaviour may be present in other compounds at higher temperatures, even at room temperature and they are named artificial spin-ice compounds. This analysis is addressed to obtain theoretical results about magnetic responses and frequency-dependent magnetricity. The key physical magnitudes are the plasmon frequency () which is related to the cut-off frequency in a wave guide and the effective inertial masses () of these magnetic charges. All properties of the electromagnetic propagation in these compounds with effective magnetic monopoles depend on and m. This is carried out including the dissipative forces among magnetic charges which give new characteristic features to the electromagnetic propagation. The main goal of this work is the analysis of these electromagnetic properties in order to find possible circuital applications of these materials to be utilized by devices.
Clarification of the different roles of surface anisotropy for thermal spin waves and FMR modes
NASA Astrophysics Data System (ADS)
Rado, G. T.; Walker, J. C.
1982-11-01
Measurements by Mössbauer spectroscopy of the position dependence of the hyperfine field in monocrystalline iron films show that the fractional deviation of the spontaneous magnetization at temperature T from its value at T=0 K is larger by a factor of about two at a film surface than in the film's interior. This result agrees with an early theoretical prediction of a factor of exactly two which is based on the assumption that the surface anisotropy is zero. In contrast, the results of recent ferromagnetic resonance experiments on ultra-thin films of monocrystalline iron were shown to be dominated by a surface anistropy which is nonzero. This discrepancy is reconciled for measurements at T=300 K by making use of the general boundary condition which contains the exchange stiffness A and some component(s) of the surface anisotropy Ksurf. The crucial argument is that at 300 K the thermally excited spin wavelengths are so short that at the film surfaces the normal derivative 2A∂m↘/∂n of the oscillating magnetization m↘ is very much larger than Ksurfm↘. Thus Ksurfm↘ is neglible for thermal spin waves even though it is comparable to 2A∂m↘/∂n for the long decay distances (or wavelengths) occurring in ferromagnetic resonance.
Structure of spin excitations in heavily electron-doped Li 0.8Fe 0.2ODFeSe superconductors
Pan, Bingying; Shen, Yao; Hu, Die; ...
2017-07-25
Heavily electron-doped iron-selenide high-transition-temperature (high-T c) superconductors, which have no hole Fermi pockets, but have a notably high T c, have challenged the prevailing s± pairing scenario originally proposed for iron pnictides containing both electron and hole pockets. The microscopic mechanism underlying the enhanced superconductivity in heavily electron-doped iron-selenide remains unclear. Here, we used neutron scattering to study the spin excitations of the heavily electron-doped iron-selenide material Li 0.8Fe 0.2ODFeSe (T c = 41 K). Our data revealed nearly ring-shaped magnetic resonant excitations surrounding (π, π) at ~21 meV. As the energy increased, the spin excitations assumed a diamond shape,more » and they dispersed outward until the energy reached ~60 meV and then inward at higher energies. The observed energy-dependent momentum structure and twisted dispersion of spin excitations near (π, π) are analogous to those of hole-doped cuprates in several aspects, thus implying that such spin excitations are essential for the remarkably high T c in these materials.« less
Min, J; Ziurys, L M
2016-05-14
Pure rotational spectroscopy of the CrC (X(3)Σ(-)) and CrCCH (X̃ (6)Σ(+)) radicals has been conducted using millimeter/sub-millimeter direct absorption methods in the frequency range 225-585 GHz. These species were created in an AC discharge of Cr(CO)6 and either methane or acetylene, diluted in argon. Spectra of the CrCCD were also recorded for the first time using deuterated acetylene as the carbon precursor. Seven rotational transitions of CrC were measured, each consisting of three widely spaced, fine structure components, arising from spin-spin and spin-rotation interactions. Eleven rotational transitions were recorded for CrCCH and five for CrCCD; each transition in these cases was composed of a distinct fine structure sextet. These measurements confirm the respective (3)Σ(-) and (6)Σ(+) ground electronic states of these radicals, as indicated from optical studies. The data were analyzed using a Hund's case (b) Hamiltonian, and rotational, spin-spin, and spin-rotation constants have been accurately determined for all three species. The spectroscopic parameters for CrC were significantly revised from previous optical work, while those for CrCCH are in excellent agreement; completely new constants were established for CrCCD. The chromium-carbon bond length for CrC was calculated to be 1.631 Å, while that in CrCCH was found to be rCr-C = 1.993 Å - significantly longer. This result suggests that a single Cr-C bond is present in CrCCH, preserving the acetylenic structure of the ligand, while a triple bond exists in CrC. Analysis of the spin constants suggests that CrC has a nearby excited (1)Σ(+) state lying ∼16 900 cm(-1) higher in energy, and CrCCH has a (6)Π excited state with E ∼ 4800 cm(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz’menkov, L.S., E-mail: lsk@phys.msu.ru
We consider quantum plasmas of electrons and motionless ions. We describe separate evolution of spin-up and spin-down electrons. We present corresponding set of quantum hydrodynamic equations. We assume that plasmas are placed in an uniform external magnetic field. We account different occupation of spin-up and spin-down quantum states in equilibrium degenerate plasmas. This effect is included via equations of state for pressure of each species of electrons. We study oblique propagation of longitudinal waves. We show that instead of two well-known waves (the Langmuir wave and the Trivelpiece–Gould wave), plasmas reveal four wave solutions. New solutions exist due to bothmore » the separate consideration of spin-up and spin-down electrons and different occupation of spin-up and spin-down quantum states in equilibrium state of degenerate plasmas.« less
NASA Astrophysics Data System (ADS)
Tavan, Paul; Schulten, Klaus
1980-03-01
A new, efficient algorithm for the evaluation of the matrix elements of the CI Hamiltonian in the basis of spin-coupled ν-fold excitations (over orthonormal orbitals) is developed for even electron systems. For this purpose we construct an orthonormal, spin-adapted CI basis in the framework of second quantization. As a prerequisite, spin and space parts of the fermion operators have to be separated; this makes it possible to introduce the representation theory of the permutation group. The ν-fold excitation operators are Serber spin-coupled products of particle-hole excitations. This construction is also designed for CI calculations from multireference (open-shell) states. The 2N-electron Hamiltonian is expanded in terms of spin-coupled particle-hole operators which map any ν-fold excitation on ν-, and ν±1-, and ν±2-fold excitations. For the calculation of the CI matrix this leaves one with only the evaluation of overlap matrix elements between spin-coupled excitations. This leads to a set of ten general matrix element formulas which contain Serber representation matrices of the permutation group Sν×Sν as parameters. Because of the Serber structure of the CI basis these group-theoretical parameters are kept to a minimum such that they can be stored readily in the central memory of a computer for ν?4 and even for higher excitations. As the computational effort required to obtain the CI matrix elements from the general formulas is very small, the algorithm presented appears to constitute for even electron systems a promising alternative to existing CI methods for multiply excited configurations, e.g., the unitary group approach. Our method makes possible the adaptation of spatial symmetries and the selection of any subset of configurations. The algorithm has been implemented in a computer program and tested extensively for ν?4 and singlet ground and excited states.
2017-01-01
Developing ab initio approaches able to provide accurate excited-state energies at a reasonable computational cost is one of the biggest challenges in theoretical chemistry. In that framework, the Bethe–Salpeter equation approach, combined with the GW exchange-correlation self-energy, which maintains the same scaling with system size as TD-DFT, has recently been the focus of a rapidly increasing number of applications in molecular chemistry. Using a recently proposed set encompassing excitation energies of many kinds [J. Phys. Chem. Lett.2016, 7, 586–591], we investigate here the performances of BSE/GW. We compare these results to CASPT2, EOM-CCSD, and TD-DFT data and show that BSE/GW provides an accuracy comparable to the two wave function methods. It is particularly remarkable that the BSE/GW is equally efficient for valence, Rydberg, and charge-transfer excitations. In contrast, it provides a poor description of triplet excited states, for which EOM-CCSD and CASPT2 clearly outperform BSE/GW. This contribution therefore supports the use of the Bethe–Salpeter approach for spin-conserving transitions. PMID:28301726
Surface spin-electron acoustic waves in magnetically ordered metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz'menkov, L. S., E-mail: lsk@phys.msu.ru
2016-05-09
Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma, we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area, the dispersion branches are located close to each other. In this area, there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuirmore » waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the spin-electron acoustic waves.« less
Mobile bound states of Rydberg excitations in a lattice
NASA Astrophysics Data System (ADS)
Letscher, Fabian; Petrosyan, David
2018-04-01
Spin-lattice models play a central role in the studies of quantum magnetism and nonequilibrium dynamics of spin excitations—-magnons. We show that a spin lattice with strong nearest-neighbor interactions and tunable long-range hopping of excitations can be realized by a regular array of laser-driven atoms, with an excited Rydberg state representing the spin-up state and a Rydberg-dressed ground state corresponding to the spin-down state. We find exotic interaction-bound states of magnons that propagate in the lattice via the combination of resonant two-site hopping and nonresonant second-order hopping processes. Arrays of trapped Rydberg-dressed atoms can thus serve as a flexible platform to simulate and study fundamental few-body dynamics in spin lattices.
Electron spin resonance modes in a strong-leg ladder in the Tomonaga-Luttinger liquid phase
NASA Astrophysics Data System (ADS)
Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M. M.; Furuya, S. C.; Giamarchi, T.; Zvyagin, S. A.
2015-12-01
Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N) 2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin-liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual nonlinear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact-diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe their ESR observability to the uniform Dzyaloshinskii-Moriya interaction.
A switchable spin-wave signal splitter for magnonic networks
NASA Astrophysics Data System (ADS)
Heussner, F.; Serga, A. A.; Brächer, T.; Hillebrands, B.; Pirro, P.
2017-09-01
The influence of an inhomogeneous magnetization distribution on the propagation of caustic-like spin-wave beams in unpatterned magnetic films has been investigated by utilizing micromagnetic simulations. Our study reveals a locally controllable and reconfigurable tractability of the beam directions. This feature is used to design a device combining split and switch functionalities for spin-wave signals on the micrometer scale. A coherent transmission of spin-wave signals through the device is verified. This attests the applicability in magnonic networks where the information is encoded in the phase of the spin waves.
Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory.
Jobez, Pierre; Laplane, Cyril; Timoney, Nuala; Gisin, Nicolas; Ferrier, Alban; Goldner, Philippe; Afzelius, Mikael
2015-06-12
Long-lived quantum memories are essential components of a long-standing goal of remote distribution of entanglement in quantum networks. These can be realized by storing the quantum states of light as single-spin excitations in atomic ensembles. However, spin states are often subjected to different dephasing processes that limit the storage time, which in principle could be overcome using spin-echo techniques. Theoretical studies suggest this to be challenging due to unavoidable spontaneous emission noise in ensemble-based quantum memories. Here, we demonstrate spin-echo manipulation of a mean spin excitation of 1 in a large solid-state ensemble, generated through storage of a weak optical pulse. After a storage time of about 1 ms we optically read-out the spin excitation with a high signal-to-noise ratio. Our results pave the way for long-duration optical quantum storage using spin-echo techniques for any ensemble-based memory.
Two-magnon scattering in the 5d all-in-all-out pyrochlore magnet Cd 2Os 2O 7
Nguyen, Thi Minh Hien; Sandilands, Luke J.; Sohn, C. H.; ...
2017-08-15
5d pyrochlore oxides with all-in-all-out magnetic order are prime candidates for realizing strongly correlated, topological phases of matter. Despite significant effort, a full understanding of all-in-all-out magnetism remains elusive as the associated magnetic excitations have proven difficult to access with conventional techniques. Here we report a Raman spectroscopy study of spin dynamics in the all-in-all-out magnetic state of the 5d pyrochlore Cd 2Os 2O 7. Through a comparison between the two-magnon scattering and spin-wave theory, we confirm the large single ion anisotropy in this material and show that the Dzyaloshinskii–Moriya and exchange interactions play a significant role in the spin-wavemore » dispersions. The Raman data also reveal complex spin–charge–lattice coupling and indicate that the metal–insulator transition in Cd 2Os 2O 7 is Lifshitz-type. In conclusion, our work establishes Raman scattering as a simple and powerful method for exploring the spin dynamics in 5d pyrochlore magnets.« less
Ferromagnetic resonance in bulk nanocrystalline Ni
NASA Astrophysics Data System (ADS)
Prakash Madduri, P. V.; Mathew, S. P.; Kaul, S. N.
2018-03-01
A detailed lineshape analysis of the ferromagnetic resonance (FMR) spectra taken on pulse electrodeposited nanocrystalline (nc-) Ni sheets (with the average crystallite size, d, varying from 10 nm to 40 nm) at temperatures ranging from 113 K to 325 K yield accurate values for saturation magnetization, Ms (T), Landé splitting factor, g, anisotropy field, Hk (T) , resonance field, Hres , and FMR linewidth, ΔHpp (T) . Thermally-excited spin-wave (SW) excitations completely account for Ms (T) and the SW description of Ms (T) gives the values for the saturation magnetization and spin-wave stiffness at absolute zero of temperature, i.e., Ms (0) and D0 , for nc-Ni samples of different d that are in excellent agreement with the corresponding values deduced previously from an elaborate SW analysis of the bulk magnetization data. While Ms (0) varies with d as Ms (0) d - 3 / 2,D0 follows the power law D0 ∼d 4 / 3 . The angular variations of Hres in the 'in-plane' as well as 'out-of-plane' sample configurations, demonstrate that the main contribution to Hk (T) comes from the cubic magnetocrystalline anisotropy. The exchange-conductivity mechanism describes the observed thermal decline of ΔHpp reasonably well but fails to explain the very large magnitude of ΔHpp at any given temperature. By comparison, the Landau-Lifshitz-Gilbert (LLG) damping gives a much greater contribution to ΔHpp but the LLG contribution is relatively insensitive to temperature.
Spin-Wave Chirality and Its Manifestations in Antiferromagnets
NASA Astrophysics Data System (ADS)
Proskurin, Igor; Stamps, Robert L.; Ovchinnikov, Alexander S.; Kishine, Jun-ichiro
2017-10-01
As first demonstrated by Tang and Cohen in chiral optics, the asymmetry in the rate of electromagnetic energy absorption between left and right enantiomers is determined by an optical chirality density. Here, we demonstrate that this effect can exist in magnetic spin systems. By constructing a formal analogy with electrodynamics, we show that in antiferromagnets with broken chiral symmetry, the asymmetry in local spin-wave energy absorption is proportional to a spin-wave chirality density, which is a direct counterpart of optical zilch. We propose that injection of a pure spin current into an antiferromagnet may serve as a chiral symmetry breaking mechanism, since its effect in the spin-wave approximation can be expressed in terms of additional Lifshitz invariants. We use linear response theory to show that the spin current induces a nonequilibrium spin-wave chirality density.
Spectrum of spin waves in cold polarized gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreeva, T. L., E-mail: phdocandreeva@yandex.ru
2017-02-15
The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.; Kuz'menkov, L. S.
2017-11-01
A consideration of waves propagating parallel to the external magnetic field is presented. The dielectric permeability tensor is derived from the quantum kinetic equations with non-trivial equilibrium spin-distribution functions in the linear approximation on the amplitude of wave perturbations. It is possible to consider the equilibrium spin-distribution functions with nonzero z-projection proportional to the difference of the Fermi steps of electrons with the chosen spin direction, while x- and y-projections are equal to zero. It is called the trivial equilibrium spin-distribution functions. In the general case, x- and y-projections of the spin-distribution functions are nonzero which is called the non-trivial regime. A corresponding equilibrium solution is found in Andreev [Phys. Plasmas 23, 062103 (2016)]. The contribution of the nontrivial part of the spin-distribution function appears in the dielectric permeability tensor in the additive form. It is explicitly found here. A corresponding modification in the dispersion equation for the transverse waves is derived. The contribution of the nontrivial part of the spin-distribution function in the spectrum of transverse waves is calculated numerically. It is found that the term caused by the nontrivial part of the spin-distribution function can be comparable with the classic terms for the relatively small wave vectors and frequencies above the cyclotron frequency. In a majority of regimes, the extra spin caused term dominates over the spin term found earlier, except the small frequency regime, where their contributions in the whistler spectrum are comparable. A decrease of the left-hand circularly polarized wave frequency, an increase of the high-frequency right-hand circularly polarized wave frequency, and a decrease of frequency changing by an increase of frequency at the growth of the wave vector for the whistler are found. A considerable decrease of the spin wave frequency is found either. It results in an increase of module of the negative group velocity of the spin wave. The found dispersion equations are used for obtaining of an effective quantum hydrodynamics reproducing these results. This generalization requires the introduction of the corresponding equation of state for the thermal part of the spin current in the spin evolution equation.
Lattice spin models for non-Abelian chiral spin liquids
Lecheminant, P.; Tsvelik, A. M.
2017-04-26
Here, we suggest a class of two-dimensional lattice spin Hamiltonians describing non-Abelian SU(2) chiral spin liquids—spin analogs of fractional non-Abelian quantum Hall states—with gapped bulk and gapless chiral edge excitations described by the SU(2) n Wess-Zumino-Novikov-Witten conformal field theory. The models are constructed from an array of generalized spin-n/2 ladders with multi-spin-exchange interactions which are coupled by isolated spins. Such models allow a controllable analytic treatment starting from the one-dimensional limit and are characterized by a bulk gap and non-Abelian SU(2) n gapless edge excitations.
Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6
Liang, Tian; Koohpayeh, S. M.; Krizan, J. W.; McQueen, T. M.; Cava, R. J.; Ong, N. P.
2015-01-01
The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition. PMID:26146018
Comprehensive study of the dynamics of a classical Kitaev Spin Liquid
NASA Astrophysics Data System (ADS)
Samarakoon, Anjana; Banerjee, Arnab; Batista, Cristian; Kamiya, Yoshitomo; Tennant, Alan; Nagler, Stephen
Quantum spin liquids (QSLs) have achieved great interest in both theoretical and experimental condensed matter physics due to their remarkable topological properties. Among many different candidates, the Kitaev model on the honeycomb lattice is a 2D prototypical QSL which can be experimentally studied in materials based on iridium or ruthenium.Here we study the spin-1/2 Kitaev model using classical Monte-Carlo and semiclassical spin dynamics of classical spins on a honeycomb lattice. Both real and reciprocal space pictures highlighting the differences and similarities of the results to the linear spin wave theory will be discussed in terms dispersion relations of the pure-Kitaev limit and beyond. Interestingly, this technique could capture some of the salient features of the exact quantum solution of the Kitaev model, such as features resembling the Majorana-like mode comparable to the Kitaev energy, which is spectrally narrowed compared to the quantum result, can be explained by magnon excitations on fluctuating onedimensional manifolds (loops). Hence the difference from the classical limit to the quantum limit can be understood by the fractionalization of a magnon to Majorana fermions. The calculations will be directly compared with our neutron scattering data on α-RuCl3 which is a prime candidate for experimental realization of Kitaev physics.
Magnon-mediated current drag across a magnetic insulator
NASA Astrophysics Data System (ADS)
Shi, Jing
Electric current transmission can occur in a magnetic insulator via spin current inter-conversions at heavy metal/magnetic insulator interfaces. In magnetic insulators, spin current is carried by spin wave excitations or their quanta, magnons. This marvelous phenomenon was first theoretically predicted and dubbed as the magnon-mediated current drag in 2012 by Zhang et al.. Following a breakthrough in materials growth, i.e. yttrium iron garnet films or YIG ranging from 30 to 80 nm in thickness sandwiched between two heavy metal films, we successfully showed the nonlocal DC current transmission in such sandwich structures via spin current rather than charge current. To exclude the leakage effect, the experiments are conducted at temperatures below 250 K where the resistance between the metal layers exceeds 20 Gohms. In addition, by replacing the top Pt electrode with beta-Ta which is known to reverse the sign in the spin Hall angle, we found that the nonlocal signal reverses the polarity, which is a direct demonstration of the spin current nature. Furthermore, the temperature dependence of the nonlocal signal confirms the role of magnons in this effect. The work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award No. SC0012670.
Spin currents and magnon dynamics in insulating magnets
NASA Astrophysics Data System (ADS)
Nakata, Kouki; Simon, Pascal; Loss, Daniel
2017-03-01
Nambu-Goldstone theorem provides gapless modes to both relativistic and nonrelativistic systems. The Nambu-Goldstone bosons in insulating magnets are called magnons or spin-waves and play a key role in magnetization transport. We review here our past works on magnetization transport in insulating magnets and also add new insights, with a particular focus on magnon transport. We summarize in detail the magnon counterparts of electron transport, such as the Wiedemann-Franz law, the Onsager reciprocal relation between the Seebeck and Peltier coefficients, the Hall effects, the superconducting state, the Josephson effects, and the persistent quantized current in a ring to list a few. Focusing on the electromagnetism of moving magnons, i.e. magnetic dipoles, we theoretically propose a way to directly measure magnon currents. As a consequence of the Mermin-Wagner-Hohenberg theorem, spin transport is drastically altered in one-dimensional antiferromagnetic (AF) spin-1/2 chains; where the Néel order is destroyed by quantum fluctuations and a quasiparticle magnon-like picture breaks down. Instead, the low-energy collective excitations of the AF spin chain are described by a Tomonaga-Luttinger liquid (TLL) which provides the spin transport properties in such antiferromagnets some universal features at low enough temperature. Finally, we enumerate open issues and provide a platform to discuss the future directions of magnonics.
Many-body interferometry of magnetic polaron dynamics
NASA Astrophysics Data System (ADS)
Ashida, Yuto; Schmidt, Richard; Tarruell, Leticia; Demler, Eugene
2018-02-01
The physics of quantum impurities coupled to a many-body environment is among the most important paradigms of condensed-matter physics. In particular, the formation of polarons, quasiparticles dressed by the polarization cloud, is key to the understanding of transport, optical response, and induced interactions in a variety of materials. Despite recent remarkable developments in ultracold atoms and solid-state materials, the direct measurement of their ultimate building block, the polaron cloud, has remained a fundamental challenge. We propose and analyze a platform to probe time-resolved dynamics of polaron-cloud formation with an interferometric protocol. We consider an impurity atom immersed in a two-component Bose-Einstein condensate where the impurity generates spin-wave excitations that can be directly measured by the Ramsey interference of surrounding atoms. The dressing by spin waves leads to the formation of magnetic polarons and reveals a unique interplay between few- and many-body physics that is signified by single- and multi-frequency oscillatory dynamics corresponding to the formation of many-body bound states. Finally, we discuss concrete experimental implementations in ultracold atoms.
NASA Technical Reports Server (NTRS)
Phillips, D. H.; Schug, J. C.
1974-01-01
The approximate spin projection method of Amos et al. is extended to handle UHF wave functions having three significant components of differing multiplicity. An expression is given for the energy after single annihilation which differs from that of Amos and Hall. The new expression reproduces the results obtained from a previous exact calculation for which the weights and energies of the components are known. The extended approximate projection method is applied to the pi-electron UHF wave functions for the ground states of the pentachlorocyclopentadienyl cation and the croconate dianion, C5O5(2-). The results indicate a triplet ground state for the former and a singlet ground state for the latter, in agreement with experimental ESR susceptibility measurements for these molecular ions. C5C15(-) cannont be treated by restricted Hartree-Fock theory, due to its open-shell ground state. Incorrect results are obtained for the croconate dianion, if restricted Hartree-Fock theory and singly excited configuration interactions are utilized.
Spin wave interference in YIG cross junction
Balinskiy, M.; Gutierrez, D.; Chiang, H.; ...
2017-01-17
This work is aimed at studying the interference between backward volume magnetostatic spin waves and magnetostatic surface spin waves in a magnetic cross junction. These two types of magnetostatic waves possess different dispersion with zero frequency overlap in infinite magnetic films. However, the interference may be observed in finite structures due to the effect magnetic shape anisotropy. We report experimental data on spin wave interference in a micrometer size Y 3Fe 2(FeO 4) 3 cross junction. There are four micro antennas fabricated at the edges of the cross arms. Two of these antennas located on the orthogonal arms are usedmore » for spin wave generation, and the other two antennas are used for the inductive voltage detection. The phase difference between the input signals is controlled by the phase shifter. Prominent spin wave interference is observed at the selected combination of operational frequency and bias magnetic field. The maximum On/Off ratio exceeds 30dB at room temperature. The obtained results are important for a variety of magnetic devices based on spin wave interference.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Matthew B; Niedziela, Jennifer L; Abernathy, Douglas L
The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments is not exclusive and overlaps significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems.more » We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M. B.; Abernathy, D. L.; Ehlers, G.
The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave-vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments are not exclusive and overlap significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. Wemore » have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.« less
NASA Astrophysics Data System (ADS)
Ibach, Harald
2014-12-01
The paper reports on recent considerable improvements in electron energy loss spectroscopy (EELS) of spin waves in ultra-thin films. Spin wave spectra with 4 meV resolution are shown. The high energy resolution enables the observation of standing modes in ultra-thin films in the wave vector range of 0.15 Å- 1 < q|| < 0.3 Å- 1. In this range, Landau damping is comparatively small and standing spin wave modes are well-defined Lorentzians for which the adiabatic approximation is well suited, an approximation which was rightly dismissed by Mills and collaborators for spin waves near the Brillouin zone boundary. With the help of published exchange coupling constants, the Heisenberg model, and a simple model for the spectral response function, experimental spectra for Co-films on Cu(100) as well as for Co films capped with further copper layers are successfully simulated. It is shown that, depending on the wave vector and film thickness, the most prominent contribution to the spin wave spectrum may come from the first standing mode, not from the so-called surface mode. In general, the peak position of a low-resolution spin wave spectrum does not correspond to a single mode. A discussion of spin waves based on the "dispersion" of the peak positions in low resolution spectra is therefore subject to errors.
NASA Astrophysics Data System (ADS)
Grigoriev, S. V.; Sukhanov, A. S.; Altynbaev, E. V.; Siegfried, S.-A.; Heinemann, A.; Kizhe, P.; Maleyev, S. V.
2015-12-01
We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in helimagnetic phase ks, which is oriented along the applied magnetic field H . The radius of this circle is directly related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the critical temperature Tc.
Optical Bistability under Nonresonant Excitation in Spinor Polariton Condensates
NASA Astrophysics Data System (ADS)
Pickup, L.; Kalinin, K.; Askitopoulos, A.; Hatzopoulos, Z.; Savvidis, P. G.; Berloff, N. G.; Lagoudakis, P. G.
2018-06-01
We realize bistability in the spinor of polariton condensates under nonresonant optical excitation and in the absence of biasing external fields. Numerical modeling of the system using the Ginzburg-Landau equation with an internal Josephson coupling between the two spin components of the condensate qualitatively describes the experimental observations. We demonstrate that polariton spin bistability strongly depends on the condensate's overlap with the exciton reservoir by tuning the excitation geometry and sample temperature. We obtain noncollapsing bistability hysteresis loops for a record range of sweep times, [10 μ s , 1 s], offering a promising route to spin switches and spin memory elements.
NASA Technical Reports Server (NTRS)
Ng, Lian Lai
1990-01-01
When a jet is perturbed by a periodic excitation of suitable frequency, a large-scale coherent structure develops and grows in amplitude as it propagates downstream. The structure eventually rolls up into vortices at some downstream location. The wavy flow associated with the roll-up of a coherent structure is approximated by a parallel mean flow and a small, spatially periodic, axisymmetric wave whose phase velocity and mode shape are given by classical (primary) stability theory. The periodic wave acts as a parametric excitation in the differential equations governing the secondary instability of a subharmonic disturbance. The (resonant) conditions for which the periodic flow can strongly destabilize a subharmonic disturbance are derived. When the resonant conditions are met, the periodic wave plays a catalytic role to enhance the growth rate of the subharmonic. The stability characteristics of the subharmonic disturbance, as a function of jet Mach number, jet heating, mode number and the amplitude of the periodic wave, are studied via a secondary instability analysis using two independent but complementary methods: (1) method of multiple scales, and (2) normal mode analysis. It is found that the growth rates of the subharmonic waves with azimuthal numbers beta = 0 and beta = 1 are enhanced strongly, but comparably, when the amplitude of the periodic wave is increased. Furthermore, compressibility at subsonic Mach numbers has a moderate stabilizing influence on the subharmonic instability modes. Heating suppresses moderately the subharmonic growth rate of an axisymmetric mode, and it reduces more significantly the corresponding growth rate for the first spinning mode. Calculations also indicate that while the presence of a finite-amplitude periodic wave enhances the growth rates of subharmonic instability modes, it minimally distorts the mode shapes of the subharmonic waves.
Dynamics of Topological Excitations in a Model Quantum Spin Ice
NASA Astrophysics Data System (ADS)
Huang, Chun-Jiong; Deng, Youjin; Wan, Yuan; Meng, Zi Yang
2018-04-01
We study the quantum spin dynamics of a frustrated X X Z model on a pyrochlore lattice by using large-scale quantum Monte Carlo simulation and stochastic analytic continuation. In the low-temperature quantum spin ice regime, we observe signatures of coherent photon and spinon excitations in the dynamic spin structure factor. As the temperature rises to the classical spin ice regime, the photon disappears from the dynamic spin structure factor, whereas the dynamics of the spinon remain coherent in a broad temperature window. Our results provide experimentally relevant, quantitative information for the ongoing pursuit of quantum spin ice materials.
Localized Defect Modes in a Two-Dimensional Array of Magnetic Nanodots
2013-06-22
number of defects it is possible to obtain the information about the entire spin-wave spectrum of the array. Index Terms—Spin waves, magnonic crystal...multistability opens a way for the development of a novel type of artificial materials with tunable microwave properties – reconfigurable magnonic ...information about the entire spin-wave spectrum of the array. 15. SUBJECT TERMS Spin waves, magnonic crystal, magnetic dot, ferromagnetic resonance
An electro-optic modulator-assisted wavevector-resolving Brillouin light scattering setup.
Neumann, T; Schneider, T; Serga, A A; Hillebrands, B
2009-05-01
Brillouin light scattering spectroscopy is a powerful technique which incorporates several extensions such as space-, time-, phase-, and wavevector-resolution. Here, we report on the improvement of the wavevector-resolving setup by including an electro-optic modulator. This provides a reference to calibrate the position of the diaphragm hole which is used for wavevector selection. The accuracy of this calibration is only limited by the accuracy of the wavevector measurement itself. To demonstrate the validity of the approach the wavevectors of dipole-dominated spin waves excited by a microstrip antenna were measured.
Zr-92(d,p)Zr-93 and Zr-92(d,t)Zr-91
NASA Technical Reports Server (NTRS)
Baron, N.; Fink, C. L.; Christensen, P. R.; Nickels, J.; Torsteinsen, T.
1972-01-01
The structures of Zr-93 and Zr-91 were studied by the stripping reaction Zr-92(d,p)Zr-93 and the pick-up reaction Zr-92(d,t)Zr-91 using 13 MeV incident deuterons. The reaction product particles were detected by counter telescope. Typical spectra from the reactions were analyzed by a nonlinear least squares peak fitting program which included a background search. Spin and parity assignments to observed excited levels were made by comparing experimental angular distributions with distorted wave Born approximation calculations.
Emergent gauge fields and their nonperturbative effects in correlated electrons
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok; Tanaka, Akihiro
2015-06-01
The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner’s and Anderson’s physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner’s description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner’s paradigm. In this review paper, we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative dynamics of topological excitations is again seen to be crucial in classifying topologically nontrivial gapped systems. We point to some hidden links between several effective field theories with topological terms, starting with one-dimensional physics, and subsequently finding natural generalizations to higher dimensions.
Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok; Tanaka, Akihiro
The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative dynamics of topological excitations is again seen to be crucial in classifying topologically nontrivial gapped systems. We point to some hidden links between several effective field theories with topological terms, starting with one dimensional physics, and subsequently finding natural generalizations to higher dimensions.
NASA Astrophysics Data System (ADS)
Rosenkranz, S.; Phelan, D.; Louca, D.; Lee, S. H.; Chupas, P. J.; Osborn, R.; Zheng, H.; Mitchell, J. F.
2006-03-01
The cobalt perovskites La1-xSrxCoO3 show intriguing spin, lattice, and orbital properties similar to the ones observed in colossal magnetoresistive manganites. The x=0 parent compound is a non-magnetic insulator at low temperatures, but shows evidence of a spin-state transition of the cobalt ions above 50K from a low-spin to an intermediate or high-spin configuration. Using high resolution, inelastic neutron scattering, we observe a distinct low energy excitation at 0.6meV coincident with the thermally induced spin state transition observed in susceptibility measurements. The thermal activation of this excited spin state also leads to short-range, dynamic ferro- and antiferromagnetic correlations. These observations are consistent with the activation of a zero-field split intermediate spin state as well as the presence of dynamic orbital ordering of these excited states. Work supported by US DOE BES-DMS W-31-109-ENG-38 and NSF DMR-0454672
NASA Astrophysics Data System (ADS)
Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.
2015-12-01
Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.
Disordered dimer state in electron-doped Sr 3 Ir 2 O 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Tom; Dally, Rebecca; Upton, Mary
2016-09-06
Spin excitations are explored in the electron-doped spin-orbit Mott insulator (Sr 1-xLa x) 3Ir 2O 7. As this bilayer square lattice system is doped into the metallic regime, long-range antiferromagnetism vanishes, yet a spectrum of gapped spin excitation remains. Excitation lifetimes are strongly damped with increasing carrier concentration, and the energy-integrated spectral weight becomes nearly momentum independent as static spin order is suppressed. Local magnetic moments, absent in the parent system, grow in metallic samples and approach values consistent with one J=12 impurity per electron doped. Our combined data suggest that the magnetic spectra of metallic (Sr 1-xLa x) 3Irmore » 2O 7 are best described by excitations out of a disordered dimer state.« less
Spin-wave wavelength down-conversion at thickness steps
NASA Astrophysics Data System (ADS)
Stigloher, Johannes; Taniguchi, Takuya; Madami, Marco; Decker, Martin; Körner, Helmut S.; Moriyama, Takahiro; Gubbiotti, Gianluca; Ono, Teruo; Back, Christian H.
2018-05-01
We report a systematic experimental study on the refraction and reflection of magnetostatic spin-waves at a thickness step between two Permalloy films of different thickness. The transmitted spin-waves for the transition from a thick film to a thin film have a higher wave vector compared to the incoming waves. Consequently, such systems may find use as passive wavelength transformers in magnonic networks. We investigate the spin-wave transmission behavior by studying the influence of the external magnetic field, incident angle, and thickness ratio of the films using time-resolved scanning Kerr microscopy and micro-focused Brillouin light scattering.
Transport Studies of Quantum Magnetism: Physics and Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Minhyea
The main goal of this project was to understand novel ground states of spin systems probed by thermal and electrical transport measurements. They are well-suited to characterize the nature of low-energy excitations as unique property of the ground state. More specifically, it was aimed to study the transverse electrical conductivity in the presence of non-collinear and non-coplanar spin ordering and the effects of gauge field as well as novel spin excitations as a coherent heat transport channel in insulating quantum magnets. Most of works done during the grant period focused on these topics. As a natural extension of the project'smore » initial goals, the scope was broadened to include transport studies on the spin systems with strong spin-orbit coupling. One particular focus was an exploration of systems with strong magnetic anisotropy combined with non-trivial spin configuration. Magnetic anisotropy is directly related to implement the non-collinear spin ordering to the existing common geometry of planar devices and thus poses a significant potential. Work in this direction includes the comparison of the topological Hall signal under hydrostatic pressure and chemical doping, as well as the angular dependence dependence of the non-collinear spin ordered phase and their evolution up on temperature and field strength. Another focus was centered around the experimental identification of spin-originated heat carrying excitation in quasi two dimensional honeycomb lattice, where Kitaev type of quantum spin liquid phase is expected to emerge. In fact, when its long range magnetic order is destroyed by the applied field, we discovered anomalously large enhancement of thermal conductivity, for which proximate Kitaev excitations in field-induced spin liquid state are responsible for. This work, combined with further investigations in materials in the similar class may help establish the experimental characterization of new quantum spin liquid and their unique low energy excitation, e.g. Majorana fermions.« less
Symmetry enriched U(1) quantum spin liquids
NASA Astrophysics Data System (ADS)
Zou, Liujun; Wang, Chong; Senthil, T.
2018-05-01
We classify and characterize three-dimensional U (1 ) quantum spin liquids [deconfined U (1 ) gauge theories] with global symmetries. These spin liquids have an emergent gapless photon and emergent electric/magnetic excitations (which we assume are gapped). We first discuss in great detail the case with time-reversal and SO(3 ) spin rotational symmetries. We find there are 15 distinct such quantum spin liquids based on the properties of bulk excitations. We show how to interpret them as gauged symmetry-protected topological states (SPTs). Some of these states possess fractional response to an external SO (3 ) gauge field, due to which we dub them "fractional topological paramagnets." We identify 11 other anomalous states that can be grouped into three anomaly classes. The classification is further refined by weakly coupling these quantum spin liquids to bosonic symmetry protected topological (SPT) phases with the same symmetry. This refinement does not modify the bulk excitation structure but modifies universal surface properties. Taking this refinement into account, we find there are 168 distinct such U (1 ) quantum spin liquids. After this warm-up, we provide a general framework to classify symmetry enriched U (1 ) quantum spin liquids for a large class of symmetries. As a more complex example, we discuss U (1 ) quantum spin liquids with time-reversal and Z2 symmetries in detail. Based on the properties of the bulk excitations, we find there are 38 distinct such spin liquids that are anomaly-free. There are also 37 anomalous U (1 ) quantum spin liquids with this symmetry. Finally, we briefly discuss the classification of U (1 ) quantum spin liquids enriched by some other symmetries.
NASA Astrophysics Data System (ADS)
Kumamoto, A.; Tsuchiya, F.; Kasahara, Y.; Kasaba, Y.; Kojima, H.; Yagitani, S.; Ishisaka, K.; Imachi, T.; Ozaki, M.; Matsuda, S.; Shoji, M.; Matsuoka, A.; Katoh, Y.; Miyoshi, Y.; Shinohara, I.; Obara, T.
2017-12-01
High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment (PWE) onboard the ARASE (ERG, Exploration of energization and Radiation in Geospace) spacecraft for observation of radio and plasma waves in a frequency range from 0.01 to 10 MHz. In ARASE mission, HFA is expected to perform the following observations: (1) Upper hybrid resonance (UHR) waves in order to determine the electron number density around the spacecraft. (2) Magnetic field component of the chorus waves in a frequency range from 20 kHz to 100 kHz. (3) Radio and plasma waves excited via wave particle interactions and mode conversion processes in storm-time magnetosphere.HFA is operated in the following three observation modes: EE-mode, EB-mode, and PP-mode. In far-Earth region, HFA is operated in EE-mode. Spectrogram of two orthogonal or right and left-handed components of electric field in perpendicular directions to the spin axis of the spacecraft are obtained. In the near-Earth region, HFA is operated in EB-mode. Spectrogram of one components of electric field in perpendicular direction to the spin plane, and one component of the magnetic field in parallel direction to the spin axis are obtained. In EE and EB-modes, the frequency range from 0.01 to 10 MHz are covered with 480 frequency steps. The time resolution is 8 sec. We also prepared PP mode to measure the locations and structures of the plasmapause at higher resolution. In PP-mode, spectrogram of one electric field component in a frequency range from 0.01-0.4 MHz (PP1) or 0.1-1 MHz (PP2) can be obtained at time resolution of 1 sec.After the successful deployment of the wire antenna and search coils mast and initial checks, we could start routine observations and detect various radio and plasma wave phenomena such as upper hybrid resonance (UHR) waves, electrostatic electron cyclotron harmonic (ESCH) waves, auroral kilometric radiation (AKR), kilometric continuum (KC) and Type-III solar radio bursts. In the presentation, we will report the initial results based on the datasets obtained since January 2017 focusing on the analyses of plasmasphere evolution by semi-automatic identification of UHR frequency, and AKR from the both hemisphere based on polarization measurement.
Optical Bistability under Nonresonant Excitation in Spinor Polariton Condensates.
Pickup, L; Kalinin, K; Askitopoulos, A; Hatzopoulos, Z; Savvidis, P G; Berloff, N G; Lagoudakis, P G
2018-06-01
We realize bistability in the spinor of polariton condensates under nonresonant optical excitation and in the absence of biasing external fields. Numerical modeling of the system using the Ginzburg-Landau equation with an internal Josephson coupling between the two spin components of the condensate qualitatively describes the experimental observations. We demonstrate that polariton spin bistability strongly depends on the condensate's overlap with the exciton reservoir by tuning the excitation geometry and sample temperature. We obtain noncollapsing bistability hysteresis loops for a record range of sweep times, [10 μs, 1 s], offering a promising route to spin switches and spin memory elements.
Antiferromagnetic resonance excited by oscillating electric currents
NASA Astrophysics Data System (ADS)
Sluka, Volker
2017-12-01
In antiferromagnetic materials the order parameter exhibits resonant modes at frequencies that can be in the terahertz range, making them interesting components for spintronic devices. Here, it is shown that antiferromagnetic resonance can be excited using the inverse spin-Hall effect in a system consisting of an antiferromagnetic insulator coupled to a normal-metal waveguide. The time-dependent interplay between spin torque, ac spin accumulation, and magnetic degrees of freedom is studied. It is found that the dynamics of the antiferromagnet affects the frequency-dependent conductivity of the normal metal. Further, a comparison is made between spin-current-induced and Oersted-field-induced excitation under the condition of constant power injection.
General magnetic transition dipole moments for electron paramagnetic resonance.
Nehrkorn, Joscha; Schnegg, Alexander; Holldack, Karsten; Stoll, Stefan
2015-01-09
We present general expressions for the magnetic transition rates in electron paramagnetic resonance (EPR) experiments of anisotropic spin systems in the solid state. The expressions apply to general spin centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They work for linear and circular polarized as well as unpolarized excitation, and for crystals and powders. The expressions are based on the concept of the (complex) magnetic transition dipole moment vector. Using the new theory, we determine the parities of ground and excited spin states of high-spin (S=5/2) Fe(III) in hemin from the polarization dependence of experimental EPR line intensities.
Makrinich, M; Nimerovsky, E; Goldbourt, A
2018-04-14
Dipolar recoupling under magic-angle spinning allows to measure accurate inter-nuclear distances provided that the two interacting spins can be efficiently and uniformly excited. Alexander (Lex) Vega has shown that adiabatic transfers of populations in quadrupolar spins during the application of constant-wave (cw) radio-frequency pulses lead to efficient and quantifiable dipolar recoupling curves. Accurate distance determination within and beyond the adiabatic regime using cw pulses is limited by the size of the quadrupolar coupling constant. Here we show that using the approach of long-pulse phase modulation, dipolar recoupling and accurate distances can be obtained for nuclei having extensively large quadrupolar frequencies of 5-10 MHz. We demonstrate such results by obtaining a 31 P- 79/81 Br distance in a compound for which bromine-79 (spin-3/2) has a quadrupolar coupling constant of 11.3 MHz, and a 13 C- 209 Bi distance where the bismuth (spin-9/2) has a quadrupolar coupling constant of 256 MHz, equaling a quadrupolar frequency of 10.7 MHz. For Bromine, we demonstrate that an analytical curve based on the assumption of complete spin saturation fits the data. In the case of bismuth acetate, a C-Bi 3 spin system must be used in order to match the correct saturation recoupling curve, and results are in agreement with the crystallographic structure. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vick, Michelle; Lai, Dong; Fuller, Jim
2017-06-01
A white dwarf (WD) captured into a high-eccentricity orbit around a massive black hole (MBH) may undergo many pericentre passages before tidal disruption. During these passages, the tidal potential of the MBH excites internal oscillations or waves in the WD, and the dissipation of these oscillations can significantly influence the physical properties of the WD prior to its disruption. We calculate the amplitude of the tidally excited gravity (buoyancy) waves in the WD as a function of the pericentre distance and eccentricity for realistic WD models, under the assumption that these outgoing gravity waves are efficiently dissipated in the outer layers of the WD by non-linear effects or radiative damping. We obtain fitting formulae for the tidal energy and angular momentum transfer rates as well as the tidal heating rate. We find that these dynamical tides are much weaker than gravitational radiation in driving the orbital decay of the WD-MBH binary, and they are also inefficient in changing the WD spin during the orbital evolution. Incorporating our computed tidal dissipation rate into a mesa-based WD evolution code, we find that tidal heating can lead to appreciable brightening of the WD and may induce runaway fusion in the hydrogen envelope well before the WD undergoes tidal disruption.
Renormalization of spin excitations in hexagonal HoMnO3 by magnon-phonon coupling
NASA Astrophysics Data System (ADS)
Kim, Taehun; Leiner, Jonathan C.; Park, Kisoo; Oh, Joosung; Sim, Hasung; Iida, Kazuki; Kamazawa, Kazuya; Park, Je-Geun
2018-05-01
Hexagonal HoMnO3, a two-dimensional Heisenberg antiferromagnet, has been studied via inelastic neutron scattering. A simple Heisenberg model with a single-ion anisotropy describes most features of the spin-wave dispersion curves. However, there is shown to be a renormalization of the magnon energies located at around 11 meV. Since both the magnon-magnon interaction and magnon-phonon coupling can affect the renormalization in a noncollinear magnet, we have accounted for both of these couplings by using a Heisenberg XXZ model with 1 /S expansions [1] and the Einstein site phonon model [13], respectively. This quantitative analysis leads to the conclusion that the renormalization effect primarily originates from the magnon-phonon coupling, while the spontaneous magnon decay due to the magnon-magnon interaction is suppressed by strong two-ion anisotropy.
Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding
de Teramond, Guy F.; Dosch, Hans Gunter; Brodsky, Stanley J.
2015-02-27
We describe the observed light-baryon spectrum by extending superconformal quantum mechanics to the light front and its embedding in AdS space. This procedure uniquely determines the confinement potential for arbitrary half-integer spin. To this end, we show that fermionic wave equations in AdS space are dual to light-front supersymmetric quantum-mechanical bound-state equations in physical space-time. The specific breaking of conformal invariance explains hadronic properties common to light mesons and baryons, such as the observed mass pattern in the radial and orbital excitations, from the spectrum generating algebra. Lastly, the holographic embedding in AdS also explains distinctive and systematic features, suchmore » as the spin-J degeneracy for states with the same orbital angular momentum, observed in the light-baryon spectrum.« less
Wu, Mingzhong; Kalinikos, Boris A; Patton, Carl E
2004-10-08
The generation of dark spin wave envelope soliton trains from a continuous wave input signal due to spontaneous modulational instability has been observed for the first time. The dark soliton trains were formed from high dispersion dipole-exchange spin waves propagated in a thin yttrium iron garnet film with pinned surface spins at frequencies situated near the dipole gaps in the dipole-exchange spin wave spectrum. Dark and bright soliton trains were generated for one and the same film through placement of the input carrier frequency in regions of negative and positive dispersion, respectively. Two unreported effects in soliton dynamics, hysteresis and period doubling, were also observed.
NASA Astrophysics Data System (ADS)
Witthauer, L.; Dieterle, M.; Abt, S.; Achenbach, P.; Afzal, F.; Ahmed, Z.; Akondi, C. S.; Annand, J. R. M.; Arends, H. J.; Bashkanov, M.; Beck, R.; Biroth, M.; Borisov, N. S.; Braghieri, A.; Briscoe, W. J.; Cividini, F.; Costanza, S.; Collicott, C.; Denig, A.; Downie, E. J.; Drexler, P.; Ferretti-Bondy, M. I.; Gardner, S.; Garni, S.; Glazier, D. I.; Glowa, D.; Gradl, W.; Günther, M.; Gurevich, G. M.; Hamilton, D.; Hornidge, D.; Huber, G. M.; Käser, A.; Kashevarov, V. L.; Kay, S.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Krusche, B.; Lazarev, A. B.; Linturi, J. M.; Lisin, V.; Livingston, K.; Lutterer, S.; MacGregor, I. J. D.; Mancell, J.; Manley, D. M.; Martel, P. P.; Metag, V.; Meyer, W.; Miskimen, R.; Mornacchi, E.; Mushkarenkov, A.; Neganov, A. B.; Neiser, A.; Oberle, M.; Ostrick, M.; Otte, P. B.; Paudyal, D.; Pedroni, P.; Polonski, A.; Prakhov, S. N.; Rajabi, A.; Reicherz, G.; Ron, G.; Rostomyan, T.; Sarty, A.; Sfienti, C.; Sikora, M. H.; Sokhoyan, V.; Spieker, K.; Steffen, O.; Strakovsky, I. I.; Strub, Th.; Supek, I.; Thiel, A.; Thiel, M.; Thomas, A.; Unverzagt, M.; Usov, Yu. A.; Wagner, S.; Walford, N. K.; Watts, D. P.; Werthmüller, D.; Wettig, J.; Wolfes, M.; Zana, L.; A2 Collaboration at MAMI
2017-05-01
Precise helicity-dependent cross sections and the double-polarization observable E were measured for η photoproduction from quasifree protons and neutrons bound in the deuteron. The η →2 γ and η →3 π0→6 γ decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz. A longitudinally polarized deuterated butanol target was used in combination with a circularly polarized photon beam from bremsstrahlung of a longitudinally polarized electron beam. The reaction products were detected with the electromagnetic calorimeters Crystal Ball and TAPS, which covered 98% of the full solid angle. The results show that the narrow structure observed earlier in the unpolarized excitation function of η photoproduction off the neutron appears only in reactions with antiparallel photon and nucleon spin (σ1 /2). It is absent for reactions with parallel spin orientation (σ3 /2) and thus very probably related to partial waves with total spin 1/2. The behavior of the angular distributions of the helicity-dependent cross sections was analyzed by fitting them withLegendre polynomials. The results are in good agreement with a model from the Bonn-Gatchina group, which uses an interference of P11 and S11 partial waves to explain the narrow structure.
A transverse separate-spin-evolution streaming instability
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Andreev, Pavel A.; Murtaza, G.
2018-05-01
By using the separate spin evolution quantum hydrodynamical model, the instability of transverse mode due to electron streaming in a partially spin polarized magnetized degenerate plasma is studied. The electron spin polarization gives birth to a new spin-dependent wave (i.e., separate spin evolution streaming driven ordinary wave) in the real wave spectrum. It is shown that the spin polarization and streaming speed significantly affect the frequency of this new mode. Analyzing growth rate, it is found that the electron spin effects reduce the growth rate and shift the threshold of instability as well as its termination point towards higher values. Additionally, how the other parameters like electron streaming and Fermi pressure influence the growth rate is also investigated. Current study can help towards better understanding of the existence of new waves and streaming instability in the astrophysical plasmas.
Coherent Rabi Dynamics of a Superradiant Spin Ensemble in a Microwave Cavity
NASA Astrophysics Data System (ADS)
Rose, B. C.; Tyryshkin, A. M.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.; Thewalt, M. L. W.; Itoh, K. M.; Lyon, S. A.
2017-07-01
We achieve the strong-coupling regime between an ensemble of phosphorus donor spins in a highly enriched 28Si crystal and a 3D dielectric resonator. Spins are polarized beyond Boltzmann equilibrium using spin-selective optical excitation of the no-phonon bound exciton transition resulting in N =3.6 ×1 013 unpaired spins in the ensemble. We observe a normal mode splitting of the spin-ensemble-cavity polariton resonances of 2 g √{N }=580 kHz (where each spin is coupled with strength g ) in a cavity with a quality factor of 75 000 (γ ≪κ ≈60 kHz , where γ and κ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T2*=9 μ s ) providing a wide window for viewing the dynamics of the coupled spin-ensemble-cavity system. The free-induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate g √{N }. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z projection of the psuedospin using optical excitation and microwave manipulation, respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt π -phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.
Spin-wave interference in microscopic permalloy tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balhorn, Felix; Nagrodzki, Lukas; Mendach, Stefan
2013-06-03
We present permalloy coated needles which act as spin-wave resonators. The permalloy coated needles were investigated using microwave absorption spectroscopy. Thereby, we found up to three resonant modes which correspond to constructively interfering azimuthal spin waves. The resonant modes are well reproduced in calculations based on an analytical model for the spin-wave dispersion employing periodic boundary conditions. The dependence of the resonance frequencies on the needles' radii and the external magnetic field is demonstrated experimentally.
Nonreciprocity of electrically excited thermal spin signals in CoFeAl-Cu-Py lateral spin valves
NASA Astrophysics Data System (ADS)
Hu, Shaojie; Cui, Xiaomin; Nomura, Tatsuya; Min, Tai; Kimura, Takashi
2017-03-01
Electrical and thermal spin currents excited by an electric current have been systematically investigated in lateral spin valves consisting of CoFeAl and Ni80Fe20 (Py) wires bridged by a Cu strip. In the electrical spin signal, the reciprocity between the current and voltage probes was clearly confirmed. However, a significant nonreciprocity was observed in the thermal spin signal. This provides clear evidence that a large spin-dependent Seebeck coefficient is more important than the spin polarization for efficient thermal spin injection and detection. We demonstrate that the spin-dependent Seebeck coefficient can be simply evaluated from the thermal spin signals for two configurations. Our experimental description paves a way for evaluating a small spin-dependent Seebeck coefficient for conventional ferromagnets without using complicated parameters.
The effect of convection and shear on the damping and propagation of pressure waves
NASA Astrophysics Data System (ADS)
Kiel, Barry Vincent
Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection causes the spinning waves documented in inlets and exhausts of gas turbine engines, rocket combustion chambers, and afterburner chambers. As a result, the effects of shear must be included when modeling wave propagation, even for mean flows less than < Mach 0.10.
Excitation and doping dependence of hole-spin relaxation in bulk GaAs
NASA Astrophysics Data System (ADS)
Krauss, Michael; Hilton, David; Schneider, Hans Christian
2009-03-01
We present theoretical and experimental results on ultrafast hole-spin dynamics in bulk GaAs. By combining a sufficiently realistic bandstructure at the level of an 8x8 k .p theory and a dynamical treatment of the relevant scattering mechanisms [1], we obtain quantitative agreement between the microscopic theoretical results and differential transmission measurements [2] for different excitation conditions. In particular, we examine the dependence of the hole-spin relaxation time on the optically excited carrier density, lattice temperature, and doping concentration. Although the spin relaxation is rather insensitive to changes in the optically excited density and temperature, strong p-doping causes a significantly faster relaxation. [1] M. Krauss, M. Aeschlimann, and H. C. Schneider, Phys.Rev.Lett. 100, 256601 (2008)[2] D. J. Hilton and C. L. Tang, Phys. Rev. Lett. 89, 146601 (2002)
Bound state and localization of excitation in many-body open systems
NASA Astrophysics Data System (ADS)
Cui, H. T.; Shen, H. Z.; Hou, S. C.; Yi, X. X.
2018-04-01
We study the exact bound state and time evolution for single excitations in one-dimensional X X Z spin chains within a non-Markovian reservoir. For the bound state, a common feature is the localization of single excitations, which means the spontaneous emission of excitations into the reservoir is prohibited. Exceptionally, the pseudo-bound state can be found, for which the single excitation has a finite probability of emission into the reservoir. In addition, a critical energy scale for bound states is also identified, below which only one bound state exists, and it is also the pseudo-bound state. The effect of quasirandom disorder in the spin chain is also discussed; such disorder induces the single excitation to locate at some spin sites. Furthermore, to display the effect of bound state and disorder on the preservation of quantum information, the time evolution of single excitations in spin chains is studied exactly. An interesting observation is that the excitation can stay at its initial location with high probability only when the bound state and disorder coexist. In contrast, when either one of them is absent, the information of the initial state can be erased completely or becomes mixed. This finding shows that the combination of bound state and disorder can provide an ideal mechanism for quantum memory.
NASA Astrophysics Data System (ADS)
Dieny, B.; Sousa, R.; Prejbeanu, L.
2007-04-01
Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic tunnel junctions were introduced as memory elements in new types of non-volatile magnetic memories (MRAM). A first 4Mbit product was launched by Freescale in July 2006. Future generations of memories are being developed by academic groups or companies. the combination of magnetic elements with CMOS components opens a whole new paradigm in hybrid electronic components which can change the common conception of the architecture of complex electronic components with a much tighter integration of logic and memory. the steady magnetic excitations stimulated by spin-transfer might be used in a variety of microwave components provided the output power can be increased. Intense research and development efforts are being aimed at increasing this power by the synchronization of oscillators. The articles compiled in this special issue of Journal of Physics: Condensed Matter, devoted to spin electronics, review these recent developments. All the contributors are greatly acknowledged.
Superconductivity and fluctuations in Ba 1–pK pFe 2As 2 and Ba(Fe 1–nCo n) 2As 2
Böhm, T.; Hosseinian Ahangharnejhad, R.; Jost, D.; ...
2016-08-11
In this paper, we study the interplay of fluctuations and superconductivity in BaFe 2As 2 (Ba-122) compounds with Ba and Fe substituted by K (p doping) and Co (n doping), respectively. To this end, we measured electronic Raman spectra as a function of polarization and temperature. We observe gap excitations and fluctuations for all doping levels studied. The response from fluctuations is much stronger for Co substitution and, according to the selection rules and the temperature dependence, originates from the exchange of two critical spin fluctuations with characteristic wave vectors (±π,0) and (0,±π). At 22% K doping (p = 0.22),more » we find the same selection rules and spectral shape for the fluctuations but the intensity is smaller by a factor of 5. Since there exists no nematic region above the orthorhombic spin-density-wave (SDW) phase, the identification of the fluctuations via the temperature dependence is not possible. The gap excitations in the superconducting state indicate strongly anisotropic near-nodal gaps for Co substitution which make the observation of collective modes difficult. The variation with doping of the spectral weights of the A 1g and B 1g gap features does not support the influence of fluctuations on Cooper pairing. Thus, the observation of Bardasis–Schrieffer modes inside the nearly clean gaps on the K-doped side remains the only experimental evidence for the relevance of fluctuations for pairing.« less
Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors
NASA Astrophysics Data System (ADS)
Matsuzaki, Tomoaki; Shimahara, Hiroshi
2017-02-01
In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theis, T.; Feng, Y.; Wu, T.
2014-01-07
Hyperpolarization methods, which can enhance nuclear spin signals by orders of magnitude, open up important new opportunities in magnetic resonance. However, many of these applications are limited by spin lattice relaxation, which typically destroys the hyperpolarization in seconds. Significant lifetime enhancements have been found with “disconnected eigenstates” such as the singlet state between a pair of nearly equivalent spins, or the “singlet-singlet” state involving two pairs of chemically equivalent spins; the challenge is to populate these states (for example, from thermal equilibrium magnetization or hyperpolarization) and to later recall the population into observable signal. Existing methods for populating these statesmore » are limited by either excess energy dissipation or high sensitivity to inhomogeneities. Here we overcome the limitations by extending recent work using continuous-wave irradiation to include composite and adiabatic pulse excitations. Traditional composite and adiabatic pulses fail completely in this problem because the interactions driving the transitions are fundamentally different, but the new shapes we introduce can move population between accessible and disconnected eigenstates over a wide range of radio-frequency (RF) amplitudes and offsets while depositing insignificant amounts of power.« less
NASA Astrophysics Data System (ADS)
Pan, Jian-Song; Zhang, Wei; Yi, Wei; Guo, Guang-Can
2016-10-01
In a recent experiment (Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C. Ji, Y. Deng, S. Chen, X.-J. Liu, and J.-W. Pan, arXiv:1511.08170 [cond-mat.quant-gas]), a Raman-assisted two-dimensional spin-orbit coupling has been realized for a Bose-Einstein condensate in an optical lattice potential. In light of this exciting progress, we study in detail key properties of the system. As the Raman lasers inevitably couple atoms to high-lying bands, the behaviors of the system in both the single- and many-particle sectors are significantly affected. In particular, the high-band effects enhance the plane-wave phase and lead to the emergence of "roton" gaps at low Zeeman fields. Furthermore, we identify high-band-induced topological phase boundaries in both the single-particle and the quasiparticle spectra. We then derive an effective two-band model, which captures the high-band physics in the experimentally relevant regime. Our results not only offer valuable insights into the two-dimensional lattice spin-orbit coupling, but also provide a systematic formalism to model high-band effects in lattice systems with Raman-assisted spin-orbit couplings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yizhou, E-mail: yliu062@ucr.edu; Yin, Gen; Lake, Roger K., E-mail: rlake@ece.ucr.edu
Single skyrmion creation and annihilation by spin waves in a crossbar geometry are theoretically analyzed. A critical spin-wave frequency is required both for the creation and the annihilation of a skyrmion. The minimum frequencies for creation and annihilation are similar, but the optimum frequency for creation is below the critical frequency for skyrmion annihilation. If a skyrmion already exists in the cross bar region, a spin wave below the critical frequency causes the skyrmion to circulate within the central region. A heat assisted creation process reduces the spin-wave frequency and amplitude required for creating a skyrmion. The effective field resultingmore » from the Dzyaloshinskii-Moriya interaction and the emergent field of the skyrmion acting on the spin wave drive the creation and annihilation processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, A., E-mail: apapp@nd.edu; Pázmány Péter Catholic University, Faculty of Information Technology, Budapest 1088; Porod, W., E-mail: porod@nd.edu
We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnetmore » structures can be the basis of potentially high-performance, ultra low-power computing devices.« less
Coriolis effect in optics: unified geometric phase and spin-Hall effect.
Bliokh, Konstantin Y; Gorodetski, Yuri; Kleiner, Vladimir; Hasman, Erez
2008-07-18
We examine the spin-orbit coupling effects that appear when a wave carrying intrinsic angular momentum interacts with a medium. The Berry phase is shown to be a manifestation of the Coriolis effect in a noninertial reference frame attached to the wave. In the most general case, when both the direction of propagation and the state of the wave are varied, the phase is given by a simple expression that unifies the spin redirection Berry phase and the Pancharatnam-Berry phase. The theory is supported by the experiment demonstrating the spin-orbit coupling of electromagnetic waves via a surface plasmon nanostructure. The measurements verify the unified geometric phase, demonstrated by the observed polarization-dependent shift (spin-Hall effect) of the waves.
Phase control of spin waves based on a magnetic defect in a one-dimensional magnonic crystal
NASA Astrophysics Data System (ADS)
Baumgaertl, Korbinian; Watanabe, Sho; Grundler, Dirk
2018-04-01
Magnonic crystals are interesting for spin-wave based data processing. We investigate one-dimensional magnonic crystals (1D MCs) consisting of bistable Co 20 Fe 60 B 20 nanostripes separated by 75 nm wide air gaps. By adjusting the magnetic history, we program a single stripe of opposed magnetization in an otherwise saturated 1D MC. Its influence on propagating spin waves is studied via broadband microwave spectroscopy. Depending on an in-plane bias magnetic field, we observe spin wave phase shifts of up to almost π and field-controlled attenuation attributed to the reversed nanostripe. Our findings are of importance for magnetologics, where the control of spin wave phases is essential.
Critical excitation spectrum of a quantum chain with a local three-spin coupling.
McCabe, John F; Wydro, Tomasz
2011-09-01
Using the phenomenological renormalization group (PRG), we evaluate the low-energy excitation spectrum along the critical line of a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields, i.e., a Turban model. The low-energy excitation spectrum found with the PRG agrees with the spectrum predicted for the (D(4),A(4)) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the two-dimensional three-state Potts model are in the same universality class.